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ABSTRACT

We extend the enumeration of regular linear spaces in [1] to at most 19 points.
In addition, one of the 5 missing cases in the previous list is settled. The
number of regular linear spaces of type (15|215, 330) is 10, 177, 328. c© John Wiley

& Sons, Inc.

1. INTRODUCTION

A linear space is a point line incidence geometry with the property that every pair
of points is on exactly one line and every line has at least two points. We consider
finite linear spaces, i.e. linear spaces with a finite number of points. In [2], the
current authors enumerated all linear spaces of order at most 12. More specific
types of linear spaces have also been studied. We denote the set of points (resp.
lines) by P (resp. B). We denote the incidence structure as a pair (P ,B), and
we identify a line with the set of points on it. We also call a line block, using the
language of Design Theory, which is a related area.

A linear space is regular (in the sense of [1]) if for every integer i, the number of
lines of size i through a point is independent of the point. Let ai be the number
of lines of size i through a point, for 2 ≤ i ≤ v, where v is the total number of

c© John Wiley & Sons, Inc. CCC
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points. The number of lines of length i (also called i-lines) is bi = vai/i. We denote
the type of a regular linear space as (v|2b2 , . . . , vbv ), possibly omitting terms with
bi = 0. Previously, in [1], the parameter type (v|2b2 , 3b3 , . . . , vbv ) has been denoted
as (v|b2, b3, . . . , bv). That notation turned out to be impractical for larger parameter
sets, hence the change.

In [1], the regular linear spaces on at most 16 points have been enumerated, with
the exception of 5 parameter cases. The present note extends that enumeration to
at most 19 points. In addition, the parameter case (15|215, 330) is settled.

For sake of completeness, we also mention that a linear space is called proper

provided every line has at least three points. Proper linear spaces have been enu-
merated for up to 18 points in [5].

If possible, we will describe the relationship of regular linear spaces of a given
type to other structures. Let us introduce some of the most important objects
and constructions. For more details, we refer to the Handbook of Combinatorial
Designs [9].

1. We let Pn(q) and An(q) be the projective and the affine spaces of dimension
n over the field with q elements. If n = 2, they are 2-(q2 + q + 1, q + 1, 1)
and 2-(q2, q, 1) designs, respectively. Any design with parameters of these
two types if called a projective or affine plane (of order q), respectively. Note
that for this we do not require q to be a prime power. However, no examples
where q is not a prime power are known.

2. Every incidence structure (P ,B) can be dualized as follows. Define a new
incidence structure, the dual, as the pair (P ′,B′), where P ′ = B and B′ = P .
For B ∈ P ′ = B and p ∈ B′ = P , we put

B ∈ p ⇐⇒ p ∈ B,

where the first incidence is in (P ′,B′) and the second is in (P ,B). So, roughly
speaking we exchange points and lines and keep incidence the same.

3. A configuration of type vrbk is a point line incidence structure with v points
and b lines of size k such that every point is on r lines and any two points
lie on at most one line. Configurations vrbk with k > 2 are in one-to-one
correspondence with regular linear spaces of type (v|2b2 , kb) with b2 = a2 =
v−1−(k−1)b. The projective and affine planes of order n are (n2+n+1)n+1

and n2
n+1(n

2+n)n configurations, respectively. The dual of a projective plane
is again a projective plane (of the same parameters). This is not true for affine
planes.

4. A Latin square of order n ≥ 4, denoted LSQ(n) gives rise to a regular linear

space of type (3n|3n2

, n3). The points consist of three sets of size n, which
stand for rows, columns and digits of the Latin square. Let these be de-
noted r1, . . . , rn, c1, . . . , cn and d1, . . . , dn. The 3 n-blocks are {r1, . . . , rn},
{c1, . . . , cn}, and {d1, . . . , dn}, The n2 3-lines consist of one point of each
type. More precisely, for each entry of the Latin square we declare a block
as follows. If the digit in row i and column j of the Latin square is k, then
the block is {ri, cj , dk}. Conversely, any regular linear space with parameters

(3n|3n2

, n3) with n ≥ 4 gives rise to a Latin square of order n. For example,
the linear spaces (12|316, 43) are the two Latin squares of order 4. We remark
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that under this correspondence, the isomorphism types of such linear spaces
correspond to the “strong” isomorphism types of Latin squares, where rows,
columns and digits may be exchanged. There are other concepts of isomor-
phism for Latin squares, which typically amount to limiting the possibilities
of exchanging the three sets against each other (let “weak” isomorphism types
be the Latin squares where all three sets must be fixed).

