
A
TL

-S
O

FT
-P

R
O

C
-2

01
7-

03
3

02
Fe

br
ua

ry
20

17

Large Scale Software Building with CMake in ATLAS1

J Elmsheuser1, A Krasznahorkay2, E Obreshkov3, A Undrus12

on behalf of the ATLAS Collaboration3

1 Brookhaven National Laboratory, USA4
2 CERN, Switzerland5
3 University of Texas, Arlington, USA6

E-mail: Attila.Krasznahorkay@cern.ch7

Abstract. The offline software of the ATLAS experiment at the Large Hadron Collider (LHC)8

serves as the platform for detector data reconstruction, simulation and analysis. It is also used9

in the detector’s trigger system to select LHC collision events during data taking. The ATLAS10

offline software consists of several million lines of C++ and Python code organized in a modular11

design of more than 2000 specialized packages. Because of different workflows, many stable12

numbered releases are in parallel production use. To accommodate specific workflow requests,13

software patches with modified libraries are distributed on top of existing software releases on14

a daily basis. The different ATLAS software applications also require a flexible build system15

that strongly supports unit and integration tests. Within the last year this build system was16

migrated to CMake.17

A CMake configuration has been developed that allows one to easily set up and build the18

above mentioned software packages. This also makes it possible to develop and test new and19

modified packages on top of existing releases. The system also allows one to detect and execute20

partial rebuilds of the release based on single package changes. The build system makes use of21

CPack for building RPM packages out of the software releases, and CTest for running unit and22

integration tests.23

We report on the migration and integration of the ATLAS software to CMake and show24

working examples of this large scale project in production.25

1. Introduction26

The ATLAS experiment’s [1] offline software is responsible for reconstructing, simulating and27

analysing petabytes of data collected by the detector at the Large Hadron Collider. It is28

composed of multiple “projects” that are each built up out of many “packages”.29

As the software is built out of millions of lines of C++ and Python code, developers cannot30

build the entire thing when developing software in the collaboration. They are instead just31

building a select number of packages against numbered releases, or nightly builds of the full32

software release, overriding just the libraries/executables/etc. provided by the package from the33

ones found in the “base release”.34

The software is mainly distributed to the users through CVMFS [2], but it is also important35

to be able to install the software on an offline computing node with as little effort as possible.36

ATLAS, together with LHCb, used the CMT [3] build system for building its offline software37

until recently, but the experiment has been looking for a build system with much wider38

community support to replace CMT since a few years. Finally at the beginning of 2016 the39

build of the software release meant to reconstruct and simulate data in 2017 and beyond has40

been switched over to be built by CMake [4].41

2. Software organisation42

ATLAS’s software is broken up into O(2000) “packages”, which can provide:43

• Shared libraries to be used by other packages;44

• Module libraries used by the software framework to load software components;45

• Executables performing specialised tasks;46

• Scripts, configuration files, etc. to be installed alongside the build targets of the package.47

A package declares explicitly which other packages it requires for its own build, what software48

products it needs to build, and what already existing files it needs to install.49

A software “project” is just a collection of packages, built in an order consistent with the50

dependency declarations in the package configurations. The projects themselves depend on each51

other similarly to how packages do. The packages in a certain project are allowed to depend only52

upon packages that are in a project that their project depends on. To demonstrate the highest53

project complexity used, the project configuration of the software used for reconstructing events54

in ATLAS is shown in Figure 1.55

AtlasOffline

AtlasAnalysis AtlasSimulation

AtlasTrigger

AtlasReconstruction

AtlasEvent

AtlasConditions

AtlasCore

DetCommon

AtlasExternals

Gaudi

tdaq_common

dqm_common

LCG

AtlasProduction

Figure 1. Projects and their relationships in the ATLAS offline software. “LCG” represents
the externals provided by the LCG software release [5], the yellow boxes represent ATLAS
online software built with their own configuration, and Gaudi [6] is built using its own CMake
configuration.

