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ABSTRACT

ANALYSIS OF ANDROID RANDOM NUMBER
GENERATOR

Serkan Sarıtaş

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. A. Aydın Selçuk

May, 2013

Randomness is a crucial resource for cryptography, and random number genera-

tors are critical building blocks of almost all cryptographic systems. Therefore,

random number generation is one of the key parts of secure communication. Ran-

dom number generation does not guarantee security. Problematic random number

generation process may result in breaking the encrypted communication channel,

because encryption keys are obtained by using random numbers. For computers

and smart devices, generation of random numbers is done by operating systems.

Applications which need random numbers for their operation request them from

the operating system they are working on.

Due to the importance of random number generation, this process should be

analyzed deeply and cryptographically for different operating systems. From this

perspective, we studied Android random number generation process by looking at

the source codes and found that security of random number generation done by

Android relies on the security of random number generation of Linux. Then we

analyzed Android random number generator by modifying the kernel source code

and applying some tests on its entropy estimator. Finally, we looked for possible

weaknesses of random number generator during startup of Android devices.

Keywords: SecureRandom, random number generation/generators, Linux RNG,

Android RNG, entropy estimator.

iii



ÖZET

ANDROID RASSAL SAYI ÜRETECİNİN ANALİZİ

Serkan Sarıtaş

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Y. Doç. Dr. A. Aydın Selçuk

Mayıs, 2013

Rassallık, kriptoloji için çok önemli bir kavramdır ve rassal sayı üreteçleri, hemen

hemen tüm kriptografik sistemlerde kullanılan temel yapı taşlarındandır. Bu ne-

denle, rassal sayı üretimi, güvenli iletişimin anahtar noktalarındandır. Rassal sayı

üretimi güvenli iletişimin güvencesini vermez. Sorunlu rassal sayı üretim işlemi,

zayıf şifreleme anahtarları oluşturacağından güvenli iletişim hatlarının kırılmasına

sebep olabilir. Bilgisayarlar ve akıllı cihazlarda rassal sayı üretimi, işletim sistem-

leri tarafından gerçekleştirilir. Uygulamalar, çalışmaları esnasında ihtiyaç duy-

dukları rassal sayıları, işletim sistemlerinden talep ederler.

Rassal sayı üretiminin çok hassas ve önemli bir süreç olmasından ötürü, bu

sürecin farklı işletim sistemleri için derinlemesine ve kriptografik olarak incelen-

mesi gerekmektedir. Bu noktadan yola çıkarak, Android işletim sisteminin kaynak

kodlarına bakarak rassal sayı üretim sürecini inceledik ve Android işletim sistem-

inin güvenli rassal sayı üretiminin Linux işletim sisteminin rassal sayı üretiminin

güvenliğine bağlı olduğunu tespit ettik. Ardından Android işletim sisteminin

çekirdeğinin kaynak kodlarını değiştirerek rassal sayı üretecini test ettik ve en-

tropi tahminleri üzerinde farklı testler gerçekleştirdik. Son olarak, Android cihaz-

ların açılışı esnasında, rassal sayı üretimi merkezli ortaya çıkabilecek zayıflıkları

araştırdık.

Anahtar sözcükler : SecureRandom, rassal sayı üretimi/üreteçleri, Linux Rassal

Sayı Üreteci, Android Rassal Sayı Üreteci, entropi tahmini.
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Selçuk for his supervision, support, encouragement, patience and suggestions for

the completion of my thesis, from the beginning to the end.

I would also like to thank Assoc. Prof. Dr. İbrahim Körpeoğlu and Assoc.
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Chapter 1

Introduction

”Everything we do to achieve

privacy and security in the

computer age depends on

random numbers.”
—Simon Cooper

”Random numbers should not

be generated with a method

chosen at random.”
—Donald Knuth

In this research, we investigate the random number generation process of

Android OS running on the emulator.

Android OS is an open source project designed primarily for touchscreen de-

vices. It is derived from the Linux OS which is also open source so their kernels

are nearly the same. Although the libraries and basics of Android are written

in C, application software running on an application framework which includes

Java-compatible libraries is based on Apache Harmony. Android uses the Dalvik

virtual machine with just-in-time compilation to run Dalvik dex-code (Dalvik
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Executable), which is usually translated from Java bytecode. Therefore, top-

level implementation of random number process of Android is written in Java.

Android has SecureRandom class for generating cryptographically secure ran-

dom numbers. This generation process is totally deterministic if input-seed is

known. Input-seed comes from the kernel part of random number generation

process. Therefore, in order to analyze the security of random number generator

of Android, we examine Android kernel. Android uses slightly modified Linux

kernel; but their random number generation processes are the same. Because of

this reason, by analyzing Android RNG, we also analyze Linux RNG.

During the analysis process, first we download Android source code and de-

tect the parts that are related to random number generation. After viewing these

parts, we see that the main source comes from kernel. Then, we download An-

droid kernel source code and search the same parts, specifically random.c class.

In order to understand how the system works better, we modify this class so that

some intermediate outputs give additional information about the random number

generation process after examining the source code,.

Subsequently, we apply some tests on kernel to evaluate its reliability in calcu-

lation of entropy estimation, because the heart of the system lies on the entropy

estimator; i.e. the calculated amount of the entropy decides the quality of the

random number generator outputs. As it will be explained later, we could not

find any obvious weakness of the estimator.

1.1 Background

Randomness is a crucial resource for cryptography, and random number genera-

tors are critical building blocks of almost all cryptographic systems. Therefore,

random number generation is one of the key parts of secure communication. Prob-

lematic random number generation process may result in breaking the encrypted

communication channel, because the encryption keys are obtained by using the

2



random numbers. For computers and smart devices, generation of random num-

bers is handled by operating systems because of the fact that obtaining truly

random numbers from the physical sources is a costly method. Digital devices

are fully deterministic machines but unpredictability is still required for cryp-

tography, security, randomized algorithms, scheduling and networking; therefore,

some modifications and additions are needed in order to construct random num-

ber generators using these machines.

There are basic requirements recommended by [6] that random number gener-

ators must hold even if the attacker knows the code of the generator, and/or has

partial knowledge of the entropy used for refreshing the generator’s state. These

requirements can be listed as follows:

Pseudorandomness (Resilience) : The generator’s output looks random to

an observer with no knowledge of the internal state. This property must hold

regardless of that observer’s complete control over data, which is used to refresh

the internal state.

Forward security : An adversary which learns the internal state of the gen-

erator cannot learn anything about previous outputs of the generator. In other

words, past outputs of the generator must look like random to an observer, even

if that observer learns the internal state afterwards.

Backward security (Break-in recovery) : An adversary which learns the state

of the generator cannot learn anything about future outputs of the generator.

Namely, future outputs of the generator looks random, even to an observer with

knowledge of the current state. This property is satisfied by using sufficient

entropy to refresh the generator’s state.

Regarding forward security, note that generator must not leak any informa-

tion about its previous states and outputs. In order to achieve this property, the

methods which are easily calculated in forward direction but cannot be calcu-

lated in the reverse direction must be used. This property is named one-wayness

property and hash functions are example of this family of functions. Backward

security, on the other hand, cannot be satisfied for deterministic functions. Recall

3



that, software-based random number generation is just deterministic process and

cannot provide backward security if used alone. In order to eliminate determinis-

tic property of software generators, states of the generators must periodically be

refreshed with sufficiently random external data.

As a concrete example to these properties, Linux RNG can be given. Linux

RNG provides backward security by collecting entropy from several noise sources.

These entropy sources are based on user activity events, such as pressing a key

on a keyboard or moving a mouse, or system events which include interrupts and

hard disk I/O. In order to satisfy forward security property, Linux RNG uses

hash functions between state transitions.

1.2 Attacks on Random Number Generators

Problems in random number generators may cause very critical security flaws. In

this section, critical attacks on random number generators will be listed.

1.2.1 Attack to Netscape Browser’s SSL Implementation

SSL implementation of Netscape’s Solaris 2.4 browser has weakness on random

number generator as described in [7]. It was discovered that Netscape browsers

generated SSL session keys using second, microsecond, process ID and parent

process ID as seed, as shown in Code 1.1. After a seed is obtained, generating

encryption key is a totally deterministic process as shown in Code 1.2. Therefore,

security of the encryption scheme relies on the security of the seed. However, a

seed is guessable for an attacker who has an account on the UNIX machine

running the Netscape browser, and likewise for an attacker who does not have

an account. Former group can learn process ID and parent process ID by simply

logging into the system. Then, in order to learn time value, attacker just uses

Ethernet sniffing tools to see precise time of each packet and by using this he

can guess the time of day on the system running the Netscape browser to within

4



global variable seed;

RNG_CreateContext ()

/* Time elapsed since 1970 */

(seconds , microseconds) = time of day;

pid = process ID; ppid = parent process ID;

a = mklcpr(microseconds);

b = mklcpr(pid + seconds + (ppid << 12));

seed = MD5(a, b);

/* not cryptographically significant; shown for

completeness */

mklcpr(x)

return ((0 xDEECE66D * x + 0x2BBB62DC) >> 1);

/* a very good standard mixing function , source omitted */

MD5()

Code 1.1: The Netscape v1.1 seeding process: pseudocode. Only unknowns are
second, microsecond, pid and ppid values for attacker.

a second. After that, he can easily guess microsecond value by brute-forcing—

there are only one million possibilities. For the latter group, attack is more

complicated. In particular, even though the pid and ppid are 15 bit quantities on

most UNIX machines, the sum pid + (ppid � 12) has only 27 bits, not 30. If the

value of seconds is known, variable a has only 20 unknown bits, and variable b has

only 27 unknown bits. This leaves, at most, 47 bits of randomness in the secret

key, a far cry from the 128-bit security claimed by the domestic U.S. version.

An ironic aspect should be mentioned at this point. Unfortunate for Netscape,

U.S. regulations prohibit the export of products incorporating strong cryptog-

raphy. In order to distribute an international version of its browser overseas,

Netscape had to weaken the encryption scheme to use keys of just 40 bits, which

is even less than 47 bits of randomness in Netscape domestic version due to the

weaknesses in the implementation.

5



RNG_GenerateRandomBytes ()

x = MD5(seed);

seed = seed + 1;

return x;

global variable challenge , secret_key;

create_key ()

RNG_CreateContext ();

tmp = RNG_GenerateRandomBytes ();

tmp = RNG_GenerateRandomBytes ();

challenge = RNG_GenerateRandomBytes ();

secret_key = RNG_GenerateRandomBytes ();

Code 1.2: The Netscape v1.1 key-generation process: pseudocode. If seed is
known, key generation is totally deterministic.

1.2.2 Attack to Kerberos v4 Session Keys

An attack similar to the one on Netscape was demonstrated in 1997, on the MIT

implementation of the Kerberos 4.0 authentication protocol [1]. Kerberos Version

4 uses the UNIX random function to produce the random DES keys. Kerberos

generates a random DES key by first seeding the random number generator with

a seed chosen as in Algorithm 1.1, then it makes two calls to the random function

to get 64 pseudorandom bits. 56-bit DES key is extracted from this 64-bit block.

