
Fundamental Challenges in
Software Testing

Cem Kaner
Florida Tech
Colloquium Presentation at Butler University, April 2003

This research was partially supported by NSF Grant EIA-0113539 ITR/SY+PE: "Improving the
Education of Software Testers." Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation (NSF).

What’s So Special About Testing?
Wide array of issues: technical, psychological, project
management, marketing, application domain.
The rubber meets the road here

Toward the end of the project, there is little slack left.
Decisions have impact now. The difficult decisions must
be faced and made.
Testing plays a make-or-break role on the project.

An effective test manager and senior testers can
facilitate the release of a high-quality product.
Less skilled testing staff create more discord than their
technical contributions (such as they are) are worth.

Four Fundamental Challenges to Competent Testing

Complete testing is impossible
Testers misallocate resources because they fall for the
company’s process myths
Test groups operate under multiple missions, often
conflicting, rarely articulated
Test groups often lack skilled programmers, and a vision of
appropriate projects that would keep programming testers
challenged

1. Complete Testing is Impossible
There are enormous numbers of possible tests. To test
everything, you would have to:

Test every possible input to every variable.
Test every possible combination of inputs to every
combination of variables.
Test every possible sequence through the program.
Test every hardware / software configuration, including
configurations of servers not under your control.
Test every way in which the user might try to use the
program.

1. Complete Testing is Impossible

The Problem of Coverage
One approach to the problem has been to (attempt to) simplify it
away, by saying that you achieve “complete testing” if you achieve
“complete coverage”.
What is coverage?

Extent of testing of certain attributes or pieces of the program,
such as statement coverage or branch coverage or condition
coverage.
Extent of testing completed, compared to a
population of possible tests.

Typical definitions are oversimplified. They miss, for example,
Interrupts and other parallel operations
Interesting data values and data combinations
Missing code

In practice, the number of variables we might measure is stunning.
I listed 101 examples in Software Negligence & Testing Coverage.

1. Complete Testing is Impossible

Measuring and Achieving High Coverage

Coverage measurement is an interesting way to tell that
you are far away from complete testing, but testing in
order to achieve a “high” coverage is likely to result in
development of a mass of low-power tests.

People optimize what we measure them against, at
the expense of what we don’t measure.
Brian Marick, raises this and several other issues in
his papers at www.testing.com (e.g. How to Misuse
Code Coverage). Brian has been involved in
development of several of the commercial coverage
tools.

1. Complete Testing is Impossible

Can Bug Curves Tell Us When We’re Done ?

Another way people measure completeness, or extent, of
testing is by plotting bug curves, such as

New bugs found per week
Bugs still open (each week)
Ratio of bugs found to bugs fixed (per week)

We fit the curve to a theoretical curve, often a probability
distribution, and read our position from the curve. At some
point, it is “clear” from the curve that we’re done.

1. Complete Testing is Impossible

The Bug Curve

What Is This Curve?

Week

B
ug

s
Pe

r W
ee

k

1. Complete Testing is Impossible

A Common Model (Weibull) and its Assumptions

1. Testing occurs in a way that is similar to the way the software
will be operated.

2. All defects are equally likely to be encountered.
3. All defects are independent.
4. There is a fixed, finite number of defects in the software at the

start of testing.
5. The time to arrival of a defect follows the Weibull

distribution.
6. The number of defects detected in a testing interval is

independent of the number detected in other testing intervals
for any finite collection of intervals.

1. Complete Testing is Impossible

The Weibull Distribution
I think it is absurd to rely on a distributional model when every
assumption it makes about testing is obviously false.
One of the advocates of this approach points out that

“Luckily, the Weibull is robust to most violations.”
This illustrates the use of surrogate measures—we don’t
have an attribute description or model for the attribute we
really want to measure, so we use something else, that is
allegedly “robust”, in its place. This can be very dangerous
The Weibull distribution has a shape parameter that allows it
to take a very wide range of shapes. If you have a curve that
generally rises then falls (one mode), you can approximate it
with a Weibull.

BUT WHAT DOES THAT TELL US? HOW SHOULD WE
INTERPRET IT?

1. Complete Testing is Impossible

Side Effects of Bug Curves

Earlier in testing: (Pressure is to increase bug counts)
Run tests of features known to be broken or incomplete.
Run multiple related tests to find multiple related bugs.
Look for easy bugs in high quantities rather than hard bugs.
Less emphasis on infrastructure, automation architecture, tools and
more emphasis of bug finding. (Short term payoff but long term
inefficiency.)

