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ABSTRACT The paper proposes a taxonomy for categorizing the main features of the supervised learning 

classification problems and a notation for the identification of the supervised learning classification problem 

categories. The proposed taxonomy has been based on the review and analysis of the recent literature.  It 

allowed the construction of the landscape of decision problem factors influencing the supervised learning 

processes.  To enable a concise and coherent identification of supervised classification problems we have 

suggested a notation enabling description and identification of various supervised learning classification 

problem types and their critical features. The notation consists of 5 fields representing, in a sequence, a 

structure and properties of decision classes, structural model and properties of attributes, features of the data 

source, and the performance measure used for constructing and evaluating a classifier. The proposed notation 

is open and could be extended in the case of need new developments within the machine learning theory. 

INDEX TERMS Machine learning, supervised classification, classification problems, taxonomy of 

features, notation for problem description 

I. INTRODUCTION 

Classification is a term commonly used for describing the 

process of distinguishing and distributing kinds of "things" 

into different groups. Classification can be viewed as the 

assignment of elements to pre-defined classes [1] or as the 

act or process of dividing things into groups according to 

their type [14]. Classification re-mains one of the main topics 

of scientific research and is vital to practically all domains of 

human activities. As it has been recently observed "most of 

the classifications are still based on the evaluation of 

resemblances between objects that constitute the empirical 

data. This one is almost always computed by the means of 

some notion of distance and some algorithms of aggregation 

of classes" [58].   

Classifications are produced using different reasoning 

schemes. For example, in statistics, a classification task (also 

called discrimination problem) requires a classification rule 

for assigning new data to one of the known classes. Such a 

rule is identified based on a set of data containing 

observations (or instances), whose category membership is 

known [3]. In the machine learning terminology [4], 

classification is viewed as learning from examples 

(observations, instances), where a training set consisting of 

correctly identified observations is available and used to 

induce a model that describes and distinguishes data classes 

[11]. Such a model is called a classifier [5]. Classifiers are 

sometimes referred to as mathematical functions that map 

input data into a category. Such functions are also called the 

hypothesis. 

Classification problems are encountered in many real-

world activities where finding effective methods and tools 

requires an interdisciplinary effort  [1], [2]. Classification 

methods and tools have been, and still are, under 

development  in numerous research areas of computer 

science, such as, for example: image processing and analysis 

[6], [7], computer vision [8], signal recognition [9], decision 

support systems [10], knowledge discovery in databases and 

data mining [5], data science [14]. It would be impossible to 

list here all application areas where machine learning-based 

classifiers have proven to bring breakthrough advantages. 

Several examples of such areas include genetics and 

genomics [127], agriculture [128], molecular and materials 
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science [129], physical sciences [130],  hydrology [131], 

chemistry [132] manufacturing [133], medical image 

analysis [134], just to mention a few. 

In the current paper, we study classification problems that 

can be solved automatically. Besides, it is assumed that 

processes of classifier learning are based on the principle of 

supervised learning, where a classifier, often referred to as a 

classification model,  is learned from a set of examples. 

Under this assumption classification is a two-stage process. 

The first stage involves learning from data to induce a 

classification model. The second one involves using the 

model to predict the class or category of instances with 

unknown class labels. Research effort undertaken by 

specialists in various areas of computer and data sciences has 

resulted in providing a wide range of classification models 

and approaches for constructing classifiers. These are based 

on different paradigms, with different scopes, different 

complexities, and varying degrees of performance. All of 

them are, however, based on a 2-dimensional conceptual 

data model consisting of the set of examples (instances, 

observations) and each example consisting of feature 

(attribute) values which are assumed to be in some unknown 

way related to the class or category an instance belongs to. 

Within the set of examples labels (categories) of instances 

are known. 

The simplicity of such a conceptual model does not, 

unfortunately, mean that inducing classifiers assuring the 

required level of performance is an easy task. There is a 

multitude of factors that make the task complex and difficult 

or even impossible. Among such factors one should mention, 

for example, limited availability of examples, ambiguity, 

uncertainty, and distortions to feature values, different 

methods of representing and coding feature values, class 

imbalanced among instances available for inducing a 

classifier, presence of the concept drift, presence of outliers, 

complex feature values, and many others. One of the most 

difficult barriers encountered in developing classification 

methods is the sheer size of the data available for deriving a 

classifier.  This barrier may apply to both data dimensions  - 

the number of features and the number of instances. It is well 

known that data analysis including classification, is more 

complex in the so-called Big Data environment [12], [13]. 

The main contribution is the identification and ordering 

of factors influencing the construction and outcomes of 

classification models in supervised machine learning. 

Besides, we also propose a taxonomy for supervised 

classification problems categorization. In the available 

literature on machine learning, the authors haven't found any 

attempt to provide a wider scheme for categorization of the 

supervised learning problems based upon considering a 

variety of combinations of factors important from the point 

of view of constructive effective classification models. Our 

goal is to provide specialists and laymen with a simple 

classification scheme allowing them to identify what kind of 

classification problem they are facing. Consequently, they 

can narrow their search for a suitable classification model 

considering at first methods that have proven successful in 

solving similar problems.  

The proposed classification scheme is based on several 

characteristics of supervised classification problems referred 

to as their dimensions. Under the proposed scheme the type of 

the supervised classification problem can be identified 

considering the following factors: 

- Characteristics and properties of the problem 

categories, (category view). 

- Structure and properties of the dataset available for 

learning a classifier (attribute view). 

- Sources of the dataset available for learning (data 

source view). 

- Criterion or criteria associated with the supervised 

classification problem (performance criteria view). 

Besides the classification scheme, we also propose the 

notation for the supervised classification problems. It has 

been inspired by the notation used in the theory of scheduling 

for the identification of scheduling problems. The notation 

was suggested in 1979 by R.L. Graham et al. [87] and is 

widely used ever since. The reason behind proposing the 

notation for denoting supervised classification problems in a 

short but coherent way based on their main properties is to 

enable efficient communication between specialists 

developing classification models. 

