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ABSTRACT Autonomous driving can obtain accurate perception and reliable motion prediction with the
support of multi-modal fusion. Recently, there has been growing interest in leveraging features from various
onboard sensors to enhance the primary stages of autonomous driving. This paper proposes LiCaNext to
capture additional accuracy advancements in joint perception and motion prediction while maintaining
real-time requirements. LiCaNext is the next version of LiCaNet, which fuses LIDAR data in both bird’s-eye
view (BEV) and range view (RV) representations with a camera image. In contrast to LiCaNet, we introduce
sequential range residual images into the multi-modal fusion network to further improve performance, with
minimal increase in inference time. Employing sequential range residual images has a substantial direct
impact on motion prediction and positively influences perception. We provide an extensive evaluation on
the public nuScenes dataset. Our experiments show that incorporating sequential range residuals secures
significant performance gain, with monotonic progress for a larger number of exploited residuals.

INDEX TERMS Autonomous driving, deep learning, motion prediction, multi-modal fusion, perception,
residual image, sensor fusion.

I. INTRODUCTION
Perception and motion prediction components are critical to
the safety of autonomous driving andmust not be overlooked.
Recently, researchers invested an ample amount of time and
momentum towards improving the safety of autonomous
driving by enhancing the accuracy and reliability of its
primary components [1]–[7]. Currently, the main research
focus is on exploiting multi-modal fusion to develop superior
versions of perception and motion prediction components.
The multi-modal fusion technique leverages data extracted
from a diverse range of sensors commonly deployed on an
autonomous vehicle to 1) better infer the current state of its
surroundings and 2) accurately predict the dynamicity of this
state in the near future. The utilization of multi-modal fusion
in perception and motion prediction proved its competence
in enhancing performance [1], [3], [5], [6]. The prominence
of multi-modal fusion stems from the fact that the generated
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features are rich and complete. These features constitute
the complementary properties of all fused data represen-
tations and alleviate the inherent constraints of individual
representations.

This work focuses on developing a joint perception and
motion prediction model for autonomous driving by com-
bining data from LIDAR and camera sensors. The two most
common representations of LIDAR data are bird’s-eye view
(BEV) [3], [4] and range view (RV) [2], [5]. We proposed
LiCaNet [1] in our earlier work, which tackled the same prob-
lem and produced challenging results. LiCaNet formulates
its LIDAR data in BEV and RV representations. The BEV
input is composed of a historical sequence of LIDAR data,
while the RV and the camera input images represent only the
current frame. Inspired by [8], we propose LiCaNext, the next
version of LiCaNet, which expands on themulti-modal fusion
network by incorporating sequential range residual images.

Range residuals are computed using the frame differencing
technique [9], a pixel level comparison between the cur-
rent and previous frames. Fig. 1 illustrates an example of
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sequential range residual images. A residual image captures
rich temporal information of objects, which is vital for iden-
tifying motion in a scene, leading to foreground-background
differentiation. Object motion segmentation is identified as
one of the fundamental requirements for real-world applica-
tions, including visual surveillance [10], traffic control [11],
autonomous driving [3], and much more. An active research
area in scene understanding for autonomous driving is mov-
ing object segmentation (MOS) [8], [12]–[15]. MOS is a
class-agnostic approach that detects and localizes motion in
scenes. Furthermore, MOS can detect unseen objects (e.g.,
rare animals or construction vehicles) since it relies onmotion
cues rather than semantics. Typically, the ability to detect
the dynamicity of the surrounding environment is pivotal
for the safety of autonomous driving because it enables the
prediction of objects’ future states and path-planning. The
terms motion detection and motion segmentation are used
interchangeably in this work.

A common challenge in motion detection is the rapid
variation in illumination, such as the sudden appearance of
clouds in the sky. In reality, under sharp changes of lightning
conditions, static pixels are expressed by different intensities
from the rest of the background pixels; thus, incorrectly clas-
sifying them as foreground. Fortunately, our computed range
residuals are invariant to changes in illumination because
range images only contain distance values to objects, and
intensity values are excluded. Consequently, motion detec-
tion performance remains unaffected under adverse illumi-
nation situations if temporal information is extracted from
range residual images. Accordingly, extracting rich temporal
information from range images and integrating them into the
multi-modal fusion network permits us to obtain an effec-
tive and efficient motion detection invariant to changes in
intensities.

The RV input image of our previous multi-modal fusion
network lacks temporal information. It merely consists of
spatial information, including the range, intensity, and height
of objects in the surrounding environment. After inserting
sequential range residual images in RV form, our RV input
images now generate features that embrace spatio-temporal
information. Even though utilizing sequential range residuals
is a modest adjustment to our multi-modal fusion network,
the boost in perception and motion prediction accuracy that
results from this simple addition is substantial. Many mod-
els exist in the literature that offers additional performance
advancement, in these two critical components, compared to
their predecessors; nonetheless, the extra computation intro-
duced is relatively high compared to the additional accuracy
attained. LiCaNet model, an enhancement to MotionNet [4],
achieved an increase of 2.1% in perception and a mean
error drop of 23.1mm in motion prediction for the fast
category (pixels having speed > 5m/s); with a rise of
7.6ms in inference time. On the other hand, our proposed
LiCaNext obtains an increase in inference time of only 1.6ms
while achieving a perception gain of 1.6% and a mean
error decrease of 73.7mm in motion prediction for the fast

category. Thus, a simple modification applied to a model that
leads to a significant progression in accuracy with a limited
increase in computational time is considered a significant
contribution.