3. The implementation56

While the concept of packages is taken from the CMT build system, we wanted to keep the same57

structure with CMake as well. We used CMake’s subdirectory concept to keep the configuration58

of the CMT packages separated with CMake. In this setup we have a master CMakeLists.txt59

file describing the project, which needs to:60

• Set up some basic properties of the project, like its name and version;61

• Find the base project(s) that it depends on;62

• Find all subdirectories in the source tree that have a CMakeLists.txt file in them, and63

include them as subdirectories of the sofware project;64

• Set up all variables necessary for using CTest and CPack with the project.65

All of the common code used by the project and package configuration code is collected into66

two special packages in the source tree:67

• AtlasCMake provides a large number of functions and macros all sharing the atlas prefix,68

which help in performing common tasks in the project and package configuration files;69

• AtlasLCG collects the code necessary for finding all non-ATLAS-specific externals for the70

project. It provides FindFoo.cmake CMake modules for finding these externals, and setting71

up dependencies on the RPM packages of these externals for the RPM package built from72

the ATLAS project.73

3.1. Package configuration74

The configuration of an average package may look something like the following.75

The name of the package:76

atlas_subdir(ExamplePackage)77

78

The packages that this package depends on:79

atlas_depends_on_subdirs(80

PUBLIC81

Control/AthenaKernel82

PRIVATE83

Control/CxxUtils)84

85

External packages needed for the build:86

find_package(ROOT COMPONENTS Core Hist)87

find_package(Boost COMPONENTS regex)88

89

Build a shared library:90

atlas_add_library(ExampleLibrary ExamplePackage /*.h src/*.cxx91

PUBLIC_HEADERS ExamplePackage92

INCLUDE_DIRS ${ROOT_INCLUDE_DIRS}93

PRIVATE_INCLUDE_DIRS ${Boost_INCLUDE_DIRS}94

LINK_LIBRARIES ${ROOT_LIBRARIES} AthenaKernel95

PRIVATE_LINK_LIBRARIES ${Boost_LIBRARIES} CxxUtils }96

97

Build an application:98

atlas_add_executable(ExampleApp util/ExampleApp.cxx99

LINK_LIBRARIES ExampleLibrary)100

101

Add tests for the package:102

atlas_add_test(ExampleLibrary_test103

SOURCES test/ExampleLibrary_test.cxx104

LINK_LIBRARIES ExampleLibrary)105

atlas_add_test(ExampleApp_test106

SCRIPT test/ExampleApp_test.sh)107

108

Install files from the package:109

atlas_install_python_modules(python /*.py)110

The atlas prefixed functions take care of setting up the build and installation of components111

according to some common rules used in the build. They also take care of declaring the shared112

libraries to be exported, so that child projects can make use of them.113

Every package declares two helper targets:114

• Package PkgName builds all library and executable targets in the package;115

• Package PkgName tests builds all of the test executables declared in the package.116

They are meant to help during development, when the user set up the build of many packages117

at the same time.118

3.2. Project configuration119

As discussed earlier, the project’s main configuration is done in its main CMakeLists.txt file,120

which is constructed in the following way:121

The minimum required CMake version:122

cmake_minimum_required(VERSION 3.2 FATAL_ERROR)123

124

Find this project ’s main dependency. To pick up its CMake configuration:125

find_package(AtlasEvent)126

127

Set up the flags for CTest:128

atlas_ctest_setup ()129

130

Set up the project , and all of the packages in it:131

atlas_project(AtlasReconstruction 21.0.5132

USE AtlasEvent 21.0.5133

FORTRAN)134

135

Set up the flags for CPack:136

atlas_cpack_setup ()137

By finding the base project, the ATLAS CMake helper code from the base project is included138

into the current project, making it capable of using the atlas prefixed functions.139

The atlas project function is responsible for doing the heavy lifting in the project’s140

configuration. It:141

• Sets up all general build flags for the project, including the output directories for all file142

types inside of the build directory;143

• Looks up all of the packages in the source directory tree, and includes them with CMake’s144

built-in add subdirectory call;145

• After having included all packages, it includes the shared libraries from its base project(s)146

as imported targets.147

3.2.1. Usage of exported targets The build system has to allow us to patch a release by building148

a package on top of the release that the release itself has also built. Jobs executed in this149

environment would pick up libraries/executables/installed files from the patched package.150

In order to do this every project exports all of its shared libraries during the project’s151

installation, adding the name of the project as a prefix to the exported library’s name. When152

calling find package on the project, all of these imported targets become visible to the153

configuration already. Package developers are strongly advised against using such imported154

targets directly, though, since a given package should not have to know what other packages it155

is compiled together with in the same project. They should only refer to shared libraries that156

they need for the build without any project name prefixes.157

To make the build work, the atlas project function calls find package on the base project158

after having processed all packages, in the following way:159

find_package(AtlasEvent 21.0.5 COMPONENTS INCLUDE QUIET)160

What the base project does in this case is that it loops over all of its imported targets, and161

checks if a target with the same name is already declared in the current project. If it is, the162

project assumes that its library is being re-built in the current project, and lets that target be163

used by every other component in the project. If a target with that name is not defined, then164

it makes a copy of that imported target, removing the project name prefix from its name.165

