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Executive Summary 
 
Embedded systems have traditionally been much more sensitive to both 

the interrupt latency and Central Processing Unit (CPU) overhead involved 

in servicing interrupts as compared to conventional Personal Computers 

(PC). Message Signaled Interrupts (MSI) represent the third generation of 

interrupt delivery methods for IO (Input/Output) devices, providing many 

benefits, including a significant reduction in interrupt latency.  Intel® 

architecture, consisting of a CPU, memory controller, and an IO 

controller, can provide the embedded developer with a competitive 

platform for embedded designs. Linux, a mature yet flexible open source 

operating system, has been extensively optimized for Intel® architecture, 

providing a robust interrupt framework supporting MSI.  

 Message Signaled Interrupts greatly reduce the interrupt latency and 

the CPU overhead involved in servicing interrupts, boosting general 

system performance as well as IO responsiveness, both critical to 

embedded applications. 

The first generation of interrupts (XT-PIC) required a cumbersome 

delivery and servicing mechanism that only supported 15 interrupts. The 

second generation (IO-APIC) somewhat simplified the delivery and 

servicing mechanism introduced with XT-PIC but only increased the 

number of supported interrupts to 24. The third generation, MSI, greatly 

simplifies the delivery and servicing of interrupts, increasing the number 

of available interrupts to 224. 

The methodology used by Intel’s embedded group to measure the 

interrupt latency on IA platforms consists of using a Peripheral 

Component Interconnect Express* (PCIe*) exerciser to generate the 
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interrupt, creating a custom Linux kernel module to act as a device driver 

providing an Interrupt Service Routine (ISR), and measuring (with a PCIe 

analyzer) the time from when the interrupt is sent to when the CPU runs 

the ISR. 

Results collected using this method across two classes of Intel platforms 

(Workstation and System on Chip (SOC)) show a 3x reduction in interrupt 

latency when using MSI as compared to IO-APIC and over a 5x reduction 

when compared to XT-PIC.  MSI greatly reduces interrupt latency and the 

CPU overhead involved in servicing interrupts. 
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Business Challenge  
Embedded systems traditionally have been much more sensitive to interrupt 
latency than conventional PCs. The perception that Intel® architecture has a 
cumbersome interrupt handling scheme has caused many embedded 
developers to avoid developing embedded systems on Intel® architecture. 
With the advent of MSI, introduced as an optional feature in version 2.2 of 
the Peripheral Component Interconnect (PCI) specification and as a 
mandatory feature of the PCIe* specification, the interrupt delivery and 
servicing scheme is greatly simplified.  

Solution 
The introduction of the MSI delivery and servicing method removed the two 
big limitations associated with the PCI IO architecture, namely, the limited 
number of interrupts and the unnecessarily high interrupt latencies.  
Embedded developers already using Intel® architecture can realize a 
significant reduction in interrupt latency by transitioning to MSI.  Those not 
yet realizing the benefits of the embedded Intel® architecture ecosystem can 
move to Intel® architecture, knowing that Intel® architecture provides 
extremely competitive interrupt latency.  

Adoption of the MSI software model for interrupt delivery and servicing was 
delayed because it required changes to operating systems to support MSI. 
Even the mainstream operating systems, Windows* and Linux*, had a 
delayed implementation, with Linux incorporating it four years after the 
specification and Windows another four years behind Linux. With support now 
widespread in traditional operating systems, the critical mass now exists to 
support a healthy ecosystem of hardware devices and accompanying drivers 
that utilize MSI.  

Introduction to Interrupts on Intel® 
Architecture 

This paper presents a comparison of interrupt latencies for an Intel® 
architecture system using the original Intel® 8259 Programmable Interrupt 
Controller (PIC) method, the legacy IO-Advanced Programmable Interrupt 
Controller (IO-APIC) method, as well as the MSI delivery and servicing 
method. In addition to the comparison of interrupt latencies, this paper 
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provides example code and benchmarks for several classes of Intel® 
platforms.  