Classification problems in real-life arise in a variety of 

settings. Researchers have studied hundreds of classification 

problems and it would be impossible to list all known 

variants in a single paper. We believe that offering a 

framework for ordering and grouping classification 

problems could be of value to both – the researchers looking 

for methods and tools, and the practitioners trying to find a 

method or tools for solving their particular classification 

problems. The proposed classification scheme and notation 

should be considered as a part of the meta-analysis of 

machine learning. 

We would like also to stress that the proposed 

classification scheme does not depend on techniques, 

methods, and tools used for inducing classification models. 

It is also independent of techniques and methods used at the 

data pre-processing stage, for example for dealing with the 

missing data problem or outliers removal. There is, of course, 

a relation between a particular supervised classification 

problem type and methods or techniques which might be 

more effective for solving its cases as compared with other 

techniques. Identifying such relations could be a subject of 

analysis when constructing or selecting a learner. 

The remainder of this paper is organized as follows. In the 

next section, the problem of classification is formally defined. 

Section III contains a review of the different problems and 

strategies of learning from data based on the relevant 

literature. Section IV provides a short overview of studies on 

complexity of classification problems. In Section V, we 

propose a notation for classification problems. Section VI 
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includes conclusions and discussion on some open research 

problems. 

II.  CLASSIFICATION PROBLEM FORMULATION 

In the case of supervised learning, to induce a learner some 

examples are needed.  The set of examples denoted  U, is a 

non-empty, finite set and is called the universe. The example 

𝑥 ∈ 𝑈  is represented by a fixed set of attributes (features), 

𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, where n is the number of attributes. 

Each attribute 𝑎𝑖:𝑖=1,…,𝑛 has a value 𝑎𝑖(𝑥) ∈ 𝑉𝑎𝑖
, where 𝑉𝑎𝑖

 is 

a set of all possible values for attribute 𝑎𝑖. 𝑉𝑎𝑖
 is also called 

an attribute domain. It is assumed that one particular 

attribute, say 𝑎𝑖 ,  contains value representing the class label 

of the example [11]. 

The aim of learning from examples is to obtain a model 

(classifier, learner) able to reveal the value of the unknown 

class label by identifying the dependence between attribute 

values (our independent variables) and the value of the class 

label  (our dependent categorical variable) using the set of 

available instances. 

The class labels belong to a finite set of predefined 

decision categories (classes) C = {𝑐𝑙 = 1, … , 𝑘}, where k is a 

number of these categories. Hence, the U set for the 

classification task can be defined as: 

𝑈 = {[𝑥𝑖𝑗 , 𝑑(𝑥𝑗)]: 𝑖 = 1, … , 𝑛; 𝑗 = 1, … , 𝑁}.  (1) 

Based on the above, a single example is represented by 

[𝑥𝑖𝑗 , 𝑑(𝑥𝑗)], the set U consists of N such vectors and 𝑑(𝑥) 

represents the value of the class label for the example x, 

where ∀𝑥∈𝑈d(x) ∈ C. 

In [11] the process of learning from examples was called 

a "concept learning", i.e. “search through a predefined space 

of potential hypotheses for the hypothesis that best fits the 

training examples”. When instances are represented by the 

n-dimensional input data (space) and each [𝑥1j, … , 𝑥𝑛𝑗] 𝑗=1
𝑁 ∈

ℜ𝑛, then the mission of a classifier is to map instances to the 

discrete class set, i.e. ℎ: ℜ𝑛 → 𝐶. 

The machine learning algorithm, called a learner, 

produces a classifier ℎ ∈ 𝐻. The classifier is induced from 

the set U. H is called as the hypothesis space and consist of 

all possible hypotheses that can be drawn during the learning 

process.  Thus, given a dataset U, a set of hypotheses H, a 

performance criterion or criteria F, the learning algorithm L 

outputs a hypothesis ℎ ∈ 𝐻 using the learning algorithm L 

optimizing F. Thus, learning from examples is to generate L 

which will be able to determine the best possible ℎ ∈ 𝐻 with 

respect to the adopted performance measure or measures F. 

In case the classifier output is evaluated using a single 

criterion with the performance measure expressed as 𝑓 ∈ 𝐹, 

the learning from examples may be formulated as a process 

maximizing the performance measure concerning the 

hypothesis h, such that: 

ℎ = 𝑎𝑟𝑔 max
ℎ∈𝐻

𝑓(ℎ).   (2) 

The role of a classifier predicts the category of an instance, 

where the category is unknown.  

Definition: A classifier h is a function assigning examples  

from D to a predefined set of categories as shown in the 

equation (3): 

ℎ: 𝑈 → {∅, 𝐶1, 𝐶2, … , 𝐶𝑘},  (3) 

where 𝐶𝑙:𝑙=1,..,𝑘 denotes subset of data set D, such that 

examples are labelled by a class 𝑐𝑙:𝑙=1,..,𝑘 ∈ 𝐶, under the 

following conditions: 

1. ⋃ 𝐶𝑙
𝑘
𝑙=1 = 𝐷    (4) 

2. ∀𝐶𝑗 ⊂ 𝐷, 𝐶𝑙 ⊂ 𝐷, ∶ 𝐶𝑗 ∩  𝐶𝑙 = ∅, 𝑗, 𝑙 = [1, 𝑘], 𝑗 ≠ 𝑙.  (5) 

 

In view of the above, the classification task is to assign 

of the class, 𝑐 ∈ 𝐶, to the instance 𝑥 ∈ 𝐷. 
The process of classification involves several steps. A 

natural sequence of these steps can be seen as follows: 

− Sample collection, 

− Selection of instances and attributes for learning,  

− Carrying other pre-processing actions (cleaning, 

removing outliers, etc.), 

− Producing the training set, 

− Induction  of the classifier using instances  from the 

training set. 