The random function relies on a 32-bit seed value to determine the internal state

for generating the pseudorandom numbers. Thus, any sequence of numbers cre-

ated by this random function, no matter how long they are, has an entropy of

only 32 bits. Likewise the Kerberos session keys have an entropy of only 32 bits.

By improving the attack, attack complexity can be reduced to 220. As it was

mentioned the only component of the seed that significantly changes between

successive key generations is the microseconds value. This yields a key entropy

of about 20 bits. Unlike the low-order 20 bits, the first 12 bits rarely change and

are predictable; because the values other than microsecond values do not change

very much. This can be seen graphically in Figure 1.1. As a result of this poor
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time = time -of -day seconds since UTC 0:00 Jan. 1, 1970

pid = process ID of the Kerberos server process

keyCount = cumulative count of session keys generated

fTime = fractional part of time -of-day seconds since UTC

0:00 Jan. I, 1970 in microseconds

hid = hostid of the machine on which the Kerberos server is

running

seed = time ⊕ pid ⊕ keyCount ⊕ fTime ⊕ hid

Note that all values are 32-bits

Algorithm 1.1: Kerberos v4 seed generation algorithm. fTime is the most chang-
ing value, it determines unpredictability.

choice in seed values, given knowledge of the approximate time that a key was

generated, there are only about 220 (or approximately one million) possible keys.

Figure 1.1: Kerberos random number generator seed (reprinted from [1]). Only
lower 20 bits are unpredictable which reduces attack complexity to 220

1.2.3 Attack to Shuffling Algorithm of Online Poker

In 1999, Software Security Group from Reliable Software Technologies analyzed

the published shuffling algorithm of PlanetPoker [5]. It is found that the algorithm

7



used by ASF Software, Inc., the company that produces the software used by most

of the online poker games, including PlanetPoker Internet cardroom, suffered from

many flaws. Published shuffling code is Code 1.3.

First problem found by [5] was about the shuffling of the last card in the deck.

Unlike most Pascal functions, the function Random(n ) actually returns a number

between 0 and n-1 instead of a number between 1 and n. Hence, random number

in Code 1.3 is set to a value between 1 and 51. In short, the algorithm never

chooses to swap the current card with the last card. When ctr finally reaches

the last card, 52, that card is swapped with any other card except itself. Namely,

this shuffling algorithm never allows the 52nd card to end up in the 52nd place.

This is an obvious, but easily correctable, violation of fairness.

Reliable Software Technologies Software Security Group found the shuffling

method as second problem in the algorithm [5]. In the original shuffling algorithm,

each card i is swapped with a card from the range [1, n]. This causes uneven

probabilities for card positions in the deck; because, number of total probabilities

is nn whereas the number of possible distributions of the deck is just n!. In [5],

this problem is illustrated for n = 3 case. To solve this problem, swapping each

card i with a card from the range [i, n] is suggested as solution. This change is

important because the n! number of distributions means that the new shuffling

algorithm generates each possible deck only once. Notice that each possible shuffle

is produced once and only once so that each deck has an equal probability of

occurring. Now that’s fair!

Last problem found by [5] is about our main topic, random number generation.

Recall that in a real deck of cards, there are 52! (approximately 2226) possible

unique shuffles. Also recall that the seed for a 32-bit random number generator

must be a 32-bit number, meaning that there are just over four billion possible

seeds. Since the deck is reinitialized and the generator re-seeded before each

shuffle, only four billion possible shuffles can result from this algorithm. Four

billion possible shuffles is alarmingly less than 52!. Now, the worse part comes.

Pascal function Randomize() chooses a seed based on the number of milliseconds

since midnight thus the number of possible decks now reduces to 86,400,000—the

8



procedure TDeck.Shuffle;

var

ctr: Byte;

tmp: Byte;

random_number: Byte;

begin

{ Fill the deck with unique cards }

for ctr := 1 to 52 do

Card[ctr] := ctr;

{ Generate a new seed based on the system clock }

randomize;

{ Randomly rearrange each card }

for ctr := 1 to 52 do begin

random_number := random (51) +1;

tmp := card[random_number ];

card[random_number] := card[ctr];

card[ctr] := tmp;

end;

CurrentCard := 1;

JustShuffled := True;

end;

Code 1.3: The flawed ASF shuffling algorithm (taken from [5]). The algorithm
starts by initializing an array with values in order from 1 to 52, representing
the 52 possible cards. Then, the program initializes a pseudorandom number
generator using the system clock with a call to Randomize(). The actual shuffle
is performed by swapping every position in the array, in turn, with a randomly
chosen position. The position to swap with is chosen by calls to the pseudo-
random number generator.

9



Start with fresh Deck

Get random seed

For CT = 1, While CT <= 52, Do

X = Random number between CT and 52, inclusive

Swap Deck[CT] with Deck[X]

Algorithm 1.2: Pseudocode of secure shuffling algorithm (taken from [5]). By
using securely seeded random number generator, swap each card CT with a
card from the range [CT, 52]. This simple card-shuffling algorithm, when paired
with the right random number generator, produces decks of cards with an even
distribution.

number of milliseconds in a day. 86 million is alarmingly less than 52!. In [5],

the worse of the worse case was found. By synchronizing their program with the

system clock on the server generating the pseudorandom number, they were able

to reduce the number of possible combinations down to a number on the order of

200,000 possibilities. After that move, the system was captured, since searching

through this tiny set of shuffles is trivial and can be done on a PC in real time.

As a solution to all of the problems described above, the algorithm in Algo-

rithm 1.2 is suggested. This solution comes from the analogy between crypto-

graphic key length (which is directly proportional to the strength of many cryp-

tographic algorithms) and the size of the random seed that is used to produce a

shuffled deck of cards.

1.2.4 Attack to Java Session-ID Generation

More recently, RNG used by Tomcat, the Apache Java Servlet, in the Java

Servlets mechanism is analyzed and it has been shown how someone can exploit

a flaw in the implementation of Java Servlet session-ID to impersonate another

client [8]. Since HTTP is stateless, the method must be implemented to manage

sessions between the client and the server. Many commercial sites use mecha-

nisms like cookies and URL rewriting which are both based on session-ID to keep

a session state at the client side. The reason why sessions should be stateful is

that it makes keeping track of shopping baskets, customer preferences, previous
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transactions and many other things possible. Hence session ID is important and

it is the only thing represents client; i.e. an attacker can impersonate the client if

he obtains session-ID of the client. In order to prevent impersonation and session

stealing, the server generates a session-ID token, represented by a large random

number. An impersonator should have difficulty guessing the correct token, be-

cause of the large search space. This is true only if the RNG generating that

token is strong.

Gutterman and Malkhi analyzed Java Virtual Machine PRNG (Pseu-

dorandom Number Generator), used by Tomcat servers to generate ses-

sion ID tokens [8]. It uses two methods for random number genera-

tion. First method used by Tomcat servers depends on /dev/random

and the attack is not applicable for this case. Second method is Java

PRNG and it has two versions, one is java.util.Random, and the other

is java.security.SecureRandom. The former is LCG (Linear Congruen-

tial Generator) while the latter is a stronger PRNG with a 160-bit state,

and uses SHA-1 for transition function. Both generate random numbers re-

cursively, starting with an initial seed. This seed has two entropy inputs

which are toString() value of org.apache.catalina.session.ManagerBase

and time-of-day of the server’s uptime in milliseconds. If server’s uptime

is guessable in an accuracy of day, then it will have 226 possible values.

As a worst case scenario, if server’s uptime is guessable in an accuracy of

year, then it will have 235 possible values. Other entropy input, which is

toString() method from Java Objects Class, returns a String whose value

is getClass().getName()+"@"+Integer.toHexString(hashCode()). Only the

result of the method hashCode() is not fixed in the result. When examining

the method hashCode(), Gutterman and Malkhi discovered that some imple-

mentations (e.g. the Microsoft Windows platform) use LCG. This makes the

hashCode() value predictable. In practice, they show that this value contributes

not more than 8 unpredictable bits. As a result, in order to guess and steal the

session-ID, attacker needs only 234 - 243 guesses which is feasible on a home com-

puter. After correctly estimating the session-ID, an attacker can impersonate the

client.
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MD_Update (&m,buf ,j);

[ ... ]

MD_Update (&m,buf ,j); /* purify complains */

Code 1.4: Debian code lines before change. As it can be seen, there is a comment
indicating Purify tools gives warnings at this line.

/*

* Don’t add uninitialised data.

MD_Update (&m,buf ,j);

*/

[ ... ]

/*

* Don’t add uninitialised data.

MD_Update (&m,buf ,j); /* purify complains

*/

Code 1.5: Debian code lines after change. Recall that the lines causing warnings
by Purify are commented out.

1.2.5 Random Number Bug on Debian OpenSSL

In 2008, Luciano Bello discovered that the random number generator in Debian’s

OpenSSL package is predictable [9]. Cryptographic key material may be guessable

because of an incorrect Debian-specific change to the OpenSSL package. The bug

in question was caused by the removal of the lines which resulted in the Valgrind

and Purify tools to produce warnings about the use of uninitialized data in any

code that was linked to OpenSSL [10]. The initial code snippet Code 1.4 is

changed to Code 1.5 in order to eliminate the warnings. Removing this code has

negatively affected the seeding process for the OpenSSL PRNG. Instead of mixing

in random data for the initial seed, the only random value that was used became

the current process ID. This resulted in a very small number of seed values being

used for all PRNG operations such as key generation.
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1.2.6 Hacking of PlayStation 3 Root Key

In December 2010, a group of coders operating under the name Fail0verflow had

managed to exploit a weakness in the PlayStation 3’s encryption system, thereby

gaining the root key required to run any software on the machine [11]. Sony uses

digital signature to check whether the firmware and files are modified and valid.

The software and files must be signed with Sony’s private key in order to run on

Sony PlayStation. This is not possible without knowing the private key. Sony

used Elliptic Curve Digital Signature Algorithm (ECDSA) for signing purpose

and ECDSA has a property such that if there are two files signed with the same

key, then it is possible to extract that key. The weakness lies right here. Normally,

private key is randomly generated and there is no way that someone can guess,

calculate, or use a timing attack, or any other type of attack in order to find

that private key. However Sony made a huge mistake in their implementation,

they used the same private key everywhere, which means that if you have two

signatures, both with the same key, then you can calculate the key using two

signatures. After calculating the key, any software can be run on PlayStation.

Choosing a constant value for private key is a huge mistake in cryptography, and

concrete example of this mistake and its results are illustrated in this section.

1.2.7 Common Factors of RSA Keys

The most widely used cryptosystem for authentication purpose is RSA. The RSA

cryptosystem is intended to be based on the difficulty of factoring large numbers.

An RSA public key consists of a pair of integers: an encryption exponent e and a

modulus N, which is a large integer that itself is the product of two large primes, p

and q. If an adversary can factor this integer N back into its prime factors p and

q, then the adversary can decrypt any messages encrypted using this public key.

However, even using the fastest known factoring algorithm, to public knowledge

nobody has yet been able to factor a 1024-bit RSA modulus.

It is vitally important to the security of the keys that they are generated using

random inputs. If the inputs used to generate the keys were not random, then an
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adversary may be able to guess those inputs and thus recover the keys without

having to laboriously factor N. In February 2012, two groups of researchers re-

vealed that large numbers of RSA encryption keys that are actively used on the

Internet can be cracked because the random numbers used to generate these keys

were not random enough [12, 13].