5. Several parameter cases will be identified as dual mesh as follows. Two
disjoint lines in a linear space are called parallel. A parallel class is a set of
pairwise parallel lines which together partition the set of points. A linear
space on v points with lines of at most two sizes, k and possibly 2, is a mesh,

denoted mesh(v, k, m), provided the k-lines form m parallel classes. Hence a
mesh(v, k, m) is a regular linear space of type (v|2b2 , kvm/k), for some b2, but
not every regular linear space of that type is a mesh. The parameter b2 is
determined as b2 =

(

v
2

)

− vm
k

(

k
2

)

. A mesh with v = k2 is known as a net. A dual
mesh is obtained as follows. For each of the parallel classes, adjoin a new point
“at infinity” where all lines of that class intersect. Then remove the 2-lines
and dualize the resulting incidence geometry (in the above sense). Finally,
add sufficiently many 2-lines to turn the dual structure into a linear space.
For example, a mesh(30, 5, 3) is a regular linear space (30|2255, 518) with 3
parallel classes. Dualizing in the above manner yields a (18|218, 330, 63). In
general, the parameters of the dual mesh are

(

vm

k

∣

∣

∣

∣

∣

2b′
2 , mv,

(v

k

)m
)

where

b′2 =

(vm
k

2

)

− v

(

m

2

)

− m

(v
k

2

)

.

2. TACTICAL DECOMPOSITIONS

Recall the concept of a tactical configuration of incidence structures as described
for instance in [3]. Assume we have a finite incidence structure (P ,B), i.e. with
both P and B finite. Assume further that C and D are partitions of P and B,
respectively. Let C have classes C1, . . . , Cm and let D1, . . . , Dn be the set of classes
of B. For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let

αi,j = # B ∈ Dj : p ∈ B (1)

for p in Ci, provided that this number exists, i.e. that the number of blocks of Dj

containing a point of Ci is constant. Also, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, define

βi,j = # p ∈ Ci : p ∈ B (2)

for B ∈ Bj , provided that this number exists. In case that all αi,j exist, we call
the incidence structure row tactical. In case that all βi,j exits, we call the incidence
structure column tactical. An incidence structure which is both, row and column
tactical is simply called tactical. For a tactical decomposition we always have

ciαi,j = βi,jdj . (3)
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We may describe row tactical incidence structures by its scheme, which is the array










→ d1 · · · dn

c1 α1,1 α1,n

...
cm αm,1 αm,n











(4)

(with ci = |Ci| and dj = |Dj | for 1 ≤ i ≤ m and 1 ≤ j ≤ n.) We indicate the fact
that this scheme is row tactical by a horizontal arrow in the top left corner. Also,
a column tactical decomposition is described by the scheme











↓ d1 · · · dn

c1 β1,1 β1,n

...
cm βm,1 βm,n











(5)

with a downward arrow indicating that the scheme is column tactical. We remark
that dualizing (in the above sense) leads to the following exchange in parameters:
the new αj,i will equal the old βi,j and vice versa. Also, we note that there is
no special notation for tactical decompositions (which are both row and column
tactical). The reason for this is that the arrow indicates whether the decomposition
scheme shows the αi,j or the βi,j . So, for a tactical decomposition we still need to
make a choice as to whether we present it as a row tactical decomposition or as a
column tactical decomposition.

Configurations have rather small tactical decompositions. A configuration vrbk

has m = n = 1 and furthermore α1,1 = r, β1,1 = k, c1 = v and d1 = b. The
equation (3) reduces to vr = kb. The decompositions (4) and (5) are, respectively,

[

→ b
v r

]

and

[

↓ b
v k

]

The dual structure has the decomposition
[

→ v
b k

]

A configuration vr is a configuration vrvr, i.e. with k = r and b = v.

A mesh(v, k, m) has the tactical decomposition
[

→ v
k · · · v

k b2

v 1 · · · 1 2b2/v

]

or

[

↓ v
k · · · v

k b2

v k · · · k 2

]

The dual mesh has the decomposition
[

↓ m v b′2
vm
k

v
k m 2

]

A Latin square LSQ(n) has the tactical decomposition








→ 1 1 1 n2

n 1 0 0 n
n 0 1 0 n
n 0 0 1 n








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where the three groups of points of size n are the three sets corresponding to rows,
column and digits as described above. This decomposition scheme would generate
the weak isomorphism types of Latin squares, since the three groups of size n are
fixed. On the other hand, the scheme

[

→ 3 n2

3n 1 n

]

would generate the strong isomorphism types. We will see later that finer decom-
position schemes have advantages when trying to generate the incidence geometries
from the scheme. In Section 4. we will discuss a method of refining the parameters
of a decomposition scheme.

3. THE CONFIGURATIONS 156303 A. K. A.
REGULAR LINEAR SPACES OF TYPE
(15|215

, 330)

Regular linear spaces (15|215, 330) admit the tactical decomposition
[

→ 15 30
15 2 6

]

(6)

or dually,




→ 15
15 2
30 3



 (7)

The lines of size 3 form a configuration156303. Conversely, every configuration
156303 gives rise to a regular linear space (15|215, 330) by joining the 15 uncon-
nected pairs of points with lines of size 2. This shows that regular linear spaces
(15|215, 330) and configurations 156303 are equivalent objects. In this section (and
in Section 5.) we will prove the following result:

Theorem 3.1. The number of isomorphism types of regular linear spaces of type

(15|215, 330) is 10, 177, 328.