Intel® Architecture Overview 
This section provides a brief overview of the Intel® architecture.  For more 
information on this topic, refer to Introduction to Intel Architecture – The 
Basics. 

Intel® architecture can be broken down into two main categories, 
components (silicon) and interfaces connecting the silicon. The components 
of interest are Central Processor Unit (CPU), Memory Controller Hub (MCH) 
and IO Controller Hub.  The interfaces of interest are the Front Side Bus 
(FSB), memory interface, PCI Express* (PCIe*), and Direct Media Interface 
(DMI).  Figure 1 below shows a generic Intel® architecture block diagram. 

Figure 1.  Intel® Architecture Block Diagram 
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CPU   

At a high level, the CPU is the brain of the system where all execution occurs, 
and all other components of Intel® architecture support the CPU.  The CPU 
consists of the execution units and pipelines, caches, and the FSB unit. An 
important concept to understand for this paper relates to cacheable memory.  
CPU caches are filled one full cache line at a time.  This means that if one 
byte is required by an execution unit, the CPU will fetch an entire cache line 
(64 bytes) into the CPU cache.  All accesses to cacheable memory are done in 
cache line sized quantities.  This cacheable memory behavior is consistent 
across all interfaces and components. 

MCH  

If the CPU is the brain, then the MCH is the heart of Intel® architecture.  The 
MCH routes all requests and data to the appropriate interface.  It is the 
connecting piece between the CPU, memory, and IO.  It contains the memory 
controller, FSB unit, PCI Express* ports, DMI port, coherency engine, and 
arbitration. 

IO Controller Hub  

The IO Controller Hub provides extensive IO support for peripherals: USB, 
audio, SATA, SuperIO, LAN as well as the logic for ACPI power management, 
fan speed control, reset timing, and interrupt control and routing.  The IO 
Controller Hub connects to the MCH via the DMI interface, a proprietary “PCI 
Express*-like” interface. 

FSB  

The FSB is a parallel bus that enables communication between the CPU and 
MCH.  The FSB consists of 32 to 40 address bits and strobes, 64 data bits and 
strobes, four request bits and side band signals.  Data is quad-pumped, 
allowing data transfer of 32 bytes per bus clock.  Transactions are broken 
into phases, such as request, response, snoop, and data. 

Overview of Interrupts on Intel® Architecture 
Under Linux* 

Linux* has been designed to be a responsive operating system with respect 
to interrupt servicing.  As a result, an interrupt service routine (ISR) and 
tasklet approach has been taken to accommodate even the most CPU-
intensive computation of data requested by an interrupt while ensuring that 
all interrupts are serviced quickly.  This approach allows the most critical 
actions needed by hardware to be taken in a timely manner even when a 
system is heavily loaded with interrupt-related processing.  
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Interrupt Service Routine, the First Responder 

With the Linux* interrupt architecture, the ISR for a device performs only the 
bare minimum to keep the device functioning, leaving all other data 
processing to the tasklet. Once the device has been serviced, the ISR can 
schedule a tasklet to run.  This tasklet processes any data that has arrived as 
a result of the interrupt. Not processing data in the ISR means that interrupts 
are disabled only as long as absolutely necessary in order to keep all attached 
devices functioning properly. This ensures that all devices will see the 
operating system (OS) as very responsive even if one device, such as a 
network controller, is heavily loading the system with work. 

Scheduled Tasklet, the Workhorse 

An ISR schedules a tasklet when an interrupt requires data processing 
beyond the minimum needed to keep the device functioning. Tasklets are run 
by the OS after all pending interrupts have been serviced.  Newly arriving 
interrupts will preempt currently running tasklets, ensuring system 
responsiveness. Tasklets are scheduled on a higher priority than user-level 
jobs, ensuring that the data is processed in a timely manner.  

Overview of Interrupt Delivery 
Methods 

This section provides an overview of the three generations of interrupt 
delivery and servicing on Intel architecture: XT-PIC for legacy uni-processor 
(UP) systems, IO-APIC for modern UP and multi-processor (MP) systems, and 
MSI. 