For more on measurement dysfunction, read Bob Austin’s book,
Measurement and Management of Performance in Organizations.

1. Complete Testing is Impossible

Side Effects of Bug Curves

Later in testing: Pressure is to decrease new bug rate
Run lots of already-run regression tests
Don’t look as hard for new bugs.
Shift focus to appraisal, status reporting.
Classify unrelated bugs as duplicates
Class related bugs as duplicates (and closed), hiding key data about the
symptoms / causes of the problem.
Postpone bug reporting until after the measurement checkpoint
(milestone). (Some bugs are lost.)
Report bugs informally, keeping them out of the tracking system
Testers get sent to the movies before measurement checkpoints.
Programmers ignore bugs they find until testers report them.
Bugs are taken personally.
More bugs are rejected.

1. Complete Testing is Impossible

Bad Models are Counterproductive

Shouldn't We Strive For This ?

Week

B
ug

s
Pe

r W
ee

k

1. Complete Testing is Impossible

Testers Live and Breathe Tradeoffs

When you get past the simplistic answers, you realize that
The time needed for test-related tasks is infinitely larger
than the time available.

Example: Time you spend on
- analyzing, troubleshooting, and effectively describing a failure

Is time no longer available for
- Designing tests - Documenting tests
- Executing tests - Automating tests
- Reviews, inspections - Supporting tech support
- Retooling - Training other staff

1. Complete Testing is Impossible

Testers Live and Breathe Tradeoffs
Some

standards,
texts
luminaries

make absolute statements. You must always do task X, or if you do task Y, it
must always contain these components.

These inspire guilt, but they don’t provide useful guidance.

Example: IEEE Standard 829 for software test documentation seems to be
liked in medical or aerospace-related companies, but it has probably done
more harm than good in most commercial situations.

There are too many important tasks for testers to do. We have to mature our
judgment in order to decide which of these not to do or to do only lightly.

Read Drucker’s, The Effective Executive.

1. Complete Testing is Impossible

Even More Tradeoffs
From an infinitely large population of tests, we can only run a few. Which
few do we select?
Competing characteristics of good tests. One test is better than another if it is:

More powerful
More likely to yield significant (more motivating, more persuasive)
results
More credible
Representative of events more likely to be encountered by the user
Easier to evaluate.
More useful for troubleshooting
More informative
More appropriately complex
More likely to help the tester or the programmer develop insight into
some aspect of the product, the customer, or the environment

No test satisfies all of these characteristics. How do we balance them?

Four Fundamental Challenges to Competent Testing

Complete testing is impossible
There is no simple answer for this.
Therefore testers live and breathe tradeoffs.

Testers misallocate resources because they
fall for the company’s process myths
Test groups operate under multiple missions, often
conflicting, rarely articulated
Test groups often lack skilled programmers, and a vision of
appropriate projects that would keep programming testers
challenged

2. Process myths

You Can Trust Me on This
We follow the waterfall lifecycle
We collect all of the product requirements at the start of the project, and we
can rely on the requirements document throughout the project.
We write thorough, correct specifications and keep them up to date.
The customer will accept a program whose behavior exactly matches the
specification.
We fix every bug of severity (or priority) level X and we never lower the
severity level to avoid having to fix the bug.

Amazingly, many testers believe statements like this,
Project after Project, and rely on them, Project after
Project.

2. Process myths

Effects of Relying on Process Myths

Testers design their tests from the specs / requirements, long
before they get the code. After all, we know what the
program will be like.
Testers evaluate program capability in terms of conformance
to the written requirements, suspending their own judgment.
After all, we know what the customer wants.
Testers evaluate program correctness only in terms of
conformance to specification, suspending their own judgment.
After all, this is what the customer wants.
Testers build extensive, fragile, GUI-level regression test
suites. After all, the UI is fully specified. We know it’s not
going to change.

3. Multiple Missions

Multiple Missions, Rarely Articulated
Find defects
Block premature product releases
Help managers make ship / no-ship decisions
Minimize technical support costs
Assess conformance to specification
Conform to regulations
Minimize safety-related lawsuit risk
Find safe scenarios for use of the product
Assess quality
Verify correctness of the product
Assure quality
Do you know what your group’s mission is? Does everyone in your
company agree?