Let us consider the dual configuration 156303 again. In the dual, i.e. in (7)
we have 15 points of degree 2. They form a 2-regular graph on 15 points, or a
configuration 152. Such a graph may be described by a partition of 15 into parts xi

of size at least 3, i.e. by an integer solution of the equation

15 = x1 + x2 + · · · + xℓ, xi ≥ 3 (8)

for some ℓ. Each 2-graph has a decomposition into cycles of length xi satisfying (8).
Conversely, each such partition describes a graph up to isomorphism. We let ai be
the number of parts of size i, so that (8) becomes

15 =
15
∑

i=3

iai (9)
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There are 17 possible cases, which we call cycle decompositions, they are listed
in Tab. I. We note that the automorphism group of a cycle decomposition is
isomorphic to

∏15
i=3 Di ≀ Sai

. The automorphism groups and their respective orders
are indicated also.

TABLE I. The possible cycle decompositions of a 152

no. partition |Aut| Aut

1 35 933120 D3 ≀ S5

2 33, 6 15552 (D3 ≀ S3) × D6

3 32, 4, 5 5760 (D3 ≀ S2) × D4 × D5

4 32, 9 1296 (D3 ≀ S2) × D9

5 3, 43 18432 D3 × (D4 ≀ S3)
6 3, 4, 8 768 D3 × D4 × D8

7 3, 5, 7 840 D3 × D5 × D7

8 3, 62 1728 D3 × (D6 ≀ S2)
9 3, 12 144 D3 × D12

10 42, 7 1792 (D4 ≀ S2) × D7

11 4, 5, 6 960 D4 × D5 × D6

12 4, 11 176 D4 × D11

13 53 6000 D5 ≀ S3

14 5, 10 200 D5 × D10

15 6, 9 216 D6 × D9

16 7, 8 224 D7 × D8

17 15 30 D15

Let us investigate advantages and disadvantages of the previously mentioned
decompositions in terms of their use for generating the geometries. We are referring
to the generator program which has been written for [2]. This generator takes as
input a decomposition scheme and produces all valid incidence matrices for that
scheme up to isomorphism. Let us assume that we generate the spaces in a row-
by-row (viz. point-by-point) fashion. Using (7), we would thus first create the 15
2-points. Clearly, this is a desirable approach, as we can access the geometries
according to the 17 possible cycle decompositions of the 152. However, as we are in
the dual setting, the condition that two points are on exactly one block is no longer
present, which clearly weakens the strength of the generating process. (For sake of
completeness, we should mention that we now have the additional condition that
two blocks intersect in exactly one point, but that our current generator does not
allow using this condition). On the other hand, if we generate from (6), then we
could not divide cases according to the regular graphs.

We remark that the isomorphism checking of the generator program usually
respects the ordering of the classes of the decomposition. There are cases where this
is not the best approach. For example, if the cycle decomposition has many parts
of equal size then the group respecting the decomposition class-wise is

∏15
i=3 Dai

i .

However, the true automorphism group of the 152 is
∏15

i=3 Di ≀ Sai
, as seen. Hence

there are cases in which more geometries than necessary are generated. On the
other hand, there is a way of removing the decomposition altogether in the end and
doing another isomorphism check. This last check would remove the isomorphic
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copies which are due to the fact that we did not start with the full configuration
stabilizer in the first place.

3.1 Only short cycles (cases 1, 3, 5 and 13)

When generating cycles from a tactical decomposition scheme, we do not always
get the expected results. For instance, the decomposition scheme

[

→ 6
6 2

]

generates cycles of length 6 as well as double three cycles. This is because the
scheme admits both cases, which can be seen from the two incidence matrices

Hence the presence of larger cycles may result in a mixing of cases, which is clearly
undesirable. For cycles of length at most 5, this is not possible, so let us call these
cycles short, and all other cycles long. Let us consider first the cases with only
short cycles. In these cases, generating geometries based on refined decomposition
schemes works well. As we want to generate pointwise, we start with (6) and refine
it according to the cycle decomposition of the 2-blocks. The decomposition schemes
in cases 1, 3, 5 and 13 are:

#1 :

















→ 3 3 3 3 3 30
3 2 0 0 0 0 6
3 0 2 0 0 0 6
3 0 0 2 0 0 6
3 0 0 0 2 0 6
3 0 0 0 0 2 6

















, #3 :













→ 3 3 4 5 30
3 2 0 0 0 6
3 0 2 0 0 6
4 0 0 2 0 6
5 0 0 0 2 6













,

#5 :













→ 3 4 4 4 30
3 2 0 0 0 6
4 0 2 0 0 6
4 0 0 2 0 6
4 0 0 0 2 6













, #13 :









→ 5 5 5 30
5 2 0 0 6
5 0 2 0 6
5 0 0 2 6









The above mentioned problem of generating too many isomorphic copies applies to
case 1 in particular, since essentially we forget about the group S5 acting on the
set of 3-cycles. However, we do have the possibility of removing the decomposition
in the end, and to do the isomorphism testing in a post-processing stage. We get
the following computer result:

Proposition 3.2. The number of regular linear spaces (15|215, 330) in cases 1, 3,
5 and 13 are 146, 22816, 7515 and 27676, respectively.