Legacy XT-PIC Interrupts 

Legacy XT-PIC interrupts comprise the oldest form of interrupt delivery 
supported by a PCI device. XT-PIC interrupts use a pair of Intel® 8259 
programmable interrupt controllers (PIC). Each Intel® 8259 PIC supports only 
eight interrupts.  By daisy chaining two 8259 PICs, a system could have 16 
interrupts, 0 – 15.  Table 1 shows an example allocation of interrupts, and 
Figure 2 shows how the PICs would be connected. 
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 Table 1. Example XT-PIC IRQ Assignment    Figure 2.  XT-PIC Cascade  

IRQ Interrupt Hardware Device 

0 32 Timer 

1 33 Keyboard 

2 34 PIC Cascade 

3 35 Second Serial Port (COM 
2) 

4 36 First Serial Port (COM 1) 

5 37 <Free> 

6 38 Floppy Disk 

7 39 <Free> 

8 40 System Clock 

9 41 <Free> 

10 42 Network Interface Card 
(NIC) 

11 43 USB Port, and Sound 
Card 

12 44 Mouse (PS2) 

13 45 Math Co-Processor 

14 46 IDE Channel 1 

15 47 IDE Channel 2 

Note: Linux* requires IRQ 0, 2, and 13 to be as shown. 

When a connected device needs servicing by the CPU, it drives the signal on 
the interrupt pin to which it is connected.  The Intel® 8259 PIC in turn drives 
the interrupt line into the CPU. From the Intel® 8259 PIC, the OS is able to 
determine what interrupt is pending. The CPU masks that interrupt and 
begins running the ISR associated with it. The ISR will check with the device 
with which it is associated for a pending interrupt. If the device has a pending 
interrupt, then the ISR will clear the Interrupt Request (IRQ) pending and 
begin servicing the device. Once the ISR has completed servicing the device, 
it will schedule a tasklet if more processing is needed and return control back 
to the OS, indicating that it handled an interrupt. Once the OS has serviced 
the interrupt, it will unmask the interrupt from the Intel® 8259 PIC and run 
any tasklet which has been scheduled.  
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XT-PIC Limitations 

The Intel® 8259 PIC presents several limitations to interrupt servicing:  

• A limited number of interrupt lines necessitates the sharing of 
interrupts.  Shared interrupts require the OS to run multiple ISRs and 
query multiple IO devices to determine who actually generated the 
interrupt. 

• Interrupt priority is fixed based on IRQ number. 

• XT-PIC architecture does not support multiple CPUs. 

• Slow IO reads and writes to interact with the Intel® 8259 hardware. 

• The CPU can begin servicing the interrupt before the data is written to 
memory.   

o The data written to memory by the device may be queued up in 
write buffers on their way to system memory. 

o As soon as the interrupt (INT) signal is driven to the CPU, the OS 
begins processing the interrupt, forcing software to issue a write to 
memory to flush out any pending writes prior to reading the data 
from memory.  

IO-APIC Interrupts 

Intel developed the multiprocessor specification in 1994, which introduced 
the concept of a Local-APIC (Advanced PIC) in the CPU and IO-APICs 
connected to devices. This architecture addressed many of the limitations of 
the older XT-PIC architecture. The most apparent is the support for multiple 
CPUs. Additionally, each IO-APIC (82093) has 24 interrupt lines and allows 
the priority of each interrupt to be set independently. The programming 
model of the IO-APIC is greatly simplified.  The IO-APIC writes an interrupt 
vector to the Local-APIC, and, as a result, the OS does not have to interact 
with the IO-APIC until it sends the end of interrupt notification.  

The IO-APCI provides backwards compatibility with the older XT-PIC model.  
As a result, the lower 16 interrupts are usually dedicated to their assignments 
under the XT-PIC model. This assignment of interrupts provides only eight 
additional interrupts, which forces sharing. The following is the sequence for 
IO-APIC delivery and servicing: 

• A device needing servicing from the CPU drives the interrupt line into 
the IO-APIC associated with it.  

