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To Thomas and Elizabeth

Disorders of intellect . . . happen much more
often than superficial observers will easily
believe.

Samuel Johnson: The History of Rasselas, Prince

of Abyssinia (1759)
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Foreword

Timothy D. Griffiths
Professor of Cognitive Neurology,

Newcastle University, UK

This impressive single-author work sets out the psy-
chological features of all of the common (and a
number of not-so-common) neurological and med-
ical disorders.

Neurologists often regard the psychological
examination as a bit of a black art. However, the
psychological examination can be regarded as a
similar tool to the standard neurological examina-
tion as a means to establish “profiles” of deficits that
implicate particular parts of the nervous system.
I see the principal utility of this work as being the
demystification of cognitive profiles to enable neu-
rologists to have an idea of what to expect and what
not to expect in a large number of disorders. The
book includes both conventional cognitive disor-
ders, such as acute and chronic memory disorders,
and also neurological disorders in which cognitive
deficits are not the most striking manifestations,
in which it will serve as a useful reference. If you
survey patients and their families that suffer from
cognitive symptoms, what they appreciate most
in the cognitive clinic is a clear explanation of
the nature and effect of their disorder. This work
provides a basis for such explanation.

Neuropsychological neurology is by definition a
two-way street that requires a close collaboration
between neurology and neuropsychology. A num-
ber of cognitive clinics in the UK, including my
own, are run as joint clinics that cross between the
two disciplines. Many neurologists, however, do not
have the luxury of spending time with neuropsy-
chology colleagues and this work will help them

xi



xii Foreword

to know what to ask neuropsychology colleagues
about in given disorders. This book will also be
helpful to neuropsychologists who might need to
demystify, for example, peculiar genetic conditions
with ack-ack names and understand what cognitive
deficits should be expected and sought. If the book
helps neurologists and neuropsychologists to talk to
each other more usefully that will be a valuable out-
come in itself.



Preface to the second edition

The aim of the second edition of this book remains
the same as in the first, namely to review what is
known about the neuropsychological or neurocog-
nitive impairments that occur in neurological dis-
orders and in some general medical conditions that
may be seen by neurologists. A phenomenological
perspective is presented, using an etiological clas-
sification of neurological disorders (in the absence
of a comprehensive pathogenic/molecular classifi-
cation), an approach which at least has the advan-
tage of being familiar to practising neurologists. The
volume may be seen as the theoretical compan-
ion to a prior, practical volume that attempted to
summarize the author’s clinical experience of work-
ing in a cognitive disorders clinic over more than a
decade [1].

There are two major changes from the first edi-
tion, one omission and one addition. The omis-
sion is the long section devoted to “Bedside neu-
ropsychological test instruments” (first edition, Sec-
tion 1.8, pp. 22–32), because these issues have since
been covered in greater detail elsewhere [1,2]. The
addition has been two further chapters, devoted
to sleep-related disorders (Chapter 11) and psy-
chiatric disorders (Chapter 12), respectively, both
of which may be encountered in cognitive dis-
orders clinics. All the pre-existing chapters have
been thoroughly revised and updated, and there
has been some reordering to make the text more
logical.

As in the first edition, detailed discussions of the
neurological features of the disorders covered and of
neurological signs are not included, further concise

xiii
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information on which may be obtained elsewhere
[3,4].
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1.1 Domains of cognitive function

Without necessarily subscribing to an explicitly
modular concept of cerebral function, it is nonethe-
less convenient from the clinical standpoint to think
in terms of cognitive domains or functional sys-
tems (“a congeries of mental faculties”) in the brain,
specifically attention, memory, language, percep-
tion, praxis, and executive function. These sub-
divisions, all working in concert not in isolation
to produce in sum what we understand by con-
sciousness, may direct a structured approach to
the clinical assessment of cognitive function. Nowa-
days, a model of distributed neural networks with

nodal points more specialized for certain func-
tions has supplanted the idea of particular brain
centers [1].

The neurocognitive domains may be described
as either localized, implying lateralization to one
hemisphere or part thereof, focal damage to which
may impair that specific function; or distributed,
implying a nonlocalized function often involv-
ing both hemispheres and/or subhemispheric
structures (basal ganglia, brainstem), widespread
damage being required to impair these functions
[2]. Furthermore, particular domains may be
subdivided, or fractionated, into subsystems or
specific functions that may be selectively impaired,
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2 1: Cognitive function

suggesting the existence of functionally distinct
neuropsychological substrates.

1.1.1 Attention

It is surely redundant to point out that before any
meaningful assessment of “higher cognitive func-
tion” can be made, it should be ascertained that
“lower cognitive function” is intact, assuming that
the workings of the nervous system are hierarchical
(in the Jacksonian sense) in their operation. To
indulge in reductio ad absurdum, it would not
be reasonable to expect a comatose patient, or
a sleeping subject, to perform well on tests of
memory, although memory function may be intact
or impaired on recovery from coma or awakening
from sleep.

The nature of consciousness is an area of great
interest to both neuroscientists and philosophers
[3–7], but other than to assume that it is an emer-
gent property of brain function, nothing further
about its possible neuroanatomical and neuro-
physiological bases will be considered here, other
than to note that dissociation between apparent
preservation of consciousness and absence of cog-
nitive function may occur, as in vegetative states
[8], although this has been questioned on the basis
of neuroimaging [9] and electroencephalography
(EEG) studies [10].

Disturbance of consciousness may encompass
both a quantitative and a qualitative dimension.
Hence, one may speak of a “level” of conscious-
ness, perhaps in terms of arousal, alertness, or vigi-
lance, forming a continuum from coma to the
awake state; and an “intensity” or quality of con-
sciousness, in terms of clarity of awareness of the
environment, and ability to focus, sustain, or shift
attention. There are various clinical descriptors of
states of impaired consciousness including coma
[11], vegetative state [8], and minimally conscious
state [12]. Coma implies a state of unresponsiveness
from which a patient cannot be roused by verbal
or mechanical stimuli. Lesser degrees of impaired
consciousness, sometimes labeled clinically as

stupor, torpor, or obtundation (although these
terms lack precision, their meaning often vary-
ing between different observers), may also inter-
fere with cognitive assessment. These states may
be obvious clinically, such as drowsiness, or diffi-
culty rousing the patient, but may also be occult,
perhaps manifesting as increased distractibility.
Impairments in level of consciousness are a sine qua
non for the diagnosis of delirium, as enshrined in
the diagnostic criteria of the Diagnostic and Statis-
tical Manual (DSM-IV) and the International Classi-
fication of Diseases (ICD10), although these deficits
may be subtle and not immediately obvious at
the bedside but yet sufficient to impair attentional
mechanisms. These attentional deficits may be
responsible for the impaired cognitive function that
is also a diagnostic feature of delirium (Section 12.1)
[13,14].

Attention, or concentration, is a nonuniform,
distributed cognitive function. It may be defined
as that component of consciousness which dis-
tributes awareness to particular sensory stimuli.
The nervous system is bombarded with stimuli
in multiple sensory domains, only some of which
reach awareness or salience while many percepts
are not consciously noticed. Attentional resources,
which are finite, are devoted to some channels
but not to others. Attention is thus effortful, selec-
tive, and closely linked to intention. Distinction
may be made between different types of attentional
mechanism: sustained attention implies devotion of
most attentional resources to one particular stimu-
lus, whereas selective attention is the directing of
attentional resources to one stimulus among many
(the “cocktail party phenomenon”); divided atten-
tion implies a division of attentional resources
between competing stimuli. Various neuroanatom-
ical structures are thought to be important in medi-
ating attention, including the ascending reticular
activating system in the brainstem, the thalamus,
and prefrontal cerebral cortex of multimodal asso-
ciation type, particularly in the right hemisphere,
as damage to any of these areas may result in
impairments of attention [15]. Dopaminergic and
cholinergic tracts are thought to be the important
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neurotransmitter pathways mediating attention
[16].

The term “working memory” is used by neuro-
psychologists to describe a limited capacity store
for retaining and manipulating information over a
short term, one to two minutes, and for “online”
manipulation of that information. This system has
a limited capacity wherein information rapidly
degrades unless continuously rehearsed (hence
“unstable,” compared to longer-term memory).
Working memory may be fractionated into a num-
ber of subsystems: verbal (phonological or artic-
ulatory loop) and visual (visuospatial sketch pad)
components, governed by a supervisory central
executive, as well as a postulated episodic buffer
that acts as a multimodal temporary store to
interface with perception and long-term mem-
ory [17]. Working memory function is dissociable
from “long-term memory” function (Section 1.1.3);
for example, in patients with amnesia as a con-
sequence of Wernicke–Korsakoff syndrome, work-
ing memory is preserved (Section 8.3.1.1). Working
memory is perhaps better envisaged as a compo-
nent of the selective attention system (the “specious
present” of William James), and is certainly not
congruent with the usage of the term “short-term
memory” by patients, which generally refers to
recent long-term memory. Grammatical complexity,
for example in sentence construction, is associated
with working memory capacity, which mediates the
need to keep many elements in play and not lose the
train of thought before completing the sentence.

Another clinical phenomenon related to atten-
tional processes is neglect. Sometimes also known
as inattention, neglect is a failure to orient to,
respond to, or report novel or meaningful stim-
uli in the absence of sensory or motor deficits
(such as hemiparesis or hemianopia), which could
explain such behavior. Extinction, the failure to
respond to a novel or meaningful sensory stimulus
on one side when a homologous stimulus is given
simultaneously to the contralateral side (i.e., dou-
ble simultaneous stimulation), sometimes called
“suppression,” may be a lesser degree of neglect. In
the visual domain, neglect may be categorized as

a disorder of spatial attention, which is more com-
mon after right-sided rather than left-sided brain
damage, usually of vascular origin. This observa-
tion may be accounted for by the ability of the right
hemisphere to attend to both sides of space whereas
the left hemisphere attends to the right side of space
only (i.e., there is some lateralization of function).
The angular gyrus and parahippocampal gyrus may
be the critical neuroanatomical substrates under-
pinning the development of visual neglect [18,19].

In terms of clinical assessment, the Glasgow
Coma Scale (GCS) is the instrument most com-
monly used for monitoring the level of conscious-
ness [20]. Introduced originally to assess the sever-
ity of traumatic head injuries, it has subsequently
been applied in other clinical situations (e.g., delir-
ium, stroke), although its validity in some of these
circumstances remains to be confirmed. In the indi-
vidual patient, use of the individual components
of the GCS (best eye, verbal, and motor response
or EVM) is more useful than the summed score
(out of 15), although for the purposes of demo-
graphic research use of the summed score is prefer-
able. It should be noted that a GCS score of 15/15
does not guarantee intact attention, as deficits
may be subtle, and therefore it may be necessary
to undertake other tests of attentional function
before other neuropsychological instruments are
administered.

Many tests of attention are available. Examples
included the Trail Making Test, the Continuous
Performance Test, the Paced Auditory Serial Addi-
tion Test (PASAT) and its visual equivalent (PVSAT),
and the Symbol Digit Modalities Test. Simple bed-
side tests that tap attentional mechanisms include
orientation in time and place, digit span forward
and/or backward (also WAIS-R Digit Span subtest),
reciting the months of the year or the days of the
week backward, or counting back from 30 down
to 1. Distractibility may be evident if the patient
loses his or her way, or starts the more automatic
forward recital. In the Mini-Mental State Examin-
ation (MMSE), the most commonly administered
“bedside” or office test of cognitive function [21],
subtracting 7 from 100 repeatedly (serial sevens:
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93,86,79,72,65, etc.) or spelling the word “world”
backward are labeled as tests of attention or concen-
tration, but it should be realized that failure in these
tests may be for reasons other than impaired atten-
tion (e.g., poor mental arithmetic abilities in serial
sevens).

Neglect may be clinically obvious, for example if
a patient fails to dress one side of the body, but it is
sometimes more subtle, in which case its presence
may be sought using cancelation tests (e.g., stars
in an unstructured array, or letters in a structured
array), figure copying (e.g., the Rey–Osterrieth com-
plex figure), line bisection tasks, numbering a clock
face, or drawing from memory.

1.1.2 General intelligence (IQ)

Formal neuropsychological assessment often
involves testing of general intelligence (IQ) before
any specific assessment of the individual domains
of cognitive function. This is legitimate as a gen-
eral intelligence factor “g” seems to account for a
significant proportion of the individual differences
among test scores for groups of people [22]. General
intellectual function is most often measured by
administration of one of the Wechsler Intelligence
Scales, most often the Wechsler Adult Intelligence
Scale-Revised (WAIS-R) [23] or the Wechsler Adult
Intelligence Scale-III (WAIS-III) [24]. Updating
of these tests is required periodically because of
changes in the abilities of the normative group from
which standardized scores are derived [22]. Studies
over time and from around the world suggest that
IQ is rising at the rate of three points every decade,
the “Flynn effect” [25].

Administration of these tests may take up to two
hours or more, sometimes necessitating more than
one testing session to avoid patient fatigue. Sub-
tests in these batteries fall into two categories, ver-
bal and performance, the former including tests
of general knowledge, vocabulary, comprehension,
and verbal abstract thinking (e.g., digit span, arith-
metic, similarities), and the latter including tests
of perceptual organization, complex visuospatial

function, and psychomotor speed (e.g., digit sym-
bol, picture completion and arrangement, block
design, object assembly). These subtests yield an
index of verbal intelligence, verbal IQ (VIQ), and
of performance intelligence, performance IQ (PIQ),
as well as an overall full scale IQ (FSIQ). Based on
extensive normative data from healthy North Amer-
icans and Europeans, these measures have a mean
score of 100 with a standard deviation of 15 such
that 95% of the population will fall within the range
70–130. Generally VIQ and PIQ are correlated, but
occasional discrepancies may be seen in normal
individuals. The belief that the VIQ–PIQ split can
be reliably used to infer the lateralization of brain
pathology (VIQ more impaired in left-sided lesions,
PIQ with right-sided lesions) should be viewed with
some caution [26].

When assessing individuals complaining of cog-
nitive disorders, especially memory disorders, an
IQ score per se may not be particularly helpful.
However, change in IQ, possibly reflecting cognitive
decline, is more useful, but it is seldom the case that
an individual patient will have undergone previ-
ous testing with which a comparison may be made.
Previous educational and occupational history may
give clues to premorbid intelligence, as may per-
formance on verbal subtests of the WAIS batteries.
This difficulty may also be partially circumvented
by administering a test specifically designed to esti-
mate premorbid intellectual abilities, such as the
National Adult Reading Test (NART) [27], because
the overlearned ability to read a series of words with
irregular spelling-to-sound correspondences is rel-
atively preserved in a number of neurodegenera-
tive disorders (there are exceptions such as fronto-
temporal lobar degenerations causing linguistic
syndromes; Sections 2.2.2 and 2.2.3). The NART IQ
may then be compared with the Wechsler FSIQ to
give some indication of whether general intellectual
function is stable or has declined. A difference of
20 points is probably significant, 40 points certainly
so.

Nonverbal tests of general intelligence are
also available, such as the Progressive Matrices
described by Raven [28,29]. Other tests examining



1.1 Domains of cognitive function 5

general cognitive functioning by means of neuro-
psychological batteries and assessment of premor-
bid intelligence are available.

1.1.3 Memory

Memory is a nonuniform, distributed cognitive
function or “subassembly” [30]. In other words,
subdivisions in memory function may be differ-
entiated, which involve various neuroanatomical
substrates.

Current taxonomies of memory propose a dis-
tinction between declarative (also known as explicit
or conscious memory) and nondeclarative mem-
ory (implicit, procedural, unconscious memory).
Declarative or explicit memories are intentional
or conscious recollections of previous experience.
Declarative memory may be subdivided further into
episodic memory and semantic memory. Episodic
memories are specific personal events, sometimes
known as autobiographical memories, which are
time and place (context) specific, whereas seman-
tic memories are facts, a database of culturally
approved knowledge independent of any specific
context. A distinction may also be drawn between
anterograde memory, the laying down of new mem-
ories, and retrograde memory, the store of pre-
viously encoded material. An autobiographical–
semantic dissociation of retrograde memory loss
may be noted. In contrast with explicit memory,
implicit memories refer to a heterogeneous collec-
tion of faculties, such as skill learning, priming, and
conditioning, which are not available to conscious
thought or report [31–33].

In clinical practice, lay observers and primary
care physicians frequently distinguish between
problems with “short-term memory” and “long-
term memory,” most usually referring to materi-
al learned recently or in the more distant past,
respectively. Such a division persists in profes-
sional terminology, although the meanings are dif-
ferent. Professional “short-term memory” is analo-
gous to “working memory,” best conceptualized
as an attentional function (Section 1.1.1). Patient
“short-term memory” is in fact one component of

professional “long-term memory” (which encom-
passes all the subdivisions previously mentioned),
specifically that for the learning of new information.
Amnesia is the syndrome of impaired memory and
new learning, which may be variously characterized
as anterograde or retrograde and acute/transient
or chronic/persistent. Anterograde amnesia may be
clinically manifested as repeated questioning about
day-to-day matters, inability to carry out simple
chores, or repeating the same information. A better
distinction may be between “recent” and “remote”
memory.

The neuroanatomical substrates of explicit mem-
ory are partially understood, based on studies of
experimental animals and of patients developing
memory problems as a consequence of focal brain
lesions that may be examined by means of neuro-
psychological testing and, more recently, neuro-
imaging. The literature makes reference to
hippocampal, diencephalic, and frontal and
basal forebrain amnesia, largely based on lesion
and neuropathological studies. Structures in the
medial temporal lobe, centered on the hippocam-
pus, and in the diencephalon surrounding the
third ventricle are thought to be crucial to episodic
memory. Lesions anywhere along the circuit origin-
ally described by Papez (entorhinal area of the
parahippocampal gyrus, perforant and alvear
pathways, hippocampus, fimbria and fornix, mam-
millary bodies, mammillothalamic tract, anterior
thalamic nuclei, internal capsule, cingulate gyrus,
and cingulum) may lead to anterograde and ret-
rograde amnesia. Furthermore, memory functions
are lateralized in a material-specific manner, with
verbal memory functions being associated with the
dominant (usually left-sided) structures, and visual
memory with the nondominant (usually right) side
[34,35].

The experience of the patient known as HM was
a key indicator of the importance of these struc-
tures for memory function (Section 4.1). Because
of his medically refractory epilepsy, HM underwent
bilateral medial temporal lobectomy, encompass-
ing the amygdala, entorhinal cortex, anterior den-
tate gyrus, hippocampus, and subiculum. Surgery
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was followed by a dense anterograde amnesia, and
retrograde amnesia covering about a decade prior
to the surgery [36]. Similar outcomes have been
reported, following unilateral surgery, presumably
because of subclinical contralateral pathology [37].
Evocative terms used to describe the predicament
of HM and other similarly affected patients include
“marooned in the moment,” “fossilized in the past,”
and living in a “world of isolated impressions.” HM
was followed up for many years with essentially no
improvement in his neuropsychological deficits. His
importance in the field of memory research contin-
ues to be emphasized [38].

There are many causes of memory disorder
[32,39,40]. Impairment of episodic memory is the
most common presenting feature of Alzheimer’s
disease (AD; Section 2.1), sometimes occurring in
isolation although other cognitive deficits may be
apparent on clinical or neuropsychological assess-
ment. For this reason, and because AD is the most
common cause of dementia, neuropsychological
test batteries, particularly “bedside” tests, are often
weighted toward memory testing, to the relative
exclusion of other cognitive domains such as execu-
tive function, which has consequences when using
such tests to try to identify other neurocognitive dis-
orders in which memory is not the principal domain
affected. Anterograde amnesia may also occur as a
consequence of open or closed head injury (post-
traumatic amnesia), Wernicke–Korsakoff syndrome
(Section 8.3.1.1), herpes simplex encephalitis (Sec-
tion 9.1.1), limbic encephalitis of paraneoplastic
or nonparaneoplastic origin (Sections 6.12.1 and
6.12.2, respectively), strategic brain infarcts (Section
3.2), and surgery to remove temporal lobe or third
ventricle lesions (Section 7.2.3). Transient amnesias
may be of epileptic origin (transient epileptic amne-
sia; Section 4.3.1) or, in transient global amnesia,
of probable vascular etiology (Section 3.6.2). Psy-
chogenic amnesia may also enter the differential
diagnosis of transient amnesia (Section 12.5.1). In
addition, a temporal gradient of retrograde amnesia
may be present in some of these conditions, but rare
cases of focal retrograde amnesia with relative spar-
ing of anterograde memory have been described,

sometimes following head injury or an encephalitic
illness [41].

Many tests are available to neuropsychologists to
probe the specific areas of episodic and semantic
long-term memory. The Wechsler Memory Scale,
now in its third edition (WMS-III), is a battery test-
ing auditory and visual declarative (and working)
memory. Other specific tests of episodic memory
sometimes deployed include the Buschke Selective
Reminding Test [42], the California Verbal Learning
Test [43], the Hopkins Verbal Learning Test [44], the
Camden Recognition Memory Test and the Topo-
graphical Recognition Memory Test [45,46], and the
Rey Auditory Verbal Learning Test. Recall of the Rey–
Osterrieth Complex Figure may be used as a test of
visual memory. Retrograde memory may be investi-
gated using the Autobiographical Memory Interview
[47], which covers both personal semantic informa-
tion and autobiographical incidents, although this
may underestimate the true extent of retrograde
amnesia, missing “islands” of memory loss unique
to the individual. The Famous Faces Test may be
used to study remote memory [48]. Integrity of
the semantic network, including semantic memory,
may be tested using category (or semantic) fluency
tests (Section 1.1.7). Reading words with irregu-
lar sound-to-spelling correspondence may produce
surface dyslexia (regularization errors) in patients
with impaired access to or breakdown of semantic
networks. Other tests accessing associative seman-
tic networks include the Pyramids and Palm Trees
Test [49].

Of the frequently used “bedside” neuropsycho-
logical test instruments, some are specific cogni-
tive tests for memory, such as the Memory Impair-
ment Screen (MIS) [50] and the Free and Cued Selec-
tive Reminding (or Five Words) Test [51]. General,
multidomain, cognitive screening instruments (e.g.,
MMSE [21], Addenbrooke’s Cognitive Examination
[52,53], and Montreal Cognitive Assessment [54])
test memory to a greater or lesser extent; for exam-
ple, the MMSE has only perfunctory examination of
memory function (registration of the names of three
objects, e.g., ball, flag, tree, and recall after distractor
items). Longer (supraspan) word lists are used in the
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DemTect [55] and the Hopkins Verbal Learning Test
[44], and the latter includes both recall and recog-
nition paradigms to try to ascertain whether fail-
ures result from encoding or retrieval defects. Gen-
erally, examination of implicit memory functions is
not undertaken in clinical practice.

Rather less has been written about forgetting, as
opposed to remembering, but this is presumably
also a physiological memory function [56]. It was
Nietzsche’s belief that “For healthy and effective
action, it is as important to forget as to remem-
ber, and forgetting, even more than memory, must
be an effect of time rather than will” (On the
Uses and Disadvantages of History for Life). The
phenomenon of accelerated long-term forgetting
has attracted increasing attention in recent times,
whereby memory tests applied at extended intervals
(usually greater than 24 hours) may disclose antero-
grade memory impairments not seen in standard
test paradigms. This may be of particular relevance
to some of the memory disorders seen in the context
of epilepsy (Chapter 4).

1.1.4 Language

Language, “the wind-swift motion of the brain”
(Sophocles Antigone, line 355), historically pro-
vided the first unequivocal evidence that loss of a
higher brain function could be ascribed to dam-
age to a specific brain region, based on the work
of Paul Broca and, possibly, Marc Dax in the mid-
nineteenth century [57]. The work of Carl Wernicke
was also seminal in establishing the neural sub-
strates of language function, indicating that lan-
guage is a localized function. Every medical student
now knows that most individuals, whether left- or
right handed, have language in the dominant hemi-
sphere, although around 30% of left handers and
less than 1% of right handers have language in the
nondominant hemisphere.

Aphasia, a primary disorder of language, is often
mirrored by similar defects in reading (alexia) and
writing (agraphia), all of which are amenable to
clinical localization, within certain limitations [58],
often on the basis of simple bedside examination.

