WELL-QUASI-ORDERING, THE TREE THEOREM, AND VAZSONYI'S CONJECTURE ${ }^{1}$)

BY
J. B. KRUSKAL

1. Introduction. The theory of well-quasi-ordering was first developed by Graham Higman [1] (under the name "finite basis property") and by P. Erdös and R. Rado in an unpublished manuscript. Some hints of the theory had already occurred, however, in B. H. Neumann [4]. The theory was further developed by Rado [5], and by Kruskal ([2;3] and the present paper).

The theory described in this paper was developed in order to settle the following conjecture due to A . Vazsonyi:

Vazsonyi's Conjecture. There is no infinite set $\left\{\tau_{1}, \tau_{2}, \cdots\right\}$ of (finite connected) trees such that τ_{i} is not homeomorphically embeddable in τ_{j} for all $i \neq j$.

The main result of the present paper is the Tree Theorem, which is stated in §2. Roughly speaking, this theorem asserts that if we quasi-order the set $T(X)$ of all functions from all finite trees into a quasi-ordered space X in a natural way, then X well-quasi-ordered implies $T(X)$ well-quasi-ordered. This theorem yields the above conjecture as an easy corollary. It also contains Theorem 1.1 of Higman [1] as a special case.

This paper is self-contained except for a few results quoted from earlier papers. However, the reader unfamiliar with the subject may find the exposition uncomfortably brief.
2. Basic definitions and the Tree Theorem. A quasi-order (qo) is a binary relation which is transitive ($x \leqq y \leqq z$ implies $x \leqq z$) and reflexive ($x \leqq x$ for all x). A partial-order (po) is a quasi-order which is proper ($x \leqq y \leqq x$ implies $x=y$). We define $x<y$ to mean $x \leqq y$ and $y \nsubseteq x$.

We suppose from now on that X is qo by \leqq. A subset U of X is called an upper ideal $=u p p e r$ set $=$ ideal if x in U and $x \leqq y$ implies y in U. Ideals are obviously closed under intersections and unions. If $A \subset X$, then upper A is defined to be the ideal which is the intersection of all the ideals containing A. Clearly upper $A=\{y \mid y \geqq$ some x in $A\}$. If upper $A=U$, we say that A generates or spans U, and that U is the ideal generated by A.

Received by the editors June 30, 1959.

${ }^{(1)}$ This paper presents an expanded version of part of my doctoral dissertation at Princeton University. I wish to express my gratitude for the encouragement and direction of R. Lyndon and A. W. Tucker. I also wish to acknowledge my debt to P. Erdös for acquainting me with the problem and to my brother M. Kruskal for his collaboration in the early development of the theory.

A space X is well-quasi-ordered (wqo) [or well-partially-ordered (wpo)] if it is qo [or po] and if every ideal has a finite generating set $\left({ }^{2}\right)$.

Lemma. Suppose X is qo. Then the following conditions are equivalent:
(1) X is $w q o$;
(2) X satisfies the nowhere ascending chain condition, that is, every sequence x_{1}, x_{2}, \cdots of elements from X with the property that $x_{i} \ddagger x_{j}$ for $i<j$ is finite;
(3) X satisfies both (a) the strictly descending chain condition, namely, every sequence $x_{1}>x_{2}>\cdots$ is finite, and (b) the incomparable chain condition, namely, every sequence x_{1}, x_{2}, \cdots with $x_{i} \neq x_{j}$ for $i \neq j$ is finite;
(4) for every x in X, X-upper x is wqo.

The reader may easily supply the proof; see also Theorem 2.5 of [1] or Theorem 1 of [3] for proofs and further conditions.

Let $T^{\#}$ be the collection of all (finite connected) trees. Write $\tau_{1} \leqq \tau_{2}$ if the tree τ_{1} may be homeomorphically embedded in τ_{2}. Clearly $T^{\#}$ is qo by \leqq. To prove Vazsonyi's Conjecture it suffices to prove that $T^{\#}$ is wqo. (In fact, Vazsonyi's Conjecture is equivalent to $T^{\#}$ being wqo, but we do not bother to prove this.)

The proof that $T^{\#}$ is wqo proceeds by an elaborate induction-like procedure. As frequently happens in such cases, the induction will not work unless we strengthen and generalize the statement to be proved. In the present case we must strengthen and generalize to an extreme degree.

First we replace $T^{\#}$ by T, the space of (finite connected) structured trees. A tree τ is said to be structured if:
(1a) a particular vertex, called the root of τ, is specified;
$\left.{ }^{(2}\right)$ Higman [1] calls this "finite basis property." Rado [5] uses "partial well-order." They both deal with po sets rather than qo sets.
(1b) every edge of τ is oriented so that it points away from the root of τ;
(1c) at each vertex v of τ the edges just above v (that is, the edges whose initial vertex is v) are linearly ordered.

We define $\omega: \tau_{1} \rightarrow \tau_{2}$ to be a monomorphism if:
(2a) ω is a homeomorphic embedding when the structure on τ_{1} and τ_{2} is disregarded;
(2b) ω takes each vertex of τ_{1} into a vertex of τ_{2};
(2c) ω maps each edge of τ_{1} into an oriented path of τ_{2}, and does so in an orientation-preserving manner;
(2d) for each vertex v of τ_{1}, ω maps the edges which initiate at v into paths which initiate at $\omega(v)$ in a manner which is strictly order-preserving (with respect to the linear orders at v and at $\omega(v))$.

To each structured tree τ there corresponds an ordinary tree $\# \tau$ obtained by disregarding the structure. It is clear from (2a) that $\tau_{1} \leqq \tau_{2}$ implies $\# \tau_{1}$ $\leqq \# \tau_{2}$; that is, \# is a homomorphism $\left({ }^{3}\right)$. It is also clear that \# is onto; that is, \# is an epimorphism $\left({ }^{3}\right)$. As an epimorphism preserves wqo $\left(^{3}\right)$, it suffices to prove that T is wqo in order to prove $T^{\#}$ wqo.

Write $t: \tau \rightarrow X$ for a function defined on the vertices of τ into X. We call t a (structured) tree over X. Intuitively, we may visualize t as τ with each vertex v labelled with an element of X. We shall call τ the carrier of t. If τ^{\prime}, τ_{i}, etc. denote subtrees of τ, we shall denote the function t restricted to these subtrees by t^{\prime}, t_{i}, etc., and we shall refer to subtrees of t in this sense. We shall also use this convention in reverse: if t^{\prime}, t_{i}, etc. are trees, we shall denote their carriers by τ^{\prime}, τ_{i}, etc. We may speak of a vertex, root, etc. of t when we mean the corresponding object of τ.