This problem and the reasons are discussed in Section 3.2.

1.3 Related Work

Having mentioned some flaws related to random number generator, the works on

the analysis of random number generator of operating systems will be discussed

in this section.

1.3.1 Analysis of Windows RNG

Windows is not an open source operating system; therefore, analysis of its func-

tions and executables requires a lot of effort and patience. After reverse engineer-

ing part, analysis part takes a vast amount of time. Despite all the difficulties,

the pseudorandom number generator used by Microsoft in Windows were ana-

lyzed in [14, 15]. CryptGenRandom function in Windows 2000 has been analyzed

and its operation was revealed without assistance from Microsoft. As a result, it

was shown that random number generation in Windows 2000 is far from being

genuinely random — or even pseudorandom. These flaws exist even in Windows

XP but they were solved after Windows XP SP3 by changing random number

generation algorithm.

It has been found that the WRNG has a complex and layered architecture

which includes entropy rekeying every 128 KBytes of output which means that

WRNG does not use entropy measurements and is, therefore, not blocking. Also

WRNG uses RC4 and SHA-1 as building blocks, but RC4 does not provide any

forward security. Therefore, the attacker can learn future outputs in O(1) time
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and compute past outputs in O(223) time. Given how the operating system

operates the generator, this means that a single attack reveals 128 KBytes of

generator output for every process. Another property of WRNG is that it runs

in user mode rather than in kernel mode; hence, it is easy to access its state even

without administrator privileges. The last important property of WRNG is that

it keeps a different instance of the generator for every process; i.e. every process

has its own random number pool.

1.3.2 Analysis of Linux RNG

The earliest analysis on Linux RNG is roughly done in [16]. In this work, re-

lated Linux RNG is described with their main components and highly shallow

explanations.

The first comprehensive analysis and examination of Linux RNG is done in [4].

In this thesis, Linux kernel version 2.6.10 is studied. There did not exist a detailed

description of the random number generation process before this study; the codes

were analyzed statically and dynamically by simulating the code in user mode.

After these works, critical flaws have been found and they are described in a more

technical manner in [17]. The authors demonstrated an attack on the forward

security of the generator, with an overhead of 264 in most cases and an overhead

of 296 in other cases. Additionally, they showed that blocking the /dev/random

device permanently is possible by reading from it excessively. Moreover they

showed that Linux RNG implementation on the wireless routers may be weak

because they do not have enough entropy inputs.

The problems in the wireless routers are examined deeply in [18]. Different

wireless routers are investigated for entropy sources and their random number

output sequences. The current thesis furthermore reviews random number gener-

ator in Linux kernel version 2.6.22 is reviewed and compares it with the generator

in Linux kernel 2.4 series.
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Until [19], the works on Linux RNG are only review of the code; there was

not any theoretical analogy for the process. In this paper, the stages of random

number generator in Linux kernel version 2.6.30.7 are theoretically and mathe-

matically studied.

In [20], entropy estimator of Linux RNG is interpreted as polynomial inter-

polation. This interpretation is explained in Chapter 4.

Entropy transfers on different types of machines are studied thoroughly in [21].

It is found that the major entropy provider is disk and major consumer of the

random numbers is kernel itself.

Because of the early random generation on Linux systems, same private keys

are generated worldwide [12, 13]. The reason is insufficient entropy and this

problem is discussed in Section 3.2.
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Chapter 2

Android RNG

”Any one who consider

arithmetical methods of

producing random digits is, of

course, in a state of sin.”

—John von Neumann

In this section, we will describe general Android RNG structure, its basis on

Java.Security.SecureRandom implementation and link with Linux kernel RNG.

Before describing Android random number generation, it will be helpful to

introduce some basics of Linux RNG using the comments in [22]. Linux RNG

has three output interfaces. First one is void get random bytes(void *buf,

int nbytes) which is used within the kernel and this method produces random

outputs for intra-kernel processes.

The other two interfaces are two character devices /dev/random (blocking)

and and /dev/urandom (nonblocking). First one is suitable for cryptographic

usage; it will only return a maximum of the number of bits of randomness (as

estimated by the random number generator) contained in the entropy pool. If

there is not enough randomness in the pool, then it will block the process until the

sufficient entropy is collected in the pool. The second device does not have this
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limit, and will return as many bytes as are requested. If randomness is not enough,

then it will not stop producing random numbers; new outputs will be merely

cryptographically strong. For many applications, however, this is acceptable.

After necessary background for Linux RNG is explained, now Android

RNG can be explained. As described in [23], Android Operating System has

java.util.Random class for random number generation purposes; this class re-

turns pseudorandom values. However, this class is not proper to use for cryp-

tographic purposes. There is java.security.SecureRandom class which ex-

tends formerly mentioned java.util.Random to generate cryptographically se-

cure pseudorandom numbers.

2.1 General Structure of Android RNG

We examined the sources firstly in order to analyze random number generation

process. In the source code of SecureRandom.java, there is no explicit algorithm

defined; this class uses predefined algorithms to generate random numbers. These

predefined algorithms are provided by different Service Providers which must ex-

tend SecureRandomSpi.java class. There is a default Service Provider Interface

in Android source codes: SHA1PRNG SecureRandomImpl.java.

In the description of SHA1PRNG SecureRandomImpl.java class, it is said that

generation of pseudorandom bits is performed by using the implementation tech-

nique described in Random Number Generator (RNG) algorithms section in Ap-

pendix A of [24] and the algorithm is named SHA1PRNG. In the description, it

is claimed that SHA1PRNG implementation follows the IEEE P1363 standard,

Appendix G.7: Expansion of source bits, and uses SHA-1 as the foundation of the

PRNG. It computes the SHA-1 hash over a true-random seed value concatenated

with a 64-bit counter which is incremented by one for each operation. From the

160-bit SHA-1 output, only 64 bits are used. So it can be said that SHA1PRNG is

a somewhat secure and totally deterministic algorithm, i.e. although it provides
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private static final String DEVICE_NAMES[ ] =

{ "/dev/urandom" /*, "/dev/random" */ };

Code 2.1: Android RNG uses only /dev/random. Recall that /dev/random is
commented out.

forward security thanks to one-wayness property of SHA1 algorithm, it does not

provide backward security.

The only input which makes SHA1PRNG produce different output sequences

is its seed. This seed can be provided manually; however it is dangerous to seed

SecureRandom with the current time because current time value is more pre-

dictable to an attacker than the default seed. Therefore, the default is generally

used in SHA1PRNG algorithm.

Default seed is provided by getRandomBits method of RandomBitsSupplier

class. In the class description it is indicated that the source for true random bits

is either one of Linux’s devices: /dev/urandom or /dev/random. The source for

true random bits depends on which one is available; if both of them are available,

then the first one is used. However, /dev/random is commented out in line 70 of

RandomBitsSupplier.java as shown in Code 2.1.

Although /dev/urandom alone is not safe enough to use for cryptographic pur-

poses, this may not cause any crucial problem; because outputs of /dev/urandom

is used as seed for cryptographically secure PRNG of Java-Android. Further-

more, in embedded devices, /dev/urandom is generally used as the only source

for random numbers [18].

The fact that even Android’s secure random generator is using /dev/urandom

arises the question of whether /dev/random is used in any program. As indicated

in [25], JVM relies on /dev/random by default for UNIX platforms. However, this

can potentially block some processes; because, on Linux, /dev/random waits for a

certain amount of entropy to be collected on the host machine before returning a

result. Although /dev/random is more secure, using /dev/urandom is preferable

if the default JVM configuration delays on some processes [25].
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After these discussions on security of /dev/urandom, one can wonder if there

is any module in Android which uses it to generate random numbers, other than

SecureRandom.java. IBM Application Security Research Group discovered a

very interesting vulnerability in Android’s DNS resolver [26], a weakness in its

pseudorandom number generator (PRNG), res randomid(), which makes DNS

poisoning attacks feasible. DNS poisoning attacks endanger the confidentiality

and integrity of the target machine. For instance, DNS poisoning can be used to

steal the victim’s cookies, or tamper with weak applications’ update mechanisms

in order to execute malicious code. After Android version 4.1.1, in order to

eliminate this vulnerability, random numbers are now taken from /dev/urandom

which should have enough entropy when the call is made [26].

At this point, it can be seen that security of Android RNG relies on the secu-

rity of Linux RNG; i.e. outputs of /dev/urandom. If the outputs of Linux RNG

can be predicted, then Android RNG would be totally deterministic. As a result,

there will be no cryptographically secure random numbers that applications can

use.

2.2 Linux RNG - v2.6.29

We have two options for Android kernel versions: 2.6.29 and 3.4. For version

3.4, compilation could not be completed; therefore, we study random number

generator in Linux kernel version 2.6.29 in this thesis.

There are three different pools-state vectors in the random number generator

system: input pool (512 bytes), blocking pool /dev/random (128 bytes), and

nonblocking pool /dev/urandom (128 bytes). Entropy provided from disk events,

user inputs and interrupts affect the input pool. Outputs are read from the

output pools which are /dev/random and /dev/urandom. Also there are transfer

events between input pool and output pools. All these structures, which are all

elements and processes in Linux RNG are shown in Figure 2.1.

Now, Linux RNG can be described in parts.
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Figure 2.1: Linux RNG full scheme. Entropy is collected from the entropy sources.
Then this entropy is mixed into the input pool while estimating its randomness.
Random numbers are extracted from the pools using extraction algorithms. Dur-
ing extraction, there is also feedback portion to ensure forward security. After
extracting from input pool, random numbers are mixed into the secondary pools:
blocking and nonblocking pools. Requested random numbers are extracted from
blocking pool or nonblocking pool with respect to requester interface.

2.2.1 Initialization

When Linux random number generator is initialized, the contents of all pools

(input, blocking and nonblocking) and their entropy counts are reset to zero.

Then all the pools are mixed with their individual initialization time and system

constant. This procedure will be described in Section 3.2.

At the startup, Linux boot process does not provide much entropy in the

different sources available to the RNG. Therefore, the designer of the Linux

RNG recommends a script which generates data from /dev/urandom and saves

it in a file, and writes the saved data to /dev/urandom at startup [22]. This

mixes the same data into nonblocking pool and its initial entropy increases

although its entropy counter is still zero. If this is not possible, for exam-

ple in Live CD systems, the nonblocking random number generator should

be used with caution directly after the boot process since it might not con-

tain enough entropy. Recall that this script may solve the detected problems
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in [12, 13, 18] which are described in Section 3.2. Android developers pro-

vide more randomness during initialization by applying this recommendation.

/frameworks/base/services/java/com/android/server/EntropyService.java

file in Android source is a service designed to load and periodically save random-

ness for the Linux kernel.

2.2.2 Entropy Collection

There are three sources of entropy: disk, interrupts, and user-input. Randomness

from these inputs are collected continuously and used to mix the input pool. In

this section, entropy formation and collection will be explained.