In addition to the Broca (nonfluent, anterior, motor,
“expressive”) and Wernicke (fluent, posterior, sen-
sory, “receptive”) types of aphasia, clinical distinc-
tions may be drawn between conduction apha-
sia (impaired repetition) and transcortical aphasias
(preserved repetition). A classification of aphasias
as perisylvian (Broca, Wernicke, conduction), and
extrasylvian has also been proposed [59].

It may be necessary to test auditory comprehen-
sion before undertaking any other neuropsychologi-
cal testing of language; for example, using the Token
Test [60] in which commands of increasing length
and complexity are given for manipulating a deck
of colored tokens of differing size and shape (some
have objected to the word “token,” preferring “item”
[61]). Sentence comprehension skills may be ascer-
tained by performance of the Test for the Recep-
tion of Grammar [62]. Wernicke-type aphasia typi-
cally has marked comprehension impairments, with
fluent speech output but often with poverty of con-
tent, sometimes reduced to a meaningless jumble of
words (jargon aphasia). Although Broca-type apha-
sia is often characterized as having preserved com-
prehension, this in fact may be impaired for more
complex syntax.

There are many tests of language available to
neuropsychologists. Comprehensive batteries
include the Boston Diagnostic Aphasia Exami-
nation (BDAE) [63], the Western Aphasia Battery
(WAB) [64], the Psycholinguistic Assessment of Lan-
guage Processing in Aphasia (PALPA) [65], and the
Comprehensive Aphasia Test [66]. Specific tests of
naming often deployed include the Graded Naming
Test [67] and the Boston Naming Test [68].

At the bedside, listening to speech output will
generally permit a simple classification of apha-
sia as fluent or nonfluent, and also detect para-
phasias (phonemic or semantic) and neologisms.
From questioning or instructing the patient during
history taking and clinical examination, compre-
hension difficulties may be evident. Testing of rep-
etition may differentiate aphasias in which this abil-
ity is relatively preserved (transcortical aphasias)
or impaired (conduction aphasia). Naming skills
have less localizing value, although marked anomia
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should raise the suspicion of semantic problems,
either degradation of or access to semantic stores.
Reading and writing function should also be exam-
ined, even if spoken language function seems intact,
as various syndromes of alexia and agraphia are
described. Idea density in written material reflects
language processing ability.

Of the frequently used “bedside” neuropsycho-
logical test instruments, most are heavily weighted
for language function, such that patients with pri-
marily linguistic disorders (e.g., semantic dementia,
aphasic presentations of AD) may find it difficult or
impossible to complete them.

1.1.5 Perception

That perceptions are not a faithful brain response to
external stimuli but are to some extent constructed
by the brain, based on the expectations of time
and culture, has been known by philosophers since
Kant, and perception as illusion has been impli-
citly understood by artists such as Magritte (“the
treachery of images”) and manifested by artists such
as Escher in certain of his graphical works (e.g.,
Ascending and Descending, Belvedere).

Higher-order deficits of sensory processing, not
explicable in terms of failure of primary sensory
function, or a disorder of attention, intellectual
decline, or a failure to name the stimulus (anomia),
are known as agnosias, a term coined by Sigmund
Freud in 1891 and literally meaning “not know-
ing” or “without knowledge” [69]. Before this, Lis-
sauer in 1890 [70] (abridged translation by Shal-
lice and Jackson [71]), speaking of Seelenblind-
heit, literally “soul-blindness” or technically “psy-
chic blindness,” drew a distinction between apper-
ceptive deficits and associative deficits. In the for-
mer, a defect of higher-order complex perceptual
processing was deemed to be present, whereas in
the latter, perception was held to be intact but a
defect in giving meaning to the percept was present.
The debate continues as to whether all agnosias,
although clinically distinguishable as apperceptive
or associative, are in fact attributable to faulty
perception [72].

Although auditory and tactile agnosias are
described, they seem to be relatively rare in com-
parison with visual agnosia, which has certainly
been more extensively studied. The visual agnosias
may be relatively selective; for example, an inability
to recognize previously known human faces or
equivalent stimuli, known as prosopagnosia. This
may be developmental or acquired in origin, the
latter usually a consequence of cerebrovascular
disease causing bilateral occipitotemporal lesions,
but occasionally it occurs as a feature of neuro-
degenerative disease, sometimes in relative isola-
tion, associated with focal right temporal lobe atro-
phy (progressive prosopagnosia [73]). Pure alexia
or pure word blindness is an agnosia for words
that results in a laborious letter-by-letter reading
strategy to arrive at a word’s identity. Pure alexia
may be conceptualized as a consequence of damage
to a brain region mediating whole word recognition
that may be located in the medial left occipital lobe
and posterior fusiform gyrus [74]. The rare syn-
drome of pure word deafness (Section 1.3.4) may
be a form of auditory agnosia. Finger agnosia, the
inability to identify which finger has been touched
despite knowing that a finger has been touched,
is a form of tactile agnosia, which may be seen
as one feature of Gerstmann syndrome although
it may occur in isolation [75]. Likewise, Braille
alexia may, in some instances, be a form of tactile
agnosia [76].

The existence of two visual processing path-
ways within the brain was first proposed by Unger-
lieder and Mishkin [77]: an occipitoparietal dorso-
lateral (“where”) visual processing stream and an
occipitotemporal ventromedial (“what”) stream. In
rare cases, these pathways may be affected selec-
tively; for instance, the ventral stream, specifically
the lateral occipital area, in a famous patient with
“visual-form agnosia” following carbon monoxide
poisoning. Her perceptual identification of shape
and form was lost, although she could still perceive
color and the fine detail of surfaces (visual texture),
and her visuomotor (“vision for action”) skills were
strikingly preserved [78]. Optic ataxia, impaired vol-
untary reaching for a visually presented target with
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misdirection and dysmetria, is the sign typically evi-
dent in dorsal stream lesions. The workings of the
visuomotor control system are not available to con-
sciousness (“unconscious vision”), unlike the visual
identification of objects.

A specific inability to see objects in motion, akin-
etopsia or cerebral visual motion blindness, despite
preserved perception of other visual attributes such
as color, form, and depth, has been described in
association with selective lesions to area V5 of
the visual cortex [79]. Although exceptionally rare,
such cases suggest a distinct neuroanatomical sub-
strate for movement vision, as do cases in which
motion vision is selectively spared in a scotomatous
area (Riddoch’s syndrome [80]). Perception within
a “blind” visual field without conscious awareness
has been termed blindsight [81].

Cases of isolated progressive visual agnosia were
presented by De Renzi [82], and Benson et al. [83]
drew attention to a disorder comprising alexia,
agraphia, visual agnosia, with or without compo-
nents of Balint and Gerstmann syndromes, and
transcortical sensory aphasia, but with relative
preservation of memory until late in the course,
a disorder they named posterior cortical atrophy
(PCA) in the absence of neuropathological data.
It is now believed that most PCA cases have AD
pathology, although other pathologies have been
described including dementia with Lewy bodies
(DLB), corticobasal degeneration (CBD), and prion
disease [84].

Various means may be used by neuropsycholo-
gists specifically to test visual perceptual and visuo-
constructive functions. These may be individual
tests such as Judgment of Line Orientation (thought
to tap right occipital lobe function); copy of the
Rey–Osterrieth Complex Figure ([85,86]; translation
by Corwin and Bylsma [87]) or the Taylor Fig-
ure [88]; decoding embedded (Poppelreuter) figures
[89]; or parts of test batteries, such as the WAIS-R
Block Design (visuospatial construction); or dedi-
cated batteries such as the Visual Object and Space
Perception Battery (VOSP) [90].

Of the frequently used “bedside” neuro-
psychological test instruments, the MMSE has only

perfunctory examination of visuospatial func-
tion, requiring copying a drawing of intersecting
pentagons [21]. Clock Drawing is, at least in part,
a visuospatial test, but requires other skills. The
Addenbrooke’s Cognitive Examination (ACE) adds
copying a wire (Necker) cube and clock drawing
[52], and ACE-R adds counting dots and identifying
fragmented letters [53].

1.1.6 Praxis

The term apraxia was coined by Steinthal in 1871
but the phenomena of higher-level motor control
disorders were first systematically studied by Liep-
mann [91], who defined apraxia as an inability to
perform purposeful skilled movements as a result
of neurological dysfunction, usually associated with
left-sided lesions. Part of the definition of apraxia
is one of exclusion, as the observed motor difficul-
ties should not be caused by sensory loss, weak-
ness, tremors, dystonia, optic ataxia, chorea, bal-
lismus, athetosis, myoclonus, ataxia, or epileptic
seizures. For example, deficits previously labeled
as “constructional apraxia” or “dressing apraxia”
are better explained as visuoperceptual and/or
visuospatial deficits, as is the misdirected reach-
ing for visual targets typical of optic ataxia. Trad-
itionally, a distinction has been drawn between
ideational and ideomotor apraxias, although both
are often present in left hemisphere damage [92–
95]. Ideomotor apraxia in Broca’s aphasia may
be conceptualized as a disconnection syndrome
(Section 1.3.4).

Cases of isolated progressive apraxia were pre-
sented by De Renzi [82]. Apraxia may be a feature
of neurodegenerative disease, classically CBD (Sec-
tion 2.4.4), although AD can present with a similar
phenotype (biparietal atrophy; Section 2.1), even
with alien limb behavior.

Praxic difficulties may be tested for in vari-
ous ways, including gesture naming, decision and
recognition; gesture to verbal command, to visual or
tactile tools; imitation of real or nonsense gestures;
and tool selection. There are also test batteries for
apraxia assessment [95].
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1.1.7 Executive function

The term executive function is used to encompass
various cognitive abilities, including the formula-
tion of goals; organization, planning, execution,
and monitoring of a sequence of actions; problem
solving; and abstract thinking. It also overlaps
with sustained attention. The term “dysexecutive
syndrome” may be used to describe dysfunction in
any or all of these areas, which is most often asso-
ciated with pathological processes in the frontal
lobes [96,97]. Because of the heterogeneity of these
functions, some authors dislike the umbrella term
of “executive function,” and prefer to describe the
specific function impaired. Moreover, frontal lobe
damage may result in various clinical phenotypes,
in which behavioral change is often the most
salient feature. Orbitofrontal injury may result in
disinhibition, as described in Phineas Gage, one
of the most famous patients in the annals of clin-
ical neuropsychology, who sustained marked
behavioral change following traumatic frontal lobe
injury [98], although other patterns of clinical and
cognitive change may be observed with frontal
lobe injury; for example, apathetic (frontal con-
vexity) and akinetic (medial frontal) syndromes
are also described. Because most tests of executive
function probe planning and strategy, mediated
by dorsolateral prefrontal cortex, some patients
with exclusive orbitofrontal damage, for example
with behavioral (frontal) variant frontotemporal
dementia (Section 2.2.1), may complete these tests
without conspicuous errors.

Because of the overarching nature of the con-
struct of “executive function,” no single test is ade-
quate to assess its integrity [99]. Many tests known
to be sensitive to aspects of executive dysfunction
are available. Perhaps the most frequently used are
the Stroop Test and the Modified Wisconsin Card
Sorting Test (MWCST). In the Stroop Test, patients
are required to read a list of color names, printed
in colors that differ from the name, followed by
reading the colors in which each name is printed,
thus having to inhibit the reading of each color
name (i.e., inhibition of inappropriate responses)

[100]. MWCST uses a set of cards marked with sym-
bols of different shape, color, and number, which
may be sorted in various ways. Sorting rules are
changed by the examiner without informing the
subject, requiring problem solving skills. Difficulty
switching category is typical of frontal lobe damage,
leading to perseveration with previous categories
[101]. Clearly MWCST, unlike the Stroop Test, calls
for novel responses. MWCST may not be specific
to frontal lobe dysfunction, as patients with hip-
pocampal lesions may commit perseverative errors
[102].

Oral tests of verbal fluency, or controlled oral
word association tests (COWAT), may be divided
into those testing phonological, letter, or lexical flu-
ency (naming to letter), such as the FAS test (name
as many words beginning with the letters F, A, or
S as possible in one minute each), and those test-
ing semantic or category fluency (naming to set;
in one minute name as many animals, fruits, or
musical instruments as possible). Letter fluency has
been characterized as a test of mental flexibility
(as well as of expressive language) probing execu-
tive function, which is particularly impaired (“defec-
tive exemplification” [103]) with left frontal lesions
(without aphasia), whereas category fluency exam-
ines the integrity of the semantic network. Design
fluency, a visual analog of verbal fluency, may be
more impaired with right frontal lesions [104]. Ver-
bal fluency tasks are attractive because they are brief
(one minute each) and require no special equip-
ment, but account may need to be taken of patient
age and education when considering test norms
[105].

There are many other tests available to neur-
opsychologists to probe executive functions, some-
times along with other domains. These include
Raven’s Progressive Matrices, the Porteus Mazes,
Tower tests (London, Hanoi), Trail-Making Test
(especially Part B), the Halstead–Reitan Cate-
gory Test, the Weigl Color Form Sorting Test
[106], the Cognitive Estimates Test [107], and
the Verbal Switching Test [108]. The Hayling and
Brixton Tests for sentence completion and spa-
tial anticipation are tests of rule following and
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verbal suppression of a familiar response [109].
Certain WAIS-R subtests are sensitive to aspects
of executive/frontal lobe function, such as the
Similarities test of verbal abstraction and the Digit
Symbol test of psychomotor speed. Tests of decision
making and risk taking, faculties which may also
be encompassed under the rubric of executive
function [110] and mediated by prefrontal cortex
and the amygdala, include the Iowa Gambling Test
[111] and the Cambridge Gamble Task [112].

There are also batteries of tests such as the Behav-
ioral Assessment of the Dysexecutive Syndrome
(BADS) [113] and the Delis–Kaplan Executive Func-
tion System (D-KEFS) [114], but because these take
some time to administer, they are best reserved
for specific investigation of known frontal prob-
lems. The Frontal Lobe Personality Change Ques-
tionnaire (FLOPS) may be used to assess behavioral
change and includes a carer version, useful for gain-
ing collateral information; likewise the Iowa Rat-
ing Scale of Personality Change [115]. Verbal flu-
ency tests are incorporated into test batteries such
as the Dementia Rating Scale [116] and the CERAD
Battery [117].

At the bedside or in the clinic, “Go–No Go”
tests may be applied to assess failure of inhibitory
responses, or stimulus–boundedness; for example,
asking the patient to tap twice in response to a sin-
gle tap given by the examiner, and once in response
to two taps. Repeating alternating sequences, for
example of hand gestures (fist–palm) or of writing
(m n m n m n) may be used to similar purpose.
The Trails A and B Test also requires a sequence
of letters or numbers to be followed (one of these
is incorporated in the Montreal Cognitive Assess-
ment [54]). Interpretation of proverbs is a popul-
ar bedside test, “concrete” interpretation sug-
gesting frontal lobe problems. Of the “bedside”
neuropsychlogical test instruments, the MMSE has
been criticized for its lack of assessment of executive
function [21], one shortcoming which the Adden-
brooke’s Cognitive Examination seeks to address
by using letter and category verbal fluency tests
[52,53]. Other batteries that tap executive function
include the Frontal Assessment Battery [118], the

Frontal Behavioral Inventory [119], and the Middel-
heim Frontality Score [120].

1.2 Neuropsychological assessment

1.2.1 Formal neuropsychological assessment

There are many tests available to the neuro-
psychologist for the evaluation of cognitive func-
tion, either global function or individual domains
[121–123]. Of course, it must be remembered that
any neuropsychological test may have multiple sen-
sory, motor, perceptual and cognitive demands, and
hence “pure” tests of any single cognitive domain
are the exception rather than the rule. The variety
of tests available may bewilder the nonspecialist.
Moreover, the choice of different test instruments
in different studies may make direct comparisons
difficult: variable test sensitivity to a particular cog-
nitive domain may explain discrepancies between
studies.

Neuropsychologists insist, rightly, that special-
ist training is required for the correct administra-
tion and interpretation of neuropsychological tests.
Clinical neurologists, therefore, will rely on their
neuropsychologist colleagues for the performance
and interpretation of these “formal” tests, as they
fall outside neurologists’ expertise and may take
substantial time to administer, being incompatible
with clinical schedules. Nonetheless, some form of
neuropsychological testing, often labeled as “bed-
side” to distinguish it from “formal” testing, is within
the scope of neurologists and may be of diagnostic
use.

1.2.2 “Bedside” neuropsychological
assessment

Numerous tests and test batteries that may be
applied within one to 30 minutes are available,
encompassing not only cognitive function but
also functional, behavioral, and global assessment
[21,52–55,124–126]. Because of the brevity that
makes them clinically applicable, these instruments
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often have certain shortcomings, which neurolo-
gists need to bear in mind: a raw score derived
from a series of tests is not necessarily “diagnos-
tic,” although it may increase the likelihood of a par-
ticular diagnosis. The potential for incongruous or
anomalous performance of tests in a medicolegal
setting has been noted [127]. Many other situational
influences may also impact on testing of cognitive
skills, such as fatigue, emotional status, medication
use, pain, and stress [128]. These also need to be
taken into account when considering the results of
cognitive testing, as do factors such as educational
and background experience. Many norms are also
culturally weighted.

It is outside the scope of this volume to discuss
frequently used “bedside” or office cognitive screen-
ing instruments, for which information the reader is
referred elsewhere [124–126]. When evaluating pos-
sible cognitive disorders, particularly those involv-
ing memory impairment, in addition to history tak-
ing and examination, it is also important to obtain
some collateral history from a relative, friend, or
carer familiar with the subject as part of the evalu-
ation [129,130]. Simple clinical observations may
also assist with diagnosis. A patient who attends the
clinic alone despite having been instructed to bring
a relative or friend is very unlikely to have a cognitive
disorder [131]. Looking to a relative, friend, or carer
for assistance when asked to volunteer informa-
tion or answer questions, the “head-turning sign,”
is suggestive of the presence of a cognitive disorder
[132,133].

1.3 Syndromes of cognitive impairment

1.3.1 Normal aging

Various motor, sensory, and cognitive changes in
neurological function occur with increasing age
[134]. To what extent these changes reflect “nor-
mal aging,” however that may be defined, or to
what extent they reflect an increasing burden of age-
related neurological disease, remains uncertain. In
consequence, the inevitable physiological changes

that occur in cognition with increasing age may
be difficult to distinguish from the earliest stages
of pathological brain disorders causing cognitive
impairments.

A distinction may be drawn between “crystallized
intelligence,” characterized by practical problem
solving skills, knowledge gained from experience,
and vocabulary, and “fluid intelligence,” character-
ized by the ability to acquire and use new infor-
mation, as measured by the solution of abstract
problems and speeded performance [135]. Crys-
tallized intelligence is assumed to be cumulative;
longitudinal studies of vocabulary, for example,
show no decline through old age. By contrast, fluid
intelligence does change with age; performance
on tests such as Raven’s Progressive Matrices and
Digit Symbol Substitution decline marginally up
to the age of 40 years and then more rapidly.
Such physiological cognitive decline may be evi-
dent in early middle age (45–49 years) [136]. There
is general consensus that typical cognitive aging
involves losses in processing speed, cognitive flex-
ibility, and the efficiency of working memory (sus-
tained attention). In other words, it may take more
time and/or more trials to learn new informa-
tion. Cognitive domains such as access to remotely
learned information, including semantic networks,
and retention of well-encoded new information are
spared with typical aging; this may permit testing
of these domains to be used as sensitive indica-
tors of disease processes. It may be that memory
decline in healthy aging is secondary to decline
in processing speed and efficiency, as control-
ling for processing speed may attenuate or elim-
inate age-related differences in memory perform-
ance, unlike the situation with memory impairment
in dementia.

Longitudinal studies of neuropsychological func-
tion indicate that there is considerable variability
in normal older adults across different skills, and
consistency across different domains may not nec-
essarily be observed. Clearly this needs to be taken
into account when assessing whether perceived
cognitive decline is pathological or normal, that
is in defining neuropsychological norms for aging.
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Furthermore, norms for IQ are increasing over
time [22,25]. Likewise, norms may need to be age-
weighted rather than age-corrected to detect cog-
nitive impairment related to AD, the prevalence of
which increases exponentially with increasing age.

Notwithstanding these difficulties, the defini-
tion of a syndrome (or syndromes) of cognitive
impairment greater than expected for age, often
termed mild cognitive impairment, which is (are)
the harbinger of progressive cognitive decline, the
prodromal phases of neurodegenerative disorder
may now be identifiable, with consequent implica-
tions for potential therapeutic intervention.

1.3.2 Mild cognitive impairment (MCI)

Age-related cognitive decline insufficient to ful-
fil validated criteria for the diagnosis of AD
has attracted a variety of labels over the past
50 years, including benign senescent forgetful-
ness, age-associated memory impairment (AAMI),
age-associated cognitive decline (AACD), cogni-
tive decline no dementia (CIND), and mild cogni-
tive impairment (MCI). A degree of consensus has
developed around the concept of MCI [137–141],
although there is not unanimity [142,143]. MCI may
be defined by the presence of a subjective mem-
ory complaint, preferably corroborated by an infor-
mant; evidence of objective memory impairment
for age and level of education; largely normal gen-
eral cognitive function; essentially intact activities
of daily living (ADL); and failure to fulfil criteria for
dementia [137]. Global rating scales have been used
to define MCI, such as a Clinical Dementia Rating
(CDR) [144] score of 0.5 or a Global Deterioration
Scale (GDS) [145] score of 3, but MCI remains a clin-
ical diagnosis. Complex ADL may be impaired in
MCI [146].

MCI may be clinically and etiologically heteroge-
neous. At presentation, memory complaint is the
most common feature, so-called amnestic MCI.
Other variants have been described, specifically sin-
gle nonmemory domain MCI and multiple domain
MCI. Multiple domain MCI might reflect single
or multiple etiologies [138]. The possibility that

MCI may reflect conditions such as dysphoria,
vascular disease, and miscellaneous disorders that
may cause cognitive impairment such as obstruc-
tive sleep apnea, alcohol misuse, head injury, and
metabolic or nutritional deficiencies, some of them
treatable, has been emphasized by several authors
[143]. A category of MCI in Parkinson’s disease, PD-
MCI, has been described [147], and vascular cogni-
tive impairment (VCI) may be differentiated from
vascular dementia (Section 3.1). The neuropsycho-
logical profile of AD-related MCI is discussed in Sec-
tion 2.1.2.

1.3.3 Dementia

The diagnosis of dementia is currently based on
fulfilment of clinical diagnostic criteria, for exam-
ple those in the generic DSM, the ICD, or the ded-
icated criteria for specific dementia subtypes. DSM-
IV-TR [148], for example, requires for a dementia
diagnosis the development of multiple cognitive
deficits that include memory impairment, of grad-
ual onset and progressive course, sufficiently severe
to cause impairment in occupational or social func-
tioning, not better accounted for by another diagno-
sis. Application of such diagnostic criteria to large
cohorts of patients may classify different numbers
of patients as having dementia, with differences up
to a factor of 10 found in one study [149]. One rea-
son for this variability is that many diagnostic cri-
teria are heavily weighted toward memory impair-
ment. Because memory impairment is the most
salient feature in AD, the most common cause
of dementia, many diagnostic criteria, for exam-
ple those for vascular dementia, have been inad-
vertently “Alzheimerized,” with undue emphasis
placed on memory loss at the expense of other cog-
nitive features [150]. A “type 2 dementia” which,
unlike “type 1 dementia,” is lacking cortical features
such as amnesia, has been proposed, and in which
demonstrable executive control function impair-
ments are sufficient to cause disability [151].

Another potentially confusing outcome of the
emphasis of diagnostic criteria on memory is tautol-
ogy: syndromes with a diagnostic label of dementia,
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such as frontotemporal dementia and DLB, which
may not necessarily fulfil diagnostic criteria for
dementia in their early stages, for example in the
case of frontotemporal dementia, because the ini-
tial features are executive (frontal) dysfunction and
noncognitive behavioral change [152]. Unequivocal
cognitive deficits may not be sufficient to meet cri-
teria for dementia, requiring a lexicon of other terms
[153].

Other diagnoses entering the differential diagno-
sis of dementia include delirium (Section 12.1) and
depression (Section 12.3.1).

