

321070

Reducing Interrupt
Latency Through
the Use of
Message Signaled
Interrupts

 January 2009

White Paper
James Coleman

Performance Architect

Intel Corporation

 Reducing Interrupt Latency Through the Use of Message Signaled Interrupts

2 321070

Executive Summary

Embedded systems have traditionally been much more sensitive to both

the interrupt latency and Central Processing Unit (CPU) overhead involved

in servicing interrupts as compared to conventional Personal Computers

(PC). Message Signaled Interrupts (MSI) represent the third generation of

interrupt delivery methods for IO (Input/Output) devices, providing many

benefits, including a significant reduction in interrupt latency. Intel®

architecture, consisting of a CPU, memory controller, and an IO

controller, can provide the embedded developer with a competitive

platform for embedded designs. Linux, a mature yet flexible open source

operating system, has been extensively optimized for Intel® architecture,

providing a robust interrupt framework supporting MSI.

 Message Signaled Interrupts greatly reduce the interrupt latency and

the CPU overhead involved in servicing interrupts, boosting general

system performance as well as IO responsiveness, both critical to

embedded applications.

The first generation of interrupts (XT-PIC) required a cumbersome

delivery and servicing mechanism that only supported 15 interrupts. The

second generation (IO-APIC) somewhat simplified the delivery and

servicing mechanism introduced with XT-PIC but only increased the

number of supported interrupts to 24. The third generation, MSI, greatly

simplifies the delivery and servicing of interrupts, increasing the number

of available interrupts to 224.

The methodology used by Intel’s embedded group to measure the

interrupt latency on IA platforms consists of using a Peripheral

Component Interconnect Express* (PCIe*) exerciser to generate the

Reducing Interrupt Latency Through the Use of Message Signaled Interrupts

321070 3

interrupt, creating a custom Linux kernel module to act as a device driver

providing an Interrupt Service Routine (ISR), and measuring (with a PCIe

analyzer) the time from when the interrupt is sent to when the CPU runs

the ISR.

Results collected using this method across two classes of Intel platforms

(Workstation and System on Chip (SOC)) show a 3x reduction in interrupt

latency when using MSI as compared to IO-APIC and over a 5x reduction

when compared to XT-PIC. MSI greatly reduces interrupt latency and the

CPU overhead involved in servicing interrupts.

 Reducing Interrupt Latency Through the Use of Message Signaled Interrupts

4 321070

Contents
Executive Summary ..2

Contents..4

Business Challenge..5

Solution...5

Introduction to Interrupts on Intel® Architecture5

Intel® Architecture Overview ..6
CPU ...7
MCH ...7
IO Controller Hub ..7
FSB ...7
Overview of Interrupts on Intel® Architecture Under Linux*.....7

Overview of Interrupt Delivery Methods ...8
Legacy XT-PIC Interrupts ...8
IO-APIC Interrupts ..10
Message Signaled Interrupts ...11

PCIe* Interrupt Latency Methodology ..11
Interrupt Generation..12
Event Observation ...15

Results ..18
Workstation Class Platform ...18
System-on-a-Chip Platform...19

Conclusion ...20

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 5

Business Challenge
Embedded systems traditionally have been much more sensitive to interrupt
latency than conventional PCs. The perception that Intel® architecture has a
cumbersome interrupt handling scheme has caused many embedded
developers to avoid developing embedded systems on Intel® architecture.
With the advent of MSI, introduced as an optional feature in version 2.2 of
the Peripheral Component Interconnect (PCI) specification and as a
mandatory feature of the PCIe* specification, the interrupt delivery and
servicing scheme is greatly simplified.

Solution
The introduction of the MSI delivery and servicing method removed the two
big limitations associated with the PCI IO architecture, namely, the limited
number of interrupts and the unnecessarily high interrupt latencies.
Embedded developers already using Intel® architecture can realize a
significant reduction in interrupt latency by transitioning to MSI. Those not
yet realizing the benefits of the embedded Intel® architecture ecosystem can
move to Intel® architecture, knowing that Intel® architecture provides
extremely competitive interrupt latency.