• The IO-APIC writes the interrupt vector associated with its driven 
interrupt line into the Local APIC of the CPU. 

• The interrupted CPU begins running the ISRs associated with the 
interrupt vector it received. 
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o Each ISR for a shared interrupt is run to find the device needing 
service. 

o Each device has its IRQ pending bit checked, and the requesting 
device has its bit cleared. 

Message Signaled Interrupts 

MSI was introduced in revision 2.2 of the PCI spec in 1999 as an optional 
component. However, with the introduction of the PCIe specification in 2004, 
implementation of MSI became mandatory from a hardware standpoint. 
Unfortunately, software support in mainstream operating systems was slow in 
coming, forcing many MSI-capable PCIe* devices to operate in legacy mode. 
The MSI model eliminates the devices’ need to use the IO-APIC, allowing 
every device to write directly to the CPU’s Local-APIC. The MSI model 
supports 224 interrupts, and, with this high number of interrupts, IRQ 
sharing is no longer allowed. The following is the sequence for MSI delivery 
and servicing: 

• A device needing servicing from the CPU generates an MSI, writing the 
interrupt vector directly into the Local-APIC of the CPU servicing it. 

• The interrupted CPU begins running the ISR associated with the 
interrupt vector it received.  The device is serviced without any need 
to check and clear an IRQ pending bit 

PCIe* Interrupt Latency 
Methodology 

As interrupt latency is important for embedded applications, Intel has made 
several architectural enhancements to better accommodate efficient interrupt 
handling. Additionally, Intel has tracked the changes in interrupt performance 
from generation to generation. The interrupt performance of each platform 
generation is based on the interrupt latency. The interrupt latency is defined 
as the elapsed time from when a device requests servicing from the CPU (the 
generation of the interrupt) to when the CPU begins servicing the device 
(running the ISR). Intel has developed a methodology for measuring this 
latency, which is presented here. This methodology applies to the Linux* 
family of operating systems.   

This section describes the methodology used for the setup, execution, and 
collection of data for the measurement of interrupt latency on XT-PIC, IO-
APIC, and MSI systems with both Symmetric Multi-processor (SMP) and UP 
Linux 2.6 kernels. The latency analysis involves two separate observation 
points: first, a PCIe analyzer, and, secondly, an FSB analyzer. 
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Interrupt Generation 

The interrupt latency measurement requires two events: the interrupt itself 
and some indication of the start of servicing by the ISR. As a result of this 
requirement, the methodology provides for both the generation of interrupts 
as well as the generation of an ISR to service the interrupts. PCIe* exerciser 
cards are used to generate the interrupts.  Any third party PCIe* exerciser 
capable of creating an “Assert X” or MSI packet is sufficient. A custom device 
driver for Linux is needed to request an interrupt assignment from the OS 
and to register an ISR for the granted interrupt with the OS. An overview of 
such a device driver is provided in subsequent sections.  

The following sections outline the methodology utilized to configure the 
operating system to use the appropriate interrupt architecture, to configure 
an exerciser for interrupt generation, and to configure a device driver to 
request an interrupt and to supply an ISR.    

XT-PIC OS Configuration 

XT-PIC interrupt delivery under Linux* is only supported for UP kernels. A 2.6 
version of the kernel can be recompiled as UP with XT-PIC support by making 
the following changes. First, append _XT-PIC to the EXTRAVERSION of the 
Makefile found in the Linux source directory. Once the Makefile has been 
updated, the kernel needs to be configured as UP. This can be accomplished 
by disabling Symmetric mulit-processor support under the Processor Types 
and features menu of the Linux Kernel Configuration Menu, which is accessed 
via make menuconfig. Finally, the Local-APIC must be disabled by deselecting 
Local-APIC support on uniprocessors from the same menu. With only these 
options changed from the default settings, the kernel configuration can be 
saved and the kernel recompiled. Booting into the newly compiled kernel will 
provide a UP OS that only supports XT-PIC interrupts.  

