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ABSTRACT Life threatening nature of cancer and toxic effects of chemotherapy demand for an optimal 

design of treatment protocol. The main objective of treatment design is to maintain adequate health of patient 

while administering a continuous chemo dose for effective decimation of cancer. Mathematical model adopted 

in this paper is first order nonlinear coupled ordinary differential equation (NCODE) relating tumor, effector 

immune and normal cells under effect of chemotherapy. This paper primarily utilizes the Bernstein polynomial 

with genetic algorithm based coefficient tuning for solution of the tumor model. Secondarily sliding mode 

controller (SMC) is used as optimal control for normal and immune cells boosting in addition to escalated 

tumor minimization. The hybrid approach used in this research produces a potent minimization of cancer. 

Application of SMC ensures normal cells concentration well above the critical threshold; hence a continuous 

treatment dose is viable. Proposed methodology enhances the effect of chemotherapy over cancer while 

maintaining healthy state of patient.  

 

INDEX TERMS Bernstein polynomial (BSP), nonlinear coupled ordinary differential equation (NCODE), 

genetic algorithm (GA), optimization, sliding mode controller (SMC), 

I.  INTRODUCTION 

Various forms of cancer stands among the critical life 

threatening diseases human race have ever seen. Core of 

cancer rely on unbridled growth augmented by cell 

division. [1] Predicts approximately 59% deaths of cancer 

patients by 2040 in the light of data gathered in 2018. Solid 

form of irregular cell growth is attributed as tumor that is 

classified into primary (origin) and secondary types. 

Primary tumor can be of cancerous or non-cancerous 

nature, whereas secondary tumors are cancerous by 

inception [2]. Among the four grades of tumor, grade-IV is 

the one that contains blood vessels while features rapid 

growth, aggressive cell division and post treatment 

regrowth [3].  

[4] Reports nervous system tumor detection with age 

standardization of 0.01 to 12.7 males and 0.01 to 10.7 in 

females, per 100,000 people in different countries. 

According to [5] 12% death rate around the world due to 

neoplastic diseases is one of the intriguing attractions for 

study of dynamics and control of tumor growth. Cancerous 

tumor briskly grows itself exploiting nutrients supplement 

for normal cells (NCs). Despite the profound precedence of 

chemotherapy on tumor cells (TCs) , adverse effects on 

NCs are inevitable [6][7].  

Immune system of human body launches its response 

upon recognition of tumor. However the sufficiency of 

immune system response to eliminate tumor is not always 

guaranteed. Immunotherapy is in regular practice to 

supplement the natural immune system of human body in 

its fight against tumor. Finding an approximate procedure 

for achieving optimal administration of drugs to treat tumor 

is active focus of researchers in recent times. The 

fundamental question is to find the exact dose plan along 

with the right technique for drug administration [8]. 

Combination of chemo and immunotherapies have been 

used with promising results to eliminate the tumor and keep 

NCs in healthy range [9]. 

It is clinically observed that the tumor size is not 

synchronous with dosage of chemotherapy and the 

phenomenon is known as temporal oscillations. Regrowth 

of tumor during temporal oscillation calls for optimal 

design of pulsed chemotherapy. Numerous studies are 

available in literature addressing the design of optimal 

controller as treatment protocol based on clinical and 

experimental data [10]. The treatment protocol and the 

tumor drug interaction phenomenon (Jeff’s phenomenon) 

under standard pulsed chemotherapy and optimal control is 
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 presented by De Pillis & Radunskaya [11]. Freedman [12] 

discussed the mathematical tool of differential analysis, 

persistence theory, Hopf-Andronov-Poincare bifurcation 

and linear system theory to present generalized criteria for 

the therapeutic efficacy of Adoptive Cancer 

Immunotherapy (ACI). 

  [13] Carried out tumor reduction along with 

maximization of effector cells and interleukin-2 

concentration using controller based on Pontryagins 

maximum principle followed by numerical analysis of the 

solution. [14] Treated mathematical model of tumor with 

combination of immune, vaccine and chemotherapies along 

with evaluation of system dynamics, stability, bifurcation 

analysis and detection of basins of attractions.  

Rocha et al. [15] introduced a model integrating 

chemo-immuno therpaies with periodic radiotherapy 

incorporated with optimal control based on Pontryagins 

maximum principle. Khalili et al. [16] used steepest descent 

for eualvation of best rate for drug injection, while achiving 

stability by Lyapunov theory and Barabalat lemma. Shindi 

et al. [9] improved constrained multi objective optimization 

problem (CMOOP) solution using Pontryagins maximum 

principle based optimal control along with evolutionary 

algorithm (EA) and swarm intelligence (SI) based multi 

objective optimizer.  

Despite the availability of diverse solutions 

proposed by many researchers with promising results; there 

is still plenty of space available for enhanced optimal 

solutions of given mathematical models using evolutionary 

algorithms and optimal controls. The main contribution of 

this paper is the design of treatment protocol while boosting 

the system of the model optimally by SMC. This work 

benefits from the approximation capabilities of BSP with 

GA tuned coefficients. Simulation is carried out with three 

cases without SMC and three cases with SMC applied in 

combination to tumor, normal and immune cells.  

