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Human babesiosis is an infectious disease caused by intraeryth-
rocytic protozoa of the genus babesia. The disease is named after Victor 
Babes, the Hungarian pathologist and microbiologist who identified in-

traerythrocytic microorganisms as the cause of febrile hemoglobinuria in cattle in 
1888.1 Five years later, Theobald Smith and Frederick L. Kilborne identified a tick 
as the vector for transmission of Babesia bigemina in Texas cattle.2 This seminal ob-
servation established for the first time that an arthropod could transmit an infec-
tious agent to a vertebrate host.

The first documented human case of babesiosis was not recognized until about 
a half century later, when a splenectomized Croatian herdsman rapidly succumbed 
to an infection subsequently attributed to B. divergens.3 The first case in an immuno-
competent person was identified on Nantucket Island, off the coast of Massachu-
setts, in 1969.4 The causative agent was B. microti, and the vector was the Ixodes 
dammini tick (now referred to as I. scapularis).5 Additional cases occurred on the 
island, and the disease became known as “Nantucket fever.” During the past de-
cade, the incidence and geographic distribution of babesiosis have increased in the 
northeastern and upper midwestern regions of the United States. B. microti infection 
is almost as common as Lyme disease in some areas of southern New England, an 
observation that is consistent with the high prevalence of B. microti–infected ticks 
in the region.6-8 Babesiosis is now classified as a nationally notifiable disease and 
is recognized as an emerging health risk in several parts of the world.9,10

Epidemiol o gy a nd Tr a nsmission

More than 100 babesia species infect a wide array of wild and domestic animals, 
but only a few have been documented to infect humans.5,10-12 The overwhelming 
majority of cases in the United States are caused by B. microti. Such cases occur in 
the Northeast and upper Midwest, primarily from May through October (Fig. 1).10,12 
The emergence of babesiosis in these regions has primarily been attributed to the 
expansion of the white-tailed deer population, encroachment of local communities 
on wildlife habitats, and greater awareness of the disease on the part of the public 
and physicians, although cases remain underreported.6,33-35 A small number of 
cases caused by B. duncani and B. duncani–type organisms have been identified on the 
Pacific Coast from northern California to Washington State.14-16 Sporadic cases of 
infection with B. divergens–like organisms have been documented in Kentucky, Mis-
souri, and Washington State.17-19 In Europe, most reported cases have been attrib-
uted to B. divergens, and a few have been caused by B. venatorum (formerly called EU1) 
and B. microti.20,22-26 In Asia, B. microti–like organisms have caused illness in Japan 
and Taiwan, whereas a new babesia agent (KO1 strain) has been identified in South 
Korea.28-31 Sporadic cases of babesiosis have been reported in Africa, Australia, and 
South America.15,20,21,27,32
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B. microti is primarily transmitted to people by 
I. scapularis.34 Progression of I. scapularis through 
each of the three stages of its life cycle (larva, 
nymph, and adult) requires a blood meal from a 
vertebrate host (Fig. 2). The primary reservoir 
host for B. microti is the white-footed mouse 
(Peromyscus leucopus).34 Although adult ticks may 
transmit B. microti, most cases result from expo-
sure to nymphal ticks during the period from late 
spring through summer.7,34 The tick vectors for 
transmission of B. duncani, B. duncani–type, and 
B. divergens–like parasites in the United States 
have yet to be conclusively identified.20 In Europe, 
the sheep tick I. ricinus is the primary vector for 
transmission of B. divergens and B. venatorum.20,23,36 

Transplacental transmission of B. microti has been 
reported in a small number of cases.37

A few babesia species are transmitted through 
transfusion of blood or blood products.38-43 
B. microti is the most common transfusion-trans-
mitted pathogen reported to the Food and Drug 
Administration. 38,41,44 More than 150 cases of 
transfusion-transmitted babesiosis have been iden-
tified since the first case was reported in 1979,45 
and three quarters of these cases have occurred 
since 2000.46 Three cases have been caused by 
B. duncani.46,47 The actual number of cases caused 
by B. microti and B. duncani is thought to be much 
greater because many are undetected or under-
reported.41,43,46 Cases of transfusion-transmitted 
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Figure 1. Geographic Areas Where Human Babesiosis and Ixodes Tick Vectors Are Endemic.

