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Pierre de la Harpe and Vaughan Jones

INTRODUCTION

From November ���� to February ����� Vaughan Jones gave an introductory Lecture
Course on C�	algebras in Lausanne� for the 
Troisi�eme Cycle Romand de Math�ematiques
�some lectures were prepared by P�H� and by Alain Valette�� The audience was very hete	
rogeneous� consisting of a mixture of beginners and of mature mathematicians� most of
them working quite outside the �eld of functional analysis� as well as a few physicists� One
of the 
leit	motives was to illustrate the theory with the �nite dimensional situation� One
of the goals was to get a reasonable understanding of the CAR algebra� as it is used for
the representation theory of loop groups of compact Lie groups�

During the academic year �������� Pierre de la Harpe has given a similar set of lec	

tures in Geneva� for the 
Dipl�ome d��Etudes Sup�erieures en math�ematiques de la r�egion
l�emanique� with the extra fantasy of writing up notes� More often than not� it has been
di�cult to obtain an acceptable compromise between the desire to keep some of the light	
ness of the spoken lectures on one hand� and the heavy need to �ll in details as be�ts a
written exposition on the other hand� The result is as follows� so far for the �rst chapters
only� It is possible that these notes will be improved and completed at some future date�

Any comment will be welcome� Thanks are due to Roland Bacher for his help in
proofreading the present notes� The �rst author is responsible for mistakes which could
be left in what follows�
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CHAPTER �� BOUNDED OPERATORS ON HILBERT SPACES

��a� Recall on Hilbert spaces

In these notes� H will denote a complex Hilbert space� The scalar product

h�j�i

of two vectors �� � � H is antilinear in � and linear in �� The norm of � � H is given by

k�k �
p
h�j�i

and we let
H��	 � f� � H j k�k � �g

denote the closed unit ball in H�
For any subset S of H� the closed linear subspace

S� � f � � H j h� j �i � 
 for all � � S g

is the orthogonal of S� Observe that
�
S�
�� � S� and that S � T � S� � T� for subsets

S� T of H� In case S is a linear subspace of H� then �S��� � S is the closure of S�

Though we assume that the reader has some knowledge about Hilbert spaces� e�g� as
in Chapters four and �ve of �Ru�� we shall recall �without proof	 the following �ve basic
facts�

���� Cauchy�Schwarz inequality� One has

j h�j�i j � k�k k�k

for all �� � � H�
���� Projections on convex subsets� Let C be a non empty closed convex subset of
H and let � � H� There exists a unique vector �C � C such that

k� � �Ck � min
��C

k� � �k �

If C is moreover a closed subspace �meaning linear subspace� of H� then the assignment
� �	 �C is linear and one has

k�k� � k�Ck� � k� � �Ck� �
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���� Riesz representation theorem� Let � � H 	 C be a continuous linear functional�
Then there exists a unique vector � � H such that

���	 � h�j�i

for all � � H� moreover k�k � sup fj���	j � � � H��	g �
This result is due independently to F� Riesz �C�R� Acad� Sc� Paris� ��� ���
�	 ��
��

����	 and M� Fr�echet �Ibid�� ���������	�

��� Bounded � continuous for linear mappings� Let H�H� be two Hilbert spaces and
let a � H 	 H� be a linear mapping� Then the three following conditions are equivalent�

�i� the quantity kak � supfka�k j � � H��	g is bounded�
�ii� a is continuous�
�iii� a is continous at one point of H�
If a ful�lls conditions �i	 to �iii	 above� then a is a bounded linear operator from H to

H� and kak is its norm� The set of all such bounded linear operators� furnished with the
norm a �	 kak � is a Banach space denoted by

B �H�H�	 �

Let H�� be a third Hilbert space� let a � B �H�H�	 and let b � B �H��H��	 � It follows
straightforwardly from the de�nitions that ba � B �H�H��	 and that

kbak � kbk kak �

One writes B�H	 instead of B �H�H	 � The norm a �	 kak makes B�H	 a Banach algebra

which has a unit� namely the identity operator of H written idH or simply �� �A normed

algebra is a complex algebra A given together with a norm a �	 kak such that kabk �
kak kbk for all a� b � A� A Banach algebra is a normed algebra which is complete�	

��� Open mapping Theorem� Let H�H� be two Hilbert spaces and let a � H 	 H� be
a bounded linear operator which is onto� Then a is open� so that in particular there exists
a number � � 
 such that

f� � H� j k�k � �g � a �f� � H j k�k � �g	 �

��	� Remarks� The three �rst facts recalled above belong really to Hilbert space theory�
On the other hand� ��� and ��� hold in much more general settings � see e�g� Theorems
���� and ���� in �Ru��

On several occasions� we will use other standard results of functional analysis� such as

the analytic form of the Hahn�Banach theorem� on extensions of linear forms
�see e�g� ���� and ���	�

the geometric form of the Hahn�Banach theorem� on separating convex sets �����	�
the Banach�Steinhaus theorem � on uniform boundedness �����	�
the Krein�Milman theorem� on extreme points of convex sets �����	�
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��
� Notations� Among standard examples of Hilbert spaces� there is the space C n with
its canonical scalar product

h���� ���� �n	 j ���� ���� �n	i �
nX

j��

�j�j �

the space of square�summable sequences indexed by N

	� �

�
� � ��n	n��

���� �n � C and
�X
n��

j�nj� �

�

and the space of square�summable measurable functions on a measure space �X�
	

L��X�
	 �

�
� � X 	 C

��� Z
X

j��x	j� d
�x	 �

�

where � is �abusively �	 identi�ed to its equivalence class modulo the relation of equality

�almost everywhere� in case the choice of 
 is clear �for example the Lebesgue measure
on a measurable subset of Rn	� one writes simply L��X	�

���� Separability� Most Hilbert spaces arising �naturally� in analysis are separable �i�e�
contain countable dense subsets� or equivalently have countable orthonormal bases	� But
there is for example a �respectable� non separable Hilbert space in the theory of almost
periodic functions� of which we recall the following�

Let C�R	 denote the algebra of all continuous functions from R to C �for the pointwise
product	� Let f � C�R	� For � � 
� a number t � R is called an ��almost period if
supx�R jf�x � t	 � f�x	j � �� Say that f � C�R	 is almost periodic if� for any � � 
� there
exists 	 � 	�f� �	 such that any real interval of length 	 contains an ��almost period of f�
One shows that almost periodic functions are bounded� that they constitute a subalgebra
AP �R	 of C�R	� and that the limit

hf jgi � lim
T��

�

T

Z T

�

f�x	g�x	dx

exists for all f� g � AP �R	� The space obtained by completion of AP �R	 with respect to
this scalar product is a Hilbert space in which

�
t �	 ei�t

�
��R

is an uncountable orthonormal basis� More on this in �Fav and in Section VI�� of �Kat�
Another motivation for introducing non separable Hilbert spaces comes from the study

of the Calkin algebra and is alluded to in Remark ����
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��b� Adjoints and norms of operators�

Let H�H� be two Hilbert spaces and let a � H 	 H� be a bounded linear operator�

���� Proposition� There exists a unique bounded linear operator a� � H� 	H such that

ha��j�i � h�ja�i

for all � � H and � � H��
Proof� For each � � H�� one has a continuous linear form

�H 	 C

� �	 h �ja�i

and thus by Riesz theorem a unique vector � � H such that

h�j�i � h�ja�i

for all � � H� If a� is de�ned to be the assignment � �	 �� it is easy to check that a� is
linear and bounded� �

���� De�nition� The operator a� � B�H��H	 is the adjoint of a�
One has obviously �a�	� � a as well as �a � 
b	� � a� � 
b� for all a� b � B�H�H�	

and � 
 � C �

����� Proposition� One has

kak � sup f j h�ja�i j � � � H��	 � � � H���	 g � ka�k

for all a � B�H�H�	�
Proof� By the Cauchy�Schwarz inequality and by the de�nition of kak � one has

j h�ja�i j � k�k ka�k � k�k kak k�k

for all � � H and � � H�� so that

kak � sup f j h�ja�i j � � � H��	 � � � H���	 g �

For the opposite inequality� we may assume a �� 
 and we choose � � 
 such that � � kak ���
Choose then � � H��	 such that ka�k � kak � � and set � � a�� ka�k � H���	� Then
j h�ja�i j � ka�k � kak � �� Hence

sup f j h�ja�i j � � � H��	 � � � H���	 g � kak �

As j h�ja�i j � j h�ja��i j for all � � H and � � H�� the last equality follows� �
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����� Corollary� One has
ka�ak � kak�

for all a � B�H�H�	�
Proof� One has

ka�ak � ka�k kak � kak�

and
kak� � sup

��H���

ha�ja�i � sup
��H���

h�ja�a�i � ka�ak

so that ka�ak � kak� � �
����� Remark� Let A denote an involutive algebra� namely a complex algebra A given

together with an involution

�
A	A

a �	a�
such that

�a � b	� � a� � b�

�a	� � a�

�ab	� � b�a�

�a�	� � a

for all a� b � A and � 
 � C �
Let a �	 kak be a norm on A such that kabk � kak kbk for all a � A� Then the equality

ka�ak � kak�

for all a � A implies the equality ka�k � kak for all a � A� Indeed� assuming the �rst of
these� one has

ka�k� � kaa�k� � kaa�aa�k � kak ka�ak ka�k � kak� ka�k

so that ka�k� � kak� for all a � A� Similarly kak� � ka�k� �
An involutive algebra A with a norm satisfying ka�k � kak for all a � A is called

a normed involutive algebra� and a Banach involutive algebra if it is moreover complete�
In Chapter �� we will de�ne abstract C��algebras� they are Banach involutive algebras
satisfying ka�ak � kak� � Group algebras such as 	��Z	 and L��R	 provide examples of
Banach involutive algebras which are not C��algebras �see no ���	�

A �representation of an involutive algebra A on a Hilbert space H is a linear map
� � A	 B�H	 such that ��ab	 � ��a	��b	 and ��a�	 � ��a	� for all a� b � A�

����� Norm of �nite dimensional operators� Consider an operator a � B�H�H�	
and assume that the space H is �nite dimensional� Let 
�� ���� 
n denote the eigenvalues of
a�a � B�H	� Then

kak �
q

max
��j�n


j �
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The proof is left as an exercise for the reader� �For an arbitrary operator a� see nos ���
and ���� below�	

����� Multiplication operators� Set H � L��R	� choose f � L��R	 and de�ne
Mf � B�H	 by

�Mf �	 �x	 � f�x	��x	

for all � � H and for almost all x � R� Then it is easy to check that

kMfk � kfk�

where kfk� denotes the essential supremum of f�

This can be generalized to H � L��X�
	 and f � L��X�
	 for any measure space
�X�
	� These multiplication operators are basic examples of the theory� the reader is en�
couraged to study Chapter � of �Hal�

��c� Classes of bounded operators�

In this section� we consider a Hilbert space H and bounded operators in B�H	�

���	� Self�adjoint and positive operators� The operator a � B�H	 is called self�

adjoint if a� � a� an operator a is self�adjoint if and only if h� j a�i � R for all � � H� as
it follows easily from the so�called polarization identity

h� j a�i �
�

�
h� � �ja�� � �	i � �

�
h� � �ja�� � �	i

� i

�
h� � i�ja�� � i�	i �

i

�
h� � i�ja�� � i�	i

which holds for any operator a and any pair ��� �	 of vectors in H�
For example a multiplication operator Mf on L��X�
	 is self�adjoint if and only if the

function f � L��X�
	 is real�valued�

The operator a � B�H	 is called positive if h� j a�i � 
 for all � � H� Such an operator
is necessarily self�adjoint� as we have just seen� �Aside � on a real Hilbert space� there exist
operators a such that a� �� a and h�ja�i � 
 for all vectors ��	

For example� any operator of the form a � b�b for some b � B�H	 is positive� and
conversely �if a is positive� then a � b�b with b �

p
a� see Problem �� in �Hal and x ��E

below	� A multiplication operator Mf on L��X�
	 is positive if and only if the function
f � L��X�
	 satis�es f�x	 � R	 for 
�almost all x � X�
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���
� Proposition� If a � B�H	 is self�adjoint then

kak � sup f j h�ja�i j � � � H��	 g

�compare with Proposition ������

Proof� Set K � sup f j h�ja�i j � � � H��	 g � For all �� � � H��	� one has

Re h�ja�i � �

�
fh�ja�i� h�ja�ig

�
�

�
fh� � �ja�� � �	i� h� � �ja�� � �	ig

and then also

jRe h�ja�i j

�
K

�

n
k� � �k� � k� � �k�

o
�

K

�

n
k�k� � k�k�

o
� K

It follows that
j h�ja�i j � max

��R
jRe 	ei��ja�
 j � K

namely that kak � K by Proposition ����� The opposite inequality K � kak is an
immediate consequence of the Cauchy�Schwarz inequality� �

����� Projections� An operator p � B�H	 is called a projection if p� � p and p� � p�
Using ���� one shows easily that there is a canonical bijection between projections in B�H	
and closed subspaces of H given by p� p�H	�

Projections in B�H	 are consequently ordered� p� � p� if p��H	 is a subspace of p��H	�
equivalently if p�p� � p�� Similarly� two projections p�� p� in B�H	 are said to be orthogonal
if the spaces p��H	 and p��H	 are orthogonal� equivalently if p�p� � 
�

A multiplication operator Mf on L��X�
	 is a projection if and only if the function
f � L��X�
	 is the caracteristic function of a measurable subset of X�

����� Isometries� An operator w � B�H�H�	 is an isometry if it satisfes w�w � �� or
equivalently kw��	k � k�k for all � � H�

The basic observation to record is that� when H is in�nite dimensional� an isometry
w � B�H	 needs not be onto� The most famous example is the unilateral shift s � B�	�	
de�ned by

s ���� ��� ��� ���	 � �
� ��� ��� � ���	

for all � � ��n	n�� � 	�� Using Fourier analysis� one may also view 	� as the space of
continuous functions on the closed unit disc of C which are holomorphic in the open unit
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disc� and s as the operator of multiplication by z� More on this operator in Chapters � and
�� of �Hal�

���� Unitaries� An operator u � B�H	 is unitary if it is isometric and onto� or equiv�
alently �as a consequence of the open mapping Theorem	 if u�u � uu� � �� The unitary

group of H is

U�H	 � f u � B�H	 j uu� � u�u � � g �
In case dimCH � n �
� it is a compact Lie group usually denoted by U�n	�

A multiplication operator Mf on L��X�
	 is unitary if and only if jf�x	j � � for 
�
almost all x � X�

Let �X�B� 
	 be a probability space� For a measure preserving transformation T � X 	
X� one de�nes a unitary operator uT on L��X	 by �uT �	�x	 � ��T	�x	 for all � � L��X	
and x � X� The study of this operator uT is important in ergodic theory� see e�g� xx ��
and �� in �Wal and Chapter � in �Zim�

����� Partial isometries� For an operator w � B�H�H�	� the �ve following conditions
are equivalent

�i	 �w�w	� � w�w�

�ii	 �ww�	
�
� ww��

�iii	 ww�w � w�
�iv	 w�ww� � w��

�v	 there are two closed subspaces E � H � E� � H� such that w is the composition
of the projection of H onto E�
of an isometry of E onto E��
and of the inclusion of E� into H��

If these conditions hold� then

w�w is the projection of H onto E�
ww� is the projection of H� onto E��

and w is called a partial isometry with initial space E and initial projection w�w� with

�nal space F and �nal projection w�w� For example� the matrix

�

 

� 


�
de�nes a partial

isometry on the Hilbert space C � with initial space the �rst axis and with �nal space the
second axis�

For more on partial isometries� see Chapter �� of �Hal�

����� Normal operators and eigenvalues� An operator a on H is normal if a�a � aa��
or equivalently if ka��k � ka�k for all � � H�

For example� self�adjoint operators and unitary operators are obviously normal� but the
unilateral shift is not�

If a normal operator a has two eigenvectors corresponding to di�erent eigenvalues� these
vectors are orthogonal �the argument is the same as in �nite dimensions	� There are
however two important facts to note� The �rst one is that a normal operator may have no
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eigenvector at all� as it is the case for the self�adjoint multiplication operator M de�ned
on L���
� �	 by �

Mf
�
�t	 � tf�t	

for all f � L���
� �	 and t � �
� �� The second one is that an operator on a separable
Hilbert space which is not normal may have uncountably many eigenvalues� For example�
if s is the unilateral shift introduced in no ����� one has

s���� z� z�� z�� ���	 � z��� z� z�� z�� ���	

for all z � C such that jzj � � �for more on the spectrum of s�� see Solution �� in �Hal	�
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CHAPTER �� ALGEBRAS OF OPERATORS � DEFINITIONS AND

FINITE DIMENSIONAL EXAMPLES

In many parts of mathematics� an �algebra� is understood to have a unit� This is not
so in functional analysis� where examples of algebras include spaces of continous functions
vanishing at in	nity such as Co
R�� group algebras such as L�
R� or C�
R�� and various
other C��algebras without units�
However� in this chapter� we concentrate on C��algebras with units and we postpone to

�� a general discussion on �adding units� 
but see Remark ����i��

��a� C��algebras of operators

Let H be a complex Hilbert space�

���� De�nition� A C��algebra of operators on H is an involutive subalgebra of B
H�
which is closed for the norm topology� 
A subalgebra A of B
H� is involutive if a� � A
whenever a � A� see ����� For the de	nition of the norm on B
H�� see ��� for the equality
ka�ak � kak� � see ������
Given a C��algebra A on H� a sub�C��algebra B of A is an involutive subalgebra of A

which is closed for the norm topology�

���� Trivial examples� The algebra B
H� itself is a C��algebra of operators on H� So is
the algebra of complex multiples of the identity� which is isomorphic to C �

���� Algebras of continuous functions� Let X be a compact space� let � be a positive
measure on X such that �
U� � � for any nonempty open subset U of X� and let L�
X���
denote the resulting Hilbert space�
Let C
X� be the algebra of continuous functions on X� Recall from ���� that each

f � C
X� de	nes a multiplication operator Mf � B
�
L�
X���

�
� Then

A �
�
Mf � B

�
L�
X���

� j f � C
X� �
is a C��algebra of operators on H� The condition on � implies that the mapping f ��Mf

is injective� so that C
X� and A are isomorphic algebras�
Observe that the measure � does not play an important role for A� This is a 	rst

motivation for the space�free de	nition of Section �A�

���� Separability� A C��algebra is separable if it contains a countable dense subset�
It is easy to see that the algebra B
H� is separable if and only if H 
or equivalently

B
H�� is 	nite dimensional�
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Indeed� suppose H is in	nite dimensional� If H is separable� one may identify H with
��� Then� for any subset S of N� the characteristic function of S provides a multiplication
operator aS � B
���� moreover kaS � aTk � � if S� T are distinct subsets of N� As there
are uncountably many subsets of N� it follows that B
H� is not separable� 
A variant of
this argument� using the multiplication operators in L�
��� ��� de	ned by the characteristic
functions of subintervals� appears in Solution �� of �Hal��� If H is not separable� H is the
direct sum of �� and of another space� and the argument above can be adapted easily�
We leave it as an exercise for the reader to check that the algebra A � C
X� of Example

��� is separable if and only if the compact space X is separable�
In the same sense that �most� compact spaces �of interest� are separable� �most� C��

algebras �of interest� are separable� But there are important counterexamples to this
statement� and B
H� is of course the 	rst of them� Note however that� viewed as a von
Neumann algebra with the strong topology� B
H� is separable if and only if H is separable

see ���� below��

��	� Matrix algebras� Given an integer n � � and the Hilbert space C n � we identify
the algebra B
C n� with the algebra Mn
C � of n�by�n complex matrices� Thus Mn
C � is a
C��algebra of operators on C n � the involution is given by


a��j�k � ak�j

for all a �Mn
C � and j� k � f�� ���� ng� and the norm is given by

a ��� kak � sup
��Cn

k�k��

ka�k � q
max
��j�n

�j

where ��� ���� �n denote the eigenvalues of a�a� as in ���� Recall the basic fact

ka�ak � kak�

for all a �Mn
C ��

��
� Lemma� On the involutive algebraMn
C �� the only norm � such that �
a�a� � �
a��

for all a �Mn
C � is the operator norm a �� kak �
Proof� Consider some matrix a � Mn
C n� and the matrix d � a�a� It is enough to show
that �
d� � kdk �
Let ��� ���� �n denote the eigenvalues of d� arranged in such a way that �� � ��� � �n � ��

For r � R�� the limit limk��
�
d
r

�k
is � if r � �� and does not exist if r � ��� It follows

that

�� � inf

�
r � R�

���� limk��

�
d

r

�k

� �

	

� inf

�
r � R�

���� liml��

�
d

r

��l

� �

	
�
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Now saying that a sequence of vectors in a 	nite dimensional complex vector space 
here
the space of matrices of order n� converges to � means by de	nition that the sequence of
the norms of these vectors converges to � 
for some norm� because all norms are equivalent
in 	nite dimensions�� In particular one has

�� � inf

�
r � R�

���� liml��
�


�
d

r

��l
�
� �

	
�

By hypothesis on �� one has �
d�� � �
d�d� � �
d��� and thus also �
�
d�

l

� �
d��

l

for

each l � �� Hence

�


�
d

r

��l
�
�

�
�
d�

r

��l

and

�� � �
d��

As

�� � ka�ak � kdk
by ���� one has �
d� � kdk and the proof is complete�
Observe that one has in particular �
ab� � �
a��
b� for all a� b �Mn
C n�� �

���� Proposition� Let A be a subalgebra of Mn
C � such that a� � A as soon as a � A�
The only norm � � A � R� such that �
a�a� � �
a�� for all a � Mn
C � is the operator
norm a �� kak �
Proof� The proof of Lemma ��� applies verbatim� �

���� Remark� 
i� The previous proposition shows that

involutive subalgebras of Mn
C �

are the same as

sub�C��algebras of Mn
C � with a norm satisfying ka�ak � kak��

For algebras containing �� we will see in Proposition ���� below that they are also the same
as von Neumann algebras on C n �

ii� Note that one has �
ab� � �
a��
b� for all a and b in A as a consequence of the

proof of the proposition� not as an a priori hypothesis�

iii� Proposition ��� holds in in	nite dimensions� More precisely� let A be a complex

involutive algebra which is also a Banach space for a norm � such that �
a�a� � �
a�� for
all a � A� Then one has necessarily �
ab� � �
a��
b� for all a� b � A by an argument due
to Araki and Elliott �ArE�� It is then classical that �
a�� is the spectral radius of a�a� so
that � is the unique norm for which A is a C��algebra� see Corollary ��� below�



� �� FINITE DIMENSIONAL OPERATOR ALGEBRAS

��� Matrix units� In the matrix algebra Mn
C �� for each j and k in f�� ���� ng� let ej�k
denote the matrix which has a � at the intersection of the jth row and of the kth column�
and � �s elsewhere� Then one has


ej�k�
� � ek�j

ej�kel�m � 	k�lej�m
nX
i��

ei�i � �

for all j� k� l�m � f�� ���� ng�
Given any C��algebra� a system 
wj�k���j�k�n of n

� elements in A is called a system of

matrix units of order n if one has


wj�k�
� � wk�j

wj�kwl�m � 	k�lwj�m

for all j� k� l�m � f�� ���� ng and if the wj�k �s are not all zero 
note that wj�k 	� � for some
j� k implies wj�k 	� � for all j� k � f�� ���� ng�� Observe that the wj�j �s of such a system are
pairwise orthogonal projections� and that the wj�k �s 
j 	� k� are partial isometries�
To any such system corresponds an injective homomorphism 
 given by 

ej�k� � wj�k

from the C��algebra Mn
C � onto the subalgebra of A linearly generated by the wj�k �s�
when A has a unit� 

�� � � if and only if

nX
i��

wi�i � ��

Consider a C��algebra A which is 
�isomorphic toMn
C � for some n � � and a sequence
p�� ���� pm of pairwise orthogonal and minimal projections in A 
with of coursem � n�� We
leave it to the reader to check that one may 	nd a system of matrix units 
wj�k���j�k�n in
A such that wj�j � pj for all j � f�� ����mg�

��bis� Exercice� Let A be a C��algebra with unit and let M be a sub�C��algebra of A
containing the unit� Consider the relative commutant

M � �A � fa � A j am �ma for all m �Mg�
If M �Mn
C � is a full matrix�algebra� the map


 �

�
M � 
M � �A� �� A

m� a ��� ma

is an isomorphism�

� Indication� Let 
ei�j���i�j�n be matrix units inM� For each a � A and i� j � f�� ���� ng�
set

ai�j �
nX

k��

ek�i a ej�k�
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Check that ai�jep�q � ep�qai�j for all p� q � f�� ���� ng� so that ai�j �M � � A� and thatX
��i�j�n

ei�j ai�j �
X

��i�j�n
ei�i a ej�j � a

so that 
 is onto� If
P

��i�j�n ei�j � ai�j � Ker
� then

nX
k��

ek�p

�
� X

��i�j�n
ei�j ai�j

�
A eq�k �

nX
k��

ek�kap�q � ap�q � �

for all p� q � f�� ���� ng� so that 
 is injective� �

��b� The von Neumann Density Theorem

����� Commutants� Let H be a Hilbert space and let S be a subset of B
H�� The
commutant of S is the subalgebra

S� �
n
a � B
H�

��� as � sa for all s � S
o

of B
H�� One writes S��

for 
S���� and S
���

for 
S
��

�
�

� etc� Observe that


��
S
��  S and

S � T �� S�  T �

for all S� T � B
H��
Let S be a subset of B
H� which is self�adjoint 
i�e� s � S �� s� � S�� Then S� is

an involutive sub�algebra of B
H�� It is of course true that S� is closed with respect to the
norm� so that S� is a C��algebra of operators on H� but the norm topology is often not the
most interesting on S� 
it is rarely separable��

����� Lemma� Let S be a self�adjoint subset of B
H�� let E be a closed subspace of H
and let p be the orthogonal projection of H onto E� Then

E is S�invariant �� p � S��

Proof� Let us show �� � Suppose E is S�invariant� Then sp � psp for all s � S� As S is
self�adjoint on has also ps � 
s�p�� � 
ps�p�� � psp for all s � S� This shows that p � S��
�

����� De�nition� A von Neumann algebra on H is an involutive subalgebra A of B
H�
such that A

��

� A� A factor on H is a von Neumann algebra A such that the center A� �A
is reduced to C idH �
For each self�adjoint subset S of B
H�� the commutant S� is a von Neumann algebra

on H� Indeed� by 
��� one has on one hand S� � S
���

� and on the other hand S � S
��

��
S�  S

���

� This shows one may de	ne von Neumann algebras on H as commutants of

self�adjoints subsets in B
H��
For example� let G be a group and let � � G� U
H� be a unitary representation� Then

�
G�� is a von Neumann algebra on H� Lemma ���� shows that projections in �
G�� are in
natural bijection with closed G�invariant subspaces of H� 
Usually� in practice� G is locally
compact and � is continuous� but this is not necessary for the observation above��
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����� Proposition �von Neumann�s Density Theorem in �nite dimensions�� Let

A be a involutive subalgebra of Mn
C � which contains the unit matrix� Then A
��

� A� i�e�
A is a von Neumann algebra on C n �

Proof� Let K denote the orthogonal sum of n copies of C n � Let

� �Mn
C � �� B
K�

denote the representation of Mn
C � on K given by the diagonal action� Consider also an
orthonormal basis 
v�� ���� vn� of C n � the vector

v �

�
� v�
���
vn

�
A � K

and the orthogonal projection p of K onto the subspace �
A�v� Lemma ���� shows that
p � �
A���
We may write any element in B
K� as a n�by�n matrix with entries in Mn
C �� in other

words we may identify B
K� with Mn 
Mn
C �� � Then� we claim that

�
A�� �Mn
A
���


Caution� the 	rst prime denotes a commutant in B
K� and the second a commutant in
B
C n��� Indeed� for

x � 
xj�k���j�k�n �Mn 
Mn
C �� � B
K��
the equations

�
a�x �

�
B�

a � � � � �
� a � � � �
� � � � � � � � � � � �
� � � � � a

�
CA
�
B�
x��� x��� � � � x��n
x��� x��� � � � x��n
� � � � � � � � � � � �
xn�� xn�� � � � xn�n

�
CA

�

�
B�
x��� x��� � � � x��n
x��� x��� � � � x��n
� � � � � � � � � � � �
xn�� xn�� � � � xn�n

�
CA
�
B�

a � � � � �
� a � � � �
� � � � � � � � � � � �
� � � � � a

�
CA � x�
a�

for all a � A are equivalent to

xj�k � A� for all j� k � f�� ���� ng�

Similarly one has

�
A
��

� �Mn
A
���


it is easy to see� but not useful just here� that the equality holds��
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Consider now a self�adjoint element b � A
��

� By the previous step one has

�
b� � �
A
��

� �Mn
A
��� � �
A�

��

so that �
b� commutes with p � �
A��� the same holds for �
b��� Hence the subspace �
A�v
is invariant by �
b�� by Lemma ���� again� In particular

�
b�
�
�
��v


�

�
� bv�
���

bvn

�
A � �
A�v

so that b acts on each of v� � � � vn as an operator of A� This means precisely that b � A�
We have shown that any element b � A

��

is also in A� �

����� Comment� This proposition will be an essential tool in Section ��C for the study
of involutive algebras of operators in 	nite dimensions� The end of the present Section
��B will not be used in these notes before Section ��C� Theorem ���� however is one of
the most fundamental result in the theory of operator algebras� It 	rst appeared in ����
�vNe�� There is a bicommutant theorem in pure algebra of which the ultimate form seems
to be due to Jacobson �Jac�� But results like Proposition ���� are much older� probably
going back to E� Noether �Di�� page ����

���	� Topologies on B
H�� We know already the norm topology on B
H�� There are
many other useful topologies on B
H�� of which we de	ne two here� For a good introduction
to some of the others� see �StZ� 
Chapter I� Comments to Chapter �� and Chapter ���

Strong topology� For any a � B
H� and � � H� set

V�
a� �
n
b � B
H�

��� k
b � a��k � �
o
�

Finite intersections of the V�
a� �s constitute a basis of neighbourhoods of a in B
H� for a
locally convex Hausdor� topology on B
H� which is called the strong topology�

Weak topology� For any a � B
H� and �� � � H� set

V���
a� �
n
b � B
H�

��� jh�j
b� a��ij � �
o
�

Finite intersections of the V���
a� �s constitute a basis of neighbourhoods of a in B
H� for
a locally convex Hausdor� topology on B
H� which is called the weak topology�

It is easy to check that the one�sided multiplication La � b �� ab and Ra � b �� ba
are continuous on B
H� for the strong topology� and also for the weak topology� however

a� b� �� ab is neither strongly nor weakly continuous� The adjoint a �� a� is continuous
for the weak topology� but not for the strong topology�
The most important topology for physics is the weak topology� because the quantities

h�j
b � a��i are related to the �transition probabilities��
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���
� Proposition� �i� The weak topology on B
H� is weaker than the strong topology�
which is itself weaker than the norm topology�

�ii� A linear form 
 � B
H� � C is strongly continuous if and only if it is weakly
continuous�

�iii� A convex subset of B
H� is strongly closed if and only if it is weakly closed�
�iv� On the unitary group U
H� of H� the weak topology coincides with the strong

topology� they make U
H� a topological group�
�v� The comparisons of �i� are strict as soon as H is in�nite dimensional�

Proof� 
i� We leave this to the reader�

ii� We follow �StZ�� Assume that 
 is strongly continuous� There exist ��� ���� �n �

H � f�g such that
j

x�j �

nX
k��

kx�kk

for all x � B
H�� On B
H�n� de	ne a semi�norm p by

p
x�� ���� xn� �
nX

k��

kxk�kk �

on the diagonal D of B
H�n� de	ne a linear form �
 by

�

x� x� ���� x� � 

x��

As j�

x� ���� x�j � p
x� ���� x� for all 
x� ���� x� � D� the Hahn�Banach theorem shows that
there exists a linear form � on B
H�n which extends �
 and which is such that

j�
x�� ���� xn�j � p
x�� ���� xn�

for all x�� ���� xn � B
H��
For each k � f�� ��� ng� let 
k be the linear form on B
H� de	ned by


k � �
�� ���� �� x� �� ���� �� 
x in kth place��

Then j
k
x�j � kx�kk for all x � B
H�� As any vector in H is of the form x�k for some
x � B
H�� it follows that the linear form

� H �� C

x�k ��� 
k
x�

is well de	ned and bounded� By Riesz� theorem� there exists �k � H such that 
k
x� �
h�kjx�ki � and this holds for all x � B
H�� As 

x� � �
x� ���� x� � Pn

k�� 
k
x�� one has
	nally



x� �
nX

k��

h�kjx�ki
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so that 
 is clearly weakly continuous�
The converse implication follows from 
i��

iii� This is a straight consequence of 
ii� and of the geometric form of the Hahn�Banach

Theorem�

iv� Let us check that the mapping U
H�weak � U
H�strong is continuous� For this�

given a strong neighbourhood of � in U
H� of the form

Ostrong �
�
u � U
H� j k
u� ���k � � �

for some � � H and an element u� � Ostrong� it is enough to 	nd a weak neighbourhhod
Oweak of u� in U
H� such that Oweak � Ostrong� If  � �� k
u� � ���k � one may set

Oweak �

���
�� v � U
H�

�����
j hu��j
v � u���i j � �

�
�

j h�j
u�� � v��u��i j � �
�
�

���
��


recall that the map a �� a� is weakly continuous�� For v � Oweak� one has then

k
v � u���k� � h�j
�� u��v��i � h�j
�� v�u���i � �

and consequently
k
v � ���k � k
v � u���k � k
u� � ���k � ��

namely v � Ostrong�

v� For simplicity of notations� we assume H to be separable� Let 
en�n�� be an or�

thonormal basis of H�
For each n � �� let pn denote the projection of H onto the span of fe�� ���� eng� Then

pn converges to idH strongly� but not in the norm topology� Hence the strong topology is
strictly weaker than the norm topology�
Let s be the unilateral shift de	ned by sen � en�� for all n � � 
see ������ Then�

for any p� q � �� the scalar product hepjskeqi is zero for k large enough� It follows that
limk��h�jsk�i � � for all �� � � H� namely that the powers sk converge weakly to � when
k ��� As

��sk��� � k�k for all k � � and � � H� the powers sk do not converge strongly
to �� Hence the weak topology is strictly weaker than the strong topology� �

����� Von Neumann�s Density Theorem� Let A be an involutive subalgebra of B
H�
which contains idH� Then A is strongly dense in A

��

�

Proof� Let b � A
��

be a self�adjoint element� let ��� ���� �n be vectors in H� let  � �� and let

V �
n
x � B
H�

��� k
x � b��jk �  for j � f�� ���� ng
o

be a basic strong neighbourhood of b in B
H��We have to show that there exists an element
in A � V� and we follow the proof of Proposition �����
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Let K denote the orthogonal sum of n copies of H and let � � B
H�� B
K� denote the
diagonal representation� Consider the vector

� �

�
B�
��
���
�n

�
CA � K

and the orthogonal projection p of K onto the closure in K of the supspace �
A��� Then
p � �
A�� by Lemma �����
Using precisely the same argument as in the proof of Proposition ����� one sees that

�
b�
�� �

�
B�
b��
���
b�n

�
CA � �
A���

In particular� there exists a � A such that k
b � a��jk �  for all j � f�� ���� ng� namely
there exists a � A � V� �
����� Corollary� Let A be an involutive subalgebra of B
H� which contains idH� The
following are equivalent	

�i� A is a von Neumann algebra� i�e� A
��

� A�
�ii� A is strongly closed in B
H��
�iii� A is weakly closed in B
H��

Proof� One has 
i� �� 
iii� because commutants are weakly closed� 
iii� �� 
ii� because
the strong topology is stronger than the weak one� and 
ii� �� 
i� by von Neumann�s
Density Theorem� �

���� Separability� Let H be a separable Hilbert space and let 
�n�n�N be a countable
dense sequence in the unit ball of H� On the unit ball of B
H�� the strong topology can be
de	ned by the distance

ds
a� b� �
X
n�N

�

�n
k
a � b�
�n�k

and the weak topology by

dw
a� b� �
X

m�n�N

�

�m�n

��h�m j 
a � b�
�n�i
���

Each of these makes the unit ball of B
H� a second countable complete metric space� If A
is a von Neumann algebra on H� the same facts hold for the unit ball of A� It follows that a
von Neumann algebra on a separable Hilbert space can always be generated by a countable
set of elements� More on this 
together with the canonical references to Bourbaki� in �DvN�
x I����
Recall that sequences are appropriate to study the topology of metrizable spaces 
see

Bourbaki� Topologie g�en�erale� chap� �� x �� no ��� To study general topological spaces� one
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needs more e cient tools such as �lters or nets 
the choice depends on cultural background�
see e�g� Problem L in Chapter � of �Kel��� This is demonstrated by the following fact� we
copy the argument from �DvN� x I��� exercice ���

If H is an in�nite dimensional separable Hilbert space� then B
H� with the strong topo�

logy is not metrizable� Indeed� consider an orthonormal basis 
en�n�� of H and� for each
n � �� the orthogonal projection Pn of H onto C en � Set Tm�n � Pm �mPn and consider
the set T � fTm�ngm���n�� � We claim 	rstly that � is in the strong closure of T � and
secondly that no sequence from T converges strongly to � in B
H�� The two claims imply
clearly that the strong topology on B
H� is not metrizable�
For the 	rst claim� consider  � � and � �

P
n�� �nen � H� For m large enough� one

has j�mj � � then� for n large enough� one has j�nj � �m� thus

kTm�n
��k � j�mj�mj�nj � ��

It follows that � is in the strong closure of T � For the second claim� assume ab absurdo that
some sequence

�
Tmj �nj

�
j�� of elements of T converges strongly to �� The Banach�Steinhaus

theorem implies that supj��
��Tmj �nj

�� � �� It follows 	rstly that mj � m for some integer

m� and one may assume that mj � m is independent on j� But then
�
Pm �mPnj

�
j��

does not converge strongly to zero� in contradiction with the hypothesis� This proves the
second claim�

����� Exercise� �i� Let H be a Hilbert space and let p� q be two projections in B
H��
Then the sequence of nth term 
pqp�n converges strongly� and its limit is the projection
onto the space p
H� � q
H��

�ii� Let A be a von Neumann algebra on H and let p� q � A be two projections� Then
the projection p � q of H onto the closed linear span of p
H� and q
H� belongs to A�
Hints� Prove 	rst 
i� when H is 	nite dimensional� For the general case� use Proposition
� below� The claim in 
ii� follows from that in 
i� because p�q � � �

�

��p��
��q�


�

If this hint is not enough� see e�g� Problem �� in �Hal��

��c� Operator algebras with units on finite dimensional spaces

����� Preview� Let A be an involutive subalgebra of B
H� for some 	nite dimensional
Hilbert space H� For the time being� assume that A contains the identity operator of H�
written idH or simply �� We are going to show that one has an isomorphism of the form

A �
rM

j��

Mnj 
C �

or in other words that A is a multi�matrix algebra� We are also going to make precise the
embedding of

Lr
j��Mnj 
C � in B
H��
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One could prove this using classical results of algebra� a 	nite dimensional involutive
algebra is semi�simple� hence the direct sum of its simple two�sided ideals� and each of these
is isomorphic to some full matrix algebra because the underlying 	eld is C � 
Some further
points on this are sketched in Appendix II�a of �GHJ��� But we are using below another
method� dealing 	rstly with abelian C��algebras of operators� secondly with factors� and
	nally with the general case�
Recall from ���� that one has

f involutive subalgebras of Mn
C � with � g
� f von Neumann algebras on C ng


see also ����i��

����� Lemma� Let A denote an involutive subalgebra of Mn
C �� let a � A be a self�
adjoint element and let ��� ���� �s denote the distinct non zero eigenvalues of a� Then there
exist orthogonal projections q�� ���� qs � A such that

a �
sX

k��

�kqk�

Proof� By the spectral theorem for self�adjoint matrices� one may write a �
Ps

k�� �kqk
with the qk �s being orthogonal projections in Mn
C �� For each k � f�� ���� sg� there exists
a polynomial fk such that fk
�l� � 	k�l 
Kronecker delta�� and fk
�� � �� for example the
Lagrange polynomial

fk
T � �
T

�k

Q
��l�s�l��k 
T � �l�Q
��l�s�l��k 
�k � �l�

�

One has consequently qk � fk
a� � A for each k � f�� ���� sg� �
����� Proposition� Let A be an abelian involutive subalgebra of Mn
C �� Let P �
fp�� ���� prg be the set of minimal projections in A� Then

A �
rM

j��

C pj �

Proof� Let a � A be self�adjoint� By Lemma ����� one may write a �
Ps

k�� �kqk with the
�k �s in R

� and the qk �s in A�
Let k � f�� ���� sg� For each j � f�� ���� rg� the projections pj and qk commute� so that

pjqk is also a projection� one has pjqk � f�� pjg and qk �
Pr

j�� pjqk by de	nition of P�
Hence a �

Pr
j�� �jpj � each �j being the non zero eigenvalue �k indexed by that k for

which pjqk 	� ��
As each a � A is the sum of two self�adjoint elements� this ends the proof� �

����� Remarks� 
i� The abelian C��algebra A of Proposition ���� contains the unit
� � idH if and only if

Pr
j�� pj � �� Observe however that� in all cases�

Pr
j�� pj is a

multiplicative unit in A which is consequently an algebra with unit�


ii� The algebra A of ���� is isomorphic to the �algebra of continuous functions� of ���
for a space X with r points and for the counting measure on X�



�� FINITE DIMENSIONAL OPERATOR ALGEBRAS ��

���	� Lemma� Let A be a sub�C��algebra of Mn
C � containing �� Then any element a
in A is a linear combination of four unitaries in A�

Proof� As

a � kak a� a�

� kak � i kak ia� ia�

� kak �

it is enough to check that any self�adjoint element b of norm � in A is a linear combination
of two unitaries� By Lemma ���� there exist real numbers ��� ���� �s in ���� �� 
zero allowed
this time !� and orthogonal projections q�� ���� qs in A such that

Ps
k�� qk � � and b �Ps

k�� �kqk� Then

u �
sX

k��

�
�k � i

q
�� ��k

�
qk

is unitary and b � �
�

u� u��� which ends the proof�

Functional calculus 
Theorem ��� shows that this proof carries over to any C��algebra
with unit� with u � b� i

p
�� b�� �

���
� Proposition� Let A be a factor on H � C n and let p� q � A be two projections
distinct from �� Then there exists a � A such that paq 	� ��
Proof� For each unitary u in A� let pu � upu� � A be the projection of H onto u
p
H���
Let e denote the projection of H onto the subspace E of H spanned by the u
p
H�� �s� one
has e � A by �����i� The space E is obviously invariant by any unitary in A� hence also
by any element in A 
see Lemma ������ Hence e � A� 
Lemma ������ As A is a factor�
e � C idH � As e 	� � 
because p 	� ��� one has e � ��
Suppose now ab absurdo that paq � � for all a � A� Then upu�q � � for all unitary

element u � A� hence eq � q � �� which is preposterous� �

The previous argument carries over to in	nite dimensions� so that Proposition ���� holds
for an arbitrary factor 
see also �DvN�� chap� I� x �� Corollary � of Proposition ��� But the
following argument works in 	nite dimensions only�

Another proof� Let du denote the Haar measure of mass � on the compact group

U
A� � fu � A j u�u � uu� � � g

and set z �
R
U�A�

uqu�du� By invariance of the Haar measure� one has vz � zv for all

v � U
A�� hence z � Z
A� by the previous lemma� Moreover� if tr � Mn
C � � C denotes
the usual trace� one has

tr
z� �

Z
U�A�

tr
uqu��du �
Z
U�A�

tr
q�du � tr
q� 	� �

and consequently z 	� �� It follows that z is a nonzero multiple of the identity�
Suppose ab absurdo that paq � � for all a � A� Then puqu� � � for all u � U
A�� so

that pz � � by integration on U
A�� But this is absurd because p 	� � and z is a nonzero
multiple of �� �
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����� Lemma� Let A be an involutive subalgebra of Mn
C � and let p � A be a projection
distinct from �� Then p is minimal �among projections of A distinct from �� for the ordering
recalled in 
�
�� if and only if pAp � C �
Proof� Assume 	rstly that p is minimal� Let a � pAp be a self�adjoint element distinct
from �� By Lemma ����� one may write a �

Ps
k�� �kqk with the �k �s in Rn� and the qk �s

in pAp� For each k � f�� ���� sg� one has therefore pqk � qk� so that qk � p by minimality
of p� In other words� one may write a � �p� It follows that dimC 
pAp� � ��
Assume secondly that p is not minimal� and let p�� p� � A be two nonzero orthogonal

projections in A such that p � p� � p�� It is then obvious that dimC 
pAp� � �� �
����� Remark� The previous lemma does not hold for in	nite dimensional C��algebras�
Indeed� it is easy to check that � is a minimal projection in C
��� ���� or more generally in
C
X� for any connected compact space X� But an appropriate phrasing holds for any von
Neumann algebra 
see e�g� Proposition ��� in �StZ���

���� Proposition� Let A be a factor on H � C n � Then there exists a divisor m of n
such that A �Mm
C ��

Moreover� for each minimal projection p of A� the space p
H� is a 
n�m��dimensional
subspace of H�
Proof� Let e � A be a projection which is maximal for the property �eAe is a full matrix
algebra� 
this makes sense because of Lemma ������ For the 	rst claim� we have to show
that e � �� We assume ab absurdo that e 	� � and we shall reach a contradiction�
Lef f � A� f 	� � be a projection which is minimal for the property �fe � ��� Then f

is minimal in A� so that fAf � C by Lemma ����� By Proposition ����� one may choose
a � A such that eaf 	� �� One has also 
eaf��eaf � fa�eaf 	� �� Hence there exists
� � C n � so that fa�eaf � �f � indeed

� kf�k� � � h� j f�i � heaf� j eaf�i � �

for all � � C n � and � � �� Set w � �	���eaf� As w�w � �
�fa

�eaf � f� the matrix w is a
partial isometry with initial projection f� As eww� � ww�� the 	nal projection of w is a
sub�projection of e� moreover� as f is minimal in A� it follows that ww� is also a minimal
projection in A� and a fortiori in eAe�
Let m � � be the integer such that eAe �Mm
C � and let 
wj�k���j�k�m be a system of

matrix units in eAe� One may assume that wm�m � ww� 
see the end of ����� We may now
extend 
wj�k���j�k�m to a system of matrix units of order m� � according to the scheme

w��� � � � w��m w��mw
���

���
���

���
wm�� � � � wm�m wm�mw

w�wm�� � � � w�wm�m f

so that 
e � f�A
e � f� is a full matrix algebra of order m � �� 
More precisely we set
wk�m�� � wk�mw and wm���k � w�wm�k for all k � f�� ����mg� as well as wm���m�� � f��
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This is in contradiction with the de	nition of e� It follows that e � �� namely that A is
a full matrix algebra�
Consider now the restriction to A of the usual trace tr � Mn
C � � C � As w���kw��k �

wk�k and w��kw
�
��k � w���� the projections w��� and wk�k have the same trace� for all

k � f�� ����mg� this value of the trace is precisely n�m� and the proof is complete� �

����� De�nition� The integer n�m in ���� is called the multiplicity of the representation
of Mm
C � into Mn
C ��
For example ����

���
M�
C � �� M�
C �

x ���
�
�x � �
� x �
� � x

�
A

is a representation of multiplicity �� Proposition ���� shows that any involutive subalgebra
of M�
C � which contains � and which is isomorphic to M�
C � is conjugated to the image
of the above inclusion�

����� Theorem� Let H � C n be a �nite dimensional space and let A be an involutive
subalgebra of B
H� �Mn
C � containing �� Let p�� ���� pr be the minimal projections in the
center Z
A� of A� Then there are strictly positive integers n�� ���� nr such that pjApj �
Mnj 
C � for all j � f�� ���� rg� and

A �
rM

j��

Mnj 
C ��

Moreover� if �j denotes the multiplicity of the representation of pjApj in B 
pjH� � thenPr
i�� �jnj � ��

Proof� One has

A �
rM

j��

pjApj

by de	nition of the pj �s and Z
A� �
Lr

j�� C pj by Proposition ����� The theorem follows
from the previous proposition� �

����� Remark� Some studies have been devoted to �real C��algebras�� In 	nite di�
mensions� they are direct sums of matrix algebras over the reals� the complex or the
quaternions�

��d� Examples of operator algebras on finite dimensional spaces

����� Example� Let V be a Hilbert space of dimension n � �� Let 
vj �j�Z�nZ be an

orthonormal basis indexed by the cyclic group of order n� Let � be a primitive nth root of
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�� De�ne two unitary operators a� b on V by

a
vj � � vj��

b
vj � � �jvj

for all j � Z�nZ� so that ba � �ab� Then the von Neumann algebra generated by a and b
is B
V � �Mn
C ��

Proof� Let A be the von Neumann algebra generated by a and b� As �j 	� �k for j� k �
Z�nZ� j 	� k� the only operators which commute with b are the diagonal operators� Among
diagonal operators� the only ones which commute with a are clearly the scalar multiples
of the identity� Hence A� � C idV � so that A � A

��

� B
V �� �
����� Remarks� 
i� It is easy to check that the abstract complex algebra A presented by
two generators �� � and three relations

�n � � � �n � � � �� � ���

is of dimension � n�� It follows from Example ���� that A �Mn
C ��


ii� Let � be a primitive mth root of � for some divisor m of n� De	ne a� b �Mn
C � by
the same formulas as above� One may show that the von Neumann algebra on V generated
by a and b is isomorphic to Mm
C � � ����Mm
C �� with n�m factors�


iii� Let H be an in	nite dimensional Hilbert space and let 
vj�j�Z be an orthonormal
basis indexed by the in	nite cyclic group� Choose an irrational number � ���� �� and set
� � ei���� De	ne two unitary operators a� b on H by

a
vj � � vj��

b
vj � � �jvj

for all j �Z� Observe that
ba � �ab�

The same argument as in the previous example shows that the von Neumann algebra
generated by a and b is B
H� itself� In other words� the so�called irrational rotation algebra

A�� namely the C��algebra of operators on H generated by a and b� acts irreducibly on H

because its commutant A�� is reduced to C ��

���	� Example� Let V be a Hilbert space of dimension n � �� Let v�� ���� vn be an

orthonormal basis of V� The tensor product V � V is naturally a Hilbert space which has

an orthonormal basis 
vj � vk���j�k�n � Consider the three projections

e� onto the subspace C 
v� � ���� vn� � V of V � V

e� onto the subspace ���j�n C 
vj � vj� of V � V

e	 onto the subspace V � C 
v� � ���� vn� of V � V�



�� FINITE DIMENSIONAL OPERATOR ALGEBRAS �


Then one has

e�e�e� �
�

n
e� e�e�e� �

�

n
e�

e�e	e� �
�

n
e� e	e�e	 �

�

n
e	

e�e	 � e	e��

Moreover the von Neumann algebra on V � V generated by e�� e� is isomorphic to�
C �M�
C � if n � �
M�
C � if n � ��

Proof� For all j� k � f�� ���� ng� one computes successively

e�
vj � vk� �
�

n

X
��l�n

vl � vk

e�
vj � vk� � 	j�k vj � vk

e�e�e�
vj � vk� �
�

n�

X
l

vl � vk �
�

n
e�
vj � vk�

e�e�e�
vj � vk� �
�

n
	j�kvj � vk �

�

n
e�
vj � vk�

e�e	
vj � vk� �
�

n�

X
l�m

vl � vm � e	e�
vj � vk��

The formulae for the products of the ej �s follow�
�A digression on the braid group on n strings 
n � � could be in order here��
Let A� be the unital subalgebra of B
V � V � generated by e� and e�� As any word in

e�� e� can be written as a scalar multiple of one of the words


�� � � empty word � e� � e� � e�e� � e�e� �

one has dimC 
A�� � �� As

e�e�
v� � v�� �
�

n
v� � v� 	� � � e�e�
v� � v���

the algebra A� is not commutative� Hence A� contains a two�sided ideal isomorphic to
M�
C �� If n � �� we leave it to the reader to check that the 	ve words in 

� are linearly
independent in B
V � V �� 
Hint� evaluate a linear combination of these on the vectors
v� � v� and v� � v��� It follows that

n � � �� A� � C �M�
C ��
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If n � �� one checks that �
e� � e� � e�e� � e�e�� � idV
V � so that dimCA � � and thus
A �M�
C �� �

���
� Example� Let the notations be as in ����� and assume that n � �� Then the von

Neumann algebra on V � V generated by e�� e� and e	 is isomorphic to

C �M	
C � �M�
C ��

Proof� Let A be the unital subalgebra of B
V � V � generated by e�� e� and e	� As any
word in these can be written as a scalar multiple of one of the words


���

e�e� e�e�e	
e�

e�e	 e�e	e�

e�e� e�e�e	 e�e�e	e�
� e�

e�e	

e	 e	e� e	e�e�

one has dimC 
A� � ��
Let j� k � f�� ���� ng be such that jj � kj � �� The line spanned by

vj � vk � vj�� � vk � vj � vk�� � vj�� � vk��

is in the kernel of e�� e� and e	� In particular� this line is invariant by A� and it follows
that A contains a two�sided ideal isomorphic to C �
Any unital homomorphism � � A � C � B
C � has to map e�� e�� e	 onto � 
because

e�� � e� �� �
e�� � f�� �g and e�e�e� � �
ne� �� �
e�� � �� and so on�� Hence there is a

unique unital homomorphism from A to C � so that A contains a unique two�sided ideal of
dimension ��

Let W be the subspace of V � V spanned by

wd �
X
j

vj � vj and ws �
X
j�k

vj � vk�

One has
e�
wd� �

�
nws e�
ws� � ws

e�
wd� �
�
nwd e�
ws� � wd

e	
wd� �
�
nws e	
ws� � ws

so that W is invariant by A� As W is clearly irreducible by A� it follows that A contains
a two�sided ideal isomorphic to M�
C ��
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Consider the orthogonal W� of W in V � V� On W�� the projection e�e	 acts as ��
because the image of V � V by e�e	 is the subspace Cws of W� We may choose a unit
vector

�� � W� � Im
e��


for example an appropriate scalar multiple of v��v��v��v� would do�� Set �� � e�

p
n���

and �	 � e	

p
n���� One has

h��j��i � n he�e�
���je�e�
���i � n h��je�e�e�
���i � �

and similarly h��j��i � �� Let X be the subspace of W� spanned by the three unit vectors
��� ��� �	� One has

h��j��i �
p
n he�
���je�e�
���i �

p
n h��je�e�e�
���i � �p

n

h��j�	i �
p
n he�
���je	e�
���i �

p
n h��je�e	e�
���i � �p

n

h��j�	i � n he�
���je	
���i � n h��je�e	
���i � ��

As n � �� it follows that dimC 
X� � �� Now X is clearly invariant by A� and one has
consequently a morphism of 
�algebras


 � A �� B
X�

such that 

�� � ��
One has e�
��� � �� by de	nition of e�� one computes

e�
��� � e�e�

p
ne���� �

�p
n
��

and similarly e�
�	� �
�p
n
��� Hence 

e�� is the orthogonal projection of X onto C �� �

Similarly 

e�� �respectively 

e	�� is the orthogonal projection of X onto C �� �resp� C �	 ��
It is then straightforward to check that the resulting representation of A inX is irreducible�
so that the morphism 
 is onto� It follows that A contains a two�sided ideal isomorphic to
M	
C ��

Now dimC 
C �M	
C � �M�
C �� � �� and the conclusion follows� �

����� Exercice� The notation being as in the previous examples� set

f� � e�e�e	e�

f� � e�e	

and let J be the sub�C��algebra of A generated by f� and f��
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i� Check that f�� �
�
nf�� f

�
� � f� and that

f�f�f� �
�

n�
f� f�f�f� �

�

n�
f��


ii� Show that
J � C �M�
C ��


Hint� mimick the argument used in ���� for A���


iii� Check that
e�f� � f�f�� e�f� � f�� e	f� � f�f�
e�f� � f�� e�f� � nf�f�� e	f� � f�

so that J is a two�sided ideal in A�

����� Exercice� Let " be a 	nite group� The group algebra C �"� is the space of functions
"� C for the convolution product de	ned by


a � b�
�� �
X

a
�
�
�

b
�
�
��



summation over pairs 
�
�

� �
��

� � "�" satisfying ����� � ��� It has a natural multiplicative
basis 
	�	�
 � where 	 � C �"� denotes the characteristic function of f�g�

i� Let ��
"� denote the vector space of C �"� given together with the scalar product

de	ned by

hajbi �
X
	�


a
��b
���

By convolution� one may view C �"� as a subalgebra of B ���
"�� � Check that it is indeed
an involutive subalgebra and that� for each a � C �"�� the adjoint of the left�multiplication
operator b �� a � b is the left�multiplication operator b �� a� � b where

a�
�� � a 
�	��

for all � � "�

ii� Let #" denote the set of equivalence classes of irreducible unitary representations of

"� The elementary theory of representations of 	nite groups shows that one has

C �"� �
M
���


Md���
C �

where d
�� denotes the degree of �� Write down explicitly the list of these numbers d
��
for

an abelian group of order n 
n � ���
the dihedral group Dn of order �n 
n � ���
the symmetric group Sn of n letters 
n � ��
the alternated group An of n letters 
n � ��

We will come back on C��group�algebras in Number ���

���� Exercice� Structure of the generic Temperley�Lieb algebras�



P� de la Harpe and V� Jones� July �����

CHAPTER �� COMPACT AND HILBERT�SCHMIDT OPERATORS

Let H and H� denote Hilbert spaces�

��a� Compact operators

���� De�nition� A bounded operator a � H � H� is �nite rank if the image a�H	 is 
nite
dimensional�

The linear space of such operators is denoted by

F�H�H�	�
We write F�H	 instead of F�H�H	�

���� Lemma� For any bounded operator a � H � H�� one has
Im�a�	 � Ker�a	�

Ker�a�	 � Im�a	��

Proof� It is straightforward to check that Im�a�	 � Ker�a	� � and also that �Im�a�		� �
Ker�a	� namely that Im�a�	 � Ker�a	� � The 
rst equality follows� The second is obtained
by exchanging a and a�� �

���� Proposition� The space F�H	 is a self�adjoint two�sided ideal in the C��algebra
B�H	�

Proof� The subspace F�H	 is obviously a two�sided ideal� It is self�adjoint by the previous
lemma� �

���� Recall of vocabulary� Let X be a topological space� A subset Y of X is relatively
compact if its closure Y is compact� Assume moreover that X is a metric space with
distance d� A subset Y of X is precompact if� for every real number � � � there exists a

nite subset S of Y such that Y � �x�SB�x� �	� where B�x� �	 denotes the open ball of
center x and of radius ��

Inside a complete metric space� a subset is relatively compact if and only if it is pre�
compact� See e�g� ������ in �Di���

��	� De�nition� A bounded operator a � H � H� is compact if the image by a of the
closed unit ball H��	 in H is relatively compact in H��

The linear space of all compact operators from H to H� is denoted by

K�H�H�	�
We write K�H	 instead of K�H�H	�

Typeset by AMS�TEX

�
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��
� Remark� �This is in some sense for experts only� and can be ignored in a �rst
reading�� Let a � H � H� be a bounded operator� Then

a�H��		 is relatively compact in H� �� a�H��		 is compact�

Proof� �See also nos ��� to ��� in �Dou��	 We introduce the weak topology on H� of which
a basis of neighbourhoods of  consists of the 
nite intersections of the sets of the form

V� � f � � H j jh� j �ij � � g

where � � H� � 	� � It follows from Tychono��s theorem that the unit ball H��	 is compact
with respect to this weak topology� One checks that the linear map a � H � H�� which is by
hypothesis continuous for the norm topologies� is also continuous for the weak topologies
�more on this in Problem �� of �Hal�	� Hence a�H��		 is weakly compact in H� �because
it is the continuous image of a compact set �	�

Assume now that a�H��		 is relatively compact in H�� we claim that a�H��		 is closed in
H� �these notions being with respect to the norm topology	� For each � in the norm closure
of a�H��		� there exists a �generalized	 sequence ��j	j�� in H��	 such that �a ��j		j��
converges towards � �for the norm topology� and a fortiori also for the weak topology	�
Upon replacing ��j	j�� by a subsequence� one may assume that ��j	j�� converges weakly

towards some � � H��	� By weak continuity of a� one has then � � a��	 � a�H��		� This
proves the claim� and the implication� of the remark�

The implication� is obvious� �

���� Lemma� �i� The space of compact operatorsK�H�H�	 is closed in the space B�H�H�	
of all operators�

�ii� The space of �nite rank operators F�H�H�	 is dense in the space K�H�H�	�
Proof� �i	 Let �aj	j�� be a sequence in K�H�H�	 which converges toward some a �
B�H�H�	�

Choose a number � � � There exists an integer n 
  such that ka� ank � � and there
exists a 
nite subset S in H��	 such that

an�H��		 �
�
��S

B�an��	� �	

because an is compact� Hence� for each � � H��	� there exists � � S such that

ka��	� a��	k � ka��	� an��	k � kan��	 � an��	k � kan��	 � a��	k � ���

In other words one has
a�H��		 �

�
��S

B�a��	� ��	�

It follows that a�H��		 is precompact� namely that a � K�H�H�	�
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�ii	 Let a � K�H�H�	� For all � �  there is a 
nite subset f��� ���� �ng in H��	 such
that the closed balls of radius � and of centers the a��j 	 �s cover a�H��		� Let E be the

nite dimensional subspace of H� generated by the a��j	 �s and let p denote the orthogonal
projection of H� onto E� Then pa � F�H�H�	� For all � � H��	� there exists j � f�� ���� ng
such that ka��	 � a��j 	k � �� This shows that ka� pak � �� and the proof is complete� �

���� Remark� The proof of Claim �ii	 in the previous lemma relies essentially on the
orthogonal projection p� and does not carry over to general Banach spaces� Indeed� P�
En�o showed in ���� that there are Banach spaces for which the norm closure of 
nite
rank operators is strictly contained in the space of compact operators �see �Enf� or �LiT�
Section ��e�	�

��� Proposition� The space K�H	 is a closed self�adjoint two�sided ideal in the C��
algebra B�H	�

In particular K�H	 is a C��algebra of operators on H�
Proof� It is straightforward to check that K�H	 is a two�sided ideal in B�H	� which is closed
by Claim �i	 of the previous lemma� Claim �ii	 of the same Lemma implies that K�H	 is
self�adjoint� because F�H	 is self�adjoint� �

����� Examples� Let H be a separable in
nite dimensional Hilbert space given together
with an orthonormal basis ��j	j�N and let �	j	j�N be a sequence of complex numbers which

converges to zero� Then the diagonal operator a de
ned by

a�j � 	j�j

for all j � N is compact� because it is a norm limit of operators of 
nite rank� We will
show in Proposition ���� that any compact operator which is also self�adjoint is of this
form �with real 	j �s	�

For each function f � L���� �� �� ��	� the operator af with kernel f is de
ned by

�af ��		 �x	 �

Z
�

�

f�x� y	��y	dy

for all � � L���� ��	 and x � �� ��� It is a compact operator on L���� ��	� See Problem ���
in �Hal��

����� Lemma� �i� The unit ball of the Hilbert space H is precompact if and only if H is
�nite dimensional�

�ii� Let a � K�H�H�	 and let E be a closed linear subspace of H� which is contained in
the image of a� Then E is �nite dimensional�

Proof� �i	 Let us check thatH��	 is not precompact ifH is in
nite dimensional� Let ��j	j�N
be an orthonormal subset of H� Then the open subsets�

� � H��	 j k� � �jk � �p
�

�

are non empty� pairwise disjoint and of constant diameters� The claim follows�
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�ii	 Let p denote the orthogonal projection of H� onto E� Then pa � H � E is a bounded
operator which is onto� It follows from the open mapping theorem ��� that there exists a
non empty ball in E which is contained in pa�H��		� Hence dimC �E	 �� by �i	� �

����� Examples� Let H be in
nite dimensional� The identity operator on H is not
compact� �This is a straightforward consequence of part �ii	 in the previous lemma�	
Consequently� any invertible operator on H is not compact�

The next target is Proposition ����� which constitutes an epsilon of spectral theory�

����� Observation� Let �� � � H��	 be two unit vectors such that jh� j �ij � �� Then
there exists 
 � R such that � � ei���

����� Lemma� Let a be a compact self�adjoint operator on H� Then one at least of the
numbers kak ��kak is an eigenvalue of a�

Proof� We may assume without loss of generality that kak � �� hence that
��a��� � ��

�Indeed� it is obvious that
��a��� � kak� � �� If one had

��a��� � � one would also have��a��� � ��a��� kak � � � kak� � in contradiction with Corollary �����	 By Proposition �����
there exists a sequence ��j	j�N such that

lim
j��

�
�j j a��j

�
� lim

j��
ha�j j a�a�j 	i � f����g�

Upon replacing ��j	j�N by a subsequence� one may assume by compacity of a that the

sequence �a ��j		j�N converges to some � � H��	� Then

h� j a�i � f����g

and the proof follows from the previous observation� �

���	� Proposition� Let a be a compact self�adjoint operator on H� Then there exists an
orthonormal basis ��j	j�J consisting of eigenvectors of a� and the corresponding sequence

�	j	j�J of eigenvalues converges to �

Proof� �We assume for simplicity of the notations that H is in
nite dimensional�	 Set
a� � a and let �� � H��	 be an eigenvector of a of eigenvalue 	� � fka�k ��ka�kg � Then
a is an orthogonal sum of the operator 	�id on C �� and of a compact self�adjoint operator
a� on the subspace H� � ��

�
of H� moreover ka�k � kak �

By induction� one constructs in the same way an orthonormal sequence ��k	k�K of
eigenvectors of a and a sequence �	k	k�K of corresponding eigenvalues� It follows from
Lemma �����ii that the latter sequence converges to zero� Then a is an orthogonal sum of
a diagonal operator �see Example ���	 on the closed subspace H� of H spanned by the �j
�s and of the zero operator on �H�	�� One manufactures an orthonormal basis ��j	j�J as

in the proposition by concatenating ��k	k�K and an orthonormal basis of �H�	�� �
���
� Exercice� Assume H is a separable in
nite dimensional Hilbert space�
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�i	 For any non trivial two�sided ideal J of B�H	� show that

F�H	 � J � K�H	

�for the second inclusion� use Lemma �����ii	�

�ii	 Show that the Calkin algebra B�H	�K�H	 is simple �more on this in �Har�	�

�iii	 For any a � K�H	� it is known that there exists a two�sided ideal J in B�H	 such
that

a � J � K�H	

�see �Sal�	�

��b� Hilbert�Schmidt operators

����� De�nition� A bounded operator a � H � H� is Hilbert�Schmidt if it is compact
and if the series ��j	j�J of the eigenvalues of a�a is summable� The Hilbert�Schmidt norm

of such an operator is

kak
�
�

sX
j�J

�j �

����� Lemma� Let a � H � H� be a bounded operator� Let ��j	j�J be an orthonormal

basis of H and let ��k	k�K be an orthonormal basis of H�� The three families of non
negative real numbers

�
ka�jk�

�
j�J

�
�
ka��kk�

�
k�K

�
	j h�k j a�j i j�
j�J�k�K

are simultaneously summable or not� If they are summable� the three sums have the same
value� which depends consequently only on a and not on the choosen basis�

Proof� By Parseval�s equality� one has

ka�jk� �
X
k��K

j h�k� j a�ji j� and ka��kk� �
X
j��J

j h�j� j a��ki j�

for all j � J and k � K� If any of the families above is summable� one has

X
j�J

ka�jk� �
X

j�J�k�K

j h�k j a�ji j� �
X

j�J�k�K

j h�j j a��ki j� �
X
k�K

ka��kk�

and the proof is complete� �
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���� Proposition� �i� Let a � B�H�H�	� let ��j	j�J be an orthonormal basis of H and

let ��k	k�K be an orthonormal basis of H�� Let �ak�j	k�K�j�J
be the resulting J�times�K

matrix� where ak�j � h�k j a�ji� The three following conditions are equivalent

a is a Hilbert�Schmidt operator�X
j�J

ka�jk� ���

X
k�K�j�J

jak�j j� ���

If they hold� then

kak� �
X
j�J

ka�jk� �
X

k�K�j�J

jak�j j��

and the adjoint a� of a is also a Hilbert�Schmidt operator such that

ka�k
�
� kak

�

 kak �

Proof� Exercice� �

����� Proposition� The set of all Hilbert�Schmidt operators form H to itself constitute
a self�adjoint two�sided ideal in B�H	 which is complete for the Hilbert�Schmidt norm
a �� kak

�
and in which �nite rank operators are dense�

Moreover the ideal of Hilbert�Schmidt operators is itself a Hilbert space for the scalar
product de�ned by

ha j bi �
X
j�J

ha�j j b�j i

where ��j	j�J is an orthonormal basis of H�
Proof� Exercice�

In case dimC �H	 ��� observe that hajbi � trace�a�b	� this carries over to the in
nite
dimensional case in terms of the canonical trace� de
ned on the appropriate two�sided ideal
of trace class operators� �

����� Remark� For the theory of operator ideals in general and of Hilbert�Schmidt
operators in particular� the classical book is that by R� Schatten �Sch�� For one �out of
many	 more recent exposition of Hilbert�Schmidt operators� see �Sim��

����� Example� For each f � L� ��� �� �� ��	 � the operator af � B
	
L���� ��	



de
ned

in ��� by

�af ��		 �x	 �

Z
�

�

f�x� y	��y	dy

is a Hilbert�Schmidt operator� see Problems ����� in �Hal�� Indeed� it can be shown that
any Hilbert�Schmidt operator on L���� ��	 is of this form �and this carries over from �� ��
to an arbitrary �
nite measure space	� see Section II�� in �Sch��
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����� Example� Let T denote the unit circle in the complex plane� furnished with its
usual measure d��eit	 � �

��
dt for t � �� ���� Let �en	n�Z denote the orthonormal basis of

L��T	 used for Fourier series� de
ned by

en�t	 � eint

for all t � �� ���� The Hardy space H��T	 is de
ned by

H��T	 �
�
� � L��T	

��� he�n j �i � �

��

Z
�

�

eint��t	dt �  for all n � 

�

and is a closed subspace of L��T	 �it is just the orthogonal of fe��� e��� ���g	� We denote
by p the orthogonal projection of L��T	 onto H��T	�

Recall that each f � L��T	 de
nes a multiplication operator Mf � B
	
L��T	



� In case

f is continuously di�erentiable� f � C��T	� we claim that

��	 pMf �Mfp is a Hilbert�Schmidt operator�

To prove this last statement� consider the matrices of the operators p andMf with respect
to the basis �en	n�Z � On one hand one has

p �

�
BBBBBBBBB

��� ����� ����� ����� ����� ����� ����� ���
���       ���
���       ���
���       ���
���    �   ���
���     �  ���
���      � ���
��� ����� ����� ����� ����� ����� ����� ���

�
CCCCCCCCCA

On the other hand� if f �
P

n�Z cnen�

Mf �

�
BBBBBBBBB

��� ����� ����� ����� ����� ����� ����� ���
��� c� c�� c�� c�� c�� c�� ���
��� c� c� c�� c�� c�� c�� ���
��� c� c� c� c�� c�� c�� ���
��� c� c� c� c� c�� c�� ���
��� c� c� c� c� c� c�� ���
��� c� c� c� c� c� c� ���
��� ����� ����� ����� ����� ����� ����� ���

�
CCCCCCCCCA

It follows that

pMf �Mfp �

�
BBBBBBBBB

��� ����� ����� ����� ����� ����� ����� ���
���    c�� c�� c�� ���
���    c�� c�� c�� ���
���    c�� c�� c�� ���
��� c� c� c�    ���
��� c� c� c�    ���
��� c� c� c�    ���
��� ����� ����� ����� ����� ����� ����� ���

�
CCCCCCCCCA
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This is a Hilbert�Schmidt operator if and only if the matrix is square summable� namely
if and only if f is in the so�called Sobolev space

H
�

� �T	 �

�
f �

X
n�Z

cnen

��� X
n�Z

njcnj� � �
�
�

�This notation is standard� do not confuse the �H� in the Hardy space H��T	 and the
�H� in the Sobolev space above�	 If f � C��T	� then Pn�Z n

�jcnj� � �� and a fortiori

f � H
�

� �T	� this proves ��	�

����� Exercise� Let A be the C��algebra of operators on �� generated by the unilateral
shift of ����� Show that A contains the C��algebra K���	 of all compact operators on ���
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CHAPTER �� ABSTRACT C��ALGEBRAS

AND FUNCTIONAL CALCULUS

��a� Definition and first examples

���� C��group algebras� We begin by a motivation for De�nition ��	 
see another one
in 	����

Let G be a locally compact group and let � denote a left invariant Haar measure on
G� One introduces the Hilbert space L�
G���� usually written L�
G� for simplicity� 
Any
other left invariant measure on G is of the form c� for some c � R��� and changing � to c�
just amounts to multiplying all scalar products by c�� The left regular representation u of
G in L�
G� is given by


ug�� 
h�  �
�
g��h

�
for all g� h � G and � � L�
G�� It is a unitary representation in the following sense� each
ug is a unitary operator on L�
G�� the assignment g �� ug is a homomorphism from the
group G to the unitary group of L�
G�� and the mapping 
g� �� �� ug
�� is continuous from
G�H to H�

The reduced C��algebra of G is the C��algebra C�red
G� of operators on L�
G� generated
by the operators of the form

R
G
f
g�ugdg� for f � L�
G�� In particular� if the group G is

discrete � we then rather write � instead of G and ��
�� instead of L�
G� � then C�red
��
is generated by the unitaries u� �s for � � ��

For a group � endowed with the counting measure� the space ��
�� has a canonical basis

������ where �� � � � C is the characteristic function of f�g� We write e the unit element

of �� The linear mapping

� �

�
C�red
�� �� ��
��

a ��� a
�e�

is injective� To see this� one introduces the right regular representation v of � in ��
��
de�ned by


v��� 
���  � 
����

for all �� �� � � and � � ��
��� The operators u� and v�� commute for all �� �� � �� Consider
a� b � C�red
�� such that �
a�  �
b�� As a and b commute with the v� �s� one has

a 
���  av� 
�e�  v�a 
�e�  v�b 
�e�  bv� 
�e�  b 
���

for all � � �� and this shows that a  b�
It follows that any a � C�red
�� can be written as a sum

a 
X
���

	�u��
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We leave it to the reader to check that k�
a�k����� � kak for all a � C�red
��� There isn�t

any simple condition on a family 
	����� of complex numbers which is both necessary and

su�cient for the sum
P

��� 	�u� to represent an operator in C�red
��� A particular case of
this statement is that there isn�t any simple condition on a trigonometric series which is
both necessary and su�cient for the series to be the Fourier series of a continuous function�

Suppose moreover that � is a �nite group� Then C�red
�� is nothing but the usual group
algebra C ���� with the involution given by 
u���  u����� for all � � �� In particular� there
is a bijective correspondance between unitary representations of � and unit�preserving
��representations of C�red
��� as already recalled in Exercicr 	����

However� if � is in�nite� this correspondence breaks down in general 
and more precisely
in the case � is not �amenable��� For example� it is known that the C��algebra C�red
�� is
simple in case � is a non abelian free group �Pow� or a group PSL
n�Z� for some n � 	
�BCH� 
see also Section ��C below�� In particular� most unitary representations of such
groups 
e�g� those factoring via �nite quotients of the groups� do not correspond to any
��representation of their reduced C��algebra�

The way to keep a correspondence between unitary representation of a locally compact
group G and ��representations of some group C��algebra is to introduce the so�called
maximal C��algebra C�max
G�� which in general does not act naturally on L�
G��

This is a strong motivation to introduce abstract C��algebras� not just algebras of
operators on speci�c Hilbert spaces�

���� De�nitions� A C��algebra is an involutive algebra A endowed with a norm a �� kak
such that


i� kabk � kak kbk for all a� b � A�


ii� ka�ak  kak� for all a � A�

iii� A is complete for the given norm�

Corollary ���	 shows that� if H is a Hilbert space� any closed ��algebra of B
H� is a
C��algebra� There is a converse� phrased below as Theorem �����

A sub�C��algebra of a C��algebra A is an involutive subalgebra of A which is complete
for the norm topology�

A morphism � � A� B between two C��algebras is a linear map such that

�
ab�  �
a��
b�

�
a��  �
a��

for all a� b � A� Corollary ��	� below shows that these conditions imply

k�
a�k � kak

for all a � A� If moreover � is injective� Proposition ���� shows that k�
a�k  kak for all
a � A� 
See also nos ����� and ����� in �DC����

Recall from no ���� that a representation of a C��algebra A on a Hilbert space H is a
morphism A� B
H��

The following notions are de�ned as in Section ��C�
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a � A is normal if a�a  aa��
a � A is self�adjoint if a�  a�
a � A is positive if there exists b � A such that a  b�b 
see also Section ��E��
p � A is a projection if p�  p  p��
w � A is a partial isometry if w�w is a projection�
u � A is unitary 
when A has a unit� if uu�  u�u  ��

���� Direct products� Let 
A����I be a family of C��algebras� The product C��algebra
is the subspace of the space of families 
a����I � with a� � A� for all 
 � I� such that
sup��I ka�k � �� In this product� the multiplication and the involution are de�ned com�
ponentwise� and the norm is de�ned by

��
a����I
��  sup

��I
ka�k �

���� Remark� Let A be a C��algebra� let

�
A �� B
A�

a ��� 
ua � a� �� aa��

be its left regular representation and set

kuak  sup
a��A�ka�k��

kaa�k �

Then kuak  kak for all a � A� This is a straightforward consequence of the relations

kaa�k � kak ka�k and kaa�k  kak ka�k �

��	� Adding a unit� Let A be an involutive algebra� De�ne a new involutive algebra �A
as follows� As a vector space� set �A  C 	A� The involution is de�ned on �A by


	� a�� 
�
	� a�

�
and the product by


	� a�
�� b�  
	�� 	b � �a � ab��

In particular A is a two�sided ideal in �A which is invariant by the involution� The algebra
�A has a unit �e  
�� ��� In case A itself has a unit e� then �A is the product of its two�sided
ideals C 
�e � e� and A�

If A is moreover an involutive Banach algebra� then �A is also an involutive Banach
algebra for the norm de�ned by k
	� a�k  j	j � kak � However� this choice of a norm

on �A is often not the best one� for example� if A is a C��algebra� it does not make �A a
C��algebra�
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Assume from now on that A is a C��algebra� The de�nition of the appropriate norm on
�A is more delicate� If A has a unit� �A can be viewed as a product C��algebra as in ����

Suppose now that A has no unit� For each x  
	� a� � �A� set

kxk  sup
b�A�kbk��

kxbk �

Then x �� kxk is a norm on �A which extends the original norm on A by Remark ���� Let
us check for example that kxk  � implies x  �� If 	  �� this is because a �� kak is a
norm on A� If one had kxk  � for x  
	� a� with 	 
 �� one would have 	b � ab  ��
hence also

��	��a� b  b for all b � A� so that �	��a would be a left�unit for A� hence

�	��a� would be a right�unit for A� and it would follow that A has a unit� in contradiction
with the hypothesis�

The norm just de�ned makes �A complete� because �A contains a one�codimensional
complete subspace A�

Let us �nally check that

kx�xk  kxk�

for all x  
	� a� � �A� We may assume without loss of generality that kxk  �� and we
have to check that kx�xk  �� For each real number r � �� there exists b � A such that
kbk � � and kxbk � r� As xb � A� one has

kx�xk � kb�k kx�xk kbk � k
xb��xbk  kxbk� � r��

As this holds for all r � � one has kx�xk � �� and consequently kx�xk  ��

In conclusion� �A is naturally a C��algebra whenever A is a C��algebra�

��
� Example� �nite dimensional C��algebras� Let A be a �nite dimensional algebra�
We know from Theorem 	��� that �A is a direct sum of full matrix algebras� It follows that
the two�sided ideal A of �A is also a direct sum of full matrix algebras� and in particular
that any �nite dimensional C��algebra has a unit� Thus Remark 	�	��i applies with the
only change that the pj �s have to be viewed now as the minimal central projections of A�

���� Example� C��algebras of compact operators� Let H be an in�nite dimensional
Hilbert space� The space K
H� of compact operator on H is a C��algebra without unit by
Example ���	�

The C��algebra obtained by adding a unit is the C��algebra of those operators on H of
the form 	idH � a with 	 � C and a � K
H��

��� Example� C��algebras of continuous functions� Let X be a locally compact
space� The algebra Co
X� of continuous functions X � C which vanish at in�nity is a
C��algebra for the norm de�ned by

kfk  sup
x�X

jf
x�j�
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This algebra has a unit if and only if X is compact� in which case it is the C��algebra C
X�
of all continuous functions on X 
see 	����

If X is not compact� the C��algebra obtained by adding a unit to Co
X� is the algebra
of those continuous functions X � C which have a limit at in�nity� If X is compact� the

algebra �C
X� obtained by the same construction is the algebra of continuous functions on

a space �X which is the disjoint union of X and of a point�

���� Examples of Banach algebras which are not C��algebras� On the algebra
A  C
���� ��� of continuous functions from ���� �� to C � consider the norm de�ned by

kfk  supjtj�� jf
t�j and the involutions de�ned by f��
t�  f
�t�� Then A is a Banach

algebra with an involution such that
��f����  kfk for all f � A� But A is not a C��algebra�

indeed� for f de�ned by f
t�  � for t � � and f
t�  t for t � �� one has kfk  � and
f��f  ��

On the convolution algebra A  ��
Z�� consider the norm de�ned by kck� 
P

n�Z jc
n�j
and the involution de�ned by c�
n�  c
�n�� Then A is also a Banach algebra with an
involution such that kc�k�  kck� for all c � A� But A is not a C��algebra� indeed� for c
de�ned by c
��  c
��  �c
���  � and c
n�  � when jnj � 	� one has kck�  � and
kc�ck�  ��

More generally� for any in�nite locally compact abelian group G� the convolution algebra
L�
G� is not a C��algebra�

��b� Spectrum of an element in a Banach algebra

Part of spectral theory for C��algebra holds for more general algebras� In the present
section� we consider a Banach algebra A with unit 
the de�nition has been recalled in �����

����� De�nition� For each a � A� the spectrum of a is the subset

�
a�  f 	 � C j 	� a is not invertible in A g

of the complex plane�
A better notation would be �A
a� instead of �
a�� As our main interest is C��algebras�

the notation �
a� will turn out to be non�ambiguous 
see ��	� below��

����� Lemma� For each a � A� the sequence
�
kank �

n

�
n��

is convergent and

lim
n��

kank �

n  inf
n��

kank �

n � kak �

Proof� For n � �� set n  log kank � One has kap�qk � kapk kaqk� hence

p�q � p � q
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for each p� q � �� It is then a quite standard lemma that the subadditive sequence 
n�n��
converges to its minimum 
see e�g� �PoS�� Problem �� of Part I� page 	��� We recall the
proof�

Choose an integer q � �� Write each integer n � � as n  kq � r with k � � and
r � f�� �� ���� q � �g� One has

n
n


kq�r
kq � r

� kq
kq

�
r
kq

� q
q

�
r
kq

�

It follows that
lim sup
n��

n
n
� inf

q��

q
q
�

As one has obviously infq��
�q
q � lim infn��

�n
n � one has also

lim
n��

n
n

 inf
q��

q
q

and the proof is complete� �

����� De�nition� The spectral radius of a � A is the real number

�
a�  lim
n��

kank �

n �

Equivalently� �
a��� is the radius of convergence of the series
P�

n�	 	
nan�

Observe that one has �
a� � kak �

����� Lemma� �i� Let a � A and let 	 � C �

If j	j � �
a���� the element �� 	a is invertible in A�

If j	j � �
a�� then 	 �� �
a��

�ii� The set Ainv of invertible elements in A is open and the map

�
Ainv �� Ainv

a ��� a��

is continuous�

Proof� 
i� If �
	a�  j	j�
a� � �� it follows from the de�nition above that the seriesP�
n�	 	

nan is convergent� and its limit is 
� � 	a����

If j	j � �
a�� the previous claim implies that 	� a  	
�
�� 
	���a

�
is invertible�


ii� Let a � Ainv� For each b � A such that kb� ak � ��a������ the element

b  a
�
�� a��
a � b�

�
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is in Ainv because �
�
a��
a � b�

� � ��a��
a � b�
�� � �� Hence Ainv is open� If kb� ak �

�
�

��a������ � one has moreover

��b�� � a��
�� 

�����
�X
n�	

�
a��
a � b�

�n
a�� � a��

����� �
�X
n��

��a��
a � b�
��n ��a����

�
��a����� ka� bk
�� ka��
a � b�k � 	

��a����� ka � bk

and it follows that a �� a�� is a continuous transformation of Ainv� �

����� Proposition� For each a � A� the spectrum �
a� is a non empty compact subset of
C which is contained in the closed disc of radius �
a� centered at the origin� and a fortiori
in the closed disc of radius kak around the origin�

Moreover the spectral radius of a is given by

�
a�  supf r � � j there exists 	 � �
a� such that j	j  r g

�as its name indicates��

Proof� The �rst part of the previous Lemma shows that �
a� is contained in the closed
disc of radius �
a� around the origin� and the second part shows in particular that �
a� is
closed in C � Hence the spectrum �
a� is compact�

The second part of this Lemma shows also that 
	 � a��� is given around any 		 �
C n �
a� by an entire series in 	� 		� namely that the resolvant of a

�
C n �
a� �� A

	 ��� 
	� a���

is an analytic mapping� If �
a� were empty� the resolvant would be a non constant bounded
holomorphic function de�ned on the whole of C � in contradiction with Liouville�s theorem�
Hence the spectrum �
a� is non empty�

If �
a�  �� it is clear that �
a�  f�g� Assume now that �
a� 
 �� If the spectrum �
a�
were contained in some closed disc centered at the origin of radius r � �
a�� the resolvant

	 �� 
	 � a���  	��
�
�� 	��a

���
would be analytic in the domain de�ned by j	j � r�

Then the map z �� 
��za��� would be de�ned and analytic in the open disc of radius r��

around �� and its Taylor series at the origin
P�

n�	 z
nan would have a radius of convergence

r�� � �
a���� This would contradict the de�nition of �
a�� hence the proof is complete�

For a proof which does not use the theory of analytic mappings� see Theorems � and � in
x� of �BoD��� �

���	� Gelfand�Mazur Theorem ������ A Banach algebra with unit in which all
elements distinct from � are invertible is isomorphic to the �eld of complex numbers�

Proof� For each a in such a Banach algebra A� there exists 	 � C such that 	 � a is non
invertible� hence by hypothesis such that 	� a  �� or a � C � �
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���
� Examples of spectra� Let e � A be an idempotent� e�  e� Then the spectrum
of e is contained in f�� �g� For each 	 � C n f�� �g� the resolvent of e is given by


	� e��� 
�� 	� e

	
�� 	�
�

Let a � A be an element such that an  � for some integer n � 	� Let Cn denote the
cyclic group of nth roots of �� For each 	 � Cn� set

p� 
�

n

X
	�j�n��

	�jaj � A�

Then it is straightforward to check that

p�p�  ����p� for all 	� � � Cn�X
��Cn

p�  ��

X
��Cn

	p�  a�

It follows that one has


z � a��� 
X
��Cn

�

z � 	
p�

for each z � C n Cn� and that the spectrum of a is contained in Cn�

����� Spectra of multiplication operators� Let c  
cn�n�N � �� be a bounded
sequence of complex numbers and let Mc be the corresponding multiplication operator on
��� Then the spectrum of Mc is the closure in C of the set f z � C j there exists n �
N such that z  cn g� In particular� any compact subset of C is the spectrum of some
bounded operator on ���

More generally� let 
X��� be a measure space and let f � L�
X���� The spectrum of
the multiplication operator Mf on L�
X��� is the closure of the essential range

f z � C j � �f��
V�
�
� � for every neighbourhood V of z in C g

of f� For details� see Problems �� to �	 in �Hal��

���� Lemma� Let f � C �T � be a polynomial with complex coe�cients� Then

�
f
a��  f
�
a��

for all a � A�

Proof� The lemma holds for constant polynomials because spectra are not empty by the
previous proposition� We may therefore assume that f is not constant� In the proof below�
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we will use repeatedly the following fact � if a is a product a����an of commuting factors in
an algebra� then a is invertible if and only if each aj is invertible�

Let 	o � �
a�� Let g be the polynomial such that f
T � � f
	o�  
T � 	o�g
T �� As
a� 	o is not invertible�

f
a� � f
	o�  
a � 	o�g
a�

is not invertible� Hence f
	o� � �
f
a���

Let �o � �
f
a��� There exists complex numbers c� 	�� ���� 	n such that f
T � � �	 
c
T � 	�����
T � 	n�� hence such that

f
a� � �o  c
a� 	�����
a � 	n��

As f
a� � �	 is not invertible� there exists j � f�� ���� ng such that a� 	j is not invertible�
As f
	j �  �	� this shows that �o � f
�
a��� �

����� Remark� Let K be an algebraically closed �eld and let A be a K�algebra with unit�
One may mimick De�nition ���� for the spectrum �
a� � K of any element a in A� One
has a natural morphism of algebras

�
K�T � �� A

f ��� f
a��

for which Lemma ���� and its proof hold without change�

Much of spectral theory has the following goal� under appropriate hypothesis on A and
on a 
say with K  C �� show that Lemma ���� holds for more general functions�

For example� let A be a Banach algebra with unit and let a � A� If f is a function
de�ned and holomorphic in an open neighbourhood U of the spectrum �
a� and if � is an
appropriate curve in U n �
a� surrounding �
a�� then one may de�ne

f
a� 
�

	i�

Z
�

f
z� 
z � a���dz

and one shows that �
f
a��  f
�
a��� For this holomorphic functional calculus� see for
example x I�� of �Bou� or the end of Chapter 	 in �StZ��

Other examples include functions continuous on the spectrum of a normal element in a
C��algebra 
see Theorems ��	� and ������ and functions Borel measurable on the spectrum
of a normal element in a von Neumann algebra 
see Section ��F��

��c� Spectrum of an element in a C��algebra

Let A be a C��algebra with unit� We denote by T the unit circle of the complex plane�
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����� Proposition� �i� For each a � A� the spectrum of a� is �
a��
�ii� If a � A is self�adjoint� its spectrum is in R�
�iii� If u � A is unitary� its spectrum is in T�

Proof� 
i� For 	 � C � the element 	 � a� is invertible 
say with inverse b�� if and only if
	� a is invertible 
with inverse b���


ii� Let 	  x � iy � �
a�� with x� y � R� For each t � R the number x � i
y � t� is in
�
a � it�� As

ka � itk�  k
a � it�
a � it�k 
��a� � t�

�� � kak� � t��

Proposition ���� implies that

jx � i
y � t�j�  x� � 
y � t�� � kak� � t�

and this inequality can also be written as

	yt � kak� � x� � y��

As this has to hold for all t � R� one has y  ��

iii� Let 	 � �
u�� Observe that 	 
 �� because u is invertible� and that 	�� � �
u����

because 	�� � u��  �	��
	 � u�u�� is not invertible� As j	j � kuk  � and j	��j ���u����  � by Proposition ����� one has 	 � T� �
����� Corollary� �i� Let a � A be a normal element� Then

�
a�  kak �

In particular� if a � A is self�adjoint� then one at least of kak ��kak is in the spectrum
�
a��

�ii� Let H be a Hilbert space and let a � B
H� be a self�adjoint element� Set

m
a�  inf
��H
k�k��

h�ja�i and M
a�  sup
��H
k�k��

h�ja�i �

then
� � �m
a��M
a���

Proof� 
i� Assume �rst that a is self�adjoint� From the de�nition of C��algebras� one has

���a�k���  kak�k

for all k � �� hence

�
a�  lim
k��

���a�k�����k  kak �
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It follows from Propositions ���� and ��	��ii that at least one of the numbers kak ��kak
is in �
a��

Assume now that a is normal� Then

�
a�� � ��a��� by Lemma ����

� kak�  ka�ak  �
a�a� by the argument above

 lim
n��

k
a�a�nk�	n by de�nition of �

 lim
n��

k
a��nank�	n because a is normal

� lim
n��

k
a��nk�	n lim
n��

kank�	n

 �
a���
a� by de�nition of �

 �
a�� by proposition ��	��i

 �
a�� by Lemma �����

Hence all inequalities are equalities� and �
a��  kak� �

ii� Recall from Proposition ���� that kak  maxf�m
a��M
a�g� Set 	  �

� 
M
a� �

m
a�� and r  �
� 
M
a��m
a��� so that m
a�	�  �r and M
a�	�  r� One has �rstly

ka� 	k  r by Proposition ����� secondly �
a � 	� � ��r� r� by Propositions ���� and
��	�� and �nally � � �m
a��M
a�� by 
a trivial case of� Lemma ����� �

����� Corollary� For any a � A one has

kak�  � 
a�a� �

����� Remark� There are elements a � A such that �
a� � kak � The simplest example

is probably the nilpotent operator a 

�
� �
� �

�
� B
C ��� Another example is the Volterra

integration operator V de�ned on L�
��� ��� by


V f�
x� 

Z x

	

f
t�dt�

It is a quasi�nilpotent operator� namely one with spectral radius equal to zero� See Problem
�� and Solution ��� in �Hal��

����� Theorem �Continuous functional calculus for bounded self�adjoint ope�
rators�� Let A be a C��algebra with unit� let a � A be a self�adjoint element� and let
C
�
a�� be the C��algebra of continuous functions on the spectrum of a �as in 	�
�� Then
there exists a unique morphism of C��algebra�

C
�
a�� �� A

f ��� f
a�
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which maps the constant function � �respectively the inclusion of �
a� in C � to the operator
idH �resp� to a�� Moreover� one has

�
f
a��  f
�
a��

for all f � 
�
a���

Proof� Let P
�
a�� denote the involutive subalgebra of C
�
a�� consisting of the restrictions
to �
a� of the polynomial functions R� C � and let C �a� denote the involutive subalgebra
of A consisting of the elements f
a� with f � C �T � a complex polynomial in one variable�
It is a straightforward consequence of Lemma ���� and of Corollary ��	� that kf
a�k 
supf jf
	�j j 	 � �
a� g for every f � C �T �� namely that the obvious morphism�

P
�
a�� �� C �a�

f ��� f
a�

is well de�ned and isometric 
and a fortiori injective  �� By the Weierstrass Approximation
Theorem� this has an isometric extension from C
�
a�� onto the sub�C��algebra C�
a� of A
generated by a 
which is also the closure of C �a� in A�� We �x now a function f � C
�
a���
and we have to check that �
f
a��  f
�
a���

Consider �rst � � f
�
a��� Choose 	 � �
a� such that �  f
	�� Let 
fn�n�N be a
sequence in P
�
a�� with limit f� Then 
fn
	�� fn
a��n�N converges to � � f
a�� As
fn
	� � fn
a� is not invertible for each n � N by Lemma ����� it follows from Lemma
�����ii 
the set of non invertible elements in A is closed� that � � �
f
a��� Hence f
�
a�� �
�
f
a���

Consider then � � C n f
�
a��� The function g de�ned by g
t�  
� � f
t���� is in
C
�
a�� and g
a�  
�� f
a���� � so that � �� �
f
a��� Hence �
f
a�� � f
�
a��� �

This Theorem carries over to normal operators � see Theorem ���� below�

���	� Corollary� Let A be a Banach involutive algebra �see ���� let B be a C��algebra
and let � � A� B be a linear map such that �
aa��  �
a��
a�� and �
a��  �
a�� for
all a� a� � A� Then

k�
a�k � kak
for all a � A�

Proof� Suppose �rst that A and B have units and that �
��  �� For each x � A� one has
obviously �
�
x�� � �
x�� In case x  a�a for some a � A� this implies

k�
a�k�  k�
x�k  sup f r � � j r � �
�
x�� g
� sup f r � � j r � �
x� g � kxk � kak� �

For the general case� the Corollary follows from the same argument applied to the natural
morphism

�� �

�
�A �� �B


	� a� ��� 
	��
a��


see ����� �
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���
� Proposition� Let B be a C��algebra with unit� let A � B be a sub�C��algebra
containing the unit and let a � B� Then a is invertible in A if and only if it is invertible in
B� More generally� the spectra

�A
a�  f 	 � C j 	� a is not invertible in A g

and

�B
a�  f 	 � C j 	� a is not invertible in B g
co��ncide�

Proof� It is obvious that �A
a� � �B
a��
Let now 	 � �A
a� be a boundary point of �A
a�� We claim that 	 � �B
a�� Indeed� let


	n�n�N be a sequence in C n�A
a� which converges to 	� Set xn  
	n�a��� � A for each
n � N� If 	 � a were invertible in B� say with inverse x� then x would be the limit of the
xn �s by Lemma �����ii� so that x would be an inverse of 	� a in A� in contradiction with
the hypothesis 	 � �A
a�� This proves that 	 � �B
a�� as claimed� 
For the argument so
far� it is enough to assume that A and B are Banach algebras with unit� They need not
be C��algebras��

In particular� if a � A is self�adjoint� all points in �A
a� are boundary points because
�A
a� � R by Proposition ��	��ii� and thus �A
a�  �B
a��

Let a � A be an arbitrary element and let 	 � C � If 	 � a is invertible in B� then

	� a��
	� a� and 
	� a�
	� a�� are both self�adjoint elements in A which are invertible
in B� Hence they are invertible in A by the previous argument� Thus 	� a is both right�
invertible and left�invertible� namely invertible in A� It follows that �A
a�  �B
a�� �

����� Corollary on polar decomposition� Let H�H� be two Hilbert spaces and let
a � H � H� be a bounded operator� Then there exists a pair 
w� p� where

w is a partial isometry from H to H��
p is a positive operator on H

such that a  wp�

Moreover� there is a unique such pair 
w� p� for which Ker
w�  Ker
p�� and it satis�es
a�a  p�� This is called the polar decomposition of a�

Proof� The positive part of the polar decomposition of an operator a is given by p 
p
a�a�

For more details� see Problem ��� of �Hal�� or almost any other book dealing with operators
on Hilbert spaces�

Alternatively� one may de�ne an appropriate bounded increasing sequence of self�adjoint
operators with strong limit

p
a�a 
see Proposition ���� below� as well as Problems �� and

�� in �Hal��� �

���� Exercise� Let A be a C��algebra with unit and let e	� e� � A be two projections�


i� If ke� � e	k is small enough� show that there exists a unitary element u � A such
that e�  ue	u

��
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ii� If there exists a continuous path of projections

	
��� �� � A

t �� et
� show that the same

conclusion holds�

iii� Suppose moreover that there exists a tower A� � A� � ��� of sub�C��algebras of A

such that A� 
S
n�	An is dense in A 
examples will be discussed in Chapter ��� For each

projection e � A� show that there exists a unitary element u � A such that ueu� � A��

iv� Suppose moreover that � � A�� For each unitary u � A and for each � � �� show

that there exists a unitary v � A� such that kv � uk � ��

�Indications� 
i� Set �rst g  � � e	 � e� � 	e	e�� Check that e	g  ge�� and that g is
invertible if ke� � e	k is small enough� Use functional calculus to de�ne u  g
g�g���	��
check it solves 
i�� and that 
ii� follows�


iii� Let x � A� be such that x�  x and such that ke� xk is small enough� and let
n � � be such that x � An� Using functional calculus in An� one �nds a projection f � An

such that kf � ek is small� so that 
iii� follows from 
i��

iv� Choose � � � 
to be precised later�� let x � A� be such that kx� uk � � and let

n � � be such that x � An� By polar decomposition in An one has a unitary v � An such
that x  v

p
x�x� and kv � uk � f
�� for some function f such that lim
�	 f
��  �� Thus

one may choose � such that kv � uk � �� �
The results of this exercise are used in Example ���� and in Exercice �����

��d� Gelfand�Naimark Theorem

����� Characters of abelian algebra� Let A be a commutative complex algebra� A
character on A is a linear map � � A� C distinct from zero such that

�
ab�  �
a��
b�

for all a� b � A� The set of all characters on A is denoted by X
A�� If A has a unit� observe
that �
��  � for any � � X
A�� If A has no unit� any character � on A extends uniquely

to a character �� on �A� de�ned by ��
	� a�  	 � �
a� for all 
	� a� � �A� Moreover X
 �A� is

naturally identi�ed to the union of X
A� and of the character 
	� a� �� 	 of �A�
If A is a commutative Banach algebra with unit� any character � on A satis�es


�� sup
a�A�kak��

j�
a�j � �

for all a � A� and in particular any character on A is continuous� Indeed� for such a � and
for all a � A� one has obviously �
a� � �
a�� hence j�
a�j � kak by Proposition ����� If
moreover A is a commutative C��algebra with unit� any character � on A satis�es also


��� �
a��  �
a�

for all a � A� Indeed� if a�  a then �
a� � �
a� � R by Proposition ��	�� Hence� for any
a � A� one has

�
a��  �

�
a � a�

	
� i

ia � ia�

	

�
 �

�
a � a�

	

�
� i�

�
ia� ia�

	

�
 �
a�
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as claimed in 
���� Properties 
�� and 
��� of characters hold also in a C��algebra A

without unit 
consider the extension of characters from A to �A��
For any commutative complex algebra A� one de�nes on X
A� the topology of pointwise

convergence� If A is a commutative Banach algebra with unit� 
�� shows that there is a
natural injection of X
A� into the product of copies of the closed unit disc indexed by
the unit ball of A� it follows then essentially from Tychono!�s Theorem that X
A� is a
compact space� If A is a commutative Banach algebra without unit� X
A� is a locally

compact space with one�point�compacti�cation canonically identi�ed with X
 �A�� In all
cases 
with or without unit�� the Gelfand transform is the homomorphism

G � A �� Co
X
A��

de�ned by G
a�
��  �
a� for all a � A and � � X
A� 
the notation Co is that of �����
It is known that the locally compact space X
A� is metrizable if and only if the com�

mutative C��algebra A is separable�

����� Lemma� Let A be a commutative Banach algebra with unit and let G � A �
C
X
A�� be the corresponding Gelfand transform� Then

�
G
a��  �
a�

for all a � A�

Proof� Let 	 � �
G
a��� There exists � � X
A� such that


	� G
a��
��  �
	� a�  ��

Hence 	� a is not invertible� and 	 � �
a��
Let 	 � �
a�� By Zorn�s Lemma� there exists a maximal ideal J in A which contains

	 � a� observe that J is closed in A 
see Lemma �����ii�� Then A�J is both a Banach
algebra and a �eld� and thus is isomorphic to the �eld of complex numbers by Gelfand�
Mazur Theorem ����� The canonical projection A � A�J can be viewed as a character
� � X
A� such that �
	 � a�  �� Hence 
	 � G
a��
��  �� and 	 � �
G
a��� �

����� Gelfand�Naimark Theorem ������� Let A be a commutative C��algebra� Then
the Gelfand transform

G � A� Co
X
A��

de�ned in 	��� is an isometrical isomorphism �the norm on the right�hand side being as in
Example 	�
��

Proof� The image of G separates points of X
A�� indeed� if ��� �� � X
A� are distinct
characters� there exists a � A such that ��
a� 
 ��
a�� namely such that G
a�
��� 

G
a�
���� Observe also that

G
a��  G
a��

for all a � A by 
��� of ��	�� Moreover� if A has a unit� the image of G contains the
constants� It follows from Weierstrass Approximation Theorem that the image of the
Gelfand transform is a dense subalgebra of Co
X
A���
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Moreover� one has

kG
a�k�  kG
a�a�k
 �
G
a�a�� by Corollary ��	�

 �
a�a� by Lemma ����

 kak� by Corollary ��	� again

for all a � A� Hence G is isometric and this ends the proof� �

����� Corollary� Let A be a commutative C��algebra with unit and let a � A� Assume
that a generates A� Then the mapping

�
X
A� �� �
a�

� ��� �
a�

is an homeomorphism�

Proof� The mapping is continuous� and its image is �
a� by the proof of Lemma �����
To show that the mapping is injective� consider ��� �� � X
A� such that ��
a�  ��
a��

The set f b � A j ��
b�  ��
b� g is a sub�C�algebra of A which contains �� it is therefore
A itself� and ��  ���

Hence the mapping is a homeomorphism� �

����� Ideals� Let X be a locally compact space and let A  Co
X� be the corresponding
abelian C��algebra� For any ideal J of A� let

V 
J � 
n
x � X



 f
x�  � for all f � J
o

be the �variety of J �� which is a closed subset of X� For any subset Y of X� let

I
Y � 
n
f � A



 f
y�  � for all y � Y
o

be the �ideal of Y �� which is a closed ideal of A� One has obvious inclusions J � I
V 
J ��
and Y � V 
I
Y ��� Indeed� it is not di�cult to show that

J  I
V 
J �� and Y  V 
I
Y ��

for any J and Y as above� see e�g� �Bou�� chap� I� x �� no 	� Proposition �� 
The statement
compares with the Hilbert�s Nullstellensatz� but is not nearly as deep  �

This establishes a bijective correspondance between closed ideals in A and closed sub�
spaces of the character space X
A�� Here is another way to describe the same bijection�
In one direction� any C��algebra quotient A� B  A�J provides inside X
A� the closed
subspace of those characters on A which factor through B� In the other direction� one may
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identify A to C	
X
A��� and each closed subspace Y of X
A� provides the quotient of A
consisting of the restrictions to Y of the continuous functions on X
A��

In particular� maximal ideals in A 
which are necessarily closed� correspond bijectively
to characters on A� and also to points in X
A��

����� Exercise� In the C��algebra C
��� ���� show that the principal ideal J generated by
the function �t� is not closed�

Hint� the function t �� p
t is not in J � but the sequence of nth term

t ���

��
��

nt if t � �

n�
p
t if t � �

n�

shows that it is in J � For other examples of ideals which are not closed� see Exercise IX���	
in �Dun��

���	� Theorem �Continuous functional calculus for normal operators�� Let A be
a C��algebra with unit� let a � A be a normal element and let C�
a� be the C��subalgebra
of A generated by a� Then there exists a unique morphism of C��algebra� C
�
a�� � C�
a�

f �� f
a�

such that �
a�  � and 

a�  a �where 
 � C
�
a�� denotes the inclusion of �
a� in C ��
Moreover one has

�
f
a��  f
�
a��

for all f � C
�
a���

Proof� The space of polynomials in z and z is dense in C
�
a��� As any morphism C
�
a�� �
C�
a� is continuous by Corollary ��	�� the claim of unicity follows�

Let X denote the spectrum of the algebra C�
a� and let

G � C
X� �� C�
a�

denote the Gelfand isomorphism of Theorem ����� By Corollary ���	� we may identify X
with �
a�� and this shows the existence of the morphism C
�
a�� � C�
a��

Let f � C
�
a��� One has f
a�  G
f�� The spectrum of f
a� in A coincides with the
spectrum of f
a� in C�
a� by Proposition ��	�� hence with the spectrum of f in C
�
a��
because G is an isomorphism� hence with f
�
a�� by Example ����� �

���
� Lemma� Let A�B be commutative C��algebras with units� let � � A ���B be an
injective morphism such that �
�A�  �B and let � � X
B� � X
A� be the map de�ned
on the character spaces by �
��  � � for all � � X
B�� Then � is continuous and onto�

Proof� The continuity of � is a straightforward consequence of the continuity of �� proved
in Corollary ��	�� Thus the image of � is a compact subset of X
A�� say K�
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Suppose ab absurdo that � is not onto� Identifying A and C
X
A��� we may choose
continuous functions a�� a� � C
X
A�� such that a� 
 � � a�
x�  � for all x � K and
a�a�  �� Then �
�
a���  � for all � � X
B�� which implies that �
a�� is invertible in B�
But this is absurd because �
a�� 
 � by injectivity of � and �
a���
a��  �
a�a��  ��
�

����� Proposition� Let A�B be C��algebras and let � � A ���B be an injective mor�
phism� Then

k�
a�k  kak
for all a � A� In particular� the image of � is closed in B� and is indeed a sub�C��algebra
of B�

Proof� Suppose �rst that a�  a� Upon restricting � to the sub�C��algebra of A generated
by a� one may assume that A and B are both abelian� Without loss of generality� one may
also assume that A and B have units and that �
�A�  �B � In this case� we denote by X
the character space of A� by Y that of B and by � � Y � X the restriction map of the
previous lemma� For all a � A� one has

kak  sup
��X

j�
a�j  sup
��Y

j�
��
a�j  sup
��Y

j�
�
a��j  k�
a�k �

Going back to the general case of arbitrary C��algebras and of a non necessary self�
adjoint element a� one has then

k�
a�k 
p
k�
a�ak 

p
ka�ak  kak

and the proof is complete� �

���� Sub�C��algebras of abelian C��algebras� Let B be a commutative C��algebra
with unit and let Y denote its character space�

Let A be a sub�C��algebra of B containing the unit and let X denote the character
space of A� One has by restriction of characters a continuous map

� � Y �� X

which is onto by Lemma �����
Conversely� let � � Y � X be a surjective continuous map of Y onto some compact

space X� Then

AX 
�
b � C
Y � j there exists a � C
X� such that b  a  � �

is a sub�C��algebra of B containing the unit�
Thus there is a bijective correspondance between unital sub�C��algebras of B and com�

pact quotients of Y�
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����� Proposition� Let A�B be two commutative C��algebras with units and let � �
A � B be a morphism of C��algebras such that �
�A�  �B� Then there exists a closed
subset Z of the character space X
A� of A and a surjective continuous map � � X
B� � Z
such that the diagram

A �� C
X
A�� X
A�
� � �

A�Ker� �� C
Z� Z
� � �
B �� C
X
B�� X
B�

commutes� where horizontal arrows denote Gelfand isomorphisms and where the top �re�
spectively bottom� right vertical arrow is given by the restriction of functions from X
A�
to Z �resp� by the composition of functions with the quotient map X
B� � Z��

Proof� The image of the inclusion A�Ker� ���B is a sub�C��algebra of B� because this
image is closed by Proposition ����� Thus the proposition follows from Numbers ���� and
����� �

��e� The positive cone of a C��algebra

����� Notations� Let A be a C��algebra� We denote by

Asa 
n
a � A



 a�  a
o

the Banach space of its self�adjoint elements and we let

A� 
n
a � Asa



 �
a� � R�

o
denote the positive cone of A 
this terminology is justi�ed by Proposition ���� below�� In

case A has no unit� the spectrum �
a� of a � A is understood in the algebra �A obtained
from A by adding a unit�

For a� b � Asa� we write a � � if a � A� and a � b if a� b � ��

����� Lemma� Let A be a C��algebra with unit�

�i� For a � Asa such that kak � �� one has

a � A� �� k�� ak � ��

�ii� The set A� is closed in Asa�

Proof� 
i� If a � A�� one has �
a� � ��� kak� � ��� ��� Thus �
� � a� is again in ��� ��� so
that k�� ak � � by Corollary ��	��

If k�� ak � �� one has �
a � �� � ���� �� by Propositions ��	� and ����� Then �
a� 
� � �
a � �� � ��� 	� � R� so that a � A��


ii� For a � Asa one has a � A� �� kkak � ak � kak by 
i�� so that A� is closed in
Asa� �
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����� Lemma� Let A be a complex algebra with unit and let a� b � A� Then

�
ab� � f�g  �
ba� � f�g�

In particular� if A is a C��algebra and if b � A� then �
bb�� � R� if and only if �
b�b� � R��

Proof� Let 	 � C � be such that 	 � ab has an inverse� say x� Set y  	��
� � bxa�� Then


	� ba�y  � � bxa � ba	�� � b	��
abx�a

 � � bxa � ba	�� � b	��
	x � ��a  �

and similarly y
	� ba�  �� It follows that 	 � ba is invertible with inverse y� �

����� Proposition� Let A be a C��algebra� For each a � Asa� the three following
properties are equivalent

�i� �
a� � R�� namely a � A��
�ii� there exists b � A such that a  b�b�
�iii� there exists b � Asa such that a  b��

Moreover
�iv� A� is a closed convex cone in Asa�
�v� A� � 
�A��  f�g�

Proof� Let a � Asa� The implication 
iii� � 
i� follows from Proposition ��	��ii� which
implies that �
b� � R� and from Lemma ����� which implies that any � � �
a� is of the
form �  	� for some 	 � �
b�� The implication 
i� � 
iii� follows from Theorem ��	�
because ony may set b 

p
a� The implication 
iii� � 
ii� is obvious�

Assume that A has a unit� Then A� is closed by Lemma ����� and 	a is obviously in
A� whenever 	 � R� and a � A�� Let a� b � A� be such that kak � � and kbk � �� One
has k�� ak � � and k�� bk � � by Lemma ����� so that������ �

	

a � b�

���� � �

	
k�� ak�

�

	
k�� bk � �

and �
�

a � b� � A� by the same Lemma� It follows that 
iv� holds� Let a � A� � 
�A�� �

then �
a�  f�g� so that a  � by Corollary ��	�� This shows 
v��
If A has no unit� claims 
iv� and 
v� follow from the case with unit by ����
Let us �nally prove the implication 
ii� � 
iii�� Let f�� f� � C
R� be de�ned by

f�
t�  sup
t� �� f�
t�  sup
�t� ��

for all t � R� For a  b�b as in 
ii�� set

a�  f�
a� � Asa a�  f�
a� � Asa

x� 
p
f�
a� � Asa x� 

p
f�
a� � Asa

and observe that
a  a� � a�  x�� � x�� x�x�  �
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because similar relations hold in C
R�� On one hand� one has


�� � 
x�b
�� 
x�b

���  �x�ax�  �x�x��x� � x
�  x
� � A�


the inclusion holds because 
iii� � 
i��� On the other hand� writing x�b
�  s � it with

s� t � Asa� one has


x�b
��� 
x�b

��  � 
x�b
�� 
x�b

��� � 
s � it�
s � it� � 
s � it�
s � it�

 � 
x�b
�� 
x�b

��� � 	s� � 	t� � A�


the inclusion holds because � 
x�b�� 
x�b��
� � A�� as shown above� and because 	s� �

	t� � A��� It follows from 
v� and from Lemma ���	 that


��� 
x�b
�� 
x�b

��� � A��

Finally 
�� and 
��� imply x
�  �� so that x�  � and a  x��� �

��f� Borel functional calculus

In this Section ��F� we do not give full proofs and we refer� among many other good
sources� to �Bea�� �ReS� and �StZ�� We denote by H a complex Hilbert space� Recall that
the strong topology on B
H� has been de�ned in Section 	�B�

����� Proposition� Let 
an�n�N be a sequence of positive operators in B
H� and let
b � B
H� be such that

� � an � an�� � b

for all n � N� Then there exists a positive operator a � B
H� which is the strong limit of
the an �s� namely which is such that

a�  lim
n��

an�

for all � � H� moreover an � a � b for all n � N� We write

an � a�

Proof �sketch�� For each n � N and � � H� set qn
��  h�jan�i and

q
��  lim
n��

qn
��  sup
n�N

qn
���

Observe that

h�jan�i 
�

�

n
qn
� � ��� qn
� � ��� iqn
� � i�� � iqn
� � i��

o
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and de�ne a sesquilinear form s on H by

s
�� �� 
�

�

n
q
� � ��� q
� � ��� iq
� � i�� � iq
� � i��

o
�

Using Riesz Theorem ���� one obtains an operator a such that s
�� ��  h�ja�i for all
�� � � H� and it is obvious that a is the weak limit of 
an�n�N � One may also check that a
is the strong limit of 
an�n�N � see Solution �� of �Hal� for the details� �

���	� Example� Consider the Hilbert space L�
��� ���� For each t � ��� ��� let Pt be
the multiplication operator by the characteristic function of ��� t�� If 
tn�n�N is a sequence
which converges to �� then Ptn � idH�

���
� Notations� Let a � B
H� be a self�adjoint operator on H� For each t � R� let
et � �
a� � R be the function de�ned by et
s�  � if s � t and et
s�  � if s � t� Choose
a sequence 
ft�n�n�� in C
�
a�� such that � � ft�n
s� � ft�n��
s� � et
s� for all n � � and

s � �
a�� and also such that limn�� ft�n
s�  et
s� for all s � �
a�� By Proposition �����
the sequence 
ft�n
a��n�� converges strongly to an operator in B
H� that we denote by Et�

����� Spectral measure of a self�adjoint operator� Let a � B
H� be a self�adjoint
operator on H� Set   inf�H� kk��h�ja�i and �  sup�H� kk��h�ja�i� For each t � R�
let Et be de�ned as in ����� Then one has�


i� each Et is a projection on H�

ii� Es � Et whenever s � t�

iii� Es � Et if s � t 
notations as in ������

iv� t �  � Et  ��

v� t � � � Et  ��

vi� for b � B
H�� one has ba  ab if and only if bEt  Etb for all t � R

The family 
Et�t�R is called the spectral measure of the self�adjoint operator a�
Conversely� any family 
Et�t�R satisfying 
i� to 
v� above 
for some � � � Rwith  � ��

de�nes a self�adjoint operator

a 

Z ��	

�

tdEt

with spectral measure 
Et�t�R �

���� Notations� Let � be a compact metric space� We denote by B
�� the ��algebra
of bounded complex�valued Borel functions on �� By a theorem of Baire� it is also the
smallest family of complex�valued functions on � which contains the continuous functions
and which is closed under pointwise limits 
see the indications for Exercise ����� in �HeS���

One may de�ne a norm by kfk  supt��jf
t�j and an involution by f�
t�  f
t�� then
B
�� becomes what has to be called a pre�C��algebra 
i�e� satis�es all conditions to be a
C��algebra� but completeness�� and C
�� a sub�C��algebra of B
���

However� in most cases and for example for �  ��� ��� observe �rstly that B
�� is not
complete� and secondly that its completion is a C��algebra which is not separable 
see the
discussion in 	����
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For � � R� we denote by P
�� the involutive subalgebra of B
�� consisting of the
restrictions to � of the polynomial functions R� C � 
Observe that dimCP
�� �� in case
� is a �nite subset of R� and that P
�� is isomorphic to C �T � if � is an in�nite set��

����� Theorem �Borel functional calculus�� Let a � B
H� be a self�adjoint operator
on H� Then the natural map P
�
a�� � B
H� has a unique extension

� � B
�
a�� � B
H�

such that the following holds�

if 
fn�n�N is a sequence in B
�
a�� such that supn�N sups���a� jfn
s�j �� and which

tends pointwise to a function f � B
�
a��� then �
fn� tends strongly to �
f� in B
H��

Moreover the restriction of � to C
�
a�� coincides with the morphism of continuous func�
tional calculus �	��	��

On the proof� For details� see Chapter 	 in �StZ�� as well as Proposition 	�� in �Bea�� or no

��� in �RiN��
The uniqueness is a straightforward consequence of the Theorem of Baire recalled in

�����
The proof of the existence of � uses tools of classical analysis such as the Lebesgue�

Stieltjes integral and the Lebesgue dominated convergence theorem�
For the last claim� one may use the following theorem of Dini 
see no ��	�	 in �Di���� let �

be a compact metric space and let 
fn�n�� be a pointwise increasing sequence of continuous
functions � � R which converges pointwise to a continuous function f � � � R� Then

fn�n�� converges to f in the norm topology of C
��� �

��	�� Corollary �Schur�s Lemma�� Let H be a Hilbert space and let S be a selfadjoint
subset of B
H�� The following are equivalent�

�i� S is topologically irreducible� More precisely� the only S�invariant closed subspaces
of H are f�g and H�

�ii� The commutant of S is trivial� More precisely� the only operators a � B
H� such
that as  sa for all s � S are the homothecies a � C idH �
Proof� 
i� � 
ii� Let a � B
H� be an operator which commutes with S� If a is self�adjoint�
then a � C idH by the argument below� The general case follows because any a � B
H� is
a linear combination of two self�adjoint operators�

Suppose that a is self�adjoint� commutes with S� and is not a homothecy� We shall reach
a contradiction� There exist two distinct points 	� � in the spectrum of a� Let f� g � C
�
a��
be such that

f
	� 
 � g
�� 
 � fg  ��

De�neHf to be the closure inH of the image of f
a�� For each s � S� one has sf
a�  f
a�s�
hence s
Hf � � Hf � As f
a� 
 �� one has Hf 
 f�g� and thus Hf  H by the irreducibility
assumption 
i�� Hence

g
a�
H�  g
a�f
a�H � g
a�f
a�H  
gf�
a�H  f�g
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because gf  �� and this is absurd because g
a� 
 ��

ii� � 
i� The assumption 
ii� implies that the only projections in B
H� which commute

with S are � and idH� which is another phrasing of 
i�� see Lemma 	���� �

��	�� Proposition� Let � � A� B
H� be a representation of C��algebra A on a Hilbert
space H� The following are equivalent�

�i� the only A�invariant closed subspaces of H are f�g and H�
�ii� the only projection p � B
H� which commute with �
A� are � and ��
�iii� the commutant �
A��  f b � B
H� j b�
a�  �
a�b for all a � A g

is reduced to C �

Proof� The equivalence 
i� �� 
ii� follows from Lemma 	��� and 
ii� �� 
iii� is a partic�
ular case of Schur�s Lemma�

For other equivalent conditions� see Proposition ��	� below� �

��	�� De�nition� A representation � � A� B
H� of a C��algebra A on a Hilbert space
H is irreducible if it satis�es the conditions of the previous proposition�

��	�� Remark� Observe that the morphism � of Theorem ���� needs not be an injection�
Indeed� let t � �
a� be a spectral value of a which is not an eigenvalue of a� and let
�t � B
�
a�� denote the characteristic function of ftg� Then �t 
 � in B
�
a��� but �
�t�  �
in B
H�� For example� if a � B �L�
��� ���

�
is de�ned by 
a��
s�  s�
s�� one has �
�t�  �

for all t � ��� ��  �
a��

��	�� Towards a �Lebesgue functional calculus�� Let a � B
H� be a self�adjoint
operator on H� For each pair �� � of vector in H� the linear map

�
C��
a�

� �� C

f ��� h�jf
a��i

de�nes a bounded measure ��
 on �
a�� It can be shown that there exists a measure � on
�
a� such that

��
 � � for all �� � � H

where � indicates absolute continuity�� such that any measure � satisfying ��
 � � for
all �� � � H satis�es also � � �� and that the measure class of � is well de�ned by these
requirements� The Gelfand isomorphism C
�
a�� � C�
a� has then a natural extension

L�
�
�
a�� �

� �� W �
a�

which is an isomorphism of the von Neumann algebra L�
�
�
a�� �

�
onto the von Neumann

algebra generated by a in B
H�� See �DvN� Appendice I� or Corollary X�	�� in �DuS��
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CHAPTER �� TWO FAMILIES OF EXAMPLES �

AF�ALGEBRAS AND REDUCED C��GROUP�ALGEBRAS

A separable C��algebra A is approximately �nite dimensional� or more simply AF� if
there exists a nested sequence A� � A� � ��� of �nite dimensional sub�C��algebras of A of
which the union is dense in A� Before giving in Section ��B examples of AF�algebras� we
need some preliminaries on the inclusions An � An��� and this is exposed in Section ��A�
Group algebras are very brie	y discussed in Section ��C�

��a� Pairs and towers of finite dimensional

C��algebras� and their Bratteli diagrams

���� Examples of Bratteli diagrams� We know from Section 
�B how to describe �nite
dimensional C��algebras� A good device to describe an inclusion of one such an algebra in
another is its Bratteli diagram� Before the actual de�nition� we give two examples�

The mapping

����
���
C �M��C � �� M��C � �M��C � �M��C �

�x� y� ���

�
� �x 

 y

�
�

�
�x  
 y 
  y

	
A � y

	
A

de�nes a pair of �nite dimensional C��algebras with Bratteli diagram as in Figure ��i�
Observe that the inclusion is unital� and correspondingly that each weight on the right of
the diagram is the sum �with multiplicities� of the related weights on the left � � � � � 
�
� � � � 
�
� and 
 � 
�

The mapping

����
���
M��C � �M��C � �M��C � �� M��C � �M��C �

�x� y� z� ���

�
�
�
�x  
 x 
  

	
A �

�
�x  
 y 
  z

	
A
	
A

de�nes a pair of �nite dimensional C��algebras with Bratteli diagram as in Figure ��ii�
Observe that the inclusion is not unital� and correspondingly that 
�� � ��

Figure �� �i� and �ii��
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���� De�nition of Bratteli diagrams for pairs� Let A � B be a pair of �nite
dimensional C��algebras� We know from Section 
�B that there are integers

m�� ����mr� n�� ���� ns � �

such that
rM

j��

Mmj
�C � � A � B �

sM
k��

Mnk�C ��

Denote by e�� ���� er the minimal central projections in A and by f�� ���� fs the minimal
central projections in B� One has

ejA �Mmj
�C � and fkB �Mnk �C �

for all j � f�� ���� rg and k � f�� ���� sg�
Given j � f�� ���� rg and k � f�� ���� sg� de�ne the multiplicity �k�j � N as follows� If pj is

a minimal projection in ejA� then fkpj is a sum of �k�j minimal projections in fkB �one
may say that �k�j is the rank of fkpj in fkB�� Then the data

�m � �mj���j�r � �n � �nk���k�s � � � ��k�j���k�s���j�r

determine completely �up to 	�isomorphism� the pair A � B� The matrix � is known as
the inclusion matrix of the pair A � B�

The Bratteli diagram of the inclusion A � B is a bipartite graph� which has weights on
vertices and multiplicities on edges� and which has

r vertices with respective weights m�� ����mr�
s vertices with respective weights n�� ���� ns�
one edge of multiplicity �k�j between the vertex of weight mj

and the vertex of weight nk

�of course edges of multiplicity zero are �nonedges���� Observe that one has

��m 
 �n�

by which we mean
Pr

j�� �k�jmj 
 nk for all k � f�� ���� sg� Moreover the pair A � B is

unital �i�e� the unit in A co��ncides with the unit in B� if and only if

��m � �n�

��	� Remark� The notations being as in ��
� one may show that the following are
equivalent�

the rank �k�j of fkpj in fkB�
the number of A�simple modules in the restriction to ejA

of the simple B�module corresponding to fk�
the number of simple modules in the restriction to Bk of the induction from A to B
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of the simple A�module corresponding to ej �

Moreover� the matrix � is also the matrix with respect to the canonical basis of the map

K	�A� � Z
r �� Z

s � K	�B�

induced by the inclusion A ���B on the corresponding Grothendieck groups�

��
� Examples associated to pairs of �nite groups� Let H be a �nite group and let
G be a subgroup of H� The group algebras provide an example

C �G� � C �H�

of unital pair of �nite dimensional C��algebras� The corresponding Bratteli diagram en�
codes standard informations on the irreducible complex representations of G and H� As a
sample of examples� we give in Figure 
 the Bratteli diagrams for the inclusions

S� � S� A� � S�

S� � S
 A
 � S


where Sn �respectively An� denotes the symmetric �resp� alterating� group on n letters�

Figure 
�

���� Bratteli diagrams for towers� A tower of C��algebras is a nested sequence

A	 � A� � ��� � An � An�� � ���

of C��algebras� each included in the next� The Bratteli diagram of a tower of �nite di�
mensional C��algebras is obtained by concatenation of the Bratteli diagrams for the pairs
A	 � A�� A� � A�� ��� �

As a �rst example� consider a separable Hilbert space H� Choose a nested sequence
V� � V� � ��� of subspaces of H such that dimC Vn � n for each n � � and such that the
union of the Vn �s is dense in H� For each n � �� identify B�Vn� with the sub�C��algebra
of B�H� of those operators mapping Vn into itself and V �n onto � Then

B�V�� � B�V�� � ��� � B�Vn� � B�Vn��� � ���

is a tower of �nite�dimensional C��algebras� its Bratteli diagram is the half�line ����� with
vertices at the integers �� 
� �� ��� �Figure ��� Adding units� one �nds the tower

C idH � B�V�� � C idH � B�V�� � ��� � C idH � B�Vn� � C idH � B�Vn��� � ���

and the second Bratteli diagram of Figure ��
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Figure ��

As a second example� consider the Cantor ternary set X� For each n � N� de�ne an
algebra An of continuous functions on X as follows�

A	 is the algebra of constant functions�
A� is the algebra of functions constant on X � �� �

�
� and X � ��

�
� ���

������������������������������������������������������������������������������ ��������������������
An is the algebra of functions constant on X � � j�n �

j��
�n � for each j � f� �� ���� �n � �g�

������������������������������������������������������������������������������ ��������������������

Then
A	 � A� � ��� � An � An�� � ���

is a tower of �nite dimensional abelian C��algebras with Bratteli diagram a regular rooted
tree where each vertex is of weight � and has two successors� as in Figure ��

Figure ��

��b� AF�algebras

For simplicity� all C��algebras appearing in this section are assumed to be separable�

���� De�nition� A separable C��algebra A is said to be an approximately �nite dimen�

sional C��algebra� or simply an AF�algebra� if there exists a tower A	 � A� � ��� of �nite
dimensional sub�C��algebras of A such that the union n�NAn is dense in A�

It is sometimes self�understood that an AF�algebra is in�nite dimensional�

���� First examples� The algebra K�H� of compact operators on a separable in�nite
dimensional Hilbert space is an AF�algebra� the same holds for the algebra C �H �K�H��
Also� the algebra of continuous functions on the Cantor ternary set is a commutative
AF�algebra� All this follows from ��� above�

On the other hand� if X is connected compact space which is neither empty nor reduced
to one point� then the only �nite�dimensional sub�C��algebra of C�X� is the algebra of
constant functions� In particular� C�X� is not an AF�algebra�

IfX is a secound countable compact space� then C�X� is an AF�algebra if and only ifX is
totally disconnected �this is part of Proposition ��� in �Br
��� namely if and only if X is zero
dimensional �this is standard dimension theory � see e�g� �HuW��� Recall that a compact
space which is totally disconnected and secound countable is always homeomorphic to a
closed subset of the unit interval�
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��� Inductive limits� Let A	 � A� � ��� be a tower of C��algebras� and let A� denote
the union of the An �s� Then A� is an involutive algebra �see the de�nition in ������
Moreover� each a � A� has a norm

kak �
p
spectral radius of a�a

where either the norm or the spectral radius may be computed in any An such that a � An�
If A denotes the completion of A� with respect to this norm� it is obvious that A is a
C��algebra� called the inductive limit of the tower �An�n�N �

Observe that� in case all An �s have units and all inclusions An ���An�� are unital� then
A has a unit� Conversely� if A has a unit� upon replacing whenever necessary each An by
C � �An �and this is easily seen to be necessary for �nitely many n �s only�� then one may
assume that all An �s and all inclusions are unital�

We will apply this to towers of �nite dimensional C��algebras� each such tower de�nes
an AF�algebra�

���� UHF�algebras� Let �kj�j�� be a sequence of integers� with kj � 
� For each n � ��

the algebra

An �

nO
j��

Mkj �C � � Mk�k����kn�C �

is a full matrix algebra� and the assignment

x �� x� �kn��

�where �kn�� denotes the unit in Mkn���C � � de�nes a pair An � An��� The resulting
tower is described by its Bratteli diagram� indicated in Figure �� The resulting inductive
limit C��algebra

�O
j��

Mkj �C �

is an AF�algebra known as a UHF�algebra �for Uniformly HyperFinite�� or sometimes as a
Glimm algebra �Gli��

Figure ��

����� Example� Consider the UHF�algebras

A �

�O
j��

M��C �j and B �

�O
j��

M��C �j

where Mk�C �j denotes a copy of Mk�C � for each j � � and for k � f
� �g� These two
UHF�algebras are known to be non�isomorphic�
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Here is a sketch of the proof� Let tr � A � C be a normalised trace on A� namely a
linear map such that tr��� � �� tr�a�a� �  and tr�aa�� � tr�a�a� for all a� a� � A� It
follows from the unicity of the trace on a matrix algebra that there is a unique trace on
A� Let now DA be the subgroup of the additive group R generated by the numbers tr�e��
where e is a projection in A� Using Exercise ��
�� one may check that

DA � Z



�




�

is the ring of 
�adic integers�
The same consideration for B gives rise to the group

DB � Z



�

�

�

which is not isomorphic to DA �because DB is ��divisible and DA is not�� Thus the
C��algebra B is not isomorphic to A�

�In a more sophisticated terminology� DA is the image tr�K	�A�� of the Grothendieck
group of A by the canonical map K	�A�� C induced by the trace��

More generally� given any set S of prime numbers� let �kj�j�� be a sequence of integers

with kj � S for each j � � and jfj � � j kj � sgj �� for each s � S� Then the associated
UHF�algebra gives rise to the group

D�S� � Z


�
�

s

�
s�S

�
�

For two sets S�S� of prime numbers� one has D�S� � D�S�� if and only if S � S�� It follows
that there are uncountably many pairwise nonisomorphic UHF�algebras�

Similar considerations provide a complete classi�cation of UHF�algebras� �rstly estab�
lished in J� Glimm�s thesis� see �Gli�� Theorem ����� in �Ped� and no ��� in �Ell�� The groups
which appear in the classi�cation are torsion�free abelian groups of rank �� they have been
classi�ed by R� Baer ������� see x �� in Volume II of �Fuc��

����� Example �Bratteli�� The two diagrams of Figure � de�ne two algebras which are
isomorphic�

Figure ��

Indeed� jumping through the even�numbered 	oors of the left�hand diagram of Figure ��
one obtains �rstly the left�hand diagram of Figure �� Building new intermediate 	oors�
one obtains secondly the right�hand diagram of Figure �� Jumping again through every
other 	oor� one obtains �nally the right�hand diagram of Figure ��
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Figure ��

����� Isomorphisms of AF�algebras� Let A�B be two AF�algebras� Let A	 � A� � ���
�respectively A	 � A� � ���� be a tower of �nite dimensional sub�C��algebras of A �resp�
B� with union A� dense in A �resp� B� dense in B��

The two towers are isomorphic if there exists isomorphisms An � Bn which commute
with the tower inclusions� If the towers are isomorphic� then A and B are isomorphic �this
is easy� but does require some argument ��� the converse does not hold� as Example ����
shows dramatically�

It is a theorem of Bratteli that the C��algebras A and B are isomorphic if and only
the involutive algebras A� and B� are isomorphic� Thus� the study of AF�algebras is
in some sense equivalent to that of involutive algebras of countable complex dimensions
which are locally �nite dimensional� i�e� such that any �nite subset is contained in a �nite
dimensional sub�involutive�algebra�

���	� Another de�nition� A separable C��algebra A is a AF�algebra if and only if the
following holds�

For any �nite subset fa�� ���� ang of A and for any � 	 �
there exist a �nite dimensional sub�C��algebra B of A and a subset fb�� ���� bng of B
such that kaj � bjk � � for j � f�� ���� ng�

This is Theorem 
�
 of �Bra��

���
� Stability� The class of AF�algebras has remarkable stability properties� For exam�
ple� it is easy to check that

closed two�sided ideals of AF�algebras are AF�algebras�
quotient C��algebras of AF�algebras are AF�algebras�
C��tensor products of AF�algebras of AF�algebras are AF�algebras�

A much deeper fact is the following result of L�G� Brown � if

 � J � A � B � 

is a short exact sequence of C��algebras such that J and B are AF�algebras� then A is
also a AF�algebra� See �Bro�� and Theorem ��� in �E ��

A sub�C��algebra of a AF�algebra needs not be a AF�algebra� Indeed� a famous isomor�
phism problem about the so�called irrational rotation algebras �which are far from being
AF�algebras� has been solved by embedding them in appropriate AF�algebras �PiV��

For an easier example� consider a connected separable compact metric space Y and a
continuous map p from the Cantor ternary set X onto Y �HeS� Exercice ����� One may
identify via p the C��algebra C�Y �� which is not AF� to a sub�C��algebra of C�X�� which
is AF �see �����

Let G be a �nite group of automorphisms of a AF�algebra and let AG denote the
corresponding sub�C��algebra of �xed points� It has been an open question for quite some
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time to know whether AG is necessarily AF� The answer is no� because B� Blackadar �Bl
�
has constructed an automorphism of order 
 on the CAR�algebra �see Chapter ��� namely
an action of Z

Zon CAR�H�� such that CAR�H�Z��Z is not AF �it is a C��algebra with
K��group not reduced to zero��

����� On the classi�cation of AF�algebras� Example ��� shows that there are large
classes of AF�algebras� and Example ���� shows that it is not always easy to decide whether
two AF�algebras given by two inductive systems are isomorphic or not� To cope with these
problems� G� Elliott has made good use of K�theory�

Let A be a C��algebra� The Grothendieck group K	�A� is� as always� the abelian group
of projective A�modules of �nite type� up to stable isomorphisms� But C��algebraists
rather view it as de�ned via appropriate equivalence classes of projections in the C��
algebra A�K�H�� where H denotes an in�nite dimensional separable Hilbert space� If A
has a unit� we denote its class in K	�A� by ��A� �this can also be viewed as the class of the
free A�module of rank one��

The positive part K	�A�� of K	�A� is the set of classes in K	�A� which can be rep�
resented by actual projections �or actual A�modules�� rather than by formal di erences
of these� In general� the pair �K	�A��K	�A��� is far from being an ordered group�
For example� for the so�called �Cuntz algebra� n� where n � 
 is an integer� one has
K	�On�� � K	�On� �Z
�n���Z� But there are important classes of C��algebras� includ�
ing AF�algebras� for which �K	�A��K	�A��� is an ordered group� namely for which one
has

K	�A�� �K	�A�� � K	�A� and K	�A�� � ��K	�A��� � fg�

For details� see Chapter III in �Bl���

It is a remarkable result� due to Elliott ������� that AF�algebras can be classi�ed in
terms of K�theory� In particular� let A�B be two AF�algebras with units� If there exists
an isomorphism of abelian groups � � K	�A� � K	�B� such that � ���A�� � ��B� and
� �K	�A��� � K	�B��� then A and B are isomorphic as C��algebras�

Ordered groups coming from AF�algebras are countable �because AF�algebras are sep�
arable� and have two special properties� they are so�called �unperforated groups� which
have the �Riesz Interpolation Property�� It is another remarkable result� due to E ros�
Handelman and Shen ������ that any countable ordered group with these two properties
is the Grothendieck group of an AF�algebra�

For all this� we refer to the original papers and to �E ��

����� Example� Consider the tower

B� �M��C � � ��� � Bn �
nO

j��

M��C �j � Bn�� �
n��O
j��

M��C �j � ��� � B �
�O
j��

M��C �j

as in ��� above� and let � � S� � U�
� �M��C � be an irreducible unitary representation
of the symmetric group on � letters� For each n � �� the group S� acts by automorphisms
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on Bn according to

g�x� �

�
� nO

j��

��g�

	
Ax

�
� nO

j��

��g�

	
A
��

for each g � S� and x � Bn� The action extends to
S�
n��Bn and to the C��algebra B� For

each n � �� let An � BS�n denote the sub�C��algebra of elements in Bn �xed by S�� Our
purpose is to indicate why the Bratteli diagram for the tower

A� � ��� � An � An�� � ��� �
��
n��

An

is as indicated in Figure ��

Figure ��

Let us �rst recall that S� has three irreducible representations �over C � which we de�
note by � �as above�� � �the identity� and  �the signature�� The corresponding table of
characters is shown in Figure ��

Figure ��

It follows that tensor products by � of the irreducible representations of S� decompose as

�!� �� � � � � � � � � � � �   � � � ��

One may encode these information about the pair �S�� �� in the graph of Figure ��

Figure ��

More generally� given a �nite group G and a representation � of G� information on
decompositions of tensor products by � may be encoded in the associated McKay repre�

sentation graph de�ned as follows� the set of vertices is the set "G of irreducible complex
representations of G� and there is one directed edge of multiplicity mj�k from �j � "G to

�k � "G� where the mj�k �s are given by

�j � � �
M
�k� G

mj�k�k�
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If mj�k �mk�j for all paire ��j � �k� � one draws usually the undirected graph corresponding
to the graph just de�ned� as we have shown in Figure �� More on this in �FoM� and
�McK��

Now� for each n � �� the algebra An � BS�n of elements in Bn �xed by S� is precisely
the commutant in Bn of the representation

�	n � S� ��
nO

j��

M��C �j �

Thus� if an� bn� cn are the integers de�ned by

�	n � an�� bn� � cn

one has
An � Man�C � �Mbn�C � �Mcn�C ��

It is clear that these integers are recursively de�ned by �!� above� namely by Figure �� or
more transparently by Figure ��

Observe in Figure � that each edge is the symmetrical image of an edge on the previous
	oor� but for �ve initial edges which constitute a so�called a�ne Coxeter graph of type #D��
It is an observation of John McKay that �nite subgroups of SU�
� provide in the same
way the following list�

binary dihedral group of order �n � #Dn�� �n � 
�

binary tetrahedral group of order 
� � #E�

binary octahedral group of order �� � #E�

binary tetrahedral group of order �
 � #E��

The graphs #An appear also naturally in McKay�s list� but the presentation above has
to be slightly modi�ed for them� because the analogue of � above is reducible for cyclic
subgroups of SU�
��

����� Exercise� Let A	 � A� � ��� be a tower of C��algebras and let A be the inductive
limit C��algebra� as in ����

�i� Let J be a closed two�sided ideal of A� and set Jn � J � An for each n � � Show
that

J �
�
n�	

Jn�

�ii� Show that A has no non trivial closed two�sided ideal if and only if� for each m � 
and for each non zero a � Am� there exists n � m such that the closed two�sided ideal of
An generated by a is An itself�

�iii� If the Ak �s are all �nite dimensional �so that A is AF�� state a condition equivalent
to those of �ii� in terms of the Bratelli diagram of the tower A	 � A� � ����
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�iv� Show that a UHF�algebra A with unit is simple� namely that the only two�sided
ideals of A are fg and A itself�

�Indication for the implication a � A � a 
� nJn � a 
� J of �i�� Consider the canonical
projections � � A� A
J and �� � A� A



nJn

�
� Set � � k���a�k 	 � For each n large

enough� there exists an � An such that kan � ak 
 �

� If �n � An � An
Jn denotes the
canonical projection at level n� one has

k�n�an�k � inf
b�Jn

kan � bnk � inf
b�
nJn

kan � bk � k���an�k � �

�

As the canonical inclusion An
Jn ���A
J is an isometry� one has also

k��a�k � lim
n��

k�n�an�k � �

�

Thus a 
� J �
Claim �iv� is a consequence of �iii� because� in a C��algebra with unit A� the only

two�sided ideal which is dense in A is A itself� But it can also be checked as follows�
If A � ��j��Mkj �C � is a UHF�algebra� every quotient A� A
J is faithful on the simple

algebra �n
j��Mkj �C � for all n � �� hence is faithful on A itself��

���� Exercise� Let A be an AF C��algebra and let B be a �nite dimensional sub�C��
algebra of A� Show that the relative commutant

B� � A �
�
a � A j ab � ba for all b � B

�
is an AF algebra� �If necessary� see the solution in Lemma ��� of �HeR���

����� Exercise� Let A �
N�

j��M��C �j be as in Example ��� and let

A� �
�
n��

�
� nO

j��

M��C �j

	
A � A�

so that any x � A� has �nite spectrum� Write down elements of A with in�nite spectra�

��c� On reduced group C��algebras

In this section� we consider a countable group $ endowed with the counting measure�
the Hilbert space ���$� together with its usual orthonormal basis ������� � the reduced

C��algebra C�red�$� and the linear injection

� �

�
C�red�$� �� ���$�

a ��� a��e�

de�ned in number ����
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����� Proposition� The reduced C��algebra of the in�nite cyclic group is isomorphic to

the algebra of continuous functions on the unit circle of the complex plane�

C�red�Z� � C�T��

Proof� Let d� � �
��
d� denote the usual Lebesgue �or Haar�� measure on

T� fz � C j jzj � �g�

The �Fourier transform� is an invertible isometry

F � ���Z��� L��T� d��

by Plancherel theorem �also called here Parseval theorem��
Let T �T� denote the subspace of L��T� d�� consisting of trigonometric polynomials�

There is by de�nition a bijection �
C �Z��� T �T�

a ��� "a

de�ned by "a�z� �
Pfinite

n�Z a�n�zn for all z � T� �The algebra C �Z� of Laurent polynomials

is often denoted by C �z� z�� ��� For each a � C �Z�� let

��a� � ���Z� �� ���Z�

denote as in ��� the convolution by a� and let

Ma � L
��T� d�� ��� L��T� d��

denote as in ���� the multiplication by "a� A straightforward computation shows that one
has Ma � F��a�F�� for all a � C �Z�� In other terms� the diagram

�
C �Z� ��� B����Z�

� �

M
T �T� ��� B


L��T� d��

�
is commutative� where the left�hand side vertical arrow is the bijection a �� "a and where
the right�hand side vertical arrow is the bijection x �� FxF���

Now C�red�Z� is by de�nition the norm closure of ��C �Z�� in B

���Z�

�
� and it fol�

lows from the Weierstrass approximation theorem that C�T� is isomorphic �via multiplica�
tion operators� to the norm closure of M �T �T�� in B


L��T� d��

�
� Thus the isomorphism

C �Z�� T �T� extends to an isomorphism C�red�Z�� C�T�� �
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����� Proposition� Let G be a locally compact abelian group and let "G denote its

Pontryagin dual� Then one has

C�red�G� � C	� "G��

Proof� The argument of the previous proof carries over� modulo Pontryagin theory of
duality for locally compact abelian groups� �

����� Proposition �Powers�� Let $ be a non abelian free group� Then C�red�$� is a

simple C��algebra�

Proof� We refer to �Po
�� �

���	� Proposition� Let $ be a group PSL�n�Z� for some n � 
� or more generally a

lattice in a connected real semi�simple Lie group without compact factors and with center

reduced to f�g� Then C�red�$� is a simple C��algebra�

Proof� We refer to �BCH�� and �BCH
�� �

���
� Remark� As already mentioned in ���� the two previous propositions show that�
in general� a unitary representation $� U�H� does not correspond to any representation
C�red�$� � B�H�� There is another C��algebra C�max�$� of which the representation do

correspond to the unitary representations of $� and for which we refer to �DC���
There is a canonical morphism

C�max�$� �� C�red�$�

which is always onto and which is an isomorphism if and only if $ is amenable� Any group
$ for which there exists a short exact sequence

� �� F �� $ �� S �� �

with F �nite and S solvable is amenable� For linear groups� i�e� for groups having faithful
representations in GL�n� C � for some n � �� the converse holds � if such a group is
amenable� then there exists a short exact sequence as above �Tit��
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CHAPTER �� STATES AND THE GNS�CONSTRUCTION

The letters GNS refer to I�M� Gelfand� M�A� Naimark �GeN� ���	
 and I� Segal �Seg�
����
�

��a� States

���� De�nition� Let A be a C��algebra� A linear form �  A� C is positive if ��a�a� � �
for all a � A�

Observe that there is a Cauchy�Schwarz inequality for a positive linear form � 

j��b�a�j� � ��b�b���a�a�

for all a� b � A�

���� Proposition� Let A be a C��algebra with unit�
�i� A positive linear form � on A is bounded� and

k�k � �����

�ii� A bounded linear form � on A such that k�k � ���� is positive�

Proof� �i� For each a � A one has ka�ak �� a�a � � by Lemma ����� hence

��a�a� � ka�ak�����

Using Cauchy�Schwarz inequality ������ we have consequently

j��a�j � ���������a�a���� � ka�ak��� ���� � kak�����

It follows that k�k � �����
�ii� Upon replacing � by �� k�k � we may assume that ���� � ��
Let us �rst show that � takes real values on self�adjoint elements� Choose a � A � a� � a�

and let �� � � R be such that ��a� � �� i�� For each � � R one has

ka� i�k� � k�a � i���a � i��k �
��a� � ��

�� � kak� � ��

�the last equality because of Corollary ����� and consequently

�� � ��� � �� � j�� i�� � ��j� � j��a� i��j� � kak� � ���

this implies � � ��
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Let us show that � takes positive values on positive elements� Choose h � A � � � h � ��
Then

j�� ��h�j � j���� h�j � k�� hk � �

and consequently ��h� � �� �

���� De�nitions� A state on a C��algebra A is a linear form on A which is positive and
of norm �� The state space SA of A is the set of all states on A�

If A has a unit� it follows straightforwardly from Proposition ��� that SA is a convex

subset of the dual of A� The same fact holds for C��algebras without units �but the proof
is not completely trivial see e�g� nos ����� and ����� in �DC�
��

A state � on a C��algebra A is extreme� or pure� if it has the following property if
��� �� are states on A and if t �
�� �� is a real number such that � � ��� t��� � t��� then
�� � ���

��	� Etymology� In quantum mechanics� there are models where the universe ���� or the
system to analyze ���� is described by some complex Hilbert space H� An �observable� is
a �possibly unbounded� self�adjoint operator a on H� and the spectrum 	�a� is the set of
possible outcomes of a measure of a�

To each local system corresponds a C��algebra A of bounded operators on H� If such a
system is in a state �� the average of many measures of the observable a is a number ��a��
There are abstract considerations which justify that the assignment a �� ��a� should be
linear and positive�

The superposition principle of quantum mechanics gives rise to the notion of pure state�
one which cannot be obtained as a superposition of other states�

��
� Examples� �i� Let A be a C��algebra of operators on a Hilbert space H which
contains idH and let 
 � H��� be a vector of norm �� Then the linear form

��

�
A �� C

a ��� h
ja
i

is positive� One has �� � � if moreover idH � A �or more generally if moreover AH � H
� see �DC�� ����	
� and in this case �� is called a vector state� Observe that

�
�
� �

eit�

for all t � R�
Proposition ���� below shows that these vector states are in some sense the only states

on C��algebras�

�ii� Let X be a compact space� For any probability measure � on X� the map

�� 

��
�
C�X� �� C

f ���

Z
X

f�x�d��x�
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is a state on the abelian C��algebra C�X�� All states on C�X� are of this form by a theorem
of F� Riesz �see Theorem ���� in �Ru�
� and do not confuse this theorem of Riesz with the
one recalled in ��	�� Pure states correspond bijectively to Dirac measures on X�

�iii� Let A be the dense ��subalgebra of C���� �
� of polynomial functions R� C and let
�  A � C be the linear form de�ned by ��f� � f���� Then one has

��f�f� � �

for all f � A but � is not continuous with respect to the norm kfk � sup��t�� jf�t�j�
Indeed� if �fn�n�� is the sequence in A de�ned by f�t� � tn� then kfnk � � and ��fn� � �n

for all n � ��

���� Remark� Let � be a state on a �nite dimensional C��algebra A� We know from x
��B that A �

Lr
j��Aj where each Aj is isomorphic to a full matrix algebra� For each

j � f�� ���� rg� let �j  Aj � C be the composition of the canonical inclusion Aj � A and
of �� Then �j is a state on Aj and � is in the appropriate sense the sum of the �j �s�
Thus� to understand states on �nite dimensional C��algebras� it is essentially su�cient to
understand states on full matrix algebras�

For the de�nition of the positive cone Mn�C �� in the next proposition� see �����

���� Proposition� Consider an integer n � � and a state � on the C��algebra Mn�C ��
Then there exists a positive matrix h �Mn�C �� such that trace�h� � � and

��a� � trace�ha�

for all a �Mn�C ��
The state � is pure if and only if h is a projection of rank ��

Proof� The bilinear form de�ned on Mn�C � by �a� b� �� trace�ab� is non degenerate� be�
cause trace�a�a� �

Pn
j�k�� jaj�kj

� for all a � �aj�k���j�k�n � Hence� for every linear form

� on Mn�C �� there exists h � Mn�C � such that ��a� � trace�ha� for all a � Mn�C ��
Assuming now that � is a state� we have to check that h is positive and of trace ��

For all a � A� one has

trace
�
�h� h��a

�
� trace�ha� � trace�ha�� � ��a� � ��a�� � ��

It follows that h � h�� Thus there are orthogonal minimal projections p�� ���� pn � Mn�C �
and real numbers t�� ���� tn such that h �

Pn
k�� tkpk� For all j � f�� ���� ng� one has tj �

trace�hpj � � ��pj� � �� In other words� the matrix h is positive� Also trace�h� � ���� � ��
The last statement is now straightforward� �

���� Remark� Let H be an in�nite dimensional Hilbert space� There is a notion of
trace�class operator on H  they are compact operators h on H such thatX

��I

he�jhe�i 	
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for all orthonormal basis �e����I of H� and they have a trace de�ned by

trace�h� �
X
��I

he�jhe�i

�this number trace�h� is indeed independent of the choice of the orthonormal basis�� For
such a trace�class operator h which is moreover positive and of trace �� the linear form
a �� trace�ha� is a state on B�H�� It is known that any state on B�H� which is normal

is of this form see e�g� Theorem �����	 in �Sak
� �A linear form is said to be normal if
it is continuous with respect to the so�called ultra�weak topology� or equivalently to the
so�called ultra�strong topology � see e�g� �StZ
� Corollary ��� of Chapter ���

Exercise �nd the positive trace�class operators h of trace � for which the state a ��
trace�ha� is pure�

There are states on B�H� which are not normal� For example� consider a representation

�  B�H��K�H� �� B�L�

of the Calkin algebra of H in some Hilbert space L� and let p  B�H� � B�H��K�H�
denote the canonical projection� For any vector 
 � L� the state � de�ned on B�H� by
��a� � h
j��p�a��
i vanishes on K�H� and consequently is not normal� For the existence of
representations such as �� see Theorem ���� below� or more constructively Calkin�s original
paper� It is known that � is necessarily faithful �because the Calkin algebra is simple� and
that L is necessarily not separable �Cal
�

��� Proposition� Let A be a C��algebra and let a � A � a 
� �� Then there exists a
state � on A such that ��a�a� � ��

Proof� We know from Proposition ���	 that A� is a closed convex cone in Asa� As �a�a ��

A�� the Hahn�Banach theorem shows that there exists a linear form ��  Asa � R of norm

� which is positive on A� and strictly negative on �a�a� The C �linear extension � of �� to
A is a state such that ���a�a�  �� �

����� Topology on the state space� Let A be a C��algebra� We denote by BA the
space of positive linear form on A of norm � �� together with the topology of pointwise
convergence� this is obviously a convex subset in the dual of A� and it is a compact space
�a consequence of Tychono� theorem�� As already observed in ��	� the state space SA is
a convex subset of BA� The set of extreme points of BA is clearly the union of f�g and of
the space P �A� of pure states� because a form � � BA such that �  k�k  � cannot be
an extreme point of BA �indeed � � ��� t�� � t� k�k for t � k�k��

If A has a unit� SA is the intersection of BA with the closed a�ne hyperplane of equation
���� � �� so that SA is a compact space�

If A has no unit� SA is a locally compact space which is non compact ��BrR
� Theorem
��	�����

If A � C��X� is an abelian C��algebra� we have already observed in Example ��� that
P �A� is in bijective correspondance with X �via Dirac measures�� and one may check that
this bijection is an homeomorphism� If A � Mn�C � for some integer n � �� Proposition
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��� shows that P �A� is in natural bijection with the projective space Pn���C � of lines
in C

n �i�e� of orthogonal projections of rank � in Mn�C ��� and again this bijection is a
homeomorphism� These examples show that P �A� is an interesting topological space�

The quotient space of P �A� by the relation of equivalence for states �see De�nition ���	

below� is the dual �A of A� and the quotient topology is the Jacobson topology on �A �DC��
x 	
�

��b� The GNS�construction

Recall from ��� that a representation of a C��algebra A on a Hilbert space H is a linear
map �  A � B�H� such that ��ab� � ��a���b� and ��a�� � ��a�� for all a� b � A� from
Corollary ���� that these conditions imply k��a�k � kak for all a � A� and from Proposition
��	� that a faithful �� injective� representation satis�es moreover k��a�k � kak for all
a � A�

����� Theorem �GNS construction�� Let A be a C��algebra with unit and let � 
A� C be a state�

�i� Then there exist

� a Hilbert space H��
� a representation ��  A� B �H�� �
� a vector 
� � H� of norm �

such that
��a� � h
� j ��a�
�i

for all a � A and such that 
� is cyclic for �� �namely such that ���A�
� � H���

�ii� The triple �H�� ��� 
�� is unique up to isomorphism in the following sense� Let H
be a Hilbert space� let �  A � B�H� be a representation and let 
 � H be a unit vector
such that ��a� � h
j��a�
i for all a � A and such that 
 is cyclic for �� Then there exists
a unitary isomorphism u  H� � H such that ��a� � u���a�u

� for all a � A and such that
u �
�� � 
�

Proof� �i� Set V� � f a � A j ��a�a� � � g� For a � V� and b � A� one has also ��b�a� � �
by Cauchy�Schwarz inequality� Thus

V� � f a � A j ��b�a� � � for all b � A g

and V� is a closed left ideal in A� The positive sesquilinear form �b� a� �� ��b�a� on A
de�nes a positive sesquilinear form on the quotient A�V� given by

hb � V� j a� V�i � ��b�a�

for all a� b � A� This makes A�V� a prehilbert space� We de�ne H� to be its completion�
and 
� � H� to be the vector � � V� � A�V� � H��
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For each a � A� let La  A�V� � A�V� denote the left multiplication b� V� �� ab� V��
To compute kLak � consider the positive linear form de�ned on A by a �� ��b�ab�� which
is of norm ��b�b� by Proposition ����i� One has

hLa�b � V�� j La�b � V��i � ��b�a�ab� � kak� ��b�b� � kak� hb � V� j b� V�i

for all a � A� so that kLak � kak � Thus La extends to a bounded operator on H� that
we denote by ���a�� The map ��  A � B �H�� is clearly a representation such that