Accordingly, alongside the temporal information fed into
the BEV module of our multi-modal fusion network, the
range residuals also hold the dynamicity of the surround-
ings. This redundant temporal information strengthens the
model’s confidence in differentiating between foreground-
background objects, accurately predicting motion, and
enhancing perception. Furthermore, the increase in infer-
ence time incurred due to the addition of residual images
is minimal. Fig. 2 demonstrates the methodology of insert-
ing sequential range residuals into our multi-modal fusion
network.

Overall, the features generated by our proposed LiCaNext
combines the 1) physical object dimensions and temporal
information represented in BEV images, 2) occlusion infor-
mation characterized in RV form, 3) motion cues embodied
in both range residuals and RV forms, and 4) rich semantics
of the surrounding environment signified in a camera image.
Finally, these generated features are fed into MotionNet
backbone network [4] to perform accurate pixel-wise joint
perception and motion prediction in real-time.

The key contribution of this paper is the incorporation
of residual images into the fusion process of BEV, RV, and
camera images. The generated high-quality and complemen-
tary features are then fed into the backbone network to
accomplish state-of-the-art pixel-wise joint perception and
motion predictions in real-time. LiCaNext has been tested
and evaluated on nuScenes dataset [16]. LiCaNext achieves
superior results to LiCaNet, proving that incorporating resid-
ual images enhances joint perception and motion prediction
performance. Moreover, the conducted experiments reveal
that the higher the number of residual images injected in the
multi-modal network, the greater the performance gain. Addi-
tionally, results show that the most significant improvement
is recorded for small and distant objects. We believe that our
proposed LiCaNext is the first existing multi-modal network
to fuse sequential range residual images with multi-modal
features to perform accurate pixel-wise joint perception and
motion prediction in real-time.

The rest of the paper is structured as follows. A brief review
of related work is discussed in Section II. Our proposed
approach is presented in Section III. Section IV describes the
experimental results. Lastly, Section V concludes the paper.

II. RELATED WORK
This section provides a brief review of works that target
motion object segmentation for autonomous driving. In addi-
tion, we present a concise overview of works that address
perception and motion prediction. Motion segmentation is
defined as the process of detecting motion at a pixel level,
while motion prediction is forecasting the future motion
of objects. In our work, we perform pixel-wise motion
prediction.
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A. MOVING OBJECT SEGMENTATION
Early motion detection architectures relied on a geometric
understanding of the scene [17]. Such architectures face dif-
ficulty adapting to challenging situations as their designs are
complex enough and are created exclusively for specific chal-
lenging scenarios. Recent advancements in learning-based
approaches lead to massive progress in motion detection [8],
[12], [13], [18]–[22]. SMSnet [18] is a method that leverages
a convolutional neural network (CNN) and depends on two
sequential camera images to perform pixel-wise category
labeling and motion detection. MODNet [19] is another CNN
model that fuses motion and appearance cues to perform
joint detection and motion segmentation. One camera sensor
is used in [18], [19] to perform motion segmentation on
vehicles only. Unfortunately, it is unsafe to depend merely on
a camera sensor for performing MOS because the semantics
of the image degrades sharply under low-quality illumina-
tion conditions. Conversely, Dewan et al. [20] proposed a
LIDAR-based method that depends on two sequential scans
to perform a pointwise segmentation classifier distinguish-
ing foreground objects from static background. The model
in [20] makes use of up-convolutional networks to accom-
plish the desired task. Moreover, Chen et al. [8] proposed
real-time class-agnostic motion segmentation using sequen-
tial LIDAR scans. The input to the CNN network in [8] is a
combination of RV image, representing the current LIDAR
scan, and range residuals computed from historical LIDAR
frames.

Recent works are targeting the fusion of multi-modal data
to attain more robust motion segmentation. RST-MODNet
[12] is a CNN architecture that leverages the fusion of sequen-
tial camera and optical flow images to achieve real-time
motion detection. FuseMODNet [13] is another real-time
CNN architecture; however, it depends on combining LIDAR
and camera images to capture motion information. Addi-
tionally, Mohamed et al. [21] developed a real-time CNN
architecture, for instance-level class-agnostic motion seg-
mentation with a camera and optical flow images as input.
Unlike the earlier versions, [21] improves the diversity of
moving objects by adding four additional classes instead of
just vehicles. Lastly, BEV-MODNet [22] is another enhance-
ment that investigated the idea of learning motion detec-
tions directly on the BEV space. In [22], a deep network is
designed with a two-stream RGB and an optical flow fusion
architecture.

B. PERCEPTION AND MOTION PREDICTION
The development of perception and motion prediction for
autonomous driving has picked a staggering pace in the
past few years. Plethora of methodologies has been explored
to enhance perception and motion prediction performance.
The majority of works available in the literature used single
input representation to address this task [4], [7], [23]–[31].
Recently, applying multi-modal feature fusion has sparked a
lot of interest from the research community in autonomous
vehicles.

To begin with, LiRaNet [6] model fuses instantaneous
velocity information of RADAR along with LIDAR data
and high-definition (HD) maps to perform perception and
prediction. Fadadu et al. [5] define a unified architecture
that incorporates two views of LIDAR data (BEV and RV),
camera, and HD maps for advanced object detection and
trajectory prediction. Another fusion method attempts to
integrate the outcomes of MotionNet with BEV images to
perform efficient and safe autonomous driving in an urban
environment by training a reinforcement learning model [3].
Khalil et al. [2] put forward a multi-view LIDAR-based
fusion network to enhance pixel-wise joint perception and
motion prediction compared to MotionNet baseline. The two
input LIDAR representations employed in [2] are BEV and
RV images. Lastly, recently proposed LiCaNet [1] extends [2]
with camera image fusion. LiCaNet records excellent perfor-
mance for both perception and motion prediction compared
to its predecessor.