Light colors denote areas where the ixodes tick vectors that transmit babesia are endemic but where babesiosis has yet to be documented 
in humans.13 Dark colors designate areas where human babesiosis is either endemic (solid pattern) or sporadic, as defined by more 
than three tickborne cases reported in a country or state (stippled pattern). Isolated cases of locally acquired babesiosis are depicted by 
circles. In the United States, babesiosis caused by Babesia microti is endemic in the Northeast and the upper Midwest (dark-red areas), 
where it is transmitted by Ixodes scapularis.5,6,12 Sporadic cases of babesiosis caused by B. duncani or B. duncani–type organisms are 
reported along the northern Pacific Coast (orange stippled area).14-16 The tick vector is unknown, but I. pacificus is the primary candidate.15 
B. divergens–like infections have been reported in Missouri, Kentucky, and Washington State (blue circles).17-19 In South America, symp-
tomatic infections have been acquired in Brazil (not shown) and Colombia (open circle), but the etiologic agents were not molecularly 
characterized.20,21 Three asymptomatic cases have been identified in Mexico (open circles).15 In Europe, B. divergens is the primary agent 
of human babesiosis.20,22,23 Cases are sporadic in France, Britain, and Ireland (dark-blue stippled areas), but isolated cases have been 
reported across the continent (blue circles). B. venatorum infections have been reported in Austria, Germany, and Italy (purple circles).24,25 
B. divergens and B. venatorum are phylogenetically related, and both are transmitted by I. ricinus. A single case of B. microti infection has 
been reported in Germany (red circle).26 In Africa, cases caused by uncharacterized babesia species have been documented, including three 
in Egypt (open circles), one in Mozambique (not shown), and two in South Africa (not shown).15,27 A case of B. divergens–like infection was 
reported on the Canary Islands, off the coast of western Africa.23 In Asia, B. microti–like organisms caused two cases in Taiwan and one 
case in Japan (red circles).28-30 In the latter case, I. ovatus ticks infected with B. microti–like organisms were found in the area, implicating 
this tick species as a vector of human babesiosis in Japan. I. persulcatus ticks also have been found to transmit B. microti–like organisms 
to mammals but have not yet been established as a vector in human babesiosis. A case in South Korea was caused by the KO1 strain 
that is related to a species found in sheep (black circle).31 Cases that were caused by uncharacterized babesia species have been docu-
mented in China and India (open circles). In Australia, a definitive case of B. microti infection has recently been identified (not shown).32 
Given the widespread distribution of the tick vectors that transmit babesia species in temperate latitudes, the prevalence of human 
babesiosis may be underestimated, although the endemic range of babesiosis may never reach the enzootic range of the tick species 
known to transmit babesia to humans.
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babesiosis are often severe, since recipients of 
blood products frequently are immunocompro-
mised or have coexisting medical conditions, 
and approximately a fifth of cases have been 
fatal.46,48,49 Infections are reported throughout 
the year, but most occur from early summer 
through late fall.46,49 About 10% of cases occur 
in nonendemic areas because persons may be-
come infected at endemic sites and subsequently 
donate blood in nonendemic areas or because 
units of contaminated blood are exported to 
nonendemic areas.41-43,46

Ph y l o gene tic Cl a ssific ation

Babesia species belong to the phylum Apicomplexa, 
which includes the protozoan parasites causing 
malaria, toxoplasmosis, and cryptosporidiosis.11 
Babesia species that infect humans can be classi-
fied into four clades.16,23,50 The first clade consists 
of B. microti, small parasites (<3 μm) that form a 
species complex in which nearly all human iso-
lates belong to one subclade.51,52 The second clade 
includes B. duncani and B. duncani–type organisms, 
small babesia that are phylogenetically distinct 
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Figure 2. Transmission of Babesia microti by the Ixodes scapularis Tick.

