
sensors

Article

A Manycore Vision Processor for Real-Time Smart Cameras †

Bruno A. da Silva 1, Arthur M. Lima 1, Janier Arias-Garcia 2 , Michael Huebner 3 and Jones Yudi 1,*

����������
�������

Citation: Silva, B.A.d.; Lima, A.M.;

Arias-Garcia, J.; Huebner, M.; Yudi, J.

A Manycore Vision Processor for

Real-Time Smart Cameras. Sensors

2021, 21, 7137. https://doi.org/

10.3390/s21217137

Academic Editors: Peter Corcoran

and Saraju P. Mohanty

Received: 31 July 2021

Accepted: 8 September 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Automation & Control Group, University of Brasilia, Brasilia 70910-900, Brazil;
eng.fis.bruno@gmail.com (B.A.d.S.); arthurlima67@yahoo.com.br (A.M.L.)

2 Graduate Program in Electrical Engineering, Department of Electronic Engineering, Federal University of
Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; janier-arias@ufmg.br

3 Computer Engineering, Technical University Brandenburg, 03046 Brandenburg, Germany;
michael.huebner@b-tu.de

* Correspondence: jonesyudi@unb.br
† This paper is an extended version of our paper published in —X Braziliam Symposium on Computing

Systems Engineering— https://doi.org/10.1109/SBESC51047.2020.9277867.

Abstract: Real-time image processing and computer vision systems are now in the mainstream
of technologies enabling applications for cyber-physical systems, Internet of Things, augmented
reality, and Industry 4.0. These applications bring the need for Smart Cameras for local real-time
processing of images and videos. However, the massive amount of data to be processed within short
deadlines cannot be handled by most commercial cameras. In this work, we show the design and
implementation of a manycore vision processor architecture to be used in Smart Cameras. With
massive parallelism exploration and application-specific characteristics, our architecture is composed
of distributed processing elements and memories connected through a Network-on-Chip. The
architecture was implemented as an FPGA overlay, focusing on optimized hardware utilization.
The parameterized architecture was characterized by its hardware occupation, maximum operating
frequency, and processing frame rate. Different configurations ranging from one to eighty-one
processing elements were implemented and compared to several works from the literature. Using a
System-on-Chip composed of an FPGA integrated into a general-purpose processor, we showcase the
flexibility and efficiency of the hardware/software architecture. The results show that the proposed
architecture successfully allies programmability and performance, being a suitable alternative for
future Smart Cameras.

Keywords: multi-processor system-on-chip; network-on-chip; image processing; computer vision;
real-time; smart camera

1. Introduction

The emergence of new trends in technology, such as the Internet of Things and
Industry 4.0, pulled out several applications based on image processing and computer
vision (IP/CV) techniques. Cyber-physical systems, augmented reality, and autonomous
machines, among others, all have applications supported by the extensive use of cameras.
Most of the conventional cameras are designed for the acquisition and transmission of
images and videos. These cameras are not able to support complete applications running
under real-time constraints. For these reasons, there is a need for devices capable of
acquiring and processing images and videos efficiently and in real-time.

Images are inherently parallel, and the literature shows that for the IP/CV domain,
the efficient parallelism exploration is the key for performance improvement. The underly-
ing hardware/software architecture, as well as the programming model offered to the users,
must be designed under application-specific constraints to reach higher performance [1–3].
To explore the parallelism massively, our approach was to parallelize the processing right
after image capture by the pixel sensor. Figure 1 shows the concept used, in which the
image is divided into parallel processing units [4].

Sensors 2021, 21, 7137. https://doi.org/10.3390/s21217137 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5203-3048
https://orcid.org/0000-0002-1790-3869
https://orcid.org/0000-0001-6707-853X
https://doi.org/10.3390/s21217137
https://doi.org/10.3390/s21217137
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SBESC51047.2020.9277867
https://doi.org/10.3390/s21217137
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217137?type=check_update&version=1

Sensors 2021, 21, 7137 2 of 19

Actual Scene Pixel Sensor Pixel Distribution Tiles

Figure 1. The intrinsic IP/CV parallelism explored using multiple processing tiles.

Hardware architectures span a broad diversity: ASICs, direct field-programmable gate
array (FPGA) implementations, application-specific instruction set processors (ASIPs), very-
large instruction word (VLIW) processors, digital signal processors (DSPs), graphics pro-
cessing units (GPUs), and multi-processor System-on-Chip (MPSoCs), etc. Each approach
is an attempt to explore data parallelism, higher processing frequencies, pipelines, or com-
plex instructions. Considering the characteristics of pixel parallelism, depicted in Figure 1,
as well as in previous findings from the literature, we propose an IP/CV application-
specific architecture: a manycore vision processor system. All hardware/software design
decisions are based on IP/CV application-specific needs, from the processing elements mi-
croarchitecture to the Network-on-Chip (NoC) interconnects. A general-purpose processor
(GPP) and a direct memory access (DMA) scheme complement the manycore to build a
novel heterogeneous smart camera architecture.

The rest of this work is organized as follows: Section 2 depicts a literature review of
the main challenges in the area, the state-of-art solutions, as well as the gaps we propose to
cover with this work. In Section 3, we explain the HW/SW organization, the main design
decisions, and implementation details of each hardware block. Section 4 explains the
application used to characterize the HW/SW architecture. Section 5 presents and discusses
the results. Finally, in Section 6, we present the conclusion and future works.

2. Related Work

In the literature, there are plenty of works towards accelerating/optimizing IP/CV
algorithms, covering soft-related aspects, such as algorithm rewriting [5], to hardware-
related ones, such as GPU systems [6]. This section covers recent approaches related to
embedded IP/CV systems and HW/SW architectures that implement common image
processing tasks.

IP/CV Systems

As IP/CV techniques present massive data and operation parallelism, efficient paral-
lelism exploration is potentially a solution to optimize the performance of such techniques.
VLIW processors can perform several operations in parallel, offering a suitable approach.
In [7], the authors merge a scalable VLIW architecture with OpenCL parallelization capa-
bilities to build an NoC-based multi-processor for medical applications on FPGAs. They
prioritize better layout and resource usage to model the network, in a data oriented ap-
proach, but lack performance for IP/CV applications compared with similar works. Similar
to our work, they slice the image in multiple segments, yet demand more from the network.

The development of time-critical systems requires attention to all aspects of the
HW/SW architecture. The data transmission among processors represents one of the
bottlenecks in any parallel architecture. The authors of [8] implement an image processing
four-port NoC architecture in Virtex II family FPGA, capable of store memory and display
results at the same time. The authors of [9] present an improved six-port Torus topology
architecture based on [8], each one with different functions: from acquisition to display

Sensors 2021, 21, 7137 3 of 19

interfaces, passing through processing units (PUs). Each core interface is composed of
FIFOs instead of finite state machines (FSMs), different from our work. Even though they
present an early stage prototype, there is no parallelism exploration with multitasking
or image slicing. The authors separate the task into different sub-blocks and pass the
whole image data through an NoC instead, which simplifies the architecture but reduces
timing performance.