IO-APIC OS Configuration 

IO-APIC interrupt delivery under Linux is supported for both UP and SMP 
kernels. A 2.6 version of the kernel can be recompiled as either UP or SMP 
with IO-APIC support by making the following changes. First, append either 
<SMP/UP> as well as  _IO-APIC to the EXTRAVERSION of the Makefile found 
in the Linux source directory. Once the Makefile has been updated, the kernel 
should be configured as either UP or SMP, depending on the configuration 
desired. This can be accomplished by either enabling or disabling Symmetric 
mulit-processor support under the Processor Types and features menu of the 
Linux Kernel Configuration Menu, which is accessed via make menuconfig. In 
the case of a UP kernel, the Local-APIC must be enabled by selecting Local 
APIC support on uniprocessors from the same menu. Additionally, for both UP 
and SMP kernel configurations, MSI support should be disabled under the Bus 
Options submenu of the Processor types and features menu. With only these 
options changed from the default settings, the kernel configuration can be 
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saved and the kernel recompiled. Booting into the newly compiled kernel will 
provide either a UP or SMP OS that supports IO-APIC interrupts. 

MSI OS Configuration 

Just like IO-APIC interrupts, MSI interrupt delivery under Linux* is supported 
for both UP and SMP kernels. A 2.6 version of the kernel can be recompiled 
as either UP or SMP with MSI support by making the following changes. First, 
append either <SMP/UP> as well as _MSI to the EXTRAVERSION of the 
Makefile found in the Linux source directory. Once the Makefile has been 
updated, the kernel should be configured as either UP or SMP, depending on 
the configuration desired. This can be accomplished by either enabling or 
disabling Symmetric mulit-processor support under the Processor Types and 
features menu of the Linux Kernel Configuration Menu accessed via make 
menuconfig. In the case of a UP kernel, the Local-APIC must be enabled by 
selecting Local APIC support on uniprocessors from the same menu. 
Additionally, for both UP and SMP kernel configurations, MSI support should 
be enabled under the Bus Options submenu of the Processor types and 
features menu. With only these options changed from the default settings, 
the kernel configuration can be saved and the kernel recompiled. Booting into 
the newly compiled kernel will provide either a UP or SMP OS that supports 
MSI interrupts. 

PCIe* Exerciser Configuration 

The PCIe* exerciser must be capable of generating both “Assert X” and MSI 
packets. The methodology outlined here also requires that the device request 
a region of Memory Mapped IO (MMIO) to which the ISR and tasklet will 
write, indicating the entry of each. The details on how to configure a 
particular PCIe exerciser are beyond the scope of this paper.  However, the 
PCI bus number assigned to the exerciser and the base address mapped to it 
are both required for the device driver presented in this paper. 

Device Driver Kernel Module for the PCIe* Exerciser 

A custom kernel module that acts as a device driver for a PCIe* exerciser is 
presented here. The kernel module provides the ISR for both legacy (XT-PIC 
and IO-APIC) as well as MSI interrupts. The kernel module generates 
memory write signatures that can be seen on the FSB as well as the PCIe 
link. These memory write signatures are generated upon entry of the main 
ISR as well as the scheduled tasklet. The memory writes themselves are to 
non-cacheable MMIO locations on the PCIe exerciser. This ensures that only a 
minimal delay exists between when the CPU enters the ISR or tasklet and 
issues the write to when it appears on the FSB.  The kernel module must be 
provided with the base address of the MMIO region assigned to the PCIe 
exerciser so that it can perform the signature writes. For greater 
functionality, this base address is provided to the device driver through the 
dev_io_mem command line parameter supplied while inserting the module. 
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Additionally, the msi_mode=0 command line option is also needed when 
running in XT-PIC or IO-APIC mode. The following figure showing driver 
initialization code does not take into account error handling, which was 
intentionally omitted as this figure is intended to give only a general idea of 
the initialization algorithm used in the methodology.  