The paper is structured as follows. Second section 

is confined to the tumor model based on system of coupled 

differential equations followed by brief introduction of 

BSP, GA and SMC. Section 3 presents the proposed 

methodology and the design of SMC. Section 4 presents the 

simulation results and discussion. Conclusion is presented 

in section 5. 

II.  GOVERNING MODEL AND PROPOSED 
METHODOLOGY 

Partial and the ordinary differential equations are the 

foundations of mathematical models which can mimic the 

dynamics of tumor and its relationship with normal and 

immune response of the body. Many such models are 

presented in literature  [9], [11], [17]–[19] having their own 

benefits and drawbacks. 

A. TUMOR MODEL 

The model used in this paper is the one that is presented by 

De Pillis & Radunskaya [11], and modified by Shindi et al. 

in 2020 [9]. This model is based on of three coupled 

differential equations representing the cell population and 

fourth is the drug concentration equation. The normal, 

tumor and immune cells (ICs) with respect to time are 

represented in this model by following equations. 

( )

( )

2 2 4 3

0

N = r N 1 - b N - c TN - a u  

N 0 = N
        (1) 

( )

( )

1 1 2 3 2

0

T = r T 1- b - c IT - c TN - a u  

T 0 = T
  (2) 

( )

1 1 1

0

ρIT
I = s+ - c IT - d I - a u  

α+T

I 0 = I

  (3) 

( ) 2u = v t  - d u   (4) 

With boundary conditions 

( )

( )

( )

N 0 = 0.9

T 0 = 0.25

I 0 = 0.25

  (5) 

Here I, T and N are the variables used to represent the 

concentrations of immune, tumor and normal cells 

respectively. Drug concentration is denoted by u.  

In equation (1), first term describes the growth term, 

second term for the competition between tumor and NCs 

and the third term is the effect of drug on NCs. In equation 

(2), first term is the growth of TCs, second and third terms 

are the immune-tumor and tumor-normal cells interactions 

respectively and the last term is the effect of treatment drug 

on tumor.  In equation (3), first term is the source term, 

second term is the saturation control term, third term is the 

tumor immune interaction, fourth term is the ICs reduction 

naturally and the last term is the effect of chemotherapy on 

ICs. In equation (4), first term is the dose and the second 

term is the natural death rate of the drug. Other parameters 

manage various characteristics of the model but all of them 

bear positive values. Parameter r1 and r2 control the logistic 

growth rate of the model. The description and values of 

remaining parameters is given in Table I. 
TABLE I 

Parameter Value Description References  

𝑎1 0.2 I cells death rate by drug  

 

 

 
 

 

 
[9], [11], 

[17], [18] 

𝑎2 0.3 T cells death rate by drug 

𝑎3 0.1 N cells death rate by drug 

𝑏1, 𝑏2 1 carrying capacity 

𝑐1 1 Competition term of I vs T  

𝑐2 0.5 Competition term of I vs T  

𝑐3 1 Competition term of N vs T  

𝑐4 1 Competition term of N vs T 

𝑑1 0.2 I cells natural death rate 

𝑟1 1.5 Growth rate of T cells 

𝑟2 1 Growth rate of N cells 

𝑠 0.33 I system source 

𝜌 0.01 Rate of I response 

𝛼 0.3 Threshold rate 

𝑑2 1 Drug death rate [11], [17] 

𝑣(𝑡) 1 Chemotherapy source rate 
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 B. BERNSTEIN POLYNOMIAL (BSP) 

Russian scientist Sergei Natanovich Bernstein [20] 

introduced BSP, used for approximation in numerical 

analysis. The BSP Bi.n (𝑥) ‘n’ of the interval [0 Ta] as 

follows 

( )
( )

,  

n ii

a

i n n

a

n x T x
B x

i T

−
− 

= 
 

  (6) 

In this case Ta = 1, so  

( ) ( ),   1
n ii

i n

n
B x x x

i

− 
= − 
 

  (7) 

The properties of the BSP are 

( ),

0       0
 

1     0
i n

i
B x

i

 
=

 =
  (8) 

( )1, 1

0      
1  

1    
i n

i n
B

i n
− −

 
=

 =
  (9) 

( ), 1

0         
1  

1      1
i n

i n
B

i n
−

 
=

 = −
  (10) 

The linear combination of lower order polynomials can 

be generated by using the recursive properties of higher 

order polynomials and their derivatives as follows: 

( ) ( ) ( ) ( )i,n i,n i,nB x = 1- x B x + xB x   (11) 

( ) ( ) ( )( )i,n i-1,n-1 i,n-1B' x = n B x  - B x   (12) 

Here ′ denotes the derivative with respect to ‘𝒙’ of the 

equations. 