1.3.3.1 Cortical versus subcortical dementia

Albert et al. [154] first used the term “subcorti-
cal dementia” to describe the cognitive impair-
ments seen in progressive supranuclear palsy (PSP;
Section 2.4.3): forgetfulness, slowness of thought
processes (bradyphrenia), alteration of personal-
ity with marked apathy and depression, and an
impaired ability to manipulate acquired knowledge.
These deficits were felt to be qualitatively distinct
from those seen in cortical dementias, typically AD,
which included impairments in memory (amne-
sia), language (aphasia), perception (agnosia), and
skilled learned movements (apraxia). The term “lim-
bic dementia” has sometimes been used for syn-
dromes with marked amnesia and evidence for lim-
bic system pathology such as AD. Whereas in sub-
cortical dementias cueing or recognition paradigms
may improve performance in delayed recall mem-
ory tests, suggesting ineffective retrieval but with
relatively preserved encoding of material, in corti-
cal dementias such strategies may be ineffective,
suggesting impaired encoding as well as retrieval.
The term “subcortical” was selected because of
the resemblance of the deficits to those seen with
bifrontal lobe disease, also reflected in the concur-
rent emotional and movement deficits in the two
types: subcortical dementias tended to be associ-
ated with apathy and depression and prominent
disorders of muscle tone, posture, and gait, whereas
cortical dementias were attended with cognitive

anosognosia and disinhibition and an absence of
movement disorder [155].

Objections to the concept of subcortical demen-
tia have been raised [156]. Cortical and subcortical
areas are not functionally independent, but over-
lapping. Because white matter has an essentially
integrative function, reciprocally linking cortical
and subcortical structures, white matter pathology
might be expected to result in functional disconnec-
tion of brain areas, and disordered brain function at
a site distant from a lesion (diaschisis) is a well rec-
ognized phenomenon (Section 1.3.4). This may be
seen, for example, with frontal lobe dysfunction in
multiple sclerosis (MS) (Section 6.1) [157], and has
also been suggested in X-linked adrenoleukodys-
trophy (Section 5.5.2.2) [158]. Identical or simi-
lar clinical phenotypes may result from patholo-
gies affecting either gray matter or subjacent white
matter (e.g., subcortical aphasias [59]). Against this
argument, however, false localization of neurologi-
cal signs usually deemed indicative of higher, cor-
tical cognitive function (e.g., agnosia, neglect) is
rarely reported [159].

Cognitive impairment and/or dementia in a vari-
ety of disorders has been labeled as subcortical,
including Huntington’s disease (HD; Section 5.1.1)
[160], Parkinson’s disease (PD; Section 2.4.1) [161],
multiple sclerosis (Section 6.1) and other white mat-
ter disorders [162,163], and certain forms of vascular
cognitive impairment (subcortical ischemic vascu-
lar dementia; Section 3.1.2) [164]. In the case of the
movement disorders PSP, HD, and PD, it has been
hypothesized that the basal ganglia, in addition to
their role in control of movement, support a basic
attentional mechanism, facilitating the synchro-
nization of cortical activity underlying the selec-
tion and promulgation of an appropriate sequence
of thoughts; this “focused attention” differs from
arousal, vigilance, or alertness. Basal ganglia dam-
age thus results in a failure of synchronization, man-
ifested as abulia and bradyphrenia [165].

Whatever the precise physiological relationship of
cortex and subcortex in supporting cognitive func-
tion, the cortical/subcortical terminology may still
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have some clinical utility in the differential diagno-
sis of dementia syndromes [166,167].

1.3.3.2 Thalamic dementia; brainstem and
cerebellar cognitive impairment

An entity called thalamic dementia is also men-
tioned in the literature, which refers to cognitive
impairments in conditions with relatively selective
thalamic damage [168]. Most commonly this is a
result of vascular lesions, focal infarction (Section
3.2.3), hypoperfusion related to a dural arterio-
venous fistula (Section 3.4.2) [169], or neoplasia.
In addition, relatively selective degeneration of the
thalamus may occur. This may be due to a prion
disease (Section 2.5) [170] such as fatal familial
insomnia (Section 2.5.3) [171], although cases of
selective thalamic degeneration with the pathology
of multiple system atrophy [170] or motor neuron
disease [172], or without evidence of prion disease
[173], have been reported. The neuropsychological
features may include forgetfulness, apathy, and
hypersomnia.

Cognitive impairment may also occur in patients
with isolated brainstem lesions of vascular, inflam-
matory, neoplastic, infective, or metabolic origin
(for examples: Sections 3.2.8, 8.2.3.2, and 9.4.3)
[174–178].

Although traditionally viewed as a component of
the motor system, a cognitive role for the cerebel-
lum has been recognized increasingly, with a spe-
cific “cerebellar cognitive affective syndrome” being
delineated by some authors [179], and characterized
by executive dysfunction (in set-shifting, planning,
verbal fluency, abstract reasoning, working mem-
ory) and difficulties with spatial cognition, mem-
ory, and language, as well as personality change,
associated with posterior lobe and vermis lesions.
Cognitive impairment may occur in patients with
isolated cerebellar lesions of vascular or neurode-
generative origin (Sections 3.2.8, 3.3.3, and 5.2).
Studies of relative pure cerebellar degenerations
such as spinocerebellar ataxia (SCA) type 6 (Section
5.2.1.4) have allowed the delineation of cerebellar

subregions that may play a role in verbal working
memory [180].

1.3.4 Disconnection syndromes; callosal
dementia

Disconnection syndromes may be defined as
conditions in which there is an interruption of
inter- and/or intrahemispheral fiber tracts. The
concept was originally advanced in the 1890s, but
has subsequently been revived and developed,
perhaps most notably by Norman Geschwind in the
1960s [181–183].

Disconnection syndromes result essentially
either from interruption of fibers within the cor-
pus callosum or commissures (interhemispheric
disconnection syndromes), or of fibers within a
hemisphere (intrahemispheric disconnection syn-
dromes). Interhemispheric disconnection is most
graphically seen in patients who have undergone
surgical commissurotomy for intractable seizure
disorders, so-called “split-brain” patients [184,185].
Intrahemispheric disconnection syndromes are
best described in the domain of language. Although
mass lesions and iatrogenesis (surgery) are obvious
causes of disconnection, functional disconnection
may also result from inflammatory disorders of
white matter. A “callosal dementia” has been pos-
tulated, characterized by callosal disconnection,
Balint’s syndrome, gaze apraxia, and neurobe-
havioral features such as alternating apathy and
agitation [186].

With complete interhemispheric disconnection,
for example with a tumor or following surgical sec-
tion of the corpus callosum, a blindfolded patient
can correctly name objects placed in the right hand,
but not those in the left, and objects in the left visual
hemifield cannot be named or matched to a simi-
lar object in the right hemifield. With posterior cal-
losal section at the splenium, a partial interhemi-
spheric disconnection, for example following left
posterior cerebral artery occlusion, patients cannot
read or name colors, as information cannot pass
to the left hemispheric language areas. Copying of
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words and writing, both spontaneously and to dic-
tation, is intact as information may pass to the left
hemisphere anterior to the site of damage: the syn-
drome of aphasia without agraphia first described
by Dejerine in 1892.

Various intrahemispheric disconnection syn-
dromes have been described. In conduction
aphasia, patients have fluent but paraphasic speech
and writing, with greatly impaired repetition
despite relatively normal comprehension of the
spoken and written word. This has been explained
traditionally as being due to a lesion in the arcuate
fasciculus/supramarginal gyrus disconnecting the
sensory (Wernicke) and motor (Broca) language
areas. Ideomotor apraxia in Broca’s aphasia, an
apraxia of left hand movements to command,
is ascribed to lesions disconnecting the cortical
motor areas anterior to the primary motor cortex.
In pure word deafness, a form of auditory agnosia
(Section 1.1.5), patients are able to hear and identify
nonverbal sounds but unable to understand spoken
language, due to lesions in the white matter of the
left temporal lobe that isolate Wernicke’s area from
the auditory cortex.

AD has sometimes been conceptualized as a
disconnection syndrome [187,188]. AD pathol-
ogy effectively isolates the hippocampus from
association cortices, basal forebrain, thalamus,
and hypothalamus [189]. A multiple disconnection
model is currently favored to explain the cogni-
tive dysfunction seen in MS, in which lesions of
subcortical periventricular white matter fiber path-
ways effectively disconnect cortical and subcorti-
cal regions (Section 6.1) [190]. Cognitive impair-
ment associated with carotid artery occlusive dis-
ease (Section 3.1.1.1) may be a consequence of dis-
connection of cortical regions caused by white mat-
ter lesions and cerebral atrophy [191].
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The term “neurodegenerative disease” has been
criticized by some authors as virtually meaningless,
because degenerative changes are seen as a con-
sequence of diseases of differing etiology, such as
vascular and inflammatory processes. “Proteinop-
athy” is an alternative, possibly better term, suggest-
ing that abnormal protein metabolism and folding
may be a common pathogenic event in the disorders
listed here.

2.1 Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is the archetypal neuro-
degenerative cognitive disorder [1]. The critical con-
tribution made by Alois Alzheimer (1864–1915),
which later prompted Emil Kraepelin to bestow the
eponym upon the condition, was to link the clinical
phenotype of cognitive decline with specific neuro-
pathological findings, namely neurofibrillary tan-
gles (NFTs) [2,3]. Initially thought to be a rare dis-
ease of the presenium, neuropsychological [4] and
neuropathological [5,6] studies in the 1960s showed
that most cases hitherto known as “senile dementia”
were, in fact, identical to AD.

Epidemiological studies have shown that the
prevalence of AD increases steeply with increas-
ing age, with more than 50% of over 85-year-olds
being affected. Early onset AD, that is, presenting
at or before 65 years of age, may be differentiated
from late-onset disease [7], although this distinc-
tion is probably arbitrary as the underlying patho-
biology is identical. More useful, in terms of eluci-
dating etiology, has been the distinction of sporadic
AD where there is no family history of the condi-
tion from familial AD where at least one first-degree
family relative is affected and autosomal dominant
AD where at least three family members are affected
in at least two generations [8]. Autosomal dominant
AD is most usually of early onset type, sometimes
manifesting as early as the third or fourth decade of
life (Section 2.1.1).

Cognitive decline, usually memory dysfunction,
is the dominant phenotypic manifestation of AD,
but occasionally other cognitive, neurological, and

behavioral or psychiatric features may be promin-
ent, in some cases representing other variants
of AD [9] (not subtypes [10]). From the cogni-
tive perspective, slowly progressive aphasia has
been reported to be the presenting feature of
AD, rather than one of the focal frontotem-
poral lobar degeneration syndromes (Section 2.2),
often with nonfluent aphasia but sometimes with
fluent aphasia with the characteristics approxi-
mating a transcortical sensory aphasia [11–13].
Presentation with primarily visuoperceptual dys-
function is well recognized, described as posterior
cortical atrophy (PCA) [14] or the visual variant of
AD [15], although other pathologies can be the sub-
strate of PCA [16]. Slowly progressive apraxia has
been described as a presentation of AD, either bilat-
eral with biparietal [13,17] or, rarely, unilateral [18]
atrophy. AD cases that overlap clinically with cor-
ticobasal degeneration (CBD) are described [19],
even occasionally with the alien limb phenomenon
[20]. A frontal variant of AD (fvAD) has also been
postulated, based on the retrospective finding of
early and disproportionately severe impairments
on tests of frontal lobe functioning in a subset
of definite AD cases with higher NFT load in the
frontal cortex [21]. Patients with the clinical pheno-
type of behavioral variant frontotemporal demen-
tia (Section 2.2.1) but with pathologically proven
AD are uncommonly reported [13,22]; this pheno-
type is probably more common in familial AD asso-
ciated with presenilin-1 mutations (Section 2.1.1).
The frequency of these AD clinical variants is uncer-
tain, but may constitute up to 10% of AD presenta-
tions in a specialist cognitive disorders clinic with a
particular interest in early onset cases, the agnosic
(PCA) and aphasic presentations being the most
common [23].

Other neurological features that may occur in
AD include epileptic seizures [24,25] and move-
ment disorders, particularly myoclonus [26], most
often in the later stages of the disease. Extrapyr-
amidal signs are reported [27], although concur-
rent Lewy body pathology (Sections 2.4.1 and 2.4.2)
or use of neuroleptic medications may also be
a cause of parkinsonism. Neurological signs may
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Table 2.1. Typical neuropsychological deficits in Alzheimer’s disease

Attention ↓ Selective, divided � sustained

General intelligence ↓ FSIQ vs. premorbid IQ; PIQ typically more impaired than VIQ

Memory ↓ Episodic memory (encoding, storage) with temporal gradient; +/− semantic memory

impairment (category verbal fluency)

Language Semantic naming errors, circumlocutions; phonology, syntax relatively spared. Aphasic

presentations rare. (Logopenic progressive aphasia usually has AD pathology.)

Perception Agnosic presentations may occur (PCA): Balint syndrome, topographical agnosia, dressing apraxia;

object agnosia, pure alexia, prosopagnosia

Praxis Ideomotor, ideational apraxia: modest. Apraxic presentations rare

Executive function May be early impairments of judgment, abstract reasoning, and problem solving

particularly be a feature of familial AD associated
with presenilin-1 mutations (Section 2.1.1). Sleep-
related disorders may likewise become more com-
mon with disease progression [28]. Behavioral and
psychiatric symptoms are very common as AD
progresses [29,30].

AD is usually a slowly progressive disorder, with
periods of relative stability and decline [31,32].
Occasionally, it may be rapidly progressive, mimick-
ing sporadic prion disease [33] (Section 2.5.1), and
acute postoperative presentation resembling a cere-
brovascular event but with subsequent evolution to
a typical AD picture may occur [34].

Diagnosis of AD rests on appropriate clinical
features aided by ancillary investigations [35–37].
Clinical diagnostic criteria for AD developed by the
National Institute of Neurologic and Communica-
tive Disorders and Stroke and the Alzheimer’s Dis-
ease and Related Disorders Association (NINCDS–
ADRDA) workgroup in the 1980s required a binary
approach to diagnosis, necessitating the presence of
dementia before AD could be diagnosed, with def-
inite, probable, and possible categories [7]. These
clinical criteria were supported by neuropathologic-
al criteria based on quantitation and distribution
of the hallmark pathological features: senile
plaques and NFTs [38–40]. Neurofibrillary tangle
dementia (NTD) may be a variant of AD (Section
2.2.4.3). More recent diagnostic criteria have
abandoned the binary approach for a biological
definition of AD, by incorporating into the crite-
ria disease biomarkers including structural and

functional imaging changes, cerebrospinal fluid
(CSF) analysis, and neurogenetic testing in order
to identify AD, even before dementia is apparent
[41–44].

Neuropsychological profile (Table 2.1)

The neuropsychological features of AD have been
studied extensively [45]. Disturbance of memory,
particularly recent memory, is the most common
presenting symptom, often manifested as repeating
the same information or questions within a short
space of time, accompanied by difficulty learning
new information, for example use of new house-
hold appliances. Although this may be an isolated
amnesic syndrome, usually with a temporal gradi-
ent with more recent information more significantly
affected, other cognitive domains are often found to
be affected when formally tested, particularly lan-
guage and visuospatial function.

Attention

Both selective and divided attention are impaired in
AD [46–48]. Tests of selective attention such as the
Stroop Test show impairment early in the disease
course, possibly reflecting pathological involvement
of the cingulate gyrus and/or the basal forebrain
cholinergic system [49]. Tests of divided atten-
tion such as dual-task performance tests also show
impairment [50]. A review of studies of working
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memory function in early AD found relative preser-
vation of the phonological loop but impairment
of the visuospatial sketchpad and central executive
system in mild AD, and possibly also in the preclin-
ical stages [51]. There may be a reduced working
memory capacity, as evidenced by the influence of
information load on the performance of AD patients
[52]. The relative preservation of attentional func-
tions may be one feature assisting in the differen-
tial diagnosis of AD from dementia with Lewy bod-
ies (DLB) (Section 2.4.2).

General intelligence (IQ)

Typically patients with AD show disparity between
their current fullscale IQ (FSIQ) scores and esti-
mates of premorbid IQ based on the National Adult
Reading Test (NART) or educational/occupational
achievement, especially for performance IQ (PIQ),
indicating a decline in intellectual functioning. Esti-
mates of premorbid IQ using the NART may be dif-
ficult or impossible if there is marked aphasia.

Memory

Memory decline is the most common complaint
of patients and, more often, of their caregivers in
AD. This is most commonly seen in the domain of
anterograde episodic memory, that is the encod-
ing, storage, retention, and recall of new infor-
mation about day-to-day personal experiences, in
other words memories with an autobiographical
referrent [53]. Tests requiring the learning and
recall of supraspan word lists are very sensitive
to the episodic memory impairment in early AD;
examples include the Buschke Selective Remind-
ing Test, the Rey Auditory Verbal Learning Test,
the California Verbal Learning Test, and the Hop-
kins Verbal Learning Test (Section 1.1.3). With a
word list containing only three items, the Mini-
Mental State Examination (MMSE) represents a less
stringent test of episodic memory, a deficiency
that has been addressed in other bedside cognitive
screening instruments such as the Addenbrooke’s
Cognitive Examination, DemTect, and Montreal

Cognitive Assessment. The learning curve is vir-
tually flat (i.e., many trials are required to learn
the new information), intrusion errors are common
(i.e., reporting words that were not on the list to be
remembered, although these may be semantically
related), and recognition paradigms are little bet-
ter than recall. There may be an accelerated rate
of forgetting [54]. In other words, the findings are
typical of a cortical as opposed to subcortical dis-
order: encoding and storage deficits are paramount
rather than a primary deficit of memory retrieval
(Section 1.3.3.1). The hippocampal origin of the AD
memory deficit may be examined by controlling for
the encoding phase using the “five-words” test [55].
Although it is a common clinical observation that
AD patients’ distant, long-term, (remote) memory
is spared, evaluation shows retrograde memory is
not entirely normal, with a temporal gradient such
that more distant memories are most intact [56].
The deficits in episodic memory reflect pathological
change in the mesial temporal regions, particularly
the hippocampal formation, which is also evident
on volumetric brain imaging. These are typically the
earliest changes in the AD brain seen in presymp-
tomatic individuals carrying deterministic genetic
mutations for AD [57]. This is also the area earli-
est affected by neurofibrillary pathological change
[39,58].

Semantic memory impairments may also be
detected in AD [59]. On tests of verbal fluency, cat-
egory fluency is more impaired than letter fluency
indicating difficulty accessing the semantic lexicon
of word meanings [60]. Naming difficulties may also
be semantic in their origin [61].

The pattern of implicit memory impairments in
AD differs from that in Huntington’s disease, with
verbal priming severely impaired but motor (pursuit
rotor) skill normally acquired [62].

Language

Language deficits in AD have been studied exten-
sively [61,63]. The language disorder of AD varies
with the stage of the disease, initially remaining flu-
ent with lexicosemantic deficits predominating, but
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ultimately evolving to global aphasia. Naming and
fluency deficits are particularly evident.

Word-finding difficulties are common in the early
stages of AD; circumlocution (the tip-of-the-tongue
phenomenon) may be evident; for example, on pic-
ture naming the first letter or phoneme may be gen-
erated but not the rest of the word (anomia). Nam-
ing errors are largely semantic, rarely phonological
or visual.

Progressive loss of the richness of language may
be evident to the point that speech production
may be described as “empty,” lacking in specific
content and impoverished in both conveying and
obtaining information. Some semantic information
about items that cannot be named may be gener-
ated; for example, “a beautiful thing that jumps” for
kangaroo [64]. As previously mentioned (see earlier
Memory section), verbal fluency is typically more
impaired in the category (semantic) as compared to
the letter (phonological) paradigm [60]. In compari-
son with the semantic aspects of language, phono-
logical and syntactic abilities are relatively pre-
served early in AD, although they may breakdown
as the disease progresses. Repetition and motor
speech may be relatively intact while increasingly
impaired comprehension of the spoken or written
word is evident. Attempts have been made to fit
the language disturbance of AD into established
aphasia categories (e.g., anomic aphasia in the early
stages, extrasylvian or transcortical sensory apha-
sia in the later stages), but the implication that AD-
related language dysfunction is congruent with one
of these “typical” aphasia syndromes may not be
justified.

Slowly progressive aphasia has been reported
occasionally as the presenting symptom of AD
[11–13], which may be confused with the linguis-
tic variants of frontotemporal lobar degeneration
(Sections 2.2.2 and 2.2.3). Presence or absence of
deficits in other cognitive domains may give clues
to the correct diagnosis, as may structural and
functional brain imaging. Sometimes, however, only
with the passage of time and the evolution of symp-
toms, or even only at post-mortem, does diagnostic
clarity emerge.

Within the rubric of primary progressive aphasia
(PPA), Gorno-Tempini and colleagues have delin-
eated a syndrome of logopenic progressive apha-
sia (LPA) or logopenic variant PPA [65,66]. This is
characterized by deficits in word retrieval and sen-
tence repetition but with spared semantic, syntac-
tic, and motor speech abilities: there is no frank
agrammatism, dysprosody, or motor speech errors
as seen in progressive nonfluent aphasia (Section
2.2.2). Single word comprehension is spared and
any confrontation naming impairment is less severe
than in semantic dementia (Section 2.2.3). The
most common pathological substrate in LPA is
AD [65,66].

Perception

Various visual processing disorders may occur in AD
[67], their exact nature depending upon the relative
involvement of right or left hemisphere, and the two
streams of visual processing (Section 1.1.5), namely
dorsal (occipitoparietal, “where”) or ventral (occip-
itotemporal, “what”) [17]. Visuoperceptual and
visuospatial deficits are seldom clinically evident in
the early stages of AD, with the exception of those
patients who present with visual agnosia, known as
PCA or the visual variant of AD [14–16], with rela-
tive preservation of memory and language function.
Dorsal stream involvement, the most commonly
observed pattern in one series of PCA patients [68],
results in Balint’s syndrome and dressing apraxia,
whereas ventral stream involvement may produce
object agnosia, pure alexia, and prosopagnosia.
Predominant right hemisphere involvement may
produce left visual hemineglect, whereas predom-
inant left hemisphere involvement is associated
with Gerstmann syndrome, pure alexia, and right
hemiachromatopsia. Cortical blindness and Anton’s
syndrome (visual anosognosia) have also been
recorded.

Impaired naming is not thought to result from
perceptual deficits. Tests that tap aspects of visual
cognition, such as drawing the Rey–Osterrieth
Complex Figure, overlapping pentagons (from the
MMSE), the Necker cube, and clock drawing may



28 2: Neurodegenerative disorders

be impaired early in AD, although performance
may also be degraded by concurrent apraxia and/or
planning difficulties.

Praxis

Both ideomotor and ideational apraxia may occur
in AD, the prevalence increasing with disease sever-
ity [69]. However, this is usually inapparent or
of modest severity, rarely producing symptoms
in comparison with the cognitive impairments in
other domains. Limb transitive actions (e.g., ask-
ing the patient to show how he/she would use a
comb/toothbrush/pair of scissors) are most likely
to show impairment; imitation of meaningless
gestures may be a sensitive early measure of apraxia.
Apraxia as the earliest symptom of AD is rare
[13,17,70]. Apraxia sufficient to cause diagnostic
confusion with CBD does occur rarely, AD being one
cause of the “corticobasal syndrome” [19].

Conceptual apraxia, defined by Ochipa et al. [71]
as impaired knowledge of what tools and objects
are needed to perform a skilled movement, was
reported to be common in AD.

Executive function

Executive abilities may be impaired in AD, pro-
ducing impairments of judgment, abstract reason-
ing, and problem solving, as evidenced by diffi-
culties with verbal fluency, Wisconsin Card Sorting
Test (WCST), and trail-making tests. These changes
may occur early in the disease course in some
patients and are commonly observed when specif-
ically sought [72,73].

Working memory deficits may be ascribed to cen-
tral executive impairment (see earlier Attention sec-
tion) [46,52]. Impairments in verbal fluency tests,
which tap executive function, may in fact reflect
semantic deficits in AD (category more affected
than phonemic), and performance in tests of per-
ceptual function may be reduced because of plan-
ning difficulties. Executive dysfunction may impact
on activities of daily living in AD [74].