Let $T(X)$ be the collection of all trees over X. If t_{1} and t_{2} are trees in $T(X)$, define a monomorphism $\omega: t_{1} \rightarrow t_{2}$ to be a monomorphism $\omega: \tau_{1} \rightarrow \tau_{2}$ with

$$
\begin{gathered}
\tau_{1} \xrightarrow{\omega} \tau_{2} \\
t_{1} \downarrow \downarrow t_{2} \\
X
\end{gathered}
$$

the additional property that
(3) $t_{1}(v) \leqq t_{2} \omega(v)$ for every vertex v of τ_{1}. Intuitively, this requires that ω map each vertex of t_{1} into a vertex of t_{2} with a greater label. If t_{1} and t_{2} are in $T(X)$, define $t_{1} \leqq t_{2}$ if and only if there is a monomorphism $\omega: t_{1} \rightarrow t_{2}$.

Clearly $T(X)$ is qo. Define $b: T(X) \rightarrow T$ to be the function which assigns to each tree t over X its carrier τ. It is easy to see that b is an epimorphism $\left(^{3}\right)$ if X is nonempty. Hence if for some (nonempty) X we show $T(X)$ wqo, it follows that T is wqo. We shall in fact prove the following:

The Tree Theorem. X wqo implies $T(X)$ wqo.
${ }^{(3)}$ See $\S 4$ for a fuller statement.
3. An Equivalent Theorem. The Tree Theorem is our main result. However it does not seem possible to apply our induction-like proof to it as it stands. To make our proof work, we must apply it to a more complicated proposition which is equivalent to the Tree Theorem.

For any vertex v of a (structured) tree τ we define $d(v)=$ the degree of v to be the number of edges whose initial vertex is v. We refer to the edges whose initial vertex is v as the edges which sprout from v. We define the branch of τ at v to consist of v and all vertices which can be reached from v along positively oriented paths starting at v, together with all edges which sprout from any of these vertices. (In other words, the branch at v consists of v and all vertices which lie above v, together with all edges which lie above v.) We define the root of the branch at v to be v itself, and we use in the branch the orientations and linear orders of τ itself. Clearly the branch becomes a structured tree under these definitions. We define the branch of t at v to be t restricted to the branch of τ at v.

A forest means a (finite) ordered sequence of structured trees. A forest over X means a (finite) ordered sequence of trees over X. If v is a vertex in τ, let us temporarily denote the edges which sprout from v by e_{1}, \cdots, e_{ρ}, where the subscripts are given in accordance with the linear order at v. Let the terminal vertices of these edges be v_{1}, \cdots, v_{ρ}. We refer to the branches of t (or of τ) at v_{1}, \cdots, v_{ρ} as the branches of t (or of τ) above v. We refer to the sequence of branches above v as the forest above v (where the branches making up the forest are ordered in the obvious way). If the degree of v is 0 , the forest above v is the empty sequence.

We define a graded quasi-ordered space Q to consist of a qo set Q_{+}together with an infinite sequence Q_{0}, Q_{1}, \cdots of subsets of Q, possibly overlapping, whose union is Q_{+}. A graded space Q is said to be wqo if
(4a) Q_{+}is wqo, and
(4b) there is some integer N, called the total degree of Q, for which Q_{N} $=Q_{N+1}=\cdots$ but $Q_{N-1} \neq Q_{N}$.

If a tree $t: \tau \rightarrow Q_{+}$over Q_{+}satisfies the following condition, we call it a tree over Q and denote it by $t: \tau \rightarrow Q$:
(5) for every v in $\tau, t(v)$ is in $Q_{d(v)}$. Intuitively this means that each vertex of t must be labelled with an element from the appropriate subset of Q_{+}. Define $T(Q)$ to be the collection of all trees over Q. Note that $T(Q)$ is a subset of $T\left(Q_{+}\right)$, and that the obvious qo on $T(Q)$ is precisely that which it receives as a subset of $T\left(Q_{+}\right)$.

Theorem 1. Q wqo implies $T(Q)$ wqo.
This is the proposition that we shall actually prove.
If Q has total degree 0 , then $T\left(Q_{0}\right)=T(Q)$ and Q wqo becomes equivalent to Q_{0} wqo, so this theorem reduces to the Tree Theorem. On the other hand if we assume the Tree Theorem, we have that Q wqo implies Q_{+}wqo, which
implies $T\left(Q_{+}\right)$wqo which implies $T(Q)$ wqo. Thus Theorem 1 is equivalent to the Tree Theorem.

The proof of Theorem 1 consists of three main parts. In the first part, given that Q is wqo and $T(Q)$ is not, we construct another wqo space Q^{*} which is "smaller" than Q (in a certain technical sense defined later). In the second part we prove that $T\left(Q^{*}\right)$ is not wqo. Thus by repeating this construction, we can obtain an infinite sequence $Q, Q^{*}, Q^{* *}, \cdots$ of wqo spaces, each "smaller" than the preceding one (and such that $T(Q), T\left(Q^{*}\right), \cdots$ are not wqo). In the third part we show that such an infinite sequence of wqo spaces is impossible: the wqo character forbids it.
4. Some lemmas and definitions. Suppose that X and Y are qo spaces. Suppose $h: X \rightarrow Y$ is a function. We call h a homomorphism if h preserves \leqq, that is, if $x_{1} \leqq x_{2}$ implies $h\left(x_{1}\right) \leqq h\left(x_{2}\right)$. We call h a monomorphism if it is 1-1 and if $x_{1} \leqq x_{2}$ if and only if $h\left(x_{1}\right) \leqq h\left(x_{2}\right)$. We call h an epimorphism if it is onto and a homomorphism. We call h an isomorphism it is onto and a monomorphism. The following simple lemmas will be used many times:

Epimorphism Lemma. If $h: X \rightarrow Y$ is a homomorphism, then X wqo implies $h(X)$ wqo. In particular, if h is an epimorphism, then X wqo implies Y wqo.

Monomorphism Lemma. If $h: X \rightarrow Y$ is a monomorphism, then Y wqo implies X wqo. Every subspace of a wqo space is wqo.

