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DIFFUSION BY CONTINUOUS MOVEMENTS

By G. I. TAYLOR.

[Received May 22nd, 1920.—Read June 10th, 1920.]

Introduction.

It has been shown by the author,* and others, that turbulent motion
is capable of diffusing heat and other diffusible properties through the
interior of a fluid in much the same way that molecular agitation gives
rise to molecular diffusion. In the case of molecular diffusion the rela-
tionship between the rate of diffusion and the molecular constants is
known ; a large part of the Kinetic Theory of Gases is devoted to this
question. On the other hand, nothing appears to be known regarding the
relationship between the constants which might be used to determine any
particular type of turbulent motion and its " diffusing power."

The propositions set down in the following pages are the result of
efforts to solve this problem.

In order to simplify matters as much as possible the transmission of
heat in one direction only, that of the axis of x, will be considered. We
shall take the case of an incompressible fluid whose temperature 6, at
time t = 0, depends only ou x, and increases or decreases uniformly with
x. Initially therefore dd/dx is constant and equal to fi, say.

Now suppose that the fluid is moving in turbulent motion, so that
the distribution of temperature is continually altering. Suppose that the
turbulent motion could be defined by means of the Lagrangian equations
of fluid motion, so that the coordinates (x, y, z) of a particle are given in
terms of its initial coordinates {a, b, c) at the time t = 0, and of t.

Since the temperature of any particle is supposed to remain constant
during the motion, the temperature at the point {x, y, z) at time t, which
will be represented by the symbol 6 (x, y, z) is 6 {a, 0), which represents
the temperature at x = a at time t = 0.

* " Eddy Motion in the Atmosphere," Phil. Trans., 1915, p. 1.
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Since the rate of increase in temperature with x is constant when
t ~ °' d(a, 0) = 0(s, 0)-{x-a)/3.

The'average rate at which heat is being conveyed across unit area of a
plane perpendicular to the axis of x is evidently equal to —p<r(3 multiplied
by the average value of u(x — a) over a large area of a plane perpendicular
to the axis of x. In these expressions u represents the velocity of a
particle of fluid in the direction of the axis of x, p is the density, and <r
the specific heat, so that pa- is the heat capacity of unit volume of the
fluid.

No doubt the average value of u(x—a), which must be obtained from
considerations of the particular nature of the turbulent motion in question,
depends on the mean motion of the fluid ; but if experimental data exist,
as in fact they do, which enable its value to be calculated, it is of interest
to enquire what types of turbulent motion are capable of producing the
observed distribution of temperature.

In order to simplify matters still further it will be assumed that the
turbulent motion is uniformly distributed throughout space. The mean
value of u{x—a) will then be the same for every layer and will be equal
to the mean value throughout space. This quantity will be expressed by
the symbol [_u{x—a)].

Owing to the fact that the fluid is incompressible [u(x — a)~\ could be
calculated either by taking a rectangular element SxSySz, at time t, finding
the corresponding value of u(x~a) and integrating throughout space ; or
by taking an element SaSbSc at time £ = 0, finding the corresponding
value of u(x—a) at time t, and integrating. The second method will be
adopted.

Fixing our attention on a particle of fluid, it will be noticed that

dx
u = yrr and x

t
—a = udt.

Jo

Hence, writing X for x—a,

In this ideally simplified system therefore the rate at which heat is
transferred in the direction of the axis of x is determined by the rate of
increase of the mean value of the square of the distance, parallel to the
axis of x, which is moved through by a particle of fluid in time t.

If a physicist were to try to define the characteristic features of any
particular case of turbulent motion, with a view to discussing statistically
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its effect as a conductor of heat, he would probably first fix his attention
on the mean energy of the motion. That is to say, he would determine

He would then perhaps notice that it is not sufficient to determine
[wa]. With a given value of [v?~\ it is possible for the turbulent motion to
be associated with a small or a large transfer of heat, according to whether
a particle frequently, or infrequently, reverses its direction of motion. It
would therefore be necessary to define some characteristic of the motion
which differentiates between the cases in which the changes in the velocity
of a particle are rapid, and those in which they are slow. A suitable

characteristic to choose would be ("371 •

Further investigation would show that it is necessary also to define

im ••••
The relationship between

[(I)2]
is discussed in the following pages. The problem is in some respects
similar to that known as "'The drunkard's walk," or to Karl Pearson's*
problem of the random migration of insects, when the motion is limited
to one dimension; but in the course of the investigation some curious
propositions have come to light concerning the mean values of continuously
varying quantities which may perhaps be of interest to mathematicians,
as well as to physicists.