In comparison to the multi-modal fusion networks men-
tioned above, we propose LiCaNext, a buildup on LiCaNet
model where the multi-modal fusion network is expanded to
involve range residuals in RV representation. In addition to
the temporal information provided by the historical sequence
of BEV images, employing motion cues encoded in sequen-
tial range residuals reinforces the richness and completeness
of the generated features. Therefore, we feed our multi-modal
fusion network redundant temporal information in RV form,
allowing us to exploit spatio-temporal information in both
BEV and RV representations.

III. PROPOSED METHODOLOGY
A. INPUT REPRESENTATION
All input representations in LiCaNext are the same as
LiCaNet, except for the newly incorporated range residuals.

1) BIRD’S-EYE VIEW
The nuScenes dataset consists of several scenes. We break
down each scene into clips, and each clip consists of a current
frame and 4 prior frames. The current frame in each clip is
sampled at 2Hz for training and 1Hz for testing. The time
span between the sampled frames in a clip is 0.2s. Therefore,
our BEV input representation constitutes a current frame
and 4 previous frames synchronized to the current frame.
In terms of height, a range of 5 meters in the z-axis of each
frame is encoded in 13 channels. Moreover, each channel has
length and width covering a range of 64m in each direction
and is encoded in a 2D image of dimensions 256 × 256.
More specifically, the specified range in the xyz-direction
is [−32, 32] × [−32, 32] × [−3, 2] m, respectively. The
resolution of each cell in the BEV image is defined as
(1x,1y,1z) = (0.25, 0.25, 0.4) m, where x, y, z denotes
the xyz-axis. Therefore, the BEV images in LiCaNext are of
dimensions 256× 256× 13× 5.

2) RANGE VIEW
Unlike BEV, no historical information is used to formulate the
RV input image. The current frame in RV form is encoded
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in 4 channels: range r , height, intensity, and a binary flag
indicating whether the cell has a valid value. An empty cell
is symbolized in the flag channel by a value of−1 and 1 oth-
erwise. Indeed, a value of −1 is reflected in all 4 channels
for an invalid cell. The width and height of the RV image
are set to be 1024× 32, respectively. Generally, the height of
the RV image matches the number of laser beams emitted by
the LIDAR sensor. The LIDAR sensor embarked in nuScenes
dataset has 32 laser beams.

3) RANGE RESIDUALS
As aforementioned, the main idea of this work is to append
sequential range residuals into the multi-modal fusion net-
work, to push further the performance of the joint perception
and motion prediction model. The range residuals in RV form
are computed by subtracting range images of both current
and previous frames. Following [8], the first step towards
computing a range residual image is to extract the range
images of the two frames separately. The second step is to
compute the residual values by subtracting the two range
images from each other at a pixel level. Only valid pixels in
both range images are considered for computing the residual
values of the corresponding pixels. The residual values of all
other pixels are set to 0.

However, before computing the range images of the two
frames, we must synchronize the previous frame to the
current frame. The synchronization process is done by trans-
forming the point cloud of the previous frame into the coor-
dinate system of the current frame. This stage is necessary
to counterfeit the ego-motion (motion of the autonomous
vehicle). The final step is to normalize the residual images
using Eq. (1).

d 0
n,m =

∣∣∣1r0n,m∣∣∣
r0m

and 1r0n,m = r0m − rnm, (1)

where 1r0n,m is the non-normalized residual image between
the current range image (r0) and the previous nth transformed
range image (rn). Whereas, r0m and rnm represent the range
value at cell m of the current and the nth frames, respectively.
Lastly, d 0

n,m signifies the residual value at cell m between
the 0th and the nth frames. The dimension of each residual
image is the same as the individual channels of the RV image
(1024 × 32). If multiple residual images are to be fused in
the multi-modal fusion network, then they are stacked on top
of each other. For example, if 4 residuals are fused, then the
input representation of the sequential range residual images
becomes 1024× 32× 4.

Fig. 1 provides examples of normalized sequential range
residual images at different timestamps. The current and the
previous frames are sampled using the same configuration
adopted for formulating the BEV input. The range image
of the current frame and its corresponding labels, both in
RV form, are included in Fig. 1 for reference purposes. The
labels are color-coded to easily distinguish and locate the
different objects in the range and residual images. The color

black is assigned for background, blue for vehicles, red for
pedestrians, green for bikes, and brown for all other objects
available in the surrounding. The physical appearance of
some objects in the label image does not reflect their actual
shape due to the scale variance issue in RV images. For
instance, some pedestrians are rendered by few dots, whereas,
looking at the pedestrian located in the middle of the label
image, it is evident from its appearance that it is a pedestrian.
Typically, only a few LIDAR points represent distant objects.
Thus, when transformed into RV form, their appearance is
limited to a couple of pixels, so the appearance will not reflect
the object’s actual shape. The location of objects relative to
the LIDAR sensor is visible in Fig. 2 as it comprises the
labels of the current frame in BEV form. Furthermore, Fig. 2
also includes an RGB image displaying the front-side of the
current scene within the camera field-of-view (FOV).