Suppose Q and Q^{\prime} are graded qo spaces. By a function $h: Q \rightarrow Q^{\prime}$ we mean a function $h: Q_{+} \rightarrow Q_{+}^{\prime}$ which satisfies the following:

$$
\begin{equation*}
\text { for every } i \geqq 0, \quad h\left(Q_{i}\right) \subset Q_{i}^{\prime} . \tag{6}
\end{equation*}
$$

If $h: Q_{+} \rightarrow Q^{\prime}$ is also a homomorphism, we call $h: Q \rightarrow Q^{\prime}$ a homomorphism. If in addition $h\left(Q_{i}\right)=Q_{i}^{\prime}$, then we call h an epimorphism. It is easy to verify the following:

Second Epimorphism Lemma. If $h: Q \rightarrow Q^{\prime}$ is a homomorphism, then Q wqo implies $h(Q)$ wqo. In particular, if h is an epimorphism, then Q wqo implies Q^{\prime} wqo.

Note that the total degree of $h(Q)$ necessarily exists and is less than or equal to that of Q.

If X_{1}, \cdots, X_{k} are disjoint qo spaces, we define their direct union, written

$$
\dot{U} X_{i} \text { or } X_{1} \dot{\cup} \ldots \dot{\cup} X_{k},
$$

to be the qo space whose set is the set-theoretic union of the sets X_{i} and whose qo is the union of the quasi-orders of the X_{i}; that is, an ordering relation exists between two elements in the direct union if and only if the two elements belong to the same X_{i} and an ordering relation exists between them there. If X_{1}, \cdots, X_{k} are qo spaces we define their Cartesian product (or direct
product) to be the space whose set is the Cartesian product of the X_{i} 's with \leqq defined component-wise: $\left(x_{1}, \cdots, x_{k}\right) \leqq\left(y_{1}, \cdots, y_{k}\right)$ if and only if $x_{i} \leqq y_{i}$ for every i. Both the direct union and Cartesian product are clearly qo spaces.

Finite Union Lemma. If a qo space is the union of a finite number of wqo subspaces, then the space is wqo. The direct union of a finite number of disjoint wqo spaces is wqo.

Finite Cartesian Product Lemma. The Cartesian product of a finite number of wqo spaces is wqo.

The first lemma is trivial. The second lemma, which is Theorem 2.3 of [1] and the Finite Product Lemma of [3] may easily be proved using condition (2) of the lemma is $\S 2$.

Let $F=\{\lambda\}$ be the collection of all finite linearly ordered sets λ, including the empty set. If X is qo, define $F(X)$ to be the set of all functions $f: \lambda \rightarrow X$ using any λ in F. Each element of $F(X)$ may be thought of as a finite sequence of elements from X, and this picture is only slightly inaccurate. Define a monomorphism $\omega: f_{1} \rightarrow f_{2}$ to mean a monomorphism $\omega: \lambda_{1} \rightarrow \lambda_{2}$ (where λ_{1} is the domain of f_{1} and λ_{2} is the domain of f_{2}) with the additional property that

$$
\begin{gathered}
\lambda_{1} \xrightarrow{\omega} \lambda_{2} \\
f_{1} \searrow \downarrow f_{2} \\
X
\end{gathered}
$$

$f_{1}(i) \leqq f_{2} \omega(i)$ for every i in λ_{1}. Define $f_{1} \leqq f_{2}$ if and only if there is a monomorphism $\omega: f_{1} \rightarrow f_{2}$. Intuitively, one sequence is less than another if some subsequence of the greater sequence majorizes the smaller sequence term by term. We agree that the empty sequence (that is, the unique function from the empty set into X) is \leqq every sequence. Intuitively, $F(X)$ is the set of all finite sequences of elements of X, qo in a natural though unfamiliar way.

Clearly $F(X)$ is qo. We shall generally denote an element f of $F(X)$ as a sequence. Thus for example, $\left(x_{1}, x_{2}, x_{4}\right)$ denotes the function $f:\{1,2,4\} \rightarrow X$ whose values are x_{1}, x_{2}, and x_{4}. We shall seldom mention the set λ involved as it is not important.

Notice that the natural embedding of $X \times \cdots \times X$ in $F(X)$ is a monomorphism. Thus the following theorem is closely related to the Finite Cartesian Product Lemma:

Finite Sequence Theorem. X wqo implies $F(X)$ wqo.

For a proof of this theorem, see Theorem 4.3 of [1] or $\S 4$ of [3]. Rado [5] and Kruskal [2] contain related but much more general theorems. If we consider only unbranched (structured) trees, $T(X)$ reduces to $F(X)$ so the Tree Theorem may be considered an extension of the Finite Sequence Theorem.

If Q is any graded space, define $+Q$ to be the graded space of total degree 0 given as follows:

$$
\begin{aligned}
& +Q_{i} \equiv(+Q)_{i}=Q_{+} \\
& +Q_{+} \equiv(+Q)_{+}=Q_{+}
\end{aligned}
$$

Obviously $+Q$ is wqo if and only if Q_{+}is wqo. Also, $T(Q)$ is a subset of $T(+Q)$, which is the same as $T\left(Q_{+}\right)$.

A space Q of total degree N is called neutral if Q_{0}, \cdots, Q_{N} are pairwise disjoint and if there are no ordering relations between elements belonging to different sets of this collection. We wish to associate a neutral space $\& Q$ with any space Q which has some total degree (which we shall call N). Let $\left\{\psi_{0}, \psi_{1}, \cdots\right\}$ be an infinite set with the "discrete" ordering: $\psi_{i} \leqq \psi_{j}$ if and only if $i=j$. Define

$$
\begin{aligned}
& \text { Define } \\
& \text { Q } i_{i} \equiv(\natural Q)_{i}= \begin{cases}Q_{i} \times\left\{\psi_{i}\right\}, & \text { for } 0 \leqq i \leqq N-1, \\
Q_{i} \times\left\{\psi_{N}\right\}, & \text { for } i \leqq N,\end{cases} \\
& \forall Q_{+} \equiv(\natural Q)_{+}=\bigcup_{0}^{N} \nvdash Q_{i} .
\end{aligned}
$$

$\mathfrak{q} Q_{+}$acquires a natural order as a subset of $Q_{+} \times\left\{\psi_{0}, \cdots, \psi_{N}\right\}$. It is easy to see that ℓQ is a neutral graded space of the same total degree as Q. Using the Finite Union Lemma, we see that ℓQ is wqo if and only if Q is wqo.