In the course of the work no discussion of the convergency of the
series used is attempted. The work must therefore be regarded as incom-
plete. The author feels that such questions might be examined with ad-
vantage by a pure mathematician, and it is in the hope of interesting one
of them that he wishes to offer this paper to the London Mathematical
Society.

Discontinuous Motion.

Before proceeding to consider the continuous version of the problem
of random migration ia one dimension, the discontinuous case will be

* Drapers' Company Memoirs.
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extended slightly, so as to make it bear some resemblance to the con-
tinuous case.

Suppose that a point starts moving with uniform velocity v along a
line, and that after a time T it suddenly makes a fresh start and either
continues moving forward with velocity v or reverses its direction and
moves back over the same path with the same velocity v. Suppose that
this process is repeated n times and that we consider the mean values of
the quantity concerned for a very large number of such paths.

Let xr be the distance moved over in the r-th interval. Then xr is
numerically equal to in-, but its sign may be either positive or negative
and each occurs an equal number of times in considering the average. If
Xn is the standard deviation or " root mean square " of the distance
moved by the point from the original position after time nr, then

where the square bracket indicates that the mean value is taken for all
the paths.

Hence ZJ = nd?-\-2[x1x2-)-x1xs-j-...-\-xrXs-\-...], (1)

where d = vr.

If there is no correlation between any two sc's,

[xrXs~] — 0 .

Hence X?n = n$, or Xn = d\/n = v

where Tn is the total time during which the migration has been taking
place. It will be seen therefore that Xn is proportional to *JTn.

Actually in a turbulent fluid or in any continuous motion there is
necessarily a correlation between the movement in any one short interval
of time and the next. This correlation will evidently increase as the in-
terval of time diminishes, till, when the time is short compared with the
time during which a finite change in velocity takes place, the coefficient of
correlation tends to the limiting value unity.

This idea will now be introduced into equation (1).
To begin with let us make the arbitrary assumption that xr is corre-

lated with xr+i by a correlation coefficient c. Suppose also that the
partial correlations of xr with xr+i, xr+s, ... are all zero. The correlation
coefficient between xr and xr+2 is then c2. Between xr and xr+s it is cs.

The value of Z\xxx<i+x1x<i-\-...+xrx8-)r...'] is then
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The series in the { | bracket is easily summed. Substituting its value
in (1) it will be found that

or, putting n = TJr, and d = VT,

By reducing r indefinitely we can evidently make the case approximate to
some sort of continuous migration, but in order that Xn, v and Tn may be
finite and tend to a definite limit as T is decreased, it is necessary that
/l-f-c\ 2c2(l ca)r2

[z ) T and — - rs— must also tend to a definite limit. That is to
\1—cj (1—cr
say, 1—c must be proportional to T.

Let _ tend to the limit A when r and 1—c tend to zero.
1—c

Then X^ tends to the limiting value

v*{2ATn-2A*(l-e-

or, dropping the suffixes which are no longer necessary,
V[X2] = v^/{2AT-2A2a-e-TlA)\, (3)

where X is the distance traversed by a particle during a flight extending
over an interval of time T, and the " root mean square " is taken for a
large number of such flights.

When T is small this reduces to VC-X2] — VT, which is exactly what
we should expect when the time is so short that the correlation coefficient
cn, between the first and last small element of migration has not fallen
appreciably away from unity.

When T is large VL-^2] = v^/(2AT), so that the amount of "diffusion"
is proportional to the square root of the time. The constant A evidently
measures the rate at which the correlation coefficient between the direction
of an infinitesimal path in the migration and that of an infinitesimal path
at a time T, say, later, falls off with increasing values of T.

We have now seen how it is possible by introducing the idea of a
correlation between the directions of the successive jumps in a random
migration, to keep the standard deviation of the distance of migration
constant, no matter how small the infinitesimal paths of the migration
may be.