3. Multiple Missions

One Example: The Agency Problem

Products are designed and built by and for multiple
stakeholders

They have conflicting interests, needs and preferences
The requirements analyst and programming team seek to
resolve the differences among the stakeholders
<<Implicit Mission>> Testers identify issues that
will dissatisfy individual stakeholders.
We advocate for bug fixes by appealing to specific
stakeholders who will be more affected by the problems.
We often surface and reinforce the differences among
stakeholders.

Why would we do this?

Four Fundamental Challenges to Competent Testing

Complete testing is impossible
There is no simple answer for this. Therefore testers live and breathe
tradeoffs.

Testers misallocate resources because they fall for the company’s process
myths.

Testers have to rely on their wits, not on someone else’s compliance
with an (alleged but unrealistic) process.

Test groups operate under multiple missions, often conflicting, rarely
articulated.

We pick our tests to conform to our testing mission.
Test groups often lack skilled programmers, and a
vision of appropriate projects that would keep
programming testers challenged.

4. Weak Programmers

Causes

The optimal test group has diversity of skills and knowledge
(see next slide). This is easily misunderstood:

Weakness in programming skill is seen as weakness in
testing skill (and vice-versa).
Strength in programming is seen as assuring strength in
testing.

Many common testing practices do not require programming
knowledge or skill.
People who want to be in Product Development but who
can’t code have nowhere else to go.
People who are skilled programmers are afraid of dead-
ending in a test group.

4. Weak Programmers

Causes—Breadth of Needed Skills & Knowledge
To name a few,

Testing techniques
Strong communications
Application level programming
System level programming
Various types of devices (e.g. for printers, knowledge of market
shares, diagnostics, drivers, configuration, risks for each device, etc.)
All aspects of the software under test
Mathematics, especially combinatorics and probability theory.
Project management
Project accounting
Failure analysis
Products liability and contract liability laws, etc.

You can’t find a person with all these skills and areas of knowledge.
The trick is to build a group of specialists who cross-train each other.

4. Weak Programmers

Causes—Different Styles of Black Box Testing
Function testing
Domain testing
Specification-based testing
Risk-based testing
Stress testing
Regression testing
User testing
Scenario testing
State-model based testing
High volume automated testing
Exploratory testing

Few of these require programming skill and none requires knowledge of
internals of the program.

4. Weak Programmers

Effects: Overbalance of Process vs. Technical Analysis

What’s wrong with process?
Controversy in the definition of the undergrad software
engineering degree.
IEEE/ACM SEEK committee seems determined to push
multiple courses on software process and software
management into the undergraduate curriculum.

Academics see undergraduate projects, in which students
arrogantly dispense with all process and produce
mediocre work, slowly.
We’ve all seen (personally or in the books) large projects
fail because of obvious process failures.

Maybe we need more attention to process?

4. Weak Programmers

Effects: Overbalance of Process vs. Technical Analysis

It Looks Different when You Look at Many Test Groups.
People who have never been, and never will become, project
managers constantly push processes that “They” (project mgr
and development staff) should follow.
Process advocates push reliance on standards that might work
well for large military projects but are absurd for many
commercial projects. Testing templates based on IEEE 829
are particularly common and particularly wasteful.
Process advocates spend enormous amount of time lobbying
on process / political issues, getting little technical work done
and often negatively impacting morale.

4. Weak Programmers

Effects: Overbalance of Process vs. Technical Analysis

Do you read Dilbert?
We need more technically sophisticated, smarter Ratberts
Not more process improvement specialists who can’t test
their way out of a loop but who always know how “They”
could do it better.

4. Weak Programmers

Effects: Overbalance of Process vs. Technical Analysis

To Avoid Misunderstanding
I agree that good processes are important.

Testers should improve the effectiveness of testing
processes.

I agree that there are skilled process consultants, and that
these folks can add value to the business.

Testers have no special charter to serve as general
process consultants.

4. Weak Programmers

Effects: The GUI Regression Testing Paradigm

This is the most commonly discussed automation approach:
create a test case
run it and inspect the output
if the program fails, report a bug and try again later
if the program passes the test, save the resulting outputs
in future tests, run the program and compare the output to the
saved results. Report an exception whenever the current
output and the saved output don’t match.