There is a natural epimorphism $\xi^{-1}: \ell Q \rightarrow Q$ which is defined by

$$
\mathfrak{q}^{-1}\left(x, \psi_{i}\right)=x \text {. }
$$

It is easy to verify that \mathfrak{q}^{-1} is an epimorphism.
Suppose that Y is a qo space, and that (y_{1}, \cdots, y_{r}) is a fixed element of $F(Y)$. Let (z_{1}, \cdots, z_{j}) be any other element of $F(Y)$ such that

$$
\left(y_{1}, \cdots, y_{r}\right) \neq\left(z_{1}, \cdots, z_{j}\right) .
$$

We shall need the following construction in $\S 5$.
Let the degree of inequality of $\left(z_{1}, \cdots, z_{j}\right)$ (with respect to $\left(y_{1}, \cdots, y_{r}\right)$) be the largest integer ρ such that

$$
\left(y_{1}, \cdots, y_{\rho}\right) \leqq\left(z_{1}, \cdots, z_{j}\right)
$$

Clearly $0 \leqq \rho \leqq r-1$. Let the first residual term of $\left(z_{1}, \cdots, z_{j}\right)$ be the first term z_{i} (if any) such that $y_{1} \leqq z_{i}$. Recursively, let the kth residual term of $\left(z_{1}, \cdots, z_{j}\right)$ be the first term z_{i} (if any) such that z_{i} follows the $(k-1)$ st residual term and $y_{k} \leqq z_{i}$. Clearly (z_{1}, \cdots, z_{j}) has precisely ρ residual terms if and only if its degree of inequality equals ρ. Let the residual sequence be the sequence $\left(z_{i_{1}}, \cdots, z_{i_{\rho}}\right)$ of residual terms.

If $z_{i_{k}}$ and $z_{i_{k+1}}$ are the k th and $(k+1)$ st residual terms, then clearly $y_{k+1} \neq z_{i}$ for $i_{k}<i<i_{k+1}$. Let

$$
\left(\left(z_{1}, \cdots, z_{i_{1}-1}\right),\left(z_{i_{1}+1}, \cdots, z_{i_{2}-1}\right), \cdots,\left(z_{i_{p}+1}, \cdots, z_{j}\right)\right)
$$

be the nonresidual double sequence associated with $\left(z_{1}, \cdots, z_{j}\right)$. This double sequence clearly belongs to

$$
F\left(Y-\text { upper } y_{1}\right) \times \cdots \times F\left(Y-\text { upper } y_{\rho+1}\right) .
$$

If X and X^{*} are qo spaces, we call X^{*} smaller than X if there is a monomorphism from X^{*} into X. We call X^{*} essentially smaller than X if there is an x in X such that X^{*} is smaller than X-upper x. By condition (4) of the lemma in §2, if X is not wqo, then there is an essentially smaller space X^{*} such that X^{*} is not wqo.

If Q and Q^{*} are two graded spaces of total degrees N and N^{*}, we define Q^{*} to be smaller than Q by descent at R if
(7a) Q_{R}^{*} is essentially smaller than Q_{R};
(7b) Q_{n}^{*} is smaller than Q_{n} for all $n>R$, and
(7c) $N^{*}=\max (N, R)$.
The integer R is called the index of descent. If Q^{*} is smaller than Q by descent at some unspecified integer, we say merely that Q^{*} is smaller than Q.

The reason for this peculiar definition is that it describes the result of the construction in a later section. Another way of expressing (7c) is this: $N^{*} \geqq N$; and furthermore $R<N^{*}$ in case $N^{*}=N$, but $R=N^{*}$ in case $N^{*}>N$. It should be pointed out that the relation "smaller" for graded spaces is not transitive, though "smaller by descent at R " is transitive.
5. First part of proof. Construction of Q^{*}. It will suffice to prove Theorem 1 for neutral graded spaces. To see this first notice that any function $h: Q \rightarrow Q^{\prime}$ induces a function $T h: T(Q) \rightarrow T\left(Q^{\prime}\right)$ by the following natural definition:

$$
\begin{gathered}
\operatorname{Th}(t: \tau \rightarrow Q)=\left(h t: \tau \rightarrow Q^{\prime}\right) \\
\\
\\
t \downarrow \downarrow h t \\
\\
Q \xrightarrow{h} Q^{\prime}
\end{gathered}
$$

It is easy to see that if h is a homomorphism or an epimorphism, then $T h$ is also. We have already seen that for any graded space Q there is a neutral space $\vDash Q$ and an epimorphism $\mathfrak{q}^{-1}: \natural Q \rightarrow Q$. Then $T \natural^{-1}: T(\nvdash Q) \rightarrow T(Q)$ is also an epimorphism. Thus if Theorem 1 holds for neutral graded spaces, we have that Q wqo implies ℓQ wqo, which implies $T(\nvdash Q)$ wqo, which implies $T(Q)$ wqo.

Now suppose that Q is some wqo neutral space and that $T(Q)$ is not wqo. Q will remain fixed throughout the remainder of this and the following section. We wish to construct a wqo neutral space Q^{*} which is smaller than Q such that $T\left(Q^{*}\right)$ is also not wqo. Throughout this and the following section, N and N^{*} will always refer to the total degrees of Q and Q^{*}.

If τ is a structured tree, then the height of τ is the number of edges in the longest oriented path in τ. As $T(Q)$ is not wqo, it must (according to the
lemma of $\S 2$) contain some tree t such that $T(Q)$-upper t is not wqo. Among all such trees t choose one, which we shall call $s: \sigma \rightarrow Q$, whose carrier σ has minimum height. The tree s will play a leading role throughout this and the following section. Let the degree of the root of s be called r, that is, s has r branches just above its root. Let these branches be called s_{1}, \cdots, s_{r} where the subscripts have been assigned in accordance with the linear ordering at the root of s. (According to our previous convention, the carrier of each s_{i} is called σ_{i}. In the future we shall use this convention without further notice.) Each tree s_{i} has height strictly smaller than the height of s. It follows from the manner in which s was chosen that $T(Q)$-upper s_{i} is wqo for $i=1$ to r. This fact is of central importance. Finally we set $u=s$ (root of s), that is, u is the label at the root of s. Thus u is in Q_{r}.