Adult female ticks lay eggs in the spring.34 Larvae hatch in the early summer and become infected with B. microti as they take a blood 
meal from infected white-footed mice (Peromyscus leucopus) in late summer. White-footed mice are the primary reservoir host, but other 
small rodents may carry B. microti. Larvae molt into nymphs the following spring. When infected nymphs feed on mice or humans in 
late spring or early summer, these hosts may become infected. Humans are accidental hosts; most cases of babesia occur from late 
spring through summer. In the fall, nymphs molt into adults that feed on white-tailed deer (Odocoileus virginianus) but rarely on humans. 
White-tailed deer do not become infected with B. microti but amplify the tick population by providing a blood meal for adult ticks. The 
following spring, adult female ticks lay eggs that are free of B. microti (no transovarial transmission) and the cycle is repeated. B. microti 
are obligate parasites of erythrocytes and typically are visualized on a Giemsa-stained thin blood smear (inset).12,20,23 The inset panels 
from left to right show a ring form with a nonstaining vacuole surrounded by cytoplasm (blue) and two small nuclei (purple), an amoeboid 
form, a tetrad (also referred to as a Maltese cross), and an extracellular form.
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from B. microti and are related to babesia of dogs 
and wildlife in the western United States.15,16 The 
third clade includes B. divergens, a parasite of cattle, 
and B. venatorum, which infects roe deer.23,24,36 
These species are small but phylogenetically re-
lated to the large babesia (≥3 μm). The fourth 
clade consists of large babesia that infect ungu-
lates and includes the KO1 strain.23,31

LIFE C YCLE OF PATHO GEN

B. microti undergo developmental changes within 
the tick vector and the reservoir host.20,23,53 
When larval ticks feed on infected mice in late 
summer (Fig. 2), gametocytes accumulate in the 
tick gut and differentiate into gametes. Gametes 
fuse to form zygotes that migrate across the gut 
epithelium into the hemolymph, where they ma-
ture into ookinetes. The ookinetes move to the 
salivary glands and become dormant sporo-
blasts.53 As nymphal ticks feed in the early sum-
mer of the following year, several thousand spo-
rozoites are delivered into the vertebrate host. 
Sporozoites attach to erythrocytes by docking onto 
glycosaminoglycans and sialoglycoproteins.54,55 
Once inside the erythrocytes, sporozoites mature 
into trophozoites, which eventually bud to form 
four merozoites. Egress of merozoites is accom-
panied by rupture of the host erythrocyte and 
invasion of other erythrocytes.

Clinic a l M a nifes tations

The clinical manifestations of babesiosis range 
from subclinical infection to fulminating disease 
resulting in death.12 Most symptomatic patients be-
come ill 1 to 4 weeks after the bite of a B. microti–
infected tick and 1 to 9 weeks (but up to 6 months 
in one reported case) after transfusion of con-
taminated blood products.12,46 After a gradual 
onset of malaise and fatigue, fever usually devel-
ops, with a peak temperature that can be as high 
as 40.9°C (105.6°F). Chills and sweats are com-
mon and may be accompanied by headache, my-
algia, anorexia, nonproductive cough, arthralgia, 
and nausea.6,56-61 Occasional symptoms include 
vomiting, sore throat, abdominal pain, conjunc-
tival injection, photophobia, weight loss, emotion-
al lability, depression, and hyperesthesia.12,56 On 
physical examination, fever is the most common 
sign. It may be accompanied by splenomegaly or 
occasionally by pharyngeal erythema, hepatomeg-

aly, jaundice, or retinopathy with splinter hemor-
rhages and retinal infarcts.12,56,57

Laboratory findings that are consistent with a 
mild-to-moderate hemolytic anemia include a low 
hematocrit, low hemoglobin level, low haptoglo-
bin level, elevated reticulocyte count, and elevat-
ed lactate dehydrogenase level.58,60,61 Thrombo-
cytopenia is commonly observed. The illness 
usually lasts for 1 or 2 weeks, but fatigue may 
persist for months.56,57,59,62 Asymptomatic para-
sitemia may persist for several months after 
standard therapy is initiated or for more than a 
year if the patient does not receive treatment.56,62 
Illness may relapse in severely immunocompro-
mised patients despite 7 to 10 days of antimicro-
bial therapy and may persist for more than a 
year if not adequately treated.62-66