 

FIGURE 1.  BSP behavior 

C. GENETIC ALGORITHM 

GA belongs to the clans of nature inspired algorithms. It is 

based on randomly generated population of chromosomes 

known as candidate solution [21]. The size of the 

chromosomes is equal to the unknown coefficients of the 

problem. Pair of chromosomes undergoes crossover 

reproduction, mutation and selection iteratively. Following 

steps are followed by GA in order to find the best solution. 

a) Use problem specific bound for random generation 

of chromosomes with gene length equal to the 

count of unknown constants.  

b) Plug in each chromosome of the population to cost 

function for evaluation of fitness.  

c) If the fitness of best chromosome reaches a 

predefined value or any other termination criterion 

is achieved then stop, otherwise proceed to step 

d) Allow the randomly selected chromosomes to 

reproduce new generation via crossovers and 

mutation and go to step (b). 

D. SLIDING MODE CONTROLLER 
 

SMC was introduced as a robust controller to locate the 

stability of the higher order nonlinear systems under 

uncertainties [22]. Application of SMC benefits in 

reduction of system complexity, low sensitivity to 

parameter fluctuation and allows decoupling of the coupled 

systems. The main supremacy of SMC is rejection of 

disturbance which is not available in other contemporary 

controllers like model predictive controller (MPC) and 

robust controller. While, applying chemotherapy treatment 

disturbance occurred due to uncertain condition of growth 

and death rate of cells. The design is quite flexible which 

assure stability using Lyapunov function. Apart from the 

advantages of SMC there exist some drawbacks; must 

know system states and steady state error. SMC also carry 

the property of finite time convergence towards the sliding 

manifold. SMC is applied by defining the sliding surface 

followed by controller design that drives the system from 

initial states towards the sliding surface. Controller operates 

by initially hitting the sliding surface and then it slides 

towards minimum error possible [23]. 

 

III.  PROPOSED APPROACH 

In this paper tumor model equations (1-3) are used to define 

the error function. BSP is used as basis function to find the 

approximate solution of the system. The coefficients of 

BSP are tuned by GA to minimize the error function 

solution of the system (1-3) subject to boundary conditions 

(5) is evaluated assuming  linear combination given by 

equations (13-15).  

 

( ) ( )

( ) ( ) ( )

0

1

1 0

n

i i,n

i

n n

i i-1,n-1 i i,n-1

i i

N x =  f B x

N x = n f B x - f B x

=

−

= =

 
 
 



 

  (13) 

( ) ( )

( ) ( ) ( )
1

1 0

n

i i,n

i=0

n n

i i-1,n-1 i i,n-1

i i

T x =  g B x

T x = n g B x - g B x
−

= =

 
 
 



 
  (14) 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3126491, IEEE Access

 

4 
 

( ) ( )

( ) ( ) ( )
1

1 0

n

i i,n

n=0

n n

i i-1,n-1 i i,n-1

i i

I x =  h B x

I x = n h B x - h B x
−

= =

 
 
 



 
 (15) 

Where the unknown constants 𝑓𝑖, 𝑔𝑖  𝑎𝑛𝑑 ℎ𝑖  (𝑖 =
1,2,3, … , 𝑛) are to be optimally evaluated by GA. By using 

initial conditions and the properties of the BSP given by 

equation (5) and (11)-(13) respectively the values of 𝑓0,
𝑔0 𝑎𝑛𝑑 ℎ0are found us in (16-18). 

( ) ( )

( )
0

n

i i,n

i

0

N 0 =  f B 0

N 0 = f = 0.9

=


  (16) 

( ) ( )

( )

n

i 0

i i,n

0

T 0 =  g B 0

T 0 = g = 0.25

=


  (17) 

( ) ( )

( )

n

i 0

i i,n

0

I 0 =  h B 0

I 0 = h = 0.25

=


  (18) 

Hence the remaining unknown constants of equations 

(13-15) are  𝒇𝒊, 𝒈𝒊 𝒂𝒏𝒅 𝒉𝒊 (𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏). GA is 

applied to evaluate these unknown constants after 

converting NCODE (1-3) into an error minimization 

problem by formulating the error function. 

A. THE ERROR FUNCTION 

Error function is formulated for six different cases. First 

three cases involve combinations of immune and 

chemotherapies, whereas later three cases involve use of 

control drug in the form of SMC. 