− Using the induced classifier to predict classes of 

instances with unknown class labels. 

III. PROPERTIES OF THE CLASSIFICATION PROBLEMS 

The first known classifier based on the supervised learning 

paradigm was proposed back in 1967 by Cover and Hart 

[52]. Since then numerous dedicated and universal 

classification algorithms have been proposed and published 

(see, for example, Table I). 

It is now widely recognized that the selection of methods 

and tools for constructing classifiers should be preceded by 

an analysis and assessment of properties of the classification 

problem at hand.  Such an analysis should be carried out 

considering the following dimensions, shown also in Fig. 1: 

− Structure, cardinality, scales, and relations category - 

features of classes (categories). 

− Structural model of data and data characteristics. 

− Data source features.  

− Classifier performance criterion (or criteria). 

TABLE  I 
SELECTED CLASSIFIER ALGORITHMS 

Algorithm Authors  

Aq - quasi-optimal covering algorithm R. Michalski [15] 

C 4.5  - decision tree  R. Quinlan [16] 

CN2 - rule induction P. Clark at al. [17] 

kNN and Instance-based learning algorithms W. David at al [18] 

SVM - Support Vector Machine V. N. Vapnik [19] 

Bayes classifier L. Devroye et al. [20] 
Bagging method L. Bbeiman [21] 

MODLEM J. Stefanowski [22] 

Random forest L. Breiman [23] 
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FIGURE 1.  Dimensions for classification problems assessment. 

A.  THE NUMBER, PROPERTIES, AND STRUCTURE OF 

CLASSES (CATEGORY VIEW) 

It is assumed that in the case of supervised learning the 

classification problem requires deciding to which class an 

instance belongs. In supervised learning, unlike the semi-

supervised, and unsupervised ones, it is assumed that the 

number of classes (categories)  and their possible labels are 

known at the outset. In the case of the two classes, the problem 

is called the binary classification [37]. In many cases, the 

binary classification problem has served as a basis for 

introducing new classification methods as, for example, in the 

case of the support vector machine (SVM) approach [38]. 

In the case of binary classification, the cardinality of the 

set of decision categories is equal to 2 (i.e.  |𝐶| = 2), and 

classifying is carried out into one of the two known classes. 

However, in many practical applications of machine learning 

techniques, the number of classes is greater than two, i.e. 
|𝐶| > 2 (see for example [40] [41] [42]). In such a case, a 

multiclass classification problem is considered and instances 

belong to one of three or more classes [39]. It should be noted 

the binary classification is a special case of the multiclass 

classification. On the other hand, the multiclass classification 

can be seen as a natural extension of the binary classification 

problem. 

In a special case where |𝐶| = 1, one deals with the one-

class classification or unary classification problem. Unary 

classification problem requires identification of instances 

belonging to one particular class only. Such class is 

arbitrarily referred to as the positive or target one, and it is 

assumed that the positive class is well characterized by 

instances. Instances that do not belong to the target class are 

assumed to belong to the negative class, however, they do 

not form a statistically representative sample of the negative 

concept [26], [27], [31]. In the discussed case the aim of the 

classifier is either to identify only one class amongst all the 

others possible or to identify positive instances when the 

negative class examples are either not available, not 

adequately sampled, or ill-defined.  The one-class 

classification is,  however, encountered in many real-life 

situations like, for example, detection of outliers [28], 

novelties [29], faults [34], spam [33], and abnormal 

behaviors [36]. Some automatic diagnosis [35], document 

classification [32], and concept learning [30] problems can 

be also modelled as the one-class classification problem. 
So far we have considered classification problems where 

each instance belongs to a single class and is associated with 

a single class label. Such problems can be solved using 

methods of single-label learning for training the 

classification model [25]. However in numerous situations 

classification problems are multi-labelled where one 

instance can be naturally associated with multiple, non-

exclusive labels.  Examples include document, gene, and 

image categorization.  In multi-label learning, the aim is to 

learn model mapping instances to the powerset of the 

decision categories set C. Both,  the single and the multi-

label classifications are based on a fixed set of labels. 

Compared with the single-label classification, which predicts 

only one label for each instance, the multi-label classification 

is more complicated. Each instance are different and the 

number of labels per instance is not fixed. A review of the 

multi-label classification tools and algorithms can be found 

in [25], [43], and [45]. A special category of multi-label 

classification problems encountered in mining data streams 

is discussed in section III.D. 

In the literature, the term multi-label classification is often 

used interchangeably with the term multi-dimensional 

classification. In fact, the multi-dimensional classification can 

be viewed as a generalization of the multi-label classification 

where each data instance is associated with multiple class 

variables. The goal of multi-dimensional classification is to 

assign each data instance to multiple classes.  In the multi-

dimensional classification, class labels are allowed to have 

more than a single value [48]. A real-life cases of the multi-

dimensional approach including bio-informatics and multi-

fault diagnosis are discussed in [47] and [48]. 

Another recently investigated classification problem 

category is the multi-output classification. The task of the 

multi-output classification is to simultaneously predict 

multiple outputs for a single input. In such case the output 

values belong to a diversified data types, such as, for example, 

binary, nominal, ordinal, and real-valued variables data. The 

problem of multi-output learning has attracted so far the 

interest of researchers from many areas including, for 

example, speech recognition,  language processing,  motion 

tracking, computer vision,  document processing, and ranking 

in information retrieval [46].  The multi-output classification 

is also known as the multitask classification or multi-output-

multi-class classification. Multi-label classification can be 

seen as a special case of the multi-output classification 

problem. 