In case s has height 0 , much of the preceding paragraph is vacuous, and also unnecessary. For if s has height 0 , define Q^{*} thus:

$$
\begin{aligned}
& Q_{i}^{*}=Q_{i}-\text { upper } u, \\
& Q_{+}^{*}=U Q_{i}^{*} \\
& N^{*}=N .
\end{aligned}
$$

It is easy to verify that Q^{*} is a wqo neutral space, that $T\left(Q^{*}\right)=T(Q)$ - upper s and is therefore not wqo, and that Q^{*} is smaller than Q with the index of descent being zero. Thus if s has height 0 the construction of Q^{*} is elementary. We shall hereafter assume that the height of s is greater than zero, which in turn implies that $r>0$.

Our construction of Q^{*} is conceptually a little different in the cases $r<N$ and $r \geqq N$, though no formal distinction need be made. In case $r<N$, we shall have Q_{r}^{*} essentially smaller than Q_{r}, but $Q_{i}^{*}=Q_{i}$ for $i \geqq r$. In case $r \geqq N$, we shall have Q_{i}^{*} essentially smaller than Q_{i} both for $i=r$ and for $i>r$. The reader is advised to keep these two different cases in mind, though no further reference to this distinction will be made. In both cases Q_{i}^{*} is relatively complicated for $i<r$.

Recalling from before that F is the operator that forms the space of finite sequences, first define

$$
\begin{aligned}
& F_{i}=F\left[T(Q)-\text { upper } s_{i}\right], \quad \text { for } i=1 \text { to } r, \\
& W_{i}=F_{1} \times \cdots \times F_{i+1}, \quad \text { for } i=0 \text { to } r-1 .
\end{aligned}
$$

Next define Q^{\prime} by

$$
\begin{aligned}
& Q_{i}^{\prime}=\left\{\begin{array}{l}
Q_{+} \dot{\cup}\left[Q_{+} \times W_{i}\right], \quad \text { for } i=0 \text { to } r-1, \\
Q_{i}-\operatorname{upper} u, \quad \text { for } i \geqq r,
\end{array}\right. \\
& Q^{\prime}=U Q_{i}^{\prime}=Q_{+} \dot{U}_{0}^{r-1}\left[Q_{0} \times W_{i}\right], \\
& N^{\prime}=\max (N, r) \text {. }
\end{aligned}
$$

We define Q^{*} to be $\mathfrak{k} Q^{\prime}$. (If $r>N, Q^{\prime}$ is not neutral.)
It is easy to see that Q^{*} is a neutral graded space, that it has total degree $N^{*}=\max (N, r)$, and that Q^{*} is smaller than Q by descent at r. To verify that Q^{*} is wqo, we note that $T(Q)$-upper s_{i} is wqo by a previous remark, F_{i} is wqo by the Finite Sequence Theorem, W_{i} and also $Q_{+} \times W_{i}$ are wqo by the Finite Cartesian Product Lemma, Q_{i}^{\prime} is wqo either by the Finite Union Lemma or trivially depending on i, each $Q_{i}^{*}=Q_{i}^{\prime} \times\left\{\psi_{i}\right\}$ with $0 \leqq i \leqq N^{*}$ is obviously wqo, and finally Q_{+}^{*} is wqo by the Finite Union Lemma. Thus we have proved that Q^{*} is a wqo neutral space.

It is convenient to define another graded-space $Q^{\prime \prime}$, which is larger than Q^{\prime}, for use in the next section. Let

$$
\begin{aligned}
Q_{i}^{\prime \prime} & =\left\{\begin{array}{l}
Q_{+} \dot{U}\left[Q_{+} \times W_{i}\right], \quad \text { for } i=0 \text { to } r-1, \\
Q_{+}, \\
\text {for } i \geqq r,
\end{array}\right. \\
Q_{+}^{\prime \prime} & =U Q_{i}^{\prime \prime}=Q_{+} \dot{\cup} \dot{U}_{0}^{-1}\left[Q_{+} \times W_{i}\right], \\
N^{\prime \prime} & =\max (N, r) .
\end{aligned}
$$

$Q^{\prime \prime}$ is clearly a graded space of total degree $N^{\prime \prime}$, though not necessarily neutral. As a matter of fact it is also wqo, though we have no need of this fact. Furthermore, $T\left(Q^{\prime \prime}\right)$ contains $T(Q), T\left(Q^{\prime}\right)$, and $T(+Q)$.
6. Second part of proof. $T\left(Q^{*}\right)$ is not wqo. To prove that $T\left(Q^{*}\right)$ is not wqo we shall define a function $H: T\left(Q^{\prime}\right) \rightarrow T(+Q)$. We shall prove that H is a homomorphism and covers $T(Q)$-upper s. The Second Epimorphism Lemma then shows that $T\left(Q^{*}\right)$ is not wqo, as we see from this diagram:

$$
T\left(Q^{*}\right) \xrightarrow{T \eta^{-1}} T\left(Q^{\prime}\right) \xrightarrow{H} T(+Q) \supset T(Q)-\text { upper } s .
$$

The definition of H is a little complicated and requires certain preliminaries. Suppose $t: \tau \rightarrow Q$ is in $T\left(Q^{\prime \prime}\right)$. We classify the vertices of t according to which part of $Q^{\prime \prime}$ their labels lie in. If $t(v)$ is in Q_{+}, we call v an ordinary vertex of t. If $t(v)$ is in $Q_{+} \times W_{\rho}$ we call v special of degree ρ. (Clearly if v is special of degree ρ, it has degree ρ in the ordinary sense.)