At this point, one more remark is in order. Roughly speaking, a finer decom-
position scheme leads to a better performance when generating the geometries for
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that scheme. One possible refinement would be to isolate a 3-cycle, which gives rise
to the following tactical decomposition





→ 3 12 18 12
3 2 0 6 0

12 0 2 3 3





This decomposition would yield all cases which involve a 3-cycle, i.e. cases 1 to
9. But we can also achieve decompositions for one particular cycle type. We show
a row tactical decomposition for cycle type 5. This decomposition is not column
tactical. However, merging all the point classes of size 4 results in a block tactical
decomposition:

#5 :













→ 3 4 4 4 18 12
3 2 0 0 0 6 0
4 0 2 0 0 3 3
4 0 0 2 0 3 3
4 0 0 0 2 3 3













 





→ 3 12 18 12
3 2 0 6 0

12 0 2 3 3





Of course, generating the dual scheme would allow us control about the cycle type
which arises after 15 points.

3.2 One long cycle of length at most 9 (cases 2, 4, 6, 7, 10 and 11)

A modification of the refinement method presented above allows to handle the cases
with exactly one long cycle of length at most 9. Take for instance the cycle type
no. 2 which is (33, 6). We refine in such a way that the long cycle comes first on
the diagonal of the decomposition scheme:

#2 :













→ 6 3 3 3 30
6 2 0 0 0 6
3 0 2 0 0 6
3 0 0 2 0 6
3 0 0 0 2 6













At line 6 in the generation process, we check whether a cycle of length 6 has been
generated, and reject the other cases. In a similar manner, we also handle the cases
4, 6, 7, 10 and 11, using the following refined row tactical decompositions:

#4 :









→ 9 3 3 30
9 2 0 0 6
3 0 2 0 6
3 0 0 2 6









, #6 :









→ 8 4 3 30
8 2 0 0 6
4 0 2 0 6
3 0 0 2 6









, #7 :









→ 7 5 3 30
7 2 0 0 6
5 0 2 0 6
3 0 0 2 6









#10 :









→ 7 4 4 30
7 2 0 0 6
4 0 2 0 6
4 0 0 2 6









, #11 :









→ 6 5 4 30
6 2 0 0 6
5 0 2 0 6
4 0 0 2 6









We obtain the following computer result:

Proposition 3.3. The number of regular linear spaces (15|215, 330) in cases 2, 4,
6, 7, 10 and 11 are 7891, 102368, 184182, 174612, 82328 and 160684, respectively.
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If the long cycle is very long (i.e. of length > 9), then we have to distinguish too
many cases and therefore this method becomes unpractical.

3.3 Forcing a 6-cycle (cases 8 and 15)

Let us get back to the problem of generating a 6-cycle. If we take the input
[

→ 3 3
6 1 1

]

then the 6-cycle splits into cycles of even length, but since a summand 2 is not
possible, we get only one summand 6, i.e. the 6-cycle 1-2-5-6-4-3-1:

We can generate the cases 8 and 15 using the following decomposition. For case
8, we also use the 3-cycle. For case 15, we take the 9-cycle at the beginning and
choose the proper cases at line 9.

#8 :









→ 3 3 3 3 3 18 12
3 2 0 0 0 0 6 0
6 0 1 1 0 0 3 3
6 0 0 0 1 1 3 3









, #15 :





→ 9 3 3 30
9 2 0 0 6
6 0 1 1 6





Of course, in case 8 we get geometries repeatedly since we have ordered the two
6-cycles. A post processing phase is necessary to eliminate isomorphic copies. We
get the following computer result:

Proposition 3.4. The number of regular linear spaces (15|215, 330) in cases 8
and 15 are 83065 and 721962, respectively.

At this point, we are left with the remaining cases 9, 12, 14, 16 and 17. We will
continue with these cases in Section 5.

4. REFINEMENT OF PARAMETERS

In [3], a method of calculating refined parameters algebraically has been presented.
The idea is to create all possible refinements of a decomposition scheme, i.e. de-
compositions at a higher parameter depth. The hope is that the generation process
runs more smoothly on the refined decompositions. Let us present this process for
the parameters of regular linear spaces (for linear spaces in general, see [2]). Such
a space admits a row tactical decomposition

[

→ b
v r

]

(10)

where b is the total number of lines and r is the constant number of lines through
a point. We call this the parameters at depth 0. The decomposition can be refined
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by computing the possible types of lines. Let bi be the number of lines of length i
in the space. Then

(

v

2

)

=

v
∑

i=2

bi

(

i

2

)

(11)

subject to the conditions that

v | ibi for i = 3, 4, . . . , v. (12)

We then have b =
∑v

i=2 bi and r =
∑v

i=2
ibi

v . The parameters at depth 1 are a
column tactical decomposition of the form

[

↓ b2 b3 · · · bv

v 2 3 · · · v

]

or, dually















→ v
b2 2
b3 3
...

...
bv v















(13)

where (b2, . . . , bv) is a solution of (11). This decomposition may or may not be
point tactical. If it is not point tactical, the procedure of [3] goes on and refines the
decomposition of points to a tactical one. The whole process keeps refining the row
and column decompositions alternately. Finiteness implies that this process will end
eventually. In that case, we have obtained a tactical decomposition (which may be
discrete). The even parameter depths correspond to point tactical decompositions,
whereas the odd numbered parameter depths are block tactical decompositions.