Interrupt randomness is collected via add interrupt randomness function

in random.c. This function is called by interrupt service routines and receives

the interrupt number as a parameter. The type of entropy event is calculated

by adding 0x100 to the interrupt number. The resulting value and timing in-

formation is passed to the add timer randomness function, which adds the en-

tropy to the input pool. However, there are many interrupts which come reg-

ularly to the system and these interrupts do not make the system random;

i.e. they do not provide random inputs, they can be estimated easily. There-

fore, each device driver can define whether its interrupts are suitable as entropy

inputs, by adding the IRQF SAMPLE RANDOM flag to the corresponding handler.

However, this flag has been scheduled for removal since 2009 (as stated in the

feature-removal-schedule.txt file within the kernel source tree), due to sev-

eral misuses. With kernel version 3.6, it is removed completely. For interrupt

randomness, a new pool, named fast pool, is defined and interrupt randomness

mixes that new pool directly instead of mixing the input pool.

Disk randomness is collected via add disk randomness function in random.c.

This function is called after completion of a disk I/O operation. The type of

entropy event is calculated as in Algorithm 2.1.
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type -value = 0x100 + (( major << 20) | minor)

Algorithm 2.1: Disk randomness calculation. type value is dependent on only
major and minor value of the related disk; therefore, the different values it can
take does not exceed eight on average machines.

num = (type << 4) ⊕ code ⊕ (code >> 4) ⊕ value

Algorithm 2.2: Input randomness calculation. Although all type, code, and value
are sixteen-bits length, unknown bits in num is eight for keyboard and twelve for
mouse interrupts as shown in Table 2.1

The resulting value is passed to the add timer randomness function together

with timing information. It can be seen that different accesses to the same disk

will result in the same type of entropy event. Also assuming an average machine

has no more than eight disks, the type-value actual span is limited to three bits.

Input randomness is collected via add input randomness function in

random.c. This function is called sequential to one of the input events

occurs. The type of entropy event indicates whether an event is related

to a key, button, mouse or touchpad. These event codes are defined in

/usr/include/linux/input.h. The function checks for repeating events (with

same value), and avoids using them for entropy collection. The type, code, and

value of the input events are mixed to get the type of entropy event using the algo-

rithm in Algorithm 2.2. The result value is passed to the add timer randomness

function together with timing information.

Table 2.1 taken from [17] presents the number of unknown bits for each type

of event. Note that the actual entropy of these events is much lower, as most

of them are predictable to a large extent. However, timing information increases

the uncertainty, thereby the security.
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Keyboard Mouse Hard-Drive Interrupts
8 12 3 4

Table 2.1: The number of unknown bits in operating system events (taken from
[4]). Actual entropy from these events is much lower, hence LRNG uses timing
information to increase uncertainity.

Let en denote the nth event and tn denote its timing.

Define the variables below:

first level delta : δn = tn - tn−1

second level delta : δ2n = δn - δn−1

third level delta: δ3n = δ2n - δ2n−1

All of tn, δn, δ2n and δ3n are 32-bit long.

Entropy added by en = min(log2(min(δn, δ2n, δ3n)) ,11)

Algorithm 2.3: Entropy estimation algorithm. Three levels of time differences
are calculated and logarithm of minimum of these values is taken as entropy
estimation.

2.2.3 Entropy Estimation

After collecting entropy from the disk, user, or interrupts; add timer randomness

is called. In this function, timing information and the return values

of the preceding functions (add disk randomness, add input randomness

and add interrupt randomness) are combined and this result is passed to

mix pool bytes function which mixes the pool. Beside this task, entropy is

estimated using timing information in this function.

The LRNG estimates the amount of entropy of an event as a function of its

timing only, and not of the event type. The reason for choosing this calculation

method and how it works will be explained in Chapter 4. The estimation of the

entropy provided by the events is handled using the Algorithm 2.3.

As it can be seen from Algorithm 2.3; initially, three levels of δ (time differ-

ence) are calculated for each particular event. After this step, minimum of those

three level δ is taken and logarithm of the least significant eleven bits of chosen

δ is returned as entropy estimation.
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2.2.4 Entropy Addition and Mixing the Pool

As it is indicated, add timer randomness function prepares the input for

mix pool bytes function whose task is adding the entropy by mixing the pool.

This procedure mixes one byte at a time by first extending it to a 32-bit word,

then rotating it by a changing factor and finally mixing it in the pool by us-

ing a twisted generalized feedback shift register(TGFSR) [27]. For this purpose,

each pool maintains a primitive polynomial. The input pool’s polynomial is

x128 + x103 + x76 + x51 + x25 + x + 1. The blocking and nonblocking pool

have the same polynomial: x32 + x26 + x20 + x14 + x7 + x + 1. There is

also twist table, whose values are 0, 0x3b6e20c8, 0x76dc4190, 0x4db26158,

0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278. All of these processes

are shown in Figure 2.2.

Figure 2.2: Linux RNG mixing function. Mixing function is similar to general
TGFSR structure. Input data is rotated by the changing rotation value and ⊕’ed
with the values from the pool which are taken with respect to pool’s polynomial
and current index. Then lowest three bits are used as indices for twist table. The
value from twist table and remaining 29 bits are ⊕’ed and result is written into
the current index.

This entropy addition process is mostly similar to TGFSR but there is a

difference; new state depends not only on the previous state, but also on the

input entropy word. Due to this difference, some properties of TGFSR cannot
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be applied anymore; i.e. the process is no longer a linear function, and the

long period cannot be guaranteed [17]. Moreover polynomial of this TGFSR is

examined in [19] and it is found that the polynomial is not irreducible. Thus,

the resulting TGFSR does not achieve maximum period. However, this does not

cause any practical attack on the system.

In short, mixing algorithm is designed so that it can diffuse entropy into the

pool and no entropy gets lost. Note that the exact details of the entropy addition

algorithm do not affect the results that we show in this thesis.

2.2.5 Entropy Extraction

When random number output is needed from blocking or nonblocking pool; or

when entropy transfer is needed from input pool; entropy extraction routine whose

name is extract entropy is called. When it is called, it returns the requested

number of bits by calling extract buf several times. Extraction algorithm runs

under extract buf function.

Extraction algorithm starts with generating a hash across the pool; 16 words

(512 bits) at a time. After generating the hash to whole pool, resulting hash

is mixed back into the pool in order to prevent backtracking attacks (where the

attacker knows the state of the pool with the current outputs, and attempts to

find previous outputs), unless the hash function can be inverted. After mixing,

16-word portion of the pool is taken from the pool and its hash is calculated

(maintaining to chaining hash). In case the hash function has some recognizable

output pattern, resulting hash is folded in half. In order to fold the output of

hash function; first word is ⊕’ed with fifth word, second word is ⊕’ed with fourth

word and first two bytes of third word is ⊕’ed with last two bytes of third word.

The result of folded hash is output of extraction process which has 10-byte size.

Linux RNG uses SHA1 as hash function in this process. Each SHA1 block

has size of 512 bits; therefore pool is hashed 16 words (512 bits) at a time. The

output and internal states of SHA1 have size of 20 bytes which means that 20
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byte hash value is mixed into the pool during the extraction process. Finally,

hash output is folded into half and 10 byte-sized extraction output is obtained.

2.2.6 Entropy Accounting

Up to this point, the main parts of the Linux random number generator are

described. In order for these processes to work properly, some auxiliary functions

and variables are needed. The most important one is entropy estimation variable

for each pool and accounting functions for this variable. When entropy is added to

the pool, entropy estimation of that pool is increased by the entropy estimation of

input. This is done in credit entropy store function. Similarly, when entropy

is extracted from the pool, entropy estimation of that pool is decreased by the

entropy estimation of output. This is done in account function. In light of this

information, these auxiliary variables and functions will be examined in the same

order of explanation of Linux random number generator’s main functions.

When pools are initialized, entropy estimation is set to zero for each pool.

Mixing the pool with time and system constant does not increase the entropy

estimation of the pools.

During the entropy collection process, after collecting the events, entropy

estimation of related event is calculated and then input pool is mixed with related

event input. At the same time, entropy estimation of the input pool is increased

by the entropy estimation of the event; i.e. the amount of the incrementation is

between 0 and 11 bits. In other words, entropy estimation function works only

for the input pool.

After collecting entropy in the input pool, some entropy is transferred to the

secondary pools—blocking pool and nonblocking pool—when requested. This

transfer process is defined in xfer secondary pool function. Subsequent to doing

some necessary checks, requested amount of entropy is transferred from input pool

to one of the secondary pools. For example, if 8-byte entropy is needed, 64 bits

of entropy is decreased from the input pool and the same amount of entropy is
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added to the requester pool. Recall that, extract entropy function is called

for the input pool during the extraction of entropy from the input pool and

mix pool bytes function is called for the requester pool during the mixing the

requested amount of entropy bits.

Similar progress is valid for outputting random number process. When a user

or kernel function requests output from random number generator, output bits

are extracted from the related secondary pool and its entropy is decreased by the

amount of entropy given to the requester.

Similar to the initialization process, writing to /dev/random or /dev/random

increases the randomness of blocking and nonblocking pools respectively. How-

ever, this does not increase entropy estimation of the related pool similar to the

initialization events.

2.3 Linux RNG - After v2.6.29

There are lots of different kernel versions in [22] and many of the major versions

are still under development. For example, on April 29th, 2013, kernel versions

2.6.34 series, 3.0 series, 3.2 series, 3.4 series, 3.8 series and 3.9 series were still

improving and changing independently. Therefore, bigger major version num-

ber may not mean newer kernel version. In this section, initially two different

emulated-Android kernel versions will be described: v2.6.29 and v3.4.0. Then

changes to Linux RNG will be represented cumulatively. First and the biggest

modification is realized with version 3.4.9. After this version, there is not any ma-

jor modification in terms of algorithm. The newest kernel versions 3.0.75, 3.2.44,

3.4.42, 3.6.11, 3.7.10, 3.8.10 and 3.9.0 have nearly the same algorithm, there are

just minor modifications which does not change the running of the main cores of

the RNG algorithm.

28



2.3.1 Differences between v2.6.29 and v3.4.0

In version 3.4.0; if there is an architectural random number generator installed

on the system, then this is used in get random bytes interface instead of using

nonblocking pool as random number source. This architectural random number

generator uses RDRAND instruction (Intel R© Secure Key, previously code-named

Bull Mountain Technology) to generate random numbers. If supported, this is

a high bandwidth, cryptographically secure hardware random number genera-

tor as shown in Figure 2.3 taken from [2]. In order to provide the security of

random number generators, it should be resistive to the attacks. From this per-

spective, Intel RNG crypto and classifier blocks can always be built to thwart

timing and power analysis attacks [28]. Furthermore, Intel RNG is also resis-

tive against power glitching attacks; i.e. RNG turns itself off when voltage or

temperature goes out of spec, re-initializes itself when power and voltage return

to spec [28]. Beside the attack protection, Intel RNG uses built-in self-tests to

evaluate whether the blocks implementing the RNG are operating correctly [28].

Additionally, this hardware-based random number generator is used in

add timer randomness to set cycles to any random value instead of getting its

value from CPU. Recall that jiffies are still taken from CPU, because that value

is used in entropy estimation process.

Another change in version 3.4.0 is that output of extract buf is compared

with its previous output. If they are the same, kernel panic message appears to

indicate the problem.