We have already defined a forest to be an ordered sequence of trees. Call the length of a forest the number of trees in it. Then the forest above a vertex which is of degree ρ has length ρ. Define a double forest to be an ordered sequence of forests. Thus the elements of W_{i} are double forests. The length of a double forest is the number of forests in it. If

$$
\left(\left(t_{11}, \cdots, t_{1 \phi_{1}}\right), \cdots,\left(t_{\rho+1,1}, \cdots, t_{\rho+1, \phi_{\rho+1}}\right)\right)
$$

is a double forest of length $\rho+1$ and

$$
\left(t_{1}, \cdots, t_{\rho}\right)
$$

is a forest of length ρ, we call the following forest their intermingling:

$$
\left(t_{11}, \cdots, t_{1 \phi_{1}}, t_{1}, t_{21}, \cdots, t_{2 \phi_{2}}, t_{2}, \cdots, t_{\rho}, t_{\rho+1,1}, \cdots, t_{\rho+1, \phi_{\rho+1}}\right) .
$$

If t is any element of $T\left(Q^{\prime \prime}\right)$ and v is any vertex of t, we shall define another tree $E_{v} t$, which we call the expansion of t at v, which also belongs to $T\left(Q^{\prime \prime}\right)$. If v is an ordinary vertex of t, define $E_{v} t$ to be t itself. If v is special of degree ρ in t, write the forest above v as $\left(t_{1}, \cdots, t_{\rho}\right)$ and write $t(v)=[x(v), w(v)]$ where of course $x(v)$ is in Q_{+}and $w(v)$ is a double forest of length $\rho+1$ and belongs to W_{ρ}. Define $E_{v} t$ to be the same as t with two changes: the label at v is changed from $[x(v), w(v)]$ to $x(v)$; and the forest above v is changed from $\left(t_{1}, \cdots, t_{\rho}\right)$ to the intermingling of $\left(t_{1}, \cdots, t_{\rho}\right)$ with $w(v)$. This expansion process is illustrated by the accompanying diagram.

It is clear that $E_{v} t$ belongs to $T\left(Q^{\prime \prime}\right)$, and that if v is special then $E_{v} t$ has one less special vertex than t, for the vertex v is not special in $E_{v} t$, and the many new vertices introduced into $E_{v} t$ are all necessarily ordinary.

Now we define $H: T\left(Q^{\prime}\right) \rightarrow T(+Q)$. If t is in $T\left(Q^{\prime}\right)$, let the vertices of t be v^{1}, \cdots, v^{ν}. Define

$$
H t=E_{v}{ }^{\nu} \cdots E_{v}{ }^{2} E_{v}{ }^{1} t .
$$

It is clear that every vertex of $H t$ is ordinary, so $H t$ belongs to $T(+Q)$. It is also clear that $H t$ is independent of the order in which the expansion operators are applied; thus $H t$ is well-defined. We note that H could be extended to apply to every tree in $T\left(Q^{\prime \prime}\right)$, but we do not wish to make this extension.

We wish to prove that H is a homomorphism. To do so we need two homo-morphism-like properties of the expansion operator. First, if t and t^{\prime} are in $T\left(Q^{\prime \prime}\right)$, if $\omega: t \rightarrow t^{\prime}$ is a monomorphism, and if v is a vertex of t, then there exists a monomorphism $E_{v} \omega: E_{v} t \rightarrow E_{\omega(v)} t^{\prime}$. Second, if t and t^{\prime} are in $T\left(Q^{\prime \prime}\right)$, if ω : $t \rightarrow t^{\prime}$ is a monomorphism, and if v^{\prime} is a vertex of t^{\prime} which is not in the image of ω, then $\omega: t \rightarrow E_{v}, t^{\prime}$ is a monomorphism.

The second of these statements is obvious. To prove the first, we note that v is ordinary if and only if $\omega(v)$ is ordinary, and that v is special of degree ρ if and only if $\omega(v)$ is special of degree ρ, because $t(v) \leqq t^{\prime} \omega(v)$.

In case v and $\omega(v)$ are ordinary, $E_{v} t=t$ and $E_{\omega(v)} t^{\prime}=t^{\prime}$, so we may define $E_{\nu} \omega$ to be ω itself. In case v and $\omega(v)$ are special of degree ρ, write

$$
\begin{aligned}
t(v) & =\left[x(v),\left(f_{1}, \cdots, f_{\rho+1}\right)\right] \\
t^{\prime} \omega(v) & =\left[x^{\prime}(v),\left(f_{1}^{\prime}, \cdots, f_{\rho+1}^{\prime}\right)\right]
\end{aligned}
$$

where f_{i} and f_{i}^{\prime} are each forests which belong to F_{i}. Then $t(v) \leqq t^{\prime} \omega(v)$ implies that $x(v) \leqq x^{\prime}(v)$ and that $f_{i} \leqq f_{i}^{\prime}$ for $i=1$ to $\rho+1$. Thus for each i there is a monomorphism $\theta_{i}: f_{i} \rightarrow f_{i}^{\prime}$. Now we put together ω and the θ_{i} to form $E_{v} \omega$. For those vertices of $E_{v} t$ which come from trees of f_{i} we define $E_{v} \omega$ with the aid of θ_{i}; for every other vertex we define $E_{v} \omega$ to agree with ω. It is not hard to see that $E_{v} \omega$ is a monomorphism.

Now we prove that H is a homomorphism. Suppose that t and t^{*} are in $T\left(Q^{\prime \prime}\right)$, and that $t \leqq t^{*}$. Then there is a monomorphism $\omega: t \rightarrow t^{*}$. Let v^{1}, \cdots, v^{ν} be the vertices of t. Let $v^{* 1}, \cdots, v^{* \mu}$ be those vertices of t^{*} which are not in the image of ω. Then

$$
E_{v^{\nu}} \cdots E_{v^{1} \omega}: E_{v^{\nu}} \cdots E_{v^{1} t} \rightarrow E_{v^{* \mu}} \cdots E_{v^{* 1}} E_{\omega\left(v^{\nu}\right)} \cdots E_{\omega\left(v^{1}\right)} t^{*}
$$

is a monomorphism from $H t$ into $H t^{*}$, so $H t \leqq H t^{*}$. This proves that H is a homomorphism.

To prove that H covers $T(Q)$ - upper s is a little complicated and requires certain preliminaries. If t is a tree in $T\left(Q^{\prime \prime}\right)$ and v is a vertex of t, we call v prunable if
(8a) the branch of t at v belongs to $T(+Q)$, and
(8b) the forest $\left(s_{1}, \cdots, s_{r}\right) \neq$ the forest of t above v. We call v minimal prunable if it is prunable and if it is not above any other prunable vertices, that is, if v cannot be reached from any other prunable vertex along a positively oriented path of t. If v is prunable we shall define another tree $P_{v} t$, which we call t pruned at v, which also belongs to $T\left(Q^{\prime \prime}\right)$. (The process of pruning is inverse to the process of expanding in a sense that we shall soon make precise.) Recall from an earlier section the concepts of degree of inequality, residual sequence, and nonresidual double sequence. By condition (8b) we see that the forest $\left(t_{1}, \cdots, t_{n}\right)$ of t above v must have some degree of inequality ρ with respect to the forest (s_{1}, \cdots, s_{r}). Of course $0 \leqq \rho \leqq r-1$. Define the residual forest of t above v to be the residual sequence of $\left(t_{1}, \cdots, t_{n}\right)$ with respect to $\left(s_{1}, \cdots, s_{r}\right)$. Define the nonresidual double forest of t at v to be the nonresidual double sequence of $\left(t_{1}, \cdots, t_{n}\right)$ with respect to $\left(s_{1}, \cdots, s_{r}\right)$. Denote the nonresidual double forest at v by $w(v)$. Define $P_{v} t$ to be the same as t but with two changes: the label at v is changed from $t(v)$ to $[t(v), w(v)]$; and the forest above v is changed from $\left(t_{1}, \cdots, t_{n}\right)$ to the residual forest of t above v. This pruning process is illustrated by the accompanying diagram.