The authors of [10] propose an NoC for image processing algorithms. It is based
on a “token-ring” approach, using one circular unidirectional network to transport com-
mands and results data via an asynchronous network. The authors of [8–10] explore the
scalability of NoC communication, and each PU is responsible for specific parts of the
desired IP/CV algorithm, differing mostly by the six-port Torus and token-ring network
types. This approach favors local optimization of each PU; however, it does not explore
the operation parallelism of the IP/CV data, which leads to the need for much higher
operating frequencies. Our architecture organization also explores the NoC scalability
features, but furthermore, by the exploration of pixel-level parallelism, we can operate at
lower frequencies, which could represent smaller power consumption.

The authors of [11] present a multi-processor architecture based on a Spidergon NoC
topology. It is a heterogeneous processing system, where each tile has its specialization:
memory, general-purpose processor (GPP), and motion estimation, etc. Each tile can reach
another one through the NoC, and several different IP/CV algorithms can be implemented
using all or some of the tiles. There is some task-level parallelism, since the processing
tiles can work in parallel, and high throughput is reached. That work could explore the
pixel-level parallelism; however, the authors did not consider that possibility.

An NoC-based MPSoC is explored for some IP/CV algorithms in [12]. The authors
use an MPI (message passing interface) to parallelize the algorithms and distribute the
threads among the cores. It enables multi-processing with high-level abstraction in tightly
constrained devices and, similar to our work, divides the image into slices and distributes
them inside the processor’s memories. Our approach is also based on an NoC-based
MPSoC; however, we have all cores executing the same program in parallel, but over
different data sets (pixel regions), instead of the MPI model. We also use an FPG-based
architecture instead of an ASIC, such as [12] does.

Another relevant architecture type for IP/CV implementations is the GPUs. A GPU is
commonly able to explore vector operations efficiently. Several IP/CV algorithms can be
expressed in such a way that the compilers are effective in addressing the instruction-level
parallelism. In [6,13], a soft-GPU architecture is presented. Similarly to our approach,
the authors developed an FPGA overlay exploring the platform features (DSP blocks,
distributed memory, logic blocks, and interconnects) to optimize the architecture design,
showing the feasibility of FPGA overlays as an end-user platform. It develops an FGPA
GPU (called FGPU) architecture with computing units, a basic processing block of the
FGPU architecture with eight custom processing elements to perform SIMD instructions.
It implements IP algorithms such as Sobel, compass edge detector, and filter algorithms
for benchmarks. Different from our work, the authors develop a general purpose graphics
processing unit for FPGAs, focusing on high-performance gain and power consumption,
instead of an IP/CV specific solution.

The NVidia Tegra Tx1 is a heterogeneous architecture composed of an embedded GPU
architecture with 256 CUDA cores and a quad-core ARM processor. In [14], that platform
is used to develop a smart industrial camera able to perform real-time object recognition.
The authors show that an embedded GPU can efficiently explore the parallelism in IP/CV
algorithms and provide high throughput and flexibility.

A general-purpose pixel distributor for parallel processing in FPGAs is depicted in [15].
The authors address the importance of such architecture for real-time image processing
and the demand for an efficient parallel distribution system to reduce the required memory.
Stream processing is the primary approach of their work, with specific processing units
directly implemented in FPGA, and also exploring the pixel-level parallelism. However,

Sensors 2021, 21, 7137 4 of 19

despite stream processors, tiny processing elements based on RISC architectures are used,
favoring flexibility for any IP/CV application.

Some authors explore the FPGA dynamic reconfiguration to improve online flexibil-
ity [16]. However, the reconfiguration time is far too time-consuming to be used in real-time
applications. In our architecture, full flexibility is provided by the use of soft-programmable
processing elements.

The authors of [1,17,18] propose a methodology for the design and programming of
next-generation manycore vision processors. The authors suggest new design architectures
that optimize multi-cost functions: memory and resource usage, communication cost,
power consumption, and hardware speed. Their work computes microarchitectures for
the IP/CV applications that explore pixel operation parallelism using multiple iterations
and SystemC/TLM models to make better design decisions for this kind of application.
In addition, they analyze multiple parallelism aspects in manycore vision processors based
on algorithm characteristics, pixel-level, and multiple stages of design space. They explore
various subsystems in the architecture to extract better parallelism, develop a simulation
tool using SystemC/TLM 2.0, and show possible architectural choices to improve this kind
of processing system. Furthermore, they execute the canny edge detector as a reference
algorithm, which computes the number of operations and memory accesses necessary to
the system. The authors build the architecture for 16x16 pixels per tile prototype in FPGA,
showing that it is viable compared with other state-of-the-art canny edge detector (CED)
implementations. In conclusion, they obtain a manycore architecture based on simulations
in SystemC/TLM 2.0 and other design space exploration techniques. Our work concerns
practical implementation issues based on their results to build a viable manycore vision
processor on FPGAs based on their findings.

The authors of [19] present a high-level synthesis tool to facilitate a time-to-market
heterogeneous MPSoCs design. The hardware architecture combines Microblaze softcore
flexibility with HLS practicality to implement multiple designs for different project con-
straints. Despite the MPSoC implementation in FPGA using the Network-on-Chip, our
approach focuses on lower-level aspects instead of the programming model and high-level
synthesis. The choice from [19] reduces the design effort but has performance reduction
compared to more specialized architectures such as ours for IP/CV applications.

The authors of [20] set up a method to program heterogeneous MPSoCs using the
Xilinx SDSoC framework and other open-source tools. The application profiles automatic
instrumentation of the code to the designer, which makes better decisions if necessary.
This approach differs from our work because of its focus on a high-level tool to ease rapid
prototyping in manycore systems. We provide design choices for homogeneous MPSoCs
in overlay architectures, implementing the same task for all cores.

Table 1 shows a comparison of different architectures cited in this section with our
work in terms of processing element type, communication structure, programmability,
and main features. Most of the work use NoC for communication, and have programmable
devices. This shows the interest of recent IP/CV related architecture with programmability
and high-level design, using OpenCL, MPI and Vivado HLS in many of them as a possible
way to improve performance and time to market. We use the term programmability as
the characteristic of an architecture being application-agnostic. This means that, once the
underlying hardware is defined, any application in the IP/CV domain can be implemented.
As a result, even though FPGAs are field-programmable, to change the application, it is
necessary to redesign the architecture.

The next session explains the HW/SW platform used to develop the complete Smart
Camera concept.

Sensors 2021, 21, 7137 5 of 19

Table 1. IP/CV reference comparison.