Adoption of the MSI software model for interrupt delivery and servicing was
delayed because it required changes to operating systems to support MSI.
Even the mainstream operating systems, Windows* and Linux*, had a
delayed implementation, with Linux incorporating it four years after the
specification and Windows another four years behind Linux. With support now
widespread in traditional operating systems, the critical mass now exists to
support a healthy ecosystem of hardware devices and accompanying drivers
that utilize MSI.

Introduction to Interrupts on Intel®
Architecture

This paper presents a comparison of interrupt latencies for an Intel®
architecture system using the original Intel® 8259 Programmable Interrupt
Controller (PIC) method, the legacy IO-Advanced Programmable Interrupt
Controller (IO-APIC) method, as well as the MSI delivery and servicing
method. In addition to the comparison of interrupt latencies, this paper

Reducing Interrupt Latency through the use of Message Signaled Interrupts

6 321070

provides example code and benchmarks for several classes of Intel®
platforms.

Intel® Architecture Overview
This section provides a brief overview of the Intel® architecture. For more
information on this topic, refer to Introduction to Intel Architecture – The
Basics.

Intel® architecture can be broken down into two main categories,
components (silicon) and interfaces connecting the silicon. The components
of interest are Central Processor Unit (CPU), Memory Controller Hub (MCH)
and IO Controller Hub. The interfaces of interest are the Front Side Bus
(FSB), memory interface, PCI Express* (PCIe*), and Direct Media Interface
(DMI). Figure 1 below shows a generic Intel® architecture block diagram.

Figure 1. Intel® Architecture Block Diagram

FS
B

/Q
PI

D
M

I

M
em

or
y

M
em

or
y

http://download.intel.com/design/intarch/papers/321087.pdf
http://download.intel.com/design/intarch/papers/321087.pdf

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 7

CPU

At a high level, the CPU is the brain of the system where all execution occurs,
and all other components of Intel® architecture support the CPU. The CPU
consists of the execution units and pipelines, caches, and the FSB unit. An
important concept to understand for this paper relates to cacheable memory.
CPU caches are filled one full cache line at a time. This means that if one
byte is required by an execution unit, the CPU will fetch an entire cache line
(64 bytes) into the CPU cache. All accesses to cacheable memory are done in
cache line sized quantities. This cacheable memory behavior is consistent
across all interfaces and components.

MCH

If the CPU is the brain, then the MCH is the heart of Intel® architecture. The
MCH routes all requests and data to the appropriate interface. It is the
connecting piece between the CPU, memory, and IO. It contains the memory
controller, FSB unit, PCI Express* ports, DMI port, coherency engine, and
arbitration.

IO Controller Hub

The IO Controller Hub provides extensive IO support for peripherals: USB,
audio, SATA, SuperIO, LAN as well as the logic for ACPI power management,
fan speed control, reset timing, and interrupt control and routing. The IO
Controller Hub connects to the MCH via the DMI interface, a proprietary “PCI
Express*-like” interface.

FSB

The FSB is a parallel bus that enables communication between the CPU and
MCH. The FSB consists of 32 to 40 address bits and strobes, 64 data bits and
strobes, four request bits and side band signals. Data is quad-pumped,
allowing data transfer of 32 bytes per bus clock. Transactions are broken
into phases, such as request, response, snoop, and data.

Overview of Interrupts on Intel® Architecture
Under Linux*

Linux* has been designed to be a responsive operating system with respect
to interrupt servicing. As a result, an interrupt service routine (ISR) and
tasklet approach has been taken to accommodate even the most CPU-
intensive computation of data requested by an interrupt while ensuring that
all interrupts are serviced quickly. This approach allows the most critical
actions needed by hardware to be taken in a timely manner even when a
system is heavily loaded with interrupt-related processing.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

8 321070

Interrupt Service Routine, the First Responder

With the Linux* interrupt architecture, the ISR for a device performs only the
bare minimum to keep the device functioning, leaving all other data
processing to the tasklet. Once the device has been serviced, the ISR can
schedule a tasklet to run. This tasklet processes any data that has arrived as
a result of the interrupt. Not processing data in the ISR means that interrupts
are disabled only as long as absolutely necessary in order to keep all attached
devices functioning properly. This ensures that all devices will see the
operating system (OS) as very responsive even if one device, such as a
network controller, is heavily loading the system with work.