From the definition of degree of inequality we see that v has degree ρ in $P_{v} t$. From condition (8a) we see that the nonresidual double forest $w(v)$ is made of trees lying in $T(+Q)$. From the definition of nonresidual double sequence we see that $w(v)$ lies in W_{ρ}. Thus we have shown that $P_{v} t$ lies in

$T\left(Q^{\prime \prime}\right)$. We also note that v is not prunable in $P_{v} t$ because the label at v in $P_{v} t$ is not in Q_{+}; so $P_{v} t$ has strictly fewer prunable vertices than t.

We prove that if v is any prunable vertex of any tree t in $T\left(Q^{\prime \prime}\right)$, then $E_{v} P_{v} t=t$. As P_{v} and E_{v} only change the trees on which they operate at and above $v, E_{v} P_{v} t$ clearly is the same as t everywhere else than at and above v. P_{v} changes the label at v from $t(v)$ to $[t(v), w(v)]$ where $w(v)$ is the nonresidual double forest associated with the forest above v in $t . E_{v}$ then changes the label $[t(v), w(v)]$ back to $t(v)$. As for the forest above v, P_{v} changes the original forest above v to its residual forest by removing the trees which belong to the nonresidual double forest $w(v)$. E_{v} then intermingles this new forest above v with the double forest $w(v)$, thus obviously restoring the original forest above v.

The preceding paragraph demonstrates that the pruning operators are inverse to the expansion operators. As H is a product of expansion operators, we can show that H covers $T(Q)$-upper s by showing that each tree in $T(Q)$ - upper s may be transformed into a tree of $T\left(Q^{\prime}\right)$ by a suitable product of pruning operators. The following three paragraphs are technical steps necessary to prove that the pruning operators may be applied often enough.

If t is in $T\left(Q^{\prime \prime}\right)$-upper s, and if v in t is prunable, then $P_{v} t$ is also in $T\left(Q^{\prime \prime}\right)$-upper s. For suppose $\omega: s \rightarrow P_{v} t$ is a monomorphism. As $s\left(v^{\prime}\right)$ is in Q_{+}for every vertex v^{\prime} of s, and as $s\left(v^{\prime}\right) \leqq P_{v} t\left(\omega\left(v^{\prime}\right)\right)$ according to the definition of monomorphism, we must have $P_{v} t\left(\omega\left(v^{\prime}\right)\right)$ in Q_{+}, which implies that v cannot be in the image of ω. Then by an earlier remark, $\omega: s \rightarrow E_{v} P_{\imath} t$ is a monomorphism, so $s \leqq t$, which contradicts the assumption made about t.

Recall that u is the label at the root of s. If t is in $T\left(Q^{\prime \prime}\right)$-upper s, if v is a vertex of t such that $u \leqq t(v)$, and if the branch of t at v is in $T(+Q)$, then v is prunable. We only need to prove that condition (8b) holds. Suppose that it fails. Let

$$
\omega:\left(s_{1}, \cdots, s_{r}\right) \rightarrow \text { the forest above } v
$$

be a monomorphism. Then it is possible to define a monomorphism $\omega^{\prime}: s \rightarrow t$ by defining ω^{\prime} (root of s) $=v$ and defining ω^{\prime} for the other vertices of s with
the aid of ω. But such a monomorphism ω^{\prime} cannot exist by the assumption concerning t, so ω also cannot exist, so condition (8b) holds.

Suppose t is in $T\left(Q^{\prime \prime}\right)$ - upper s. Suppose v is minimal prunable in t. Suppose that t has the property that for every vertex v^{\prime} of $t, u \leqq t\left(v^{\prime}\right)$ implies v^{\prime} prunable. Then $P_{v} t$ has the same property. For let v^{\prime} be in $P_{v} t$ and suppose $u \leqq P_{v} t\left(v^{\prime}\right)$. This implies $v \neq v^{\prime}$, so $P_{v} t\left(v^{\prime}\right)=t\left(v^{\prime}\right)$. Thus $u \leqq t\left(v^{\prime}\right)$. Then as t is assumed to have the property we are considering, v^{\prime} is prunable in t. As v was assumed minimal prunable in t, we have that v^{\prime} is not below v. Therefore the branch of t at v^{\prime} is the same as the branch of $P_{v} t$ at v^{\prime}. As v^{\prime} is prunable in t, and as prunability at a vertex depends only on the nature of the branch at that vertex, v^{\prime} is prunable in $P_{v} t$. Thus $P_{v} t$ does indeed have the property we claimed for it.

Now we can prove that H covers $T(Q)$-upper s. Let t be any tree in $T(Q)$ - upper s. Every branch of t belongs to $T(+Q)$ of course. Thus by the second preceding paragraph, $u \leqq t\left(v^{\prime}\right)$ implies that v^{\prime} is prunable. Let v^{1} be any minimal prunable vertex of t (if t has any prunable vertices). Form $P_{v i} t$. By the third preceding paragraph, $P_{v i} t$ belongs to $T\left(Q^{\prime \prime}\right)$-upper s. By the immediately preceding paragraph, $u \leqq P_{v i} t\left(v^{\prime}\right)$ implies v^{\prime} prunable. Let v^{2} be any minimal prunable vertex of $P_{v i} t$ (if this tree has any prunable vertices). Form $P_{v^{2}} P_{v 1} t$. As before we see that this tree belongs to $T\left(Q^{\prime \prime}\right)$-upper s, and that $u \leqq P_{v^{2}} P_{v^{2}} t\left(v^{\prime}\right)$ implies v^{\prime} is prunable. We continue the process of picking minimal prunable vertices v^{3}, v^{4}, \cdots and forming new trees as long as we can. By an earlier remark, each successive tree formed has strictly fewer prunable vertices than the tree from which it was formed. Therefore this process must stop after a finite number of steps. Let v^{ν} be the last minimal prunable vertex which occurs. Let $t^{\prime}=P_{v^{\nu}} \cdots P_{v^{2}} P_{v^{2}} t$. Then t^{\prime} belongs to $T\left(Q^{\prime \prime}\right)$ - upper s and has the property that $u \leqq t^{\prime}\left(v^{\prime}\right)$ implies v^{\prime} prunable. But t^{\prime} has no prunable vertices. Therefore $u \not \leq t^{\prime}\left(v^{\prime}\right)$ for every vertex v^{\prime} of t^{\prime}. Therefore t^{\prime} belongs to $T\left(Q^{\prime}\right)$-upper s. Furthermore it is clear that $H t^{\prime}=t$. For let $v^{\nu+1}, \cdots, v^{\mu}$ be the vertices of t^{\prime} other than v^{1}, \cdots, v^{ν}. Then