Interpreting the residual images in Fig. 1, one can undoubt-
edly observe the dynamicity of some objects due to their high
motion. In comparison, other objects haveweak displacement
representation because of their moderate motion. In contrast,
the remaining objects have void motion as they are static.
In particular, a vehicle could be parked on the side of the
road, waiting for a traffic light, or even pedestrians could be
standing still waiting to cross the road.

4) CAMERA
The front camera in nuScenes dataset captures RGB images
with dimensions 1600× 900× 3.

B. LiCaNext ARCHITECTURE
The LiCaNext architecture consists of four modules: BEV,
RV, residual, and camera. The architecture scheme is pre-
sented in Fig. 2. The flag channel of the RV image is not
depicted in the figure. The addition of the residual module
into the LiCaNet architecture leads to LiCaNext. A total
number of 5 sequential frames are used to represent LiCaNext
input. The current frame is used to construct: one BEV image
(13 channels), one RV image (4 channels), and a single RGB
camera image (3 channels). Furthermore, each of the 4 pre-
vious frames generates one BEV image (13 channels) and
one residual image (1 channel). Therefore, 5 BEV images are
stacked to form the BEV module input, 1 RV image repre-
sents the RV module input, N = 4 residual images represent
the residual module input. Lastly, one camera image is used
as input to the LiCaNext camera module. The color-coding in
the BEV images is embraced for illustration purposes only,
and they are the same as the labels image in Fig. 1.
The BEV, RV, and residual modules consist of two 3 × 3

convolution layers. In contrast, the camera module involves a
lightweight pretrained network, followed by projecting and
warping the features into RV form, and lastly, two 3 × 3
convolution layers. In order to project and warp camera
features onto the RV form to be concatenated with the RV
images, we first need to compute the mapping between the
LIDAR points and the camera image. However, due to the dif-
ferent operating frequencies of LIDAR and camera sensors,
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FIGURE 1. An illustrative example of normalized range residual images. The first two images portray the range of the current frame and the labels of all
objects in that frame. A maximum of N = 4 residual images is demonstrated, with n indicating the residual image engendered between the previous nth

transformed frame and the current frame.

coordinate transformation must be applied to compute the
mapping. The first step is to transform the LIDAR points
into the vehicle’s coordinate system at LIDAR capture time.
Secondly, transform the points that exist in the vehicle’s
coordinate from LIDAR capture time to camera capture time.
Next, transform the resulting points from the vehicle’s coor-
dinate system at camera capture time into the camera’s coor-
dinate system. Lastly, apply the camera’s intrinsic calibration
matrix on the transformed points. This transformation process
compensates for the time shift between the two sensors and
results in the LIDAR points being mapped correctly on the
camera image. Suppose the features extracted from the pre-
trained network have different dimensions than the original
camera image. In that case, the mapping needs to be updated
using a scale factor calculated between the dimensions of
the extracted features and the original camera image. This
mapping allows us to warp features from the camera image
into RV representation.

The generated features from the RV, residual, and camera
modules are then concatenated and sent into a U-net. The
U-net consists of two scaling layers with a horizontal scaling
factor of 2 on each layer. The vertical scale is kept constant
due to its small representation compared to the width of the
RV image. At each U-net layer, residual blocks with skip
connections are used. The subsequent step is to project the
resulting features from the U-net onto the BEV form to be
concatenated with the BEV features encoded by the BEV
module. Projection from one form to another is achieved
using the painting approach. Algorithm 1 describes the pro-
jection from RV to BEV representation; however, the same
approach is used to project from camera to RV representation.
Basically, for each raw LIDAR point mapped to a BEV cell,
its corresponding RV feature is projected into the same BEV
cell position. If more than one RV feature ends up in the same
cell, then the average is computed. Empty cells are filled with
a value of−1. Further details on the projection algorithm can
be found in [1].

The final step in LiCaNext multi-modal fusion network is
to inject the concatenated features, in BEV form, into a single
3 × 3 convolution layer. At this stage, the produced features

Algorithm 1: Projecting Features From RV Into BEV
Inputs:
Lidar sweep: L ∈ RN , D with N points and D = 4.
RV features: RV ∈ RW , H , C with W width, H height,
and C channels.
BEV dimensions: bevdim ∈ R2.
Output:
Projected RV features: P ∈ Rbevdim[0], bevdim[1], C .

count = 0 // count ∈ Rbevdim[0], bevdim[1]

for l in L do
lBEV = project(lx,y) // lBEV ∈ R2

if lBEV falls within bevdim range then
lRV = project(lx,y) // lRV ∈ R2

tmp = RV[lRV [0], lRV [1],:] // tmp ∈ RC

P[lBEV [0], lBEV [1],:] + = tmp
count[lBEV [0], lBEV [1],:] + = 1

end
P /= count // average (avoid division by 0)
mask = (count == 0)
P[mask,:] = −1 // assign −1 to empty cells

end

are rich and comprehensive. They consist of spatio-temporal
information sourced from two representations (BEV andRV),
physical object dimensions encoded in the input BEV images,
occlusion information provided from RV images, and rich
semantics signified in a camera image. When these features
are inserted into MotionNet backbone network, they yield
accurate pixel-wise joint perception and motion prediction in
real-time.