1)  CASE-1 

In this case the effect of tumor on NCs is studied in the 

absence of both immune and chemo therapies. By keeping 

I(t) and V(t) zero, the equations error function becomes: 

( )

( )( )
( )

( )j 0

10

2

j

N 2 2 j

j

4 j

N t

1
E = r 1- b N t

-  N t
+c

1

T t

1 =

 
 
  
  
   
  

   (19) 

( ) ( ) ( )( )
( ) ( )j 0

10

2

j 1 j 1 j

T

3 j j

T t - r T t 1- b T t1
E =

11 +c T t N t=

 
 
 
 

   (20) 

( )minimum  optimal N TE E E= +   (21) 

 

2)  CASE-2 

In this case the reaction of immune response towards tumor 

is deliberated in the absence of chemotherapy and the 

resultant error function is given as follows:  

( ) ( ) ( )( )
( ) ( )j 0

10

2

j 2 j 2 j

N

4 j j

N t - r N t 1- b N t1
E =  

11 +c T t N t=

 
 
 
 

   (22) 

( ) ( ) ( )( )
( ) ( ) ( ) ( )j

1

0

0

2

j 1 j 1 j

T

2 j j 3 j j

T t - r T t 1- b T t1
E =

11 + c I t T t +c T t N t=

 
 
 
 

  

 (23) 

( )
( ) ( )

( )

( ) ( ) ( )
0

1

j

0

2

j j

j

jI

1 j j 1 j

ρI t T t
I t - s -1

α+T tE =
11

 + c I t T t +d I t
=

 
 
 
 
 
 

   (24) 

( )minimum    optimal N T IE E E E= + +       (25) 

 

3)  CASE-3 

This case depicts the state of NCs, ICs  and TCs under the 

effects of immune and chemo therapies. Combined error 

function is evaluated as follows: 

( ) ( ) ( )( )
( ) ( ) ( )j 0

10

2

j 2 j 2 j

N

4 j j 3 j

N t - r N t 1- b N t1
E =

11 +c T t N t +a u t=

 
 
 
 

   (26) 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )
j 0

10

2

j 1 j 1 j

T 2 j j 3 j j

2 j

T t - rT t 1- b T t

1
E = +c I t T t +c T t N t

11

+a u t
=

 
 
 
 
  
 

   (27) 

( )
( ) ( )

( )

( ) ( ) ( )

( )
j

0

0

1

2

j j

j

j

I 1 j j 1 j

1 j

ρI t T t
I t - s -

α+T  t

1
E = + c I t T t +d I t  

11

+ a u t
=

 
 
 
 
 
 
 
 
 
 

   (28)

( )minimum    optimal N T IE E E E= + +   (29) 

4)  CASE-4 

In this case an SMC is designed to boost the chemotherapy 

effect on TCs with base configuration of case-3. SMC used 

as drug to exterminate the TCs is given in equation (30) 

( ) ( ) ( )TT T T 1 1μ x = -ρ sgn σ -  rT 1-bT   (30) 
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T  is an adjustable coefficient that is used to control tumor 

growth. Addition of equation (30) in tumor equation (2) 

results in equation (31). 

( ) ( ) ( )T 1 1 T T

2 3 2

T =  1- rT 1-b T  -ρ sgn σ

- c IT - c TN - a u


  (31) 

Sliding surface and it’s derivative for this case is 

represented by equation (32, 33) 

T 1σ = q T + I   (32) 

T 1σ = q T + I   (33) 

Here  q1 > 0  is the design parameter. Equation 

(34) is formed by multiplying σT on both sides of equation 

(33) followed by substitution of equation (3), (31) and 

property σT𝑠𝑔𝑛(σT) =  |σT| . Equation (37) is formed after 

some simplification and defining a term  𝜂𝑇  as in equation 

(36).  

( ) ( )T

T T 1 T T

1 1 2

1

3 2
T 

1 1 1

σ σ = -q ρ σ  

1- r T 1- b T  - c IT
q +

-c TN - a u
+ σ   

ρIT
 s+  -c IT - d I - a u

α+T

  
  
  
 
 
 

  (34) 

( ) ( )T

1 T

1 1

1
T T T 2 3 2

1 1 1

q ρ -

1- r T 1- b T  
q  

σ σ  - σ - c IT - c TN - a u
 

ρIT
+ s+  -c IT - d I - a u

α+T

 
 

  
  
 


 
 
 
 

  (35) 

( ) ( )T 1 1

1

2 3 2
T 1 T

1 1 1

1- rT 1- b T
q  

-c IT - c TN - a u
η q ρ -

ρIT
+s+  -c IT - d I - a u

α+T

=

 
 
    (36) 

T T T Tσ σ - σ η   (37) 

Where 𝜂𝑇 is positive by design and 𝜌𝑇 evaluated from 

equation (36) is given in (38) 

( ) ( )T 1 1 2

1

3 2

1 1 1
T

T

1 1

1- rT 1- b T  - c IT
q  

-c TN - a u

ρIT
+ s+  -c IT - d I - a u

ηα+T
ρ =  +

q q

 
 
 

  (38) 

Since  −|σT| 𝜂𝑇  ≤ 0 by default, therefore the 

system is asymptotically stable, i. e.,  σTσṪ ≤ 0. In this 

case, the use of equations (1), (3) and (31) results in error 

function given by equations (39-42). 