The migration is still a discontinuous one however. It suffers also
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from the disadvantage of depending on a special assumption, namely, that
there is a definite correlation between the direction of motion in one in-
finitesimal element of path, and that in its immediate neighbours, but
that there 13 no partial correlation between the directions of motion in
paths which are not neighbours. This means that there is a special law
of correlation between the directions of the paths at finite intervals of
time. The correlation coefficient between the direction of an infinitesimal
path and that of the' path which occurs at a time T = HT later, is evi-
dently cn. This may be written

When r is small this tends to the limit e~TIA. (4)

We are therefore limiting ourselves to the particular type of motion
in which the direction of an infinitesimal path is correlated to that at
time T later by the correlation coefficient* e~TI/

Diffusion by continuous Movements.

The work just described, though not particularly useful for our present
purpose, is useful in that it gives rise to ideas about how problems of
migration or diffusion by continuous movements may be treated. In what
follows these ideas are worked out and the conditions of motion which
determine the laws of diffusion are found.

Before proceeding to discuss diffusion, however, it will be necessary to
prove a few statistical properties of continuously varying quantities.

Suppose that we wish to express the characteristic properties of the
variations of some quantity which varies continuously, but which appears
to have no very definite law of variation. Suppose, for instance, it is
desired to define the characteristic features of a barograph record. There
are no obvious periods, nor is there any definite constant amplitude of
variation in barometric pressure, yet there are certain properties of the
curve which can be defined. If we take the standard deviation of pressure
from its mean value during a year, it will be found to be practically con-
stant from year to year. If p represents the deviation from the mean
pressure, this standard deviation is *J [p2], where the square bracket now
indicates that the mean value of p2 has been taken over a long period of

* Incidentally it will be noticed that the correlation between the direction of motion at
one instant and that at time t earlier is also e~TIA. It is obvious that we cannot consider the
value of the expression e~T'A when T is negative.
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time. One property of the curve which we can define, therefore, is the
constancy of VC?*2] during successive long periods.

The statistical properties of the barograph curve are by no means,
completely determined by this. It is possible to imagine an infinite
variety of barograph curves with a given standard deviation of p. They
might, for instance, have a large number of peaks in the curve during a
given interval of time or a small number. In the former case the
standard deviation of dp\dt might be expected to be" larger than in the
latter. We can, therefore, define the curve still further by specifying
the standard deviations of dp/dt.

It appears that, from a given barograph curve, it is theoretically
possible to find the standard deviations of p, dpjdt, cPp/dt2,..., dnp/dt11, . . . .
Let us assume that all these are constant from year to year.

Now suppose that we begin by specifying certain arbitrary standard
deviations for p, dp/dt, &c, and that we try to construct a possible baro-
graph curve from them. We are at once brought up against a difficulty.
Suppose that we have specified a large number for the standard deviation
of dpjdt, i.e. ^{[dpjdtf] and small numbers for <s/[p2] and */[(d?p!dt2f].
It is evident that if we begin constructing the curve with a large value of
dpjdt at a point where p = 0, the fact that the value of */[(d*pldt2)'\ is
small means that it will be a long time before dpjdt changes sign. Hence
it will be a long time before p attains its maximum value, and during that
time p must have attained a large value. Hence, if the standard deviation
of dp\dt is large and that of d2p/dt2 is small, the standard deviation of p
must be large. It is evident therefore that there must be some relation-
ships between the staudard deviations and the curve of which we have not
yet taken account. We shall now see what these are.

Suppose that we observe the values plt p2, ps, ...,pn of p at a large
number of successive times tlt t2, t3, ..., tn. Suppose further that we
observe the values Pi~\-Sp1} p^+Sp^, p3-\-Sp3, •-, pn-\-Spn, at t imes
ix-\-8t, t.2-\-St, ts-\-St, ..., tn+St, where St is a small interval of t ime.
Then, if tv t^, ..., tn are taken at random

and since we are considering a curve in which [j>2] is constant, [j?2] is
also, to the first order, equal to
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It appears, therefore, that we can differentiate the quantities inside
square brackets which indicate a mean value.