Figure 3.  Pseudo Code for Driver Initialization Function  

static int MSI_init_module (void) 
{ 
 int result; 
 
 //Register this kernel module as a character device 
 result = register_chrdev(PCIeIRQ_Major, "PCIe_IRQ", &PCIeIRQ_fops); 
 //Find the PCIe exerciser card 
 dev_cfg_space = pci_find_device(PCIeExerciser_vid, PCIeExerciser_did, NULL); 
 //Set up a pointer to the base address of the MMIO  
 ack_pointer = ioremap(dev_io_mem, WRITE_BACK_RANGE); 
 //Set up a pointer to the PCI Config Space of the Excersiser card 
 PCI_Reg_Pointer = ioremap(PCIE_EXERCISER_CONFIG_BASE, PCI_CONFIG_SIZE); 
 //Determine if we are running in MSI mode or Legacy ()XT-PIC/IO-APIC) 
 if(msi_mode){ 
  //Ask Linux to enable MSI support on this device 
  result = pci_enable_msi(dev_cfg_space); 
  //Display the MSI vector assigned to the exerciser by the OS 
  printk(KERN_NOTICE "MSI Interrupt vector: %i.\n", dev_cfg_space->irq); 
  //Register the ISR with the OS for the granted IRQ 
  return request_irq(dev_cfg_space->irq, MSI_ISR, SA_INTERRUPT, "PCIe_IRQ", 

        dev_cfg_space); 
 }else{ 
  //Display the IRQ assigned to the exerciser by the OS 
  printk(KERN_NOTICE "IRQ: %i.\n", dev_cfg_space->irq); 
  //Register the ISR with the OS for the granted IRQ 
  return request_irq(dev_cfg_space->irq, INTx_ISR,SA_INTERRUPT | SA_SHIRQ, 

          "PCIe_IRQ", dev_cfg_space); 
 } 
} 

Once the device driver is inserted into the kernel and the interrupt for the 
PCIe exerciser card has been properly initialized with the OS, the exerciser-
specific method of generating interrupts can be initiated.  This will cause the 
OS to invoke the appropriate ISR based on the interrupt deliver method used. 
The following figures show the pseudo code for each. 
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Figure 4.  Pseudo Code for Legacy (XT-PIC/IO-APIC) ISR 

static irqreturn_t INTx_ISR (int irq, void *dev_id, struct pt_regs *regs) 
{ 
 //Incase of a shared IRQ Check if the interupt is ours 
 if(IRQ_PENDING_FLAG & PCI_STATUS_REG){ 
  //Clear the the interupt 
  PCI_INT_REG = IRQ_CLEAR_MASK; 
  //Write to the MMIO location of the PCIe exerciser to signal ISR entry 
  *(ack_pointer+0x10) = int_count; 
  //Schedule the tasklet with the OS 
  tasklet_schedule(&tasklet); 
  //Tell the OS we handled the IRQ 
  return IRQ_HANDLED; 
 }else{ 
  //The IRQ is shared and not ours, so let the OS know we did not handle it 
  return IRQ_NONE; 

} 

Figure 5.  Pseudo Code for MSI ISR 

static irqreturn_t MSI_ISR (int irq, void *dev_id, struct pt_regs *regs) 
{ 
 //Write to the MMIO location of the PCIe exerciser to signal ISR entry 
 *(ack_pointer+0x10) = int_count; 
 //Schedule the tasklet with the OS 
 tasklet_schedule(&tasklet); 
 //Tell the OS we handled the IRQ 
 return IRQ_HANDLED; 
} 