C. MotionNet BACKBONE
MotionNet [4] is a novel model dedicated to perform-
ing pixel-wise joint perception and motion prediction in
real-time for autonomous driving. The backbone network
used in MotionNet is called spatio-temporal pyramid net-
work (STPN). A spatio-temporal convolution (STC) block
is the main element of STPN, which consists of two 2D
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FIGURE 2. LiCaNext architecture.

convolutions followed by one pseudo-1D convolution. The
STPN architecture has STC blocks structured in a hierar-
chical way to extract features at different scales, leveraging
multi-scale spatio-temporal features. The lightweight design
of the STC block is the key reason behind MotionNet speed
efficiency, enabling it to run in real-time. The loss function
of MotionNet is decomposed into six components, each of
which is responsible for global or local regularization of the
training network. The loss function is defined as follows:

L = Lclass + Lmotion + Lstate + α Ls + β Lft + γ Lbt , (2)

The global regularization loss components (Lclass, Lmotion,
and Lstate) are devoted for the three MotionNet output heads:
cell classification, motion prediction, and state estimation,
respectively. Cell classification output head predicts the cat-
egory of each pixel, while motion prediction predicts their
respective motion. Besides, the state estimation output head
aims to predict whether each pixel is static or dynamic.
We refer the reader to [4] for an illustrative figure describing
the MotionNet architecture and the structure of its final out-
put.Lclass andLstate are cross-entropy losses, whileLmotion is
smooth L1 loss. In cross-entropy, a distinct weight is assigned
to each category to handle the class imbalance issue.

On the other hand, the remaining loss components (Ls,
Lft , and Lbt ) are associated with local regularization. The
constants α, β, and γ in Eq. (2) are balancing factors. Ls loss
component, defined in Eq. (3), limits the predicted motion of
all pixels relating to an object ok in one frame. So, the overall
motion of ok should be reflected by all pixels belonging to
the same object.

Ls =
∑
k

∑
(i,j),(i′,j′)∈ok

∥∥∥X (τ )
i,j − X

(τ )
i′,j′

∥∥∥, (3)

where X (τ )
i,j ∈ R2 is the predicted motion at pixel (i, j)

in time τ . Comparing all X (τ )
i,j and X (τ )

i′,j′ is computationally

expensive, hence only adjacent pixels are considered. || · || is
L1 loss.
Unlike Ls, which restricts motion spatially, Lft in (4)

constrains the predicted motion temporally for foreground
objects between adjacent frames. This is achieved by assum-
ing that no sudden changes in motion will occur between two
consecutive frames.

Lft =
∑
k

∥∥∥X (τ )
ok − X

(τ+1 t)
ok

∥∥∥, (4)

where X (τ )
ok ∈ R2 denotes the overall motion of object ok ,

computed as follows: X (τ )
ok =

∑
(i,j)∈ok X

(τ )
i,j /M , where M is

the number of pixels representing ok .
Lastly,Lbt defined in Eq. (5) confines the temporal loss for

static background pixels.

Lbt =
∑

(i,j)∈X (τ )
⋂
T (X̃ (τ−1 t))

∥∥∥X (τ )
i,j − Ti,j(X̃

(τ−1 t))
∥∥∥, (5)

where X (τ ) and X̃ (τ ) are motion predictions with current time
being t and t+1t , respectively. A transformation T ∈ SE(3)
is necessary to align X̃ (τ−1t) with X (τ ). After applying T , the
static background pixels in T (X̃ (τ−1t)) and X (τ ) will partially
overlap.

IV. EXPERIMENTAL EVALUATION
A. DATASET
We use the public nuScenes dataset [16] to evaluate the
proposed LiCaNext model extensively. The nuScenes dataset
consists of 850 scenes, where each scene is a continuous
sequence of length 40s. To perform our experiments, we par-
tition the entire available scenes: 500 for training, 100 for
validation, and the rest for testing. The dataset offers various
sensors, including LIDAR, cameras, RADARs, GPS, and
IMU. From this broad set of sensors, we only employ the
LIDAR and the front camera sensors. The capture frequency
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of LIDAR is 20Hz, and 12Hz for the camera sensor. The
LIDAR has a complete horizontal field-of-view (FOV) and
a vertical FOV ranging from −30.67◦ to 10.67◦. Lastly, the
camera has an opening angle of 70◦.

B. EXPERIMENTS
Table 1 comprises all experiments needed to verify the per-
formance enhancement attained by LiCaNext in both percep-
tion and motion prediction. The first experiment records the
performance of the original MotionNet model, which acts as
the primary baseline. LiCaNet [1] proved that engaging RV
and camera images into the fusion process outperform the
baseline, which depends merely on BEV images as input.
Our proposed LiCaNext expands on LiCaNet by incorporat-
ing residual images pushing the performance even further.
To observe this performance advancement, we include two
of the most prominent LiCaNet experiments in Table 1. The
first LiCaNet experiment uses only a LIDAR sensor in the
multi-modal fusion process, i.e., the fusion of BEV and RV
images. The second LiCaNet experiment embraces LIDAR
and camera sensors, i.e., the fusion of a camera image on top
of BEV and RV images. The use of VGG16 in LiCaNet as
the lightweight pretrained network for extracting high-level
camera features achieved the best overall performance among
the other evaluated pretrained networks. Accordingly, for
LiCaNext experiments, we also adopt 6 layers of VGG16 for
the lightweight pretrained network.

Before we evaluate the performance of the entire LiCaNext
fusion model, we first examine the effect of fusing different
numbers of range residual images on a multi-modal fusion
network that depends solely on a LIDAR sensor. Therefore,
the first series of LiCaNext (LIDAR only) experiments will
omit the camera module and fuse only BEV, RV, and residual
images. The outcome of this evaluation will be compared
to LiCaNet (LIDAR only) experiment. Consequently, the
number of sequential range residuals that realize the best per-
formance is adopted to evaluate the entire LiCaNext model,
including the camera module. In all experiments, the RV and
range residual images are defined to have width and length
dimensions of 1024× 32, respectively.