Let us demonstrate the process of refining the parameters by an example. Con-
sider one particular cycle decomposition of a (15|215, 330). We may start with the
cycle type no. 14= (5, 10), which gives us the following row tactical decomposition.

#14 :





→ 5 10 30
5 2 0 6

10 0 2 6



 (14)

We call these the parameters at depth 2. Let Pi and Bj be the point and block
classes, respectively, where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. Hence we have P = P1∪P2 and
B = B1∪B2∪B3. The next step is to determine the refined line types. That is, for a
line B ∈ Bj we compute all possible (β1,j , β2,j) with βi,j as in (2). The parameters
at depth 3 describe how many lines of each refined line type exist. See [2] for more
on how to compute refined line types. Briefly, in this case one proceeds as follows:

For a line B in B1 or B2 we must have a type (2, 0) or (0, 2), respectively. The
possibilities for lines in B3 are

v1 = (0, 3), v2 = (1, 2), v3 = (2, 1)

(notice that the type (3, 0) is impossible since each of the 3 points is on 2 2-lines
from B1, which would require 6 distinct points in P1, in contradiction to |P1| = 5).

Let ej be the number of lines of type vj . We are going to create linear equalities
and inequalities as follows. The equation Sj counts the lines in Bj . The equation
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Fi,j comes from double counting the number of flags in Pi ×Bj. The equation Ju,v

counts the joining of pairs of points from Pu and Pv (including the case u = v).
Thus we have

e1 + e2 + e3 = |B3| = 30 (S3)

e2 + 2e3 = 5 · 6 = 30 (F1,3)

3e1 + 2e2 + e3 = 10 · 6 = 60 (F2,3)

5 + e3 =
(

5
2

)

= 10 (J1,1)

2e2 + 2e3 = 5 · 10 = 50 (J1,2)

10 + 3e1 + e2 =
(

10
2

)

= 45 (J2,2)



















































(15)

(J1,1) implies that e3 = 5. From (J1,2) we infer that e2 = (50− 10)/2 = 20, so that
e1 = 30− 20− 5 = 5 by (S3). This is in fact a solution, i.e. we have 5 lines of type
v1, 20 lines of type v2 and 5 lines of type v3. Therefore, the unique block tactical
decomposition at depth 3 is

#14 :





↓ 5 10 5 20 5
5 2 0 0 1 2

10 0 2 3 2 1



 or, dually

















→ 5 10
5 2 0

10 0 2
5 0 3

20 1 2
5 2 1

















(16)

We may either construct the geometries from this scheme, or we may choose to cal-
culate parameters at depth 4, which would lead to several possible decompositions.
If constructing from a decomposition scheme at an odd parameter depth, we can
extract the correct cycle decomposition at line 15 in the generation process.

For the purpose of illustrating the method in its full generality, let us go on and
compute the parameters at depth 4. We denote by Pi and Bj the classes of point
(resp. blocks) of the decomposition at depth 3. The next step is to determine
the refined point types, i.e. the vectors (αi,1, . . . , αi,5) for i = 1, 2, with αi,j as
in (1). The geometrical conditions of the linear space translate into a system of
linear equation. There are two types of equations, called Ci,j and Si,j . Here, i and
j are indices of the point classes Pi and block classes Bj of the parameters of depth
3. The equation Ci,j counts the connections of a point of Pi with points of Pj (if
i = j then we count connections of a point of Pi with different points of Pi). The
equation Si,j forces the new type to be a refinement of the type in parameter depth
two. For points of P1, we get the following system of equations, with xj = α1,j for
j = 1, . . . , 5.

x1 + x5 = 4 (C1,1)

2x2 + 3x3 + 2x4 + x5 = 10 (C1,2)

x3 + x4 + x5 = 6 (S1,3)

subject to x1 = 2, x2 = x3 = 0























(17)

This system has the unique solution

v1 = (x1, . . . , x5) = (2, 0, 0, 4, 2).
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For points of P2, we have the following conditions (with xj = α2,j for j = 1, . . . , 5)

2x1 + x4 + 2x5 = 5 (C2,1)

x2 + 2x3 + x4 = 9 (C2,2)

x3 + x4 + x5 = 6 (S2,3)

subject to x1 = 0, x2 = 2























(18)

There are exactly three solutions

v2 = (0, 2, 1, 5, 0), v3 = (0, 2, 2, 3, 1), v4 = (0, 2, 3, 1, 2).