Scheduled Tasklet, the Workhorse

An ISR schedules a tasklet when an interrupt requires data processing
beyond the minimum needed to keep the device functioning. Tasklets are run
by the OS after all pending interrupts have been serviced. Newly arriving
interrupts will preempt currently running tasklets, ensuring system
responsiveness. Tasklets are scheduled on a higher priority than user-level
jobs, ensuring that the data is processed in a timely manner.

Overview of Interrupt Delivery
Methods

This section provides an overview of the three generations of interrupt
delivery and servicing on Intel architecture: XT-PIC for legacy uni-processor
(UP) systems, IO-APIC for modern UP and multi-processor (MP) systems, and
MSI.

Legacy XT-PIC Interrupts

Legacy XT-PIC interrupts comprise the oldest form of interrupt delivery
supported by a PCI device. XT-PIC interrupts use a pair of Intel® 8259
programmable interrupt controllers (PIC). Each Intel® 8259 PIC supports only
eight interrupts. By daisy chaining two 8259 PICs, a system could have 16
interrupts, 0 – 15. Table 1 shows an example allocation of interrupts, and
Figure 2 shows how the PICs would be connected.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 9

 Table 1. Example XT-PIC IRQ Assignment Figure 2. XT-PIC Cascade

IRQ Interrupt Hardware Device

0 32 Timer

1 33 Keyboard

2 34 PIC Cascade

3 35 Second Serial Port (COM
2)

4 36 First Serial Port (COM 1)

5 37 <Free>

6 38 Floppy Disk

7 39 <Free>

8 40 System Clock

9 41 <Free>

10 42 Network Interface Card
(NIC)

11 43 USB Port, and Sound
Card

12 44 Mouse (PS2)

13 45 Math Co-Processor

14 46 IDE Channel 1

15 47 IDE Channel 2

Note: Linux* requires IRQ 0, 2, and 13 to be as shown.

When a connected device needs servicing by the CPU, it drives the signal on
the interrupt pin to which it is connected. The Intel® 8259 PIC in turn drives
the interrupt line into the CPU. From the Intel® 8259 PIC, the OS is able to
determine what interrupt is pending. The CPU masks that interrupt and
begins running the ISR associated with it. The ISR will check with the device
with which it is associated for a pending interrupt. If the device has a pending
interrupt, then the ISR will clear the Interrupt Request (IRQ) pending and
begin servicing the device. Once the ISR has completed servicing the device,
it will schedule a tasklet if more processing is needed and return control back
to the OS, indicating that it handled an interrupt. Once the OS has serviced
the interrupt, it will unmask the interrupt from the Intel® 8259 PIC and run
any tasklet which has been scheduled.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

10 321070

XT-PIC Limitations

The Intel® 8259 PIC presents several limitations to interrupt servicing:

• A limited number of interrupt lines necessitates the sharing of
interrupts. Shared interrupts require the OS to run multiple ISRs and
query multiple IO devices to determine who actually generated the
interrupt.

• Interrupt priority is fixed based on IRQ number.

• XT-PIC architecture does not support multiple CPUs.

• Slow IO reads and writes to interact with the Intel® 8259 hardware.

• The CPU can begin servicing the interrupt before the data is written to
memory.

o The data written to memory by the device may be queued up in
write buffers on their way to system memory.

o As soon as the interrupt (INT) signal is driven to the CPU, the OS
begins processing the interrupt, forcing software to issue a write to
memory to flush out any pending writes prior to reading the data
from memory.

IO-APIC Interrupts

Intel developed the multiprocessor specification in 1994, which introduced
the concept of a Local-APIC (Advanced PIC) in the CPU and IO-APICs
connected to devices. This architecture addressed many of the limitations of
the older XT-PIC architecture. The most apparent is the support for multiple
CPUs. Additionally, each IO-APIC (82093) has 24 interrupt lines and allows
the priority of each interrupt to be set independently. The programming
model of the IO-APIC is greatly simplified. The IO-APIC writes an interrupt
vector to the Local-APIC, and, as a result, the OS does not have to interact
with the IO-APIC until it sends the end of interrupt notification.