( ) ( ) ( )( )
( ) ( ) ( )

10

j 0

2

j 2 j 2 j

N

4 j j 3 j

N t - r N t 1- b N t1
E =  

11 +c T t N t +a u t=

 
 
 
 

   (39)

( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

10
T

j 0

2

j

1 j 1 j

T

T T 2 j j

3 j j 2 j

T t

- 1- rT t 1- b T t1
E =

11 +ρ sgn σ  + c I t T t

+c T t N t +a u t

=

 
 
 
 
 
 
 
 

   (40) 

( )
( ) ( )

( )

( ) ( ) ( )

( )

10

j 0

2

j j

j

j

I 1 j j 1 j

1 j

ρI t T t
I t - s -

α+T t

1
E = +c I t T t + d I t

11

+a u t
=

 
 
 
 
 
 
 
 
 
 

   (41) 

( )minimum    optimal N T IE E E E= + +   (42) 

 

5)  CASE-5 

In this case a supplementary SMC is designed for ICs 

boosting to the basic framework of case-4. SMC for ICs 

boosting is given in equation (43).   

( ) ( )I I I 1 1 1μ x = -ρ sgn σ + c IT+d I + a u   (43) 

Addition of equation (44) in ICs equation (3) results in (44) 

( )I I

ρIT
I = s+  -ρ sgn σ

α+T
  (44) 

Sliding surface and its derivative for this case is given by 

(45, 46)  

3I 2σ = q T + q I +u   (45) 

2 3Iσ = q T + q I +u   (46) 

Here q2 > 0 while q3 < 0 are the design parameters.. 

Equation (47) is formed by multiplying σI on both sides of 

equation (46). The equations (2), (4) and (45) along with 

the property σIsgn(σI) =  |σI| is substituted afterwards 

Equation (50) is structured by simplification and using 𝜂𝐼 as 

defined in equation (49) 

( )( )

( )

2

I I 3 I I

1 1 2 3 2

I

23

σ σ = -q ρ σ  

q r T 1- b T - c IT - c TN - a u  

+ σ ρIT
+ q s+   +v t  - d u

α+T

 
 
  

  
  

  (47) 
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( )

( )

I

1 1 2

I I I 3 2

2

2

3

3

q ρ

r T 1- b T  - c IT
q  

σ σ   - σ   -c TN - a u
-

ρIT
+ q s+   +v t  - d u

α+T

 
 

  
     

  
  

  

  (48) 

( )

( )

1 1 2

2

3

2
I I

2

3

3

r T 1- b T - c IT - c TN
q

-a u
η = q ρ - 

ρIT
 + q s+   +v t  - d u

α+T

  
  
  
 

  
  
  

  (49) 

I I I Iσ σ - σ η   (50) 

Where 𝜂𝐼 ≥ 0 by design, 𝜌𝐼  evaluated from (49) is given in 

equation (51).  

( )

( )

1 1 2 3

2

2

I

3

3

2
I

r T 1- b T - c IT - c TN
q  

η-a u
ρ =  +

qρIT
+ q s+   +v t  - d u

α+T

  
  
  
 

  
  
  

  (51) 

The system is asymptotically stable, i. e., σIσİ ≤ 0 due to 

the fact that −|σI| 𝜂𝐼  ≤ 0 by default. In this case, the use of 

equations (1), (31) and (44) results in the error function for 

case-5 represented by equations (52-55).  

( ) ( ) ( )( )
( ) ( ) ( )

10

j 0

2

j 2 j 2 j

N

4 j j 3 j

N t - r N t 1- b N t1
E =  

11 +c T t N t +a u t=

 
 
 
 

   (52) 

( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

10
T

j 0

2

j

1 j 1 j

T

T T 2 j j

3 j j 2 j

T t

- 1- rT t 1- b T t1
E =

11 +ρ sgn σ  + c I t T t

+c T t N t +a u t

=

 
 
 
 
 
 
 
 

   (53) 

( )
( ) ( )

( )
( )

10

j 0

2

j j

j

jI

I I

ρI t T t
I t - s -1

α+T  tE =
11

+ρ sgn σ
=

 
 
 
 
 
 

   (54) 

( )minimum    optimal N T IE E E E= + +   (55) 

 

6)  CASE-6 

In this case, base configuration of case-5 is augmented with 

SMC designed to boost NCs in order to slow down their 

death rate. SMC used as drug to protect and boost the NCs 

is given in equation (56). 

( ) ( )N N N 4 3μ x = -ρ sgn σ + c TN + a u   (56) 

Addition of (56) in NCs equation (1) results in (57) 

( ) ( )2 2 N NN = r N 1-b N  -ρ sgn σ   (57) 

Sliding surface and its derivative for this case is represented 

by equations (58, 59) 

5N 4σ = q N + q T +u   (58) 

4 5Nσ = q N + q T +u   (59) 

Here  q4 > 0 & q5<0 are the design parameters. 

Equation (61) is formed by multiplying σN on both 

sides of equation (59) followed by substitution of equations 

(2), (4), (57) and property  σNsgn(σN) =  |σN|. Equation 

(63) is formed after some simplification and defining a term 

𝜂𝑁as in equation (62). 