For the parameters of depth 4, we need to know how many points of each type
exist. This leads to the following system of linear equalities and inequalities. The
inequalities come from considering intersections of lines of different types. Recall
that in a linear space, two lines intersect in at most one point. Hence for disjoint
sets of lines, the number of intersections between the two sets of lines is bounded
above by the product of the respective numbers of lines in the sets. We let xi be
the number of points of type vi.

x1 = 5 (S1)

x2 + x3 + x4 = 10 (S2)

2x2 + 2x3 + 2x4 = 20 (F2,2)

x2 + 2x3 + 3x4 = 15 (F2,3)

5x2 + 3x3 + x4 = 40 (F2,4)

x3 + 2x4 = 5 (F2,5)

x1 ≤
(

5
2

)

= 10 (J1,1)

8x1 ≤ 5 · 20 = 100 (J1,4)

4x1 ≤ 5 · 5 = 25 (J1,5)

x2 + x3 + x4 ≤
(

10
2

)

= 45 (J2,2)

2x2 + 4x3 + 6x4 ≤ 10 · 5 = 50 (J2,3)

10x2 + 6x3 + 2x4 ≤ 10 · 20 = 200 (J2,4)

2x3 + 4x4 ≤ 10 · 5 = 50 (J2,5)

x3 + 3x4 ≤
(

5
2

)

= 10 (J3,3)

5x2 + 6x3 + 3x4 ≤ 5 · 20 = 100 (J3,4)

2x3 + 6x4 ≤ 5 · 5 = 25 (J3,5)

6x1 + 10x2 + 3x3 ≤
(

20
2

)

= 190 (J4,4)

8x1 + 3x3 + 2x4 ≤ 20 · 5 = 100 (J4,5)

x1 + x4 ≤
(

5
2

)

= 10 (J5,5)







































































































































































































(19)

This system has 3 solutions

(x1, x2, x3, x4) ∈ {(5, 5, 5, 0), (5, 6, 3, 1), (5, 7, 1, 2)}
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corresponding to three point tactical decompositions at depth 4:









→ 5 10 5 20 5
5 2 0 0 4 2
5 0 2 1 5 0
5 0 2 2 3 1









,













→ 5 10 5 20 5
5 2 0 0 4 2
6 0 2 1 5 0
3 0 2 2 3 1
1 0 2 3 1 2













,













→ 5 10 5 20 5
5 2 0 0 4 2
7 0 2 1 5 0
1 0 2 2 3 1
2 0 2 3 1 2













(20)

Of course, we can generate from these three decomposition schemes, or we may
decide to compute the parameters of depth 5. We cannot show all the details here,
but we remark that there are 33 block tactical decomposition schemes at depth 5.
Of those, 18 come from the first scheme, 14 come from the second scheme, and
exactly one refines the third scheme. We show only one of each type.









↓ 5 10 5 5 5 10 5
5 2 0 0 1 1 1 2
5 0 1 1 0 1 2 0
5 0 1 2 2 1 0 1









,













↓ 5 6 2 2 1 1 3 2 5 12 1 2 3
5 2 0 0 0 0 0 0 1 1 1 1 2 2
6 0 1 2 1 1 2 1 0 1 2 1 0 0
3 0 1 0 0 2 1 1 2 1 0 0 0 1
1 0 0 0 1 0 0 1 0 0 0 1 1 0













,













↓ 5 4 4 2 1 2 2 2 15 3 4 1
5 2 0 0 0 0 0 0 1 1 1 2 2
7 0 1 2 1 1 2 1 1 2 1 0 0
1 0 0 0 1 0 0 1 0 0 1 0 1
2 0 1 0 0 2 1 1 1 0 0 1 0













(21)

We have already pointed out that generating geometries from a rather fine de-
composition is generally much easier than generating from a coarse decomposition.
This is of course the main reason why one may want to compute the parameters at
higher depths.

5. THE REMAINING CASES

In a similar fashion as in the previous section, we can handle cycle types no. 12
= (4, 11) and no. 16 = (7, 8). We get the following computer result:

Proposition 5.1. The number of regular linear spaces (15|215, 330) in cases 12,
14 and 16 are 867368, 799714 and 698824, respectively.

The remaining cases are case no. 9 = (3, 12) and case no. 17 = (15). We generate
blockwise using for case no. 9 also the special 3-cycle and choosing at line 15 the
correct cycle type.
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TABLE II. The Regular Linear Spaces (15|215
, 330)

no. cycles # |Aut| statistic

1 35 146 (196, 219, 38, 49, 51, 62, 83, 123, 181, 601, 722, 3601)
2 33, 6 7, 891 (17677, 2188, 317, 42, 67)
3 32, 4, 5 22, 816 (122700 , 2116)
4 3, 3, 9 102, 368 (1101980 , 2356, 320, 612)
5 3, 43 7, 515 (17117, 2273, 333, 467, 611, 84, 126, 244)
6 3, 4, 8 184, 182 (1182978 , 21149, 449, 86)
7 3, 5, 7 174, 612 (1174052 , 2560)
8 3, 62 83, 065 (182216 , 2759, 313, 456, 66, 811, 123, 241)
9 3, 12 1, 004, 029 (11001188 , 22711 , 370, 430, 624, 84, 122)

10 42, 7 82, 328 (182092 , 2236)
11 4, 5, 6 160, 684 (1160416 , 2268)
12 4, 11 867, 368 (1866352 , 21016)
13 53 27, 676 (127521, 261, 378, 614, 101, 151)
14 5, 10 799, 714 (1799030 , 2679, 54, 101)
15 6, 9 721, 962 (1721600 , 2318, 342, 62)
16 7, 8 698, 824 (1698248 , 2576)
17 15 5, 232, 148 (15231982 , 3160, 54, 152)

10, 177, 328

Table II summarizes the number of spaces for each of the 17 cycle types, together
with a statistic of the corresponding automorphism group orders. Thus we have
proved that there are 10, 177, 328 regular linear spaces of type (15|215, 330).