Hence the condition that [p2] shall be a constant is

(5)

There is, therefore, no correlation between p and dp/dt.
Now differentiate (5) once more,

(6)

Hence by the definition of a correlation coefficient, there is a negative
correlation between p and cPpjdt2 equal to

v = — (7)

A consequence of the existence of this correlation coefficient v is evidently
that \_{dpjdtf\ cannot be greater than VLp2] V[(<W<W1 a statement
which agrees with the remarks above.

The way in which the correlation coefficient affects the characteristic-
features of the p, t curve is easily seen. Suppose it is large, i.e. nearly
equal to — 1; then the curve will look something like curve (a), Fig. 1.

(a)

/t

(b)

PIG. 1.

Suppose the correlation coefficient between p and cPp/dt2 is small, but
that the standard deviations of dp/dt and d?p/dt2 are the same as in curve
(a), Fig. 1, then the slopes and curvatures will be of the same magnitude
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as in curve (a), but the curvature will not always be concave to the mean
line. This is shown in curve (b), Fig. 1.

It is evident that the standard deviation of p is greater in (b) than it
is in (a). This is expressed by the formula (7), for if the standard devia-
tions of dp/dt and cfip/dt2 are fixed, then the standard deviation of p is,
according to (7), inversely proportional to v.

Since the standard deviation of dp/dt has also been given as constant
it can be treated exactly in the same way as the standard deviation of p,
thus differentiating [idpjdtf\ we have

IIdt

and differentiating this again

But differentiating (6) again

Hence, from (8), [jp ^ 1 = 0. (10)

Differentiating (10), [>^ ]+[ f g ] = 0.g]
Hence, from (9), [Pg]-[(^)2] = 0.

Proceeding in this way it can be shown that

and

The correlations to which p and its differential coefficients must be
subject in order that their standard deviations may be constant, have now
been established. We can, therefore, now use these standard deviations
to define some statistical properties of the curve.

In analysing any actual curve, it may be very difficult and tedious to
obtain these standard deviations. There is, however, another method of
defining the statistical properties of the curve which is equivalent to that
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given above, but which is likely to be much more manageable in practice.
This method will now be considered.

Supppse that we ta'ke, as before, the values plfp2, p& '-.,pn, oip at a
large number of times tv t2, t3,..., tn, chosen at random. Let us correlate
them with the values p[, p'z, ..., -p'n, of p at times ^-hf, t%-\-$, ..., tn-\-gr

where £ is a finite interval of time which may be positive or negative.
Let the coefficient of correlation so found be B$. Then B^ must evidently
be a function of (•.

If pt be the value of p at time t, and pt+s be the value of p at time
t-\~i, then by definition

but by hypothesis the standard deviation of p does not vary, hence

Wl = [/] = [PIA

and Re = [p

Now expand pt+$ in powers of g,

Hence

r dnv~\
Substituting for P~J£ ^om (11), (13) becomes

Hence, from (12),

e[(ft) J

It will be seen that, as might have been expected, R$ is an even function
off.

As an example of the method let us take the case where it is known
that p = sin (2+e), where e may take all possible values, all of which are
equally probable. In this case



206 G. I. TAYLOR [June 10,

(14) therefore becomes

* ~ ~vJ Ti) T^ Ji) * *' •
*• • \ 2 / " V2 /

This is the series for cos g. Hence R$ = cos g. The correlation between
the value of p at any time and its value when t is increased by any odd
multiple of $ir is 0. This is obviously true since there is no correlation
between sin(£+e) and sin {H-e+(2w+l)($w)( as e varies.

The correlations between p and its differential coefficients given in
(11) are evidently also true.

Application to Diffusion by continuous Movements.

The theorems which have just been proved will now be used to find
out what are the essential properties of the motion of a turbulent fluid
which makes it capable of diffusing through the fluid properties such as
temperature, smoke content, colouring matter or other properties which
adhere to each particle of the fluid during its motion.

Consider a condition in which the turbulence in a fluid is uniformly
distributed so that the average conditions of every point in the fluid are
the same. Let u be the velocity parallel to a fixed direction, which we
will call the axis of x, of the particle on which our attention is fixed. It
will now be shown that the statistical properties which were defined above
(now in relation to u instead of p) are sufficient to determine the law of
diffusion, i.e. the law which governs the average distribution of particles
initially concentrated at one point, at any subsequent time.