��a� � h
�j���a�
�i for all a � A and such that ���A�
� � A�V� � H��

�ii� For all a� b � A� one has

h���b�
� j ���a�
�i � h
� j ���b
�a�
�i � h
 j ��b�a�
i � h��b�
 j ��a�
i �

As the ���a�
� �s �respectively the ��a�
 �s
 are dense in H� �resp� in H
� there exists an
isomorphism u  H� � H such that u���a�
� � ��a�
 for all a � A� We leave it to the
reader to �nish the proof� �See �DC�� �����
 if necessary�� �

����� Example� Let us revisit the previous proof in case A � Mn�C � and �  A � C

given by ��a� � trace�ap�� where

p �

�
BB	

� � � � � �
� � � � � �
���

��� � � �
���

� � � � � �



CCA

is a projection of rank one� One has

V� �

����
���

�
BB	

� � � � � �
� � � � � �
���

��� � � �
���

� � � � � �



CCA
���
��� � Mn�C ��

Thus� if e� denotes the �rst vector of the canonical basis of C n � the map A� C n de�ned
by a �� a�e�� factors as an isomorphism A�V� � C n � The scalar product de�ned via � on
this A�V� � C n is given by

hb j ai � �

�
BBB	
�
BB	

b� � � � � �
b� � � � � �
���

��� � � �
���

bn � � � � �



CCA
��
BB	
a� � � � � �
a� � � � � �
���

��� � � �
���

an � � � � �



CCA


CCCA

� �

�
BB	
P

bjaj � � � � �
� � � � � �
���

��� � � �
���

� � � � � �



CCA �

nX
j��

bjaj

and is thus nothing but the standard scalar product on C n � The representation �� is the
tautological representation of Mn�C � on C n �
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����� Proposition� Let A be a C��algebra with unit� let � be a state on A and let
��  A � B�H�� be the representation obtained by the GNS�construction�

Then the representation �� is irreducible if and only if the state � is pure�

Proof� Suppose �rst that �� is reducible� There exist two orthogonal projections p� q �
���A��� both distinct from �� such that p� q � �� Observe that p
� 
� �� because

���A�p
� � p���A�
� � pH� 
� f�g�

and similarly that q
� 
� �� De�ne two states �� and �� on A by

���a� �
hp
� j ���a�p
�i

kp
�k
�

�

���a� �
hq
� j ���a�q
�i

kq
�k
�

so that � � kp
�k
�
�� � kq
�k

�
���

To prove that � is not pure� it remains to check that �� 
� ��� But this is clear because
one has ���p� � � and� as qp � �� one has ���p� � ��

Suppose now that � is not pure� namely that there exist two distinct states ��� �� on A
and a number t �
�� �� such that � � ���t����t��� The sesquilinear form �a� b� �� ���a�b�
on A de�nes a sesquilinear form on H�� let�s denote it by �
� �� �� �
j�
� and it follows from
Riesz Theorem ��	 that there exists a bounded operator �indeed a positive one� h on H�

such that �
j�
 � h
jh�i for all 
� � � H�� A straightforward computation shows that
h � ���A���

To prove that �� is reducible� it remains to check that h �� C idH � But this is clear�
because h � C idH would imply �� � �� �

���	� Theorem �Gelfand�Naimark� �	��� Let A be a C��algebra�
�i� There exists a Hilbert space H and a faithful representation � of A on H� If A is

separable� H can be chosen separable�
�ii� For each a � A� there exists an irreducible representation � of A such that ��a� 
� ��

Sketch of proof� �i� Let a � A� a 
� �� Let �a be as in Proposition ��� a state on A such that
�a�a�a� � �� Let �a  A � B�Ha� be the corresponding GNS representation� with cyclic

vector denoted by 
a� Then k�a�a�
ak
� � �a�a�a� � �� so that �a�a� 
� �� The Hilbert sum

of the �a �s over a set of a �s which is dense in A provides a faithful representation of A�
�ii� This follows from the Krein�Milman theorem� which shows in this context that the

set of all states is the weakly closed convex hull of the set of pure states�
For more on this� see e�g� Th eor!eme ����	 in �DC�
� �

���
� Corollary �Gelfand�Raikov� �	��� For any locally compact group G and for
any g � G distinct from the unit element� there exists an irreducible continuous unitary
representation � of G such that ��g� 
� ��

Proof� See e�g� Corollaire �	���� in �DC�
� �
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����� Proposition� Let A be a C��algebra� let �  A� B�H� be a representation of A�
let 
 � H be a unit vector and let � denote the state on A de�ned by

��a� � h
j��a�
i �

Then the GNS�representation �� is a subrepresentation of �� In particular� if � is irre�
ducible� then �� and � are unitarily equivalent�

Proof� This is a straightforward consequence of the unicity part of Theorem ����� �

��c� The Kaplansky density theorem� and some applications�

����� Comment� Let A be an involutive subalgebra of H containing idH and let a � A
��

�
Von Neumann Density Theorem ������ shows that there exists a generalized sequence in
A which converges strongly to a� but it gives no information on the norms� For this� the
following is useful�

Whereas the theorem of von Neumann is strictly about von Neumann algebras� the theo�
rem of Kaplansky mixes the C��algebra structure and the von Neumann algebra structure�

����� Kaplansky Density Theorem� Let A�B be two involutive algebras of operators
on a Hilbert space H such that

idH � A � B � B�H�

and such that A is strongly dense in B� Then the unit ball of A is strongly dense in the
unit ball of B�

���� Lemma� In the hypothesis of the previous theorem� the self�adjoint part Asa of A
is strongly dense in the self�adjoint part Bsa of B�

Proof of Lemma� If A is strongly dense in B� then A is a fortiori weakly dense in B� As
the mapping ��

�
B�H� �� B�H�

x ���
�

�
�x � x��

is weakly continuous� the self�adjoint part Asa � f a � Aja� � a g of A is weakly dense in
Bsa� Thus the lemma follows from Proposition �����iii� according to which a convex subset
of B�H� which is weakly closed is automatically strongly closed�

Observe that x �� �
� �x � x�� needs not be strongly continuous� so that the argument

using the weak topology cannot be avoided� �

����� Proof of Theorem ����� We assume for simplicity that A and B are C��algebras
of operators in H� and we leave it to the reader to check that this hypothesis is harmless
�because the norm topology is stronger than the strong topology��
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Consider b � B such that kbk � ��We have to show that any basic strong neighbourhood
V of b in B�H� has a non empty intersection with the unit ball of A� As the case b � � is
clear� there is no loss of generality in assuming from now on that kbk � ��

Assume �rstly that b� � b� Let f  ���� �
 � ���� �
 be the function de�ned by
f�t� � �t��� � t��� Calculus shows that f is a homeomorphism� let g denote the inverse
homeomorphism� By continuous functional calculus� one may de�ne y � g�b� � B� and
one has

b �
�y

� � y�
�

Consider a �nite sequence of vectors 
�� ���� 
n � H� a number � � � and the strong neigh�
bourhood

V �

�
c � B�H�

��� k�c� b�
jk  � for j � f�� ���� ng

�
of b in B�H�� We have to show that there exists a � A � V such that kak � ��

By the previous lemma� there exists a self�adjoint element x � Asa such that

k�x � y�b
jk 
�

�
for each j � f�� ���� ng���x � y��� � y����
j

�� 
�

�
for each j � f�� ���� ng�

One sets a � �x�� � x���� � Asa� As t �� �t�� � t���� maps the whole of R onto ���� �
�
one has kak � �� One computes

a� b �
�x

� � x�
�

�y

� � y�
� �

�

� � x�

�
x�� � y��� �� � x��y

� �

� � y�

� �
�

� � x�
�x � y�

�

� � y�
� �

x

� � x�
�y � x�

y

� � y�

� �
�

� � x�
�x � y�

�

� � y�
�

�

�
a�y � x�b�

It follows that

k�a � b�
ik � �

���� �

� � x�

����
�����x � y�

�

� � y�

j

���� �
�

�
kak k�x � y�b
jk  �

namely that a � V�
Consider now the general case �b not necessarily self�adjoint�� The operator�

� b
b� �

�
�M��B�

is self�adjoint� and its norm is the same as that of b� As M��A� is strongly dense inM��B��
the previous argument applies and there exists a self�adjoint element�

a��� a���
a��� a���

�
� Asa

of norm at most � which approximates

�
� b
b� �

�
in the strong topology� In particular

a��� � A is of norm at most one and approximates b in the strong topology� �
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����� Proposition� Let �  A� B�H� be a representation of a C��algebra A on a Hilbert
space H� The following are equivalent�

�i� the only A�invariant closed subspaces of H are f�g and H�
�ii� the only A�invariant subspaces of H are f�g and H�
�iii� for all �nite sequences 
�� ���� 
n in H and for all u � U�H�� there exists

a unitary element v in A such that u�
j� � ��v��
j � for all j � f�� ���� ng�

�If A has no unit or if ���� 
� idH� statement �iii� should be understood

for v � �A � see 	�
 � and for the canonical extension of � to �A��

Proof� We refer to �DC��th eor!eme ��"�	
 or to �Ped� Theorems ����� and 	��	��
� The proof
depends strongly on Kaplansky�s density theorem� � �For other equivalent conditions� see
Proposition ������

����� Remark� The equivalence �i� � �ii� is sometimes expressed as follows a repre�
sentation of A is topologically irreducible if and only if it is algebraically irreducible�

����� De�nition� Let A be a C��algebra� Two representations �  A � B�H�� and
�  A � B�H�� are equivalent if there exists a surjective isometry u  H� � H� such that
��a� � u��a�u� for all a � A�

Similarly� two states � and � on A are equivalent if the GNS�representations �� and �	
of A are equivalent�

���	� Examples� �i� Let ��� �� be two states on a C��matrix algebra Mn�C �� and let
h�� h� � Mn�C �� be the corresponding positive matrices� as in Proposition ���� Then ��
and �� are equivalent if and only if h� and h� have the same rank�

�ii� Let X be a compact space� let ��� �� be two states on the abelian C��algebra
C�X� and let ��� �� be the corresponding probability measures on X� Then �� and �� are
equivalent states if and only if �� and �� are equivalent measures� The proof involves
essentially the Radon�Nikodym theorem� see Theorem ����� in �Arv
 for details�

���
� Proposition� Let A be a C��algebra with unit and let ��� �� be two pure states
on A� Then �� and �� are equivalent if and only if there exists a unitary element v � A
such that

���a� � ���vav
��

for all a � A�

Proof� For j � f�� �g� let �Hj � �j � 
j� denote the GNS data associated to the state �j as in
Theorem �����

Suppose that there exists a unitary v � A such that ���a� � ���vav�� for all a � A� Set

�� � ���v��
�� Then

h
� j ���a�
�i � ���a� � ���vav
�� � h
� j ���vav

��
�i � h
�� j ���a�

�
�i

for all a � A� Hence �� and �� are equivalent by the unicity part of Theorem �����
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Suppose conversely that �� and �� are equivalent� There exists an isomorphism u 
H� � H� such that ���a� � u���a�u� for all a � A� As

ku��
��k � k
�k � �

there exists a unitary operator on H which maps u��
�� to 
�� hence there exists by
Proposition ���� a unitary v � A such that ���v�u��
�� � 
�� Then

���a� � h
� j ���a�
�i � hu�
� j ���a�u
�
�i

� h���v
��
� j ���a����v

��
�i � h
� j ���vav
��
�i

� ���vav
��

for all a � A� �

Let ��� be two states on a C��algebra� As states are by de�nition of norm �� one has
k�� �k � �� The next result appeared in �GlK
�

����� Theorem �Glimm�Kadison�� Let ��� be two pure states on a C��algebra A such
that k�� �k  �� Then � and � are equivalent�

Proof� Denote by ��  A� B�H�� and �	  A� B�H	� the GNS�representations de�ned
by � and �� and let �  A� B�H� �H	� denote the direct sum �� � �	 �

Let x �

�
r s
t u

�
� B�H� �H	� be an element in the commutant of ��A�� namely be

such that �
r s
t u

��
���a� �
� �	�a�

�
�

�
���a� �
� �	�a�

��
r s
t u

�

for all a � A� One has t���a� � �	�a�t for all a � A� hence also

t�t���a� � ���a�t
�t for all a � A�

tt��	�a� � �	�a�tt
� for all a � A�

Similarly s�s commutes with �	�a� and ss� commutes with ���a� for all a � A� As ��� �	
are irreducible �Proposition ������ Schur�s lemma implies that t�t and ss� �respectively tt�

and s�s
 are scalar multiples of the identity on H� �resp� H	
� It follows that there exist
constants � � �� � � � and unitary isomorphisms �t  H� � H	 � �s  H	 � H� such that
t � ��t � s � ��s�

Let us now assume that � and � are not equivalent� so that we have to prove that
k�� �k � �� As t � ��t satis�es t���a� � �	�a�t for all a � A� one has necessarily t � ��

Similarly� s � �� Hence any operator in the commutant of ��A� is of the form

�
� �
� �

�
�

and one has �
� �
� ��

�
� ��A�

��

� B �H� �H	� �
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By Kaplansky Density Theorem� there exists a generalized sequence �x����I in the unit
ball of A such that

��x�� �

�
���x�� �

� �	�x��

�
��

�
� �
� ��

�

�strong convergence�� In particular� if 
� � H� and 
	 � H	 are the GNS cyclic vectors�

����
�
���x�� �

� �	�x��

��

�
�

�
�

�

�
�

����� �� �����
�
���x�� �

� �	�x��

��
�

	

�
�

�
�

	

����� �� �

and this implies

h
� j ���x��
�i �� � i�e� ��x�� � �

h
	 j �	�x��
	i �� �� i�e� ��x�� � �� �

This shows that

j
�
�� �

�
�x��j � �

and thus� because kx�k � � for all � � I�

k�� �k � �

as was to be proved� �

����bis� Exercice� Two representations ��  A � B�H�� and ��  A � B�H�� of a C��
algebra A are said to be quasi�equivalent if there exists an isomorphism of von Neumann
algebras #  ���A��� � ���A��� such that #����a�� � ���a� for all a � A �equivalent
de�nitions in �DvN� n� ��	
��

Let ��� be two states on A such that k�� �k  �� If � is pure� show that the corres�
ponding GNS�representations �� and �	 are quasi�equivalent�

Let ��n�n�� be a sequence of pure states on A which converge to a state � on A in the

norm  limn�� k� � �nk � �� Show that � is pure� and equivalent to �n for n� �� �This
is Corollary ��" in �Kad
�


����� Proposition� Let A be a C��algebra of operators on a Hilbert space H� let 
� � �
H��� be two vectors of norm � and let ��� �
 be the corresponding vector states� de�ned
as in Example ��
�

�i� One has
k�� � �
k � k
 � �k k
 � �k �

k�� � �
k � �
p
� � jh
 j �ij��
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�ii� Assume moreover that A is irreducible on H� Then

k�� � �
k � � � jh
 j �ij��

Proof� �i� For each a � A� one has

jh
 j a
i � h� j a�ij �
�

�

��h
 � � j a�
 � ��i � h
 � � j a�
 � ��i
��

� kak k
 � �k k
 � �k

by the Cauchy�Schwarz inequality� and the �rst inequality follows� For the second one�
upon replacing 
 by eit
 for some t � R� we may assume that h
 j �i is real� Then

k
 � �k� � h
 j 
i � �h
 j �i� h� j �i � � �� � h
 j �i�

k
 � �k� � h
 j 
i � �h
 j �i� h� j �i � � ��� h
 j �i�

and the inequalities of �i� follow�
�ii� Consider the projection p� of H onto the line C 
� given by

p���� � h
 j �i 


for all � � H� By Kaplanski density theorem� there exists a sequence �an�n�� in the unit
ball of A such that

an
 ��� p��
� and an� ��� p����

when n �� 	� One has

lim
n��

�� �an� � lim
n��

han
 j 
i � �

lim
n��

�
 �an� � lim
n��

han� j �i � jh
 j �ij�

lim
n��

��� � �
� �an� � � � jh
 j �ij�

and Claim �ii� follows� �

��d� Limit states on AF�algebras

����� States as limit states� Let A be an AF�algebra with unit� and let A� � A� � ���
be a tower of �nite dimensional sub�C��algebras of A such that the identity of A is in A�

and such that

A �
�
n��

An�

For each n � �� let �n be a state on An� we assume that the restriction to An of �n��
coincides with �n� Let �� 

S
n�oAn � C be the resulting linear form� As k�nk � � for

all n � �� the form �� extends to a state �  A� C called the limit of the �n �s�
Any state � on A is the limit of the restrictions �jAn �s�
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���� Proposition� Let A �
S
n��An be an AF�algebra and let � � limn�� �n be a

state on A as in the previous number� If �n is pure for each n � � then � is pure�

Proof� Let ��� �� be states on A and let t �
�� �� be such that � � ��� t���� t��� For each
n � � one has �n � ��� t� ���jAn� � t ���jAn� by restriction to An� hence ��jAn � ��jAn

by purity of �n� It follows that �� � ��� �

����� Product states on tensor products of two C��algebras� Let A�B be two
C��algebras and let �  A � C � �  B � C be two states� To avoid technicalities on
tensor products� we assume here that A and B are �nite dimensional� so that the tensor
product A�B is obviously a C��algebra� Then

�� � 

��
�

A�B �� CX
i

ai � bi ���
X
i

��ai���bi�

is a state� Indeed� the GNS construction provides data ����H�� 
�� and ��	�H	 � 
	�
associated to � and �� hence also a representation

�� � �	  A�B �� B �H� �H	�

and a unit vector 
� � 
	 � H� �H	 � As

��� ��

�X
i

ai � bi

�
�
X
i

��ai���bi� �
X
i

h
�j���ai�
�i h
	j�	�ai�
	i

�

�

� � 
	

�����
�X

i

���ai�� �	�bi�

�

� � 
	

�

for all
P

i ai � bi � A�B� the linear form �� � is indeed a state� as claimed�
States of this form are called product states on A�B�
All this carries over to arbitrary C��algebras as long as one deals with the so�called

maximal tensor product A�max B�
States on tensor products are far from all being product states� This is intuitively clear

from Proposition ��" given two integers k� l � �� the state space of Mk�C � �respectively

of Ml�C �� of Mk�C � � Ml�C � � Mkl�C �
 is of dimension k�k���
� � � �resp� l�l���

� � ��
kl�kl���

�
� �
 and

k�k � ��

�
� � �

l�l � ��

�
� � 

kl�kl� ��

�
� �

as soon as k � � and l � �� See also the exercice below�

����� Exercice� Let � be the linear form de�ned on M��C � �M��C � by

�

��
a b
c d

�
�

�
a� b�

c� d�

��
�

�

�
�aa� � dd���
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Check that � is a state which is not a product state�
�Indication� The two linear forms mapping

�
a b
c d

�
�

�
a� b�

c� d�

�

to aa� and dd� are product states on M��C � �M��C �� so that � is indeed a state�
Let �p be a product state� given by an expression of the form

�p

��
a b
c d

�
�

�
a� b�

c� d�

��
�

trace

��
a b
c d

��
r s
s �� r

��
trace

��
a� b�

c� d�

��
r� s�

s� �� r�

��

where

�
r s
s �� r

�
and

�
r� s�

s� �� r�

�
positive matrices� Suppose �ab absurdo� that � �

�p� evaluate on tensor products of elementary ��by���matrices� and see that one arrives at
a contradiction�


����� Product states on UHF�algebras� Let A be a UHF�algebra and let �kj�j�� be

a sequence of integers� with kj � � for all j� such that

A �
�O
j��

Mkj �C �

�see ����� For each j � �� choose a positive matrix hj �Mkj �C � of trace �� For each n � ��
the linear form

�n 

nO
j��

Mkj �C � �Mk�k����kn�C � �� C

de�ned by �n�x� � tr

��Nn
j�� hj

�
x

�
is a state� The resulting state � on A is called a

product state� We write

��x� � tr

�
	
�
	 �O

j��

hj



A x



A

for all x � A�

����� Exercice� Consider the UHF algebra

A �
�O
j��

M��C �j
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of Example ����� Given a sequence $ � ��j�j�� of real numbers in ��� �
� de�ne a product

state �� on A by

�� � tr

�
	
�
	 �O

j��

�
�j �
� �� �j

�
A x



A

for all a � A�

�i� Check that �� is the unique tracial state �see ����� on A if and only if �j �
�
�
for all

j � ��

�ii� Show that �� is pure if and only if �j � f�� �g for all j � ��
�iii� Let $ � ��j�j�� and $� �

�
��j
�
j��

be two sequences of � �s and � �s� Show that the

states �� and ��� are equivalent if and only if there exists n � � such that �j � ��j for all
j � n�

�iv� Deduce from �iii� that A has uncountably many pairwise inequivalent irreducible
representations�

�Indication� �ii� If �  �j  � for some j � �� it is easy to write �� as a non trivial
convex combination of two distinct states� Conversely� suppose �j � f�� �g for all j � ��

Let �
�

� �
��

be two states on A and let t �
�� �� be such that �� � �� � t��
�

� t�
��

� Check

that the restrictions of ��� �
�

� �
��

to
N�

j��M��C �j coincide for all n � �� so that one has

�� � �
�

� �
��

�
�iii� If �j � ��j for j � n� use the fact that

Nn
j��M��C �j has a unique irreducible

representation �up to equivalence��
Suppose conversely that �� and ��� are equivalent� By Proposition ���� and Exercice

���"� there exists an integer n � � and a unitary element v � An such that

j����x� � ���vxv
��j  �

for all x � A � kxk � �� For any j � n� let ej � ��������

�
� �
� �

�
������ � A� where the

matrix

�
� �
� �

�
appears in the jth place� as ����ej � � ��j and ���vejv�� � ���ej � � �j �

one has j��j � �j j  �� namely ��j � �j �


���	� Remarks on Powers� factors� Let A be as in the previous exercice� For each
� �
�� �

� �� set � � �
��� �
�� ��� let �� be the state on A associated to the constant sequence

$ � ����� �� ����� and let ��  A� B�H� be the corresponding GNS representation� The
von Neumann algebras

R � ���A�
��

generated by the image of �� is known to be a factor� indeed a factor of type III� and
the R �s are known to be pairwise nonisomorphic factors of type III �Po�
� They are
the Powers� factors� This family of factors has played a central r�ole in the theory of von
Neumann algebras �works of Pukanzky and Glimm before �Po�
� works of Araki� Woods�
Krieger and Connes after �Po�
� to quote but a few��
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CHAPTER �� THE ALGEBRA OF

CANONICAL ANTICOMMUTATION RELATIONS

��a� The full Fock space�

���� Tensor products of Hilbert spaces� Let H��H� be two Hilbert spaces� We denote
by H� �H� the tensor product of H� and H� viewed as complex vector spaces�
Recall that� by de�nition of the tensor product� any bilinear map H� �H� � C gives

rise to a linear form on H��H�� similarly� any R	bilinear map � 
 H��H� � C such that
� �i��� ���  � ���� i���  �i� ���� ��� for all ���� ��� � H� �H� gives rise to an antilinear
form on H� �H�� It follows that the form

�H� �H� �H� �H� �� C

���� ��� ��� ��� ��� h��j��i h��j��i

gives rise to a sesquilinear form h���j���i on H� �H� such that

h�� � ��j�� � ��i  h��j��i h��j��i

for all ��� �� � H� and ��� �� � H��
Any � � H� �H� may be written � 

Pn
i�� ���i � ���i� The Gram	Schmidt orthogona	

lization process shows that there is no loss of generality in assuming that the sequence
����i���i�n is orthogonal� Then h�j�i 

Pn
i�� k���ik� k���ik� � It follows that the sesquilinear

form de�ned above is positive de�nite on H� �H��
The completion of H��H� with respect to this scalar product is a Hilbert space which

is called the tensor product of H� and H�� and which is denoted by H� �H��
If �e������I and �e������K are respectively orthonormal basis in H� and H�� it is easy to

check that �e��� � e����������I�K is an orthonormal basis ofH��H�� IfH�  L��X�� ��� and

H�  L��X�� ��� for measure spaces �X�� ��� and �X�� ���� one may check that H� �H�

is isomorphic to L��X� �X�� �� � ����
Tensor products H� � ����Hn of n 	 � Hilbert spaces are de�ned similarly�
Caution� The reader may remember that the �algebraic� tensor product can be de�ned

by a universal property summed up in the canonical isomorphism

Lin �H� �H��H�� 
 Bil �H��H��H��

�see e�g� Bourbaki� Alg�ebre� Chapitre II� page II����� There is a Banach space H� ��

H�� which is a completion of H� � H�� such that the space of bounded linear operators
H� �� H� � H� is canonically isomorphic to the space of bounded bilinear operators

Typeset by AMS�TEX

�
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H��H� � H�� but this so	called projective tensor product is not in general isomorphic to
the Hilbert space tensor product H� �H� de�ned here�

���� The full Fock space of a Hilbert space� Let H be a Hilbert space� For each
integer n 	 �� set

H�n  H� ����H �n copies�

with the convention H��  C � The full Fock space or the exponential of H is the Hilbert
space direct sum

EXP �H� 
M
n��

H�n�

Observe that there is a canonical inclusion of the tensor algebra
Lalg

n��H�n in EXP �H��
with dense image�
If H��H� are two Hilbert spaces� there is a natural isomorphism

EXP �H� �H�� 
 EXP �H�� �EXP �H��

which motivates the notation� For each � � H� one may de�ne

EXP ��� 
�M
n��

�p
�n��

��n�

one has then hEXP ���jEXP ���i  exp h�j�i for all �� � � H� If ��� ���� �k are pairwise
distinct vectors in H� it can be shown that EXP ����� ���� EXP ��k� are linearly independent
vectors in EXP �H� �Gui� Proposition �����
One may view EXP as a functor from the category of Hilbert spaces and contractions

�namely operators of norms at most �� to the category of Hilbert spaces with distinguished
unit vectors �the vector � � C 
 H�� � EXP �H�� and contractions preserving the
distinguished vectors�

���� The operators ����� Let H be a Hilbert space� For each vector � � H and each
integer n 	 �� the linear map H�n � H��n��� de�ned by

�� � ���� �n ��� � � �� � ���� �n

extends to a bounded operator
H�n �� H��n���

of norm k�k � As the later norm is independent of n� the direct sum over n 	 � of these
operators is a bounded operator

���� 
 EXP �H� �� EXP �H�

of norm k�k � On has obviously

h�� � �� � ���� �n j � � ��� � ���� ��ni  hh�j��i �� � ���� �n j ��� � ���� ��ni
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for each n 	 � and ��� ���� �n� ���� ���� ��n � H� so that the adjoint ����	 of ���� is given by

����	 ��� � ���� �n�  h�j��i �� � ���� �n�

It is then equally obvious that

����	����  h�j�i id
EXP �H�

for all �� � � H�

���� Digression on the C	�algebra C	���H��� This is the C		algebra of operators on
EXP �H� generated by the operators ����� for all � � H�
If H is in�nite dimensional� C	���H�� is the so	called Cuntz algebra O� of �Cun��
Suppose H is of �nite dimension� say n� and let e�� ���� en be an orthonormal basis of H�

Then

p 
nX

j��

��ej���ej �
	

is an orthogonal projection of EXP �H�� One may show that p is independent of the choice
of the orthonormal basis� If h��pi denotes the principal two	sided ideal generated by ��p
in C	���H��� one has a short exact sequence

� �� K 
 h�� pi �� C	���H�� �� On �� �

where K denotes the algebra of compact operators on some separable in�nite dimensional
Hilbert space and where On is the nth Cuntz algebra� �See �Cun� Proposition ����� as well
as �VDN� Proposition ��������
Let Sj denote the image of ���� in On� One has the relations

S	jSk  �j�k j� k � f�� ���� ng
nX

j��

SjS
	
j  �

which show that On is generated by the isometries S�� ���� Sn and that the image projections
of the Sj �s add up to ��

��B� The Fock space and the definition of the CAR C
	
�algebra�

��	� The antisymmetric Fock space� Consider a Hilbert space H� an integer n 	 �
and the tensor product H�n� There is a unitary representation 	 �� u� of the symmetric
group on n letters Sn on the space H�n de�ned by

u� ��� � ���� �n�  ����� � ���� ���n�

for ��� ���� �n � H�
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We de�ne
VnH to be the subspace of H�n of vectors on which Sn acts by the signature�

and we denote by

Pn 
�

n�

X
��Sn

�����u�

the orthogonal projection of H�n onto VnH� where ����� denotes the signature of the
permutation 	� For ��� ��� �n � H� we write

��  ���  �n 
p
n� Pn ��� � ���� �n� �

n�
H�

Observe the factor
p
n�� which is crucial below� One has of course

�����  ���  ���n�  �������  ���  �n

for all 	 � Sn�
The antisymmetric Fock space of H is the Hilbert space direct sum

F�H� 
M
n��

n�
H

where
V�H  C by convention� It is also called the Fermi Fock space� or here shortly the

Fock space of H� It is important to realize that VnH and F�H� are de�ned as subspaces
of H�n and EXP �H� respectively� scalar products of vectors in these spaces do not have
to be further de�ned� but the following proposition is important for computations�

��
� Proposition� Let ��� ���� �n� ��� ���� �n � H� Then

h��  ���  �n j ��  ���  �ni  det
�
h�j j�ki��j�k�n

�
�

Proof� One has

h��  ���  �n j ��  ���  �ni

Dp

n� Pn��� � ���� �n� j
p
n� Pn��� � ���� �n�

E
by de�nition

 n� h�� � ���� �n j Pn��� � ���� �n�i because Pn  P 	n  P �
n


X
��Sn

Y
��j�n

����� ��j j���j�� by de�nition of Pn

 det
�
h�j j�ki��j�k�n

�

where the last equality is one possible de�nition of the determinant �see Bourbaki� Alg�ebre�
Chapitre III� page III����� �
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���� Remarks� �i� Here is a �rst consequence of Proposition ���
 if �e����I is an orthonor	
mal basis of H indexed by a totally ordered set I� then vectors of the form

e��  ���  e�n

with 
�� ���� 
n � I and 
� � ��� � 
n constitute an orthonormal basis of
VnH�

�ii� Here is a second consequence
 for ��� ���� �n� ��� ���� �n � H� one has

h��  ���  �n j ��  ���  �ni  �

if and only if the linear span of f��� ���� �ng contains a nonzero vector which is orthogonal
to the linear span of f��� ���� �ng�
�iii� If n 	 �� it is important to note that the vector e�� � ���� e�n � of norm � in H�n� is

projected by Pn onto the vector
�p
n	
e��  ���  e�n � not onto the unit vector e��  ���  e�n �

���� Lemma� Let H��H� be two Hilbert spaces� for n 	 �� let L 
 H�n� � H� be a
bounded operator such that Lu�  �����L for all 	 � Sn �where u� is as in ����� Then