The IO-APCI provides backwards compatibility with the older XT-PIC model.
As a result, the lower 16 interrupts are usually dedicated to their assignments
under the XT-PIC model. This assignment of interrupts provides only eight
additional interrupts, which forces sharing. The following is the sequence for
IO-APIC delivery and servicing:

• A device needing servicing from the CPU drives the interrupt line into
the IO-APIC associated with it.

• The IO-APIC writes the interrupt vector associated with its driven
interrupt line into the Local APIC of the CPU.

• The interrupted CPU begins running the ISRs associated with the
interrupt vector it received.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 11

o Each ISR for a shared interrupt is run to find the device needing
service.

o Each device has its IRQ pending bit checked, and the requesting
device has its bit cleared.

Message Signaled Interrupts

MSI was introduced in revision 2.2 of the PCI spec in 1999 as an optional
component. However, with the introduction of the PCIe specification in 2004,
implementation of MSI became mandatory from a hardware standpoint.
Unfortunately, software support in mainstream operating systems was slow in
coming, forcing many MSI-capable PCIe* devices to operate in legacy mode.
The MSI model eliminates the devices’ need to use the IO-APIC, allowing
every device to write directly to the CPU’s Local-APIC. The MSI model
supports 224 interrupts, and, with this high number of interrupts, IRQ
sharing is no longer allowed. The following is the sequence for MSI delivery
and servicing:

• A device needing servicing from the CPU generates an MSI, writing the
interrupt vector directly into the Local-APIC of the CPU servicing it.

• The interrupted CPU begins running the ISR associated with the
interrupt vector it received. The device is serviced without any need
to check and clear an IRQ pending bit

PCIe* Interrupt Latency
Methodology

As interrupt latency is important for embedded applications, Intel has made
several architectural enhancements to better accommodate efficient interrupt
handling. Additionally, Intel has tracked the changes in interrupt performance
from generation to generation. The interrupt performance of each platform
generation is based on the interrupt latency. The interrupt latency is defined
as the elapsed time from when a device requests servicing from the CPU (the
generation of the interrupt) to when the CPU begins servicing the device
(running the ISR). Intel has developed a methodology for measuring this
latency, which is presented here. This methodology applies to the Linux*
family of operating systems.

This section describes the methodology used for the setup, execution, and
collection of data for the measurement of interrupt latency on XT-PIC, IO-
APIC, and MSI systems with both Symmetric Multi-processor (SMP) and UP
Linux 2.6 kernels. The latency analysis involves two separate observation
points: first, a PCIe analyzer, and, secondly, an FSB analyzer.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

12 321070

Interrupt Generation

The interrupt latency measurement requires two events: the interrupt itself
and some indication of the start of servicing by the ISR. As a result of this
requirement, the methodology provides for both the generation of interrupts
as well as the generation of an ISR to service the interrupts. PCIe* exerciser
cards are used to generate the interrupts. Any third party PCIe* exerciser
capable of creating an “Assert X” or MSI packet is sufficient. A custom device
driver for Linux is needed to request an interrupt assignment from the OS
and to register an ISR for the granted interrupt with the OS. An overview of
such a device driver is provided in subsequent sections.

The following sections outline the methodology utilized to configure the
operating system to use the appropriate interrupt architecture, to configure
an exerciser for interrupt generation, and to configure a device driver to
request an interrupt and to supply an ISR.

XT-PIC OS Configuration

XT-PIC interrupt delivery under Linux* is only supported for UP kernels. A 2.6
version of the kernel can be recompiled as UP with XT-PIC support by making
the following changes. First, append _XT-PIC to the EXTRAVERSION of the
Makefile found in the Linux source directory. Once the Makefile has been
updated, the kernel needs to be configured as UP. This can be accomplished
by disabling Symmetric mulit-processor support under the Processor Types
and features menu of the Linux Kernel Configuration Menu, which is accessed
via make menuconfig. Finally, the Local-APIC must be disabled by deselecting
Local-APIC support on uniprocessors from the same menu. With only these
options changed from the default settings, the kernel configuration can be
saved and the kernel recompiled. Booting into the newly compiled kernel will
provide a UP OS that only supports XT-PIC interrupts.