All the above-discussed classification problems assumed 

that to induce a classifier there is available a training set 

consisting of instances, each represented by a single attributes 
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vector and where each such vector has an associated class, 

classes, or labels. In many areas, the above assumption does 

not hold and the classification problems belong to the category 

of the multiple instance classification [50].  In the multiple 

instance classification, the aim is to learn a classifier based on 

a training set of bags. Each bag contains multiple attribute 

instances and has an associated class. However, the labels of 

the individual instances within a bag are unknown. According 

to [51] “bags may also contain instances that are not 

necessarily relevant,  do not convey any information about bag 

class, or are better related to other classes of bags”. A set of 

bags can be used as a training set, and the multi-instance 

classification aims to predict the class of unlabelled bags. 

Examples of the multiple-instance classification problems can 

be found in medicine, chemistry, image recognition, etc. More 

information on multi instance learning can be found in [51]. 

Usually, it is assumed by default that label values can be 

measured using interval or ratio scales. Such an assumption 

does not always hold. It appeared that in case label values are 

defined using nominal and ordinal scales, the resulting 

supervised classification problems may require different 

approaches and techniques. 

Ordinal classification is the special case of multiple class 

problems. Hence, the ordinal classification problems can be 

solved using standard approaches as in the case of other 

multiple class problems. While applying multiple class 

classification methods for ordinal data sometimes works, the 

outcome can be unsatisfactory since classes are treated equally 

without considering their interconnections and relative 

superiority [106]. Ordinal classification problems are further 

discussed, among others, in [107], [112], [108], [110]. The 

special case of the ordinal classification is monotonic 

classification [109]. In the ordinal classification, the different 

labels show an ordering relation, related to the specific nature 

of the target variable. If additionally, a set of monotonicity 

constraints has been imposed on the relationship between 

independent and dependent variables, then the problem is 

known as monotonic classification. 

Other special cases are multiple criteria ordinal 

classification problems. An ordinal classification problem 

with multiple criteria consists of the assignment of objects to 

a finite number of ordered classes. Objects are characterized 

by attributes with ordered value sets and monotonicity 

constraints assuring that a higher value of an object on an 

attribute, with other values being fixed,  should not decrease 

its class assignment. The problem was studied, by several 

authors,  among them [114], [113], [118], [119]. 

In nominal classification, categories are mutually 

exclusive. According to Warrens [135] nominal classification 

can be further divided into two types. The distinction depends 

upon the presence of the category “absence”. When there is no 

‘absence’ category, a classification can be described as having 

several unordered categories of "presence" characterizing 

possible cases. Such type of nominal classification is referred 

to as regular as opposed to a dichotomous-nominal 

classification. History of developments in nominal 

classification can be found in [111]. 

Classification problems where there is some structure 

(hierarchical or not) among the classes form a wide category 

of structured classification problems [117]. According to the 

above authors, hierarchical classification can be seen as a 

particular type of structured classification problem, where the 

output of the classification algorithm is defined over a class 

taxonomy. Class taxonomy can be defined as a tree-structured 

regular concept hierarchy defined over a partially ordered set 

(C,≺), where C is a finite set that enumerates all class concepts 

in the application domain, and the relation ≺ represents the 

“IS-A” relationship [121]. 

According to [120], in many real-world classification 

problems, one or more classes can be divided into subclasses 

or grouped into superclasses, and instances can belong to more 

than one class simultaneously at the same hierarchical level. 

In this case, the classes follow a hierarchical structure, usually 

a tree or a directed acyclic graph. These problems are known 

in the literature of machine learning as hierarchical multiple 

label classification problems. Evaluation measures for 

hierarchical classification were discussed in [116]. An 

approach for hierarchical multilabel classification was 

proposed in [115]. 

The category view of the supervised classification 

problems is shown in Fig. 2. Category view focuses on 

cardinality, structure, and properties of categories (labels) 

encountered in different classification problems. 

 

B.  DATA VIEW 

A natural structure of data used to induce learners is the 

relational database model or decision table model, where 

data are kept in tables [62]. Each row in the table represents 

an instance (example) with a unique class label. The columns 

of the table hold attribute values,  and each instance usually 

has a value for each attribute. The model is appropriate for 

binary learning and multi-class learning, and data organized 

in a table-like structure are called well-structured. The well-

structured data are also used in the case of the multiple 

instance learning, although the class labels are not 

necessarily provided for all instances from bags belonging to 

the training set [51]. The one-class classification is also 

based on the discussed structure even though the only 

positive class instances are guaranteed and the negative class 

instances can be absent, unlabelled, or not properly defined. 

A more complex data structure is required for multi-output 

learning. In this case, the outputs can be of various types and 

structures. Different output structures typical for multi-output 

learning, including independent binary vectors, independent 

real-valued vectors, rankings, sequences, graphs, trees, links, 

images, text, audio, and time series, are discussed in [55]. 
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FIGURE. 2.  Supervised classification problems – category view (“*” denotes remaining options). 

 

 

FIGURE. 3. Data view – a general scheme. 

 

Unstructured data either does not have a pre-defined data 

model or is organized loosely. Unstructured data has an 

internal structure, but it is not predefined through data models. 

It might be human-generated, or machine-generated in a 

textual or a non-textual format.  Unstructured data can be 

defined as all the data that is not structured. Unstructured data 

is mostly qualitative. Examples of such data include all kinds 

of text and audio data,  e-mails, web pages, business 

documents, FAQ's, multimedia content, spatial data, 

molecular structures, chemical structures, and others [56], 

[88], [89]. Solving classification problems based on 

unstructured data is referred to as learning from unstructured 

data [88], [89]. 

Structured data is most often quantitative data. When data 

has well-structured the process of solving classification 

problems is less demanding from the implementation and 

computational side [88]. However, learning from structured 

data such as sequences, trees or graphs is less trivial than 

learning from data organized as decision tables. Challenges 

in learning from structured data arise in the so-called hybrid 

domains, where, for example,  continuous and discrete 

structures are mixed. Dealing with hybrid structures and 

structures representing social networks is discussed in [90]. 