L ���  ���  �n� 
p
n� L ��� � ����n�

for all ��� ���� �n � H�
Proof� One has

L ���  ���  �n� 
p
n� L Pn ��� � ���� �n�


�p
n�

L

�X
��Sn

�����u� ��� � ���� �n�

�


�p
n�

X
��Sn

L ��� � ���� �n�


p
n� L ��� � ���� �n�

�

���� The operators an���� Consider a Hilbert space H� a vector � � H and an integer

n 	 �� De�ne an operator An��� 
 H�n �
Vn��H by

An���
	
�� � ���� �n





�p
n�

�  ��  ���  �n 

r
�n� ���

n�
Pn��

	
� � �� � ���� �n




for all ��� ���� �n � H� it is clearly a bounded operator of norm at most
q

�n���	
n	 k�k � By

the previous lemma� one has

��� An���
	
��  ���  �n




p
�n � ��� Pn��

	
� � �� � ���� �n



�




 �� THE CAR ALGEBRA

We denote the restriction of An��� to
VnH by

an��� 


��


n�
H ��

n���
H

��  ���  �n ��� �  ��  ���  �n

and one has kan���k �
p
�n � ��� k�k by ���� But we shall see in Corollary ���� below

that� notwithstanding what the above estimate may suggest� the norm of an��� is in fact
independent on n�

���� Proposition� For �� � � H� one has

a	n���an��� � an
����a	n
����  h�j�i idVn
H

an�����an��� � an�����an���  �

Proof� Let ��� ���� �n��� �� ���� n � H� By Lemma ���� one has
h��  ���  �n�� j �  �  ���  ni

 det

�
BB�

h��j�i h��j�i � � � h��jni
h��j�i h��j�i � � � h��jni
���

���
���

���
h�n��j�i h�n��j�i � � � h�n��jni

�
CCA



n��X
j��

����j��h�j j�i
D
��  ����j���  �n�� j �  ���  n

E



�
n��X
j��

����j��h�j�ji��  ����j���  �n��

��� �  ���  n

�

by expansion of the determinant in terms of the �rst column� It follows that the adjoint
of an��� is given by

a	n��� ���  ���  �n��� 
n��X
j��

����j��h�j�j i��  ����j���  �n���

One has consequently

a	n���an��� ��  ���  n�  h�j�i �  ���  n �
nX

j��

����j h�jji �  �  ����j���  n

an
����a	n
���� ��  ���  n�  � 
nX

j��

����j�� h�jj i �  ����j���  n

and the �rst relation follows� We leave it to the reader to check the second one� �
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����� Corollary� For each � � H� � � � and for all n 	 �� the operator �
k�k� a

	
n���an��� is

a projection on
VnH� In particular

kan���k  k�k

for all n 	 � and for all � � H�
Proof� Using the two relations of Proposition ���� �case �  ��� one has

�a	n���an����
�  a	n���

�
k�k� id�n��H � a	n�����an�����

�
an���  k�k� a	n���an���

and the corollary follows� �

����� De�nition� For each � � H� the corresponding creation operator

a��� 
 F�H� �� F�H�

is the direct sum of the an��� �s on the
VnH �s� it is a bounded operator of norm k�k

which depends linearly on �� Its adjoint is the annihilation operator a	��� which depends
antilinearly on �� If k�k  �� then a	���a��� and a���a	��� are projections in B�F�H���
The CAR algebra is the C		algebra CAR�H� of operators on F�H� generated by the

creation operators� It is a C		algebra with unit� The map�
H �� CAR�H�
� ��� a���

is a linear isometry� One has the CAR relations

a	���a��� � a���a	���  h�j�i �
a���a��� � a���a���  �

for all �� � � H�

����� Remarks� �i� Let �e����I be an orthonormal basis of H� and set x�  a�e�� for
each 
 � I� Then �x����I generate CAR�H� as a C		algebra� This is because the map
a 
 H � CAR�H� is an isometry� thus� for any �  P��I ��e� � H� the creation operator
a��� is a limit in CAR�H� of �nite linear combinations of the x� �s�
�ii� We have chosen to denote by � �� a��� the linear map giving creation operators� as

in �PoS�� �Sla�� In many references� our a��� is denoted by a	���� so that � �� a��� is an
anti	linear map corresponding to annihilation operator ���� �BrR�� �Eva��

����� On physics and etymology� There are di�culties to build up consistent theories
obeying both quantum requirements and relativistic requirements� One di�culty is that
any description of one particle has to include a description of arbitrarily many particles�
This motivates the introduction of a formalism which can describe an arbitrary number
of particles� In case of fermions �e�g� of electrons�� if one particle has states which can be
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described by vectors in a Hilbert space H� then states with n particles are described by
vectors in

VnH and the operator

a��� 
 ��  ���  �n �� �  ��  ���  �n

�creates� one more fermion in state �� �This �creation� being in fact an annihilation in
case � lies in the linear space spanned by the �j �s� in accordance with the Pauli exclusion
principle��

��C� The CAR algebra as an UHF�algebra�

What we retain from the construction of ��B is that� for any Hilbert space H� there is
a C		algebra with unit CAR�H� and a linear map a 
 H � CAR�H� such that the CAR
relations hold� namely such that

a	���a��� � a���a	���  h�j�i �
a���a��� � a���a���  �

for all �� � � H� and such that a�H� generates CAR�H� as a C		algebra�

���	� Lemma� Let H be a Hilbert space of dimension �� let � � H be a unit vector and
set x  a����

Then CAR�H� is isomorphic to M��C �� More precisely the operators

e���  x	x e���  x	

e���  x e���  xx	

constitue a system of matrix units in CAR�H� such that e��� � e���  �� and this system
linearly generates CAR�H��
Proof� The CAR relations read here

x	x� xx	  � and x�  ��

Repeating the proof of Corollary ����

�x	x��  x	��� x	x�x  x	x

we see that e��� is a projection� Other relations� such as e���e���  e���� are equally
straightforward to check� �
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���
� Lemma� Let A be a C	�algebra with unit	 and let A�� ���� An be pairwise com�
muting sub�C	�algebras of A which contain �� Assume that Aj is isomorphic to a matrix
algebra Mkj �C � for each j � f�� ���� ng� and set k 

Qn
j�� kj � Then the sub�C	�algebra of

A generated by A� � ��� �An is isomorphic to Mk�C ��

Proof� The multilinear map

�
A� � ����An �� A

�a�� ���� an� ��� a�a����an

de�nes a linear map � 
 A� � ����An � A� The commutation hypothesis implies that � is
a morphism of C		algebras� The domain of � is isomorphic to the matrix algebra

Mk��C � � ����Mkn �C � 
Mk�C ��

As this algebra is simple and as � is obviously non zero� � is one	to	one and its image is
precisely the sub	C		algebra generated by A� � ��� �An� �

����� Lemma� Let H be a Hilbert space and let V � H be a subspace of dimension
n � �� Then the sub�C	�algebra C	�a�V �� of CAR�H� generated by a�V � is isomorphic
to

M�n �C ��

Proof� Choose an orthonormal basis fv�� ���� vng of V and set xj  a�vj � for all j � f�� ��� ng�
The CAR relations read

x	jxk � xkx
	
j  �j�k �

xjxk � xkxj  �

�� � j� k � n�� For each l � f�� ����� ng� set

ul 
lY

j��

	
�� �xjx	j




with u�  �� For each j � f�� ���� ng� we know from Lemma ���� that xjx	j is a projection�
thus � � �xjx	j is a selfadjoint unitary �namely a unitary of square ��� From the CAR
relations we know also that the xjx	j �s commute pairwise� thus ul is a self	adjoint unitary
for all l � f�� ���� ng�
Set also

e
�l�
���  ul
�x	l xlul
�  x	l xl e

�l�
���  ul
�x	l

e
�l�
���  xlul
� e

�l�
���  xlx

	
l

where the equality ul
�x	l x
	ul
�  x	l xl holds because x

	
l xl commutes with ul
� �observe

that x	l xl and xjx
	
j commute for all l� j � f�� ���� ng��
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We claim �rstly that e
�l�
j�k and e

�m�
j� �k� commute if l � m� Indeed� one computes successively	

�� �xjx	j


xj
	
�� �xjx	j



 xj

	
�� ���� x	jxj �



 �xj	

�� �xjx	j


xl
	
�� �xjx	j



 xl if j � l

and

umxlum 

��xl if l �m

xl if l � m

One has then� say if l � m�

e
�l�
���e

�m�
���  xlul
�xmum
�

 �xlxmul
�um
� by the computation above �m � l � ��
 �xmxlum
�ul
� because ul
�um
�  um
�ul
� and xlxm � xmxl  �

 �xmum
�xlul
� by the computation above �l �m� ��
 e

�m�
��� e

�l�
���

and more generally e
�l�
j�ke

�m�
j��k�  e

�m�
j� �k�e

�l�
j�k for all j� k� j

�� k� � f�� �g by similar computations�
We claim secondly that

�
e
�l�
j�k

�
��j�k��

is a system of matrix units of order � for each

l � f�� ���� ng� This follows from arguments as in the proof of Lemma �����

Thus� for each l � f�� ���� ng� the system
�
e
�l�
j�k

�
��j�k��

generates a sub	C		algebra of

C	�a�V �� isomorphic to M��C �� and these sub	C		algebras pairwise commute� Lemma
���� follows now from Lemma �����
The trick of introducing the ul �s to obtain commuting systems of matrix units is taken

from �PoS�� �

����� Theorem� Let H be a separable Hilbert space� If H is of 
nite dimension n� then

CAR�H� 
M�n �C ��

If H is in
nite dimensional	 then

CAR�H� 

�O
j��

M��C �j

is a UHF�algebra as in example �����

Proof� In case dimCH ��� the claim is contained in the previous lemma�
If dimCH  �� choose an orthonormal basis �en�n�� of H� For each n 	 �� let Vn

denote the subspace of H generated by fe�� ���� eng and set An  C	�a�Vn��� Then one has
a tower

A� 
M��C � � ��� � An 
M�n �C � � ���

of subalgebras of CAR�H�� Their union is dense in CAR�H�� by the argument of Remark
����� The claim follows� �
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����� Corollary� The action of the CAR algebra CAR�H� in the Fock space F�H� is
irreducible

Proof� If H is of �nite dimension� say n � �� then F�H� is of dimension �n and� by
comparison of dimensions� one has CAR�H�  B	F�H�
�
If H is in�nite dimensional� let �Vn�n�� and �An�n�� be as in the proof of Theorem

����� If �primes� denote commutants in B	F�H�
� one has
CAR�H�� 

�
n��

A�n �

For each n 	 �� the commutant A�n consists of operators of the form
�
C �
� �

�
with respect

to the decomposition F�H�  F�Vn��F�Vn��� As
S
n��F�Vn� is dense in F�H�� it follows

that
T
n�� A�n  C and this ends the proof�

Alternatively� one may also observe that � � C 
 V�H � F�H� is a cyclic vector for
the representation of CAR�H� on F�H�� and then observe that the corresponding state on
CAR�H� is pure by Proposition �����
We present �nally a third proof using Schur�s lemma� Let T be a bounded operator on

F�H� which commutes with a��� and a	��� for all � � H� let us show that T is a scalar

multiple of the identity� Denote by  the vector � � C 
 V�H and let ��� ���� �m� ��� ���� �n
be vectors in H�
The scalar product

��� h ��  ���  �m j T ���  ���  �n� i

is equal to h a�������a��m� j a�������a��n�T i � and is thus zero if n � m� it is also equal
to h a�������a��m�T 	 j a�������a��n� i � and is thus zero if m � n�
In case m  n� observe �rstly that there exists some � � C such that

a	��n����a	����a�������a��n�  � 

because there are as many annihilator operators a	��j� �s as creation operators a��k� �s�
Observe then that � is given by

�  h  j � i  h a�������a��n� j a�������a��n� i
 h��  ���  �n j ��  ���  �n i �

One has �nally

h��  ���  �n j T ���  ���  �n� i  h T 	 j a	��n����a	����a�������a��n� i
 h T 	 j � i  h  j T i h��  ���  �n j ��  ���  �n i

and it follows that T  h jT i idF�H�� Thus CAR�H� acts irreducibly on F�H�� �
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���� Remark� Let again  denote the unit vector � � C 
 V�H � F�H�� Let
l � f�� �� ���g and j� k � f�� �g� with the notations of the proof of Lemma ����� one has
x	l � �  � and x

	
l xl� �   � so that

D
 j e�l�j�k 

E


�
� if �j� k�  ��� ��

� if �j� k� � f��� ��� ��� ��� ��� ��g �

It follows that the vector state �
�x�  h jx i co!"ncides with the state �� of Exercice
���� corresponding to the constant sequence #  ��� �� �� �����

����� Theorem� Let H be a Hilbert space� There exists a C	algebra CAR�H� with unit
and an linear map a 
 H � CAR�H� such that

�i� as a C	algebra	 CAR�H� is generated by a�H��
�ii� one has the CAR relations

a	���a��� � a���a	���  h�j�i �
a���a��� � a���a���  ��

Moreover the pair
	
a�CAR�H�
 is unique in the following sense

for any pair
	
a�� CAR��H�
 satisfying properties �i� and �ii�	

there exists an isomorphism � 
 CAR�H�� CAR��H� such that a�  � � a�
Proof� The existence part of the theorem has been proved in Section ��B�
The unicity part is a straightforward consequence of the analysis of the present Section

��C� �As already stated early in ��C� we have only used the CAR relations of �ii�� not the
actual construction of ��B��
The previous arguments carries over with minor adjustments to the case of a non sep	

arable Hilbert space H� �
����� Corollary� For any unitary operator u on H� there is a unique automorphism
Bog�u� of CAR�H� such that

Bog�u� �a����  a�u����

for all � � H� Moreover	 the resulting �representation�

Bog 
 U�H� �� Aut
	
CAR�H�


is continuous for the strong topology on U�H� and the topology of pointwise norm conver�
gence on Aut

	
CAR�H�
�

Proof� Observe that the map

au 


�
H �� CAR�H�
� ��� a �u����
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satis�es the CAR relations� The �rst claim of the Corollary follows� by the unicity part of
the previous previous theorem�
The topology of pointwise norm convergence is the topology on Aut

	
CAR�H�
 for which

a basis of neighbourhoods of the identity is the family of �nite intersections of sets of the
form �

� � Aut
	
CAR�H�
 j k��x� � xk � �

�
with x � CAR�H�� We leave it to the reader to check that this topology makes
Aut
	
CAR�H�
 a topological group� We recall from Proposition ���� that U�H� with the

strong topology is also a topological group� �Indeed these are two Polish groups if H is
separable��
As one has

Bog�u�
	
a���


 � a���  a
	
u���� �



for all u � U�H� and � � H� the continuity of Bog follows from the fact that a�H� generates
CAR�H� and from the fact that a 
 H � CAR�H� is an isometric inclusion� �
����� Remarks �i� The automorphisms Bog�u� are called Bogoliubov automorphisms�

�ii� The Bogoliubov action of the �continuous group� U�H� on the C		algebraN�
j�� M��C � is quite remarkable� Indeed� this algebra has a �commutative analogue�N�
j�� �C �C � which is the C		algebra of continuous functions on the standard Cantor set�

and no continuous group may act nontrivially on a totally disconnected space�

����� Example� There is a canonical action of the group SO��� of complex numbers of
modulus � on H� given by �ei� � �� �� ei��� Thus� there is a family ������SO��� of automor	
phisms of CAR�H� such that

�� �a����  a
	
ei��



for all � � ��� ��� and for all � � H� In the tensor product picture �see Theorem ������ it
can be checked that

��

�
� �O

j��

�
aj bj
cj dj

��A



�
� �O

j��

�
ei�	� �
� e
i�	�

��A
�
� �O

j��

�
aj bj
cj dj

��A
�
� �O

j��

�
e
i�	� �
� ei�	�

��A



�
� �O

j��

�
aj ei�bj

e
i�cj dj

��A
for all �O

j��

�
aj bj
cj dj

�
�

�O
j��

M��C �j 
 CAR�H� �

More generally� for any locally compact group G and any unitary representation of G
on a Hilbert space H� there is an associated action of G on CAR�H��
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���	� Exercise� Let A be a C		algebra� let x�� ���� xn � A and set

u�j
�  xj � x	j u�j 
�

i

	
xj � x	j



for all j � f�� ���� ng� Show that one has the CAR relations

x	jxk � xkx
	
j  �j�k and xjxk � xkxj  �

for all j� k � f�� ���� ng if and only if the following holds

u�� ���� u�n are self	adjoint unitaries

ulum  �umul for all l�m � f�� ���� �ng with l � m�

�It follows that representations of a CAR	algebra CAR�H� can be interpreted in terms of
representations of an appropriate group� More on this in �Gui� Proposition ������

���
� Exercice� An antilinear operator on H is a R	linear map v 
 H � H such that
v�i��  �iv��� for all � � H and kvk  supf kv���k j � � H � k�k � � g � �� Such an
operator has an adjoint v	 de�ned by

h v	� j � i  h � j v� i

for all �� � � H�
Let u be a linear operator on H and let v be an antilinear operator on H such that

u	u� v	v  uu	 � vv	  �

u	v � v	u  uv	 � vu	  � �

namely such that�
u	 v	

v	 u	

��
u v
v u

�


�
� �
� �

�
and

�
u v
v u

��
u	 v	

v	 u	

�


�
� �
� �

�
�

Show that there is a unique automorphism � of CAR�H� such that

��a����  a�u���� � a	�v����

for all � � H�

����� Remark on the CCR�algebra� For physical reasons� it is equally important to
study algebras of Canonical Commutation Relations� which are C		algebras acting on the
symmetric parts of spaces of the form EXP �H�� A nice introduction to these is the volume
of Petz� lectures �Pet��

����� Remark on Cli�ord algebras� Let V be a vector space �say here over the reals�
and let q 
 V � R be a quadratic form� The Cli�ord algebra Cliff�V� q� is the quotient of
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the tensor algebra of V by the two	sided ideal generated by �v � v � q�v���v�V � There is
a canonical inclusion 
 
 V � Cliff�V� q�� and the pair �Cliff�V� q�� 
� has the following
universal property
 maps f from V to a real algebra A with unit such that f�v��  q�v��A
for all v � V are in natural bijection with homomorphisms of algebras F 
 Cliff�V� q�� A�
the correspondence being such that F �
�v��  f�v� for all v � V� For the theory of Cli$ord
algebras� see an introduction in Chapter III of �Ch��� or the book �Ch���
Let HR be a real Hilbert space� We denote by Cliff��HR � the Cli$ord algebra de�ned

as above for the quadratic form q 
 � �� k�k� � Let H be a complex Hilbert space� and let
HR denote the underlying real Hilbert space� The R	linear map

f 


�
HR �� CAR�H�
� ��� a��� � a���	

satis�es f����  k�k� for all � � HR �a straightforward consequence of the CAR relations��
Hence� using the universal property of Cli$ord algebras� one has a morphism of algebras

Cliff� �HR � �R C �� CAR�H�

which can be shown to be an injection with dense image�

One may then approach the theory of the CAR algebra by viewing it �rstly as a Cli$ord
algebra �PlR�� For example� as Cli$ord algebras are naturally Z��Z	graded� one may use
graded tensor products to �nd out the structure of CAR�H� when H is �nite dimensional�
as in �ABS�� the introduction of the ul �s in the proof of Lemma ���� makes it possible to
forget the grading at this point�
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CHAPTER �� QUASI�FREE STATES ON THE CAR ALGEBRA

In this chapter� H denotes a Hilbert space� CAR�H� the corresponding CAR algebra
and a 	 H � CAR�H� the canonical linear isometric immersion� as in the previous chapter�
We start here the study of states on CAR�H� which are sometimes called 
free�� but more
traditionally �and with no particular reason� 
quasi�free��

��a� Definition of the quasi�free states�

���� Two�point function of a state on the CAR�algebra� Let � be a state on
the CAR�algebra CAR�H�� For �� � � H� set

h�j�i�  � �a����a���� �

Then h�j�i� is a sesqui�linear form on H� and

j h�j�i� j � ka����a���k � k�k k�k

for all �� � � H because k�k � �� Hence there exists a well de�ned operator b on H such
that

��a����a����  h�jb�i
for all �� � � H� and one has kbk � �� As � is positive� one has h�jb�i  ��a����a���� � �
for all � � H� namely � � b � ��

���� Theorem� Let b � B�H� be a self�adjoint operator such that � � b � �� Then there
exists a unique state �b on CAR�H� such that

�b

�
a���m�a���m������a����� a����a�������a��n�

�
 �m�n det

�
h�j j b�ki��j�m���k�n

�

for all ��� ���� �m� ��� ���� �n � H�

���� De�nition� The state �b on CAR�H� is called the quasi�free state of covariance b�

A direct veri�cation that the formula of Theorem ��� de�nes a state would be cumber�
some �especially for the proof of positivity�� Our strategy will be to prove Theorem ��� in
the special case of a projection� and then to use the well�known 
two�by�two�matrix�trick�
�compare with the proof of Kaplansky Density Theorem ������

The unicity part of the theorem is straightforward� because linear combinations of ele�
ments of the form a���m����a�����a�������a��n� are dense in CAR�H�� see Remark �����

Typeset by AMS�TEX

�
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��	� Lemma� Theorem ��� holds in case H is �nite dimensional and b is a projection�
written p below�

In this case� �p is the vector state de�ned by the Fock representation and by a unit
vector v � F�H� corresponding to the subspace Im�p� of H�
Comment� Let Grassr denote the Grassmannian of subspaces of H of some dimension r�
Recall that there is a classical embedding

pl 	 Grassr �� P

�
r�
H
�

� P

�
F�H�

�
�where P�K� denotes the projective space of a space K and where pl refers to Pl�ucker�
de�ned as follows 	 for an element V of Grassr � consider a basis v�� ���� vr of V and let
pl�V � be the line de�ned by v�	 ���	vr �see e�g� �Di��� x �� n� ��� Observe that� if v�� ���� vr
is an orthonormal basis of V� the unit vector v� 	 ���	 vr � 	rH is well de�ned by V up to
multiplication by a complex number of modulus �� a fortiori� the corresponding state on
CAR�H� depends only on V�

Proof� Let r be the codimension of the image of p and let s be its dimension� Choose
orthonormal basis

v�� ���� vr of ��� p��H�

w�� ���� ws of p�H��

Consider the vector v  v� 	 ��� 	 vr � F�H� and the vector state �v on CAR�H�� such
that

�v �a���m����a�����a�������a��n��  hv j a���m����a�����a�������a��n�vi
for all ��� ���� �m� ��� ���� �n � H�

We claim that the formula of Theorem ��� holds with �p  �v� namely that

��� �v �a���m����a�����a�������a��n��  �m�n det
�
h�j j p�ki��j�m���k�n

�
for all ��� ���� �m� ��� ���� �n � H�

As both terms of �
� are anti�multilinear in the �j �s and multilinear in the �k �s� it
su�ces to check �
� in case ��� ���� �m� ��� ���� �n are vectors in some basis of H� and indeed
in the basis fv�� ���� vr� w�� ���� wsg of H�

Now

�v �a���m����a�����a�������a��n��  h�� 	 ��� 	 �m 	 v j �� 	 ��� 	 �n 	 vi
is clearly � if at least one of the �j �s or the �k �s is in fv�� ���� vrg� or if m � n� Similarly
the right�hand term of �
� is � if one of these hold �because pvi  � for i � f�� ���� rg�� So
it su�ces to consider the case in which m  n and in which all the �j �s and �k �s are in
fw�� ���� wsg� In this case� using Proposition ���� one has

�v �a���n����a�����a�������a��n��  h�� 	 ��� 	 �n 	 v���� 	 vr j �� 	 ��� 	 �n 	 v���� 	 vri

 det

�
	 h�j j�ki��j�k�n �

� ��j�k���j�k�r



A

 det
�
h�j j�ki��j�k�n

�
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and this proves Formula �
�� �
��
� Lemma� Theorem ��� holds in case b is a projection� written p below�

Proof� One may choose a tower

V� � V� � ��� � Vn � Vn�� � ���

of �nite dimensional subspaces of H such that

Vn  p�Vn� � �� � p��Vn�

for all n � � and such that
S
n�� Vn is dense in H� For each n � �� let �n denote the state

on the sub�C��algebra CAR�Vn� of CAR�H� de�ned as in the proof of Lemma ���� It is
clear that �n coincides with the restriction of �n�� from CAR�Vn��� to CAR�Vn�� Thus�
in the formula of Theorem ���� one may take for �p the limit state de�ned by the �n �s
�see Number ������ �

���� Lemma� Let H be a Hilbert space and let b � B�H� be such that � � b � �� Then

p 

�
b

p
b�� � b�p

b�� � b� �� b

�

is a projection on H�H and

p

�
�
�

�


�
b�


�

� H�H�

Proof� straightforward� �

���� End of proof of Theorem ���� Let b be as in Theorem ���� let p be as in Lemma
���� and let

�p 	 CAR�H�H� �� C

be the state de�ned as in the proof of Lemma ���� Let �b denote the restriction of �p to
the sub�C��algebra CAR�H� of CAR�H�H� corresponding to the �rst factor of the direct
sum� Then the formula of Theorem ��� holds for �b� �

���� Proposition� Let p � B�H� be a projection� Then the quasi�free state �p of
covariance p is pure�

Proof� In case H is �nite dimensional� CAR�H� is the space of all operators on F�H�� and
in particular is irreducible on F�H�� As the proof of Lemma ��� shows that �p is a vector
state on CAR�H�� it is indeed a pure state �see Proposition ������

In case H is in�nite dimensional� the argument of Lemma ��� shows that �p is a limit
state of states �n 	 CAR�Vn� � C � so that �p is again pure by Proposition ����� �
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��� Remark� Conversely� it is easy to show that a quasi�free state �b of covariance b is
pure if and only if b is a projection�

It is also known that the states �b are always factorial	 see �PoS� Lemma ���� for the easy
case of an operator b with pure point spectrum� and �PoS� Theorem ���� for the general
case�

����� On states with two�point functions de�ned by projections� For each integer
n � �� let Fn  FnCAR�H� denote the subspace of CAR�H� linearly generated by products
of the form c��	��c��	�����ck�	k� where k � n� where each cj holds for either a or a� and
where 	�� ���� 	k are vectors in H� The �ltration �Fn�n�� de�ned this way has the following
property 	 if 
 is any permutation of f�� ���� ng� then

c����
�
	����

�
� ��� c��n�

�
	��n�

�  c��	�� ��� cn�	n� mod Fn��

for all c�� ���� cn � fa� a�g and for 	�� ���� 	n � H �this is a straightforward consequence of
the CAR relations��

Let � be a state on CAR�H� with two�point function de�ned by a projection p on H�
namely such that

� �a��	��a�	���  h	�jp	�i
for all 	�� 	� � H� �We do not assume a priori that � is a quasi�free state� even though it
will follow from the analysis below�� Denote by �� 	 CAR�H� � B�H�� the representation
and by �� the cyclic vector obtained by the GNS construction�

For � � Im��� p� one has

k�� �a���� ��k�  � �a����a����  h�jp�i  �

and consequently
�� �a���� ��  ��

For � � p�H� one has

k�� �a����� ��k�  �
�
k�k� � a����a���

�
 k�k� � h�jp�i  �

and consequently
�� �a����� ��  ��

Let n � �� For x � Fn of the form c��	�� ��� cn�	n� as above� the n�point function

�
�
c��	�� ��� cn�	n�

�
 h �� j ���c��	�� ��� ���cn�	n���� i

is zero as soon as one at least of

c�  a� and 	� � Im��� p�

c�  a and 	� � Im�p�

cn  a and 	n � Im��� p�

cn  a� and 	n � Im�p�
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holds� It follows that one has 	

for any x � Fn there exists y � Fn�� such that ��y�  ��x� �

We have proved the following 	

a state on CAR�H� with ��point functions of the form

�
�
a��	��a�	��

�
 h	�jp	�i for some projection p on H

is necessarily the quasi�free state of covariance p�

����� Quasi�free states and the GNS�construction� Given a complex Hilbert space
K� denote by K the conjugate space� Recall that there is a R�linear bijection

K �� K
� ��� �

such that �z��  z � and
�
�j���

K

�
��j��

K
for all z � C and �� �� � K� One has clearly

a canonical isomorphism
F �K� � F�K�

at the level of Fock spaces�
Consider a projection p on H� We de�ne the Hilbert space

�p�K�  F
�

��� p��H�
�O

F�p�H���

We denote by the same symbol � the unit vector in C  	��� � p��H� and the unit vector
in C  	�p�H�� and we set

�p  �� � � �p�H��

Let D be the parity operator in F
�

��� p��H�
�
� de�ned by

Dx 

�������
������

x for all x �
M
n��

�n��
��� p��H�

�
� F

�
��� p��H�

�

�x for all x �
M
n��

�n��� �
�� � p��H�

�
� F

�
�� � p��H�

�
�

For
	  � � � � �� � p��H� � p�H�  H

we de�ne

Ap�	�  Ap�� � ��  a����� � � D � a��� � B ��p�H�� �
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We leave it as an exercice for the reader to check that the CAR relations

A�p�� � ��Ap��� � ��� � Ap��� � ���A�p�� � ��  h� � � j �� � ��i
Ap�� � ��Ap��� � ��� � Ap��� � ���Ap�� � ��  �

hold for all � � �� �� � �� � H �with p�  � � p�  � � p��  � � p��  ���� Thus the
assignment

	  � � � � H ��� Ap�	�  a���� � � � D � a��� � B ��p�H��

extends to a representation

�p 	 CAR�H� �� B ��p�H�� �

The vector state �p de�ned by the representation �p and by the �clearly cyclic� vector �p

satis�es

�p

�
�p
�
a�� � �

��
�p
�
a��� � ��

��
 hAp�� � ���pjAp��� � ����pi  h�j��i
 h� � �jp��� � ���i

for all � � � � �� � �� � �� � p��H  �p�H�  H� It follows from ��� and ���� that �p is
the quasi�free state of covariance p�

����� On Dirac holes�

See the discussion in �KaR�� Section ����

����� Example� On the Hilbert space H  L��T�� consider the �unbounded  � self�
adjoint operator H  �i d

d�
and the corresponding one parameter unitary group �Ut�t�T

de�ned by

Ut  eit��i
d
d� �

or
�Utf� ��  f� � t�

for all f � L��T� and  � T� Let �en�n�Z be the usual basis of L��T�� de�ned by en�� 

ein�� As �i d
d�

is diagonal with respect to this basis� it is straightforward to compute the
spectrum of H which is


�H�  Z�

If H is to be a model of a Hamiltonian for a physical system� there is a problem because

�H� is not bounded below whereas the energy should be bounded below�

Let H��T�  spanf�en�n��g be the Hardy space and let p � B�L��T�� be the orthogonal
projection of L��T� onto H��T�� as in Example ����� For all t � T the unitary operator Ut
commutes with p� It follows that the automorphism �t of CAR�H� induced by Ut �via the
usual formula �t�a����  a�Ut����� see Corollary ����� and the quasi�free state �p satisfy

�p �t  �p
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for all t � T� Thus there exists a unitary operator ut on �p�H� such that

�p ��t�x��  ut�p�x�u�t

for all t � T and for all x � CAR�H�� see �����ii�
The Hilbert space �p�H� has an orthonormal basis of vectors of the form

X  �p

�
a��������a���k�a�������a��l�

�
�GNS
p

where
�i  e�mi

� �� � p��H� � mi � � for � � i � k

�j  enj � p�H� � nj � � for � � j � l�

As Uten  exp�
p��nt�en for all n � Z� one has

ut�p

�
a��������a���k�a�������a��l�

�
�GNS
p

�p

�
a��Ut������a

��Ut�k�a�Ut������a�Ut�l�
�

�GNS
p

exp
�p���m� � ��� � mk � n���� � nl�

�
�p �a��������a���k�a�������a��l�� �GNS

p

and Ut acts on X by multiplication by

exp
�p���m� � ���� mk � n����� nl�

�
�

In particular� the in�nitesimal generator of �Ut�t�T has positive spectrum� contained inside
N�

The crucial point is that the process of 
second quanti�cation�� namely of replacing
H by �p�H�� makes the spectrum of the 
Hamiltonian� positive� It is the conjugation in

��� p��H� which restores positivity of the spectrum�

��b� Equivalence of quasi�free states�

We show in Theorem ���� below a su�cent condition for the equivalence of two quasi�
free states CAR�H��

���	� Theorem� Let H be a Hilbert space� let p� q be two projections on H and let �p� �q
be the corresponding quasi�free states on CAR�H�� Then

k�p � �qk � � kp� qk�
where k�k� denotes a Hilbert�Schmidt norm�
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���
� Lemma� Let p� q be two projections on a �nite dimensional Hilbert space H� Let
��� ���� �n be the eigenvalues of the operator c  �� � p��� � q��� � p� acting on the space
��� p� �H� � where n  dimC ��� � p��H�� �

�i	 If dimC �p�H�� � dimC �q�H�� one has kp � qk� � � �

�ii	 If dimC �p�H��  dimC �q�H�� one has kp� qk��  �
Pn

j����� �j� �

Proof� Let tr 	 B�H� � C denote the usual trace� By de�nition of the Hilbert�Schmidt
norm �De�nition ������ one has

kp � qk��  tr��p � q���p � q��  tr�p � q � pq � qp�  tr�p� � tr�q� � �tr�qpq�

because tr�pq�  tr�p�q�  tr�pqp�  tr�qp��
Assume �rstly that dimC �p�H�� � dimC �q�H��� so that tr�p� � tr�q� � �� As tr�q� �

tr�qpq�� one has

kp � qk��  tr�p� � tr�q� � �
�
tr�q� � tr�qpq�

� � �

and �i� follows�
Assume secondly that dimC �p�H��  dimC �q�H��� so that tr�p�  tr�q�� One has

kp� qk��  k��� p�� �� � q�k��  �
h
tr�� � p� � tr

�
��� p��� � q��� � p�

�i
 �

h
tr���� p� � tr�

�
��� p��� � q��� � p�

�i

 �

nX
j��

�� � �j�

where tr� denotes the usual trace on B��� � p��H�
�
� which is also the natural restriction

to this algebra of operators of the trace tr on B�H�� �

����� Lemma� Theorem ��
� holds if dim�H� ���

Proof� If dimC �p�H�� � dimC �q�H��� one has � kp� qk� � � by the previous lemma and
there is nothing to prove �recall that states have norm ��� We assume from now on that
dimC �p�H��  dimC �q�H�� and we choose

an orthonormal basis v�� ���� vn of �� � p��H��

an orthonormal basis w�� ���� wn of ��� q��H��

Set v  v� 	 ��� 	 vn � F��� � p��H�
�

and w  w� 	 ��� 	 wn � F��� � q��H�
�
� We know

from the proof of Lemma ��� that �p co�!ncides with the vector state �v on CAR�H�� and
similarly that �q  �w� From Propositions �����i and ��� one has

k�p � �qk  k�v � �wk � �
p

�� jh v j w ij�

 �

r
��

���det� h vj j wk i��j�k�n
����� �
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Let b 
�
bj�k
�
��j�k�n

denote the matrix
� h vj jwk i

�
��j�k�n

and set c  bb�� On one

hand we have ��det�b����  det�b�det�b��  det�c��

On the other hand c is the matrix of the linear map

�� � p��� � q��� � p� 	 ��� p��H� �� ��� p��H�

with respect to the basis fv�� ���� vng � indeed 	

��� p��� � q���� p�vi  ��� p��� � q�vi

 ��� p�

�
	 nX

j��

hwj jviiwj



A


nX

j�k��

hwj jvii hvkjwji vk


nX

j�k��

�b��j�ibk�jvk


nX

k��

ck�ivk

for all i � f�� ���� ng� If ��� ���� �n � ��� �� denote the eigenvalues of c� one has

k�p � �qk� � �
�
�� det�c�

�
 �

�
	� �

nY
j��

�j



A �

Because of Claim �ii� of the previous lemma� it su�ces to show that

��� � �
nY

j��

�j �
nX

j��

��� �j��

Assume inductively that ��Qk

j�� �j � Pk

j����� �j� for some k � f�� ���� n� �g �this

is tautological for k  ��� As �k�� � � one has �k���
Qk��

j�� �j � Pk

j������j�� Adding
�� �k�� on both sides� one obtains

� �
k��Y
j��

�j �
k��X
j��

��� �j��

This shows �
�� and ends the proof� �



� �� QUASI�FREE STATES

����� Lemma� Theorem ��
� holds if dim�H�  ��

Proof� If kp� qk�  �� there is nothing to show� We assume from now on that kp� qk� �
�� In particular �p � q�� is a positive compact operator on H� Observe that
Ker

�
�p � q��

�
 Ker�p � q�� By the spectral theorem for compact self�adjoint operators�

there exists an orthogonal decomposition

H 

�M
i�I

Wi

�M
Ker�p � q�

and a family ��i�i�I of strictly positive numbers� pairwise distinct� such that

�a� each Wi is a �nite dimensional subspace of H
�b� �p � q��  �i on Wi

�I may be a �nite set or an in�nite set�� Moreover� as �p� q�� commutes with p and q�

�c� Ker�p � q� and each Wi is invariant by p and by q�

We claim that there exists a nested sequence V� � V� � ��� � Vn � Vn�� � ��� of
subspaces of H such that

�d� each Vn is �nite dimensional� and
�
n��

Vn is dense in H

�e� each Vn is invariant by p and by q �

To check this� consider �rstly the case where dimC �Ker�p � q�� ��� so that I is in�nite�
say I  f�� �� ���g� It su�ces to set

Vn 

�
nM
i��

Wi

�M
Ker�p � q� �

In the general case� observe that

Ker�p � q� 
�
Ker�p � q� �Ker�p�

�M�
Ker�p � q� � Im�p�

�
�one may of course write Ker�q� for Ker�p� and Im�q� for Im�p��� Let ��j�j�J be an

orthonormal basis of Ker�p�q��Ker�p� and let ��k�k�K be a basis of Ker�p�q��Im�p��
If all of I� J�K are in�nite sets� say f�� �� ���g� set

Vn 

�
nM
i��

Wi

�M �
	 nM

j��

C �j



AM

�
nM

k��

C �k

�
�

If some of I� J�K are �nite sets� proceed similarly with truncated sums for n large�
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Let pn � B�Vn� denotes the restriction of p to Vn� one has

�pjCAR�Vn�  �pn

because these two states on CAR�Vn� are given by the same formula �see Theorem �����
As
S
n�� CAR�Vn� is dense in CAR�H�� one has

k�p � �qk  lim
n��

k�pn � �qnk �

One has also
kp� qk�  lim

n��
kpn � qnk� �

Finally one has k�pn � �qnk � � kpn � qnk� for all n � � by the previous lemma� so that

k�p � �qk � � kp� qk�
as was to be proved� �

����� Remarks� It follows from Theorem ���� and ���� that� if kp � qk� � � � then �p
and �q are equivalent� But see the stronger statement of Theorem ���� below�

����bis� Lemma� Let H��H��H� be three Hilbert spaces� For m � �� n � �� let L 	
H	m� �H	n� � H� be a bounded operator such that Lu�  �����L for all 
 � Sm and
Lu�  �����L for all � � Sn� Then

L
�
��� 	 ��� 	 �m� � ��� 	 ��� 	 �n�

�


p
m n L

�
�� � ���� �m � �� � ���� �n

�
for all ��� ���� �m � H� and ��� ���� �n � H��

Proof� Let Pm 	 H	m� � VmH� and Pn 	 H	n� � VnH� be de�ned as in ���� One has

L
�

��� 	 ��� 	 �m� � ��� 	 ��� 	 �n�
�


p
m n L

�
Pm��� � ���� �m�� Pn��� � ���� �n�

�


�p
m n 

L

�
B	 X

��Sm
��Sn

�����u���� � ���� �m�� �����u� ��� � ���� �n�



CA


�p
m n 

L

�
B	 X

��Sm
��Sn

�� � ���� �m � �� � ���� �n



CA


p
m n L ��� � ���� �m � �� � ���� �n� �

�
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���� Lemma� Let V be a closed subspace of H� The isomorphism

V � V 

��� H

induces an isometric isomorphism of Hilbert spaces

F�V ��F�V 
�
��� F�H��

Proof� Given two integers m � � and n � �� one has a linear map

T 	

����
���

��mV �� ��nV 

� ��

m�n�
H

��� � ���� �m�� ��� � ���� �n� ���
r

�m � n� 

m n 
Pm�n ��� � ���� �m � �� � ���� �n� �

By the previous lemma� T restricts to a linear map��
� �	mV � � �	nV 
� ��

m�n�
H

��� 	 ��� 	 �m�� ��� 	 ��� 	 �n� ��� �� 	 ��� 	 �m 	 �� 	 ��� 	 �n�

The sum of the latter maps on m � � and n � � provide the isomorphismF�V ��F�V 
� �
F�H�� �

����� Remark� One has obvious inclusions

i
V

	 CAR�V � ��� CAR�H� and i
V�

	 CAR�V 
� ��� CAR�H��

of which the �rst has already appeared in Lemma ����� These could be used to de�ne an
isomorphism from the appropriate graded tensor product of CAR�V � and CAR�V 
� onto
CAR�H�� As we have not introduced any graded tensor product� we have to make use of
a unitary operator analogous to the ul �s of the proof of Lemma �����

����� Lemma� Let V be a �nite dimensional Hilbert space� There exists a unitary
element u � CAR�V � such that u�  � and

ua�v�u  a��v�

for all v � V�

Proof� Let �v�� ���� vn� be an orthonormal basis of V and set

u 
nY

j��

�
�� �a�vj�a�vj ��

�
�

The proof of Lemma ���� shows that u has the required properties�
�Here is another argument to show the existence of u� Let � be the Bogoliubov auto�

morphism of CAR�H� de�ned by ��a�v��  a��v� for all v � V � as CAR�V � is a matrix
alegbra� � is inner� so that there exists a unitary u � CAL�V � with the desired properties��
�
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����� Proposition� Let V be a �nite dimensional subspace of a Hilbert space H� let
b � B�H� be a self�adjoint operator such that � � b � � and b�V � � V� as in Theorem ����
and let u � CAR�V � be a self�adjoint unitary element� as in Lemma ���
� Then theere
exists a unique morphism of C��algebras

� 	 CAR�V � � CAR�V 
� �� CAR�H�

such that
a��� � � ��� a���

�� a��� ��� ua���

for all � � V and � � V 
� Moreover � is an isomorphism and one has

�b � �  ��bjV � � ��bjV���

Proof� The inclusion V � H provides an inclusion

�� 	 CAR�V � �� CAR�H�

such that ���a����  a��� for all � � V�
For all � � V 
� one has ua���  a���u� Consequently� for ��� �� � V 
� one has

�
ua����

��
ua���� � ua����

�
ua����

��
 a�����a���� � a����a�����  h��j��i

and similarly
ua����ua���� � ua����ua����  ��

It follows from Theorem ���� that there exists a morphism

�� 	 Car�V 
� �� CAR�H�

such that ���a����  ua��� for all � � V 
�
For � � V and � � V 
� one has

��

�
a���

�
��

�
a���

�
 uua���ua���  ua����a���  ua���a���  ��

�
a���

�
��

�
a���

�
�

Hence the images of �� and �� commute and the application

� 	


CAR�V � � CAR�V 
� �� CAR�H�

m� x ��� mx

is a morphism of C��algebras�
The image of � contains a��� for all � � H� so that � is onto� As CAR�V � and CAR�V 
�

are simple� so is their tensor product� and � is an injection� This proves the proposition�
�
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����� Theorem� Let p� q � B�H� be two projections which di�er by a Hilbert�Schmidt
operator� Then the states �p and �q on CAR�H� are equivalent�

Proof� The proof of Lemma ���� shows that there exists a �nite dimensional subspace V
of H which is invariant by p and q� and such that���p � q�jV 


��
�
� ��

One has also

�p  ��pjV � � ��pjV�� and �q  ��qjV � � ��qjV��

by the previous proposition�
As ��pjV � and ��qjV � are two pure states on the matrix algebra CAR�V �� they are neces�

sarily equivalent� As
���p � q�jV 
��

�
� �� the states ��pjV�� and ��qjV�� are equivalent

by Remark �����i� It follows that �p and �q are equivalent� �

���	� Remarks� Let b� c � B�H� be self�adjoint operators such that � � b� c � � �not
necessarily projections� and let �b� �c be as in Theorem ���� One may show more generally

that �b and �c are equivalent if and only if both b
�

� � c
�

� and �� � b�
�

� � �� � c�
�

� are
Hilbert�Schmidt operators� �this is the main theorem in �PoW���

��c� The projective representation of the restricted unitary group

���
� Lemma� Let A be a C��algebra with unit� let � be an automorphism of A� and
let � be a state on A� Let �� and ��� be the GNS�representations de�ned by the states �
and � � �� Then there exists a unitary operator u 	 H� �H�� such that

u��
�
��a�

�
 ���

�
a
�
u

for all a � A�

Proof� We use the notations of Theorem ����� The application
A �� A

a ��� ����a�

maps V� isomorphically onto V��� It induces a linear map A�V� � A�V�� which is unitary
because

hb � V�ja � V�i�  ��b�a�  ��
�
����b������a�

�

�
����b� � V��j����a� � V��

�
��

for all a� b � A� and thus an isometric isomorphism u 	 H� � H�� such that u���a� 
���

�
����a�

�
u for all a � A� �
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���� Lemma� Let A be a C��algebra with unit� let � be an automorphism of A� and let
� be a state on A such that � and � � � are equivalent� Let �� and ��� be the GNS�
representations de�ned by the states � and � � �� Then there exists a unitary operator v
on HGNS

� such that

v��
�
��a�

�
v�  ��

�
a
�

for all a � A�
If "v is another unitary operator such that "v��

�
��a�

�
"v�  ��

�
a
�
for all a � A� then

there exists a complex number z of modulus � such that "v  zv�

Proof� By the previous lemma� there exists a unitary operator u 	 H� � H�� such that

u��
�
��a�

�
 ���

�
a
�
u

for all a � A� By the hypothesis of equivalence� there exists a unitary operator u� 	 H�� �
H� such that

u����  ���a�u�

for all a � A� It is enough to set v  u�u�
The last statement is a consequence of Schur�s lemma� �

����� De�nition� Let p � B�H� be a projection� We de�ne the restricted unitary group

Ures�p�H�  f u � U�H� j kpu� upk� �� g

of the unitary group U�H�� It is a proper subgroup in case dimC �p�H�� and dimC ����p��H��
are both in�nite�

Denote by B�H�s the space of all operators on H with the strong topology� and by
HS�H� the space of all Hilbert�Schmidt operators on H with the topology of the Hilbert�
Schmidt norm� The natural topology on Ures�p�H� for what follows is that induced by the
inclusion ��

�
Ures�p�H� �� B�H�s �HS�H�

u ���
�
pup � ��� p�u��� p� � pu� up

�
�

It makes it a topological group�

����� Proposition� Let p � B�H� be a projection and let u � Ures�p�H�� Then there

exists a unitary operator "�p�u� on �p�H� such that

"�p�u�a���"�p�u��  a�u����

for all � � H�
Proof� For u � U�H�� let �u denote the automorphism of CAR�H� de�ned by

�u�a����  a�u����
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for all � � H� If �p is the quasi�free state of covariance p� one has

�
�p � �u

�
�a����a����  �p�a��u����a�u�����  hu�jpu�i  �u�pu�a����a����

for all �� � � H� so that
�p � �u  �u�pu�

If moreover u � Ures�p�H�� one has

ku�pu� pk�  kpu� upk� � �

and �p � �u� �p are equivalent�
The proposition follows from the previous lemma� �

���� What next� Observe that "�p�u� is well de�ned up to a complex number of modulus
one� Thus one has a well de�ned elememt �p�u� � PU��p�H�

�
and it is straightforward

to check that the resulting map


Ures�p�H� �� PU��p�H�

�
u ��� �p�u�

is a projective representation of the restricted unitary group �more on this in
Chapter ���

It can be shown to be a continuous projective representation�
In case H is a Hilbert space of the form

L�
�
S
�� C n

�

and p is the projection on the corresponding Hardy space� loop groups of the form

C�
�
S
�� SU�n�

�

are naturally subgroups of Ures�p�H�� and one obtains by restriction projective representa�
tions of these loop groups�

For more on this� the canonical reference is the book by A� Priestley and G� Segal �PrS��
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CHAPTER �� UNITARY PROJECTIVE

REPRESENTATIONS OF GROUPS�

��a�Generalities on unitary projective representations

���� The projective unitary group of a Hilbert space Let H be a complex Hilbert
space and let U�H� denote the unitary group of H� We denote by T the group of complex
numbers of modulus � and we identify it with the subgroup of unitary homotheties of H�
We denote by

PU�H� 	 U�H��T

the quotient group and by
p 
 U�H� � PU�H�

the canonical projection�
We consider U�H� endowed with the strong topology of operators �or equivalently with

the weak topology� see Proposition �����iv� and PU�H� with the quotient topology� In
case H is of nite dimension n� the group PU�H� is the Lie group U�n��T� SU�n��Cn

�where Cn denotes here the group of nth roots of unity��

���� A digression on symmetry operations and Wigner�s theorem� Let PH
denote the projective space of lines in H� There is an application

t 


�
PH� PH �� ��� ��

��� �� ��� jh�j�ij�

where �� � � H are unit vectors which represent the lines �� � respectively� An automor�

phism of PH is a bijection � 
 PH � PH such that

t���� ��� 	 t��� ��

for all �� � � PH� Every unitary operator u on H provides obviously an automorphism
of PH� which depends only on the class of u in PU�H�� In the formalism of quantum
mechanics� it is a fundamental result of E� Wigner ��Wig�� �Bar�� that PU�H� is a subgroup
of index � in the group of all automorphisms of PH �the other automorphisms are classes
modulo T of anti�unitary operators on H��

���� De�nition� Let G be a locally compact group and let H be a Hilbert space� A
unitary projective representation of G on H is a continuous group homomorphism

� 
 G �� PU�H��

Typeset by AMS�TEX
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Such a � admits a lifting if there exists a continuous unitary representation �� 
 G� U�H�
such that � 	 p � ���

��	� Examples� �i� Any continuous unitary representation �� 
 G � U�H� provides a
continuous unitary projective representation � 
 G � PU�H� by composition with the
canonical projection p 
 U�H� � PU�H��

�ii� The unit ��by�� matrix and the Pauli matrices

�x 	

�
� �
� �

�
�y 	

�
� �i
i �

�
�z 	

�
� �
� ��

�

provide a unitary projective representation of the Klein group V	 Z��Z�Z��Zon C � �
Observe that

�x�y 	 ��y�x 	 i�z �y�z 	 ��z�y 	 i�x �z�x 	 ��x�z 	 i�y

so that� in particular� this � 
 V� PU��� does not admit any lifting�

�iii� Any unitary representation � 
 SU���� U�N� provides a projective representation
� of the rotation group SO��� such that the diagram

SU���
��� U�N�

	 	

SO���
��� PU�N�

commutes� In case � is �the� irreducible representation of SU��� of dimension N �which
is well dened up to equivalence�� it is known that � admits a lifting if and only if

�

��� �
� ��

�
is the identity on CN � namely if and only if N is odd�

��
� Cocycles and coboundaries� Let G be a group� A T�valued ��cocycle on G is a
map

	 
 G �G �� T

such that
	�g� h�	�gh� k� 	 	�g� hk�	�h� k�

for all g� h� k � G� The set of all T�valued ��cocycles on G is denoted by

Z��G�T�

and is an abelian group� for the multiplication dened by 	�	� 
 �g� h� �� 	��g� h�	��g� h��
For any map 
 
 G� T� the map

�
 


�
G �G �� T

�g� h� ��� 
�g�
�h�
�gh���
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is a ��cocycle� Cocycles of this form are called T�valued ��coboundaries on G and the set
of all these is a subgroup

B��G�T�

of Z��G�T��
The second cohomology group of G in T is the quotient group

H��G�T� 	 Z��G�T��B��G�T��

���� The cohomology class of a unitary projective representation� Let G be a
group and let � 
 G � PU�H� be a unitary projective representation of G on a Hilbert
space H�

For each g � G� choose ug � U�H� such that ��g� 	 p�ug�� For each pair �g� h� � G�G�
let 	�g� h� denote the number in T such that

uguh 	 	�g� h�ugh�

Using associativity in U�H�� one computes for all g� h� k � G

�uguh� uk 	 	�g� h�ughuk 	 	�g� h�	�gh� k�ughk

	 ug �uhuk� 	 ug	�h� k�uhk 	 	�g� hk�	�h� k�ughk

so that �g� h� �� 	�g� h� is a cocycle in Z��G�T��
Let g �� u�g denote another choice of representatives� such that ��g� 	 p�u�g�� For

each g � G� let 
�g� denote the number in T such that u�g 	 
�g�ug� Dene as before
	� 
 G�G� T by u�gu

�
h 	 	��g� h�u�gh� Then

	��g� h� 	 
�g�
�h�
�gh���	�g� h�

so that 	 and 	� dene the same class �	� � H��G�T�� This class depends only on ��

���� Proposition� Let G be a group� let � 
 G� PU�H� be a unitary projective repre�
sentation of G on a Hilbert space H and let �	� � H��G�T� be the associated cohomology
class� Then � admits a lifting �� 
 G� U�H� if and only if �	� 	 ��

Proof� See e�g� �Kir�� �

��� Remarks� �i� The previous proposition carries over to topological groups and
continuous representations� but there are subtle points about various classes of coycles
�Borel�measurable� continuous� ����� See �Mac� and quote perhaps C�C� Moore� Trans�
AMS ��� ������ ����� and ������ and ��� ������ ���� and ������

�ii� It can be checked that the cohomology class of Example ��ii is not �� and that the
cohomology class of Example ��iii is � if and only if N is odd�
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��b� Some projective representations of symplectic groups

The purpose of this Section is to expose a family of standard examples of projective
representations� involving nite symplectic groups�

���� Symplectic spaces� Let F be a eld and let V be a nite dimensional vector space
over F� A symplectic form on V is a bilinear form

� 
 V � V �� F

which is non degenerate �i�e� if v � V is such that either ��v� V � 	 � or ��V� v� 	 �� then
v 	 �� and alternating �i�e� ��v� v� 	 � for all v � V ��

Let � be a symplectic form on V� It is a classical result that the dimension of V is even�
say dimF�V � 	 �n� and that there exists a symplectic basis� namely a basis f�� ���� �ng
such that the matrix

�
���j � k���j�k��n

�
has the form

�
� I
�I �

�

where I �respectively �� denote the n�by�n unit matrix �resp� null matrix�� See e�g� �Art�
Theorem ���� or �MiH� x I����

����� Symplectic groups� Given a symplectic form � on a space V as above� the
corresponding symplectic group is the group

Sp�V� �� 	
n
g � GL�V �

�� ��gv� gw� 	 ��v�w� for all v�w � V
o
�

The result quoted above on symplectic bases shows that this group depends only on the
eld F and the dimension �n of V� and it is denoted by

Sp��n�F��

We collect now some classical facts about these groups�

�i� The centre of Sp��n�F� is reduced to f
idV g� It is of order � if the characteristic of
F is not �� and of order � if this characteristic is � �Art� Theorem ������

The quotient of Sp��n�F� by its center is the projective symplectic group denoted by
PSp��n�F�� In the ATLAS� one writes also S�n�q� for PSp��n�Fq ��

�ii� If Fq denotes the nite eld with q elements�

jSp��n�Fq �j 	 qn
�

nY
j��

�
q�j � �

�
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�Art� x III���� In particular

jSp���F��j 	 � jSp���F� �j 	 �� jSp���F� �j 	 ����

It can be shown that

PSp���F�� is isomorphic to the symmetric group S��
PSp���F�� is isomorphic to the alternating group A��

PSp���F�� is isomorphic to the symmetric group S��
PSp���F�� is the group of order ������ 	 ����� which turns up as the group

of the �� straight lines of a cubic surface�

PSp���F�� is the group of order ��������� 	 ����� which turns up as the group

of the �� double tangents to a plane curve of degree four�

�iii� With the exceptions of Sp���F�� � Sp���F�� and Sp���F��� the group Sp��n�F�
does not contain any normal subgroup which is proper and not contained in its center
�Art� Theorem �����

It follows that the corresponding group PSp��n�F� is simple� with the three exceptions
PSp���F� � � PSp���F�� and PSp���F���

����� Remark� Let � 
 F � T be an additive character of the eld F� Then the map�
V � V �� T

�v�w� ��� �
�
��v�w�

�
is a cocycle in Z��Vadd�T�� where Vadd denotes the abelian group underlying the vector
space V�

����� Metapectic algebras� Let F be a nite eld� let � 
 F � T be an additive
character of F and let �V� �� be a nite dimensional symplectic space of dimension �n over
F� The corresponding metaplectic algebra Met���n�F� is the complex involutive algebra
with basis �ev�v�V � with the multiplication dened by

evew 	 ����v�w��ev�w

for all v�w � V and with the involution dened by

�ev�
� 	 e�v

for all v � V� It is straightforward to check that these make Met���n�F� an associative
algebra with involution� with unit e�� its complex dimension is q�n� where q is the cardi�
nality of F� For each v � V� the basis element ev is invertible with inverse e�v� moreover
one has

evew �ev�
�� 	 �����v�w��ew
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for all v�w � V�

����� A representation of the metaplectic algebra� For each v � V� let uv be the
operator on the q�n�dimensional Hilbert space ���V � dened by

�uv���x� 	 ����v� x����v � x�

for all � � ���V � and x � V� It is straightforward to check that uv is unitary for each v � V
and that

uvuw 	 ����v�w��uv�w

�uv�
� 	 u�v

for all v�w � V� Consequently the map ev �� uv denes a ��representation

� 
 Met���n�F� �� B����V ��

of the metaplectic algebra�
This representation is faithful� Indeed� let �cv�v�V be a family of complex numbers such

that �
�P

v�V cvev
�
	 �� Then

�
�
�P

v�V cvev
�
�
�
��� 	

P
v�V cv����v� x�����v� 	 �� This

implies cv 	 � for all v � V�
At this point� we know thatMet���n�F� is a C

��algebra of dimension q�n� Let us assume
moreover that

�a� F is the prime eld Fp of characteristic p�

�b� p �	 ��

�c� � is not the unit character of Fp �

It follows that �� 
 Fp � T is faithful� We claim now that the center of the metaplectic al�
gebra is reduced to the scalar multiples of the identity� so that the C��algebraMet���n�Fp�
is isomorphic to the full matrix algebra Mpn�C �� Let x 	

P
v�V cvev �Met���n�Fp� be a

central element� Then

uw��x� 	
X
v�V

cv����w� v��uv�w 	
X
v�V

cv����v�w��uv�w 	 ��x�uw

for all w � V� namely

cv�����w� v�� 	 cv

for all v�w � V� If cv �	 � then ��V� v� 	 � by hypothesis �a� to �c�� so that v 	 � by the
non�degeneracy of �� This proves the claim�

We can sum up these results as follows�

���	� Proposition� Let Fp be the prime �eld of characteristic p �	 � and let � 
 Fp � T

be an additive character distinct from the unit character� Then one has

Met���n�Fp� � Mpn�C �
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�isomorphism of C��algebras��

���
� Exercise� The hypothesis being as in the previous proposition� let L be a La�
grangian subspace of V� namely a n�dimensional subspace of V on which the restriction of
� is identically zero� Show that the linear span of �el�l�L is a maximal self�adjoint algebra
in Met���n�F��

����� Exercise� Let L be a Lagrangian subspace of V � �Fp��n� Check that

fL 	 p�n
X
l�L

el

is an idempotent of Met���n�Fp��
Consider the linear map � 
 Met���n�Fp� � C dened by � �e�� 	 � and � �ev� 	 � if

v � V� v �	 �� Check that � is the normalised trace on Met���n�Fp� � Mpn�C �� Compute
� �fL� and deduce that fL is a minimal idempotent of Met���n�Fp��

More generally� for any additive character � 
 L� T� check that

fL 	 p�n
X
l�L

��l�el

is a minimal idempotent of Met���n�Fp��

����� Exercise� Show that there exists a basis s�� ���� s�n of V such that

��sj � sk� 	

	
�

�

� if k 	 j � �

�� if k 	 j � �

� if jk � jj �	 ��

for j� k � f�� ���� �ng� Set � 	 ����� which is a primitive pth root of unity� and set uj 	 esj
for �  j  �n� Check that

upj 	 � for allj � f�� ���� �ng�
ujuj�� 	 ��uj��uj if j � f�� ���� �n� �g�
ujuk 	 ujuk if jj � kj � ��

Dene then

ej 	
�

p

p��X
k��

�uj�
k

and check that one has

e�j 	 ej ��  j  �n��

ejej��ej � �

p
ej 	 ej��ejej�� � �

p
ej�� 	 � ��  j  �n� ���

ejek 	 ekei ��  j� k  �n � jk � jj � ���
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Dene also

��j 	
�p
p

p��X
r��

�r
�

urj

and check that one has

��j is unitary ��  j  �n��

��j�
�
j���

�
j 	 ��j���

�
j�

�
j�� ��  j  �n� ���

��j�
�
k 	 ��k�

�
j ��  j� k  �n � jk � jj � ���

If B�n�� denotes the group of braids on �n�� strings with the usual Artin�s generators
��� ���� ��n� show that

�j ���

p

�
� � �

p
p� � �p

�

�
ej � ��� ej�

denes a representation of B�n��� which is unitary if and only if p 	 �� �See �Jon���

Similarly

�j ��� ��j

denes a unitary representation of B�n�� for all odd prime p� �See �GoJ���

���� The metaplectic projective representation of Sp��n�Fp�� There is an
obvious action of the symplectic group by ��automorphisms of the metaplectic algebra

�
Sp��n�F� �� Aut

�
Met���n�F�

�
g ��� �g

given by �g�ev� 	 egv for all g � Sp��n�F� and v � V� With the assumptions �a� to
�c� of ����� the algebra Met���n�Fp� is a full matrix algebra by Proposition ����� thus
all its ��automorphisms are inner� of the form x �� uxu� for some unitary element u �
Met���n�Fp�� we write abusively u � U�p�n�� Observe that u is not uniquely dened by the
automorphism� but that is class u � PU�p�n� is well dened� Thus� one has a projective
representation �

Sp��n�Fp� �� PU�p�n�
g ��� ug

such that �g�x� 	 ugxu
�
g for all g � Sp��n�Fp� and x �Met���n�Fp �� where ug � U�p�n�

is some representant of ug�
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����� Proposition� �i� The above projective representation lifts to a representation

Sp��n�F� � U�p�n��

�ii� The latter representation is a direct sum of pn equivalent representations

�j 
 Sp��n�Fp�� U�pn��

�iii� Each �j splits as the direct sum of two irreducible representations� of dimensions pn��

�

and pn��
�

�

Proof� Find a good reference ��� or give the argument ���

����� Comment� Let HL �Met���n�Fp � be a minimal left�ideal of the form

�
Met���n�Fp�

�
fL�

where fL is as in Exercise ����� One has the following correspondence with the material
of Chapter � �and of further chapters��

Met���n�Fp� � CAR�H�

Sp��n�Fp� � Ures�H�

HL � �p�H�

Sp��n�Fp� acts on Met���n�Fp� � Ures�H� acts on CAR�H�

Met���n�Fp� irreducible on HL � CAR�H� irreducible on �p�H�

Sp��n�Fp� projective on HL � Ures�H� projective on �p�H�

Sp��n�Fp� lifts ������� Ures�H� does not lift �
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