Treatment of neuropsychological deficits

Cholinesterase inhibitors (ChEIs) are licensed for
the symptomatic treatment of mild to moderate
AD in many jurisdictions, the rationale being that
they help to restore the cholinergic deficits that are
a neurochemical feature of the AD brain due to
loss of the ascending cholinergic projection from
the nucleus basalis of Meynert. The evidence base
for their modest efficacy is relatively strong, as evi-
denced by meta-analyses [75–77]. These show sta-
bility or even improvement in cognitive scales such
as the MMSE and ADAS-Cog as compared with
placebo-treated patients over six- to twelve-month
periods. Whether this reflects genuine mnemonic
improvement or simply better attentional func-
tion is debatable. Behavioral improvements are also
noted with ChEI, but cognitive domains other than
attention and memory are little affected. Whether
ChEIs have disease-modifying effects or alter the
natural history of AD, for example by reducing the
rate of nursing home placement [78–80], remain
debatable subjects.

Memantine, an antagonist at the NMDA type of
glutamate receptors, has also been shown to bene-
fit cognitive domains [81] and is licensed for use in
moderate to severe AD in some jurisdictions. Com-
bined ChEI and memantine treatment may possibly
have synergistic effects [82–84].

2.1.1 Familial AD

To date, mutations deterministic for familial AD
have been discovered in three genes, encoding:
� amyloid precursor protein (APP) on chromosome

21q21.3 (OMIM#104300);
� presenilin-1 (PS1) on chromosome 14q24.2

(OMIM#607822);
� presenilin-2 (PS2) on chromosome 1q42.13

(OMIM#606889).
Multiple mutations have been identified in each
gene [85], with around 200 in PS1, which is the most
common site for genetic mutations causing AD [8].
Virtually all of these mutations appear to alter the
metabolism of APP such that production of the
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amyloid �-peptide, the major protein component
of amyloid plaques, is increased. These findings
have raised hopes for the development of disease-
modifying therapy for AD, particularly if cases can
be identified early in the disease course. Studies of
autosomal dominant AD have suggested that the
disease cascade may commence 20 years before
symptom onset [86]. Experimental therapies target-
ing the amyloid pathway have been developed [87],
sometimes with impressive effects in animal mod-
els, but to date only symptomatic treatments for AD
are available, namely cholinesterase inhibitors and
memantine.

The clinical phenotype in PS1 mutations may
include features not often seen in sporadic AD,
including epileptic seizures, myoclonus, extrapyra-
midal features, spastic paraparesis, and cerebellar
ataxia [88–90]. The cognitive profile is often typical
of that in sporadic AD, but cases have been reported
that present with aphasia [91], although naming
may be relatively preserved in some instances
[92,93]. Presentation with prominent behavioral
features indicative of executive dysfunction, with a
phenotype suggestive of the behavioral variant of
frontotemporal dementia (Section 2.2.1), has been
reported with a number of PS1 mutations [88,89,94].

2.1.2 Mild cognitive impairment
(MCI)/prodromal AD

Mild cognitive impairment (MCI) may be clinically
and etiologically heterogeneous (Section 1.3.2), but
in some instances it is the forerunner of AD, and
hence may be better called prodromal AD [95]
(newer diagnostic criteria for AD eschew the MCI
category altogether, preferring to identify AD at an
early stage based on disease biomarkers [41]). The
rate of conversion of MCI to AD varies in different
studies but a meta-analysis of reports suggested it is
probably around 5%–10% per year [96].

Criteria for MCI have been developed [43,97,98].
Various forms have been described depending on
the most prominent clinical feature; hence, amnes-
tic MCI is characterized by memory complaint.

Other variants include single nonmemory domain
MCI and multiple domain MCI.

Studies of ChEI in MCI have failed to show
evidence of prevention of conversion to AD
[99–101]. Presumably the pathogenic cascade
is too far advanced, even at the MCI stage, for
neurotransmitter repletion to prevent progression.

2.1.3 Presymptomatic AD

AD may be conceptualized as having a presymp-
tomatic or preclinical phase [44,95], predating MCI
or prodromal AD. Reliable identification of such
individuals would raise the prospect of preventive
therapy for AD.

Community-based longitudinal follow-up stud-
ies have suggested that tests of both memory and
executive function, and possibly perceptual speed,
show the greatest declines over time in individ-
uals destined to manifest AD, and these may be
apparent several years prior to diagnosis [102–104].
Because these domains are similar to those that
decline in “normal” cognitive aging (Section 1.3.1),
use of other biomarkers to identify presymptomatic
AD may be necessary.

Of these biomarkers, deterministic genetic muta-
tions (Section 2.1.1) are the best since these are
highly penetrant (“asymptomatic-at-risk AD” [95]).
Longitudinal studies of presymptomatic individ-
uals with AD mutations have shown episodic mem-
ory deficit to be the earliest change detected,
along with decline in IQ, while perceptual, nam-
ing, and spelling skills were relatively preserved
[57,86,105,106].

2.2 Frontotemporal lobar degenerations
(FTLD)

Arnold Pick, in the 1890s, was the first clinician to
describe syndromes related to focal lobar degener-
ation of the brain, both frontal degeneration asso-
ciated with behavioral change and temporal degen-
eration associated with linguistic decline [107]. The



30 2: Neurodegenerative disorders

term “Pick’s disease” came later, based on the neu-
ropathological finding (by Alzheimer) of ballooned
achromatic neurons (Pick cells) and neuronal inclu-
sions (Pick bodies) in some but not all cases of lobar
degeneration.

Reported prevalence rates of FTLD are around
15/100 000, similar to AD in the early onset demen-
tia age group [108,109].

FTLDs are characterized by heterogeneity at the
clinical, pathological, and genetic levels [110,111].
Broadly, the clinical phenotype may be divided
into behavioral or linguistic presentations, the for-
mer described as behavioral variant frontotem-
poral dementia (bvFTD) or frontal variant FTD
(fvFTD) (Section 2.2.1). The linguistic or temporal
variants of FTLD may be categorized as forms of
“primary progressive aphasia” (PPA), of which two
types were originally characterized, either fluent,
semantic dementia (Section 2.2.3), or nonfluent,
progressive nonfluent aphasia (Section 2.2.2). A
more recent classification rebrands these disorders
as semantic variant PPA and nonfluent/agrammatic
variant PPA, respectively, as well as recognizing a
third variant, logopenic variant PPA, which is most
usually characterized as a form of AD (Section 2.1,
Aphasia) [66]. Neuropsychiatric symptoms may also
be prominent in FTLDs, but although psychosis
is described, it is rare [112–114]. Perceptual func-
tions are largely preserved in FTLDs, and indeed,
enhancement of artistic abilities has been noted in
temporal variant FTLD [115,116].

The cognitive deficits in FTLDs may occur in
conjunction with other neurological features, such
as motor neuron disease or amyotrophic lateral
sclerosis (FTD/MND or FTD/ALS). Certain parkin-
sonian syndromes (Section 2.4), particularly CBD
(Section 2.4.4) and progressive supranuclear palsy
(PSP) (Section 2.4.3), may also have similar cog-
nitive impairments and be subsumed under the
rubric of FTLDs in some classifications (“Pick com-
plex” [117]). Attempts have been made to develop
diagnostic criteria for the clinical variants of FTLDs
[66,118–120]. The neuropathological substrates of
these clinical syndromes are variable, with an

evolving classification based on abnormal proteins
detected in FTLD brains, most commonly tau, trans-
active response DNA-binding protein (TDP), and
fused in sarcoma protein (FUS) (Section 2.2.4) [121].
Likewise, the number of genetic mutations that may
be deterministic for FTLDs continues to expand
(Section 2.2.5) [85].

2.2.1 Behavioral variant frontotemporal
dementia (bvFTD)

This syndrome is defined on the basis of a
behavioral disorder, with decline in social inter-
personal conduct and the regulation of personal
conduct, emotional blunting, and loss of insight.
Characteristics may include neglect of personal
hygiene, transgression of social mores, mental rigid-
ity and inflexibility (increased adherence to rou-
tines, rituals, clockwatching), changes in dietary
habits with a predilection for sweet foods, motor
and verbal perseverations, disinhibition, or iner-
tia. The syndrome is not homogeneous and clin-
ical subtypes may be defined on the basis of the
most prominent behavioral and motor features:
disinhibited type with predominant orbitofrontal
lobe involvement; apathetic type with predominant
dorsolateral convexity involvement, and stereo-
typic type with predominant striatal involvement
[110,111].

Delayed diagnosis is common [122] because
neuropsychological tests and structural and func-
tional neuroimaging may not be sensitive to the very
earliest changes in bvFTD. As a result of the behav-
ioral phenotype, many patients present to psych-
iatrists rather than neurologists, who may be less
familiar with this condition than with AD [123]. Use
of highly sensitive diagnostic criteria developed by
the International Behavioural Variant FTD Criteria
Consortium (FTDC) [120] may facilitate case iden-
tification, as may use of an integrated care path-
way [124]. bvFTD is the most frequent FTLD clinical
phenotype, with a variable pathological correlate
(tau, TDP, FUS).
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Table 2.2. Typical neuropsychological deficits in behavioral variant frontotemporal dementia

Attention ↓ Sustained attention; distractibility, apathy, economy of effort, poor self-monitoring, impulsivity

General intelligence FSIQ may be normal or ↓ due to lack of mental effort

Memory Absence of amnesia may be a requirement for diagnosis; amnesia generally not prominent but

reported in some cases; better performance with cueing, and specific as opposed to open-ended

questions

Language ↓ Verbal fluency (letter and category)

Perception Typically normal

Praxis Generally preserved; imitation and utilization behavior may be seen

Executive function Lack of insight, impaired planning, judgment, abstraction, organization, and problem solving;

perseveration, failure to inhibit inappropriate responses

Neuropsychological profile (Table 2.2)

Attention

Poor sustained attention, manifested as distractibil-
ity or motor restlessness, may be an evident
behavioral feature in bvFTD (cf. AD). “Don’t know”
responses may be frequent, especially for effortful
tasks, one feature of the lack of mental applica-
tion, or economy of effort, evident on clinical test-
ing. Responses may be rapid and impulsive, with
lack of attention to accuracy, or slowed in apathetic
patients.

General intelligence (IQ)

Performance may be normal on test batteries such
as the WAIS-R or MMSE, despite the change in
behavior. More usually, however, performance is
impaired. This sometimes may affect all areas,
reflecting lack of mental application to tests, or may
favor Performance over Verbal subtests.

Memory

Unlike the situation in AD, amnesia generally is not
a prominent feature in FTLD cases, albeit the pre-
senting complaint (often of relatives) may be “poor
memory.” Severe rapidly progressive anterograde
amnesia has been recorded in pathologically con-
firmed FTD with prominent involvement of the hip-
pocampi, and marked amnesia at presentation has
been noted in other pathologically confirmed cases

[125–127]. Memory problems may be more evident
in older persons with FTLD, perhaps related to the
neuropathological finding of hippocampal sclerosis
[128].

Performance on memory tests is often impaired
for both recall and recognition, despite patients’
ability to provide some autobiographical informa-
tion and orientation in time (i.e., not evidently
amnesic clinically). Autobiographical memory is
impaired in bvFTD, with a reduced capacity to
recall specific and contextually rich autobiograph-
ical memories across all life epochs [129]. Semantic
memory is relatively preserved in bvFTD in compar-
ison to semantic dementia (Section 2.2.3), although
scores may be abnormal compared to those of con-
trols [130].

Memory performance may benefit from cues and
from use of specific as opposed to open-ended
questions. Poor performance may be related to the
generalized economy of effort in performing tests
and poor sustained attention.

Language

In conversation, spontaneous speech output may
be reduced, brief, and concrete in character in
bvFTD. Stereotyped words or phrases (“catch-
phrases”) and verbal perseverations may be evident;
repetition is relatively preserved. Output is fluent
although prosody may be lost. Comprehension is
preserved at the individual word level but may be
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impaired on tests of more complex items, perhaps
related to lack of mental effort or self-monitoring,
and impulsive responding. Object naming is gen-
erally preserved, in contrast to difficulties with ver-
bal fluency, both letter and category. Progression to
mutism may eventually occur. Preservation of cal-
culation skills despite dissolution of language has
been reported [131]. Acute aphasic presentation of
clinically diagnosed frontal variant FTD, following
cardiac surgery, has been reported [34].

Perception

Perceptual skills are relatively preserved in bvFTD.
Visual agnosia is not apparent, and spatial skills
are intact. Patients may take long walks without
becoming lost. Impaired performance on tests such
as drawing the Rey–Osterrieth Complex Figure may
reflect cursory performance with lack of attention
to detail. Dot counting and line orientation, unde-
manding tasks of visuospatial function, are typically
normal.

Praxis

Manual skills are generally well preserved. Tests of
praxis may reveal perseveration of gestures, writ-
ing, and alternating hand movements or motor
sequences, although copying of hand postures is
generally performed better. Use of body part as
object is typical when pantomiming actions. Con-
textually inappropriate use of objects, utilization
behavior, may occur. Dependent upon the topo-
graphical distribution of pathology, a phenotype
resembling CBD may occur occasionally [19].

Executive function

A dysexecutive syndrome is typical of bvFTD, mani-
fested as lack of insight, impaired planning, judg-
ment, abstraction, organization, and problem solv-
ing. Tests deemed sensitive to frontal lobe function
are performed poorly. For example, in the WAIS-R,
the Similarities subtest may be impaired due to dif-
ficulties in abstracting similarities between objects,

and Picture Arrangement to tell a story may not
be completed although individual elements can be
identified and described. Proverb interpretation is
concrete and cognitive estimates may be wildly
inaccurate. As previously mentioned, verbal fluency
is impaired for both letter and category; design flu-
ency, the visual analog of verbal fluency, is also
impaired, with multiple rule violations. Sorting rules
are not identified and perseverative errors are com-
mon in both the Weigl Color Form Sorting Test and
the Wisconsin Card Sorting Test. Failure to inhibit
inappropriate responses may be encountered on
the Stroop Color Word Test. In mild bvFTD, how-
ever, risk-taking behavior with increased delibera-
tion time may be the only finding, with other tests
sensitive to frontal lobe function remaining normal
[132]. bvFTD presenting with pathological gambling
has been reported [133]. Tests of decision making
and risk taking that involve gambling (Section 1.1.7)
may be used to identify these patients.

Treatment of neuropsychological deficits

Currently, there are no licensed treatments for the
neuropsychological deficits of bvFTD. Small stud-
ies looking at the use of cholinesterase inhibitors
have been negative [134]. Empirical treatments for
behavioral features (e.g., mood stabilizers for disin-
hibition) might temporarily improve some aspects
of cognitive function. A trial of the serotonin reup-
take inhibitor paroxetine showed impaired cogni-
tion in bvFTD [135].

2.2.2 Progressive nonfluent aphasia (PNFA);
nonfluent/agrammatic variant PPA

Of the temporal variants of FTLD, progressive
nonfluent aphasia (PNFA) is the more commonly
encountered. The syndrome, first described in 1982
by Mesulam [136], who used the rubric of PPA [137],
is characterized by progressive nonfluent aphasia
with relative preservation of other cognitive func-
tions and activities of daily living until late in the
illness. As the PPA terminology may also encom-
pass semantic dementia (Section 2.2.3) and the
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Table 2.3. Typical neuropsychological deficits in progressive nonfluent aphasia or nonfluent/agrammatic variant of

primary progressive aphasia

Attention Essentially intact

General intelligence ↓ FSIQ; VIQ typically more impaired than PIQ due to linguistic impairment

Memory Essentially intact; impaired scores may reflect linguistic impairment

Language Agrammatic language production; effortful halting speech with inconsistent speech sound errors

and distortions (apraxia of speech). Spared single word comprehension but impaired

comprehension of syntactically complex sentences; spared object knowledge

Perception Essentially intact

Praxis Essentially intact

Executive function ↓ Verbal fluency (letter � category), otherwise intact

logopenic progressive aphasic variant of AD (Sec-
tion 2.1), PNFA is preferred for this syndrome. Con-
sensus criteria are available [66].

Most PNFA cases are sporadic. Although some
familial cases have been reported [138], discor-
dance in monozygotic twins has also been found
[139], suggesting genetic heterogeneity. A PNFA
phenotype may be seen in familial FTLD with pro-
granulin mutations (Section 2.2.5.1) and with the
C9ORF72 hexanucleotide repeat (Section 2.2.5.4).
PNFA cases that evolve over time to the pheno-
type of CBD (Section 2.4.4) [140–142] or PSP (Sec-
tion 2.4.3) [143,144] have been reported. Clinical
diagnosis of PNFA is associated with tau-positive
pathology (as is the case in CBD and PSP) [126,145].
PNFA has the best prognosis of any of the FTLD
syndromes [146].

The neuroradiological signature of PNFA is
predominant left posterior frontoinsular atrophy
on structural neuroimaging and hypoperfu-
sion/hypometabolism of this area on functional
neuroimaging [66].

Neuropsychological profile (Table 2.3)

The description is for a “pure” case, without features
of any other underlying neuropathological entity
such as AD, CBD or PSP.

Attention

Attentional functions are preserved in PNFA.

General intelligence (IQ)

A verbal–performance discrepancy on the WAIS-R
in favor of nonverbal tasks is found.

Memory

Functional memory skills appear intact although
scores on memory tests may be impaired because
of the language disorder, especially for verbal tests.
Recognition memory for faces is typically well pre-
served. Likewise, impaired category verbal fluency
is due to language deficits rather than impaired
semantic memory.

Language

The proposed diagnostic criteria for PNFA [66]
require at least one of two core features to be
present; namely, agrammatism in language produc-
tion and effortful halting speech with inconsistent
speech sound errors and distortions (i.e., apraxia
of speech; insula involvement had previously been
implicated in this condition [147]). In addition, two
of three other features must be present, specifically
impaired comprehension of syntactically complex
sentences, spared single word comprehension, and
spared object knowledge.

There is progressive breakdown of phonologic-
al and syntactic processes in PNFA. Speech out-
put is hesitant and effortful, with phonemic para-
phasias and transpositional errors (“spoonerisms”).
Comprehension is largely intact, at least initially; for
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example, in word–picture matching tasks, although
complex syntax may prove difficult. Increasing com-
prehension problems develop with disease progres-
sion. Repetition is severely impaired, as is naming
to confrontation or description, although semantic
information about the item that cannot be named
may be provided and the correct word can be
selected from alternatives; hence, this is a prob-
lem of lexical access or phonological selection. Ver-
bal fluency is typically better for category rather
than for letter. Reading and writing deficits mirror
those in spoken language. Loss of prosody, a tele-
graphic quality to speech output (agrammatism),
and diminution of output to the point of mutism
occurs over time.

Perception

Visuoperceptual and visuospatial function is essen-
tially preserved in PNFA, any errors resulting from
linguistic rather than perceptual dysfunction.

Praxis

Apraxia of speech is a core feature of PNFA [66]. Oro-
facial apraxia and limb apraxia have been recorded,
in descending order of frequency, in PNFA [148].

Executive function

Any deficits on tests of executive function may be
explicable in terms of language deficits.

2.2.3 Semantic dementia (SD); semantic
variant PPA

Warrington, in 1975, was the first to report patients
with selective impairment of semantic memory
causing a progressive anomia [149]. The linguistic
variant of FTD, which has come to be known as
semantic dementia (SD) (also known as progres-
sive fluent aphasia and semantic variant PPA), is
characterized by a loss of the knowledge about, or
the meaning of items, which affects naming, word
comprehension, and object recognition but with

relatively stable attention and preserved executive
function [150]. Activities of daily living are relatively
well preserved, at least in the initial stages.

The neuroradiological signature of SD is asym-
metric focal atrophy of all anterior temporal lobe
structures, especially entorhinal cortex, amygdala,
anterior medial and inferior temporal gyri, and
anterior fusiform gyrus, with an anteroposterior
gradient of atrophy (cf. AD: symmetrical atrophy,
especially medial temporal lobe structures includ-
ing hippocampus, with no anteroposterior gradi-
ent) [151]. Left-sided cases of semantic dementia
are apparently more common than right-sided [152]
but this may be artifactual, the profound anomia
drawing attention to the former cases whereas
progressive prosopagnosia associated with right-
sided cases may not come to clinical attention.
The most common neuropathological substrate is
MND-type, ubiquitin-positive, tau-negative inclu-
sions, although true Pick’s disease and AD may also
be seen [13,153,154].

Neuropsychological profile (Table 2.4)

Attention

In contrast to bvFTD, sustained attention to tasks is
good in SD. Working memory is intact as assessed by
digit span and by Corsi span, at least until the very
late stages of the disease.

General intelligence (IQ)

Performance on the WAIS-R is typically impaired.
For patients with a disorder of word meaning,
a verbal–performance discrepancy favoring per-
formance is evident with subtests scores reflect-
ing the semantic component of each task, the
most impaired being Vocabulary, Comprehension,
Information, Similarities, Picture Completion, and
Picture Arrangement, while Block Design remains
intact.

Memory

Episodic memory is relatively preserved. Patients
are not amnesic as they can relate details about
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Table 2.4. Typical neuropsychological deficits in semantic dementia or semantic variant of primary progressive

aphasia

Attention Essentially intact

General intelligence ↓ FSIQ; VIQ typically more impaired than PIQ due to semantic deficit

Memory Absence of amnesia for recent events; remote autobiographical memory may be impaired.

Semantic memory severely impaired

Language Impaired confrontation naming (anomia); impaired single word comprehension. Impaired object

knowledge; surface dyslexia (regularization errors) or dysgraphia; spared repetition; spared

grammar and motor speech production

Perception Essentially intact

Praxis Essentially intact

Executive function ↓ Verbal fluency; frontal features may gradually emerge

recent activities. However, autobiographical mem-
ory for remote epochs is more impaired, a reversal of
the temporal gradient effect seen in AD, deficits that
are related to compromised emotions/thoughts and
spatiotemporal details [129].

Semantic memory is severely impaired, moreso
than in AD or other FTLDs [130]; there is a
breakdown in factual knowledge. Depending on
the lateralization of brain atrophy, this may be
more evident for verbal or visual material. Cued
recall shows no advantage over free recall, indi-
cating breakdown or impaired access to semantic
knowledge.

Language

The proposed diagnostic criteria for semantic vari-
ant PPA [66] require both of two core features to
be present; namely, impaired confrontation nam-
ing (anomia) and impaired single word comprehen-
sion. In addition, three of four other features must
be present; specifically, impaired object knowledge,
particularly for low frequency or low familiarity
items; surface dyslexia or dysgraphia; spared repe-
tition; and spared grammar and motor speech pro-
duction.

There is a selective breakdown in the lexico-
semantic aspects of language. “Loss of memory
for words” is often the main presenting complaint,
with relatives and carers providing examples of

the patient’s loss of word meaning (“What’s Coca-
Cola?,” “What’s a hobby?”). Marked anomia is evi-
dent on testing; moreover, unlike the situation
in AD, patients are often unable to provide any
contextual information about objects they cannot
name: a patient with AD unable to name a pic-
ture of a kangaroo may nonetheless be able to say
that it jumps and is found in Australia, but such
details are not available to the patient with SD with
degradation of, or loss of access to semantic mem-
ory. Providing semantically related multiple choice
alternatives is not helpful. Repetition is common;
for example, of overlearned words and phrases or
of the examiner’s questions, although there may
be inability to understand what is being repeated.
Verbal fluency tasks are severely impaired, letter
fluency generally being superior to category flu-
ency as the latter is reliant upon access to seman-
tic knowledge. There may also be difficulty recog-
nizing familiar faces, the syndrome of progressive
prosopagnosia [155].

Conversational speech is fluent, syntactically
and grammatically correct, but may demonstrate
anomia, and use of superordinate categories (e.g.,
all animals are called dogs). Reading often demon-
strates regularization errors when reading words
with irregular sound–spelling correspondence; for
example, “pint” is read to rhyme with “mint,” the
phenomenon of surface dyslexia. As the disease pro-
gresses, utterances may become increasingly brief
and stereotyped.
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Perception

Visuoperceptual and visuospatial function is pre-
served. Tests such as Raven’s Progressive Matrices,
Judgment of Line Orientation, copy of the Rey–
Osterrieth Complex Figure, and object matching are
intact. Impaired object recognition on visual and
tactile presentation, sometimes labeled associative
agnosia, reflects the breakdown in semantics.