Last but not least, if supported, hardware-based random number generator is

used in initial mixing process instead of constant system value.
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Figure 2.3: Intel’s Bull Mountain random number generator (taken from [2]).
Intel’s new hardware RNG uses thermal noise as source, after applying three layers
it outputs secure random numbers which can be requested by RdRand instruction.

2.3.2 Differences between v3.4.0 and v3.4.9

With version 3.4.9, hardware-based random number generator output is taken

from get random bytes interface and get random bytes arch interface is cre-

ated for this purpose. Namely, get random bytes will generate software-based

random numbers as before and get random bytes arch will be used for more

secure random number requests.

Another improvement in version 3.4.9 is that if supported, hardware-based

RNG output is ⊕’ed with extract buf output in order to make Linux RNG out-

put more random. After this modification, outputs are totally not guessable even

extract buf function has some recognizable patterns assuming that hardware

random number generator provides secure random numbers.

Furthermore, add device randomness() function is added to Linux RNG.

This function provides device- or boot-specific data and mixes them into the

input and nonblocking pools to help initialize them to unique values. This does

not increase entropy estimation of the pools, but it initializes the pools to different

values for devices that might otherwise be identical and have very little entropy

available to them (particularly common in the embedded world).
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Last change in this version is about adding 128-bits sized new pool to the sys-

tem: fast pool. This pool is designed for interrupt randomness actions. If an

interrupt is received, input to fast pool is formed using interrupt information,

timing information and instruction pointer information. Then input is mixed into

the fast pool using similar algorithm shown in Figure 2.4 which is similar to the

original mixing algorithm. Before this modification, it was too expensive to mix

the input pool on every interrupt. Also flooding the CPU with interrupts could

theoretically cause bogus floods of entropy from a somewhat externally control-

lable source [29]. This modification solves the problem by limiting the interrupt

randomness addition to just once a second or after 128 interrupts, whichever

comes first. When this limit is achieved, all content of fast pool is mixed into

the input pool or nonblocking pool. During initialization procedure, fast pool

is mixed into nonblocking pool in order to provide more secure random in a faster

manner. After initialization, fast pool is mixed into the input pool.

Figure 2.4: Linux RNG fast pool mixing function. The algorithm is very similar
to normal mixing function algorithm. Input data is rotated by the changing
rotation value and ⊕’ed with the content of current index and next index of the
pool. Then lowest three bits are used as index for twist table. The value from
twist table and remaining 29 bits are ⊕’ed and result is written into the current
index.
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2.3.3 Hardware RNG and Linux

As it is explained in the previous section, newer versions of Linux can use

installed hardware based RNG as an assistant to its random number gen-

erator. According to the related documentation in the kernel source files

(/Documentation/hw random.txt), when hardware RNG is available, the de-

vice /dev/hw random is created automatically. The interfaces for reading the

random numbers from this device is provided by the software developed by

hardware producers. These producers for each kernel version can be seen in

/drivers/char/hw random directory of the related source code. Newer kernel

versions provide more variety of hardware RNG. There are interfaces for sup-

ported models of Intel, AMD, Niagara2, VIA, OMAP, PA Semi in kernel version

2.6.29. In the latest kernel version 3.9; the interfaces for supported models of At-

mel, Broadcom, Octeon, Free-Scale, PicoChip, PowerPC and Exynos are added.

Using these interfaces, reading from hardware RNG device /dev/hw random is

simply done by using read() command. Information about installed hardware

RNG on the system can be seen by checking rng available and rng current

attributes in /sys/class/misc/hw random node. The former attribute lists avail-

able hardware-specific drivers and the latter lists the one which is currently con-

nected to /dev/hw random. If the system has more than one RNG available, it is

possible to change the one used by writing a name from the list in rng available

into rng current.

A key advantage of using hardware RNG is performance. Because sampling

an entropy source is typically slow since it often involves device I/O of some type

and often additional waiting for a real-time sampling event to transpire. In con-

trast, hardware RNG computations are fast since they are processor-based and

avoid I/O and entropy source delays. According to [3], since the implementation

of Linux RNG is typically in software, it may be vulnerable to a broad class of

software attacks; i.e. memory-based attacks or timing attacks. Moreover, the

approach does not solve the problem of what entropy source to use. Without an

external source of some type, entropy quality is likely to be poor. For example,

sampling user events (e.g., mouse, keyboard) may be impossible if the system
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resides in a large data center. By asserting these reasons, Digital Random Num-

ber Generator (DRNG) usage is promoted in [3]. Cascade construction RNG

model is used in the DRNG; i.e. processor resident entropy source is used to

repeatedly seed a hardware-implemented cryptographically secure PRNG. This

structure is shown in Figure 2.5 taken from [3]. Recall that Figure 2.5 is more

technical version of Figure 2.3. Furthermore, it represents a self-contained hard-

ware module that is isolated from software attacks on its internal state [3]. As

a result, Intel advocates that DRNG is a solution that achieves RNG objectives

with considerable robustness: statistical quality (independence, uniform distri-

bution), highly unpredictable random number sequences, high performance, and

protection against attack.

Figure 2.5: Digital random number generator’s cascaded component architecture
(taken from [3]). Intel’s new hardware RNG uses hardware-based components in
all of the three layers.

In order to check the performance, security and reliability of the RNG, Intel

asked Cryptography Research to review the design of the RNG [30]. DRNG

uses post-processing to obtain secure seeds from the entropy source. However,

in the analysis report [31], it is found that defects in the entropy source become

more difficult to observe due to using post-processing. Therefore, users of the

RNG may experience a more difficult time assessing the quality of the underlying

entropy source, and some catastrophic failure modes can actually become hard
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to detect [31]. As a solution, the Intel Ivy Bridge designers incorporated a circuit

to monitor the health of the entropy source. In addition, while raw access to

entropy source output is not available on production parts, test parts can provide

direct access to entropy source outputs to make analysis easier. As a whole, the

Ivy Bridge RNG is a robust design with a large margin of safety that ensures

good random data is generated even if the entropy source is not operating as well

as predicted and in all cases, users should check the carry flag after each call to

the RNG to verify that it is working properly and the random data received is

valid [31].

There are many processors which support hardware RNG as indicated above.

However, many processors used actively nowadays do not have hardware RNG

installed on them. Hardware RNG is used when the security requirements are

hard to satisfy. Recall that, the cost of adding hardware RNG to the system

is also considerable; therefore, many producers do not add it to most of their

systems.
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Chapter 3

Potential Vulnerabilities During

Initialization

”God doesn’t play dice with

the universe.”
—Albert Einstein

Up to this point, all we do is merely looking at the source codes and analyzing

the related works. In order to understand and analyze the system better, observ-

ing the inputs and intermediate values can be very helpful. Therefore, we modify

the related kernel files to obtain some information about the running system,

especially random number generator part. There are different approaches to do

this. First one is to write intermediate states into the file in kernel space; however

as indicated in [32], writing to file in kernel space is not recommended. Instead,

writing a driver which takes desired values from kernel space and pushes them

into the user space, and writing a user-mode program which interprets those val-

ues and writes them into a file is a preferable method. However, this method is

also not feasible for us; because modification in Android source is necessary and

the source download is approximately 8.5 GB in size; additionally we will need

over 30 GB free space to complete a single build, and up to 100 GB (or more)

free space for a full set of builds [33].
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We use kernel print function printk to attain desired information. This ap-

proach requires extra system calls in kernel which cause delay on the running

system; yet these negative results do not effect random number generator’s algo-

rithms, internal states and running. Therefore, we prefer this approach so selected

results can be printed to kernel logs. Then we obtain these values by reading the

kernel logs of the emulated Android system on the computer.

Another possible method can be sending necessary packets over network

as preferred in [21]. Vuillemin et al. advocate their method by saying that

using network interface may have less influence over the system, because it

does not cause disk event while trying to write extra information to the ker-

nel log file. Vuillemin et. al. had to chose whether include/linux/net.h or

include/linux/netpoll.h kernel API to send UDP packets. The first one is

pretty similar to the standard user space socket API. The second one is more

low-level and rarely used. They chose the second one, because it works even in

IRQ contexts, which is required to instrument input events.

3.1 System Setup

Most of the work is done on our personal computer. It has Windows 7 as main

operating system, 8 GB RAM and eight-core processor. For compiling kernel, we

create virtual machine which has 3 GB RAM and quad-core processor by using

Oracle VirtualBox, and install Linux-Ubuntu 12.04 on it. To emulate Android,

we download Android SDK to windows, create new Android device by using AVD

(Android Virtual Device) Manager and run the emulator with Android 4.1.2.

Creating the virtual machine by using VirtualBox is a simple task. After this

step, we download Ubuntu 12.04 and install Ubuntu to virtual machine. Then

by following instructions in [33] and its sub-pages, we download Android source

code and Android kernel source code. These code lines are included in Code B.1

and Code B.2.
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We download the sources and then modify related parts of the kernel. As it

was mentioned before, we use printk to print necessary information to kernel

logs. Normally, timestamps of printk outputs are not shown in the kernel log.

In order to include these outputs, we need to change kernel/printk.c file by

removing if (printk time) condition as described in Code B.3. After this mod-

ification, all printk outputs will contain timestamps in kernel logs. Beside this

little modification, it is necessary to increase kernel buffer size. Default kernel

buffer size is 64 KB and this buffer is overwritten if log size exceed this size.

Normally, all logs can be fetched using Android SDK interface functions to the

file on the computer continuously; however, initial access to kernel logs takes

some time. This may cause a problem, because initial logs disappear when the

first access occurs. This problem is solved by changing CONFIG LOG BUF SHIFT

parameter from 16 to 17 in /arch/arm/configs/goldfish armv7 defconfig file

as described in Code B.4. After this modification, kernel buffer size becomes 128

KB and it is enough space to hold kernel logs until initial access occurs.

After these pre-modifications, we modify random.c file in /drivers/char

directory to observe internal states of the random number generator. Then it is

time to compile modified Android kernel for emulator. Again, this task is simple

by following the instructions in the related page of [33] and these steps are also

included in Code B.5.

Sequential to successful compilation, we copy zImage file from the directory

of /arch/arm/boot/zImage to Windows environment where Android emulator

is installed. Then we run the emulator with modified kernel by following the

instructions in Code B.6 and get continuous kernel logs from that device by using

the instructions in Code B.7 while the emulator is running.

Before starting the analysis, we check whether hardware RNG is installed on

the emulator system by following the instructions in Code B.8 while the emulator

is running. As it is expected, there is no hardware RNG installed on the system.

Beside the emulator test, we check Samsung Galaxy Nexus and Asus Nexus 7 for

hardware RNG but they have no hardware RNG, either. In the future, when the

security requirements become more sophisticated and cost of adding hardware
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prng.seed(seed)

p = prng.generate_random_prime ()

prng.add_randomness(bits)

q = prng.generate_random_prime ()

N = p*q

Algorithm 3.1: OpenSSL RSA key generation algorithm. If there is not enough
entropy before seeding, seed will be the same for different startup sessions, thus
same p will be generated.

RNG diminishes; it will be possible to see many Android devices with hardware

RNG.

After defining complete working system, collected data is ready for analysis.

3.2 Analysis of Initialization

The weakest states of the Linux RNG is in initialization phase of the system.