Reference PE Type Communication Application Agnostic Main Feature

[7] VLIW NoC yes FPGA overlay architecture
to explore PS-PL

[8,9] Heterogeneous NoC no Early NoC proposal for IP/CV
applications

[10] Heterogeneous NoC no Multiple Processing Units in
asynchronous NoC

[12] RISC NoC yes Proprietary MPSoC and use of
MPI model

[6] Soft-GPU Bus yes FPGA overlay resources
optimization, use of soft-GPUs

[14] GPU Bus yes Achieve real-time object recognition
with GPU/CPU combination

[1] RISC NoC yes Spatial parallelism exploration
achieves high performance scaling

[19] RISC NoC yes HLS synthesis tool for a
heterogeneous system built for FPGAs

[20] Heterogeneous Bus no Method to explore HW/SW design
choices with few user interaction

Our work RISC NoC yes Overlay architecture that explores spatial
parallelism with region-based processing

3. The HW/SW Platform

The architecture proposed in this work was designed considering the diversity and
complexity of IP/CV algorithms, the parallelism exploration on different abstraction levels,
and the hardware costs. Figure 2 shows the block diagram of the complete Smart Camera
proposed [21]. We selected a ZYNQ Ultrascale+ device (ZCU104 development kit from
Xilinx), a state-of-art SoC [22], which integrates a GPP with an FPGA fabric in the same
chip. The first block is a common pixel sensor module, which connects to the development
board through a GPIO port. The ZYNQ Chip receives the pixel stream and stores the input
image in the acquisition frame buffer. The pixels are then distributed among the tiles within
the manycore vision processor to be processed. After the image processing, the output
image is stored in the visualization frame buffer, which is then read out through DMA by
an ARM processor, integrated into the SoC. The next sections explain in detail all the Smart
Camera components.

Pixel

Sensor

Acquisition

IP

Acquisition

Frame

Buffer

Many-core

Vision

Processor

Visualization

Frame

Buffer

AXI DMA

IP

AXI Lite

IP

ARM DRAM

ARM

Processor

Figure 2. Block diagram of the complete Smart Camera system.

3.1. Pixel Sensor

This work uses the OmniVision OV7670 CMOS sensor [23], a commercial OEM
model with industry standard parallel interface. The sensor is set to QVGA resolution,
320 × 240 pixels, achieving up to 60 frames per second in the current setting. It outputs
pixels in RGB444 encoding, which is therefore converted to grayscale in the Acquisition IP.

Sensors 2021, 21, 7137 6 of 19

The sensor pins are connected directly to the ZCU104 board through two GPIO interfaces,
as shown in Figure 3 [21].

Figure 3. Photography of the Xilinx ZCU104 development kit with the OV7670 CMOS sensor and
the Infineon power monitor device.

3.2. Acquisition IP and Acquisition Frame Buffer

The Acquisition IP is a group of different modules: to control the CMOS sensor,
to receive pixel data, and to store it in the acquisition frame buffer. This scheme uses an
open-source project [24] as the main reference with modifications.

Five modules, i.e., AXI Camera Control IP, Debounce, OV7670 Capture, RGB444
to Grayscale and OV7670 Controller, compose the IP, either for control or data sam-
pling. OV7670 Controller module is responsible for the CMOS initialization. The con-
troller sets the image size, output data format (RGB444 in this case), prescaler, contrast,
gamma, UV auto adjust, image orientation, color conversion, VSYNC/HREF setups,
and other configurations.

The sensor could be configured to output YUV format, avoiding the use of RGB to
grayscale conversion; however, we wanted to show that it is also possible to explore direct
FPGA IP/CV implementations, such as the ones depicted in Section 2.

3.3. Manycore Vision Processor

This section describes the manycore vision processor architecture and its HW/SW
integration, as shown in Figure 4 [4]. It is made of basic units, called tiles, that process and
store pixel values in memory and communicate with the other tiles using a router. Multiple
tiles form a 2D-mesh Network-on-Chip, which transmits pixel data and control messages,
forming a homogeneous manycore processing system. We run the same program code in
all tiles to explore natural pixel parallelism, providing the usability at the IP/CV domain.

Sensors 2021, 21, 7137 7 of 19

Tile
Manycore

ZYNQ Chip

Manycore

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile Vi
su
al
iza

tio
n
Fr
am

e
Bu

ffe
r

ARM
Processor

Routing
Control

Ac
qu

isi
tio

n
Fr
am

e
Bu

ffe
r

Register File

Memory
Control

North

E
a
s
t

South

W
e
s
t

Pi
xe
l S
en

so
r

Ac
qu

isi
tio

n
Fr
am

e
Bu

ffe
r

Figure 4. The manycore hardware architecture designed in our work.

3.3.1. Pixel Memory

The PM has to interface with the router, the PE, and also interact with external
components such as the ARM processor or the input/output image buffers, as shown in
Figure 5 [21]. Each pixel memory ideally stores a defined image region. In practice, there
are some exceptions in border tiles, where it can have more storage than pixels in its sub-
image. This happens because pixels can not be equally divided in regions depending on
the manycore size. Furthermore, our automation tool has limitations and does not optimize
the image slice for multiple architectures, which is not possible depending on the image
resolution and MCVP size. However, for simplicity, these exceeding addresses are not
taken into account in the implemented algorithms. Furthermore, Vivado’s block memory
code generator cannot cut the exact BRAM slices depending on the architecture and image
configurations due to its physical limitations, but it does not affect the implementations.

Glue Logic

General
Purpose

Router

True Dual-Port

Memory

(BRAM FPGA

block)

Router

Architecture FPGA implementation

Port

General
Purpose

Port

Figure 5. The pixel memory architecture.

3.3.2. Processing Element

Processing elements must be able to perform simple computations such as basic arith-
metic and branch operations. Furthermore, they must be compliant with the application-
specific needs of IP/CV algorithms. With that in mind, a minimalist RISC processor,
with only 16 instructions, was designed, as shown in Figure 6 [21]. The PEs have access to
the register file and to the PM to use in tasks. Instruction memories store programming
code for execution.

Sensors 2021, 21, 7137 8 of 19

Processing Element

Glue Logic

In
s
tr

u
c
ti

o
n

D
e

c
o

d
e

r

RF

In
s
tr

u
c
ti

o
n

M
e

m
o

ry

In
s
tr

u
c
ti

o
n

M
e

m
o

ry

Router

External

Interface

Pixel

Coord.

Addrs.

PM

Figure 6. Processing element microarchitecture for P-type and R-type instructions.

The PE was developed focusing on: basic arithmetic operations necessary to most
image processing algorithms, defined here as R-type instructions; branch and jump op-
erations to control flow, named as Branch and Jump instructions, respectively; pixel data
communication (P-type) and Control instructions. Those five constitute all instruction formats
necessary for the PE to implement any type of IP/CV algorithm, turning the PE in a
Turing-complete machine.

3.3.3. Router

The router is the component responsible for exchanging pixels among the tiles. Its
interface consists of 6 ports, each one with one input and one output channel. All the
channels are unidirectionally connected to the neighboring tiles (N, S, E, W) and the local
PE and PM. Between each tile pair, there are message buffers used to avoid network stalls.
The size of these buffers is configurable and depends on the algorithms used and the overall
architecture configuration (image resolution and number of tiles). Figure 7 illustrates a
message and how it is routed through the manycore [21].