Praxis

Praxis is generally intact in SD, although there may
be impaired recognition and production of motor
acts.

Executive function

As previously mentioned, tests of sustained atten-
tion are intact but tests thought sensitive in part
to frontal lobe function such as verbal fluency are
impaired. The Weigl Color Form Sorting Test may
be completed but patients may fail to understand
the instructions for the Wisconsin Card Sorting Test.
Behavioral features reminiscent of bvFTD may be
present in SD occasionally, such as apathy, irritabil-
ity, and disinhibition. However, in contrast to the
impulsiveness that compromises bvFTD patients’
performance on gambling tasks, a patient with SD
who was still able to bet regularly on horse rac-
ing with moderate, better than breakeven success
despite being essentially mute, has been reported
[156].

2.2.4 Other FTLDs

A number of other FTLD syndromes have been
described, most usually based on neuropathologic-
al appearances. More recent classification of these
disorders has attempted to organize them according
to the abnormal proteins detected in neuropatho-
logical inclusions, the most common of which are
tau, TDP, and FUS [121]. Some of these entities
are tauopathies (e.g., argyrophilic grain disease,
neurofibrillary tangle dementia) while others are

FUS proteinopathy or FUSopathies (e.g., basophilic
inclusion body disease, neuronal intermediate fila-
ment inclusion disease).

The FTLD phenotype or a syndrome resembling
it has also been described in association with a
wide variety of other conditions, including AD asso-
ciated with certain presenilin-1 gene mutations
(Section 2.1.1), familial Creutzfeldt–Jakob disease
(Section 2.5.3), neurodegeneration with brain iron
accumulation (NBIA; Section 5.4.3), metachromatic
leukodystrophy (MLD; Section 5.5.2.1), adult-onset
Alexander’s disease (Section 5.5.2.3), hereditary dif-
fuse leukoencephalopathy with spheroids (HDLS;
Section 5.5.2.8), cerebrotendinous xanthomato-
sis (CTX; Section 5.5.4), hemochromatosis (pos-
sibly chance concurrence; Section 5.5.5), Sjögren’s
syndrome (Section 6.6), spontaneous intracranial
hypotension (SIH; Section 7.3.3), Whipple’s disease
(Section 9.4.5), and a non-DM1 non-DM2 multisys-
tem myotonic disorder (Section 10.1). Phenocopies
of bvFTD in which clinical and neuroradiological
progression does not occur have been described by
Davies et al. [157]; the exact nature of these cases is
uncertain, but some may have primary psychiatric
rather than a neurodegenerative disease.

2.2.4.1 Argyrophilic grain disease (AGD)

Argyrophilic grain disease (AGD) is defined neuro-
pathologically by the presence of spindle-shaped
argyrophilic grains in neuronal processes and
coiled bodies in oligodendrocytes composed of tau
protein, mainly in limbic regions (hippocampus,
entorhinal and transentorhinal cortices, amygdala).
This is a tauopathy, shown by immunohistochem-
ical and biochemical studies to be of four-repeat
(4R) type, as in PSP and CBD but unlike AD. AGD is
said to affect 5% of all patients with dementia, par-
ticularly the elderly [158,159].

Macroscopically there is atrophy of frontal
and temporal lobes with little or no atrophy
of the hippocampus and amygdala. Because of
the tau inclusions and frontotemporal atrophy,
AGD may be classified with the FTLDs with tau
inclusions.
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A case with an MAPT mutation (Section 2.2.5.1)
has been reported [160].

The clinical phenotype of AGD has been difficult
to define because it is commonly associated with
other tauopathies such as AD, PSP, and CBD and
with synucleinopathies. AGD may be similar to the
limbic dementias such as AD. One study comparing
AGD with AD suggested that the impairments
in memory, language, attention, and executive
function were less severe in AGD [161]; another
suggested that concurrence of AD and AGD
lowered the threshold for AD-related cognitive
deficits [162].

2.2.4.2 Basophilic inclusion body
disease (BIBD)

Basophilic inclusion body disease (BIBD) was
defined on the basis of tau-negative and incon-
sistently ubiquitin-immunoreactive neuronal cyto-
plasmic inclusions. The clinical presentation is with
a cognitive phenotype of bvFTD with subsequent
development of MND, or with a motor phenotype
that may be MND-like or PSP-like. Neuropatho-
logical inclusions have now been shown to stain
intensely for the fused in sarcoma (FUS) protein
[163], so this disorder may be classified as a FUS
proteinopathy or FTLD-FUS, as is the case for
neuronal intermediate filament inclusion disease
(NIFID) (Section 2.2.4.4) [121].

2.2.4.3 Neurofibrillary tangle dementia (NTD);
diffuse neurofibrillary tangles with calcification
(DNTC; Kosaka–Shibayama disease)

Neurofibrillary tangle dementia (NTD), also known
as senile dementia with tangles or neurofibrillary
tangle-predominant dementia (NFTPD), is a form
of late-life dementia characterized by medial tem-
poral lobe neurofibrillary tangles and neuropil
threads but no or few isocortical tau lesions,
absence of neuritic plaques, and scarcity of amy-
loid deposits. Tau is of 3R and 4R type, as in classi-
cal AD. The clinical phenotype is said to differ from
AD in being of shorter duration and with less severe

cognitive impairment [164,165], although it has also
been classified with the FTLDs [119].

Diffuse neurofibrillary tangles with calcification
(DNTC), also known as Kosaka–Shibayama disease,
is a condition that pathologically resembles NTD,
mostly reported from Japan. It is characterized radi-
ologically by temporal or temporofrontal atrophy,
with pallidal and cerebellar calcification typical of
that seen in Fahr’s disease (bilateral striatopallido-
dentate calcinosis; Section 5.4.8), and pathologically
by neuronal loss, astrocytosis, with massive neuro-
fibrillary tangles and neuropil threads but with-
out senile plaques. There is a high frequency of
neuronal cytoplasmic accumulation of �-synuclein
(80%) and TDP-43 (90%) [166,167]. The clinical
phenotype is broad, including both presenile and
senile dementia.

Neuropsychological assessment has shown
decline in memory retention and intelligence, and
anomic aphasia, with or without parkinsonian
features [168,169]. Cases without dementia have
also been reported [170]. Reduced blood flow
and metabolism in the temporal lobes has been
observed on functional imaging, without change
in the basal ganglia or cerebellum, prompting the
suggestion that the calcification and neurodegen-
eration occurred independently [168]. However,
Fahr’s disease presenting with a pure and progres-
sive dementia has been reported [171], suggesting
that brain calcification per se may not be innocuous
for cognitive function.

2.2.4.4 Neuronal intermediate filament
inclusion disease (NIFID)

Neuronal intermediate filament inclusion disease
(NIFID) was initially characterized neuropatho-
logically on the basis of intraneuronal cytoplasmic
inclusions of variable morphology that immuno-
stained for all class IV intermediate filament
(IF) proteins, namely NF-H, NF-M, NF-L, and �-
internexin [172–175], for which reason the term
FTLD-IF was proposed [176]. NIFID has a het-
erogeneous phenotype including features resem-
bling bvFTD, such as personality change, apathy,



38 2: Neurodegenerative disorders

disinhibition, and blunted affect, as well as memory
and language impairments. Cases without demen-
tia are reported. Neurological features may also
be present, including extrapyramidal signs, hyper-
reflexia, orofacial apraxia, supranuclear ophthalmo-
plegia, with or without clinical or subclinical signs
of motor neuron disease. The phenotype may some-
times resemble CBD [177].

More recently it has been shown that a much
larger proportion of the inclusions in NIFID are
immunoreactive with the fused in sarcoma (FUS)
protein than with IF [178], leading to a change in
the suggested nomenclature to FTLD-FUS [121], as
is the case for basophilic inclusion body disease
(BIBD) (Section 2.2.4.2).

2.2.4.5 Progressive subcortical
gliosis (of Neumann)

The term progressive subcortical gliosis (PSG) was
first suggested by Neumann and Cohn in 1967 [179]
to describe a rare dementing disorder with typi-
cal histopathological findings, namely frontotem-
poral atrophy with a distinctive distribution of
fibrillary astrogliosis in the superficial and deep
cerebral cortical layers, as well as in the subcortical
white matter, the latter sometimes extending to the
basal ganglia, thalamus, brainstem, and even to the
ventral horns of the spinal cord. Amyloid plaques,
neurofibrillary tangles, Pick cells, and Pick bodies
were not seen. The clinical correlate of these neuro-
pathological findings is variable. Some reported
cases have the clinical features of prototypical FTD
[179–181], including one family with an underlying
tau gene mutation [182], which would be classified
now as FTDP-17 (Section 2.2.5.1). Cases with the
phenotype of AD [179,183], Creutzfeldt–Jakob dis-
ease [184], and PSP [185] have also been reported.
The profile of neuropsychological deficits might be
anticipated to vary accordingly.

2.2.4.6 Pure hippocampal sclerosis;
hippocampal sclerosis dementia

Pure hippocampal sclerosis was initially defined
on neuropathological grounds, specifically by

neuronal loss in the CA1 region of the hippocam-
pus, in association with the neuroradiological
signature of hippocampal atrophy and the clinical
correlate of dementia [186–188]. Clinical overlap
with AD was emphasized initially, but many cases
were reclassified subsequently as a subtype of FTLD
based on the overlap of clinical and neuropsycho-
logical features with FTLD [189] and neuropatho-
logical findings of tau-negative, ubiquitin-positive
inclusions typical of “MND-inclusion dementia”
[190]. Specifically, decreased grooming, inappropri-
ate behavior, decreased interest, and hyperorality
were observed, with most patients meeting FTLD
diagnostic criteria [119]. However, other authors did
not see the core neuropathological features of FTD
(prefrontal neuronal loss, microvacuolation, gliosis)
in hippocampal sclerosis brains [191].

The potential heterogeneity of this condition
has been demonstrated by a report of cases of
hippocampal sclerosis dementia with pathologic-
al changes immunostaining for both tau and TDP-
43 [192]. Hippocampal sclerosis may be seen
as a feature in brains of older individuals with
FTLD [128].

2.2.5 Familial FTLDs

To date, mutations deterministic for familial FTLD
have been discovered in several genes [85], encod-
ing:
� microtubule-associated protein tau (MAPT) on

chromosome 17q21.31 (OMIM#600274);
� progranulin (GRN) on chromosome 17q21.31

(OMIM#607485);
� valosin-containing protein (VCP) on chromo-

some 9p13.3 (OMIM#167320);
� charged multivesicular body protein

2B (CHMP2B) on chromosome 3p11.2
(OMIM#600795), also known as chromosome
3-linked FTD or FTD3;

� TAR-DNA binding protein 43 (TDP-43) on
chromosome 1p36.22 (OMIM#612069), also
known as ALS10;
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� fused in sarcoma protein (FUS) on chromo-
some 16p11.2 (OMIM#608030), also known as
ALS6;

� ubiquilin 2 (UBQLN2) gene on chromosome
Xp11.21 (OMIM#300857), also known as
ALS15;

� C9ORF72 noncoding region hexanucleotide
repeat on chromosome 9p21.2 (OMIM#105550),
also known as FTDALS.

Of these, the most commonly encountered are
mutations in MAPT and progranulin and the
C9ORF72 hexanucleotide repeat (GGGGCC). The
overlap with genetic mutations deterministic for
familial ALS (Section 2.3.5) is evident.

2.2.5.1 FTDP-17: MAPT and progranulin
mutations

Frontotemporal dementia with parkinsonism
linked to chromosome 17 (FTDP-17) was the
umbrella term coined by Foster et al. [193] to
describe autosomal dominant kindreds linked to
chromosome 17q21–22 with a highly penetrant
clinical phenotype of frontotemporal dementia
and parkinsonism. Prior to this, various clinical
and clinicopathological labels had been used to
describe such kindreds, including disinhibition–
dementia–parkinsonism–amyotrophy complex
(DDPAC), hereditary dysphasic disinhibition
dementia (HDDD), pallido–ponto–nigral degener-
ation (PPND), progressive subcortical gliosis, and
multiple system tauopathy with presenile dementia
(MSTD).

Pathogenic mutations in the gene encoding the
microtubule-associated protein tau deterministic
for FTDP-17 were first described in 1998 [194–
196], since when around 70 different sequence vari-
ants have been described, although many are not
pathogenic or are of uncertain pathogenic signifi-
cance [85].

Not all FTDP-17 families were found to have
MAPT mutations, and in 2006 another muta-
tion linked to chromosome 17q21 in the gene
encoding progranulin (GRN) was defined in FTDP
families [197,198]. Around 150 sequence variants

are now described, many not pathogenic or of
uncertain pathogenic significance [85].

FTDP-17 associated with MAPT mutations
(OMIM#600274) may have a variable clinical pheno-
type, including bvFTD, CBD syndrome, PSP, and
an amnestic syndrome more suggestive of AD
[199]. Intrafamilial clinical heterogeneity has also
been observed with certain MAPT mutations [200].
Identification of tau mutation carriers has per-
mitted presymptomatic testing of neuropsycho-
logical function, many years before expected dis-
ease onset. Asymptomatic members of a large
French–Canadian kindred known to carry the
P301L tau mutation were impaired in tasks testing
frontal executive and attentional functions, such
as verbal fluency, Wisconsin Card Sorting Test
categories completed, Stroop interference test,
WAIS-R similarities and digit span subtests, and
Trails B, compared to those without tau mutations.
However, verbal and spatial memory, language, and
visuomotor constructive abilities were preserved
in the mutation carriers. Hence, the deficits in
the mutation carriers mirrored those seen at the
onset of clinical disease, but many years before
the expected age at onset. This observation raised
the possibility that certain brain areas are more
vulnerable due to reduced reserve, thus explaining
the focal clinical presentation, and perhaps indicat-
ing a neurodevelopmental component to disease
phenotype [201].

FTDP-17 associated with GRN mutations
(OMIM#607485) also shows phenotypic variability.
Carriers tend to be older than MAPT mutation
carriers at age of clinical onset, less likely to have
a positive family history, more likely to manifest
parietal lobe features and have asymmetric brain
atrophy, and have shorter disease duration. The
clinical phenotype is variable, including bvFTD,
language impairment typical of PNFA or dynamic
aphasia, and the corticobasal syndrome, and
intrafamilial heterogeneity has been described
[202–205]. In one series, patients with aphasic
presentations had mean onset three years later than
bvFTD presentations [203]. A distinct progranulin-
associated phenotype of PPA has been reported,
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characterized by impoverished propositional
speech, anomia, prolonged word-finding pauses,
impaired speech repetition for sentences, and
impaired verbal short-term memory [206]. In a
cohort of patients with progressive language and
speech disorders, agrammatic progressive aphasia
was reported to be predictive for FTLD-TDP path-
ology with two-thirds of these patients having GRN
mutations [207].

2.2.5.2 Inclusion body myopathy associated
with Paget’s disease of bone and
frontotemporal dementia (IBMPFD):
valosin-containing protein (VCP) mutations

This rare autosomal dominant disorder results
from mutations in the gene encoding valosin-
containing protein (VCP) on chromosome 9p13.3
(OMIM#167320), a member of the AAA-ATPase
superfamily that has many roles in cellular
metabolism including the ubiquitin-proteasome
pathway [208–211]. Around 20 sequence variations
are reported to date [85]. The clinical findings are
heterogeneous with 90% of cases having myopathy,
40% Paget’s disease of bone (Section 7.2.4), and
30% dementia of frontotemporal type. Intrafamilial
heterogeneity has been noted. Mutations in the
same gene may also cause familial ALS (Section
2.3.5). The neuropathology of the dementia is char-
acterized by the presence of neuronal inclusions
containing both ubiquitin and VCP [210]. Allelic
heterogeneity has also been noted, one mutation
(I27V) causing both bvFTD and an isolated progres-
sive dysarthria [212]. In addition, presentation with
fluent aphasia and language difficulties is reported
[213].

2.2.5.3 Chromosome 3-linked FTD (FTD3):
CHMP2B mutations

This disorder, described in a large Danish kin-
dred, was eventually shown to result from muta-
tions in the charged multivesicular body protein 2B
(CHMP2B) on chromosome 3p11.2 (OMIM#600795)
[214]. The cognitive phenotype is predominantly a

frontal lobe syndrome, although temporal and dom-
inant parietal lobe dysfunction is also recorded,
along with late motor signs, both pyramidal and
extrapyramidal [215].

2.2.5.4 FTD/ALS: C9ORF72 hexanucleotide
repeat

A hexanucleotide repeat (GGGGCC) in the noncod-
ing region of the C9ORF72 gene on chromosome
9p21.2 (OMIM#105550) has been found to be a com-
mon cause of FTD, FTDALS, and ALS [216–218]. It is
found in around 5% of sporadic FTD cases, around
25% of familial FTD cases, and even higher frequen-
cies in families with both FTD and ALS. The cog-
nitive phenotype is variable, encompassing bvFTD
and PNFA, but with only occasional cases of SD.
There may also be an association with behavioral
features and psychosis [219–221].

2.3 Motor neuron disorders

Traditionally it was taught that motor neuron dis-
ease (MND) or amyotrophic lateral sclerosis (ALS)
was a disorder confined to the motor system,
in which the intellect was preserved and, hence,
patients were all too horribly aware of their pro-
gressive neurological predicament. Certainly, the
earliest description, by Charcot and Joffroy in
1869, made no mention of cognitive changes [222].
Alzheimer may have reported a case of MND with
dementia in 1891 [223], but it was not until the later
part of the twentieth century that definitive cases
of MND with concurrent dementia of frontal type
were presented [224–226]. Dementia and cognitive
impairment in MND is now a subject of significant
research interest, with evident clinical, neuropsy-
chological, pathological, and genetic overlap with
FTLD [227,228]. Other conditions potentially rele-
vant to the cognitive disorder of MND/ALS include
the ALS/parkinsonism–dementia complex of Guam
(Section 2.4.7).
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Table 2.5. Typical neuropsychological deficits in motor neuron disease/amyotrophic

lateral sclerosis

Attention ↓ Sustained attention; economy of effort, impulsiveness, distractibility

General intelligence FSIQ may be normal or ↓ due to executive dysfunction

Memory Not amnesic, but scores may be down due to executive dysfunction

Language +/− aphasia (may be masked by dysarthria); anomia, ↓ verbal fluency

Perception Essentially intact

Praxis Impaired temporal sequencing secondary to executive dysfunction

Executive function Impaired; ↓ verbal fluency, card sorting

2.3.1 Motor neuron disease (MND),
amyotrophic lateral sclerosis (ALS)

The view of MND/ALS as an exclusively motor disor-
der has been increasingly eroded. Occasional clin-
ical reports of cognitive impairment in MND/ALS
patients and of frontotemporal dementia (FTD)
complicated by the development of MND/ALS
have been followed by more systematic stud-
ies, which have suggested that significant num-
bers of MND/ALS patients, up to 50%, have
cognitive deficits when tested, sometimes suffi-
cient to meet diagnostic criteria for FTD [229–
231], while neurophysiological investigation of FTD
patients has found evidence for subclinical anter-
ior horn cell disease in some cases [232]. FTD
and MND/ALS are now thought to represent a
spectrum condition, with pure cognitive and pure
motor cases at the boundaries but with extensive
overlap [227].

Neuropsychological profile (Table 2.5)

Attention

As in bvFTD, economy of effort, impulsiveness, and
distractibility may characterize test performance,
with poor sustained attention compromising test
results [226].

Neurophysiological evidence of impaired selec-
tive attention in MND/ALS has been presented, sug-
gesting a reduced focus of attention [233]. Mild

dysfunction of the central executive component of
working memory, manifested as impairments in
semantic and letter verbal fluency, modified Wis-
consin Card Sorting Test, trail making test, digit
span, Corsi blocks tapping test, and prose memory,
has been observed in some patients [234].

General intelligence (IQ)

Performance may be impaired on the WAIS-R,
sometimes in all areas, due to underlying executive
dysfunction.

Memory

Formal tests of memory, both verbal and visual,
may show impaired scores but patients are gen-
erally not amnesic, as reflected in their know-
ledge of autobiographical events and orientation
in time and place, as commonly observed in FTD.
Occasional cases with amnesia or episodic mem-
ory impairment similar to that in AD have been
reported, perhaps related to degeneration of the
perforant pathway [235].

Language

The frequency of language disorder in MND/ALS
is uncertain, as concurrent dysarthria (due to bul-
bar or pseudobulbar palsy) may mask language
dysfunction unless appropriate tests are used. Bul-
bar MND/ALS with rapidly progressive aphasia has
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been reported [236,237]. Marked anomia on pic-
ture naming and naming from verbal descriptions
and impaired letter and category verbal fluency
may be observed, indicating a disorder of language
production, but with additional impairments on
syntactically based tasks of language comprehen-
sion (Token Test, Test for the Reception of Gram-
mar) and picture–word matching tests of seman-
tic comprehension [237]. A subgroup of MND/ALS
patients with language dysfunction characterized
by word-finding difficulties and decreased verbal
fluency has been described [238], as has greater
difficulty in confrontation naming of verbs than
nouns [239].

Perception

As in FTD, there is no evidence for visual percep-
tual disorder in MND, with preserved spatial navi-
gational skills, spatial localization and orientation,
which may be confirmed on tests such as dot count-
ing and maze tracking. Poor performance on tests
of drawing may result from lack of planning or strat-
egy or motor deficits rather than visual perceptual
impairment.

Praxis

Impaired temporal sequencing of motor skills
may be apparent, reflecting executive dysfunction,
although this may be difficult to test in the context
of motor deficits.

Executive function

Pervasive deficits on frontal executive tests are evi-
dent on neuropsychological testing in between one-
fifth and one-third of nondemented MND patients
[230,231,240,241]. There are impairments on the
Wisconsin Card Sorting Test with perseverations,
Weigl’s Block Test, verbal and design fluency, and
WAIS-R Picture Arrangement. These deficits may
be more common in patients with predominantly
upper motor neuron signs, including primary lateral

sclerosis (Section 2.3.2), and in patients with pre-
dominantly bulbar involvement [242].

2.3.2 Primary lateral sclerosis (PLS);
progressive symmetric spinobulbar
spasticity

Primary lateral sclerosis (PLS) is a rare variant of
MND/ALS characterized by progressive spinobul-
bar spasticity. PLS is thought to result from isolated
involvement of upper motor neurons in the precen-
tral gyrus with secondary pyramidal tract degener-
ation, without either clinical or neurophysiologic-
al evidence of lower motor neuron involvement
[243,244]. Suggested diagnostic criteria require such
isolated upper motor neuron involvement to per-
sist over a period of at least three years [243], PLS
tending to pursue a more benign course than typi-
cal MND/ALS.

An early study of PLS in which cognitive test-
ing was not undertaken concluded that the intel-
lect was preserved [243]. However, more system-
atic, albeit retrospective studies in small cohorts
have suggested that mild cognitive dysfunction of
frontotemporal lobar type is present in PLS, with
deficits in executive function, psychomotor speed,
and memory, but with normal orientation, spatial
skills and language [245–247]. A prospective study
of neuropsychological function using a broad bat-
tery of tests in 18 PLS patients found heterogen-
eity, but cognitive impairment according to the def-
initions of the study was present in 11 patients
(61%). Verbal fluency was the most sensitive test,
but impairment was also noted on tests of audi-
tory verbal learning, visual (but not verbal) recogni-
tion memory, and the Wisconsin Card Sorting Test.
Language testing showed impaired category verbal
fluency, specifically for nonliving as opposed to liv-
ing items. These findings overlap with those docu-
mented in MND/ALS whereas others do not, such as
the finding that confrontation naming of nouns and
verbs was relatively intact [244]. A comparison with
MND/ALS patients suggested worse performance
in the PLS group on verbal fluency tests, possibly
related to longer disease duration [248].
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2.3.3 Progressive muscular atrophy (PMA)

Variants of MND/ALS with a clinical phenotype of
exclusively lower motor neuron involvement, pro-
gressive muscular atrophy (PMA), are rare, and
may be even rarer if neuropathological findings are
taken into account. One study of 12 PMA patients
found no significant difference between subjects
and healthy controls on any measure of cogni-
tive, behavioral, or emotional function [249]. Fur-
ther support for the contention that exclusively
or predominantly lower motor neuron involve-
ment is not associated with cognitive decline came
from a patient with the flail arm syndrome (sym-
metrical wasting and weakness of the arms with
minimal leg or bulbar involvement at clinical
presentation), also known as the Vulpian–Bernhardt
syndrome [250]. Another 73-year-old man with
flail arm syndrome had no complaints of mem-
ory problems four years after diagnosis of his ill-
ness, and scored 79 on the Addenbrooke’s Cogni-
tive Examination-Revised out of a possible 88 (90%),
omitting those sections dependent on upper limb
function, above the test cutoff excluding demen-
tia (Larner, unpublished observations). However, a
more recent study of PMA patients found them to be
worse than controls on attention and working mem-
ory, category fluency, and the MMSE, but with pre-
served visuospatial function. Cognitive impairment
(�2SD from the mean of normative data on at least
three neuropsychological tests) was found in 17% of
this group of PMA patients [251].