The severity of babesiosis depends primarily 
on the immune status of the patient and on the 
babesia species causing the infection. About half 
of children and a quarter of previously healthy 
adults who are infected with B. microti have no 
symptoms.6 Asymptomatic, mild, and moderate 
infections generally occur in people who are im-
munocompetent.6,12,33 In contrast, severe B. microti 
illness requiring hospital admission is common 
among patients who have undergone splenectomy 
and those with cancer, human immunodeficiency 
virus infection, hemoglobinopathy, or chronic 
heart, lung, or liver disease.49,60,63-66 Other groups 
at increased risk for severe disease include neo-
nates, persons over the age of 50 years, patients 
receiving treatment with immunosuppressive 
drugs for cancer (e.g., rituximab) or undergoing 
organ transplantation, and those receiving anti-
cytokine therapy (e.g., etanercept and inflix-
imab).25,37,58,60,65-69 Complications develop in ap-
proximately half of patients who are hospitalized 
with babesiosis. The acute respiratory distress 
syndrome and disseminated intravascular coagu-
lopathy are the most common complications, but 
congestive heart failure, coma, liver failure, renal 
failure, or splenic rupture also may occur.12,58,60 
Fatality rates of 6 to 9% have been reported among 
hospitalized patients and up to 21% among those 
with immunosuppression.58,60,65 Cases caused by 
B. duncani and B. duncani–type organisms have 
ranged from asymptomatic to fatal.14,15,47 Most 
reported cases of B. divergens infection are severe 
and occur in people who lack a spleen.20,22 The 
fatality rate for B. divergens infection has dramati-
cally declined since the introduction of aggres-
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sive treatment with a combination of antimicro-
bial agents and exchange transfusion.20,22 All 
five reported cases of B. divergens–like infection 
occurred in asplenic patients and were severe, 
resulting in the deaths of two patients.17-19,23

Hos t R esis ta nce  
a nd Patho genesis

Our understanding of host resistance against ba-
besia species that infect humans is limited and 
based on human case studies and studies of ba-
besiosis in natural vertebrate hosts and animal 
models. Splenectomy is a major risk factor for 
severe infection, regardless of the babesia spe-
cies.58,60,64-66,70 The spleen plays a central role in 
host defense by clearing infected erythrocytes 
from the bloodstream and mounting a protective 
immune response (Fig. 3).71-74 CD4+ T cells in 
mice with B. microti infection and natural killer 
cells in those with B. duncani infection produce 
interferon-γ, the prototypic type 1 helper T-cell 
(Th1) cytokine that promotes killing of intracel-
lular pathogens by macrophages and enhances 
antibody production by B cells.75-77 B cells are 
critical for resolution of B. microti infection in pa-
tients whose cellular immunity is impaired and 
most likely help to clear B. microti in immunocom-
petent patients.25,65,69 The age-related decline in 
cellular immunity helps explain the severity of ba-
besiosis in patients over the age of 50 years. In 
a mouse model of age-related susceptibility to  
B. microti parasitemia, the protection conferred by 
adoptive transfer of splenic immune cells is age-
dependent and genetically determined.78

The pathogenesis of babesiosis is closely 
linked to the host response to infection and par-
asite-induced modifications in the erythrocyte 
membrane. In mild cases of babesiosis, inflam-
matory cytokines (e.g., tumor necrosis factor α 
[TNF-α] and interleukin-6) and adhesion mole-
cules (e.g., E-selectin, intracellular adhesion mol-
ecule 1 [ICAM-1], and vascular-cell adhesion mol-
ecule 1 [VCAM-1]) are up-regulated.29 Excessive 
synthesis of cytokines, however, may result in 
severe babesiosis and associated complications.72 
Pulmonary inflammation in mice with B. duncani 
infection has been associated with excessive pro-
duction of TNF-α and interferon-γ, and blockade 
of either cytokine prevents death.77,79,80 Intravas-
cular sequestration of leukocytes and infected 
erythrocytes may lead to obstruction of the mi-

crovasculature and tissue hypoxia.72,81,82 Some 
babesia species export proteins to the surface of 
infected erythrocytes, resulting in the adherence 
of these erythrocytes to the vascular endothelium 
and in their delayed clearance by the spleen.82 As 
with Plasmodium falciparum, the protein that is 
critical for cytoadherence of B. bovis–infected 
erythrocytes is encoded by a variable multicopy 
gene family that contributes to immune eva-
sion.72,82 Cytoadherence of babesia-infected eryth-
rocytes has yet to be documented in humans. 
Anemia that is caused by the rupture of erythro-
cytes during egress of babesia also contributes 
to pathogenesis, as do nonhemolytic mechanisms, 
such as the clearance of uninfected erythrocytes.83