6. SOME SPECIAL GEOMETRIES OF TYPE (15|215
, 330)

If we deflate the 5 3-cycles of no. 1 to 5 3-blocks, then we get Steiner systems
on 15 points with a distinguished parallel class. Therefore the number 146 is the
number of the parallel classes of all Steiner systems on 15 points, up to embedding
isomorphism, [14], [13]. In particular, the configuration with automorphism group
order 360 comes from the projective space P3(2). Its collineation group PGL(4, 2)
of order 20160 acts transitively on the set of 56 parallel classes. So, the stabilizer
has order 20160/56 = 360.

Among the enormous number of geometries with cycle type (15), there are two
species with a group of order 15. One can figure out directly what these configura-
tions are. Anticipating a cyclic group of order 15 acting transitively, we need only
use triples which meet their shifts in at most one point. If we denote the points by
0, 1, 2, 3, ..., 14 and describe the triple by the three differences 6= 1, 2, then only the
following triples are possible:

(2, 6, 7), (2, 8, 5), (2, 4, 9), (2, 3, 10), (3, 5, 7), (3, 4, 8), (4, 5, 6).

We need two of them in order to get 15 + 15 = 30 triples, so we must choose a
compatible pair of such triples. There is only one combination possible, namely
2, 4, 9 with 3, 5, 7. Since we may allow a reflection for one of these triples we get
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the following two configurations with cyclic group C15:

{(0, 2, 6), (0, 3, 8)}C15 and {(0, 2, 6), (0, 3, 10)}C15.

Another geometry with automorphism group order 15 is under those with cycle
type (53). If one tries to see how the triples might be arranged with respect to the 3
cycles, one gets the idea that there should be the following tactical decomposition:









→ 5 5 5 5 5 5 5 5 5
5 2 0 0 2 1 0 1 1 1
5 0 2 0 0 2 1 1 1 1
5 0 0 2 1 0 2 1 1 1









This decomposition admits 6 geometries, and one of these has indeed an automor-
phism group of order 15 acting transitively on the point set. There are two orbits
on the 30 triples, one consisting of triples which have two points in one 5-cycle,
and the other consisting of triples having the three points distributed to all three
cycles. If we denote the points by {0, 1, 2, ..., 14} according to the cyclic group C15,
then we can describe this linear space as:

{(0, 3, 4), (0, 5, 13)}C15.

The three 5-cycles are in this notation:

(0, 3, 6, 9, 12), (1, 4, 7, 10, 13) and (2, 5, 8, 11, 14).

If the automorphism group is transitive on the point set, its order must be
divisible by 15. Besides the examples just given, there is only one other case with
this condition: the space with cycle type 35 and group order 60. Looking at the
collineation group, we see a C5-action on the set of the 5 3-cycles. The stabilizer
on one 3-cycle acts as a C4-action on the other 4 cycles. So this is the group of the
affine line over GF (5) having order 20. In addition there is the kernel C3 which
maps each of the 3-cycles onto itself.

With help of the C15-cycle (0, 1, 2, ..., 14) one may describe the blocks as follows:

{(0, 11, 14), (0, 7, 9)}C15.

The 5 3-cycles are

(0, 5, 10), (1, 6, 11), (2, 7, 12), (3, 8, 13) and (4, 9, 14).

7. REGULAR LINEAR SPACES ON AT MOST 19 POINTS

In Table III, we present the extended list of regular linear spaces on up to 19 points.
A few comments are in order. Still, several parameter cases are unsettled. All we
can say is that each parameter case in the list is realizable, i. e. there exists at least
one linear space.
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TABLE III. Regular Linear Spaces on 13 to 16 Points

parameter # comment

(2|1) 1 one line

(3|2) 1 one line
(3|23) 1

`

3

2

´

(4|4) 1 one line
(4|26) 1

`

4

2

´

(5|5) 1 one line
(5|210) 1

`

5

2

´

(6|6) 1 one line
(6|23, 34) 1

`

4

2

´

dually
(6|29, 32) 1 2 disjoint 3-lines
(6|215) 1

`

6

2

´

(7|7) 1 one line
(7|37) 1 P2(2) or configurations 73

(7|221) 1
`

7

2

´

(8|8) 1 one line
(8|24, 38) 1 derived A2(3) or configurations 83

(8|216, 42) 1 2 disjoint 4-lines
(8|228) 1

`

8

2

´

(9|9) 1 one line
(9|312) 1 A2(3)
(9|29, 39) 3 configurations 93

(9|218, 36) 2 cubic graphs of order 6, dually, or derived LSQ(4)
(9|227, 33) 1 3 disjoint 3-lines
(9|236) 1

`

9

2

´

(10|10) 1 one line
(10|215, 45) 1

`

5

2

´

dually
(10|215, 310) 10 configurations 103 [8]
(10|225, 52) 1 two disjoint 5-lines
(10|245) 1