( )( )

( )( ) ( )

N N 5 N N

1 1 2 3 2

N

2 2

4

5 2

σ σ = -q ρ σ  

q r T 1- b T - c IT - c TN - a u  
+ σ

+ q r N 1- b N   +v t  - d u

 
 
 
 

  (60) 

( )

( )( ) ( )

5

4

N

1 1 2

3 2

N N N

2

2

5 2

q ρ

r T 1- b T - c IT
q  

-c TN - a u
σ σ - σ  

- + q r N 1- b N   +v t

 - d u

 
 

  
  
  


 
 
 
 
 
 

  (61) 

( )

( )( ) ( )

1 1 2 3

2

N N 2 2

2

4

5 5

r T 1- b - c IT - c TN
q  

-a u

η = q ρ -   + q r N 1-b N   +v t

 - d u

  
  
  
 
 
 
 
 
 

  (62) 

N N N Nσ σ - σ η   (63) 

Where 𝜂𝑁 ≥ 0 by design, 𝜌𝑁 evaluated from (62) is given 

in (64) 

( )

( )( ) ( )

1 1 2 3

4

2

N
N

5

2 2

2

5

r T 1- b T - c IT - c TN
q  

-a u
η

ρ =  + q r N 1-b N   +v t   +
q

- d u

  
  
  
 
 
 
 
 
 

     (64) 

Since −|σN| 𝜂𝑁  ≤ 0 by default, therefore the system is 

asymptotically stable, i. e., σNσṄ ≤ 0.  The equations (31), 
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 (44) And (57) are utilized to evaluate the error function for 

case-6 represented by equations (65-68). 

( ) ( ) ( )( )
( )

10

j 0

2

j 2 j 2 j

N

N N

N t - r N t 1- b N t1
E =  

11 +ρ sgn σ=

 
 
 
 

   (65) 

( )

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

10
T

j 0

2

j

1 j 1 j

T

T T 2 j j

3 j j 2 j

T t

- 1- rT t 1- b T t1
E =

11 +ρ sgn σ  + c I t T t

+c T t N t +a u t

=

 
 
 
 
 
 
 
 

   (66) 

( )
( ) ( )

( )
( )

10

j 0

2

j j

j

jI

I I

ρI t T t
I t - s -1

α+T  tE =
11

+ρ sgn σ
=

 
 
 
 
 
 

   (67) 

( )minimum    optimal N T IE E E E= + +   (68) 

 

7)  CONTROLLER STABILITY 

Construct the Lyapunov function to prove stability 

of controller: 

21

2
SMCV =   (69) 

0SMCV =    (70) 

If 0   then the controller is asymptotically stable.  

IV. NUMERICAL RESULTS AND DISCUSSION 

This research has focused to develop a combination 

treatment protocol that can be used to effectively eliminate 

TCs while keeping the patient’s health good enough to bear 

the toxic effects of chemotherapy. Several combinations are 

discussed in previous section from case-1 to case-6 with 

varying treatments and different supplements of controllers 

as drug. 

Simulations are carried out using GA optimtool of 

Matlab 2018a. The unknown constants of equations (13) to 

(15) are approximated by keeping the following simulation 

parameters: 

1000 generations are executed on the chromosome 

having 15 genes, the population size and bounds are 240 

and [0 20] respectively. The approximate solution is found 

by BSP of degree n=5. Graphs of figure 2(a) to 2(f) 

represent the solutions of case-1 to case-6 with respective 

equations referred in Table II and parameter values from 

Table III. 

 

 

 

Table II 

Case Case 

Equations 

Objective function 

for GA 

Approximation 

equations 

1 (1), (2) (21)  

 

 
(13-15) 

2 (1-3) (25) 

3 (1-3) (29) 

4 (1), (3), (41) (42) 

5 (1), (31), (44) (55) 

6 (31), (44), (57) (68) 

   

 

The behavior of normal and tumor cells in the 

absence of chemotherapy and immunotherapy is given in 

figure 2(a). Without immunotherapy and chemotherapy, the 

TCs increase at a steady rate while the NCs decrease 

rapidly with the passage of time. Figure 2(b) shows that the 

immunotherapy decreases both the growth rate of tumor 

and decay rate of NCs but fail to reduce the TCs. Figure 

2(c) represents the effects of chemotherapy in the presence 

of immunotherapy. In this case, chemotherapy eliminates 

TCs at a slow rate but its concomitant effects reduce both 

NCs and ICs to a potentially fatal level. 

Figure 2(d) depicts the introduction of SMC as drug 

for boosting the effect of chemotherapy over tumor. Graph 

shows that the TCs are eliminated at a good rate but both 

NCs and ICs decreases to a susceptible level. Figure 2(e) 

shows the effect produced by supplementing SMC booster 

for ICs over the base structure of case-4. It is clearly 

evident from graph that tumor elimination is fast along with 

a healthy ICs concentration but the NCs concentration 

decreases to a considerable level. Figure 2(f) represents the 

final triple combination of TCs elimination and NCs and 

ICs booster along with chemotherapy. Graph shows the 

rapid elimination of TCs with an additional benefit of 

healthy state of patient.  