There is not much input to make pools random so there is not enough entropy

to produce cryptographically secure random numbers. Additionally, there are

not many alternative initialization sequences of the system; therefore, internal

states of random number generators may be similar between different initializa-

tion procedures. As it was mentioned earlier, wireless routers have not enough

entropy inputs; they produce same output stream even after system is completely

started [18]. Different devices of the same manufacturer may also give similar out-

put streams. In [12, 13], it is shown that there are many common RSA private

keys on the Internet. Main source of the problems mentioned here is producing

the key during initialization process of the devices. There is not enough entropy,

there is not any input which makes internal states of the pool different than an-

other initialization sequences. This problem, RSA key generation trouble, can be

summarized as follows. In order to see the problem clearly, it will be helpful to

see OpenSSL RSA key generation algorithm in Algorithm 3.1:
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Now suppose poor entropy at startup. Then same p will be generated by

multiple devices, but different q because entropy increased differently. If N1 and

N2 which are RSA keys from different devices are examined, it can be seen that

gcd(N1,N2) = p. This reveals private key of these systems. In [12, 13], many

public keys are collected from the Internet and these public keys are searched for

common prime factors. As a result, 0.4% of public HTTPS keys are factored;

therefore, it is important to make sure that random number generator is properly

seeded during key generation. In [34], it is indicated that OpenSSL RNG is

competent, problem is in its seeding. In order to eliminate this problem, it is

suggested that random number generators must be seeded by external sources

properly and the characteristics of the seed source has very critical effects on

random number generation.

In our experiments, initialization process is considered as the interval between

power on time and the end time of disk checking process; i.e. after this point

device is ready to use. The reason why we do not include the time after disk

check is completed is that user-mode inputs make random number generator less

guessable, thereby cryptographically secure. When user starts to use Android

device, his/her operations are considered as user-input like keyboard and mouse

movements; i.e. event codes of the operations (touching, tapping etc.) are defined

in /usr/include/linux/input.h.

During the initialization process, there is not any input from the user; only en-

tropy source to input pool comes from disk randomness. Disk-randomness inputs

mostly come during disk-check process. Only two inputs come when the pools

are initialized, which makes internal state of the pools different. These inputs are

system time in nanosecond scale and system constant (utsname, which contains

information about the system and device). System constant does not provide

security, because it is always the same and known to attacker; i.e. any other

device with same model has the same system constant. As it is recommended

in [18], making system constant different for each device may improve the secu-

rity of randomness. As a result, only input which affect the randomness of the

input pool is system time at pool initialization. Because it has nanosecond scale,

pool initialization time will not be the same for different initializations with very
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/net/core/neighbour.c
/net/netfilter/nfnetlink log.c
/net/ipv4/syncookies.c
/net/bridge/br fdb.c
/kernel/panic.c
/lib/random32.c
/fs/binfmt elf.c
/net/ipv4/route.c
/net/ipv4/af inet.c
/net/core/request sock.c
/net/netlink/af netlink.c
/net/netfilter/nf conntrack core.c

Table 3.1: Random number requesting files during initialization. These files re-
quest random numbers to use in their service during initialization. These services
are not as critical as key generation, so it is acceptable for these services to request
random numbers with lower entropy.

high probability. In short, pools have enough randomness for simple tasks after

initialization but it is still vulnerable to strong cryptographic attacks.

When we sift through the kernel logs, we see that classes request random

numbers from /dev/urandom in Table 3.1. When we look these files and random

number related parts, we do not see crucial points for security. So system may

not be under risk even if the random numbers are not cryptographically strong.

After initialization, input pool has zero bits of entropy and it stays the same

until first disk randomness comes as input. Initialization times of input pool

change between 470 – 520 ms; first disk randomness times change between 620

ms – 670 ms. After first disk randomness, there will not be any other disk

randomness until disk check part begins at the last part of initialization; i.e.

about 50 – 60 seconds after power-on. During this time period, input pool stays

the same. After this steady time period, disk check period comes and during that

period entropy of input pool increase and when it becomes greater than 192 bits,

then some bits will be transferred to nonblocking pool from the input pool.

In our simulations, initialization time can be in 50 ms interval which is 50×106

ns. Similarly, first disk randomness time can be in 50 ms interval. However, the
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time between initialization time and first disk randomness can be from 125 ms to

150 ms. This is 25 ms interval which is 25 × 106 ns. As a result, there are total

1.25×1015 possibilities which is approximately equivalent to 52 bits. Therefore, it

can be assumed that, after first disk randomness there are 252 possible input pool

states which is large enough to prevent simulating all possible states for Android

devices. Namely, it can be said that it is hard to implement simulating possible

states attack in [18].

Regarding the nonblocking pool, the initialization process is more compli-

cated. Normally, initialization procedure is simple and it should be represented

as explained in the following lines.

The outputs of nonblocking pool are totally deterministic if its internal state

just after the initialization is known. Because there is only extracting process

which does not add any randomness to pool, it just mixes the pool with its output

to provide forward security. Only chance to add randomness to nonblocking pool

is to transfer some bits from the input pool. However, input pool does not

provide any bits until its entropy exceeds 192 bits. As it was indicated in the

previous chapter, this entropy is reserved for blocking pool to prevent requester

process be blocked. In our simulations, input pool entropy passes 192 bit level at

the near-end of the initialization part. Hence most of the random numbers are

still deterministic assuming that internal state of nonblocking pool just after the

initialization is known.

However, the initialization procedure of nonblocking pool in Android devices

is not so simple. As mentioned in the previous chapter, Android developers pro-

vide more randomness during initialization by writing to /dev/urandom file. The

/frameworks/base/services/java/com/android/server/EntropyService.java

file in Android source is a service designed to load and periodically (in every three

hours) save randomness for the Linux kernel. This service carries the entropy pool

information across shutdowns and startups; therefore, entropy pools is not in a

fairly predictable state anymore; i.e. they will not return predictable data. As

a future plan, this service will be changed in a way such that it will write en-

tropy data at shutdown time instead of periodically. The relevant code snippet

41



public EntropyService ()

{

this(getSystemDir () + "/entropy.dat" , "/dev/urandom");

}

Code 3.1: The code for getting entropy file and random device names - part of
EntropyService.java.

which shows entropy file and random device is in Code 3.1. Recall that Android

uses only /dev/urandom again; i.e. /dev/random is not used. However, as it

will be explained, writing to /dev/urandom results in mixing the same data into

/dev/random.

In order to make this service work as expected, the data written to the pool

must be unpredictable. During the initialization, entropy.dat file, which con-

tains random data from previous session is mixed into /dev/urandom at the

beginning. After this, device-specific data is mixed into /dev/urandom, because

making the data unique to the device complicates the attack to randomness.

As indicated in EntropyService.java, even sending non-random information

to /dev/urandom is useful because, while it does not increase the quality of the

entropy pool, it mixes more bits into the pool, which results in a higher degree

of uncertainty in the generated randomness. Like nature, writes to the random

device can only cause the quality of the entropy in the kernel to stay the same

or increase. For maximum effect, information writing to /dev/urandom varies

on a per-device basis, and is not easily observable to an attacker. As shown in

Code 3.2, beside some constant data, device specific data such as serial num-

ber and variable data for instance time, carrier, baseband etc. is written to

/dev/random to increase randomness. Note that in Android 4.2 JellyBean , the

name of EntropyService.java is changed to EntropyMixer.java.

When any data is written on either /dev/random or /dev/urandom device,

random write function is called to perform the operation. In the implemen-

tation of this function, the same data is written to both devices by calling

write pool function for both devices. Therefore writing to either /dev/random or

/dev/urandom device causes writing the same data to both devices. However, this
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out.println("Copyright (C) 2009 The Android Open Source

Project");

out.println("All Your Randomness Are Belong To Us");

out.println(START_TIME);

out.println(START_NANOTIME);

out.println(SystemProperties.get("ro.serialno"));

out.println(SystemProperties.get("ro.bootmode"));

out.println(SystemProperties.get("ro.baseband"));

out.println(SystemProperties.get("ro.carrier"));

out.println(SystemProperties.get("ro.bootloader"));

out.println(SystemProperties.get("ro.hardware"));

out.println(SystemProperties.get("ro.revision"));

out.println(new Object ().hashCode ());

out.println(System.currentTimeMillis ());

out.println(System.nanoTime ());

Code 3.2: The code for writing device specific information to random device -
part of EntropyService.java. By doing this, initialization will not be the same
for different devices.

loadInitialEntropy ();

addDeviceSpecificEntropy ();

writeEntropy ();

scheduleEntropyWriter ();

Code 3.3: Initialization service of Android - part of EntropyService.java.
Firstly load the random file from the previous session, then write device spe-
cific information to random device, subsequently write new random file for next
session and finally schedule the last job to do periodically.

writing operations does not increase entropy of the pools, it just mixes the data

to be written into the pool. After this procedure, first periodic /entropy.dat

file generation for next startup session is accomplished. The next period comes

after 3 hours as indicated in EntropyService.java. The summary of these steps

in EntropyService.java is shown is Code 3.3. As it can be seen, first the ran-

domness from file is written to nonblocking pool, then device specific entropy is

mixed into nonblocking pool. After satisfying randomness requirements, gener-

ating randomness file is executed by this service.

While scanning the resulting kernel logs, we are able to see all of the op-

erations expressed above. loadInitialEntropy() function writes the data in
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/entropy.dat to /dev/urandom. In this operation, random write function is

called once and random write function calls write pool function 64 times for

blocking pool and 64 times for nonblocking pool. In each call of write pool

function, 64 bytes of data is mixed to the pool. In short, 64 × 64 = 4096 bytes

of data is mixed into both of the secondary pools.

Then we are able to observe operation of addDeviceSpecificEntropy() func-

tion. During the addition of data in Code 3.2, random write function is called

once and random write function calls write pool function three times for block-

ing pool and three times for nonblocking pool. Total 64 + 64 + 60 = 188 bytes

of data is mixed to both pools. One sample of device-specific data taken by Hex

Workshop v6.6 is shown in Figure 3.1.

Figure 3.1: Sample output of device specific data. It is possible to link the items
in Code 3.2 with this Hex Workshop v6.6 screen.

After the addition of device specific information, current entropy is written to

/entropy.dat file to use on next startup. During this operation, urandom read

function is called and 4096 bytes of data is extracted from nonblocking pool.

All of the extracted data is written into /entropy.dat file. This file should be

constant until three hours from last writing process. However, we did not test if

/entropy.dat is updated periodically. Instead of observing the periodic update,

we observed that the data written to /entropy.dat on a session is the same as

the data read from /entropy.dat on next session.
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As a result, it is not possible to implement simple attack on nonblocking pool

in Android devices. It is very hard to simulate its states, hence the attack in [18]

cannot be applied to Android devices.
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Chapter 4

Evaluation of Linux Entropy

Estimator

”The total entropy of any

isolated thermodynamic

system tends to increase over

time, approaching a

maximum value.”
—The second law of

thermodynamics

Entropy estimator is crucial part of the Linux random number generator. All

randomness assumptions are made based on this estimator. Therefore it is very

important to analyze its algorithm and check its correctness; i.e. whether it over-

estimates or underestimates the entropy. Normally, it is expected of an estimator

to underestimate the entropy, so random number generator should guarantee that

it can provide at least estimated amount of random bits; i.e. getting 128-bit key

which has 100 bit randomness case should not be possible.