Di agnosis

Babesiosis should be considered in any patient 
with an unexplained febrile illness who has re-
sided in or traveled to an area where the infection 
is endemic within the previous 2 months or who 
has received a blood transfusion within the pre-
vious 6 months (Fig. 4).12,39,43,46,84 The diagnosis 
requires a strong clinical suspicion because of 
the lack of an easily recognized clinical sign, 
such as the erythema migrans rash of Lyme dis-
ease. Since I. scapularis ticks can transmit B. mi-
croti, Borrelia burgdorferi, and Anaplasma phagocyto-
philum, babesiosis should be suspected in patients 
in whom Lyme disease or anaplasmosis has been 
diagnosed if more severe disease develops or if 
they have a poor response to standard antimicro-
bial therapy.7,8,57,84,91

A definitive diagnosis is generally made by 
microscopical identification of babesia on thin 
blood smears with Giemsa or Wright staining 
(Fig. 2).12,15,20,23 B. microti trophozoites appear as 
pleomorphic ring forms (round, oval, pear-shaped, 
or amoeboid) and are indistinguishable from  
B. duncani trophozoites. Although rare, tetrads of 
merozoites that are arranged in a cross-like pat-
tern (a so-called Maltese cross) are pathogno-
monic for babesiosis caused by B. microti or 
B. duncani.12,16 B. divergens and B. venatorum mero-
zoites typically appear as paired pear-shaped 
forms but also rarely appear as tetrads in human 
red cells.20,24 Although ring forms of babesia may 
resemble those of P. falciparum, malaria can be 
eliminated from consideration on the basis of a 
travel history and a careful review of blood 
smears.12,15,20 Distinguishing features of babesia 
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Figure 3. The Splenic Response to Babesia Infection.

The following composite model is based on studies of babesia infection in natural vertebrate hosts and animal 
models.12,71-77 The spleen is a heavily vascularized organ (top left panel) that consists of red-pulp zones and white-
pulp zones surrounded by a trabecula and an outer capsule.71,74 A circulating erythrocyte travels through the spleen 
approximately once every 20 minutes. Erythrocytes enter the spleen by means of the trabecular artery and flow into 
central arteries and follicular arterioles to reach the marginal sinus of the white pulp. Once in the adjacent marginal 
zone, babesia-infected erythrocytes are ingested and destroyed by resident dendritic cells and macrophages.73 
Marginal-zone macrophages do not express major histocompatibility complex (MHC) class II molecules but shed 
pathogen-degradation products that are picked up by marginal-zone B cells.71 Activated marginal-zone B cells and 
dendritic cells move to the T-cell zones, where they present antigen to T cells. Activated T cells migrate to the edge 
of the follicles and engage B cells, causing them to activate and eventually differentiate into antibody-secreting cells. 
Opsonization of babesia-infected erythrocytes by antibody promotes their clearance by phagocytes. Activated T cells 
also produce interferon-γ, the prototypic cytokine that helps macrophages kill ingested pathogens.75,76 Blood may 
bypass the white pulp and reach the red pulp directly.71,74 In the splenic cords of the red pulp, blood cells slowly 
flow between reticular fibers and are sensed by resident macrophages. Babesia-infected erythrocytes squeeze with 
difficulty through the apertures of the endothelium lining and are ingested by resident macrophages of the cords. 
Stress fibers that run longitudinally at the base of the endothelial-cell lining and connect to annular fibers can con-
tract and loosen, thereby regulating the flow and size of erythrocytes that reach the venous sinuses. Blood cells that 
access the venous sinuses flow into venules and eventually reach the collecting vein.
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are pleomorphic ring forms, extracellular forms, 
the absence of identifiable gametocytes, and the 
absence of brown deposits (hemozoin). The level 
of parasitemia is generally between 1 and 10% 
but can be as high as 80%.12,58,60,70 Because the 
parasitemia level is often less than 1% early in 
the course of illness, at least 300 microscopical 
fields should be reviewed (Fig. 4).