PE PM

R

PE PM

R

PE PM

R

PE PM

R

PE PM

R

PE PM

R

Origin

Destination

Message Description

Pixel Value

X destination

Y destination

X origin

Y origin

Step

Frame

Forward/Backward
Forward message Backward message

Figure 7. Message description and route.

For example, if a PE has to perform a get-pixel instruction (GPX), which means that
it needs a specific pixel at the RF to process, the PE wrapper verifies if the pixel belongs
to its image region or another one. If it is a local pixel, the wrapper asks the local PM for
the pixel value. In the case that a pixel is in another image region, the wrapper asks the
local router. The router has an arbiter and, when it is the PE communication slot, the router

Sensors 2021, 21, 7137 9 of 19

decodes the destination and forwards the message to a neighbor router. Take Figure 7 as a
sample, the top left tile requests a pixel that belongs to the bottom right one. Because of
this distribution, the forward message passes through all routers in the red arrow route
until it arrives at its destination. After obtaining the desired pixel, the PM sends it to the
nearest router, which passes the message (as shown by the dashed blue arrow) to neighbor
routers until the pixel arrives at its origin.

3.4. Visualization Frame Buffer

The visualization frame buffer controls pixel transfer from the manycore vision pro-
cessor to the ARM processor, after the MCVP ends the processing of a frame. It has one
AXI4-Lite interface to control and read relevant data from visualization FB. Furthermore,
a memory interface, made of a true dual-port block RAM with two write ports in read-first
mode [25], stores pixels written by the MCVP. This IP deals with two interfaces to link
the manycore with the ARM processor: a memory interface from the MCVP, and an AXI4
Stream interface to communicate with the AXI DMA IP.

An AXI4 Stream interface sends data without ARM direct intervention. This approach
reduces the processor load but demands a new IP to convert the stream to memory-mapped
transfer (AXI DMA IP) and a finite state machine to read pixels from the block RAM and
send it through AXI Stream interface.

3.5. AXI Direct Memory Access IP

This work uses an AXI direct memory access (DMA) IP [26] to write inside ARM’s
DRAM. The work uses this model to deal with the DMA to reduce ARM’s workload.
Another way to use it is to interrupt the processor every time a DMA iteration is complete.
Them, the IP needs to be reprogrammed and so forth. Using descriptors, there is no need
to interrupt the processor and reprogram anything, although it is still possible to interrupt
the processor if necessary.

In the implemented design, one memory segment is reserved for the image, but the
architecture can handle even multichannel cases. This situation can deal with two distinct
cameras for stereo computer vision, for example.

3.6. ARM Processor

This work uses a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC with an ARM
Cortex-A53-based application processing unit (APU) from the ZCU104 development kit.
In this work, the ARM processor runs a bare-metal implementation, using only a single
core from the four available. The ARM has PL-PS interruption enabled to address DMA
IP needs. Furthermore, the initialization process and other low-level tools are all dealt
with by Xilinx proprietary tools: the Vivado Design Suite to synthesize and implement the
architecture, and the Xilinx Software Development Kit to handle software and FPGA setup.

The ARM processor is used to configure, program, monitor and debug the manycore
system, as well as to contribute to the IP/CV application in higher abstraction levels. It
communicates to the manycore system through the AXI (Lite/DMA) interfaces described
earlier in the text. Through these interfaces, the ARM processor has access to pixel mem-
ories (PMs), instruction memories (IMs), and special-purpose registers for control and
debug purposes.

4. Application Domain Analysis

The architecture proposed in this work aims to implement any type of IP/CV ap-
plications. In this context, we decided to show its flexibility with the implementation
of an application suitable to explore different types of IP/CV algorithms: a motion esti-
mation using the Harris corner detector (HCD). Several IP/CV algorithms manipulate
pixels in similar ways. The Khronos group consortium established the OpenVX stan-
dard as a set of IP/CV functions selected as the most representative components of more
complex applications.

Sensors 2021, 21, 7137 10 of 19

In Table 2, we classify all 58 OpenVX functions into five classes, depending on how
the image pixels are analyzed/manipulated [27]. In the first class, there are some complex
applications, which can be built by combining functions from other classes. The last
three classes are the lower-level ones and responsible for direct pixel manipulation. These
classes are the most computationally expensive, and efficiently explored by our architecture.
To show the performance of our solution for the IP/CV application domain, we selected an
application from the first class, which we consider as representative of the most common
applications in this domain: a motion estimation based on the Harris corner detector.

Table 2. Classification of the 58 OpenVX functions by operation structure.

OpenVX Function Classification

Canny Edge Detector, Fast Corners, Gaussian Image Pyramid,
Histogram of Oriented Gradients, Harris Corners, Hough Lines Probabilistic,
Laplacian Image Pyramid, Optical Flow Pyramid, Reconstruction from
a Laplacian Image Pyramid, Equalize Histogram

composition of different types

Mean and Standard Deviation, Min, Max Location, Tensor Add,
Tensor Convert Bit-Depth, Tensor Matrix Multiply, Tensor Multiply,
Tensor Subtract, Tensor Table LookUp, Tensor Transpose, Control Flow,
Data Object Copy, Histogram of Oriented Gradients, LBP descriptors

non direct image operation

Absolute Difference, Arithmetic Addition, Arithmetic Subtraction,
Bitwise AND, Bitwise Exclusive OR, Bitwise Inclusive OR, Bitwise NOT,
Channel Combine, Channel Extract, Color Convert, Convert Bit Depth,
Magnitude, Phase, Pixel-wise Multiplication, Remap, Table Lookup,
Thresholding, Weighted Average

Pixel to Pixel

Bilateral Filter, Box Filter, Custom Convolution, Dilate Image, Erode Image,
Gaussian Filter, Integral Image, Match Template, Max, Median Filter, Min,
Non Linear Filter, Non-Maxima Suppression, Sobel 3 × 3

Region to Pixel

Scale Image, Warp Affine, Warp Perspective Region to Region

4.1. Harris Corner Detector

Figure 8 shows the HCD processing chain based on common textbook implementa-
tions [28]. The HCD algorithm is composed of several smaller blocks, all of them present in
the OpenVX specification. To have different comparisons to the literature, we evaluated the
performance of the complete HCD, the convolution with sizes 3 × 3, 5 × 5, 7 × 7, and the
Sobel edge detector.

The HCD was implemented completely in the manycore architecture. It reads the
grayscale image from the acquisition frame buffer, processes it with the HCD algorithm,
and outputs the resulting image to the visualization frame buffer.

4.2. Motion Estimation

The ARM processor is responsible for the motion estimation. It receives the manycore’s
processed images (HCD results) through the DMA interface. For each image, the center
of mass (CoM) of the detected corners is computed in a software routine. A CoM’s
displacement vector is then determined containing the CoM’s trajectory. The motion
estimation described here is a global operation, in the sense that it requires the corners
positions of the complete image. This level of abstraction is better implemented in the
ARM processor than in the manycore.