In [91] it is was observed that even learning from the 

structured data is nontrivial.  The main reasons behind this 

finding include ignorance of structural information on input 

and output domains and the occurrence of high-dimensional 

structured data containing huge numbers of features and 

labels. Current methods for learning from structured data are 

also limited in handling large, isolated substructures [92]. 

Apart from structured and unstructured data, some 

specialists use also the term semi-structured data. Semi-

structured data has characteristics of both structured and 

unstructured data. These data are not structured using a 

relational database model but they have elements of semantic 

markups that enforce hierarchies assuring that some structure 

is kept [57]. An example of semi-structured data is also 

discussed in [93], where conditions for learning from semi-

structured data are presented. An approach for learning from 

semi-structured data was suggested in [94], where a genetic 

programming algorithm for extraction of the multiple tree-

structured patterns from tree-structured data was proposed. 

 

From the point of view of practical application, important 

examples of structured data include time-series data, multi-
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view data. When data is represented by multiple, distinct 

feature sets one deals with the multi-view data and multi-

view learning. An excellent survey of the multi-view 

learning approaches and algorithms can be found in [124].  

Another important and challenging problem in data mining is 

time-series classification. In time-series classification a 

training dataset is a collection of pairs [𝑋𝑖 , 𝑌𝑖], where Xi could 

either be a univariate or multivariate time series with Yi as its 

corresponding label vector. Reviews related to time-series 

classification can be found in [126] and [125]. 

The knowledge of the structural data model can determine 

the learning process with respect to the decision on the 

algorithm or tool which should be used or what learning 

strategy should be applied to produce a strong and a high 

generalized system, highly competent to deal with different 

types of data, from numbers to textual format, from well-

defined structures to undefined ones. Hence, we consider 

structural properties of data as an important dimension of 

classification problems influencing learning processes. On the 

other hand, we assume that quality of data is not a dimension 

of classification problems. Cleansing data, removing outliers, 

dealing with missing data, reducing data and other imputation 

efforts, remain an important tasks at the pre-processing stage. 

To sum up this subsection, a general scheme for data view 

is shown in  Fig. 3, while a graphic representation of the 

structural data model is proposed in Fig.4. 

 

 

FIGURE. 4.  Graphic representation of the structural data model. 

 

C.  ATTRIBUTE VIEW 

The traditional machine learning paradigm is based on the 

processing of examples as multidimensional vectors of 

attributes. Each attribute has a domain determined by the 

attribute type. The domain of each attribute may be either 

symbolic or numerical. The majority of the machine learning 

algorithms deal with the following types of attributes [61]: 

− Numerical (continuous) attributes - they take real or 

integer values and can have an infinite number of states. 

− Nominal attributes (also called categorical) - the values 

are determined on a predefined set of possible values.  

− Ordinal attributes - they are numeric or nominal, and 

contain values that have a meaning in terms of ranking 

or order.  

− Discrete attributes – they have a finite or countably 

infinite numerical or categorical value. In the case of 

the domain consisting of two possible values for this 

type of attribute, the attribute type is referred to as the 

binary. 

− Complex attributes – they reach beyond a simple 

attribute-value pair and can be represented by a more 

complex structure like, for example, graphs [76]. 

Attributes belong to the qualitative, quantitative, or 

complex types. Attribute view covering the instance (samples) 

attributes in the supervised machine learning is presented in 

Fig. 5. 

The type of attributes characterizing the set of instances 

(examples) may influence the choice of the machine learning 

technique for solving a classification problem. Hence,  in the 

literature the different techniques of learning from examples 

have been discussed including, for example, learning from 

numeric data [63], learning with symbolic attributes [65], 

learning problem with categorical data [64], learning from 

spatial data [66], learning from ordinal data [69], learning 

from collective data (bags of words or items) [67], learning 

from discrete data [67], and learning from multidimensional 

data [67], [68]. 

D. DATA SOURCE VIEW 

The basic approach for solving classification problems 

using machine learning techniques assumes that data remain 

unchanged during the learning process, so means that are 

static.  Such kind of learning is called batch learning  [76] and 

learners are trained using a single batch of data. Batch learning 

ignores all new data and focuses entirely on previously learned 

concepts [70]. Batch learning relies on the assumption that 

data coming from the data source has a stationary distribution. 
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FIGURE. 5.  Attribute view - types of the instance attribute in the supervised machine learning. 

 

 

In numerous real-life applications, batch learning is 

impossible or impractical. More and more often the size of 

the available datasets outpace the capability of 

computational hardware to analyze them. One method to 

deal with the problem is applying so called incremental 

algorithms that sequentially process chunks or packages of 

data one by one, combining the results from each chunk. 

Data chunks can be formed by the user to overcome 

problems with computational resources or may come 

sequentially in a natural way from the data source. Learning 

from the current chunk and modifying the model after the 

prediction results have been revealed to be ready for the next 

chunk, is called incremental learning, and the data source 

producing a sequence of chunks is called the incremental 

data source.  

A special case of incremental learning is online learning. 

Online learning is needed to deal with an endless stream of 

received data like, for example, sensor data, currency rates, 

stock market indexes, or video streams. In online learning, 

the class label for the instance is predicted immediately when 

this instance incoming and the true class label is revealed 

afterward. In the next step, the incoming instance is 

incorporated into the training data dataset. In such an 

environment, learning is categorized as online learning [76] 

and the data source as the online data source or data stream. 

If the distribution of data from the data source is not 

constant the domain is said to have a non-stationary 

distribution. In this case, changes of the underlying data 

distribution known as  the concept drift may occur [73], [74], 

[77]. 