Other laboratory tests are useful in establishing 
the diagnosis, especially when smears are nega-
tive. A polymerase-chain-reaction (PCR) assay is 
highly sensitive and specific for the detection of 
babesia DNA in blood, particularly with real-
time technology.85,86 The standard assay for the 
detection of babesia antibody is the indirect im-
munofluorescence assay.87-89 IgM antibody usu-
ally is first detected 2 weeks after the onset of 
illness.89 IgG titers often exceed 1:1024 during 
the acute phase of illness and decline to 1:64 or 
less within 8 to 12 months.62,87 An immunoblot 
assay for detection of B. microti antibody is also 
available.90 Assays for B. microti antibody do not 
detect B. duncani, B. divergens, or B. venatorum anti-
body.14,15,20,43 When laboratory tests are incon-
clusive and infection is strongly suspected, a blood 
sample from the patient can be injected into a 
laboratory animal, such as a hamster. B. microti 
organisms usually appear in the blood of the 
inoculated animal within 2 to 4 weeks.85

Tr e atmen t a nd Ou t come

A combination of atovaquone and azithromycin 
is the treatment of choice for immunocompetent 
patients with mild-to-moderate babesiosis (Table 
1).59,92 One study showed that this combination 
was as effective as clindamycin and quinine in 
clearing parasitemia and resolving symptoms.59 
Only 15% of 41 patients receiving atovaquone 
and azithromycin had symptoms consistent with 
an adverse drug reaction, and only 1 patient (2%) 
had to discontinue the medications because of 
side effects. In contrast, three fourths of 18 pa-
tients receiving clindamycin and quinine had ad-
verse drug reactions, and dose reduction or dis-
continuation of treatment was required in a third 
of these patients. Even patients with mild ba
besiosis should be treated with atovaquone and 
azithromycin because without treatment, the in-
fection may not be cleared and severe disease may 
develop or the patients may inadvertently trans-
mit the infection by donating blood. Treatment 
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Figure 4. Algorithm for Diagnosis of Babesiosis Caused by Babesia microti.

Diagnostic laboratory testing for babesiosis should be initiated only if there is 
a strong suspicion of infection and the patient is at risk for infection (because 
of residence in or travel to an area where babesiosis is endemic or receipt of 
a blood transfusion within the previous 6 months).12,39,43,46,84 An example 
would be a patient living in an area where babesiosis is endemic, who is seen 
in the summertime for fever lasting more than 2 days with no apparent cause, 
and who removed an engorged tick within the past month. Babesiosis also 
should be considered in a patient with Lyme disease or human granulocytic 
anaplasmosis who reports symptoms that are more severe than usual or who 
has a poor response to standard antimicrobial therapy.57,84 Laboratory test-
ing is required for definitive diagnosis of babesiosis. Initial testing should 
consist of Giemsa or Wright staining of thin blood smears with oil immer-
sion.12,20,23 Babesia are often too small to be readily visualized on thick 
smears.15 Automated hematology analyzers are not reliable in detecting 
babesia-infected erythrocytes.15,20 Since the level of parasitemia may be low 
when the patient is first seen, additional thin blood smears may be required 
over the course of several days to detect the organism. Smears typically are 
repeated every 12 to 24 hours. When smears remain negative but the diagno-
sis is strongly suspected, a babesia-specific polymerase-chain-reaction (PCR) 
assay should be performed and if positive, antimicrobial therapy should be 
considered.85,86 Detection of babesia antibody in serum may be helpful in 
making the diagnosis, but treatment that is based on positive serologic analy-
sis alone should be avoided. Antibodies are detected by means of indirect 
immunofluorescence assay or immunoblotting.87-90 High IgG titers (≥1:1024) 
are indicative of active or recent infection. The presence of IgM (≥1:64) with-
out IgG antibody suggests either very recent infection or a false positive anti-
body reaction. Injection of the patient’s blood into small rodents is useful 
when symptoms persist and other laboratory tests remain negative.85
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of asymptomatic carriers should be considered if 
parasites are detected for longer than 3 months.92

The combination of clindamycin and quinine 
was the first successful antimicrobial regimen for 
the treatment of B. microti infection,93 and intra-
venous clindamycin and oral quinine are still 
recommended for patients with severe babesial 
illness (Table 1).92 When necessary, intravenous 
quinidine can be used instead of oral quinine 
but requires cardiac monitoring for possible 
prolongation of the QT interval. Partial or com-
plete exchange transfusion of whole blood or 
packed red cells should be considered in patients 
with severe disease, particularly those infected 
with B. divergens.12,20,23,45,94 Indications for such 
therapy include a high level of parasitemia (≥10%), 
clinically significant anemia, or renal, hepatic, or 
pulmonary compromise.12,60,64,92