Sensors 2021, 21, 7137 11 of 19

RGB to
Grayscale

3x3
Smoothing

Filter

Sobel X

Sobel Y

5x5
Gaussian
Filter

5x5
Gaussian
Filter

5x5
Gaussian
Filter

Corner Value
Function

Input RGB
image

Threshold

Non‐max
Suppression

Motion
VectorX

^2

^2 Center of Mass
Function

Pixel
Sensor

Direct FPGA
Implementation ARM Processor

Many‐core
Vision

Processor

Figure 8. Motion estimation using a corner detector.

5. Results and Analysis

This section presents the results of the complete IP/CV processing chain, from the
image acquisition in the OV7670 sensor to the ARM’s motion estimation. All data use
the QVGA image resolution with the FPGA running at 100 MHz, and the ARM processor
running at 667 MHz. We intend to address the general characteristics of the manycore,
discussing its advantages and disadvantages. Figure 3 shows a photograph of the OV7670
CMOS sensor and Infineon power monitor device attached to the ZCU104 Development
Kit used in this section’s results.

5.1. Resource Usage

Table 3 shows the hardware resources used by the complete chain, for different many-
core sizes from 1 to 81 Tiles, which reaches the physical limit of the Xilinx ZCU104 Evalu-
ation Kit (currently a state-of-the-art device) [4]. We can see in the table the manycore’s
scalability while increasing the processing parallelism levels.

Table 3. Resources for the complete IP/CV processing chain, QVGA image, different manycore’s sizes.

Device 1 Tile 4 Tiles 9 Tiles 16 Tiles

PL Max. Freq. (MHz) - 134.77 128.85 122.80 122.88
LUT 230,400 9841 16,057 26,117 39,765
LUTRAM 101,760 789 1557 2837 4629
FF 460,800 9733 15,219 24,164 36,843
BRAM 312 195 197 198 205
URAM 96 1 4 9 16
DSP Blocks 1728 6 18 38 66

25 Tiles 36 Tiles 49 Tiles 64 Tiles 81 Tiles

PL Max. Freq. (MHz) 120.61 122.01 122.56 122.70 111.42
LUT 56,837 80,944 110,941 141,772 178,582
LUTRAM 6933 9749 13,077 16,917 21,269
FF 53,240 73,421 97,350 124,997 156,400
BRAM 195 219 234 237 207
URAM 25 36 49 64 81
DSP Blocks 102 146 198 258 326

5.2. Performance Evaluation

The performance experiment was set to capture 500 frames, where the camera is set
to a free-capture mode, saving all the frames in the acquisition frame buffer. The ARM
processor controls the MPSoC to wait for the camera VSYNC signal and guarantee correct
frame processing. As image transfer time from the acquisition FB to PMs takes about 1 ms,

Sensors 2021, 21, 7137 12 of 19

which is similar to the DMA transfer time, there is no pixel loss in free-capture with the
camera producing 60 fps.

To determine the processing delay, the timer starts to count when the ARM finishes
the setup and initialize peripherals (the MCVP, DMA, camera, and Acquisition FB) and
stops to count after writing the last pixel in ARM’s DRAM through the DMA.

Five algorithms are implemented: the Harris, Sobel, 3 × 3, 5 × 5, and 7 × 7 convolu-
tions. Figure 9 (left) shows a chessboard captured image from the sensor and read from
ARM DRAM through an UART interface, for evaluation purposes. Figure 9 (right) depicts
the final CoM computed over an HCD output image.

Figure 9. Left: real image acquired by the pixel sensor; right: center of mass (red cross) calculated by
the ARM processor over an HCD output from the manycore.

Figure 10 shows the performance of the manycore system in simulation (up to 400 tiles)
and implemented alone in the FPGA-fabric (up to 81 tiles) [4]. The implementation could
reach only 81 tiles, due to the device physical limitations. However, through simulation, we
can see the scalability and performance improvement by exploring the natural parallelism
of the IP/CV algorithms.

Figure 10. Performance in frames per second comparing implemented and simulated results for the
Harris Detector.

Figure 11 shows time performance results for the algorithms executed, from 1 to 81 PEs,
in frames per second (fps) [4]. The results differ from Figure 10 due to the synchronization

Sensors 2021, 21, 7137 13 of 19

with the image sensor. The sensor configuration could only be used to output single-shot
images (1 and 4 tiles), 30 fps (9 to 36 tiles), and 60 fps (49 to 81 tiles). The processing
architecture is able to reach the performance depicted in Figure 10; however, the pixel
sensor was the system’s main bottleneck. It is important to highlight that the processing
architecture was designed to fulfill the real-time constraints given by the sensor frame rate.

Figure 11. Execution time for multiple algorithms with acquisition and visualization scheme.

It is not easy to compare different architecture types, as well as systems designed with
different VLSI technologies. To have a kind of normalization, we computed the cycles/pixel,
which is a metric that shows how efficiently a computing architecture implements an IP/CV
application. This metric is independent of the VLSI technology and the operating frequency.
We believe that, with this normalization, we can fairly compare the architectural designs
from several years ago until now.

A comparison, only for the Sobel edge detector against our 81 tiles implementation, is
shown in Table 4 [4]. We can see that our architecture provides a good performance, while
still being flexible. The authors of [20] build a method to program heterogeneous MPSoCs
using the Xilinx SDSoC framework. It implements an edge detection algorithm in multiple
scenarios: software only, HW/SW with static and runtime task mapping/scheduling.
The authors of [12] uses a 2D mesh NoC-based 16 RISC core processor to implement
different image processing tasks for its parallel programming model called threaded
MPI. The authors of [19] develop a high-level synthesis tool to facilitate time-to-market
heterogeneous MPSoCs design, using an MPI-based programming model and Vivado tools
for HLS and TCL scripting.

Sensors 2021, 21, 7137 14 of 19

Table 4. Comparison of implementations of Sobel edge detector.

Reference Architecture Cycles/Pixel Application Agnostic?

[20] 2019 * MPSoC-FPGA 1.06 no
Our (impl.) MPSoC-FPGA 1.52 yes
[12] 2015 MPSoC-ASIC 2.67 yes
[19] 2019 MPSoC-FPGA 64.13 yes

* Includes the initial image transfer time.

Table 5 compares our best timing performance MPSoC with related architectures for
the Harris corner detector application [4]. We show in the table two results: the simulated
one, with 400 tiles, and the implemented one (limited by the FPGA size), with 81 tiles.
The authors of [29] utilize a Jetson (ARM and GPU) similar to this work, with a GPU
instead of using programmable logic. The authors of [30] implement HCD on a ASIC SIMD
architecture. The authors of [12] use an NoC-based MPSoC with 16 RISC cores assisted by
an external ARM CPU. The authors of [31] build the application in a processor array using
VLIW PEs and point-to-point communication, building a tightly-coupled processor array.
The authors of [32–35] implement pipelined HCD architectures in FPGA.

Table 5. Comparison of implementations of the HCD.

Reference Architecture Cycles/Pixel Application Agnostic?