2.3.4 Mills’ syndrome

A syndrome of progressive ascending or descending
hemiplegia without significant sensory involvement
was first reported by Mills in 1900 [252]. The noso-
logical status of Mills’ syndrome has been uncer-
tain, but some cases may be hemiplegic forms of
motor neuron disease with exclusively upper motor
neuron signs [253,254], although this clinical pic-
ture falls outside of proposed diagnostic criteria for
PLS [243]. If Mills’ syndrome is indeed a localized
variant of MND, then the possibility of cognitive

impairment as part of the phenotype might be
expected [255].

A case of progressive spastic hemiplegia con-
forming to the description of Mills’ syndrome with
concurrent dementia of frontotemporal type has
been reported. Pathological examination showed
tau-negative, ubiquitin-positive, MND-type inclu-
sions in layer II cortical neurons, hippocampal den-
tate granule cells, and hypoglossal nerve nucleus
neurons [256].

2.3.5 Familial ALS

To date, mutations deterministic for familial ALS
have been discovered in several genes, encoding:
� superoxide dismutase-1 (SOD1) gene on

chromosome 21q22.1 (OMIM#105400), also
known as ALS1;

� fused in sarcoma protein (FUS) on chromo-
some 16p11.2 (OMIM#608030), also known as
ALS6;

� VAPB gene on chromosome 20q13.3
(OMIM#608627), also known as ALS8;

� angiogenin (ANG) gene on chromosome 14q11.2
(OMIM#611895), also known as ALS9;

� TAR-DNA binding protein 43 (TDP-43) on
chromosome 1p36.22 (OMIM#612069), also
known as ALS10;

� FIG4 gene on chromosome 6q21 (OMIM#612577),
also known as ALS11;

� optineurin (OPTN) gene on chromosome 10p13
(OMIM#613435), also known as ALS12;

� valosin-containing protein (VCP) on chromo-
some 9p13.3 (OMIM#613954), also known as
ALS14, allelic with one form of familial FTLD
(Section 2.2.5.2);

� ubiquilin 2 (UBQLN2) gene on chromosome
Xp11.21 (OMIM#300857), also known as
ALS15;

� CHMP2B gene on chromosome 3p11.2
(OMIM#614696), also known as ALS17, allelic
with one form of familial FTLD (Section 2.2.5.3);

� C9ORF72 noncoding region hexanucleotide
repeat on chromosome 9p21.2 (OMIM#105550),
also known as FTDALS.
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The overlap with genetic mutations deterministic
for familial FTLD (Section 2.2.5) is evident.

Cognitive phenotypes in familial ALS are little
described to date. It is reported that in SOD1
mutations significant cognitive changes are less
likely compared to non-SOD1 FALS patients [257].
It has been suggested that ALS patients with
the C9ORF72 hexanucleotide repeat are character-
ized by the presence of cognitive and behavioral
impairment [258]. Although ALS is the most com-
mon phenotype with TDP-43 mutations, FTD in
other individuals of the same family or in those
with ALS has been reported, usually manifesting
with behavioral changes but also with semantic
dementia [259].

2.4 Parkinsonian syndromes

In his 1817 account of the disease which later, cour-
tesy of Jean-Martin Charcot, would bear his name,
James Parkinson stated that intellect was uninjured
(see [260] for a facsimile of Parkinson’s book on
the shaking palsy). Charcot pointed out that this
was not in fact the case and that “psychic facul-
ties are definitely impaired” and “the mind becomes
clouded and the memory is lost” [261]; Benjamin
Ball also published on this subject in 1882 [262]. It
is now generally recognized that Parkinson’s disease
(PD) is more than simply a motor disorder and that
cognitive impairments are common, progressing in
some patients to dementia [263,264]. Although this
was not reflected in the staging scale for PD devel-
oped by Hoehn and Yahr [265], which referred to
motor symptoms only, the broader Unified Parkin-
son’s Disease Rating Scale (UPDRS) does encompass
intellectual function. The motor stages of PD do not
correlate well with cognitive symptoms [266]. Rapid
eye movement sleep behavior disorder (REMBD)
is one of the nonmotor features of PD (also seen
in DLB and MSA; sections 2.4.2 and 2.4.5, respec-
tively), which may predate other disease manifesta-
tions by many years [267], and hence be confused
with idiopathic REMBD (Section 11.4.1). The patho-
logical hallmark of PD is the finding of Lewy bodies,
intracytoplasmic rounded eosinophilic inclusions,

in brainstem monoaminergic and cholinergic neu-
rons, which stain for the protein �-synuclein.

Disorders that clinically may superficially resem-
ble idiopathic PD but that, in fact, have differ-
ent clinical features, course, and pathogenesis have
sometimes been labeled as “atypical” parkinson-
ian syndromes, or sometimes as “parkinsonism
plus.” The most common of these disorders are PSP,
CBD and MSA. The terminology begs the question
as to what is “atypical” for PD, but features that
should dissuade one from a diagnosis of idiopathic
PD include early freezing and falls, rapid disease
progression, early dysautonomia, early speech or
swallowing problems, levodopa unresponsiveness,
and early dementia [268]. It is reported that sim-
ple bedside cognitive screening tests such as the
Dementia Rating Scale and the Addenbrooke’s Cog-
nitive Examination can differentiate the most com-
mon “atypical” parkinsonian disorders [269].

The parkinsonian disorders other than PD con-
sidered here include PSP and CBD, which are
both tauopathies and which are regarded by some
authorities as falling within the rubric of FTLD
[117]; MSA, a synucleinopathy; dementia pugilis-
tica; and the parkinsonism–dementia complex of
Guam. Other disorders with clinical features that
might cause them to be regarded as “atypical”
parkinsonian syndromes, but which are covered
elsewhere, include FTD with parkinsonism linked
to chromosome 17 (FTDP-17; Section 2.2.5.1),
Huntington’s disease (Section 5.1.1), Wilson’s dis-
ease (Section 5.4.2), neurodegeneration with brain
iron accumulation (Section 5.4.3), neuroacantho-
cytosis (Section 5.4.4), neuroferritinopathy (Sec-
tion 5.4.5), Kufor–Rakeb syndrome (PARK9; Sec-
tion 5.4.7), Fahr’s disease (Section 5.4.8), Gaucher’s
disease (Section 5.5.3.4), normal pressure hydro-
cephalus (Section 7.2.1), postencephalitic parkin-
sonism (encephalitis lethargica; Section 9.1.11),
and some cases of Creutzfeldt–Jakob disease (CJD)
(Section 2.5).

2.4.1 Parkinson’s disease dementia (PDD)

The frequency of cognitive disorders in PD has been
recognized increasingly over the past 20 years [264].
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Diagnostic criteria have been developed for Parkin-
son’s disease dementia (PDD) [270,271]. A category
of mild cognitive impairment in PD, PD-MCI, has
also been recognized [272] and diagnostic criteria
developed [273].

Longitudinal cohort studies suggest that the
majority (�80%) of patients surviving PD for 20
years will have dementia, which correlates with
increasing age [274], evolving around the age of 70
years irrespective of the time of PD onset [275].

However, cognitive deficits may also be evident
in newly diagnosed PD patients: around one-third
of patients in an incident cohort were impaired on
MMSE, pattern recognition task, and the Tower of
London Task [276]. At three- to five-year follow-up,
10% of cases had developed dementia and a further
57% had evidence of cognitive impairment, with
deficits of frontostriatal function being the most
common [277]. REMBD and insomnia may be asso-
ciated with lower cognitive test scores in de novo PD
[278].

Significant predictors of dementia risk in PD are
age ≥72 years, semantic fluency less than 20 words
in 90 seconds, and inability to copy intersecting
pentagons [279]. Patients with earlier-onset PD have
a preserved linguistic ability prior to dementia onset
[274]. PDD seems to be heralded by postural and
gait dysfunction and cognitive deficits with a pos-
terior cortical basis, features which are thought to
reflect nondopaminergic cortical Lewy body path-
ology. The cognitive profile in PDD encompasses
visuospatial dysfunction, memory problems, and
attentional and executive dysfunction. Compared
to AD, PDD has worse attentional, executive, and
visuospatial functions but memory is better pre-
served [280].

2.4.2 Dementia with Lewy bodies (DLB)

The finding of Lewy bodies, the pathological hall-
mark of PD, in the neocortex of patients with
dementia and parkinsonism, often with concurrent
AD-type pathology, led to the delineation of a syn-
drome under a variety of names, such as cortical
Lewy body disease, senile dementia of the Lewy
body type, and the Lewy body variant of AD. All

these entities are now subsumed under the rubric of
DLB [281]. A distinction has sometimes been drawn
between cases with pathological evidence of con-
current AD and Lewy body pathology, labeled Lewy
body variant (LBV), and those without significant
concomitant AD pathology, labeled diffuse Lewy
body disease (DLBD) [282]. The positive immunos-
taining of Lewy bodies in both PD and DLB with �-
synuclein indicates that both disorders fall into the
category of synucleinopathies. Lewy body pathol-
ogy is also common, if sought, in AD caused by
mutations in the presenilin-1 gene (Section 2.1.1),
suggesting other possible genetic influences on the
development of synuclein-related pathology [283].

Clinical and pathological diagnostic criteria for
DLB have been developed [284–286] and validated
[287]. The central clinical feature is progressive
cognitive decline with prominent deficits in atten-
tion, visuospatial abilities, and executive function,
along with a number of other core features that
are essential for diagnosis of probable (two fea-
tures) or possible (one feature) DLB, namely fluc-
tuating cognition with pronounced variations in
attention (the “unstable platform of attention”),
recurrent visual hallucinations, and spontaneous
motor features of parkinsonism. DLB has been char-
acterized as a visual-perceptual and attentional-
executive dementia [288], with greater impairment
of attentional and visuospatial function and rel-
ative preservation of memory function as com-
pared to AD [289–292]. A number of other clin-
ical features may support the diagnosis, including
marked neuroleptic sensitivity [293] and syncopal
episodes. Autonomic dysfunction, when sought, is
reported to be common [294], and cases of DLB
“evolving” from pure autonomic failure have been
reported [295,296]. The sensitivity of clinical diag-
nosis of DLB is low [297]. Inclusion of REMBD
as a core clinical feature improves DLB diagnostic
accuracy [298].

The relationship between DLB and PDD (Sec-
tion 2.4.1) has been much discussed. Examina-
tion of many PD cases has demonstrated a char-
acteristic pattern of topographical progression of
Lewy body changes extending from brainstem to
cortex [299], which may support the notion of a



46 2: Neurodegenerative disorders

Table 2.6. Typical neuropsychological deficits in Parkinson’s disease dementia and in dementia with Lewy bodies

Attention Prominent deficits: “unstable platform of attention;” difficulty establishing attentional focus, easy

disengagement; bradyphrenia; impaired spatial working memory; fluctuating consciousness

General intelligence FSIQ ↓, PIQ worse than VIQ, possibly related to executive dysfunction

Memory Subcortical pattern of impairment, recognition better than recall

Language Relatively intact; verbal fluency may be impaired (?phonemic � category)

Perception Prominent deficits of visuoperceptual and visuospatial function

Praxis Possible ideomotor apraxia

Executive function Prominent deficits: impaired; ↓ verbal fluency, card sorting

spectrum disorder. An arbitrary one-year rule is
sometimes used to distinguish PDD from DLB; that
is, onset of dementia within one-year of parkinson-
ism is labeled DLB, while more than one year of
parkinsonism before dementia develops is termed
PDD. Because there is no clear neuropathological
distinction between PDD and DLB, and the clinical
boundaries may be blurred, they may reflect sim-
ilar biological processes, both being neurodegen-
erative disorders with diffuse cortical Lewy bodies.
Cognitive status seems to correlate with neuro-
pathological staging [300].

Although usually a sporadic condition, occasional
cases fulfilling diagnostic criteria for DLB have
been reported in patients carrying genetic muta-
tions, for example point mutations (E46K) [301] in
the �-synuclein gene (SNCA), and in cases asso-
ciated with triplication of SNCA [302], demen-
tia is said to be a much more common feature
[303]. DLB has also been reported with mutations
of the presenilin-1 gene (� T440) [304], and the
prion protein gene (M232R) [305], although the lat-
ter may be an uncommon polymorphism rather
than a pathogenic mutation. Other disorders that
may mimic or be confused with DLB, and hence
lead to confounding in defining the neuropsycho-
logical profile, include CJD and vascular dementia
[306,307].

Neuropsychological profile of PDD and DLB
(Table 2.6)

Attention

The basal ganglia are implicated in the regulation of
attention [308]. There is evidence that PD patients

disengage from attended locations more readily,
have less effective mechanisms for resisting inter-
ference, and have difficulties establishing a new tar-
get of attention [309]. Tests of working memory in
PD have shown deficits, with spatial working mem-
ory apparently more vulnerable than verbal or visual
working memory, which are affected later in the
disease course [310]. Bradyphrenia, a slowness of
thought or prolonged information processing time,
is said to be a cardinal feature of subcortical demen-
tias, in PD perhaps paralleling the motor slowing
(bradykinesia). However, if motor slowing is con-
trolled for, cognitive slowing does not seem to be
a feature of PD [311,312]. Concurrent depression or
mild dementia may also, perhaps in part, account
for bradyphrenia. An overview of studies in which
PDD was diagnosed by explicit criteria found atten-
tion to be more severely affected than in AD [280].
The attentional deficits in PDD are the most import-
ant cognitive predictors of impact on activities of
daily living [313].

Fluctuating consciousness, clinically distinguish-
able from delirium, is one of the core features
of DLB [284,285]. This may lead to marked vari-
ability in performance on cognitive testing both
within and between testing sessions. The clin-
ical diagnosis of fluctuating consciousness corre-
lates with psychophysiological measures of variable
attentional performance [314]. This “unstable plat-
form of attention” may account for the observed
impairments in attentional, mnemonic, and execu-
tive functions in DLB. Impairments of attention
may be demonstrated using the WAIS-R Digit Span
subtest [282] and on complex set-shifting tasks
examining shifts of attention [315]. Subtypes of
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fluctuating cognition that differentiate DLB from
AD include daytime drowsiness and lethargy, day-
time sleep of more than two hours, staring into
space for long periods of time, and episodes of
disorganized speech [316], features that form the
basis of the Fluctuations Composite Score, which
has proved useful in diagnosis of DLB [317].

General intelligence (IQ)

Performance may be impaired on the WAIS-R, for
example in Digit Span and Similarities subtests.
There may be better VIQ than PIQ.

Memory

There is relatively less impairment of memory in
PDD than of visuospatial and executive functions.
Memory impairment is not a prerequisite in PDD
diagnostic criteria [270]. Nonetheless, memory is
not necessarily normal. It is deficient compared to
normal controls but better in the verbal domain
than in AD although visual memory is poorer [280].
There is impairment of both recent and remote
memory, with recognition better than recall con-
sistent with a retrieval deficit typical of impaired
subcortical processes. Nevertheless, a meta-analysis
indicated that recognition memory is impaired in
PDD [318]. Retrieval difficulties may reflect the
prominent executive dysfunction, with impaired
allocation of attentional resources for effortful free
recall tasks and the formulation of retrieval strate-
gies [319]. Registration, storage, and consolidation
of memory may be intact [320]. Semantic memory
is also impaired [321].

Memory impairment is not essential in DLB con-
sensus clinical diagnostic criteria [286]. Episodic
memory deficits are less severe than those of AD
patients with an equal degree of dementia [289–
292] due to better retention and recognition mem-
ory, although learning and delayed recall in the
free recall paradigm showed similarly severe impair-
ment. The differences are even more apparent when
patients with DLBD (i.e., without concomitant AD
pathology) are compared to LBV and AD patients

[322]. Semantic memory is impaired [323]. Mem-
ory deficits are more severe in DLB than in PDD
[280].

Language

There is relatively less impairment of language
in PDD and DLB than visuospatial and executive
functions. There is no aphasia, and naming remains
intact until late stages, but hypophonia, mono-
tonia, and aprosodia may be evident. Some groups
have found reduced information content of sponta-
neous speech, impaired comprehension of complex
commands, and impaired verbal reasoning skills
[324,325]. Poor verbal fluency is evident, perhaps
more so for phonemic than category fluency [326],
and this may be an early indicator of executive dys-
function and developing dementia.

Perception

Visuoperceptual and visuospatial deficits are
reported in PDD, and are more pronounced than
in AD but less than in DLB [280]. In PD, recorded
deficits include prism adaptation [327], facial
recognition [328], and complex figure drawing.

In DLB, visuoperceptual and visuospatial impair-
ments are greater than those in PDD and AD
[280]. They are evident in tests of fragmented let-
ter identification and overlapping figures [292,323],
the Judgment of Line Orientation [329], draw-
ing simple and complex figures [282,289,330,331],
and in tests of visual search [332]. These deficits
may reflect the underlying attentional problems
and/or executive dysfunction, affecting planning
and strategy formation, and/or may be related to
occipital cortical hypoperfusion observed in func-
tional imaging studies [333]. Pentagon drawing
in DLB is worse than in AD or PD, apparently
related to deficits in perception and praxis in DLB
[331].

Praxis

Praxis may be difficult to evaluate meaningfully
in the context of the motor disorder of PD.
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However, ideomotor apraxia for transitive move-
ments has been documented in some PD patients,
correlating with deficits in tests sensitive to frontal
lobe function (verbal fluency, Trail Making, Tower
of Hanoi) and suggesting corticostriatal dysfunction
[334,335].

Executive function

As with attention, executive function impairments
are more severe in PDD than in AD and PD, but less
so than in DLB [280].

Executive dysfunction in PD may be mani-
fested as psychomotor slowing, impairments in
abstract reasoning on WAIS-R Similarities subtest
and Raven’s Progressive Matrices, and impaired
performance on the Stroop Test and Wiscon-
sin Card Sorting Test [336,337]. Pathological gam-
bling, an executive dysfunction or impulse con-
trol disorder, has been reported in some PD
patients following treatment with dopamine agonist
drugs [338,339].

Treatment of neuropsychological deficits

Because the cholinergic deficit in DLB is greater
than that observed in AD, a possible role for
cholinesterase inhibitors (ChEI) was anticipated
in DLB. A randomized double-blind placebo-
controlled trial demonstrated efficacy of rivastig-
mine for both cognitive and psychiatric features of
DLB [340], benefits apparently maintained for up to
two years [341]. However, a recent systematic review
finds the effects of ChEIs in DLB unclear [342], and
the treatment is not licensed currently.

There is greater clarity with respect to PDD where
the available evidence supports ChEI use with bene-
fits in cognitive function, activities of daily living,
and global assessment [342].

Memantine has also been examined in PDD and
DLB, a randomized study suggesting some benefits
in global clinical status and behavioral symptoms in
mild DLB patients, but not in PDD [343].

Cognitive impairment is generally deemed to be
a contraindication to the use of deep brain stimula-
tion in PD.

2.4.3 Progressive supranuclear palsy (PSP)

Progressive supranuclear palsy (PSP) is sometimes
known as Steele–Richardson–Olszewski (SRO) syn-
drome, after the first descriptors of the condition in
the early 1960s [344,345], although possible earlier
cases, even dating to the nineteenth century, have
been noted retrospectively [346]. PSP is an akinetic-
rigid syndrome in which the typical features are
bradykinesia and axial rigidity without tremor, pos-
tural instability with early falls, supranuclear gaze
palsy, and bulbar symptoms. Clinical diagnostic
criteria for PSP have been published [347]. How-
ever, the characteristic eye movement disorder from
which PSP takes its name is not always present,
as cases with the typical pathological findings but
without supranuclear gaze palsy are described. It
has been suggested that the typical phenotype be
called “Richardson’s syndrome,” and the atypical
form that is often confused with idiopathic PD
because of asymmetric onset, tremor, and modest
response to levodopa, be called “PSP-P” [348]. The
neuropathology of PSP is characterized by neuro-
fibrillary tangles and neuropil threads seen using
tau immunohistochemistry. White matter astro-
cytes containing tangles (“tufted astrocytes”) may
be seen, an appearance that may be unique to PSP.
Cases of apparent PSP with or without dementia
have occasionally been reported in association with
tau gene mutations (i.e., FTDP-17; Section 2.2.5.1)
[349,350].

Dementia as a component of PSP was explicit in
the first descriptions [344,345]. The term “subcor-
tical dementia” (Section 1.3.3.1) was first used to
describe the neuropsychological deficits observed
in PSP, namely forgetfulness, slowing of thought
processes, emotional or personality change (apa-
thy, depression with outbursts of irritability), and
impaired ability to manipulate acquired know-
ledge [351]. In the NNIPPS Study, the largest
prospective study of PSP, around 60% of PSP
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patients had impairment on the Dementia Rating
Scale [352].

Cognitive slowing and executive dysfunction are
the key findings, with relative preservation of
instrumental functions [353]. This is manifest as
slowed responses to questions or problem solving,
impaired verbal fluency, more so for phonologic-
al than semantic categories [269,354], and perse-
veration, as in the “applause test” or “clapping
test” (when asked to clap three times, the patient
often claps more than three times). On the Demen-
tia Rating Scale, PSP patients are more impaired
on the Initiation/Perseveration subtest and less
impaired on the Memory subtest than AD patients
[355]. Nonetheless, memory for long- and short-
term material is also impaired, for both immediate
and delayed recall, but unlike the situation in AD
or other “cortical dementias,” memory performance
is significantly improved by cueing and recognition,
methods believed to facilitate the retrieval process,
itself thought to be related to the frontostriatal sys-
tem [356]. Ideomotor apraxia may occur, which may
cause clinical confusion with CBD, but is usually
bilateral [334].

A randomized controlled trial of the ChEI
donepezil in PSP proved negative [357].

2.4.4 Corticobasal degeneration (CBD)

Corticobasal degeneration (CBD), also known as
cortical-basal ganglionic degeneration, was first
defined neuropathologically, characterized by
nerve cell loss and gliosis in the cortex, especially
frontal and anterior parietal lobes, underlying
white matter, thalamus, lentiform nucleus, sub-
thalamic nucleus, substantia nigra, and locus
ceruleus, with swollen and chromatolyzed residual
nerve cells with eccentric nuclei (achromasia)
[358]. Neuronal inclusions resembling the globose
neurofibrillary tangles of PSP are present in the
substantia nigra. There are no cortical neurofib-
rillary tangles, Pick bodies or Pick cells, senile
plaques, Lewy bodies, granulovacuolar change,
or amyloid deposits [359]. Neuropathologic-
al diagnostic criteria for CBD have been published

[360]. Clinical diagnosis of CBD is associated with
tau-positive pathology [145].

The clinical phenotype is variable: initial reports
emphasized a movement disorder, namely a chronic
progressive akinetic-rigid syndrome with asym-
metric onset, limb apraxia sometimes with the
alien limb phenomenon, cortical sensory dysfunc-
tion, dystonia, and myoclonus, sometimes with
eye movement disorder [361]. However, it was
increasingly recognized that CBD is also a cognitive
disorder [362,363]. Initial clinicopathological diag-
nostic criteria for CBD did not reflect this fact [364],
but in more recently proposed criteria, this omis-
sion has been rectified, including variable degrees of
focal or lateralized cognitive dysfunction with rela-
tive preservation of learning and memory on neuro-
psychometric testing as a supportive investigation
[365]. Brief bedside cognitive screening instruments
such as the Addenbrooke’s Cognitive Examination,
are reported to be able to detect cognitive deficits in
CBD [269].