Event Observation 

Only three of the events generated by the methodology outlined above must 
be measured for the latency to be observed: the interrupt packet (either 
assert X or MSI) and each of the two outbound writes (indicating execution of 
the ISR and the tasklet). There are two main observation points for these 
events, the PCIe* interface to which the exerciser is connected and the FSB 
link to which the servicing CPU is connected. From a PCIe perspective, any 
analyzer would work for this methodology.  The screen shots included here 
are from a Catalyst Summit PCIe Gen2 analyzer. FSB analyzers are very cost 
prohibitive, and, as a result, the methodology presented here focuses on the 
use of a PCIe analyzer. However, some FSB traces and a brief discussion of 
the added visibility such an analyzer provides are included.  The following 
figures show all the events that can be measured from the PCIe analyzer for 
legacy XT-PIC/IO-APIC interrupts.  In the case of MSI interrupts, the events 
would simply be the three required for the methodology: 

• MSI writing the interrupt vector to the Local-APIC 

• Write to the MMIO indicating ISR entry 

• Write to the MMIO indicating tasklet entry  

Since the MSI events are a subset of the legacy events, the examples in the 
remainder of this section will use the full set of legacy events for 
completeness. 
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Figure 6.  PCIe* Visible Legacy (XT-PIC/IO-APIC) Events 

 

The following list corresponds to the events shown in the above figure: 

1. PCIe* exerciser issues Assert INTX packet on PCIe link (Start 
measuring latency). 

2. MCH routes interrupt vector from IO-APIC to Local-APIC. 

3. ISR checks if IRQ came from PCIe exerciser. 

4. MCH forwards IRQ check to the PCIe exerciser. 

5. PCIe exerciser responds that it generated the interrupt. 

6. MCH routes PCIe exerciser’s response to CPU. 

7. ISR clears PCIe exerciser’s interrupt. 

8. MCH routes clearing of interrupt to PCIe exerciser. 

9. ISR entry triggers MMIO write (Stop measuring ISR latency). 

10. MCH routes MMIO write to PCIe exerciser. 

11. Tasklet entry triggers MMIO write (Stop measuring tasklet latency). 

12. MCH routes MMIO write to PCIe exerciser. 

PCIe* Analyzer 

Using a PCIe* analyzer with sufficient trace depth, triggered on either a 
memory write TLP (Transaction Layer Packet) with an address of 0xFEXXXXXX 
(the MSI) or the Assert X message, will ensure that all the PCIe* visible 
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events are captured. The following figure shows the trace of a legacy 
interrupt. 

Figure 7.  PCIe* Analyzer Trace of Legacy (XT-PIC/IO-APIC) Events 

 

FSB Analyzer 

Using an FSB analyzer, a trigger can be set up on the interrupt transaction 
associated with the PCIe exerciser. The use of an FSB analyzer allows greater 
visibility into the sub-latencies that make up the overall interrupt latency. 
Figure 8 shows the same 12 events from Figure 7. However, some attempt 
has been made to capture the relative times of each event.  Some of the 
actions contributing to each of the sub-latencies are also shown. 
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Figure 8.  PCIe* Analyzer Trace of Legacy (XT-PIC/IO-APIC) Events 

 

Note: The timings shown here are much larger than the actual timings detailed in 
the Results section of this paper. 

Results 
This section presents data collected on two classes of Intel® platforms using 
the methodology described in the previous section. Results are presented for 
both UP and SMP kernels in the case of a multi-core and/or hyper-threaded 
processor.  

Workstation Class Platform 

The workstation class platform had one dual core CPU, allowing both UP and 
SMP kernels to be tested. However, since the XT-PIC delivery method is only 
supported under a UP kernel, and since the purpose of this paper is to show 
the advantage of MSI over both IO-APIC and XT-PIC, only the data for a UP 
kernel is shown here. As described in the Methodology section, the data was 
collected on a standard Linux* 2.6 kernel. No attempts to optimize the 
interrupt handling architecture of the kernel were made.  As a result, the 
latencies shown here are normalized to the MSI latency. An embedded 
application that is extremely sensitive to IRQ latency would be run on an 
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optimized Real-Time Operating System (RTOS), which would provide the 
lowest possible IRQ latency for a given platform.   