[35] 2014 ** FPGA 1.00 no
[34] 2014 FPGA 1.00 no
[31] 2013 FPGA 1.36 yes
[33] 2017 ** FPGA 2.11 no
Ours (sim.) MPSoC-FPGA 3.02 yes
[32] 2013 ** FPGA 3.03 no
[30] 2010 SIMD ASIC 3.42 yes
[12] 2015 MPSoC-ASIC 7.07 yes
[29] 2018 * Embedded GPU 7.19 yes
Ours (impl.) MPSoC-FPGA 11.61 yes

* Includes the initial image transfer time. ** includes acquisition and visualization scheme.

The motion estimation was implemented only in the ARM processor. Its performance
is independent of the manycore’s performance, for the same input image. The center of
mass computation and the motion estimation resulted in an average performance of only
1.43 ms.

In general, non-programmable pipelined FPGA architectures have better results but
lack flexibility. However, other device types can also achieve similar performance, in terms
of frames per second, for ICs that can run at higher frequencies but consume more power. It
is important to emphasize that this work explored the platform physical limits in the Zynq
ZCU104 board and still can reduce HCD execution time for larger FPGAs. Moreover, our
solution brings full flexibility with a performance close to non-programmable architectures.
Reference [12] is also an NoC-based MPSoC with RISC processors, and the most similar
implementation to our architecture in Table 5.

The main goal of our architecture is to provide a feasible processing system for
real-time IP/CV applications. A very popular architecture with similar utilization is
a GPU, for example, the NVidia Jetson family [29]. Despite not being similar in the
microarchitecture characteristics, we can compare our work to GPUs, considering the huge
number of processing cores. We divided the comparison with GPUs into two parts: the
first one with a soft GPU, and the second one with a commercial GPU.

Our manycore was implemented as an overlay architecture, so it should be fair to
compare it with an overlay GPU. In [6], the authors provide the FGPU, a general-purpose
GPU optimized for FPGAs. The FGPU architecture is composed of several computing units

Sensors 2021, 21, 7137 15 of 19

(CUs), where each CU has eight processing elements. The FGPU’s programming model is
based on single-instruction multiple-threads (SIMT) and provides full-thread divergence,
which means that each PE operates individually over the same program. Our manycore
has the same characteristic, where each PE is independent and runs the same program.
The authors in [6] benchmarked the FGPU with a varied number of CUs, as well as with a
diversity of application domains. The authors connected the FGPU to an ARM processor
using the AXI bus in a similar fashion to our work. The ARM was then responsible for
sending data to be processed and receiving back the results. To perform this comparison,
we used the ARM processor to operate in the place of our camera, resulting in a very
similar testbench. Figure 12 shows the results for our testbench in different configurations,
running some applications [4].

1 4 9 16 25 36 49 64 81

Many-core size

0

200

400

600

800

1000

P
e

rf
o

rm
a

n
ce

 (
fp

s)

2 8 1
6 2
9 4
3 6
2 8
3 1
0

9

1
3

1

3 1
1 2
2 3
9 5
7 8
2 1
0

8 1
4

1

1
6

9

5 2
0 4
2 7

5 1
1

2 1
6

2 2
1

5 2
8

2 3
3

9

1
3 5

1

1
0

9

1
9

5

2
9

3

4
2

6

5
6

8

7
5

2

9
0

9

1
4 5

6

1
2

0

2
1

6

3
2

4

4
6

7

6
2

5

8
2

6

1
0

0
0

Harris

Conv. 7x7

Conv. 5x5

Conv. 3x3

Sobel

Figure 12. Performance in frames per second per architecture, all running in a testbench without a camera.

In [6], there is the benchmarking of a Sharpen filter, a convolution operation in a
5 × 5 neighborhood. For the sake of comparison, we selected their results with an eight-
CUs configuration (64 PEs), the one with the highest number of PEs. Table 6 shows
the comparison in its first two rows. We can see there that the manycore architecture is
more efficient in parallelism exploration for the same number of PEs, reaching a higher
throughput (pixels/s) with a smaller operating frequency.

Table 6. Efficiency comparison among.

Architecture Algorithm Image Resolution Time Per Frame fps freq. (MHz) Pixels/s Cycles Per Pixel

MCVP-64
(64 PEs) Convolution 5 × 5 256 × 256 3.55 282 100 18,481,152 5.411

FGPU-8
(64 PEs) [6] Sharpen 5 × 5 512 × 512 6.1 16.4 250 4,299,162 58.150

MCVP-81
(81 PEs) HCD 256 × 256 9.17 109 100 7,143,424 14

NVidia Jetson TX2 [36]
(256 cores) HCD 640 × 480 26 38 854 11,673,600 73.156

The second comparison is against a commercial embedded GPU [36]. The third and
fourth rows of Table 6 show the comparison. In [36], a NVidia Jetson TX2 with 256 cores
runs the HCD algorithm. We compared it with our manycore with 64 PEs (4 times fewer
PEs than the Jetson TX2). We can see in Table 6 that our architecture is more efficient in the
parallelism exploration, with 5× fewer cycles needed per pixel.

Sensors 2021, 21, 7137 16 of 19

5.3. Power Consumption

The ZCU104’s power system has components to monitor voltage and current on the
power rails by the Infineon manufacturer [37]. An Infineon USB005 USB cable [38] is used
to obtain power results directly from a board’s specific connector.

We used the PowIRCenter GUI application to obtain power results from all rails.
Considering that the ZCU104 development kit shares different peripherals in the same
rail, mixing the FPGA fabric with DRAM power supply [22], for example, it is not possible
to separate FPGA from ARM or other subsystems. For this reason, experimental power
results concern the total instantaneous consumption in Watts (W) for all rails, including the
pixel sensor. This means that the power measured is bigger than the power used by the
Sensor + FPGA + ARM part.

Similarly to previous timing results, this subsection also tests the Harris, Sobel, 3 × 3,
5 × 5, and 7 × 7 convolutions, varying the number of processing frames with the algorithm
and manycore size. For each algorithm, a sequence of approximately 500 images was
captured to provide an average power consumption.

Figure 13 shows the power performance graphic for different algorithms and archi-
tecture sizes. Lines and points represent the measurements mean, and the shaded area
is the 95 % confidence interval based on the mean estimator [39]. The power behavior
relates to all of the architecture components: the pixel sensor, image capture system, DMA,
manycore, ARM processor, and other board subsystems.

With more tiles, there is more instantaneous power consumption because there are
more pixel transmissions between each of them. With more routers and memory in use,
the data transferences between each tile and routers’ queues occupation is less predictable.
Furthermore, as we deal with a large digital system, in terms of resource usage that
consumes thousands of logic units, the Flip-Flops clock distribution is not completely
uniform, causing propagation delays. Combining the MCVP behavior with the FPGA and
physical characteristics, the system has variable and less predictable instantaneous power
consumption, leading to a standard deviation increase. As expected, the HCD takes more
power to be finished since it has more operations that also take more time.