4. Weak Programmers

Effects: Is this Really Automation?
Analyze product -- human
Design test -- human
Run test 1st time -- human
Evaluate results -- human
Report 1st bug -- human
Save code -- human
Save result -- human
Document test -- human
Re-run the test -- MACHINE
Evaluate result -- machine plus

human if there’s
any mismatch

Maintain result -- human

Woo-hoo! We
really get the
machine to do a
whole lot of our
work!
(Maybe, but not
this way.)

4. Weak Programmers

Effects: Is GUI Automation Cost Effective?
Test case creation is expensive. Estimates run from 3-5 times the
time to create and manually execute a test case (Bender) to 3-10
times (Kaner) to 10 times (Pettichord) or higher (LAWST).
You usually have to increase the testing staff in order to generate
automated tests. Otherwise, how will you achieve the same breadth
of testing?
Your most technically skilled staff are tied up in automation.
Automation can delay testing, adding even more cost (albeit hidden
cost.)
Excessive reliance leads to the 20 questions problem. (Fully
defining a test suite in advance, before you know the program’s
weaknesses, is like playing 20 questions where you have to ask all
the questions before you get your first answer.)

4. Weak Programmers

Effects: GUI Automation Pays off Late
Regression testing has low power.

Run the test, program passes it. What is the probability that the
program will fail later in this release?

Variable results (source control problems, source availability
problems, fragile code, etc.) but the LAWST estimates were that
about 12-15% of the bugs found across a wide range of projects
were found with GUI regression tests.
This percentage is far less than the cost of creating and
maintaining the tests.

Rerunning old tests that the program has passed is less powerful than
running new tests.

Our main payback is usually in the next release, not this
one.
Maintainability is, therefore, a core issue.

For more, see Kaner, Avoiding Shelfware: A Manager's View of Automated GUI Testing

4. Weak Programmers

Effects: Test Automation is Programming
Win NT 4 had 6 million lines of code, and 12 million lines of test code
Common (and often vendor-recommended) design and programming practices
for automated testing are appalling:

Embedded constants
No modularity
No source control
No documentation
No requirements analysis

No wonder we fail.
And no wonder no self-respecting programmer wants to join a test group
to write this kind of code.

4. Weak Programmers

Effects: Intellectual Stagnation
British Computer Society Information Systems Examinations Board,
Practitioner Certificate in Software Testing, Guidelines and Syllabus,
September 2001.
http://www1.bcs.org.uk/DocsRepository/00900/913/docs/practsyll.pdf
This is one of the more reputable certification exams for software testers.

“The following are the pre-requisites for test execution: Test procedure
and/or test script.”
Test execution “is a comparison of actual and expected outcomes, and
[that] the expected outcome must be generated prior to test execution”
“Every test case is logged in the test record for the purpose of auditing
the testing, and recording test coverage measures for subsequent
checking against test completion criteria.”

Most of this document could have been written in 1980, and I would have
considered much of it outdated or inapplicable back in 1984, when I started
writing Testing Computer Software.

New Directions: XP-inspired Collaboration
New collaboration model to support better development and maintenance:

junit, cppunit, testunit, etc. -- www.junit.org
FIT – http://fit.c2.com
Many other tools, see Pettichord’s Homebrew Test Automation
www.io.com/~wazmo/papers/home_brew_test_automation_2003031
2.pdf

Open source automation tools, including regression automation at the unit
level and the API level

Failures immediately visible to the programmer
Many side-effects have immediately visible effect
Tests are unperturbed by change at the UI level and by many other
changes in functionality

Test-driven development

New Directions: High Volume Test Automation
Massive number of thematically related tests

Human designs the overall test strategy (and writes the appropriate
code), but then the computer designs, executes and evaluates the tests,
calling for human intervention only when needed.

Examples
Exhaustive or large sample random testing against partial and
heuristic oracles
State-model based testing
Simulator-based testing using probes
Random sequences of pre-passed tests

See Kaner, Architectures of Test Automation,
http://www.kaner.com/testarch.html

New Directions: Higher Skill Manual Testing

Exploratory Testing
Testing is an active learning effort (simultaneous test
design, learning, and test execution).
We’re studying the cognitive psychology of the brain-
engaged tester (see James Bach’s methodology papers at
www.satisfice.com; look for additional papers by Andy
Tinkham, a doctoral student in my lab).