As it was described in the previous chapter, Linux uses time difference to

estimate the randomness of the inputs. There is not detailed information about
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- Consider the three interpolating polynomials based upon

the last three events.

- Compute the three interpolation errors according to the

new event.

- Take the minimum of these errors.

- Compute the logarithm in base 2 of this minimum (bounded

by 0 and 11).

Algorithm 4.1: Entropy estimation algorithm using interpolation. Entropy esti-
mator in Linux is mathematically equivalent to the steps above.

why this particular estimator and parameters are used in the Linux source com-

mentaries. It is a simple and cheap entropy estimator [21]. It was chosen for its

cost, not for its accuracy [19]. As indicated in [19], entropy estimation is based

on a few reasonable assumptions. First, it is assumed that most of the entropy

of the input samples is contained in their timings. Timing contains both the

cycle and jiffies counts; however, the jiffies count has a much coarser granularity.

The Linux RNG uses the pessimistic estimator by basing its entropy estimation

on the jiffies count only. Adding additional values, even if they are completely

known, can only increase the entropy; i.e. it cannot decrease the uncertainty

of the already collected data. The other assumption is that the input samples

coming from different sources are independent. Hence, entropy can be estimated

separately for each source which are user input, interrupts, and disk I/O and

summed up in the end. The estimator keeps track of the jiffies count of each

source separately. The entropy is estimated from the jiffies’ difference between

two events. Still, it is pretty good at detecting regularities [21]. A study [20] pro-

poses an interpretation based on Newton polynomial interpolation. This study

summarizes the estimation process as algorithm in Algorithm 4.1.

Additionally, another crucial point has to be mentioned. While running the

emulator and scanning the kernel logs, we see that most of the events add zero

entropy to the input pool. The reason why this occurs lies behind the imple-

mentation of the estimator. Because of this property, Linux random number

generator can be characterized as conservative [17]. This may be quite a severe

bottleneck for the blocking interface to the LRNG.
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It is argued that /dev/random may fail to provide information-theoretic secu-

rity even if the entropy estimator is correct [6]. For example, in Linux kernel v2.4,

both streams (/dev/random and /dev/urandom) use the same entropy pool (there

is only one secondary pool in Linux kernel v2.4), so the output of /dev/urandom

leaks information also about the state of /dev/random. And even when this two

streams use syntactically distinct pools (as in the Linux kernel v2.6), it is advo-

cated that there is no guarantee of information theoretic security for /dev/random

as long as they are refreshed from possibly dependent data [6].

After explaining the main logic behind the Linux entropy estimator; now it

is time to see how pessimistic it calculates the entropy by comparing with two

different entropy estimation methods: Maximum likelihood entropy estimator

and compression.

4.1 Comparison of Linux Entropy Estimator

with Maximum Likelihood Entropy Estima-

tor

As it was indicated before, entropy estimator estimates the entropy by using only

time differences between subsequent events. During this comparison, the entropy

will also be calculated using only time differences. In [35], Shannon defined

entropy as the quantity which will measure, in some sense, how much information

is produced by the source, or better, at what rate information is produced by

the source when all possible outcomes are given with their probabilities. In other

words, entropy gives an idea about the randomness and uncertainty of the source.

In Linux RNG, entropy events increase the entropy of the input pool with

respect to related time difference value. Namely, time difference values determine

the entropy—randomness and uncertainty—of the input pool. From the similar

perspective, time difference values of these events can be thought as the source

and each individual event can be taken as an outcome of the source. The source
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feeds randomness to input pool by giving its outcomes. If all outcomes and their

probabilities are known exactly, then the entropy of the source—time difference

values—could be calculated by using Shannon’s entropy function. Shannon’s

entropy function is defined in [35] as follows:

Suppose we have a set of possible outcomes whose probabilities of occurrences

are p = (p1, p2,. . . , pm). Then the entropy of the source is defined as

H(p) = −
m∑
i=1

pi log2(pi) (4.1)

In our case, we do not have exact and known values for outcomes and their

occurrence probabilities. Therefore, a new question arises: Given the sample

output of the source, how can we estimate the entropy of the source? The answer

is stated in [36] as follows:

All output samples are assumed to be independent and identically distributed.

When each symbol is included for n = (n1, n2,. . . ,nm) in the observed sample set,

entropy is generally estimated by substituting p in Equation (4.1) with maximum

likelihood estimates of occurring probabilities of source symbols, p̂ = n/N, as

ĤMLE(n) = H(n/N) = H(p̂) (4.2)

In [36], estimator ĤMLE(n) is referred as the maximum likelihood entropy

estimator.

Considering the information above, we need to customize the Equation (4.2)

to our needs. In order to calculate the maximum likelihood entropy of time

differences using Shannon’s entropy function, we should take time differences as

samples and find their frequencies.

Let N be the size of the sample outcome δ1,δ2,. . . ,δN. Let p̂η = # {i : δi = η} /N
be the empirical frequency of η in the given sequence. Suppose there are D dif-

ferent outcome with frequency space p̂ = (p̂1, p̂2,. . . , p̂D). We then compute
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Maximum-Likelihood
Entropy of first level δ

Maximum-Likelihood
Entropy of min. δ

Entropy calculated
by Linux Estimator

1.5988 1.5620 0.2384
1.6775 1.6356 0.2588
1.7104 1.6596 0.3223
2.0644 2.0647 0.5053
2.3312 2.2745 0.6187

Table 4.1: Comparison of maximum likelihood entropy estimator and Linux es-
timator. First column shows the ML entropy estimation of first level δ, second
column shows the ML entropy estimation of minimum δ and last column shows
entropy estimation of Linux estimator. Recall that all estimations are based on
δ values—time-differences.

Equation (4.3) to find maximum likelihood entropy estimation over the empirical

data:

Ĥ = −
D∑
η=0

p̂(η) log2(p̂(η)) (4.3)

The result of Equation (4.3) is the maximum-likelihood entropy calculated by

time differences; in other words, this is the entropy-per-sample. In estimation

algorithm, there are three levels of δ and Linux estimator uses minimum of them.

Therefore, we take the minimum of these δ levels for each sample like the estimator

does. However, in [19] only first level δ is used for maximum-likelihood entropy

calculation. Therefore, we include both calculations; i.e. we use both minimum δ

and first level δ. In order to add more meaning to out comparison, we should also

include per-event entropy calculated by Linux estimator. For this, we sum up the

entropy added to the system for each event and divide it to the number of events.

As a result, we obtain entropy-per-event calculated by Linux estimator. Now we

have entropy-per-sample calculated using Equation (4.3) and entropy-per-event

calculated using the Linux estimator. The comparison of these are shown in

Table 4.1.

Recall that, there is not significant difference between maximum-likelihood

entropy calculated using minimum δ and first level δ. However, as expected,
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Linux estimator is very pessimistic on this calculation. As it was mentioned be-

fore, being pessimistic on entropy estimation is acceptable and must condition

for security so Linux passes this test successfully. Also note that, last two rows

of Table 4.1 have greater entropy values than the others; because, last two sim-

ulations of the system contain user-mode operation while first three simulations

of the system last until the end of the disk-check process; i.e. no user-input in-

cluded. This is consistent with the statement that the most vulnerable states of

Android devices are during the initialization; after user starts to use the device,

randomness and entropy increase dramatically.

4.2 Comparison of Linux Entropy Estimator

with Compression Results

In the previous section, we compare the estimator’s performance by calculat-

ing maximum-likelihood entropy of time differences by using Shannon’s entropy

function. In this section, we try to calculate the entropy of the input pool by

measuring the randomness of the inputs which mix the input pool. These inputs

are added to the input pool by mixing it with the algorithm described before.

Therefore, randomness of these inputs determines the entropy of the input pool.

Linux estimator use only time differences, jiffies part of these inputs as it was

told before.

Entropy effectively bounds the performance of the strongest lossless (or nearly

lossless) compression possible; because compression algorithms use the correlation

of subsequences in its input. Random sequence has little or no correlation between

its subsequences; hence, random sequences are compressed a little or they cannot

be compressed. The performance of existing data compression algorithms is often

used as a rough estimate of the entropy of a data block [37].

By using this information, we concatenate all the inputs to the input pool

and compress the concatenated result by using the best compression algorithm

of WinRAR v4.0.1. The compressed size can be roughly thought as the entropy
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of all inputs. Input pool has zero entropy at the beginning, initialization does

not increase entropy. Therefore, we include only disk-randomness inputs during

initialization part to calculate and compare entropy. Results for 72 different runs

of the system are shown in Table 4.2.

No Size(byte)
Comp. Size

(byte)
LRNG Est.

(bit)
Ratio of

Est./Comp.

1 10082 577 144 0.03

2 9026 567 139 0.03

3 8642 593 202 0.04

4 8834 573 162 0.03

5 8546 566 254 0.05

6 8834 584 166 0.03

7 8450 550 144 0.03

8 7970 560 157 0.03

9 7682 536 133 0.03

10 9266 579 156 0.03

11 9218 567 172 0.03

12 8450 573 186 0.04

13 9410 601 218 0.04

14 8882 566 134 0.02

15 7874 562 168 0.03

16 8834 576 167 0.03

17 10658 624 235 0.04

18 8258 572 170 0.03

19 8498 582 191 0.04

20 8498 577 196 0.04

21 9986 604 247 0.05

22 10274 623 251 0.05

23 9410 599 212 0.04

24 8438 604 234 0.04

25 7846 655 231 0.04

Continued on next page
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Table 4.2 – Continued from previous page

No Size(byte)
Comp. Size

(byte)
LRNG Est.

(bit)
Ratio of

Est./Comp.

26 10102 679 246 0.04

27 13194 705 284 0.05

28 8930 595 187 0.03

29 10966 700 241 0.04

30 10658 636 231 0.04

31 9986 600 211 0.04

32 9398 599 191 0.03

33 11894 647 244 0.04

34 8546 584 211 0.04

35 13194 716 292 0.05

36 11370 710 252 0.04

37 8402 577 190 0.04

38 10706 628 204 0.04

39 8930 604 204 0.04

40 11542 691 257 0.04

41 8450 577 205 0.04

42 10274 613 231 0.04

43 8450 583 212 0.04

44 8258 582 205 0.04

45 8258 583 175 0.03

46 7682 544 154 0.03

47 9026 589 186 0.03

48 8978 588 199 0.04

49 9354 705 242 0.04

50 9374 584 165 0.03

51 10178 621 229 0.04

52 13154 637 238 0.04

53 12434 632 231 0.04

54 11234 626 201 0.04

Continued on next page
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Table 4.2 – Continued from previous page

No Size(byte)
Comp. Size

(byte)
LRNG Est.

(bit)
Ratio of

Est./Comp.