1 4 9 16 25 36 49 64 81
Many-core size

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

Po
we

r (
W

)

Harris
Sobel
3x3 Conv.
5x5 Conv.
7x7 Conv.

Figure 13. Power consumed for different algorithms and architecture sizes.

6. Conclusions

In this work, we developed a Smart Camera system based on a manycore architecture
for real-time image processing and computer vision applications. The main contribution of
this work is a novel manycore architecture specially designed for the IP/CV application
domain. All design decisions were made considering the domain-specific needs, which
resulted in a refined and efficient hardware/software architecture.

Sensors 2021, 21, 7137 17 of 19

Our approach makes use of Region-based and operation level parallelism to optimize
the processing time. Additionally, we designed a pixel distribution and control unit using
an embedded ARM processor and AXI bus scheme. All subsystems are addressed and
explained with construction details, focusing on matching application-specific needs. As a
proof-of-concept, we implemented some IP/CV algorithms: the motion estimation, Harris
corner detector, Sobel edge detector, and convolution filters. The results show that our
architecture is capable of overcoming similar real-time architecture depending on the
manycore size and application demands. The architecture is also flexible and easy to scale
for higher numbers of tiles.

The manycore architecture proposed was compared to state-of-art approaches based
on highly specialized FPGA implementations, reaching a good performance, while provid-
ing an application-agnostic solution. In comparison to embedded GPUs (commercial and
academic ones), our solution is more efficient on parallelism exploration. GPUs are directly
programmed in C/C++. Our architecture does not yet have a C/C++ compiler; however, it
is almost as programmable as the GPU solutions.

In future works, we envision the utilization of a higher frame rate sensor to reach the
full potential of the architecture. The proposed system is heterogeneous: we can implement
the IP/CV algorithms in different architectures (direct FPGA, manycore, ARM processor).
A mapping tool to obtain the algorithm description and divide it optimally over the system
would also be beneficial. In addition, the other cores of the ARM processor could also be
used to perform control and processing separately, as well as to run an embedded Linux
operating system, bringing even more application possibilities to our Smart Camera system.

Author Contributions: Conceptualization, J.A.-G., M.H. and J.Y.; methodology, B.A.d.S., M.H. and
J.Y.; codification, B.A.d.S. and A.M.L.; supervision, J.A.-G., M.H. and J.Y.; experiments, B.A.d.S.,
A.M.L. and J.Y.; data analysis, all authors; writing—original draft preparation, B.A.d.S., A.M.L. and
J.Y.; writing—review and editing, all authors. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was financed in part by the following institutions: Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior, Brasil (CAPES)—Finance Code 001; Fundação de Apoio à
Pesquisa do Distrito Federal (FAPDF); National Council for Scientific and Technological Development
(CNPq).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yudi, J.; Llanos, C.H.; Huebner, M. System-level design space identification for Many-Core Vision Processors. Microprocess.

Microsyst. 2017, 52, 2–22. [CrossRef]
2. Schmitz, J.A.; Gharzai, M.K.; Balkır, S.; Hoffman, M.W.; White, D.J.; Schemm, N. A 1000 frames/s vision chip using scalable

pixel-neighborhood-level parallel processing. IEEE J. Solid State Circuits 2016, 52, 556–568. [CrossRef]
3. Kehtarnavaz, N.; Gamadia, M. Real-time image and video processing: From research to reality. Synth. Lect. Image Video Multimed.

Process. 2006, 2, 1–108. [CrossRef]
4. Silva, B.A.; Lima, A.M.; Yudi, J. A manycore vision processor architecture for embedded applications. In Proceedings of the 2020

X Brazilian Symposium on Computing Systems Engineering (SBESC), Florianopolis, Brazil, 24–27 November 2020; pp. 1–8.
5. Mori, J.Y.; Llanos, C.H.; Berger, P.A. Kernel analysis for architecture design trade off in convolution-based image filtering. In

Proceedings of the 2012 25th Symposium on Integrated Circuits and Systems Design (SBCCI), Brasilia, Brazil, 30 August–2
September 2012; pp. 1–6.

6. Kadi, M.A.; Janssen, B.; Yudi, J.; Huebner, M. General-Purpose Computing with Soft GPUs on FPGAs. ACM Trans. Reconfigurable
Technol. Syst. 2018. [CrossRef]

7. Hoozemans, J.; de Jong, R.; van der Vlugt, S.; Straten, J.V.; Elango, U.K.; Al-Ars, Z. Frame-based Programming, Stream-Based
Processing for Medical Image Processing Applications. J. Signal Process. Syst. 2019, 91, 47–59. [CrossRef] [PubMed]

http://doi.org/10.1016/j.micpro.2017.05.013
http://dx.doi.org/10.1109/JSSC.2016.2613094
http://dx.doi.org/10.2200/S00021ED1V01Y200604IVM005
http://dx.doi.org/10.1145/3173548
http://dx.doi.org/10.1007/s11265-018-1422-3
http://www.ncbi.nlm.nih.gov/pubmed/30873259

Sensors 2021, 21, 7137 18 of 19

8. Joshi, J.; Bade, S.; Batra, P.; Adyanthaya, R. Real Time Image Processing System using Packet Based on Chip Communication. In
Proceedings of the National Conference on Communications, Kanpur, India, 26–28 January 2007.

9. Joshi, J.; Karandikar, K.; Bade, S.; Bodke, M.; Adyanthaya, R.; Ahirwal, B. Multi-core image processing system using network
on chip interconnect. In Proceedings of the 2007 50th Midwest Symposium on Circuits and Systems, Montreal, QC, Canada,
5–8 August 2007; pp. 1257–1260.

10. Fresse, V.; Aubert, A.; Bochard, N. A predictive NoC architecture for vision systems dedicated to image analysis. Eurasip J. Embed.
Syst. 2007. [CrossRef]

11. Saponara, S.; Fanucci, L.; Petri, E. A multi-processor NoC-based architecture for real-time image/video enhancement. J. Real-Time
Image Process. 2013, 8, 111–125. [CrossRef]

12. Ross, J.A.; Richie, D.A.; Park, S.J. Implementing Image Processing Algorithms for the Epiphany Many-Core Coprocessor with
Threaded MPI. In Proceedings of the 2015 IEEE High Performance Extreme Computing Conference, Waltham, MA, USA,
15–17 September 2015.

13. Kadi, M.A. FGPU: A Flexible Soft GPU Architecture for General Purpose Computing on FPGAs. Ph.D. Thesis, Ruhr-University
Bochum, Bochum, Germany, 2018.

14. Lee, S.H.; Yang, C.S. A real time object recognition and counting system for smart industrial camera sensor. IEEE Sens. J. 2017,
17, 2516–2523. [CrossRef]

15. Ali, K.M.; Atitallah, R.B.; Hanafi, S.; Dekeyser, J.L. A generic pixel distribution architecture for parallel video processing. In
Proceedings of the 2014 International Conference on ReConFigurable Computing and FPGAs (ReConFig14), Cancun, Mexico,
8–10 December 2014.