Severely immunocompromised patients may 
have persistent or relapsing babesiosis despite 
treatment with the standard course of 7 to 10 
days of antimicrobial agents.65 In such patients, 
a cure generally requires at least 6 weeks of an-
timicrobial therapy, including 2 weeks after ba-
besia are no longer detected on blood smears.65 
High doses of azithromycin in combination with 
atovaquone have been used successfully in im-
munocompromised patients (Table 1).95 Resis-
tance to atovaquone and azithromycin occasion-

ally develops during prolonged therapy (>4 weeks) 
that follows an initial, subcurative course of this 
combination.66

Patients with babesiosis should be closely 
monitored during therapy. In most cases, symp-
toms abate within a day or two after antimicro-
bial therapy is initiated, and infection resolves 
within 3 months.59,62,92 In severely ill patients, 
parasitemia should be monitored daily until it 
has decreased to a level of less than 5% and the 
patient’s condition has improved. If symptoms 
recur, treatment should immediately resume, 
with close clinical follow-up.

Pr e v en tion

Preventive measures consist of personal, residen-
tial, and community approaches.35,96-99 Personal 
protective measures include avoiding sites where 
ticks, mice, and deer thrive. It is especially im-
portant for persons at increased risk, such as as-
plenic or other immunocompromised persons 
who live in or travel to areas where babesiosis is 
endemic, to avoid deciduous forests and the edge 
between woodlands and open areas, where ticks 
may abound.35,96,97 Persons who cannot avoid such 
areas should wear protective clothing, apply tick 
repellents containing permethrin or N,N-diethyl-
meta-toluamide (DEET) to clothing and repellents 

Table 1. Antimicrobial Treatment of Human Babesiosis.*

Treatment Dose

Atovaquone and azithromycin†

Atovaquone Adult, 750 mg; pediatric, 20 mg/kg (maximum, 750 mg/dose) every 12 hr

Azithromycin Adult, 500 mg on day 1 and 250 mg on subsequent days; pediatric, 10 mg/kg  
(maximum, 500 mg/dose) on day 1 and 5 mg/kg (maximum, 250 mg/dose)  
on subsequent days

Clindamycin and quinine

Clindamycin

Oral Adult, 600 mg every 8 hr; pediatric, 7–10 mg/kg (maximum, 600 mg/dose) every  
6–8 hr

Intravenous Adult, 300–600 mg every 6 hr; pediatric, 7–10 mg/kg (maximum, 600 mg/dose)  
every 6–8 hr 

Quinine Adult, 650 mg every 6–8 hr; pediatric, 8 mg/kg (maximum, 650 mg/dose) every 8 hr 

*	All doses of antimicrobial therapy are administered for 7 to 10 days, except in patients with persistent relapsing infec-
tion, who receive such therapy for at least 6 weeks, including 2 weeks after babesia are no longer detected on a blood 
smear. Complete or partial exchange transfusion is recommended for babesiosis caused by Babesia divergens but 
should also be considered for any severe case of babesiosis caused by other babesia species, including B. microti and 
B. duncani. All antimicrobial agents are administered by mouth unless otherwise specified.

†	For immunocompromised patients with babesiosis, successful outcomes have been reported with the use of atovaquone 
combined with higher doses of azithromycin (600–1000 mg per day).
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containing DEET to skin, and examine them-
selves daily for ticks.98 Landscape-management 
strategies, such as keeping grass mowed, remov-
ing leaf litter, using plantings that do not attract 
deer, and spraying areas of high tick density with 
acaricidal formulations, may help reduce the risk 
of tickborne infections.97,99 The elimination of 
deer populations sharply reduces the risk of in-
fection but is difficult to implement.35 Public 
education about the risks and characteristic 
symptoms of tickborne diseases is an important 
part of these preventive measures.

The current approach of questioning prospec-
tive blood donors about a history of babesiosis 
and indefinitely deferring those who have had 
the disease has not been effective in preventing 
transfusion-transmitted babesiosis.39,41,43 Labo-
ratory-based screening programs to identify pro-
spective blood donors who are infected with 
babesia are being developed for use in areas 
where babesiosis is endemic. An interim analysis 

of the first such program showed that the com-
bined use of an indirect immunofluorescence 
assay to detect B. microti antibody and a real-time 
PCR assay to detect B. microti DNA reduced the 
incidence of transfusion-transmitted babesiosis 
in neonates and children with sickle cell disease 
or thalassemia.100 On the basis of the recent 
emergence of tickborne and transfusion-trans-
mitted babesiosis, the development of a vaccine 
against human babesiosis should be considered.
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