IO-APIC OS Configuration

IO-APIC interrupt delivery under Linux is supported for both UP and SMP
kernels. A 2.6 version of the kernel can be recompiled as either UP or SMP
with IO-APIC support by making the following changes. First, append either
<SMP/UP> as well as _IO-APIC to the EXTRAVERSION of the Makefile found
in the Linux source directory. Once the Makefile has been updated, the kernel
should be configured as either UP or SMP, depending on the configuration
desired. This can be accomplished by either enabling or disabling Symmetric
mulit-processor support under the Processor Types and features menu of the
Linux Kernel Configuration Menu, which is accessed via make menuconfig. In
the case of a UP kernel, the Local-APIC must be enabled by selecting Local
APIC support on uniprocessors from the same menu. Additionally, for both UP
and SMP kernel configurations, MSI support should be disabled under the Bus
Options submenu of the Processor types and features menu. With only these
options changed from the default settings, the kernel configuration can be

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 13

saved and the kernel recompiled. Booting into the newly compiled kernel will
provide either a UP or SMP OS that supports IO-APIC interrupts.

MSI OS Configuration

Just like IO-APIC interrupts, MSI interrupt delivery under Linux* is supported
for both UP and SMP kernels. A 2.6 version of the kernel can be recompiled
as either UP or SMP with MSI support by making the following changes. First,
append either <SMP/UP> as well as _MSI to the EXTRAVERSION of the
Makefile found in the Linux source directory. Once the Makefile has been
updated, the kernel should be configured as either UP or SMP, depending on
the configuration desired. This can be accomplished by either enabling or
disabling Symmetric mulit-processor support under the Processor Types and
features menu of the Linux Kernel Configuration Menu accessed via make
menuconfig. In the case of a UP kernel, the Local-APIC must be enabled by
selecting Local APIC support on uniprocessors from the same menu.
Additionally, for both UP and SMP kernel configurations, MSI support should
be enabled under the Bus Options submenu of the Processor types and
features menu. With only these options changed from the default settings,
the kernel configuration can be saved and the kernel recompiled. Booting into
the newly compiled kernel will provide either a UP or SMP OS that supports
MSI interrupts.

PCIe* Exerciser Configuration

The PCIe* exerciser must be capable of generating both “Assert X” and MSI
packets. The methodology outlined here also requires that the device request
a region of Memory Mapped IO (MMIO) to which the ISR and tasklet will
write, indicating the entry of each. The details on how to configure a
particular PCIe exerciser are beyond the scope of this paper. However, the
PCI bus number assigned to the exerciser and the base address mapped to it
are both required for the device driver presented in this paper.

Device Driver Kernel Module for the PCIe* Exerciser

A custom kernel module that acts as a device driver for a PCIe* exerciser is
presented here. The kernel module provides the ISR for both legacy (XT-PIC
and IO-APIC) as well as MSI interrupts. The kernel module generates
memory write signatures that can be seen on the FSB as well as the PCIe
link. These memory write signatures are generated upon entry of the main
ISR as well as the scheduled tasklet. The memory writes themselves are to
non-cacheable MMIO locations on the PCIe exerciser. This ensures that only a
minimal delay exists between when the CPU enters the ISR or tasklet and
issues the write to when it appears on the FSB. The kernel module must be
provided with the base address of the MMIO region assigned to the PCIe
exerciser so that it can perform the signature writes. For greater
functionality, this base address is provided to the device driver through the
dev_io_mem command line parameter supplied while inserting the module.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

14 321070

Additionally, the msi_mode=0 command line option is also needed when
running in XT-PIC or IO-APIC mode. The following figure showing driver
initialization code does not take into account error handling, which was
intentionally omitted as this figure is intended to give only a general idea of
the initialization algorithm used in the methodology.

Figure 3. Pseudo Code for Driver Initialization Function

static int MSI_init_module (void)
{
 int result;