C. EVALUATION METRICS
The metrics used in Table 1 to evaluate the success of the
experiments are categorized into two groups: displacement
error and classification accuracy. The displacement error
measures the correctness of motion prediction, while the
classification accuracy accesses the perception level. Each
of these two metric groups is further divided into sub-
groups. The displacement error is divided into three-speed
subgroups: static, slow, and fast, with mean and median
errors computed for each. The static subgroup is defined for
pixels with no motion, while the slow and fast subgroups
are defined for pixels having speeds of (0m/s, 5m/s] and
(5m/s, 20m/s], respectively. Thus, motion is predicted in a
sequence of 20 frames, translating into 1s into the future.

Only 5 predicted frames are selected for evaluation, with a
0.2s period between the sampled frames.

Pixels are categorized into five object classes: background,
vehicle, pedestrian, bike, and others. The ‘others’ class is
assigned to any detected object not classified in any of the
first four classes. In addition to the classification accuracy
of each object class, the mean classification accuracy (MCA)
and overall accuracy (OA) are also computed under the classi-
fication group. MCA in (6) denotes the average classification
accuracy of the five object classes, while OA in (7) is the
average classification accuracy over all pixels. Furthermore,
the inference time for each experiment is measured.

MCA =
1
M

M∑
i=1

(Total # of correct predictions)Ci
(Total # of ground truths)Ci

, (6)

OA =
1
K

K∑
k=1

(# of correct predictions)k
Nk

, (7)

where Ci denotes the category class i, while M is the total
number of category classes; N refers to the number of pixels
in image k , and K is the total number of images in a dataset.
The total number of predictions or ground truths for Ci are
measured using all images in a dataset K. Only non-empty
pixels are considered for evaluation.

D. TRAINING SETUP
Following [1], the learning rate is initialized at 1.6× 10−3

and terminated at 0.8× 10−3, with a decay factor of 0.5
every 10 epochs. The time span between consecutive LIDAR
sweeps used to construct the historical BEVs and the sequen-
tial residual range images is 0.2s. The current sweep denoted
by the keyframe is sampled at 2Hz for training and 1Hz for
testing. The batch size used to train LiCaNext is 4.

E. RESULTS
Table 1 reveals that LiCaNext achieves outstanding joint
perception and motion prediction results compared to its
predecessor LiCaNet. We begin our evaluation by compar-
ing LiCaNext (LIDAR only, r = 1) experiment to LiCaNet
(LIDAR only). In this comparison, we investigate the effect
of fusing one range residual image with BEV and RV images.
It is worth noting that when the residual module is removed
from LiCaNext, i.e., no range residual images are fused,
its architecture becomes the same as LiCaNet. LiCaNext
(LIDAR only, r = 1) experiment obtains a maximum gain
of 1.2% and 0.2% in MCA and OA, respectively. Moreover,
a drop in displacement error is recorded for all speed groups,
indicating better motion prediction. This evinces that the
fusion of a single residual image with BEV and RV images
significantly advances motion prediction and offers a sub-
stantial rise in perception.

Next, we investigate the effect of increasing the number
of fused residual images on performance. Table 1 unveils
that an increase in the number of fused residual images
establishes a monotonic rise in perception accuracy and a
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TABLE 1. Perception and motion prediction comparison between our proposed LiCaNext and LiCaNet models. Performance of the original MotionNet
model is also included. Pixels are assigned to static, slow, and fast speed groups if their predicted motion is 0m/s, (0m/s, 5m/s], and (5m/s, 20m/s],
respectively.

constant reduction in displacement error. The optimal per-
formance is registered for LiCaNext (LIDAR only, r =
4) experiment, where 4 residual images are exploited in the
multi-modal fusion process. A peak gain of 1.6% and 0.3%
is established in MCA and OA, respectively. Furthermore,
a 73.7mm and 43.9mm decrease in the mean and median
errors for the fast-speed group is recorded, and a drop of
5.2mm and 0.4mm for the slow-speed. The mean error for the
static group procured a reduction of 0.8mm with no median
error. On the other hand, the LiCaNext (LIDAR only, r =
1) achieves a mean and median drop of 22.2mm and 4.9mm
for the fast-speed group, 0.5mm and 0.4mm for slow-speed,
and 0.1mm and 0m for the static group. This confirms that
increasing the number of sequential residual images in the
fusion process lowers the displacement error significantly.

Moreover, during the training stage, the model learns
associations between the motion patterns embedded in the
residual images and their corresponding objects presented
in the other input representations. These learned associa-
tions positively influence perception. For instance, vehicles
typically have higher speeds and are characterized by more
pixels than pedestrians and bicyclists. So when strong-motion
cues sourced from multiple neighboring pixels are fed into
the model, this increases the model’s confidence in catego-
rizing those pixels as a vehicle. Thus, fusing motion cues
in the form of range residuals enhance perception. Lastly,
comparing the performance of LiCaNext (LIDAR only, r =
4) with the original MotionNet results in a significant gain in
motion prediction across all speed groups, with a rise of 3.7%
and 0.6% in MCA and OA, respectively. Even though the
median error in the slow group is not the lowest for LiCaNext
experiments; however, the obtained error is lower than what
LiCaNet achieved.

