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Abstract 
In this paper, we present a dictionary based universal prediction algorithm that provides a very general and 
flexible approach to machine learning in the domain of musical style. Such operations as improvisation or 
assistance to composition can be realized on the resulting representations. 
 
1. Introduction 
It is commonly admitted that musical perception is 
guided by expectations based on the recent past 
context. Predictive theories are often related to 
stochastic models which estimate the probability for 
musical elements to appear in a given musical 
context, such as Markov chains, already used 
extensively in computer music. The main problem 
with these models is that the length of musical 
context (size of memory) is highly variable, ranging 
from short figurations to longer motifs. Taking a 
large fixed context makes the parameters difficult to 
estimate and the computational cost grows 
exponentially with the size of the context. 

2. Dictionary-based prediction 
In our work we present a dictionary-based prediction 
method, which parses an existing musical text into a 
lexicon of phrases/patterns, called motifs, and 
provides an inference method for choosing the next 
musical object following a current past context. The 
parsing scheme must satisfy two conflicting 
constraints. On the one hand, one wants to maximally 
increase the dictionary to achieve better prediction, 
but on the other hand, enough evidence must be 
gathered before introducing a new phrase, so that a 
reliable estimate of the conditional probability is 
obtained. The secret of dictionary-based prediction 
(and compression) methods is that they cleverly 
sample the data so that most of the information is 
reliably represented by few selected phrases. This 
could be contrasted to better known Markov models 
that build large probability tables for the next symbol 
at every context entry. Although it might seem that 
the two methods operate in a different  manner, it is 
helpful to understand that basically they employ 
similar statistical principles.  

Incremental Parsing 
We chose to use an incremental parsing (IP) 
algorithm suggested by Lempel and Ziv [LZ78]. IP 
builds a dictionary of distinct motifs by sequentially 
adding every new phrase that differs by a single next 
character from the longest match that already exists 
in the dictionary. For instance, given a text 
{ababaa…}, IP parses it into {a,b,ab,aa,…} where 
motifs are separated by commas. The dictionary may 
be represented as a tree (see last section). 

Probability Assignment 
Assigning conditional probability lzp ( n+1x 1

nx ) of a 

symbol n+1x  given 1
n
x  as context is done according 

to the code lengths of the Lempel Ziv compression 
scheme. Let c(n) be the number of motifs in the 
parsing of an input n-sequence. Then, log(c(n)) bits 
are needed to describe each prefix (a motif without 
its last character), and 1 bit to describe the last 
character (in case of a binary alphabet). For example, 
the code for the above sequence is 
(00,a),(00,b),(01,b),(01,a) where the first entry of 
each pair gives the index of the prefix and the second 
entry gives the next character. Ziv and Lempel have 
shown that the average code length c(n)log(c(n))/n 
converges asymptotically  to the entropy of the 
sequence with increasing n. This proves that the 
coding is optimal. Since for optimal coding the code 
length is 1/probability, and since all code lengths are 
equal, we may say that, at least in the long limit, the 
IP motifs have equal probability. Thus, taking equal 
weight for nodes in the tree representation, 
lzp ( n+1x 1

nx )will be deduced as a ratio between the 
cardinality of the subtrees (number of subnodes) 
following the node 1

n
x .  As the number of subnodes 

is also the node's share of the probability space 
(because one codeword is allocated to each node), we 
see that the amount of code space allocated to a node 
is proportional to the number of times it occurred.  

Relation to Markov models 
An interesting relation between Lempel-Ziv and 
Markov models was discovered by [WIL91] when 
considering the length of the context used for 
prediction. In IP every prediction is done in the 
context of earlier prediction, thus resulting in a 
sawtooth behavior of the context length. For every 
new phrase the first character has no context, the 
second has context of length one, and so on.  In 
contrast, the Markov algorithm makes predictions 
using a totally flat context line determined by the 
order of the model. Thus, while a Markov algorithm 
makes all of its prediction based on 3- or 4-character 
contexts, the IP algorithm will make some of the 
predictions from lower depth, but very quickly it will 
exceed the Markov constant depth and use a better 
context. To compensate for its poor performance in 
the first characters, IP grows a big tree that has the 
effect  of increasing the average length of the phrase 
so that beginnings of the phrase occur less often. As 
the length of the input increases to infinity, so does 
the average length, with the startling effect that at 
infinity it converges to the entropy of the source. In 
practice though, the average phrase length does not 
rise fast enough to provide for reliable short-time 