 //Register this kernel module as a character device
 result = register_chrdev(PCIeIRQ_Major, "PCIe_IRQ", &PCIeIRQ_fops);
 //Find the PCIe exerciser card
 dev_cfg_space = pci_find_device(PCIeExerciser_vid, PCIeExerciser_did, NULL);
 //Set up a pointer to the base address of the MMIO
 ack_pointer = ioremap(dev_io_mem, WRITE_BACK_RANGE);
 //Set up a pointer to the PCI Config Space of the Excersiser card
 PCI_Reg_Pointer = ioremap(PCIE_EXERCISER_CONFIG_BASE, PCI_CONFIG_SIZE);
 //Determine if we are running in MSI mode or Legacy ()XT-PIC/IO-APIC)
 if(msi_mode){
 //Ask Linux to enable MSI support on this device
 result = pci_enable_msi(dev_cfg_space);
 //Display the MSI vector assigned to the exerciser by the OS
 printk(KERN_NOTICE "MSI Interrupt vector: %i.\n", dev_cfg_space->irq);
 //Register the ISR with the OS for the granted IRQ
 return request_irq(dev_cfg_space->irq, MSI_ISR, SA_INTERRUPT, "PCIe_IRQ",

 dev_cfg_space);
 }else{
 //Display the IRQ assigned to the exerciser by the OS
 printk(KERN_NOTICE "IRQ: %i.\n", dev_cfg_space->irq);
 //Register the ISR with the OS for the granted IRQ
 return request_irq(dev_cfg_space->irq, INTx_ISR,SA_INTERRUPT | SA_SHIRQ,

 "PCIe_IRQ", dev_cfg_space);
 }
}

Once the device driver is inserted into the kernel and the interrupt for the
PCIe exerciser card has been properly initialized with the OS, the exerciser-
specific method of generating interrupts can be initiated. This will cause the
OS to invoke the appropriate ISR based on the interrupt deliver method used.
The following figures show the pseudo code for each.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 15

Figure 4. Pseudo Code for Legacy (XT-PIC/IO-APIC) ISR

static irqreturn_t INTx_ISR (int irq, void *dev_id, struct pt_regs *regs)
{
 //Incase of a shared IRQ Check if the interupt is ours
 if(IRQ_PENDING_FLAG & PCI_STATUS_REG){
 //Clear the the interupt
 PCI_INT_REG = IRQ_CLEAR_MASK;
 //Write to the MMIO location of the PCIe exerciser to signal ISR entry
 *(ack_pointer+0x10) = int_count;
 //Schedule the tasklet with the OS
 tasklet_schedule(&tasklet);
 //Tell the OS we handled the IRQ
 return IRQ_HANDLED;
 }else{
 //The IRQ is shared and not ours, so let the OS know we did not handle it
 return IRQ_NONE;

}

Figure 5. Pseudo Code for MSI ISR

static irqreturn_t MSI_ISR (int irq, void *dev_id, struct pt_regs *regs)
{
 //Write to the MMIO location of the PCIe exerciser to signal ISR entry
 *(ack_pointer+0x10) = int_count;
 //Schedule the tasklet with the OS
 tasklet_schedule(&tasklet);
 //Tell the OS we handled the IRQ
 return IRQ_HANDLED;
}

Event Observation

Only three of the events generated by the methodology outlined above must
be measured for the latency to be observed: the interrupt packet (either
assert X or MSI) and each of the two outbound writes (indicating execution of
the ISR and the tasklet). There are two main observation points for these
events, the PCIe* interface to which the exerciser is connected and the FSB
link to which the servicing CPU is connected. From a PCIe perspective, any
analyzer would work for this methodology. The screen shots included here
are from a Catalyst Summit PCIe Gen2 analyzer. FSB analyzers are very cost
prohibitive, and, as a result, the methodology presented here focuses on the
use of a PCIe analyzer. However, some FSB traces and a brief discussion of
the added visibility such an analyzer provides are included. The following
figures show all the events that can be measured from the PCIe analyzer for
legacy XT-PIC/IO-APIC interrupts. In the case of MSI interrupts, the events
would simply be the three required for the methodology:

• MSI writing the interrupt vector to the Local-APIC

• Write to the MMIO indicating ISR entry

• Write to the MMIO indicating tasklet entry

Since the MSI events are a subset of the legacy events, the examples in the
remainder of this section will use the full set of legacy events for
completeness.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

16 321070

Figure 6. PCIe* Visible Legacy (XT-PIC/IO-APIC) Events

The following list corresponds to the events shown in the above figure:

1. PCIe* exerciser issues Assert INTX packet on PCIe link (Start
measuring latency).

2. MCH routes interrupt vector from IO-APIC to Local-APIC.

3. ISR checks if IRQ came from PCIe exerciser.

4. MCH forwards IRQ check to the PCIe exerciser.

5. PCIe exerciser responds that it generated the interrupt.

6. MCH routes PCIe exerciser’s response to CPU.

7. ISR clears PCIe exerciser’s interrupt.

8. MCH routes clearing of interrupt to PCIe exerciser.

9. ISR entry triggers MMIO write (Stop measuring ISR latency).

10. MCH routes MMIO write to PCIe exerciser.

11. Tasklet entry triggers MMIO write (Stop measuring tasklet latency).

12. MCH routes MMIO write to PCIe exerciser.

PCIe* Analyzer

Using a PCIe* analyzer with sufficient trace depth, triggered on either a
memory write TLP (Transaction Layer Packet) with an address of 0xFEXXXXXX
(the MSI) or the Assert X message, will ensure that all the PCIe* visible

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 17

events are captured. The following figure shows the trace of a legacy
interrupt.

Figure 7. PCIe* Analyzer Trace of Legacy (XT-PIC/IO-APIC) Events

FSB Analyzer

Using an FSB analyzer, a trigger can be set up on the interrupt transaction
associated with the PCIe exerciser. The use of an FSB analyzer allows greater
visibility into the sub-latencies that make up the overall interrupt latency.
Figure 8 shows the same 12 events from Figure 7. However, some attempt
has been made to capture the relative times of each event. Some of the
actions contributing to each of the sub-latencies are also shown.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

18 321070

Figure 8. PCIe* Analyzer Trace of Legacy (XT-PIC/IO-APIC) Events

Note: The timings shown here are much larger than the actual timings detailed in
the Results section of this paper.

Results
This section presents data collected on two classes of Intel® platforms using
the methodology described in the previous section. Results are presented for
both UP and SMP kernels in the case of a multi-core and/or hyper-threaded
processor.

Workstation Class Platform

The workstation class platform had one dual core CPU, allowing both UP and
SMP kernels to be tested. However, since the XT-PIC delivery method is only
supported under a UP kernel, and since the purpose of this paper is to show
the advantage of MSI over both IO-APIC and XT-PIC, only the data for a UP
kernel is shown here. As described in the Methodology section, the data was
collected on a standard Linux* 2.6 kernel. No attempts to optimize the
interrupt handling architecture of the kernel were made. As a result, the
latencies shown here are normalized to the MSI latency. An embedded
application that is extremely sensitive to IRQ latency would be run on an

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 19

optimized Real-Time Operating System (RTOS), which would provide the
lowest possible IRQ latency for a given platform.

Figure 9. Normalized UP Workstation Results

Workstation Platform
ISR Latency Vs. Interrupt Delivery Method

0 1 2 3 4 5 6 7 8

XT-PIC

UP IO-APIC

UP MSI

In
te

rr
up

t D
el

iv
er

y
M

et
ho

d

ISR Latency Normalized to MSI
(Lower is better)

MSI provides almost a 3x reduction in interrupt latency over IO-APIC, with
the advantage over XT-PIC being nearly 7x. The tasklet latencies are
proportional to the ISR latencies shown here, with the tasklet latencies being
higher than the ISR latencies due to the additional overhead of the OS’
scheduling the tasklet to run. This proportionality in latencies is expected as
the system under test was lightly loaded, allowing the tasklets to be
scheduled immediately following the execution of the ISR. In a heavily loaded
system, the tasklet latencies would be higher (a drawback of the tasklet with
ISR framework). However, this is the price that must be paid for the
responsiveness enjoyed by all the ISRs under such a framework.

System-on-a-Chip Platform

The SoC platform had a single core CPU, allowing only a UP kernel to be
tested. Again, to show the relative advantage of moving to the MSI interrupt
delivery method, the data presented here has been normalized.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

20 321070

Figure 10. Normalized UP SoC Results

SOC
ISR Latency Vs. Interrupt Delivery Method

0 1 2 3 4 5 6 7

XT-PIC

UP IO-APIC

UP MSI

In
te

rr
up

t D
el

iv
er

y
M

et
ho

d

ISR Latency Normalized to MSI
(Lower is better)

Again, MSI provides about a 3x reduction in interrupt latency over IO-APIC,
with the advantage over XT-PIC being just over 6x. The slower CPU
frequency relative to the distance of the PIC in an SOC makes the advantage
of MSI over XT-PIC only slightly less dramatic.