 
(a)
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(b)

(c)

(d) 

 

 
(e) 

 

 
                          (f) 

 
FIGURE 2.  Behavior of normal, tumor and ICs with chemotherapy along 
with controller 

The results presented in figure 2 is improved from the 

results presented in paper Shindi et al. [9]. Previous study 

showed decrement of NCs to its minimum constraint, while 

proposed methodology keep NCs in healthy state. The 

results presented in figure 3 are simulated with fixed 

parameter values  𝜕𝑇, η′𝑠 and  q′𝑠; varied values of these 

parameters are used from Table III to analyze and manage 

the effects of controller drugs as per the implications of 

patient’s health. 
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Table III 

 

parameters Values Estimated  

T  1 0 to 1 

𝜂𝑁 0 0 to 0.8  

𝜂𝑇 0 0 to 1 

𝜂𝐼 0 0 to 1  

𝑞1 1 1 

𝑞2 1 0 to 1  

𝑞3 -1 0 to -1  

𝑞4 1 0 to 1  

𝑞5 -1 -0.4 to -1.4  
   

 
Figure 3(a) and 3(b) shows the effect of 𝜕𝑇 and 

η𝑇  on TCs under application of SMC designed to boost the 

tumor elimination. Figure 3(a) depicts that the large value 

of η𝑇  slows down the elimination of TCs, while the small 

value of  η𝑇  enhances the elimination of TCs. Figure 3(b) 

describes that the large value of 𝜕𝑇  accentuates the 

reduction of TCs while the small value of 𝜕𝑇 slowdown the 

elimination of TCs. In figure 3(a) 𝜕𝑇 is fixed at 1, while the 

η𝑇 is varied from 0 to 1 and in figure 3(b) η𝑇 is fixed at 0, 

while the 𝜕𝑇 is varied from 0 to 1. 

(a)  

(b) 

 
FIGURE 3.  Decay of TCs on varying (a) 𝜼𝑻 and (b) 𝝏𝑻 

Figure 4(a), 4(b) and 4(c) show the behavior of ICs under 

the boosting effect of SMC and varied values of  ηI, q2 

and  q3, whereas remaining parameters are fixed as of Table 

III. It is evident from figure 4(a) that for small values of 

ηI  , ICs boosting is slow and large values of ηI results in 

rapid boosting of ICs. Similar effects are seen in figure 4(b) 

and 4(c) for various values of q2 and q3 . 

 

(a) 
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(b) 

 

(c) 

FIGURE 4.  Enhancement of ICs on different values of (a) 𝜼𝑰 , (b) 𝒒𝟐  and 

(c) 𝒒𝟑  

Figure 5(a), 5(b) and 5(c) show the effects of varying 𝛈𝐍, 

𝐪𝟒  and  𝐪𝟓 on NCs, while utilizing SMC in combination 

treatment of case-6. NCs boosting is initially slow for small 

values of 𝛈𝐍  and fast for larger 𝛈𝐍, but the profiles reverse 

after 60 days as depicted in figure 5(a). Figure 5(b) and 5(c) 

reveals the slow boosting for smaller and rapid boosting of 

NCs for larger values of 𝐪𝟒 and 𝐪𝟓 respectively. 

(a) 

(b) 

(c) 
FIGURE 5.  Enhancement of ICs on different values of (a) 𝜼𝑵 , (b) 𝒒𝟒  and 

(c) 𝒒𝟓 

COMPARATIVE ANALYSIS 

The comparison of the proposed work with some existing 

techniques is given in the table-IV. The table-IV shows the 

superiority of the proposed work while the Table V shows 

the values of the Objective functions. 
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Table-IV: Comparison of the proposed methodology with some existing techniques  

Treatment and 

controller 

Cells Time in days 

  0 10 20 30 40 50 60 70 80 90 100 

Pulsed Chemotherapy 

protocol as optimal 
controller [11] 

NCs 1.0 0.9 1.0 0.9 1.0 1.1 1.0 0.9 1.0 0.9 0.9 

TCs 0.0 0.0 0.15 0.25 0.5 0.1 0.1 0.5 0.25 0.1 0.2 

ICs 0.15 0.3 0.5 0.6 0.4 1.5 1.0 0.5 1.0 1.0 0.5 

Direct collocation 

method to converge 

optimal control on 
continuous 

chemotherapy [17] 

NCs 1.0 0.75 0.75 0.8 0.8 0.85 0.9 0.85 0.9 1.0 1.0 

TCs 0.3 0.25 0.2 0.2 0.15 0.1 0.025 0.0 0.0 0.0 0.0 

ICs 0.15 0.5 0.7 0.8 0.9 1.0 1.1 1.4 1.2 1.5 1.3 

Traditional pulse 
chemotherapy [18] 

NCs 1.0 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.8 0.9 

TCs 0.25 0.25 0.25 0.25 0.25 0.2 0.2 0.2 0.2 0.2 0.2 

ICs 0.15 0.4 0.6 0.6 0.6 0.6 0.6 0.65 0.7 0.7 0.75 

Optimal control 
chemotherapy [18] 