Among challenges facing online learning, there is the 

scalability of the learning process which should be ready to 

learn from thousands of training examples. Almost at the 

same time, there is a need to take classification decisions 

considering new data flowing into the system [80]. Another 

challenge is coping with the eventual concept drift and 

dynamic character of the observed data source [71], [72], 

[75], which requires timely and accurate drift detection 

mechanisms. It should be noted that distribution changes 

may occur not only in the feature space but also in class 

space, or simultaneously, in both of these spaces [70]. 

Difficulties should be also expected when the data stream 

used to induce a learner is class imbalanced. 

Many real-world problems involve data which are multi-

label data streams  [49], [95]. The problem of multi-label 

classification is characterized by unique properties as 

compared with other types of classification problems.   A 

special feature of the multi-label data streams is that the set 

of labels is not fixed at the outset and may change during the 

learning. Besides, more than one label may be assigned to 

incoming items during the classification process.  Examples 

of multi-label data streams include data from different sensor 

applications, traffic management, web exploration, 

manufacturing processes, as well as from the social media 

networks, where a photo posted on Facebook or Twitter 

might be labelled continuously and differently by users [49]. 

Another example is the categorization of the incoming mails, 

where each email may be relevant to a thematic label, as well 

as to a label concerning confidentiality. On the other hand, 

such labels may be correlated. Such labels are called 

orthogonal [95]. A review of the multi-label data streams 

learning algorithms can be found in [54], [95]. 

Data used to induce learners may be stored in one central 

repository. Another possibility is physical and geographical 

distribution of the data using, for example, cloud computing 

technologies, so means that the distributed data sources are 

considered [76].  

Data stored in  multiple separated sites may be 

homogenous. In such case each site consists from instances 

defined on the same set of attribute. When we have various 

sets of attributes is different in these separated sites, then these 

stored data are heterogeneous. Although some attributes 

among the sites can be common. Of course these separated 

data sets also may to have distinct structure (format 

differences, semantic differences, etc.) [78], and could have 

been exposed to horizontal and vertical data fragmentation 

[79]. 
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E. PERFORMANCE CRITERIA VIEW 

As it has been shown in Section II, classification problems 

belong to a wide class of optimization problems. A 

performance criterion (performance measure) or a set of 

criteria, cannot be considered as a feature of the particular 

optimization problem since the choice of the criterion is at 

hands of the user who carries out the optimization process. 

Besides, it is usual that a problem can be solved to optimum 

using different performance measures. The above 

observations also hold for the classification problems. 

Nevertheless, there exist a set of criteria that is commonly 

used when solving classification problems using machine 

learning techniques. Among measures belonging to this set, 

one can list classification accuracy, classification error, 

classification cost, sensitivity, specificity, the area under the 

curve, F1 score, precision, recall,  and many others [86]. 

There are, however, classification problems where a 

narrow range of possible performance measures is justified. 

For example, in the case of the imbalanced data classification 

problems, a meaningful set of criteria include, among others, 

Geometric Mean (G), Area Under the Curve (AUC), 

Balanced Accuracy (BACC), and Mathews Correlation 

Coefficient (MCC). Another example of the supervised 

classification problems where specialized performance 

measures are better suited than the standard ones is ordinal 

classification. Cardoso and Sousa [122] discuss the problem 

and propose a specialized criterion for measuring the 

performance of ordinal classification named Ordinal 

Classification Index (OCI). 

The majority of studies on learning from data are focused 

on a single-objective optimization, where the aim is to 

optimize a single performance measure selected by the user 

[82]. The problem of data classification can be also 

formulated and solved as the multi-objective optimization 

case. Solving multi-objective classification problems using 

the machine learning techniques and the supervised learning 

paradigm has been studied, for example, in [81], [83], [84], 

[85], [86]. 

In subsections III.A to III.E we have discussed various 

factors and properties of the supervised classification 

problems that may influence the learning process and could be 

decisive in selecting an effective learning technique or 

algorithm. In Fig. 6, the landscape of factors characterizing 

decision problems and influencing the supervised learning 

processes is shown. 

IV. COMPLEXITY ISSUES 

The complexity of the classification problems can be studied 

in several aspects. One of them takes into account the 

properties of the classifier induced from the available 

training set. If such a classifier, that is the function h  

assigning instances to a predefined set of decision classes, is 

linear and, at the same time, its predictions assure the 

required performance level, then the complexity of the 

classification problem can be considered as a low one.  In 

such a case, finding a  linear  combination of features that 

characterizes or separates two or more classes of objects is 

not a difficult task. If, however, a linear discriminant 

function cannot be found or it does not assure the required 

performance level then one has to look for a non-linear 

function and the problem becomes more complex [97]. 

Though there are so far only a few formal results reported 

in the literature on the complexity of the machine learning 

classification problems, some interesting ideas for the two-

class problems were suggested by Zhao and Wu in [97]. 

According to [97]: “if a two-class problem is not K-degree 

linear separable, then we refer to it as a K-degree linear non-

separable two class problem”, where K is the number of 

hyperplanes needed to discriminate between each pair of 

instances from different classes. Zhao and Wu in [97] further 

state that: “a two-class problem has K-degree classification 

complexity if it is K-degree linear separable but not (K-1) 

degree linear separable”. The proposed concept of the 

classification complexity can be used to design a multi-layer 

perceptron with the minimum required number of layers. 

The classification complexity can be also seen as depending 

on both the feature space and the data size.  Big sets of data 

may cause an excessive demand for computational resources.  

On the other hand, a small training set can appear deceptively 

simple, however, when the cardinality of the set of attributes 

of such training set is high the classification problem may not 

be easy to solve satisfactorily [96].  