This survey of two platform classes shows the significant benefit of MSI
regardless of the target platform class. The consideration of using MSI should
not only be motivated by reducing interrupt latency but by also reducing CPU
utilization. The time required for the CPU to respond to the interrupt
(interrupt latency) is time essentially wasted by the CPU. For example, a CPU
that spends microseconds determining what interrupt needs servicing by
polling devices and masking interrupt controllers is unable to carry out other
tasks during that time. The CPU, then, is limited in both the number of
interrupts it can process per second as well as in the amount of time it can
devote to user-level applications. As a result, moving to an MSI delivery and
servicing model not only improves IO performance by greatly reducing
interrupt latency, but also improves overall system performance by freeing
CPU time for other interrupts and user-level applications.

Conclusion
MSI provides a significant reduction in interrupt latency over the previous two
generations of Intel interrupt architecture. The benefits extend beyond a
reduction in interrupt latency to a reduction in CPU utilization by eliminating

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 21

the time spent by the CPU determining what interrupt needs servicing (by
polling devices and masking interrupt controllers). Embedded developers
considering Intel® architecture for a solution or currently developing one
should fully adopt the MSI model for interrupt delivery and servicing to
ensure not only the best IO performance for their solution, but also the most
CPU headroom for user-applications and other interrupts. In summary, MSI
provides the following key benefits to the embedded developer over previous
interrupt architectures:

• Increased number of interrupts to support more devices and
peripherals.

• Dramatic reduction in the delay from when a device needs servicing to
when the CPU begins servicing the device.

• Simplified board design: no need for an interrupt controller (IO-
APIC/PIC).

• Flexible interrupt priority assignment scheme.

• Interrupt load balancing across CPUs. Devices can direct interrupts to
specific cores to leverage common caches and to ensure equal
workloads on all CPUs.

Reducing Interrupt Latency through the use of Message Signaled Interrupts

22 321070

Author

James Coleman is a Performance Architect with Intel the Embedded
and Communications Group.

Acronyms

APIC Advanced PIC

CPU Central Processing Unit

DMI Direct Media Interface

FSB Front Side Bus

INT Interrupt

IO Input/Output

IRQ Interrupt Request

ISR Interrupt Service Routine

MCH Memory Controller Hub

MMIO Memory Mapped IO

MP Multi-processor

MSI Message Signaled Interrupts

OS Operating System

PC Personal Computer

PCI Peripheral Component Interconnect

PCIe* Peripheral Component Interconnect Express

PIC Programmable Interrupt Controller

RTOS Real-time Operating System

SMP Symmetric Multi-processor

SoC System on Chip

TLP Transaction Layer Packet

UP Uni-processor

Reducing Interrupt Latency through the use of Message Signaled Interrupts

321070 23

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use
in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

This paper is for informational purposes only. THIS DOCUMENT IS PROVIDED "AS IS" WITH NO
WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel disclaims all liability, including
liability for infringement of any proprietary rights, relating to use of information in this specification.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino logo, Core Inside, Dialogic, FlashFile, i960,
InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Core,
Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel Atom, Intel NetBurst,
Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv,
Intel vPro, Intel XScale, IPLink, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm,
Pentium, Pentium Inside, skoool, Sound Mark, The Journey Inside, VTune, Xeon, and Xeon Inside are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the U.S. and other
countries..

*Other names and brands may be claimed as the property of others.

Copyright © 2008 Intel Corporation. All rights reserved.

	Executive Summary
	Contents
	Business Challenge
	Solution
	Introduction to Interrupts on Intel® Architecture
	Intel® Architecture Overview
	CPU
	MCH
	IO Controller Hub
	FSB
	Overview of Interrupts on Intel® Architecture Under Linux*

	Overview of Interrupt Delivery Methods
	Legacy XT-PIC Interrupts
	IO-APIC Interrupts
	Message Signaled Interrupts

	PCIe* Interrupt Latency Methodology
	Interrupt Generation
	Event Observation

	Results
	Workstation Class Platform
	System-on-a-Chip Platform

	Conclusion