NCs 1.0 0.75 0.75 0.8 0.8 0.85 0.9 0.85 0.9 1.0 1.0 
TCs 0.3 0.25 0.2 0.2 0.15 0.1 0.025 0.0 0.0 0.0 0.0 
ICs 0.15 0.5 0.7 0.8 0.9 1.0 1.1 1.4 1.2 1.5 1.3 

Optimal control theory 
with multi objective 

swarm [9] 

NCs 0.9 0.75 0.75 0.85 0.9 1.0 1.0 1.0 1.0 1.0 1.0 
TCs 0.25 0.2 0.15 0.1 0.05 0.0 0.0 0.0 0.0 0.0 0.0 
ICs 0.25 0.8 0.9 1.0 1.3 1.5 1.65 1.65 1.65 1.65 1.65 

SMC as an optimal 
controller along with 

chemo-immunotherapy 

(proposed) 

NCs 0.9 0.95 1.05 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 
TCs 0.25 0.15 0.1 0.05 0.01 0.0 0.0 0.0 0.0 0.0 0.0 
ICs 0.25 0.45 0.9 1.3 1.5 1.55 1.55 1.55 1.5 1.5 1.5 

             

 

Table V: Values of the objective functions  

Objective 

function 

equations Cells Objective functions values 

21 
NCs 0.90 0.89 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.79 

TCs 0.25 0.26 0.26 0.27 0.27 0.28 0.29 0.29 0.30 0.31 0.32 

25 

NCs 0.90 0.89 0.88 0.86 0.85 0.84 0.84 0.83 0.82 0.81 0.81 

TCs 0.25 0.25 0.25 0.26 0.26 0.26 0.26 0.27 0.27 0.27 0.27 

ICs 0.25 0.27 0.29 0.31 0.33 0.35 0.37 0.39 0.40 0.42 0.43 

29 

NCs 0.90 0.87 0.83 0.80 0.78 0.78 0.79 0.80 0.81 0.83 0.84 

TCs 0.25 0.22 0.18 0.12 0.08 0.04 0.02 0.01 0.00 0.00 0.00 

ICs 0.25 0.24 0.21 0.17 0.15 0.15 0.16 0.18 0.21 0.23 0.26 

42 

NCs 0.90 0.87 0.83 0.81 0.79 0.80 0.80 0.82 0.83 0.84 0.85 

TCs 0.25 0.15 0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

ICs 0.25 0.23 0.19 0.16 0.14 0.13 0.15 0.17 0.20 0.22 0.25 

55 

NCs 0.90 0.87 0.83 0.80 0.79 0.79 0.80 0.82 0.83 0.84 0.85 

TCs 0.25 0.15 0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

ICs 0.25 0.47 0.88 1.24 1.49 1.59 1.59 1.55 1.53 1.55 1.55 

68 

NCs 0.90 1.00 1.21 1.36 1.42 1.37 1.27 1.15 1.08 1.04 1.00 

TCs 0.25 0.15 0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 

ICs 0.25 0.47 0.88 1.25 1.49 1.59 1.59 1.56 1.54 1.56 1.56 
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According to De pillis et al., the NC remains in 

healthy state whereas TCs and ICs having oscillatory 

behavior. However, during the process TCs will not be 

removed completely [11]. Although, by using traditional 

pulsed chemotherapy, NCs will get reduce the normal level 

which is dangerous to patients’ health. The treatment is 

halted for short period of time where NCs need recovery at 

this stage which causes nonlinear behavior. TCs are 

destroyed within 70 days but the ICs still rely on oscillatory 

behavior [17] [18]. The scenarios like traditional pulsed and 

optimal control chemotherapies are discussed in 

comparison table IV. Where, ICs are increased after 100 

days during observation [18].  

However, TCs terminated from the body while ICs will 

reach to higher level after 50 days [9]. Figure-2 (f) 

describes the proposed methodology where NCs and ICs 

are improved. Although, TCs are completely eliminated 

from patient’s body using SMC. The level of NCs and ICs 

increases from initial condition while the TCs are vanished 

slowly within 45 days. 

CONCLUSION AND FUTURE WORK 

This research has used GA tuned BSP and SMC for 

designing an effective treatment protocol with combination 

of chemotherapy for tumor model by comparing with some 

existing techniques. The methodology proposed 

successfully eliminates tumor while maintaining patient’s 

healthy state by keeping NCs well above the critical 

threshold. NCs and ICs boosting by SMC offer viability of 

a continuous treatment. The SMC is proposed as an anti-

tumor drug, which work as an optimal treatment therapy. 

Varied controllers parameters allow adjustment in treatment 

based on patient’s profile and response to tumor drug. In 

future different estimation functions in conjunctions with 

combination of controllers can be explored. This work will 

be extended on the mathematical model of different type 

not only tumor but also cancer and different diseases. 
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