The reason behind incorporating a maximum of 4 range
residual images in LiCaNext is to match the number of fused
BEV images generated from previous frames. After deter-
mining that fusing 4 residuals with BEV and RV images
yields the best accuracy in joint perception and motion pre-
diction, the subsequent step is to evaluate the performance of
the entire LiCaNext model. Usually, the inclusion of camera
images in the fusion process boosts performance because of

the rich semantic information provided by the RGB images.
The performance gain as a result of including a camera sen-
sor is realized in LiCaNet [1], where LiCaNet (VGG16_6)
experiment outperformed LiCaNet (LIDAR only). Therefore,
integrating a camera image into the fusion of BEV, RV,
and residual images should further push the performance.
According to Table 1, LiCaNext (VGG16_6, r= 4) achieves a
perception enhancement of 0.3% inMCA, and the percentage
of OA is maintained, compared to LiCaNext (LIDAR only,
r = 4). A noticeable drop is fulfilled in most speed groups,
except the median error of the slow group, which increased
just by 0.1mm. This confirms that adding a camera image
onto the fusion of BEV, RV, and residual images improves
perception and motion prediction even further. Comparing
LiCaNext (VGG16_6, r = 4) to a model that fuses BEV,
RV, and camera images (i.e., LiCaNet (VGG16_6)), we can
see that 0.4% rise in MCA is registered, OA accuracy is
maintained. In addition, a greater error drop is recorded in all
speed groups for motion prediction. This reveals that incor-
porating residual images onto a multi-modal fusion network
involving a camera module positively affects performance.
Ultimately, themotion prediction advancement that LiCaNext
accomplished compared to MotionNet is even better than
what its LIDAR-only version procured. LiCaNext obtained
an outstanding enhancement of 4.0% for MCA and 0.6% for
OA compared to MotionNet.

Table 2 presents the effect of exploiting sequential range
residuals on small and distant objects. Generally, small
objects (e.g., pedestrians and bikes) have lower perception
accuracy than larger objects (e.g., vehicles) as they are repre-
sented by much fewer pixels. Similarly, the accuracy drops
naturally with increasing distance from the sensor. This is
because the sensor’s performance degrades progressively at
capturing fine information with a farther distance. However,
we unveil in Table 2 that LiCaNext, compared to LiCaNet,
improves accuracy even further for small and distant objects.
The perception accuracies presented are measured accord-
ing to three distance range groups: short (S), medium (M),
and far (F). The short-range is defined to include all pixel
detections within the (0m, 10m] range. While medium- and
far-ranges are defined for pixels in the (10m, 20m] and
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TABLE 2. Evaluating the perception accuracies based on three distance ranges: Short (S) - (0m, 10m], medium (M) - (10m, 20m] and far (F) - (20m, 30m].
The results of the last two experiments are limited to the camera 70◦ FOV.

(20m, 30m] ranges, respectively. Furthermore, the last two
experiments involve a front camera sensor. To evaluate the
effectiveness of the fused features, including the camera fea-
tures, we restrict the perception measurements of the last
two experiments to the camera 70◦ FOV. This is because the
camera features are only incorporated in that area. Most of
the improvements due to the camera features would be recog-
nized in that same region. However, the perception accuracy
of the other experiments is measured on the entire LIDAR
360◦ FOV.

To begin with, LiCaNext (LIDAR only, r = 4) compared
to LiCaNet (LIDAR only) experiment achieves a 0.8% rise in
accuracy for the vehicles category in the short-range group.
On the other hand, pedestrians and bikes obtain a higher accu-
racy gain of 2.7% and 5.6% for the same group, respectively.
This shows that the jump in detection rate for smaller objects
is higher than bigger ones, proving that LiCaNext attains
better accuracy for smaller objects. Next, we demonstrate
how the fusion of residual images caused better improve-
ments in perception for distant objects. The accuracy gain
for vehicles and pedestrians in the far-range is 1.4% and
2.9%, respectively. The bikes category is the only exception
where the accuracy dropped by 1.3%; however, the overall
accuracy of bikes is still superior to LiCaNet (LIDAR only)
by 3.1%. Hence, not only is the detection gain higher for most
object classes in the far-range in relation to short-range, but
also smaller objects (pedestrians) obtained a greater gain at
distant objects than larger ones. This observation confirms
that residual images assist in intensifying the detection rate
for both small and distant objects.

Furthermore, comparing the drop in accuracy between
the far- and short-range in both LiCaNext (LIDAR only,
r = 4) and LiCaNet (LIDAR only), we notice the drop in
accuracy is lower in most categories. For the background,
vehicles, pedestrians, and others, LiCaNext (LIDAR only,
r = 4) achieved a drop of 2%, 8.9%, 5.5%, and 18.3%;
whereas, LiCaNet (LIDAR only) achieved a drop of 2.3%,
9.5%, 5.7%, and 20.0%, respectively. This shows that the
fusion of residual images reduces the loss resulting from
the natural degradation of sensors’ performance with farther

distances. A final observation is that experiments that fuse
range residuals secured more significant gains compared to
MotionNet than what LiCaNet accomplished, especially for
small and distant objects.