It is of note that CBD phenocopies are rela-
tively common, the “corticobasal degeneration syn-
drome” (CBDS). The most common neuropatho-
logical substrates of CBDS are AD and tau-positive
FTLD (Pick’s disease) [19,366], but motor neuron
disease-inclusion dementia [367] and NIFID (Sec-
tion 2.2.4.4) [177] have also been described. Hence,
studies of “CBD” without neuropathological confir-
mation remain open to possible confounding with
cases of CBDS, a fact of critical significance when
attempting to define the cognitive profile of CBD
[368].

Neuropsychological studies in CBD have reported
deficits of sustained attention and verbal fluency,
more so for letter than category fluency, and deficits
of praxis, finger tapping, and motor programing
[269]. These latter changes are thought to reflect
basal ganglia and posterior frontal lobe involve-
ment in CBD [369,370]. Apraxia affecting limb func-
tion is one of the most typical features of CBS,
which may be ideomotor and limb-kinetic [335].
Early and prominent language impairments have
also been noted [371], specifically phonological
impairments overlapping with those observed in
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progressive nonfluent aphasia variant of FTLD (Sec-
tion 2.2.2) [372]. Learning and episodic memory are
mildly impaired, if at all, particularly in the early
stages.

Cases presenting with features of FTD without
a motor disorder have also been reported [373],
as have occasional patients with parieto-occipital,
Balint-like, cortical dysfunction [374]. These
findings presumably reflect the regional distribu-
tion of pathological change. Some authors have
categorized CBD as a frontotemporal lobar degener-
ation with tau inclusions [117], and this phenotype
may be seen in patients harboring mutations in the
tau gene (Section 2.2.5.1) [199].

2.4.5 Multiple system atrophy (MSA)

Multiple system atrophy (MSA) is a neurode-
generative disorder characterized as a synuclein-
opathy on the basis of the signature neuropatho-
logical finding of glial cytoplasmic inclusions in
basal ganglia, substantia nigra, pontine nuclei,
medulla, cerebellum, and white matter, composed
of fibrils of polymerized �-synuclein. The clin-
ical phenotype is variable: initially three syndromes
were defined, namely olivopontocerebellar atrophy
(OPCA), striatonigral degeneration (SND), and Shy–
Drager syndrome [375], but the current classifica-
tion, based on the relative predominance of clinical
(and pathological) changes, encompasses MSA-C
(cerebellar ataxia), roughly equivalent to OPCA, and
MSA-P (parkinsonism), roughly equivalent to SND.
All cases have autonomic dysfunction, which was
the prominent feature of Shy–Drager syndrome. The
phenotype of MSA is broad, with many other neuro-
logical features sometimes encountered [376]. Clin-
icopathological diagnostic criteria for MSA have
been proposed [377].

Unlike other parkinsonian syndromes, MSA was
previously considered to be largely free from cog-
nitive impairments [269]. Although intelligence is
generally normal, systematic studies have shown
that there may be neuropsychological impairments
in MSA. In the NNIPPS Study, around 20% of MSA
patients had impairment on the Dementia Rating
Scale, with a cognitive profile similar to that in PSP

and PD [352]. Frontal lobe dysfunction has been a
fairly consistent finding, with difficulties in atten-
tional mechanisms and set-shifting impinging on
working memory and speed of thinking [353,378,
379]. In MSA-P, verbal fluency (phonemic and cat-
egory) deficits have been noted despite normal-
ity on the WAIS, Wisconsin Card Sorting Test, and
Stroop test [380], as well as impairments in visuo-
spatial and constructional function and executive
function. MSA-C patients show less severe involve-
ment, with relative sparing of frontal function [381].
Apraxia is not a feature of MSA [334]. Mild cog-
nitive impairment in MSA (MSA–MCI) has been
reported to comprise deficits in immediate recall,
digit span backward, verbal fluency, Wisconsin
Card Sorting Test, and Stroop Test, but with unim-
paired recognition memory, long-term forgetting,
naming, visuospatial abilities, and constructional
praxis [382].

2.4.6 Dementia pugilistica; sports-related
head injury

A syndrome of cognitive impairment following
repeated blunt head trauma has been described,
originally in boxers (hence dementia pugilistica,
boxer’s dementia, or “punch drunk syndrome”)
[383], although other professions may also be at
risk of sports-related head injury (e.g., steeplechase
jockeys after repeated falls). In addition to cogni-
tive impairment, there may be a parkinsonian syn-
drome dominated by akinesia and variably respon-
sive to levodopa, as well as dysarthria. Brain imaging
may show ventricular dilation and a cavum septum
pellucidum. Pathologically, the condition is remin-
iscent of AD, with neurofibrillary tangles, deposi-
tion of amyloid-� peptide, and diffuse neuronal loss.
Brain trauma is known to increase expression of
amyloid-� [384], and epidemiological studies have
suggested head injury may be a risk factor for AD,
particularly in the presence of the ApoE ε4 genotype
[385].

Dementia pugilistica lies at the severe end of the
spectrum of neuropsychological deficits following
head injury [386]. Postconcussional symptoms may
be somatic, affective, behavioral, and cognitive. In
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assessing these latter impairments, allowance may
need to be made for premorbid intellectual level
and for concurrent alcohol misuse. The neuropsy-
chological sequelae of mild traumatic brain injury
have been extensively studied, particularly in Amer-
ican football players [387–389], with the conclusion
that following a sports-related concussion, cogni-
tive performance recovers over a three- to seven-day
period [390]. However, dementia-related syndromes
may be initiated by repeated concussions.

2.4.7 Amyotrophic lateral
sclerosis/parkinsonism-dementia complex
(ALS/PDC) of Guam; lytico-bodig; Marianas
dementia

The Chamorro people of the island of Guam have
been recognized to suffer a high prevalence of
neurodegenerative disorders, known locally as
lytico-bodig, encompassing varying degrees of the
clinical features of MND/ALS, PD, and AD. The
ALS and parkinsonism-dementia complex (PDC)
were initially described separately, but few pure
cases of either condition exist, and both have severe
neurofibrillary (tau- and TDP-43-positive) path-
ology with little amyloid, suggesting that there may
be shared pathogenetic mechanisms, for which
various etiological concepts have been suggested
[391,392].

The neuropsychological impairments of PDC
encompass recent memory loss, disorientation, and
impairments of language, visuospatial and execu-
tive function [393], a global pattern similar to that
seen in AD. Very occasionally, Chamorros may
present with a pure dementing illness without
extrapyramidal symptoms or signs, referred to as
“Marianas dementia” [394].

2.5 Prion diseases

The etiological agents for the prion group of disor-
ders are conformationally altered proteins, or “pri-
ons,” which autocatalytically convert normal cellu-
lar prion protein (PrP), encoded by the PRNP gene
on chromosome 20, to an abnormal form that is

highly resistant to degradation [395–397]. Prion dis-
eases (or prionoses) may afflict both humans and
animals [398,399]. Human prion disease takes a
number of clinicopathological forms, namely spor-
adic, genetic, or iatrogenic. Because of their unique
biology, prion diseases enjoy a high public pro-
file, but in clinical practice they are rare, only a
handful of cases being seen each year in regional
neuroscience centers [400].

The pathogenesis of neurodegeneration in the
various prion disorders is thought to be common
to the different etiologies [401]. Polymorphism at
codon 129 of the PRNP gene, which may encode
either valine or methionine, may have a dramatic
effect on disease phenotype, including suscepti-
bility to disease, the incubation period of disease,
and the duration of illness [402,403]. No treatment,
curative, symptomatic or palliative, is yet described
but research into possible therapeutic interventions
continues [404,405].

Progressive dementia, often rapid, is common
to many prion disorders. Brain tissue (biopsy,
autopsy) typically shows spongiform vacuolation
affecting any part of the cerebral gray matter,
hence the designation of these disorders as “spongi-
form encephalopathies,” with astrocytic prolifera-
tion, gliosis, neuronal loss, synaptic degeneration,
and variable frequencies of PrP-immunopositive
amyloid plaques [406]. Prion disease cases without
spongiform change have also been described [407].

2.5.1 Sporadic prion disease: sporadic
Creutzfeldt–Jakob disease (sCJD)

Sporadic human prion diseases may be separated
into three phenotypes: sporadic Creutzfeldt–Jakob
disease (sCJD), sporadic fatal insomnia, and vari-
ably protease-sensitive prionopathy [408]. Of these,
sCJD is by far (�90%) the most common, occur-
ring with an incidence of around one case per
million of the population throughout the world.
The older literature defined a number of clinical
variants of sCJD, presenting with prominent cere-
bellar syndrome (Brownell–Oppenheimer or ataxic
variant), cortical blindness (Heidenhain variant),
or encephalopathy (Nevin–Jones syndrome), but
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these terms are now seldom used, classification
being based on PRNP codon 129 genotype and PrP
isotype as detected by Western blotting, resulting
in six variants [403]. Diagnostic criteria for sCJD
are based on clinical phenotype and investigation
findings, including electroencephalographic (EEG)
periodic sharp wave complexes (PSWC) at a fre-
quency of around 2–3 Hz in a markedly abnor-
mal background, CSF biomarkers (14–3-3 protein),
and MR imaging findings (especially on diffusion-
weighted imaging) [409]. Other disorders that may
mimic or be clinically confused with CJD, and hence
may lead to confounding in defining the neuropsy-
chological profile, include AD [33,410] (Section 2.1),
DLB [306,307,410] (Section 2.4.2), progressive sub-
cortical gliosis of Neumann [184] (Section 2.2.4.5),
Wernicke–Korsakoff syndrome [411,412] (Section
8.3.1.1), nonconvulsive status epilepticus [413,414],
intravascular lymphoma (angioendotheliomatosis)
[415] (Section 3.5.7), Hashimoto’s encephalopathy
[416] (Section 6.13), pellagra encephalopathy [417]
(Section 8.2.1.4), and gliomatosis cerebri [418] (Sec-
tion 7.1.3).

Because rapid progression of sCJD is common,
profound cognitive deficits amounting to dementia
may be present before clinical presentation. When
neuropsychological assessment has been possible,
the changes reported have included episodic unre-
sponsiveness, interference effects, and verbal and
motor perseverations, perhaps reflecting thalamic
involvement [419]. Presentation with isolated apha-
sia has been reported [420,421]. In a patient under-
going neuropsychological testing in a predemen-
tia stage, deficits resembling PSP were reported
[422]. A patient with the Heidenhain variant has
been reported, in whom the initial symptom was
agraphia, followed by hemianopsia and visual hal-
lucinations, and evolving to dementia over a three-
month period [423]. Visual symptoms are com-
mon in sCJD, which may explain the confusion
with DLB, although the visual hallucinations in the
latter are generally well formed (animals, people)
compared with the rather elemental visual hallu-
cinations (colors, shapes) that may occur in CJD
[307,424].

The sporadic form of fatal insomnia is rare, even
more so than the familial form (Section 2.5.3).

2.5.2 Iatrogenic prion disease

Acquired, iatrogenic, or transmissible forms of prion
disease account for �1% of the total. These include
kuru and variant CJD. Iatrogenic disease may
also result from exposure to contaminated instru-
mentation (depth EEG electrodes), grafts (cornea,
dura mater), exogenous human pituitary hormones
(growth hormone, gonadotrophins), and blood
transfusion.

2.5.2.1 Kuru

Kuru, a disorder of the Fore people of the east-
ern highlands of New Guinea transmitted by rit-
ual endocannibalism of brain tissue, was the first
human prion disease to be described extensively
[425,426]. It has become less common since the
cessation of endocannibalism although some new
cases are still reported, reflecting extremely long dis-
ease incubation periods of 40–50 years [427]. The
profile of cognitive deficits is not reported, because
common neuropsychological testing methods are
not culturally appropriate.

2.5.2.2 Variant Creutzfeldt–Jakob disease
(vCJD)

Variant CJD (vCJD) is caused by the same prion
strain responsible for the epidemic of bovine
spongiform encephalopathy (BSE) in cattle, pre-
sumably reaching man through the food chain (con-
sumption of infected meat products), and thus is
sometimes known as “human BSE” [428]. Trans-
mission by blood transfusion is also a possibility
[429,430]. Unlike sCJD, vCJD tends to affect younger
individuals, and the presentation is often with non-
specific sensory and psychiatric features [431]. Mag-
netic resonance imaging (MRI) may show high sig-
nal intensity in the posterior thalamus, the pulvinar
sign [432], although this is not unique to vCJD [410].
EEG PSWC are absent in vCJD. PrP-immunopositive
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staining may be present in lymphoreticular tissues,
even presymptomatically [433,434]. In the appropri-
ate clinical setting, tonsil biopsy may be helpful in
the diagnosis of vCJD [435].

In a series of vCJD patients, Hawkins et al. found
impaired verbal fluency and digit–symbol substi-
tution in all patients, memory and visuopercep-
tual deficits in most, but with relative preserva-
tion of verbal knowledge, immediate memory, and
elementary visual processing [436]. A study of ten
vCJD patients, in which comparison was made with
sCJD and inherited prion disease patients, found
evidence for generalized cognitive decline in vCJD
but with the suggestion that visual perception might
be spared [437].

2.5.2.3 Human growth hormone-related
iatrogenic CJD

In a series of five patients with iatrogenic prion dis-
ease resulting from exposure to cadaveric human
growth hormone, only one had a complaint of
mild memory problems but four had evidence for
mild intellectual decline on the WAIS-R, and one
had selective visual memory and frontal executive
impairments [438].

2.5.3 Inherited prion disease: familial CJD;
Gerstmann–Straussler–Scheinker disease
(GSS); fatal familial insomnia (FFI)

Inherited or familial prion disorders account for
approximately 10%–15% of the total. Mutations
deterministic for familial prion disorders are located
in the PRNP gene on chromosome 20p13, which
encodes PrP [439]. These have a broad phenotype,
including:
� familial CJD (fCJD) (OMIM#123400);
� Gerstmann–Straussler–Scheinker disease (GSS)

(OMIM#137440);
� fatal familial insomnia (FFI) (OMIM#600072);
� Huntington’s disease-like 1 (HDL1), due to eight

extra octapeptide repeats in the PRNP gene
(OMIM#603218) (Section 5.1.1).

A subcortical pattern of cognitive decline has been
reported in fCJD, along with episodic unrespon-
siveness, interference effects, and verbal and motor
perseverations, also reported in sporadic prion dis-
ease [419]. Another study found generalized cog-
nitive decline in inherited prion disease with rel-
ative preservation of nominal function in some
cases [437]. In a single case study of fCJD, ver-
bal memory, word finding, and dominant hand
tactual performance were impaired with other func-
tions relatively intact [440]. A family with a novel
PRNP gene mutation, T183A, has been reported
with clinical features that resemble frontotem-
poral dementia and parkinsonism linked to chro-
mosome 17 (FTDP-17) (Section 2.2.5.1) [441]. In
a comparison of two fCJD families, one with the
PRNP point mutation (P102L) and one with an
insertion of six additional octapeptide repeats (6-
OPRI), the latter were found to have lower premor-
bid function, more executive dysfunction, and more
impairment on tests of perception and nominal
function [442].

Gerstmann–Straussler–Scheinker disease (GSS) is
an autosomal dominant disorder with cerebellar
ataxia as an early feature, along with dysarthria and
eye movement disorders. Extrapyramidal signs may
evolve. Progressive dementia with behavioral dis-
turbance (depression, psychosis) is also reported.
Deficits seem to vary among the different reports,
including focal abnormalities suggestive of corti-
cal involvement (acalculia, agnosia, apraxia), and
more global impairment including attention and
executive functions, suggesting possible subcor-
tical involvement [443,444]. This would be in keep-
ing with the multifocal nature of brain involve-
ment in prion disorders. A patient with a FTD
phenotype has been described in a family with
the P102L PRNP mutation, and in which other
affected family members had the typical ataxic GSS
presentation [445].

Fatal familial insomnia (FFI), a rare inherited
prion disorder linked to mutations of the PRNP
gene and a particular polymorphism at codon 129,
is characterized clinically by sleep, autonomic, and
motor disturbances and pathologically by marked
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atrophy of the anterior and dorsomedial nuclei
of the thalamus. Neuropsychological studies have
shown early impairments of attention and vigi-
lance, working memory deficits with a particular
difficulty in the ordering of events, and a progres-
sive confusional state [446,447]. The pattern seems
to be distinct from that of cortical and subcor-
tical dementias and reflective of a thalamic demen-
tia (Section 1.3.3.2).
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3.1 Vascular dementia (VaD); vascular
cognitive impairment (VCI)

Cognitive impairment and dementia associated
with cerebrovascular disease is not a unitary entity,
but one typified by clinical, pathological, and etio-
logical heterogeneity. Different variants or subtypes
have been noted for over a century, but the clas-
sification and categorization of vascular dementia
(VaD) and vascular cognitive impairment (VCI) is
evolving, current taxonomies incorporating com-
binations of lesion etiology, pathological features,
neuroanatomical location, and clinical syndrome
[1–6].

Various consensus diagnostic criteria for VaD
have been proposed, including the State of Cal-
ifornia Alzheimer’s Disease Diagnostic and Treat-
ment Centers (ADDTC) criteria [7] and the National
Institute of Neurological Disorders and Stroke and
the Association Internationale pour la Recherche et
l’Enseignement en Neurosciences (NINDS–AIREN)
criteria [8,9], as well as the general criteria of Diag-
nostic and Statistical Manual (DSM) and the Inter-
national Classification of Diseases (ICD). NINDS–
AIREN recognizes the need to establish a causal
relationship between cerebrovascular lesions and
cognitive deficit both spatially and temporally,
emphasizing the importance of neuroimaging to
corroborate clinical findings. However, because
memory impairment is the most salient feature
in Alzheimer’s disease (AD), the most common
cause of dementia, it has been noted that many
of these diagnostic criteria have been inadvertently
“Alzheimerized,” with undue emphasis placed on
memory loss at the expense of other neuropsycho-
logical features. This may account for the low sensi-
tivity but high specificity of these criteria [10].

Perhaps one of the reasons for this poor sensi-
tivity is that cerebrovascular disease is very com-
mon in AD. In one community-based study, most
patients with dementia coming to autopsy had
mixed AD/cerebrovascular disease [11]. Consider-
ing the shared vascular risk factors for AD and
VaD [12], this observation is perhaps not surpris-
ing. Conversely, there have been reports of series
of patients clinically diagnosed as VaD who, at
postmortem, proved to have either AD alone or
mixed disease [13]. Dual pathology may lower the
threshold for the clinical manifestation of cognitive
deficits [14,15]. An integrative approach to classifi-
cation envisages a continuum running from pure
AD to pure VaD through entities such as “AD with
vascular lesions” and “VaD with AD changes.” Pure
VaD may be a rare cause of dementia, and mixed
dementia a frequent one [16]. The delineation of VCI
[1] represented a new conceptual approach, stem-
ming in part from the realization that older concepts
were unduly influenced by thinking on AD, and in
part from the realization that cognitive decline due
to vascular disease is amenable to prevention. VCI
might be envisaged as one form of mild cognitive
impairment (MCI; Section 1.3.2).

Therefore, it is not surprising that clinically the
distinction between AD and VaD is not always clear
cut. The Hachinski Ischaemic Score (HIS) has been
suggested to differentiate patients with VaD from
those with AD [17] but is recognized to have short-
comings. In a neuropathologically confirmed series
of dementia patients, items from the HIS showing
independent correlation with VaD were, stepwise
deterioration, fluctuating course, and a history of
hypertension, stroke, and focal neurological symp-
toms [18].
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Attempts to define the neuropsychological pro-
file of VaD have often been undertaken in com-
parison with AD, but this has proved difficult
because of diagnostic and methodological incon-
sistencies, and no reliable profile has emerged.
Nonetheless, reviewing such studies and using strict
inclusion and exclusion criteria, such as match-
ing for level of overall cognitive decline, Sachdev
and Looi [19] found relative preservation of long-
term memory and greater deficits in executive
function in VaD patients, corroborating previous
qualitative reviews [20]. Cognitive domains not
permitting discrimination of VaD from AD included
digit span, attention, visuoconstructive, and con-
ceptual tasks, while language was thought to be
an area in which AD would be predicted to be
superior to VaD [19]. Verbal fluency for letter is
more affected in VaD [21] while category fluency is
equally impaired in VaD and AD [22]. The hetero-
geneity of the VaD group may mandate subdivision
in order to find diagnostically meaningful cognitive
profiles. In clinical practice, typically used cogni-
tive screening instruments, such as the Mini-Mental
State Examination (MMSE), may not be optimal for
the detection of cognitive deficits of vascular ori-
gin. This may require new, specifically designed,
neuropsychological test instruments, rather than
those typically used for AD; for example, the
vascular equivalent of the ADAS-Cog and CAM-
COG, “VaDAS-Cog” and R-CAMCOG, respectively.
Other tests designed specifically to detect VCI are
described [23].

Pending the development of empirically derived
rather than consensus criteria, which are oper-
ationalized and have undergone validation, clas-
sification of VaD remains somewhat arbitrary.
NINDS–AIREN suggested a pathogenetic classi-
fication based on hypoxia–ischemia and infarc-
tion (encompassing multi-infarct, small vessel, and
strategic infarct dementia), hypoperfusion (incom-
plete infarctions), and intracerebral hemorrhage
dementia [8]. These mechanisms are not necessarily
mutually exclusive, and similarly the neuropatho-
logical substrates of VaD are heterogeneous and
may overlap [24].

For the purposes of this chapter, classification
is largely clinical, examining cortical, subcortical,
and strategic infarct subtypes. Hemodynamic or
hypoperfusion dementia, associated with occlu-
sive carotid artery disease or watershed infarcts
(also known as distal field or borderzone infarcts),
is included with cortical VaD. The entity of “car-
diogenic dementia” discussed in the older litera-
ture [25] is also assumed to fall within this rubric.
The category of hemorrhagic dementia is broad,
and potentially may include any cause of intra-
parenchymal or subarachnoid hemorrhage (Section
3.3). The hereditary causes of vascular disease are
defined increasingly [26], some of which may be
associated with dementia, such as CADASIL (Sec-
tion 3.5.1), MELAS and other mitochondrial disor-
ders (Section 5.5.1), and Fabry’s disease (Section
5.5.3.2). Other brain vascular disorders considered
here include arteriovenous malformations, certain
vasculopathies (cerebral vasculitides are discussed
in the chapter on inflammatory and systemic disor-
ders; Section 6.11), concluding with a miscellaneous
group of conditions in which vascular mechanisms
may be suspected rather than proved.

3.1.1 Cortical vascular dementia; multi-infarct
dementia (MID); poststroke dementia

Originally conceived of as multi-infarct demen-
tia (MID) [27], cortical VaD refers to cognitive
impairment following large vessel disease, cardiac
and carotid embolic events, and hence poststroke
dementia [28], resulting in large cortical and cor-
ticosubcortical complete infarcts in arterial territory
distribution.

Within this category may also be included hemo-
dynamic or hypoperfusion dementia; for example,
related to occlusive carotid artery disease or water-
shed infarction between the territories of anterior,
middle, and posterior cerebral arteries (also known
as distal field or borderzone infarction), and incom-
plete infarctions related to global cerebral ischemia
following profound and prolonged hypotension,
as associated with cardiac arrest, cardiac arrhyth-
mias, or hypovolemic shock. Atrial fibrillation may
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be associated with cognitive decline even in the
absence of overt stroke [29].

The pathological studies of Tomlinson et al. [30]
suggested that dementia correlated with increasing
volume of infarcted tissue, above a threshold of
100 mL. Classically cortical VaD is characterized as
having an abrupt onset and stepwise deterioration,
and is associated with focal neurological signs
(e.g., hemiparesis, hemianopia, gait impairment,
pseudobulbar palsy), as expected with stroke
[17].