predictions. On the other hand, it behaves 
surprisingly well for long sequences.  Our 
experiments show that this IP scheme, along with the 
appropriate linear representation of music, provides 
with patterns and inferences that successfully match 
musical expectation. 
Another important feature of the dictionary-based 
methods is that they are "universal". If the model of 
the data sequence was known ahead of time, an 
optimum prediction could be achieved at all times. 
The difficulty with most real situations is that the 
probability model for the data is unknown. Therefore 
one must use a predictor that works well no matter 
what the data model is. This idea is called "universal 
prediction" and it is contrasted to Markov predictors 
that assume a given order of the data model. 
Universal prediction algorithms make minimal 
assumptions on the underlying stochastic sources of 
musical sequences. Thus, they can be used in a great 
variety of musical and stylistic situations. Our IP 
based predictor is one such example of universal 
predictor. This differs also from knowledge-based 
systems, where specific knowledge about a particular 
style has to be first understood and implemented 
[COP96]. 

3. The Incremental Parsing (IP) algorithm 
The IPMotif function computes an associative 
dictionary (the motif dictionary) containing motifs 
discovered over a text. 
Parameter text, a list of objects 
dict = new dictionary 
motif = () 
While text is not empty 
 motif = motif ! pop (text) 
 If motif belongs to dict  
  Then value(dict,motif)++ 
  Else add motif to dict with value 
1 
    motif = () 
return dict 
dict is a set of pairs (key, value) where the keys are 
motifs and values are integer counters. text and 
motif are ordered lists of untyped objects (we don’t 
restrict to characters). value(dict,motif) 
retrieves the value associated with motif in dict. 
W!k notates the list obtained by right-appending 
object k to list W. Pop(var) returns the leftmost 
element from the list pointed to by var and advances 
var by one position to the right. 
The text is processed linearly from left to right, 
object after object, without any backtracking or look-
ahead. At any current time, the variable motif 
contains the current motif W being discovered and 
the variable text contains the remaining text, 
beginning just after W. Now a new object k is 
popped from the text and appended to the right of 
motif, which value changes to W!k. If  W!k is not 
already in the dictionary, it is added to it and motif 
is reset to an empty list (), thus being prepared to 
receive the next motif. The LZ78 compression 
algorithm would, at that time, output a codeword for 

W, depending on W's index in the dictionary, along 
with the object k. Compression would occur because 
W, which must have been previously encountered, is 
now output as a simple code.  But since we are not 
concerned with compression, we do nothing more. If 
W!k is already in the dictionary, we increment the 
counter associated with it and iterate. By doing this, 
we compute for each motif W!k the frequency at 
which  object k follows motif W in the text. It is an 
IP property that, if motif W is in the dictionary, then 
all its left prefixes are there. So, if for instance motifs 
ABC, ABCD, ABCE, ABCDE, are discovered at 
different places, the frequency of C following AB 
will be equal to 4. Another way to look at it is to 
consider that, for each motif W in the dictionary, for 
which there exists other motifs W!ki in the 
dictionary, we will easily get the (empirical) 
conditional probability distribution P(ki | W) 
(probability of occurrence of ki knowing that W has 
just occurred).  
In order to achieve this, we have to transform the 
motif dictionary into another one, called a 
continuation dictionary, where each key will be a 
motif W from the previous dictionary, and the 
corresponding value will be a list of couples 
(.. (k, P(k | W)) ..) for each possible k in the object 
alphabet, representing in effect  the empirical 
distribution of objects following W. 
The IPContinuation function computes a 
continuation dictionary from a motif dictionary. 
Parameter dict1, a dictionary 
dict2 = new dictionary. 
For each pair (W!k, counter) in dict1 
 If W belongs to dict2 
  Then value(dict2,W) = 
     value(dict2,W) !(k counter) 
  Else add W to dict2 
     with value ( (k counter) ) 
Normalize (dict2) 
Return dict2 
The function Normalize turns the counters in 
every element of dict2 into probabilities. 

Exemple 
Text  =( a b a b a b c a b d a b c d a b c e) 
Motif dictionary =  { ((a) 6) ((b) 1) ((a b) 5)  ((a b c) 
3)  ((a b d) 1)  ((a b c d) 1)  ((a b c e) 1) } 
Continuation dictionary = { ((a) ((b 1.0))) ((a b) ((c 
0.75 ) (d0.25)) ((a b c) ((d 0.5) (e 0.5)) } 

As can be seen in the previous example, a single pass 
IP analysis on a short text is not sufficient to detect a 
significant amount of motifs. There is no information 
on continuations for motif b or motif ba. Due to the 
asymptotic nature of IP, these motifs will eventually 
appear when analyzing long texts. Another way to 
increase redundancy and to detect more motifs is to 
parse several times the same text using the same 
motif dictionary, rotating each  time the text to the 
left by one position. 
The IPGenerate  function generates a new text from 
a continuation dictionary. Suppose we have already 
generated  a text (a0 a1 … an-1). There is a parameter p 



which is an upper limit on the size of the past we 
want to consider in order to choose the next object. 
1. Current text is (a0 a1 … an-1) 
 context  = (an-p … an-1). 
2. Check if context is a motif in the continuation 

dictionary.   
3. If found, its associated value gives the probability 

distribution for the continuation. Make a choice 
with regard to this distribution and append the 
chosen object k to right of text.  