After demonstrating, in Table 1, that exploiting resid-
ual images in a multi-fusion network involving a camera
module enhances performance even further, we now fur-
ther investigate the effect of that experiment on small and
distant objects. The following comparisons will only be made
between the last two experiments of Table 2, as their mea-
surements are restricted to the camera 70◦ FOV. The last two
experiments show that within the camera FOV, the percep-
tion accuracy of LiCaNext (VGG16_6, r = 4) outperforms
LiCaNet (VGG16_6). The accuracy improvement attained in
the short-range for vehicles is 0.2%, while 0.4% and 0.7% are
acquired for pedestrians and bikes. The accuracy improve-
ment for vehicles in the far-range is 0.4%; whereas, for
pedestrians and bikes, it is 0.6% and 0.8%, respectively. This
shows that the inclusion of residual images within the fusion
process of BEV, RV, and camera images results in improved
perception for all object categories, and even stronger accu-
racy is secured for small and distant objects. Moreover, the
accuracy drop between the far- and short-range groups is
lower in LiCaNext (VGG16_6, r = 4) compared to LiCaNet
(VGG16_6). This indicates that the fusion of residual images
onto BEV, RV, and camera images decreases even further the
natural effect of performance degradation within the camera
FOV at farther distances.

Expanding the LiCaNet (LIDAR only) network to include
residual images has incurred an additional inference time of
1.6ms for LiCaNext experiments (without the camera mod-
ule). The involvement of the camera module resulted in an
increase of 2.2ms compared to LiCaNext (LIDAR only, r =
4). Furthermore, the fusion of BEV, RV, residual, and cam-
era images resulted in 0.9ms increase compared to LiCaNet
(VGG16_6). The total inference time of the entire LiCaNext
model is 31.9ms, which is less than the real-time requirement
(50ms). Overall, the provided results confirm that incorpo-
rating residual images has a significant effect on improv-
ing performance with a minimal increase in inference time.
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FIGURE 3. Comparison of perception and motion prediction using qualitative examples between LiCaNext (LIDAR only, r = 4) and LiCaNet (LIDAR only)
in the full 360◦ range. The first row consists of only the ground truth. The second row displays the LiCaNet (LIDAR only) predictions, while the last row
exhibits our LiCaNext (LIDAR only, r = 4) predictions. The ground truth is also present in the last two rows for easier visual comparison. The color codes
used are attached at the top of the figure. g_ denotes ground truth, while p_ symbolizes prediction colors. g_bg and p_bg, for instance, represent the
ground truth and predictions of the background pixels in the image, respectively.

Thus, LiCaNext can be used to perform accurate joint per-
ception and motion prediction for autonomous driving.

Finally, we provide qualitative examples to illustrate the
enhancements procured by LiCaNext. Fig. 3 compares the
outcomes of LiCaNext (LIDAR only, r = 4) and LiCaNet
(LIDAR only) using five different scenes. We identified the
most noticeable gains with circles, but there are other mod-
est improvements that LiCaNext achieves, particularly with
motion; nevertheless, these are difficult to see. It is evident
from the examples provided that LiCaNext results in more
accurate perception and motion predictions. For instance, the
motion predictions in the first example are more accurate
in LiCaNext compared to LiCaNet, as the overlap between
the motion predictions and the ground truth is higher in
LiCaNext. The second example clearly shows how LiCaNext
outperformed LiCaNet in terms of perception. The top right
circle shows that LiCaNet mistakenly predicted several pixels
as pedestrians, but LiCaNext correctly detected those pixels
as background. Additionally, the middle right circle in the
second example shows that both models mistakenly detected
pedestrians even though there were none. The difference
here is that LiCaNext predicted zero motion for those falsely

detected pedestrians, whereas LiCaNet detected motion. Fur-
thermore, the top right circle in the last example shows
that LiCaNext predicted the vehicle’s motion more accu-
rately compared to LiCaNet. In that same example, LiCaNet
wrongly predicted several pixels as pedestrians, whereas
LiCaNext correctly predicted those as background.

To analyze the effect of fusing residual images in a
multi-modal fusion network that involves a camera mod-
ule, we provide three qualitative examples in Fig. 4 to
compare between LiCaNext (VGG16_6, r = 4) and LiCaNet
(VGG16_6). We only display the predictions within the
vehicle’s front view (70◦ FOV), as the camera features are
only incorporated in that region, and most improvements
will exist in that same region. Thus, restricting the view to
the 70◦ FOV allows us to easily visualize the enhancements
achieved due to adding residual images onto a multi-modal
fusion network involving camera features. It is apparent from
all three examples that the motion predictions attained by
LiCaNext are closer to the ground truth compared to LiCaNet.
The second example demonstrates how the perception of
LiCaNext is better than LiCaNet. In that example, LiCaNet
mistakenly detected a pixel as ‘others’; however, LiCaNext
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FIGURE 4. Qualitative comparison between the outcomes of LiCaNext
(VGG16_6, r = 4) and LiCaNet (VGG16_6) within the camera 70◦ FOV. Rows
indicate the ground truth, LiCaNet (VGG16_6), and LiCaNext (VGG16_6, r =
4) outcomes, respectively. The ground truth is also included in the last
two rows.

correctly detected that pixel as background. Moreover, in the
third example, we can see the overlap of LiCaNext motion
predictions and the ground truth is greater than the overlap
between the motion predictions obtained by LiCaNet and the
ground truth. From the quantitative and qualitative results
reported in this paper, we can confidently conclude that our
proposed LiCaNext pushes the accuracy boundaries even fur-
ther than LiCaNet.

V. CONCLUSION
In this paper, we put forward an accurate and real-timemodel,
named LiCaNext, that performs pixel-wise joint percep-
tion and motion prediction. LiCaNext incorporates sequen-
tial range residual images in its multi-modal fusion process
to significantly exceed the performance of its predecessor
LiCaNet. LiCaNext performs exceptionally well on small
and distant objects, achieving even better predictions than its
previous version. Conducted experiments were evaluated on
the challenging nuScenes dataset, confirming the excellent
joint perception and motion prediction results.
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