`

10

2

´

(11|11) 1 one line
(11|222, 311) 31 configurations 113

(11|255) 1
`

11

2

´

(12|12) 1 one line
(12|34, 49) 1 derived P2(3)
(12|316, 43) 2 LSQ(4)
(12|26, 38, 46) 1
(12|26, 320) 5 derived STS(13)
(12|212, 49) 1 dual of A2(3)
(12|212, 312, 43) 4 configurations 123 a with parallel class, or derived LSQ(5)
(12|218, 34, 46) 1
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TABLE III. (continued)

parameter # comment

(12|218, 316) 574 configurations 124163

(12|224, 38, 43) 8 cubic graphs of order 8 with a parallel class, dually
(12|230, 46) 1 4-regular graphs on 6 points, dually
(12|230, 312) 229 configurations 123

(12|236, 62) 1 2 disjoint 6-lines
(12|236, 34, 43) 1 3 × 4 grid
(12|242, 38) 6 cubic graphs of order 8, dually
(12|248, 43) 1 3 disjoint 4-lines
(12|254, 34) 1 4 disjoint 3-lines
(12|266) 1

`

12

2

´

(13|13) 1 one line
(13|413) 1 P2(4) or configurations 134

(13|326) 2 STS(13)
(13|239, 313) 2036 configurations 133[11]
(13|278) 1

`

13

2

´

(14|14) 1 one line
(14|27, 414) 1 configurations 144 [4]
(14|27, 328) 787 derived STS(15)
(14|249, 72) 1 2 disjoint 7-lines
(14|249, 47) 2
(14|249, 314) 21399 configurations 143

(14|291) 1
`

14

2

´

(15|15) 1 one line
(15|35, 415) 1 derived A2(4)
(15|315, 56) 1

`

15

2

´

+15 parallel classes 2+2+2 (dually)
(15|325, 53) 2 LSQ(5)
(15|335) 80 STS(15)
(15|215, 415) 4 configurations 154 [4]
(15|215, 310, 56) 1
(15|215, 320, 53) 40 configurations 153 with a parallel class, or derived LSQ(6)
(15|215, 330) 10,177,328 configurations 156303 Section 3.
(15|230, 35, 56) 1
(15|230, 315, 53) 251
(15|230, 325) configurations 155253

(15|245, 56) 1
`

6

2

´

dually
(15|245, 310, 53) 23
(15|245, 320) configurations 154203

(15|260, 35, 53) 1 3 × 5 grid
(15|260, 315) 245342 configurations 153

(15|275, 53) 1 3 disjoint 5-lines
(15|275, 310) 21 cubic graphs on 10 points, dually
(15|290, 35) 1 5 disjoint 3-lines
(15|2105) 1

`

15

2

´
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TABLE III. (continued)

parameter # comment

(16|16) 1 one line
(16|420) 1 A2(4)
(16|316, 412) 1
(16|332, 44) 23 see [10]
(16|224, 416) 19 configurations 164 [4]
(16|224, 316, 48) 300880
(16|224, 332) configurations 166323

(16|248, 412) 574 configurations 163124

(16|248, 316, 44) 88 configurations 163 with a parallel class
(16|264, 822) 1 2 disjoint 8-lines
(16|272, 48) 6 4-regular graphs on 8 points, dually
(16|272, 316) 3,004,881 configurations 163 [6]
(16|296, 44) 1 four disjoint 4-lines
(16|2120) 1

`

16

2

´

(17|17) 1 one line
(17|234, 417) 1972 configurations 174 [4]
(17|234, 334)
(17|285, 317) 38,904,499 configurations 173 [6]
(17|2136) 1

`

17

2

´

(18|18) 1 one line
(18|336, 63) 12 LSQ(6) = dual mesh(36, 6, 3) [7]
(18|29, 312, 418) 77
(18|29, 330, 49)
(18|29, 348)
(18|218, 330, 63) 4.260 dual mesh(30, 5, 3)
(18|227, 36, 418)
(18|227, 324, 49)
(18|227, 342)
(18|236, 324, 63) dual mesh(24, 4, 3)
(18|245, 418) 971, 171 configurations 184 [4]
(18|245, 318, 49)
(18|245, 336)
(18|254, 318, 63) 568 dual mesh(18, 3, 3)
(18|263, 312, 49)
(18|263, 330)
(18|272, 312, 63) 157 dual mesh(12, 2, 3)
(18|281, 92) 1
(18|281, 36, 49) 150, 373
(18|281, 324)
(18|290, 36, 63) 1 3 × 6 grid
(18|299, 49) 16 4-regular graphs on 9 points, dually
(18|299, 318) 530,425,205 configurations 183 [6]
(18|2108 , 63) 1 3 6-lines
(18|2117 , 312) 94 3-regular graphs on 12 points, dually
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TABLE III. (continued)

parameter # comment

(18|2135 , 36) 1 6 3-lines

(18|2153) 1
`

18

2

´

(19|19) 1 one line
(19|319, 419) 56
(19|357) 11, 084, 874, 829 STS(19) [12]
(19|257, 419) configurations 194

(19|257, 338)
(19|2114 , 319) configurations 193

(19|2171) 1
`

19

2

´
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