55 10390 671 208 0.03

56 11138 643 243 0.04

57 9842 601 205 0.04

58 12714 729 270 0.04

59 9890 613 244 0.04

60 13406 655 270 0.05

61 6734 524 143 0.03

62 9334 669 218 0.04

63 8738 586 186 0.03

64 13154 628 234 0.04

65 13154 634 236 0.04

66 8630 564 138 0.03

67 8642 576 145 0.03

68 8546 582 204 0.04

69 9122 587 200 0.04

70 7682 564 205 0.04

71 10082 613 241 0.04

72 3566 348 72 0.02

Table 4.2: Comparison of WinRAR’s best compression and Linux entropy esti-

mator. First column shows the total size of the concatenated size of all entropy

events which mix into the input pool. Second column shows compressed (with

WinRAR’s best compression) size. Third column is the entropy estimation of

Linux. Last column is the ratio between Linux entropy estimation and com-

pressed sizes which can be thought as entropy of all events. On average, entropy

estimated by compression is 23 times greater than entropy estimated by Linux.
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As it can be seen from Table 4.2; although concatenated inputs are compressed

to 0.04-0.07 of their original sizes, it is still far, far greater than estimator’s esti-

mation. On average, entropy estimated by compression is 23 times greater than

entropy estimated by Linux. In short, estimator again estimates pessimistically

as it is expected in this test.

In addition to the concatenated inputs test, we test if input pools’ parallel

states are correlated or not. All pools are initialized to zero at the beginning. At

first, time is mixed into the input pool, we can call this the first state. For all

different initializations, in order to indicate first states of all input pools, we use

first parallel state. All the first states of the input pools in different initialization

are concatenated and compressed, which we call the compression of concatenation

of first parallel states. The size of input pool is 512 bytes and the size of time

input is 8 bytes. Therefore, input pool still contains lots of zeros, unchanged

region after the first mixing. After mixing with time, input pool is mixed with

the system information, utsname structure, which is the size of 390 bytes. After

this second mixing process, all parts of the input pool is mixed. We call this the

second state. As a third step, disk randomness is mixed, which gives us the third

state. On these terms, parallel states can be defined as follows: after the first mix

of the pool in all runs, after the second mix of the pool in all runs etc. Second and

third states and their compressions are defined in a similar way to the first state.

After collecting data, we concatenate first three parallel states of the input pools

and try to compress these three concatenated files. For the compression process,

we again use the best compression algorithm of WinRAR v4.0.1. First parallel

state is compressed with the ratio of 0.07. This can be expected, because input

pool is nearly all zero and unchanged. Second and third parallel states are not

compressed; i.e. their compression ratio is one. As it can be seen in Figure 4.3,

first parallel state is compressed while the second and third parallel states are

not compressed. This can be translated as after second mixing, there will be no

apparent correlation between parallel runs of the input pool. As a result, it can

be said that it is difficult to find correlation and similarities between independent

runs.
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Parallel States Total Size (byte) Compressed Size
Parallel State 0 36864 2591
Parallel State 1 36864 36864
Parallel State 2 36864 36864

Table 4.3: Comparison of normal and compressed (with WinRAR’s best com-
pression) sizes of the first three concatenated parallel pool states. As it can be
seen, after second state, input pools are no longer similar because there is no
compression.

4.3 Evaluation of the Results

In this chapter, we compared Linux entropy estimator with two different entropy

estimation methods. First method was based on Shannon’s entropy function. In

order to apply Shannon function, output values of the source and their occur-

rence probabilities must be known. This was not possible for our tests; therefore

we needed to make an estimation for necessary parameters by using sample out-

come obtained through our test mechanism. We applied maximum likelihood

estimation on the sample, and then applied Shannon’s entropy function on the

estimation. Calculating the entropy estimation, these results were compared

against Linux entropy estimation. Our findings showed that Linux estimator is

pessimistic as it should be; i.e. the ratio between our results and estimation of

Linux changed between 3–8. As it was mentioned before, being pessimistic on

estimating the entropy is a preferred property for random number generators be-

cause they should never overestimate the entropy. Providing less than asserted

amount of entropy may lead to weaknesses on secure systems.

The second method was based on compression. There is a negative correla-

tion between compressibility and randomness; i.e. the more random the data is,

the less compressible it becomes. During this test, we initially compressed the

events data—inputs for the input pool— and observed its randomness, in other

words, estimated its entropy. The results were much higher than Linux entropy

estimation. Later on, we compressed the concatenated input pool states to detect

the correlation between different initializations. At the end, we found that there

was no correlation between input pool states which means that Linux provides
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unique randomness for each run of the system; i.e. during the simulations it is

very difficult to reach the same internal states.

As a result, we conclude that Linux random number generator estimates the

entropy in a pessimistic way and it provides distinct states on different runs.
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Chapter 5

Conclusion and Future Work

”The generation of random

numbers is too important to

be left to chance.”

—Robert R. Coveyou

In this thesis, we analyzed Android random number generator statically and

dynamically in order to diagnose its weaknesses. Initially, historical examples of

attacks on different random number generators were given in order to emphasize

the importance of the topic. Then the works on operating systems’ random

number generator were examined generally.

After the preparation phase, static analysis of Android random number gener-

ator was done. Source code of operating system and the kernel were examined at

first. While investigating the general structure of Android SecureRandom class,

it was found that the seed for that generator actually comes from Linux random

number generator. Thus, it was deduced that the security of Android RNG relies

on the security of Linux RNG. After this discovery, Linux RNG was analyzed

statically. Its general structure and main components were explained in detail.

As a conclusion to this chapter, the differences between the version Android em-

ulator used (v2.6.29) and the latest Linux kernel version on April 30th, 2013

(v3.9.0) were listed and explained.
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Statical section of the thesis concluded with code analysis and dynamical

section began with the modifications on kernel code. Linux RNG file random.c

in Android kernel was modified in a way so that its internal states and operation

can be observed concretely from the kernel logs. The most vulnerable stage of

Linux random number generator was the initialization process. With this in mind,

the initialization phase of Android was investigated and it was found that there

is not any evident flaw or weakness in the design. Even its security is improved

with respect to normal Linux by writing device-specific information to entropy

pools.

Having surveyed the Android random number generator during the initializa-

tion of the device, its entropy estimator and the performance of entropy estimator

were studied. Estimation of operating system was compared with maximum like-

lihood entropy estimation over time differences and it was found that estimation

of operating system is pessimistic with respect to our findings. After this test,

considering the relationship between entropy and compression, entropy providing

inputs were concatenated and compressed. Then compressed size was compared

with the entropy estimation. The results revealed that the estimator of operating

system is again pessimistic. Estimating the entropy lower guarantees that ran-

domness is at least at the level of estimation. This prevents the crucial problems

related with low entropy.

Beside the analysis of Android random number generator running on the

emulator, analysis of Android running on hardware can be performed; because,

when the main computer is busy, emulator works in a slower way; i.e. it finishes

initialization at a longer time. In order to avoid this effect, we always run the

emulator under similar workload on the main computer. Running Android OS

on Android device will totally eliminate this effect, because no external impact

interrupts the running system.

To conclude, Android random number generator is well designed, improved

through the contributions from many developers and updated in accordance with

the findings of works that are related to random number generator. For today,

security related problems may occur only if it is used in a wrong way. But for
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the future, it is important to strengthen the Android RNG with the support of

hardware RNG. As the time goes on, when the security requirements become more

sophisticated and cost of adding hardware RNG diminishes; it will be possible to

see many Android devices with hardware RNG.
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Appendix A

Hardware and Software

Information

A.1 System Information

Main system and virtual systems used in this work are listed below:

Main Computer : Packard Bell Easy Note TS11HR

Processor : Intel R© CoreTM i7-2630QM CPU

@ 2.00 GHz 4 Cores 8 Logical Processors

Installed Memory (RAM) : 8 GB

OS : Windows 7 Home Premium Service Pack 1

System Type : 64-bit Operating System

HDD : 750 GB

Virtual Computer : on VirtualBox

Processor : Intel R© CoreTM i7-2630QM CPU

@ 2.00 GHz 2 Cores 4 Logical Processors

Installed Memory (RAM) : 3 GB

OS : Ubuntu 12.04
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System Type : 64-bit Operating System

HDD : 100 GB

Emulated Android : on Android Virtual Device Manager

Processor : ARM (armeabi-v7a)

OS : Android 4.1.2 - API Level 16

SD Card : 8 GB

A.2 Software Information

Software used on main system are listed in Table A.1.
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Appendix B

Codes

All codes referring from Section 3.1 are presented below:
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mkdir ~/bin

PATH =~/bin:$PATH

sudo apt -get install curl

curl https ://dl -ssl.google.com/dl/googlesource/git -repo/repo > ~/bin/repo

chmod a+x ~/bin/repo

mkdir WORKING_DIRECTORY

cd WORKING_DIRECTORY

sudo apt -get install git -core

repo init -u https :// android.googlesource.com/platform/manifest

repo sync -j1

# If download becomes problematic , then try to disable ipv6

gksudo gedit /etc/default/grub

# change GRUB_CMDLINE_LINUX_DEFAULT =" quiet splash" line to

# GRUB_CMDLINE_LINUX_DEFAULT =" ipv6.disable =1 quiet splash"

sudo update -grub

Code B.1: Android source code download

git init

git clone https :// android.googlesource.com/kernel/goldfish

cd goldfish/

git branch -a

git checkout -t origin/android -goldfish -2.6.29 -b goldfish

Code B.2: Android kernel source code download

# assuming that kernel source is downloaded to "goldfish" folder under home

gedit ~/ goldfish/kernel/printk.c

# change line 747 from "if ( printk_time ) {" to "// if ( printk_time ) {"

# change line 763 from "}" to "// }"

Code B.3: Enable printing of timestamp

# assuming that kernel source is downloaded to "goldfish" folder under home

gedit ~/ goldfish/arch/arm/configs/goldfish_armv7_defconfig

# change line 50 from " CONFIG_LOG_BUF_SHIFT =16" to " CONFIG_LOG_BUF_SHIFT =17"

Code B.4: Increase kernel printk buffer size

# assuming that kernel source is downloaded to "goldfish" folder under home

export PATH =~/ prebuilt/linux -x86/toolchain/arm -eabi -4.4.3/ bin:$PATH

export ARCH=arm

export SUBARCH=arm

export CROSS_COMPILE=arm -eabi -

make goldfish_armv7_defconfig

# X is the number of processors to run during compilation ; parallel jobs

make -jX

Code B.5: Compile Android kernel
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:: open command windows as administrator

:: assuming that installation is completed with default settings

cd C:\Users\USERNAME\AppData\Local\Android\android -sdk\tools

:: assuming that kernel image name is not changed

emulator.exe @Deneme -kernel zImage

Code B.6: Run Android emulator with desired kernel

:: open command windows as administrator

:: assuming that installation is completed with default settings

cd C:\Users\USERNAME\AppData\Local\Android\android -sdk\platform -tools

:: output kernel logs to log.txt continuosly

adb shell cat /proc/kmsg > log.txt

Code B.7: Get kernel logs continuously

:: open command windows as administrator

:: assuming that installation is completed with default settings

cd C:\Users\USERNAME\AppData\Local\Android\android -sdk\platform -tools

:: open shell to enter bash commands to Android device

adb shell

:: go to devices directory

cd /dev

:: list the files in devices directory

ls

:: there is no "hw_random", go to the attributes directory

cd /sys/class/misc

:: list the files in current directory

ls

:: no related files , no hardware RNG installed

Code B.8: Search for hardware RNG in Android
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