Early studies on effects of dimensionality, sample size, and 

structure of classification algorithm on misclassification have 

concentrated on measures like use of probability distance 

measure bounds, entropy measures, interclass distance 

measures, scatter matrices, information-theory-based 

approaches, boundary methods, feature space partitioning 

methods [44], [105]. 

Singh in [96] emphasized that the classification problem 

complexity should be studied considering decision 

boundaries. He proposed two measures of classification 

complexity based on feature space partitioning: purity and 

neighborhood separability and compared them with 

probabilistic distance measures and several other 

nonparametric estimates of classification complexity. 

In [98] the complexity of a discrimination problem has been 

also discussed taking account of the data structure and the 

number of data. The authors show that an incomplete or sparse 

sample (relatively small data set)  adds a level of complexity, 

on the other words it means that when the sample is too small 

the problem may appear only deceptively simple. The small 

data effects are also considered in Vapnik’s VC-dimension 

theory [99]. 

The classification complexity can be also evaluated using 

the computational learning theory (CoLT). It allows 

estimating potentials of learning algorithms for function 

approximation and generalization [100]. The CoLT theory is 

also related to the probably approximately correct (PAC) 

learning. PAC learning provides a way to quantify the 

computational difficulty of a machine learning task [101]. The 

theory is concerned with binary classification, but it remains 

valid for cases with more classes [102].  
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FIGURE. 6.  The landscape of decision problem factors influencing the supervised learning processes. 

 

The problem of classification complexity is still 

considered from several different perspectives. Among them, 

there are these based on estimating the classification problem 

complexity using different measures. These measures focus 

on estimating the shape and size of the decision boundary 

(like, for example in [103]), for binary as well as for 

multiclass classification problems respectively (see, for 

example, [103] and [104]). In [103] different complexity 

measures have been divided into the following categories: 

− Feature-based measures – used for characterizing how 

the available features are informative for class separation. 

− Linearity measures –  used for deciding whether the 

classes can be linearly separated. 

− Neighborhood measures – used for describing the 

presence and density of same or different classes in local 

neighborhoods. 

− Network measures – used for identifying structural 

information in the dataset.   

− Dimensionality measures - for evaluating data sparsity.  

− Class imbalance measures. 

Complexity measures may support various supervised 

machine learning tasks including data preprocessing, design of 

machine learning algorithms, and choice of the classifier, 

adequately to features the available data [103]. 

V. NOTATION FOR IDENTIFICATION OF THE 

SUPERVISED LEARNING CLASSIFICATION PROBLEMS 

Apart from the classification problem complexity, a rational 

choice of preprocessing tasks and, later on, the machine 

learning technique or algorithm, requires identification of all 

relevant features of the problem at hand. To make this task 

easier we suggest using a special notation. The idea is inspired 

by the notation introduced and used in the field of operations 

research for scheduling problems [87]. 

A. COMPONENTS OF THE PROPOSED NOTATION 

To identify a supervised classification problem we propose 

to use the following 4-tuple of fields: 

 |  |  |  , 

where each field is a comma-separated string of symbols. 

The first field, denoted α, represents the category view. It 

consists of 4 subfields describing structure, cardinality, 

scale, and the relation category – features. Symbols within a 

field are separated by a colon. Unknown or undefined values 

are replaced by *.  The first subfield denotes the type of 

structures and may include one of the following symbols: 

- She – hierarchical structure of categories. 

- S* - user-defined structure of categories. 

- Uns – unstructured categories. 

The second subfield denotes the cardinality of categories 

and may include one of the following symbols: 

- Unr – unary classification problem. 

- Bin – binary classification problem. 

- Mlc – multiple class classification problems. 

The third subfield denotes the scale of categories and may 

include one of the following symbols: 

- I/R – interval/ratio scale. 

- Orr – ordinal regular scale. 

- Orm – ordinal monotonic scale. 

- Nor – nominal regular scale. 

- Nod – nominal dichotomous scale. 

The fourth subfield denotes relation category - features 

Single objective  

Multi objectives 

Performance criteria 
view 
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and may include one of the following symbols: 

- Sil – single label problem. 

- Mml – multi-label problem. 

- Mdi – multi-dimensional problem. 

- Mou – multi-output problem. 

- Mtk – multi-task problem. 

- Min – multi-instance problem. 

- M*  - user-defined relation category – features. 

Example: Notation She:Mlc:I/R:Sil|*|*|* refers to a single 

label, multiple class problem with the hierarchical structure 

of categories that can be measured using interval/ratio scale. 

The second field, denoted ,  represents the data view. 

This field contains three subfields. The first subfield 

describes a structure model of data. The second described a 

data distribution and the third data size. The first subfield 

may include the following symbols: 

- Sts – time series structured data. 

- Smv – multi-view structured data 

- Sot – another type of structured data 

- Ssd – semi-structured data. 

- Und – unstructured data. 

The second subfield may include the following symbols: 

- Reg – regular distribution of data. 

- Imb – imbalanced distribution of data.  

The third field may include the following symbols: 

- Rsi – regular data size. 

- Big – big data size. 

Example: Notation She:Mlc:I/R:Sil|Und:Reg:Rsi|*|* refers to a 

single label, multiple class problem with the hierarchical 

structure of categories that can be measured using 

interval/ratio scale. Besides, data are unstructured, with 

regular distribution and regular size. 

The third field of the proposed notation - , represents the 

attribute type and contains two subfields. The first subfield 

describes data type and may consist of the following 

symbols: 

- Noa – nominal attributes.  

- Ora – ordinal attributes. 

- Con – continuous attributes.  

- Dis – discrete attributes. 

- Umu – multidimensional attributes.  

- Sym – symbolic attributes. 

- Spt – spatial attributes. 

- Mix – a mixture of types or unknown attribute types.  

The second subfield describes the features of the data 

source. It may contain one of the following symbols: 

- Cen – centralised data repository or central repository. 