3.3. Runtime environment setup166

The ATLAS offline software uses a large number of software products that are not developed167

by ATLAS, and are not part of the base operating system that we use the offline software on.168

Some of these externals we build as part of the offline software, but most of them we pick up169

for the build from custom locations.170

Most of the used externals are picked up from software bundles provided by the LCG project.171

CMake finds those externals for the build using the AtlasLCG code described earlier.172

Unfortunately CMake does not provide a built-in way for setting up a custom environment for173

the built/installed project, as its base assumption is that the build results should work without174

any special setup on the build host. This is however not true in our case. We have to ensure175

on our own that libraries and executables that the offline software used during the build are176

available in the runtime environment of the software.177

This is done by the build generating simple shell scripts for setting up the necessary runtime178

environment. At the end of the project configuration we iterate over all external packages179

that were found during the configuration of the project, and generate a setup script that saves180

information on how to extend the environment for running our software.181

In order to simplify the environment setup when building multiple projects, these setup182

scripts know how to find the setup scripts of the current project’s base project. The user only183

needs to use the script from the highest project that he/she wants to use, and the script takes184

care of executing the setup from all of the base projects of that project as well.185

3.4. Making the projects relocatable186

As the projects must be installable in any location, we need to be careful with setting up both187

the CMake configuration files generated during the CMake installation, and the environment188

setup scripts generated by our private code. Neither of them can hold any absolute path names189

in order to make the projects relocatable.190

As we have full control over the generation of the environment setup scripts, there all that191

we do is to define a small number of environment variables that, when defined before using the192

setup script, direct the code to the correct directory to set up the externals from.193

Making the CMake project files generated during the installation step is a bit more difficult.194

Since the file generated by CMake cannot be made relocatable out of the box, we use a custom195

script that processes the CMake generated code, and makes it relocatable. We make use of the196

following formalism in the CMake configuration:197

install(SCRIPT ${CMAKE_BINARY_DIR }/ atlas_export_sanitizer.cmake)198

4. Performance199

One of the goals of the build system migration was to speed up the build of the ATLAS offline200

software, and streamline the installation procedure of the software after it was built. CMake201

helps with this, as it can parallelize the build of independent components very efficiently.202

The build machine monitoring system tells us that the build makes quite efficient use of the203

resources on the build machines. See Figure 2.204

Project + Test
Builds Test Running

Figure 2. The CPU utilisation of the build machine while building the full ATLAS offline
software.

In this project configuration, which we kept for a transition period between the build systems,205

the build times became just a little shorter. The single process execution steps necessary between206

the individual projects can be seen as clear downtimes during the build in Figure 2.207

In order to simplify the offline software builds of ATLAS, we are now merging most of the208

projects into a single one called Athena, which project’s code will be stored in a single Git209

repository. In such a setup, on a fast build machine, it is possible to build the full (single)210

project in O(3) hours, hitting the original performance goal of the build system migration.211

5. Conclusions212

In an effort to streamline its software build procedures, and use a system in common with many213

High Energy Physics Computing projects, ATLAS has switched to using CMake to describe214

the build procedures of its offline/simulation/trigger/analysis software. We are now in the final215

stages of validating the new, CMake built offline software of the experiment for the 2017 data216

taking.217

The new build system, together with migrating the experiment’s software to Git, makes the218

development procedures followed by the ATLAS software developers much more in common219

with practices used in the software development community on the whole.220

The new system has so far met the requirements of the experiment both in features provided,221

and performance. And so it is expected to be kept for LHC’s Run 3 and beyond.222

References223

[1] The ATLAS Collaboration 2008 JINST 3 S08003224

[2] Blomer J et al 2015 The evolution of global scale filesystems for scientific software distribution Computing225

in Science and Engineering 17(6) 61-71226

[3] Arnault C 2001 Experiencing CMT in software production of large and complex projects Proc. Int. Conf. on227

Computing in High Energy and Nuclear Physics CHEP 2001 (Bejing, China)228

[4] Martin K and Hoffman B 2007 An open source approach to developing software in a small organization IEEE229

Software 24 Number 1230

[5] http://cern.ch/lcgsoft231

[6] Clemencic M et al 2010 Recent developments in the LHCb software framework Gaudi J. Phys.: Conf. Ser.232

219 042006233