Suppose that the statistical properties of u are known in the form
given above, that is to say, suppose that [u*] and R$ are known. R$ is
now the correlation coefficient between the value of u for a particle at any
instant, and the value of u for the same particle after an interval of
time g.

Let ut represent the value of u at time t. Consider the value of the
definite integral

By the definition of R$ this is equal to
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Hence, since [iiF\ does not vary with t, and R$ is an even function of £,

(15)

Evidently one can integrate inside the square bracket just as one can
differentiate. Hence

= bkX],

or, in the notation of the introduction, [uX\.

Hence [u*][ Rtd£ = [uX] (16)
Jo

[X2] = 2 |>2] f f
Jo Jo

and [X2] = 2 |>2] f f i2f df <W, (18)
J J

where X is the distance traversed by a particle in time T.
Equation (18) is rather remarkable because it reduces the problem of

•diffusion, in a simplified type of turbulent motion, to the consideration of
a single quantity, namely, the correlation coefficient between the velocity
of a particle at one instant and that at a time £ later.

Let us now consider the physical meaning of (18), when T is so
small that R( does not differ appreciably from 1 during the interval T.
In this case

f \tRid£dt =
Jo Jo

so that (18) becomes [X2] = |>2] T2,

or

That is to say, the standard deviation of a particle from its initial position
is proportional to T when T is small. This is what we should expect pro-
vided the time T is so small that the velocity does not alter appreciably
while the particle is moving over the path.

Now consider how one would anticipate that R$ would vary with £ in
a turbulent fluid. The most natural assumption seems to be that R$
would fall to zero for large values of £. It might remain positive as in
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the curve shown in Fig. 2, or it might become negative or oscillate before

FIG. 2.

falling off to zero. In either case it seems probable that it will be possible
to define an interval of time Tl5 such that the velocity of the particle at
the end of the interval Tx has no correlation with the velocity at the

beginning. In this case suppose that lim Btdg is finite and equal
«->oo Jo

to I. Then at time T ( > Tx) after the beginning of the motion

£[*] = 8M7,

so that [X2] increases at a uniform rate. In the limit when [X2] is large

V L - ^ J = V'(2-^21 \_u J), (20)

so that the standard deviation of X is proportional to the square root of
the time.

This, therefore, is a property which a continuous eddying motion may
be expected to have which is exactly analogous to the properties of dis-
continuous random migration in one dimension.

It will be noticed that when T > Tlt

Hence [Xu] is constant in spite of the fact that [X2] continually in-
creases. In order that this may be the case X must always be positively
correlated with u, but the correlation coefficient must decrease with in-
creasing [X2]. If uxn represents the correlation coefficient between X and it

.. _ M _

and in the limit when T -> oo

V2Z"
(22)
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It is interesting to compare the expression (18) for [X2] with the ex-
pression given in (3) for the standard deviation of X in the special case
of discontinuous motion considered thare.

In that case R$ was shown in (4) to he e~^A In the continuous case
if we write B^ = e~^IA, (21) becomes

[Xs] = 2IVH [ [ e-t'Adidt
Jo Jo

A(l-e-llA)dt

= 2[>2] [AT-A\l-e-TlA)\. (23)

In the discontinuous case it was shown in (3) that

= v</{2AT-2A\l-e-TlA)\.

It is evident that this is exactly the same as (23) except that \/Cw2] n a s

been substituted for the constant v which occurred in the discontinuous
case.

If as a result of experiments on diffusion, it were possible to obtain a
curve representing [X2] as a function of T, it would be possible to use
(18) as a means of discovering something about the nature of the turbu-
lence, for (18) could be written

and R{ could therefore be found.
In a recent communication to the Royal Society,* Mr. L. F. Richardson

has described some experiments on the diffusion of smoke emitted from a
fixed point in a wind. Similar observations have been made on the smoke
from factory chimneys by Mr. Gordon Dobson.t Both these observers
came to the conclusion that, at small distances from the origin of the
smoke, the surface containing the standard deviations of the smoke from
a horizontal straight line to leeward of the source, is a cone. If the mean
velocity of the wind is assumed to be uniform, the standard deviation in
a short interval of time is therefore proportional to the time. At greater
distances their observations indicate that this surface becomes like a
paraboloid, so that the deviation of the smoke is proportional to the
snuare root of the time.