- Ddis – distributed data repository 

- Hom – homogenous data source. 

- Het – heterogenous data source. 

- Hor – horizontal fragmentation. 

- Ver – vertical fragmentation. 

- Inc  – incremental data source. Data arrive in chunks. 

- Stat – static data source. Data are available in batches. 

- Sds – stationary data stream (stationary dynamic, 

stationary online data source). Data arrive one by one. 

- Nds – nonstationary data stream (nonstationary 

dynamic, nonstationary online data source, data with a 

concept drift). Data arrive one by one. 

- Dun – data stream of the unknown character (dynamic, 

online data source of the unknown character). Data 

arrive one by one. 

Example: Notation She:Mlc:I/R:Sil|Und:Reg:Rsi|Con:Hom|* 

refers to a single label, multiple class problem with the 

hierarchical structure of categories that can be measured 

using interval/ratio scale. Besides, data are unstructured, 

with regular distribution and regular size. In addition, data 

are continuous and come from a homogenous data source.  

The fourth field  represents the performance criterion 

and may contain one of the following symbols: 

- Sin – single objective performance criterion. 

- Mop – multiple objective performance criteria. 

Example: Notation She:Mlc:I/R:Sil|Und:Reg:Rsi|Con:Hom|Sin 

refers to a single label, multiple class problem with the 

hierarchical structure of categories that can be measured using 

interval/ratio scale. Besides, data are unstructured, with 

regular distribution and regular size. In addition, data are 

continuous and come from a homogenous data source. The 

problem is to optimize a single objective performance 

criterion. 

B. EXAMPLE CASES 

To illustrate how the proposed notation can be used to 

describe the classification problem, several examples are 

discussed in this subsection. 

Example 1. To implement the machine learning system for 

credit card fraud detection the following arbitrary 

assumptions have been made: 

− The system is expected to decide whether a credit card 

transaction is fraudulent or not. 

− The system will be used by more than one organization. 

− Attributes of transactions are nominal, continuous, 

discrete, and symbolic. 

− On the whole, there will be many more non-fraudulent 

transactions than fraudulent ones.  

− Data sources are distributed. 

− Transactional data from a stationary data stream.  

 

For the considered case the following notation can be 

used: 

She : Bin : I/R : Sil | Sts : Iim | Mix : Ddis : Hom : Sds | Sin 

Example 2. In [95] the problem of multi-label stream 

classification problem was considered. To deal with it a 
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Multiple Windows (MW) approach with a word bag model 

and a single performance criterion was proposed. The authors 

transformed the multi-label problem into multiple binary 

problems and solved each problem independently.  The 

approach was validated using three large real-world multi-

label datasets as shown in Table II. 

TABLE  II 

DATASETS USED IN THE EXPERIMENT REPORTED IN [95] 

Dataset 
Number 

of 

instances 

Number 
of 

attributes 

Number 
of class 

labels 

Type of 

attributes 

Number 

of 
distinct 

label 

sets 

tmc2007 28596 500 22 binary 1172 

imdb 120919 1001 28 binary 4503 

rcv1v2 804414 500 103 numeric 13922 

 

Classification problems solved in [95] can be denoted, 

using the proposed notation, as follows:  

− tmc2007:  

She : Mlc : Mml : I/R | Smv : Iim | Dis : Cen : Hom : Stat | Sin  

 

− imdb:  

She : Mlc : Mml : I/R | Smv : Iim | Dis : Cen : Hom : Stat | Sin 

 

- rcv1v2:  

She : Mlc : Mml : I/R | Smv : Iim | Con : Cen : Hom : Stat | Sin 

Example 3. In [93], the collective intelligence system called 

RealTravel is discussed. The system has been designed to 

work in an environment where:  

− Data are distributed. 

− Data are represented by different types, i.e. they are 

text, numbers, photos, etc., i.e. are semi-structured, 

mixed, and multidimensional. 

− The system generates multi-class recommendations. 

− Evaluation of the recommendation quality is carried-

out based on a multi-objective approach.   

For the above case the notation can be as follows: 

She : Mlc | Uud | Mix : Umu : Ddis | Mop 

 

VI.  THE RESEARCH EFFORT 

To evaluate the research effort spent on the development of 

models and tools designed for solving various types of 

classification problems we show in Fig. 6 the number of 

publications and their h-indexes as provided by Web of 

Science and Scopus. From Fig. 7 it appears that binary 

classification and multi-class classification problems have 

been studied most intensively among all classification 

problems. 

VII. CONCLUSION 

Two main contributions of the paper include:  

− Offering a review of the current research effort in the 

field of supervised learning covering various types of 

classification problems tackled in the relevant 

literature. 

− Proposing an original taxonomy for categorizing main 

dimensions of the supervised learning classification 

problems ordered by a category view, data view, 

attribute view, data source view, and performance 

criteria view.  
− Proposing a simple notation for identification of the 

supervised learning classification problem categories. 
The proposed taxonomy is based on the analysis of factors 

relevant for constructing and solving the supervised learning 

classification problems. The analysis of the machine learning 

publications has enabled compiling the landscape of decision 

problem factors influencing the supervised learning processes. 

The proposed notation offers a concise and coherent way to 

describe various supervised learning classification problem 

types and their critical features. 

FIGURE. 7.  The number of publications and h-index for papers dedicated to different kinds of classification problems as of October 2022. 
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The ultimate goal of both -  the proposed taxonomy and the 

notation, is to provide those interested in supervised learning 

with a simple way to identify main factors that have to be 

considered when looking for a method and a tool for solving 

the particular supervised classification problem. The proposed 

notation is open and can be further extended taking into 

account new methods and techniques. It could be also a 

starting point for constructing a decision support system or 

recommender able to help a layman in the machine learning 

field to select the proper method or tool for solving his 

problems. Constructing such a system will be the focus of 

future research. 
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