$$
H t^{\prime}=E_{v^{1}} \cdots E_{v \mu} t^{\prime}=E_{v^{1}} \cdots E_{v} P_{v} \cdots P_{v 1} t=t
$$

Thus H does indeed cover $T(Q)$-upper s. This completes the proof that $T\left(Q^{*}\right)$ is not wqo.
7. Third part of the proof. In this section we prove the following:

Lemma. If $Q(1), Q(2), \cdots$ is a sequence of wqo neutral (graded) spaces, and $Q(k+1)$ is smaller than $Q(k)$ for every k, then the sequence is finite.

Let the total degree of $Q(k)$ be $N(k)$, and let the index of descent from $N(k)$ to $N(k+1)$ be $R(k)$. For convenience, let $Q_{N(k)}(k)$ be denoted by $Q_{\infty}(k)$; the mnemonic significance of this is obvious.

Our basic tool is the following:

Lemma. If $X(1), X(2), \cdots$ is a sequence of qo spaces, each smaller than the preceding one, and if $X(1)$ is wqo, then there are only a finite number of values of k for which $X(k+1)$ is essentially smaller than $X(k)$.

This is essentially Theorem 2.4 of [1] and condition (3b) of Theorem 1 of [3]. The reader may prove this very simple but useful lemma for himself.

We prove the sequence $Q(1), Q(2), \cdots$ must be finite by repeated use of the lemma just stated. First note that $Q_{\infty}(1), Q_{\infty}(2), \cdots$ is a sequence of qo spaces satisfying the hypotheses of the lemma. Hence $Q_{\infty}(k+1)$ is essentially smaller than $Q_{\infty}(k)$ for only a finite number of values of k. But whenever $R(k) \geqq N(k)$, we have $Q_{\infty}(k+1)$ essentially smaller than $Q_{\infty}(k)$. Thus $R(k) \geqq N(k)$ only a finite number of times. Let k_{0} be so large that $R(k)<N(k)$ for all $k \geqq k_{0}$. Let $M=N\left(k_{0}\right)$. By condition (7c) in the definition of descent, we see that $M=N\left(k_{0}\right)=N\left(k_{0}+1\right)=N\left(k_{0}+2\right)=\cdots$. Thus for $k \geqq k_{0}$ we have $R(k)<M$.

Now $Q_{M-1}\left(k_{0}\right), Q_{M-1}\left(k_{0}+1\right), \cdots$ satisfy the hypotheses of the lemma. But whenever $R(k)=M-1, Q_{M-1}(k+1)$ is essentially smaller than $Q_{M-1}(k)$. Hence by the lemma we may pick a k_{1} so large that for $k \geqq k_{1}, R(k)<M-1$.

Using the argument in the preceding paragraph M times, we eventually find a k_{M} so large that for $k \geqq k_{M}$ we have $R(k)<M-M=0$, which is impossible. That is to say, k cannot be greater than k_{M}. Therefore the sequence $Q(1), Q(2), \cdots$ is finite. This completes the proof of the Tree Theorem.
8. Two conjectures. If g_{1} and g_{2} are graphs, define $g_{1} \leqq g_{2}$ if g_{1} can be homeomorphically embedded in g_{2}. This relation is a qo on the set of all graphs. The set of all graphs is not wqo, for infinite, pairwise incomparable sets of elements are known.

Conjecture 1. The set of all (connected) trees, finite or infinite, is wqo.
Conjecture 2. The set of all finite graphs of maximum degree $\leqq 3$ is wqo.
9. Connections with Higman's theory. The main result of Higman [1], namely Theorem 1.1 , is equivalent to our Theorem 1 with an extra hypothesis: namely that Q_{N} (and hence Q_{N+1}, Q_{N+2}, \cdots) is empty, where N is the total degree of Q. Geometrically this means that we consider only structured trees with vertices of degree $\leqq N-1$. However the language and viewpoint of [1] are so different from the present paper that a brief glossary might be useful.

Higman [1]
Quasi-order
Quasi-order with finite basis property
Algebra A
Set of operations M
Set of n-ary operations M_{n}
Minimal algebra
Closure of a set B
Operator V

Present Paper
Quasi-order
Well-quasi-order
Space containing $T(Q)$
Set Q
Set Q_{n}
Space $T(Q)$
Upper B
Operator F.

Actually not any minimal algebra corresponds strictly to some $T(Q)$ but only a minimal algebra which is "free" in the sense that different expressions do not represent the same elements of the algebra. However any algebra is the epimorphic image of a free algebra, and epimorphism preserves wqo, so it is sufficient to deal with free algebras. The tree spaces may be considered as explicit constructions of the free (minimal) algebras in the same way that word groups are used to give explicit constructions of free groups and free products.

Bibliography

1. Graham Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. vol. 2 (1952) pp. 326-336.
2. Joseph Kruskal, Well-partial-order and Rado's conjecture, submitted to the Proc. London Math. Soc.
3. -, The theory of well-partially-ordered sets, June, 1954, Princeton University, doctoral thesis.
4. B. H. Neumann, On ordered division rings, Trans. Amer. Math. Soc. vol. 66 (1949) pp. 202-346.
5. Richard Rado, Partial well-ordering of sets of vectors, Mathematika vo'. 1 (1954) pp. 89-95.

University of Michigan, Ann Arbor, Michigan