16. Khalil, K.; Eldash, O.; Kumar, A.; Bayoumi, M. A speed and energy focused framework for dynamic hardware reconfiguration. In
Proceedings of the 2019 32nd IEEE International System-on-Chip Conference (SOCC), Singapore, 3 September 2019; pp. 388–393.

17. Mori, J.Y.; Llanos, C.H.; Hüebner, M. A framework to the design and programming of many-core focal-plane vision processors.
In Proceedings of the 2015 IEEE 13th International Conference on Embedded and Ubiquitous Computing, Porto, Portugal,
21–23 October 2015.

18. Mori, J.Y.; Hübner, M. Multi-level parallelism analysis and system-level simulation for many-core Vision processor design. In
Proceedings of the 2016 5th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 12–16 June 2016;
pp. 90–95.

19. Rettkowski, J.; Göhringer, D. SDMPSoC: Software-Defined MPSoC for FPGAs. J. Signal Process. Syst. 2019, 92, 1187–1196.
[CrossRef]

20. Suriano, L.; Arrestier, F.; Rodríguez, A.; Heulot, J.; Desnos, K.; Pelcat, M.; de la Torre, E. DAMHSE: Programming heteroge-
neous MPSoCs with hardware acceleration using dataflow-based design space exploration and automated rapid prototyping.
Microprocess. Microsyst. 2019, 71, 102882 [CrossRef]

21. da Silva, B.A. A Manycore Vision Processor Architecture for Embedded Applications. Master’s Thesis, University of Brasilia,
Brasilia, Brazil, 2021.

22. Xilinx. HW-Z1-ZCU104 Evaluation Board (XCZU7EV-2FFVC1156)—Schematic; v1.0-rev01; Xilinx Inc.: San Jose, CA, USA, 2018.
23. OminiVision. OV7670/OV7171 CMOS VGA (640x480) Camera Chip with OmniPixel Technology; Omnivision Technologies: Santa

Clara, CA, USA, 2005.
24. Kendri, D. FPGA Camera System. 2019. Available online: https://www.hackster.io/dhq/fpga-camera-system-14d6ea (acessed

on 21 October 2020).
25. Xilinx. Vivado Design Suite User Guide—Synthesis; Xilinx Inc.: San Jose, CA, USA, 2020.
26. Xilinx. AXI DMA v7.1—LogiCORE IP Product Guide; Xilinx Inc.: San Jose, CA, USA, 2019.
27. Tkg, Inc. Khronos Releases OpenVX 1.3 Open Standard for Cross-Platform Vision and Machine Intelligence Acceleration

2019. Available online: https://www.khronos.org/news/press/khronos-releases-openvx-1.3-open-standard-for-cross-platform-
vision-and-machine-intelligence-acceleration (acessed on 5 December 2020).

28. Burger, W.; Burge, M. Digital Image Processing: An Algorithmic Introduction Using Java; Texts in Computer Science; Springer:
London, UK, 2016.

29. Chahuara, H.; Rodríguez, P. Real-time corner detection on mobile platforms using cuda. In Proceedings of the 2018 IEEE XXV
International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 8–10 August 2018;
pp. 1–4.

30. Hosseini, F.; Fijany, A.; Fontaine, J.G. Highly Parallel Implementation of Harris Corner Detector on CSX SIMD Architecture. In
Euro-Par 2010 Parallel Processing Workshops; Springer: Berlin/Heidelberg, Germany, 2011.

31. Sousa, É.R.; Tanase, A.; Hannig, F.; Teich, J. Accuracy and performance analysis of harris corner computation on tightly-coupled
processor arrays. In Proceedings of the 2013 Conference on Design and Architectures for Signal and Image Processing, Cagliari,
Italy, 8–10 October 2013; pp. 88–95.

32. Aydogdu, M.F.; Demirci, M.F.; Kasnakoglu, C. Pipelining Harris corner detection with a tiny FPGA for a mobile robot. In
Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China, 12–14 December
2013; pp. 2177–2184.

http://dx.doi.org/10.1155/2007/97929
http://dx.doi.org/10.1007/s11554-011-0215-8
http://dx.doi.org/10.1109/JSEN.2017.2671457
http://dx.doi.org/10.1007/s11265-019-01462-9
http://dx.doi.org/10.1016/j.micpro.2019.102882
https://www.hackster.io/dhq/fpga-camera-system-14d6ea
https://www.khronos.org/news/press/khronos-releases-openvx-1.3-open-standard-for-cross-platform-vision-and-machine-intelligence-acceleration
https://www.khronos.org/news/press/khronos-releases-openvx-1.3-open-standard-for-cross-platform-vision-and-machine-intelligence-acceleration

Sensors 2021, 21, 7137 19 of 19

33. Liu, S.; Lyu, C.; Liu, Y.; Zhou, W.; Jiang, X.; Li, P.; Chen, H.; Li, Y. Real-time implementation of harris corner detection system
based on fpga. In Proceedings of the 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR),
Okinawa, Japan, 14–18 July 2017; pp. 339–343.

34. Amaricai, A.; Gavriliu, C.E.; Boncalo, O. An FPGA sliding window-based architecture Harris corner detector. In Proceedings of the
2014 24th International Conference on Field Programmable Logic and Applications (FPL), Munich, Germany, 2–4 September 2014;
pp. 1–4.

35. Possa, P.R.; Mahmoudi, S.A.; Harb, N.; Valderrama, C.; Manneback, P. A multi-resolution FPGA-based architecture for real-time
edge and corner detection. IEEE Trans. Comput. 2013, 63, 2376–2388. [CrossRef]

36. Bleijerveld, B. Harris and FAST Corner Detection on the NVIDIA Jetson TX2 Using OpenCV. Bachelor’s Thesis, University of Twente,
Enschede, The Netherlands, 2019.

37. Xilinx. ZCU104 Evaluation Board v1.1—User Guide; Xilinx Inc.: San Jose, CA, USA, 2018.
38. International Rectifier. In PowIR-USB005 User Guide; Infineon Technologies AG: Neubiberg, Germany, 2014.
39. Waskon, M. Seaborn Lineplot (Seaborn.Lineplot) 2020. Available online: http://seaborn.pydata.org/generated/seaborn.lineplot.

html (acessed on 23 January 2021).

http://dx.doi.org/10.1109/TC.2013.130
http://seaborn.pydata.org/generated/seaborn.lineplot.html
http://seaborn.pydata.org/generated/seaborn.lineplot.html

	Introduction
	Related Work
	The HW/SW Platform
	Pixel Sensor
	Acquisition IP and Acquisition Frame Buffer
	Manycore Vision Processor
	Pixel Memory
	Processing Element
	Router

	Visualization Frame Buffer
	AXI Direct Memory Access IP
	ARM Processor

	Application Domain Analysis
	Harris Corner Detector
	Motion Estimation

	Results and Analysis
	Resource Usage
	Performance Evaluation
	Power Consumption

	Conclusions
	References