 text = text ! k. Iterate in 1.  
4. If context is not found in dictionary, shorten it by 

popping its leftmost object.  
 context = (an-p+1 … an-1). If motif becomes () 

generate a failure otherwise iterate in 2. 
5. Upon failure either stop or append a random object 

to text, then iterate in 1. 

4. Resolving the polyphonic problem 
The IPGenerate  algorithm works on any linear 
stream of objects. It was successfully tested on linear 
streams of midi pitches from solo pieces or isolated 
voices of polyphonic pieces. In order to be able to 
process polyphony, thus fully capturing rythmical, 
countrapuntal and harmonic gestures, we had to find 
a way to linearize multivoice midi data in a way that 
would musically make sense and take advantage of 
the IP scheme. The best results were  achieved  by 
using a variant of the superposition languages 
defined by Chemillier & Timis [CHE90]. 
To understand this, take the 2-voice example shown 
below.  

 
Only the rhythm is notated. Pitch, as well as other 
relevant information are coded with letters a through 
h. If we slice time with respect to the common time 
unit (the gcd of the durations, i.e. the eighth note) we 
may code the sequence using 2 parallel words: 

aabcdd 
effggh 

where the letter x in bold means the continuation of 
the previous (contiguous) letter x (which is either a 
beginning symbol or itself a continuation). In order to 
linearize, we go from the normal alphabet, 
augmented by continuation symbols, S = {a, b, c, .., 
a, b, c, ..} to the cross-alphabet SxS. Now the 
sequence is: (a,e) (a, f) (b, f) (c, g) (d, g) (d, h). 
In order to cope with any arbitrary time structure and 
to optimize the parsing, we use the following variant. 

 

Time is sliced at each event boundary occuring in 
any voice. A set of durations D = {d1,..d7} is thus 
built. Using the cross alphabet SxSxD we build the 
linear triplet sequence: (a, -, d1) (a, d, d2) (b, d, d3) (b, 
-, d4) (b, e, d5) (-, e, d6) (c, e, d7), where - denotes the 
empty symbol (musical rest).  
These triplets can easily be packed into 3 bytes 
numbers if we code only the pitches along with the 
durations. In order to optimize the duration alphabet, 
we quantize the original durations into a reasonable 
set of discrete rhythmic values. The idea is then 
easily generalized to n-voice polyphony. 
 
5. Experiments 
Once a multi-voice midi file is transformed into a 
linear text based on the cross alphabet, it is presented 
to the IPMotif/IPcontinuation algorithm. The 
resulting continuation dictionary can then be 
randomly walked by IPGenerate to build variants of 
the original music.  
The cross-alphabet representation used has proven to 
fit decisively into the IP framework. In particular, the 
continuation symbols encode the fact that certain 
notes, in certain contexts, have a certain probability 
of being sustained while other notes are playing on 
other voices. The result is that countrapuntal 
gestures, as well as harmonic patterns, tend to be 
generated in a realistic way with regard to the 
original. Another caracteristic of IP is that if not only 
one text but a set of different  texts are analyzed 
using the same motif dictionary, the generation will 
"interpolate" in a space constituted by this set. This 
interpolation is not a geometrical one, but rather goes 
randomly  from one model to another when there 
exists a common pattern of any length and a 
continuation from the second model is chosen instead 
the first one. 
IPGenerate has been tested, in normal and 
interpolation mode, over the set of 2-voices Bach 
Inventions, normalized for tonality and tempo. While 
the lack of overall harmonic control do not favors 
consistant harmonic progression in the resulting 
simulations, these should be seen as "infinite" 
streams where very interesting subsequences, show 
original and convincing counterpoint and harmonic 
patterns. 
On the Bach material, we have established 
empirically that 0 rotation of the original text would 
lead to a poor, unusable, continuation dictionary;  3-4 
rotations are optimal, in that whole phrases from the 
original may be generated; more rotations do not 
improve the generation quality. This is certainly due 
to the way phrases are built from combination of 
small motifs in this style of music. 
In the Jazz domain, a new piece by Jean-Rémy 
Guedon, miniX,  has been created recently at Ircam 
by the French "Orchestre National de Jazz" with the 
assistance of Frederic Voisin. In this 20 mn piece, 
about half of the solo parts were IPGenerated and 
transcribed on the score. 