* Phil. Trans., A, Vol. 221, p. 1.
t Advisory Committee for Aeronautics (Reports, 1919).

SER. 2. VOL. 20. NO. 1390. P
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Both these observational data are in agreement with equations (19)
and (20).

Mr. Kichardson's method consisted in taking a photograph of the
smoke leaving a source and drifting down-wind. The exposure was not
instantaneous, but extended over such a long period that a kind of compo-
site photogragh was obtained showing the outer limits of the region con-
taining the smoke. The general shape of the outline of this region is
shown in Figs. 4 and 5; it is, as has been explained, a parabola with a
pointed vertex. In some cases the paraboloidal part of the surface joined
straight on to the conical part, as shown in Fig. 4, but in other cases
there was a sort of neck between them as shown in Fig. 5. According to
the theory set forth above this neck would be anticipated in cases where
the R$ curve contained negative values as shown in Fig. 3. An B^ curve
of this type might be due to some sort of regularity in the eddies of which
the turbulent motion consists.

FIG. 3.

CHIMNEY FIG. 4.

i\ SfiOKE

FIG. 5.
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It appears that both theory and observation indicate that [XM] be-
comes constant after a certain interval of time (which depends of course

on the vahie of £ at which 1 R^dg becomes practically constant with in-
Jo

creasing values of £). This is a matter of considerable interest in the
theory of the conduction of heat by means of turbulence, because it indi-
cates a reason why the " diffusing power " of any type of turbulence
appears to depend so little on the molecular conductivity and viscosity of
the fluid.

After writing this paper I showed it to Mr. Richardson, who informed
me that he had already noticed the relations (11), and at my request he
sent me his proof which follows.

Note on a Theorem by Mr. G. I. Taylor on Curves which Oscillate
Irregularly

By LEWIS F. RICHARDSON.

The theorem referred to is proved on the hypothesis that the standard
deviations of p, dp/dt, d?pldft, ..., dnpjdtn are constant over any long
time. It also follows, as will now be shown, from the rather different
hypotheses which may be stated thus:—

(i) No one of p, dpjdt, d2pjdt2 has a standard deviation less than a
certain lower limit. (1)

(ii) The instantaneous values {t being time) of p, dp/dt,
never exceed in numerical value a certain upper limit. (2)

We might state simple numerical upper and lower limits. But as we
are dealing with oscillations, it will be as well to take a hint from the
properties of the sine curve. If p = c sin sp, then | dnp/dtn | is not
greater than csn, and the standard deviation of d'ty/di"1 is -y/i cs11.

For our irregular curve let us define B and r and A so that | p | < B
and | dnp/dtn | < Brn. (3)

The standard deviation of p is greater than A and that of d"p/dtn is
greater than Arn. (4)

It is required to find

p 2
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Integrate by parts, successively, so as to differentiate the p and to in-
tegrate d?"p/dt2n until they both coincide in dnpjdtn. For example, when
n = 5, the result is

d10

k-tx)h L dt9P±dF dt W d#+ dt« dt3 dt5 dt* J

The expression in square brackets is less than 5.BV however long the

1<3 /d5v\2

\~iJW) ^ ^s 8r e a^e r ^ n a n (^2~^i)^V10,

and so increases with the interval.
Thus when (£2— ^) is large enough, the term in square brackets be-

comes negligible. Generalizing the example, and taking account of the
changes of sign introduced by partial integration,

lim - 1 - - p d.£dt is V - 4 - ( I I ) dt. (7)

If in place of d2np/dfn in (5) we had had a coefficient of odd order, the
partial integrations, when pursued so as to lead back again to the original
form, would have produced an arrangement of signs such that like terms
were added. So that

1 P« d?n+1v
lim - i - pCL-gdt = O. (8)

This depends on the hypothesis (2) only. Hypothesis (1) does not come
in here. It was needed in proving (7).