Figure 9. Normalized UP Workstation Results  
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MSI provides almost a 3x reduction in interrupt latency over IO-APIC, with 
the advantage over XT-PIC being nearly 7x. The tasklet latencies are 
proportional to the ISR latencies shown here, with the tasklet latencies being 
higher than the ISR latencies due to the additional overhead of the OS’ 
scheduling the tasklet to run. This proportionality in latencies is expected as 
the system under test was lightly loaded, allowing the tasklets to be 
scheduled immediately following the execution of the ISR. In a heavily loaded 
system, the tasklet latencies would be higher (a drawback of the tasklet with 
ISR framework). However, this is the price that must be paid for the 
responsiveness enjoyed by all the ISRs under such a framework. 

System-on-a-Chip Platform 

The SoC platform had a single core CPU, allowing only a UP kernel to be 
tested. Again, to show the relative advantage of moving to the MSI interrupt 
delivery method, the data presented here has been normalized. 
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Figure 10. Normalized UP SoC Results  
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Again, MSI provides about a 3x reduction in interrupt latency over IO-APIC, 
with the advantage over XT-PIC being just over 6x. The slower CPU 
frequency relative to the distance of the PIC in an SOC makes the advantage 
of MSI over XT-PIC only slightly less dramatic.  

This survey of two platform classes shows the significant benefit of MSI 
regardless of the target platform class. The consideration of using MSI should 
not only be motivated by reducing interrupt latency but by also reducing CPU 
utilization. The time required for the CPU to respond to the interrupt 
(interrupt latency) is time essentially wasted by the CPU. For example, a CPU 
that spends microseconds determining what interrupt needs servicing by 
polling devices and masking interrupt controllers is unable to carry out other 
tasks during that time. The CPU, then, is limited in both the number of 
interrupts it can process per second as well as in the amount of time it can 
devote to user-level applications. As a result, moving to an MSI delivery and 
servicing model not only improves IO performance by greatly reducing 
interrupt latency, but also improves overall system performance by freeing 
CPU time for other interrupts and user-level applications.  

Conclusion 
MSI provides a significant reduction in interrupt latency over the previous two 
generations of Intel interrupt architecture. The benefits extend beyond a 
reduction in interrupt latency to a reduction in CPU utilization by eliminating 
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the time spent by the CPU determining what interrupt needs servicing (by 
polling devices and masking interrupt controllers). Embedded developers 
considering Intel® architecture for a solution or currently developing one 
should fully adopt the MSI model for interrupt delivery and servicing to 
ensure not only the best IO performance for their solution, but also the most 
CPU headroom for user-applications and other interrupts. In summary, MSI 
provides the following key benefits to the embedded developer over previous 
interrupt architectures: 

• Increased number of interrupts to support more devices and 
peripherals. 

• Dramatic reduction in the delay from when a device needs servicing to 
when the CPU begins servicing the device. 

• Simplified board design: no need for an interrupt controller (IO-
APIC/PIC). 

• Flexible interrupt priority assignment scheme. 

• Interrupt load balancing across CPUs.  Devices can direct interrupts to 
specific cores to leverage common caches and to ensure equal 
workloads on all CPUs. 
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APIC  Advanced PIC 

CPU  Central Processing Unit 

DMI  Direct Media Interface 

FSB   Front Side Bus 

INT   Interrupt 

IO   Input/Output 

IRQ  Interrupt Request 

ISR  Interrupt Service Routine 

MCH  Memory Controller Hub 

MMIO  Memory Mapped IO 

MP   Multi-processor 

MSI  Message Signaled Interrupts 

OS   Operating System 

PC   Personal Computer 

PCI   Peripheral Component Interconnect 

PCIe*  Peripheral Component Interconnect Express 

PIC   Programmable Interrupt Controller 

RTOS  Real-time Operating System 

SMP  Symmetric Multi-processor 

SoC  System on Chip 

TLP   Transaction Layer Packet 

UP    Uni-processor 
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