These experiments were carried-out using 
OpenMusic, a Lisp-based visual language for music 
composition [ASS99]. Some results are available at: 
http://www.ircam.fr/equipes/repmus. 

6. Towards a real-time IP improviser 
Once a continuation dictionary, capturing a 
polyphonic style or style space, has been built in 
OpenMusic, it can be provided to a real-time 
interactive program that will use it in order to 
improvize a voice in response to a human performer 
playing another voice. As an improvement to known 
digital improvisers, we want to take advantage of the 
IP capacity to capture and render convincing 
polyphonic-contrapuntal gestures. 
Implemented in Java, the (still experimental) IPImpro 
program responds to a performer playing the soprano 
voice by generating bass notes in accordance with: 
the continuation dictionary, the past context, and the 
last note played by the performer. In the following 
example, where bold symbols denote the sustaining 
of the previous symbol:  

sop:   a b c c a a b 
bass:  b b a b a b ? 
durs:  2 2 1 1 3 1 ? 

the soprano has begun to play b and we have to 
decide for the bass. If we find, for example, a motif 
((a a 3) (a b 1)) with continuation (b b 2) in the 
continuation dictionary we could decide to ask the 
bass to play b with a duration of 2 units (as b is a 
continuation symbol, this would really mean « keep 
on playing the previous b for 2 units). We have now 
a real-time specific problem: we don’t know if the 
(human) soprano is actually going to keep on playing 
b during 2 time units, so we are never sure we have 
chosen the right triplet. If soprano plays b during one 
time unit then moves to c, we’ll try to find a new 
triplet that matches the suffix ( ... ((a a 3) (a b 1) (b b 
1)), which will eventually cause the bass to stop 
playing b sooner than expected. If the soprano plays 
b longer than expected, then we’ll consider he is now 
playing a continuation b of b, and look for a new 
triplet in accordance  with the new context. 
As for the OpenMusic version, for each generation 
step a past context of a predetermined maximum 
length is checked for a possible continuation in the 
dictionary. If no continuation is found, one element is 
cropped on the left of the context and the new 
context is checked until success is achieved. 
Another real-time concern is that the motif dictionary 
representation used in OpenMusic (table or hash-
table) is too costly in retrieval time for fast 
interaction. IPImpro rather uses a tree representation. 
Suppose we have, in the dictionary, the following set 
of pairs context→continuations: (A → B) ;  AB → 
B,D ; ABD → A,C ; C → B ; CB → D ; D → A,C. 
This can be easily represented as a tree structure: 

 
Each node of the tree is associated with a triplet 
(bass, soprano, duration) notated as a symbol. Paths 
from the root to a leaf  contain, in a condensed 
representation,  available motifs as well as their 
continuations. Continuation probabilities are easily 
computed by giving weight 1 to all the leaves, then 
recursively, bottom-up computing other nodes’ 
weights by summing their children’s weights, then 
normalizing. As long as new continuations are found 
without needing to crop the current context, a pointer 
to the tree may move in a contiguous way  from node 
to node and keep track of the last node generated. 
The new context is simply the path from the root to 
this node. But when the context has to be cropped (a 
leaf  has been reached) , a new search , starting from 
the root must be started. If, for instance, the current 
context was ABDC, the search for a possible 
continuation in the tree would lead us to examine the 
A branch down to its leaf (C).  Then, as no 
continuation is found, we would consider the cropped 
context BDC and examine the B branch. Finally, the 
context would reduce to C so we would go to the C 
branch and choose the continuation B. As this 
research  is bounded only by the size of the tree, we 
might have unpredictable latencies that would 
endanger real-time interaction. 
To overcome this problem, we finally chose a 
representation that  was more costly in space but 
more effective in time. A tree is built, in the same 
way, from the continuation dictionary, except the 
contexts (left side of the arrows) are reversed. So the 
branch A -B-D becomes D-B-A. At each node N we 
attach a set of pointers to direct children of the root. 
They represent the continuations available for the 
motif matching the path from N up to the root. 

 
Suppose the current context is ABD. As D is the last 
object of the context, the pointer is on the D node 
right under the root. We descend the branch 
downwards as much as we can, looking for the 
longest match between the reversed context (DBA) 
and the successive nodes. We arrive at node A, where 
we found the continuations (A,C). Suppose we 
choose to generate C: the new context is ABDC, the 



pointer moves to the C node under the root. At the 
next generation step, we’ll see immediatly that the 
new context has no continuation, only it’s last suffix 
C has continuation B. 
Now the search is bounded by the maximum depth of 
the tree, not its total size, which works fine for real-
time. 
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