The cognitive profile of cortical VaD is depen-
dent upon the precise arterial territory affected,
but is said to include memory impairment, cor-
tical signs such as aphasia, apraxia, or agnosia,
visuospatial and/or visuoconstructive difficulties,
and executive dysfunction, although the latter
is not as marked as in subcortical VaD. The
fact that around 10% or more of stroke patients
have preexisting dementia (“prestroke dementia”)
[31,32], which may result from vascular lesions
and/or concurrent AD, may potentially confound
these observations. MMSE is adequate in screen-
ing for moderate cognitive deficits or dementia one
month after stroke but has only modest perfor-
mance in screening for mild cognitive disturbances
[33].

3.1.1.1 Carotid artery disease

Occlusive carotid artery disease is a well-recognized
risk factor for the development of transient ischemic
attacks (TIA) and stroke. Studies have been under-
taken to assess whether occlusive carotid artery
disease is also associated with cognitive impair-
ment. A systematic review of such studies [34] found
marked heterogeneity in terms of study design,
neuropsychological assessment procedures, and
interpretation, making it difficult to draw meaning-
ful conclusions. Accepting a degree of case selec-
tion bias (i.e., those likely to undergo surgery),
the majority of studies found evidence of cogni-
tive impairment, generally mild, in both symp-
tomatic and asymptomatic patients. This was asso-
ciated with either generalized cognitive impairment

or with specific deficits in memory, reasoning, and
psychomotor skills. Hence, cognitive impairment
may be the sole symptom of carotid artery stenosis
[35].

A more recent study of patients with “asymp-
tomatic” carotid artery disease found cognitive
deficits in all domains with the exception of execu-
tive function for moderate stenosis, severe stenosis,
and occluded groups [36].

Data on the effects on cognition of carotid
endarterectomy for carotid artery occlusive disease
are also difficult to interpret because of method-
ological issues [37]. Although the majority of stud-
ies suggest postoperative improvement, for example
in verbal memory, constructive abilities, and visual
attention [38], others suggest no change, making
it impossible to draw clear conclusions about the
efficacy of this procedure for the treatment of cog-
nitive problems [37]. Cognitive improvement in a
patient with bilateral carotid artery occlusions who
underwent extracranial–intracranial bypass surgery
has been reported [39].

3.1.1.2 Postcardiac surgery cognitive
impairment (“pumphead”)

There is a large amount of literature on cog-
nitive problems appearing after cardiac surgery,
most often coronary artery bypass grafting (CABG)
[40], deficits sometimes evocatively referred to as
“pumphead”. Although most patients undergoing
CABG do so without cognitive complication, there
is undoubtedly a cognitive morbidity to the pro-
cedure that cannot be ascribed to depression [41].
These defects are multifactorial, and may in part be
a consequence of watershed area injury secondary
to hypoperfusion and/or embolic factors related to
cardiopulmonary bypass. Occasionally, CABG may
“unmask” an underlying neurodegenerative disor-
der such as AD or frontotemporal dementia (FTD)
[42]. Late cognitive decline, one to five years post-
surgery, is also observed, possibly related to known
vascular risk factors rather than to surgery per se
[43].
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3.1.2 Subcortical vascular dementia;
Binswanger’s disease; lacunar state;
subcortical ischemic vascular dementia (SIVD)

Diffuse damage to subcortical structures is prob-
ably the most common cause of VaD or VCI, due
to small vessel disease in individuals with hyperten-
sion. Subcortical forms of VaD and VCI encompass
both the leukoencephalopathy originally described
by Binswanger and the état lacunaire originally
described by Marie.

In 1894, Otto Binswanger reported subcortical
obliteration of small cerebral arteries and arteri-
oles, often in association with systemic hyper-
tension, leading to pathological periventricular
demyelination and the clinical correlate of demen-
tia [44] (translation by Blass et al. [45]). The con-
dition, subsequently known as Binswanger’s dis-
ease, Binswanger’s encephalopathy, or subcortical
arteriosclerotic encephalopathy (SAE) [46], was
judged relatively rare until the advent of struc-
tural neuroimaging showed radiological evidence
of basal ganglia infarcts and periventricular white
matter disease, often with sparing of subcortical U
fibers, the white matter changes sometimes known
as leukoaraiosis [47].

The état lacunaire or lacunar state, described
by Pierre Marie in 1901, comprised small cavitary
lesions in the brain parenchyma, particularly in
deep gray matter, internal capsule, basis pontis, and
deep hemispheric white matter, reflecting small ves-
sel disease, occurring frequently in patients with
hypertension [48]. Lacunar infarcts, also known as
small deep infarcts, are readily seen on neuroimag-
ing, and may be associated with a variety of clin-
ical syndromes, originally described by Fisher [49],
such as pure motor stroke, pure sensory stroke,
sensorimotor stroke, and ataxic hemiparesis. In
addition, lacunar strokes may be associated with
cognitive impairment which, in contrast to cor-
tical VaD, is often of insidious rather than abrupt
onset and has a progressive rather than stepwise
course.

Longitudinal studies have shown that white mat-
ter changes (leukoaraiosis) and small vessel disease

are associated with cognitive impairment and an
increase in the risk of transition from autonomy
to dependency [50]. Cerebral microbleeds, evident
on T2*-weighted gradient-echo magnetic resonance
imaging (MRI), may also contribute to executive
dysfunction independent of white matter change
[51].

The cognitive profile of subcortical VaD is
typically that of executive dysfunction, as may
be anticipated with lesions affecting subcortical
circuits, with slowed information processing and
impairments of initiation, planning, sequencing,
and abstracting [52]. Episodic memory impairment
may or may not be present, and is typically milder
than in AD, with impaired recall but better recogni-
tion, and with benefit from cueing [53]. There may
be additional neuropsychiatric signs (depression,
inertia, emotional lability) and neurological signs,
although the latter are fewer than in cortical VaD,
including gait disorder of frontal type (broad-based,
short-stepped), subtle upper motor neuron signs,
dysarthria, urinary incontinence, and extrapyram-
idal signs. Although there is overlap, mild subcor-
tical VaD may be differentiated from AD on the
basis of greater impairment in tests of semantic
memory, executive function, and visuospatial and
perceptual skills [54]. Use of the MMSE is generally
insensitive for the detection of the deficits typical in
subcortical VaD and VCI, for which other tests have
been developed [23,55].

Within the spectrum of subcortical vascular
ischemic disorders associated with cognitive
impairment and dementia, an entity named sub-
cortical ischemic vascular dementia (SIVD) has
been delineated, and research diagnostic criteria
for its identification suggested, based on the rela-
tionship between clinical and radiological findings,
specifically the presence of extensive white matter
lesions and multiple lacunar infarcts due to small
vessel disease [56,57]. In a series of radiologically
(MRI) defined cases of SIVD, executive deficits
and subtle delayed memory deficits were found,
thought to reflect disruption of frontosubcor-
tical circuits and medial temporal lobe atrophy,
respectively [58].
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Treatment of neuropsychological deficits

As VaD may be associated with cholinergic deficits,
the use of cholinesterase inhibitors (ChEIs) in treat-
ment has been explored in a number of stud-
ies. A meta-analysis indicated that ChEIs produce
small benefits of uncertain relevance in cogni-
tion, likewise memantime, and did not recommend
widespread use of these agents in VaD but rather
a need to identify subgroups who might benefit
[59]. A report of improved aphasia in some patients
with chronic poststroke aphasia treated with galan-
tamine has appeared [60]. An open-label trial of
donepezil in Binswanger-type subcortical VaD was
reported to be beneficial and well tolerated [61]. In
CADASIL, another subcortical white matter disorder
that may result in dementia (Section 3.5.1), a trial of
ChEIs was negative.

3.2 Strategic infarct dementia; strategic
strokes

Strategic infarct dementia refers to focal ischemic
lesions in regions eloquent for cognitive processes,
although they may not cause dementia in the strict
sense of the DSM or ICD criteria for dementia,
hence strategic strokes may be a better term. The
possibility that other subclinical lesions may con-
tribute to the clinical picture cannot be excluded
entirely. Nonetheless, a variety of locations have
been associated with cognitive deficits [62,63],
including exclusively subcortical infarction [64].

3.2.1 Angular gyrus

The angular gyrus is located in the posterior parieto-
temporal region of the dominant hemisphere in
the territory of the posterior branch of the mid-
dle cerebral artery. Infarction of the angular gyrus
may be associated with combinations of apha-
sia, alexia with agraphia, and Gerstmann syn-
drome (acalculia, right–left disorientation, finger

agnosia), sometimes in the absence of focal sen-
sorimotor deficit and sometimes simulating AD
[65,66].

3.2.2 Corpus callosum and fornix

Acute anterograde amnesia following ischemic
infarct of the genu of the corpus callosum and
both columns and the body of the fornix has
been reported [67,68], with subjective improve-
ment in memory on follow-up [67]. Multiple infarc-
tions along the entire length of the corpus callo-
sum, due to bilateral internal carotid artery occlu-
sion, producing a rapidly progressive dementia has
been reported [69], whereas an isolated retrosple-
nial infarct produced a transient global amnesia
(Sections 7.1.7 and 3.6.2) [70].

Acute bilateral anterior fornix infarction, pre-
sumed to be due to pericallosal artery branch
occlusion, has been reported as causing not only
amnesia for verbal and visual material but also
visuospatial and executive dysfunction amount-
ing to dementia [71]. Selective damage to the
fornix is more commonly seen after surgery
for third ventricle lesions such as colloid cyst
(Section 7.2.3).

3.2.3 Thalamus

Several types of thalamic infarct have been
described, involving differing thalamic vascular ter-
ritories and damaging differing nuclei [72]. Various
neuropsychological deficits have been described
with thalamic infarctions, including aphasia,
hemineglect, amnesia, and dementia, sometimes
known as thalamic dementia (Section 1.3.3.2)
[73].

A single branch of the posterior cerebral artery,
sometimes known as the artery of Percheron, may
supply the medial thalamic nuclei bilaterally. Occlu-
sion of this paramedian thalamic artery, there-
fore, may cause bilateral medial thalamic infarction,
with acute onset of confusion followed by a persis-
tent amnesia, so-called diencephalic amnesia. This
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amnesia may be global, may resemble Wernicke–
Korsakoff syndrome (Section 8.3.1.1), or may mani-
fest principally as autobiographical amnesia [74–
77]. Anterograde memory impairment for verbal
material has been reported after left dorsomedial
thalamic infarct, and for visuospatial material after
right dorsomedial thalamic infarct [78,79]. Selec-
tive verbal memory impairment after a left thalam-
ic infarct involving the mammillothalamic tract
has been reported [80]. Although the classical ver-
bal/nonverbal left/right dichotomy was observed
for learning, naming, and gnosic difficulties associ-
ated with laterothalamic infarcts causing hemisen-
sory disturbance, executive dysfunction was more
apparent with right thalamic infarcts, suggesting
disruption of frontothalamic subcortical loops [81].
Executive impairment and attentional deficit may
contribute to cognitive dysfunction after thalamic
infarction [72], and utilization behavior may be
seen occasionally [82]. Aphasia, usually of nonflu-
ent type, may occur with left-sided thalamic lesions
(“thalamic aphasia”), and hemineglect and anosog-
nosia with right-sided lesions [83]. Apraxia has also
been reported with thalamic infarction [84]. Obser-
vations of cognitive dysfunction in thalamic infarcts
support the idea of a “lateralized cognitive thala-
mus” [73].

3.2.4 Genu of the internal capsule

Infarction of the inferior genu of the internal cap-
sule may cause an acute confusional state with
inattention, memory loss, psychomotor retardation,
apathy, and abulia [85]. Persistent deficits associ-
ated with dominant hemisphere lesions include ver-
bal memory, naming, and verbal fluency, reflect-
ing damage to the limbic system [86–90]. As
with thalamic infarcts, these neuropsychological
sequelae may reflect disruption of thalamocortical
pathways.

3.2.5 Caudate nucleus and globus pallidus

Cognitive and neurobehavioral problems are com-
mon with vascular lesions of the caudate nucleus,

which may also extend to involve the anterior
limb of the internal capsule and the putamen.
Mendez et al. [91] found impaired sustained atten-
tion and executive function, and poor recall on
tests of immediate and delayed recall, in a series of
12 patients with mostly unilateral caudate lesions;
some were apathetic or abulic, others disinhib-
ited and impulsive. Similar observations have been
made in other series, with additional aphasia
with left-sided lesions and neglect with right-sided
lesions [92,93]. Executive dysfunction has also been
noted [93] as has utilization behavior [94]. A two-
year study of subcortical strokes found that patients
with caudate lesions had lower scores on the MMSE
(although this is not an ideal instrument for the
assessment of subcortical deficits) on long-term
follow-up than patients with strokes in other loca-
tions, with evidence of deterioration despite no new
events [95]. These various cognitive changes have
been ascribed to interruption of striatal efferents to
the cortex.

A role for the globus pallidus in cognitive pro-
cessing, in addition to its motor functions, has been
postulated. Isolated athymhormia (psychic akin-
esia) has been reported with ischemic pallidal
lesions [96], and two patients with left globus pal-
lidus infarction were found to have inattention,
reduced verbal fluency, and amnesia [97].

3.2.6 Hippocampus

Stroke limited to the hippocampus is a rare event;
first-ever stroke confined to the hippocampus even
more so. One patient with possible hippocam-
pal ischemic infarcts causing bilateral hippocampal
volume loss has been extensively studied, showing
impaired recall but relatively preserved item recog-
nition memory [98]. In a 41-year-old right-handed
man with first-ever stroke affecting the left pos-
terior choroidal artery territory and involving the
left posterior hippocampus, presentation was with
an amnesic syndrome resembling transient global
amnesia (Section 3.6.2) but with additional “amnes-
tic aphasia.” Improvement over 24–48 hours was
followed by a severe deficit of episodic long-term
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memory, particularly in the verbal modality, with
default of encoding and semantic intrusions. This
case suggested specialization of the left hippocam-
pus for encoding of verbal material [99]. Another
patient with pure left hippocampal stroke has been
described with transient global amnesia-like syn-
drome [100].

3.2.7 Basal forebrain

“Basal forebrain amnesia” has been reported fol-
lowing subarachnoid hemorrhage due to rup-
ture or surgery for anterior communicating artery
aneurysm (Section 3.3.1) [101–103], presumably due
to disruption of the basal forebrain cholinergic pro-
jection to the hippocampus (which is also a key
site of pathology in AD). Features may be akin to
the amnesia seen in Wernicke–Korsakoff syndrome
(Section 8.3.1.1), although this is not invariably so.
ChEIs have not proved beneficial in this situation
[103].

3.2.8 Brainstem and cerebellum

Can isolated infratentorial ischemic lesions cause
cognitive impairment? Transient amnesia has been
reported as a herald of brainstem infarction and
basilar artery thrombosis [104,105], but these syn-
dromes may conceivably have involved memory
eloquent structures in the thalamus (Section 3.2.3).
The question may be addressed by examining
patients with lesions confined to the brainstem and
cerebellum.

In a series of 17 patients with lacunar infarcts
in the brainstem, neuropsychological evaluation
showed impairments in naming, category fluency,
and trailmaking, a profile similar to that seen with
supratentorial lacunar infarcts, prompting the con-
clusion that small white matter infarcts affect cogni-
tive function in a nonspecific way [106]. Occasional
cases of cognitive impairment in patients with
brainstem vascular events complicated by pedun-
cular hallucinosis have been reported [107]. Patients
with locked-in syndrome due to bilateral ventral
pontine infarct or hemorrhage have been reported

to show preserved cognitive function in the absence
of other supratentorial mesencephalic lesions [108],
but another series found difficulties in auditory
recognition, oral comprehension, delayed visuospa-
tial memory, and mental calculation, although the
more severely impaired patients had additional
hemispheric lesions [109]. Cognitive testing in de-
efferented patients is obviously difficult, response
being largely limited to yes/no answers.

In a series of 15 patients with isolated cerebellar
infarcts confirmed by MRI, neuropsychological test-
ing showed changes consistent with a frontal deficit
in comparison with controls [110]. A study of 26
patients with exclusively cerebellar infarcts found
slow performance on visuospatial tasks with left-
sided lesions and in verbal memory with right-sided
lesions. The subtle deficits were interpreted as being
mediated by the contralateral cortical hemisphere
[111]. Patients with chronic cerebellar lesions as a
consequence of infarcts were found to have gener-
ally preserved cognitive function but impaired ver-
bal fluency, especially with right-sided lesions [112].

Hence, from the limited information currently
available, it would seem likely that isolated ischemic
infratentorial lesions can result in subtle effects on
cognition.

3.3 Subarachnoid hemorrhage (SAH)

Subarachnoid hemorrhage (SAH), bleeding into the
space between the arachnoid and pia mater, is the
least common form of stroke, accounting for per-
haps 5% of the total. Bleeding may originate from
structural lesions such as a ruptured intracranial
aneurysm or an arteriovenous malformation (Sec-
tion 3.4.1), but in some cases no specific bleeding
source is identified [113]. Unruptured intracranial
aneurysms may be discovered as a result of screen-
ing in families with a history of SAH [114] or inci-
dentally when neuroimaging is undertaken for other
reasons. A careful reckoning of the risk:benefit ratio
must be undertaken before deciding on treatment
of such asymptomatic lesions.
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SAH patients are heterogeneous with respect to
bleeding source (aneurysms may be on the internal
carotid, anterior communicating, middle cerebral,
posterior cerebral, or basilar artery), severity of the
initial bleed (which may be graded, for example
using the Hunt and Hess classification or the World
Federation of Neurological Surgeons scale based on
the Glasgow Coma Scale), degree of brain injury,
occurrence of complications such as vasospasm
or hydrocephalus, and treatment method used.
Ruptured aneurysms may be treated by open
surgical clipping or by intravascular embolization
(“coiling”), both procedures isolating the aneurysm
from the circulation. Coiling has become more
frequently undertaken in recent times, and has a
better outcome according to the International Sub-
arachnoid Aneurysm Trial (ISAT) [115]. When the
significant psychological sequelae of SAH, includ-
ing fatigue and anxiety, are factored into the clin-
ical picture, the difficulty of defining a neuropsycho-
logical profile associated with SAH becomes
apparent.

3.3.1 Aneurysmal SAH; unruptured aneurysms

Patients who survive the acute phase of SAH may
be left with significant neuropsychological deficits
despite an apparently excellent neurological out-
come, with problems in memory, executive func-
tion, and language being common [116,117]. The
pattern of cognitive impairments is global in some
patients, even amounting to dementia, whereas in
others general intelligence as measured by conven-
tional IQ tests remains intact but there may be spe-
cific impairments of psychomotor speed, language
function, and verbal memory. Working memory and
verbal short-term memory seem most affected, with
features sometimes reported to resemble the amne-
sia of Wernicke–Korsakoff syndrome, with or with-
out confabulation. Basal forebrain injury, damag-
ing the septohippocampal system, may be responsi-
ble for amnesia [101]. Concurrent frontal lobe injury
may be required for the presence of confabulations

[118]. In addition, there may be deficits in percep-
tual speed and accuracy, visuospatial and visuocon-
structive function, and abstraction and cognitive
flexibility, for example in the Wisconsin Card Sort-
ing Test, the latter suggesting frontocortical cogni-
tive dysfunction [119]. Executive dysfunction may
affect anterograde memory function significantly
[120]. The similarity of this profile to that seen fol-
lowing mild traumatic brain injury has been noted.
Deficits have a negative impact on functional status
and quality of life.

Although older studies suggested that cognitive
deficits were greatest with ruptured anterior com-
municating artery (AcoA) aneurysms, even postu-
lating the existence of an “AcoA syndrome” char-
acterized by severe memory deficit, confabula-
tion, and personality change [121], more system-
atic studies have found the pattern of deficits
to be unrelated to the location of the ruptured
aneurysm, and to be persistent over time [122–
124]. The cognitive dysfunction may be aggravated
by concurrent infarction in the vascular territory
of the ruptured aneurysm. Left-sided infarcts and
global cerebral edema were reported to be pre-
dictors of post-SAH cognitive dysfunction in one
study [125].

Comparison of cognitive outcome between
aneurysm coiling and clipping showed a poorer
outcome in the surgical group in ISAT. Overall,
around one-third of survivors who were not other-
wise disabled according to the modified Rankin
Scale had cognitive impairment, but this was less
common in those allocated endovascular treatment
(odds ratio = 0.58) [126].

The detection and management of unruptured
intracranial aneurysms remains an area of inves-
tigation. Cognitive outcome following surgery for
unruptured aneurysms seems to be good [127,128].

3.3.2 Perimesencephalic (non-aneurysmal)
SAH

In perimesencephalic SAH (pSAH), no underlying
aneurysm(s) may be identified with conventional
angiography in 15%–20% of cases. Hence, pSAH
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differs from other types of SAH in its excellent
prognosis, as there is a very low risk of rebleeding
[129]. Only minor cognitive deficits have been iden-
tified on follow-up of pSAH patients, but high scores
on a depression scale, suggesting that vigorous reas-
surance and treatment of depression might improve
outcome in this subgroup [130].

3.3.3 Superficial siderosis of the
nervous system

Deposition of ferritin in the superficial layers of
the CNS as a consequence of repeated or con-
tinuous leakage of blood into the cerebrospinal
fluid (CSF) is the cause of this unusual condition,
with subsequent gliosis and neuronal loss, par-
ticularly in the eighth cranial nerve, the cerebel-
lar vermis, and the inferior frontal cerebral cor-
tex. Clinical features include sensorineural hear-
ing loss, cerebellar ataxia, dysarthria, anosmia, and
pyramidal signs, with typical appearances of sig-
nal void around affected areas of the brain on
T2-weighted MRIs, corresponding to deposition of
hemosiderin [131].

In a review of the literature, 14 cases of superficial
siderosis of the nervous system with demen-
tia of variable severity were identified, with
onset between one and more than 30 years
after disease onset [131]. Only one systematic
study of the cognitive impairments in super-
ficial siderosis has been reported [132]. In six
patients tested, general intellectual function was
well preserved, but speech production difficul-
ties, impairment of visual recall, and executive
impairments formed the core neuropsycho-
logical deficits. Impaired executive function was
evident in tests of both initiation (phonemic flu-
ency, Hayling sentence completion part A) and
inhibition (Stroop, Hayling sentence completion
part B). Functions relatively preserved included
naming, literacy, calculation, visual perceptual and
visuospatial skills, verbal and visual recognition
memory, verbal recall memory, and speed of infor-
mation processing. All patients also failed a theory
of mind test, indicating a mentalizing impairment.

Overall the deficits were akin to the previously
described cerebellar cognitive affective syndrome
(Section 1.3.3.2) [133].

3.4 Intracranial vascular malformations

The classification of intracranial arteriovenous
vascular anomalies has been subject to vari-
ous approaches, lesions not always having been
described in a standardized way. Distinction may be
made between hemangiomas, in which endothelial
hyperplasia occurs, and nonproliferating vascular
anomalies in which there is no hyperplasia. These
latter include arterial malformations (angiodypla-
sia, aneurysms) and lesions in which there is arte-
riovenous shunting of blood, either through a tan-
gled anastomosis of vessels (“arteriovenous mal-
formation,” AVM) or a direct high flow connec-
tion between artery and vein (“arteriovenous fis-
tula,” AVF). AVMs and AVFs may be within the brain
parenchyma or in the dura [134].

3.4.1 Arteriovenous malformations (AVMs)

Whether AVMs cause cognitive deficits, over and
above the hemorrhagic and epileptic complica-
tions that bring them to clinical attention, is uncer-
tain [135]. Some early studies suggested “mental
changes” in 50% of patients with “AVMs” [136]
whereas others found normal fullscale IQ and no
lateralizing changes comparable with those seen
with acute focal lesions [137]. Mahalick et al. [138]
reported a series of 24 patients, 12 each with right
and left AVMs, and found compromised higher
cortical function (attention, memory, learning, flu-
ency) both ipsilateral and contralateral to the lesion,
more so ipsilateral, prompting them to argue that
a vascular “steal” phenomenon accounted for con-
tralateral deficits. However, there were no con-
comitant vascular imaging studies. To answer the
question of the neuropsychological effects of AVMs,
ideally one would wish to study asymptomatic indi-
viduals, perhaps discovered by chance on brain
imaging for other reasons.
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3.4.2 Intracranial dural arteriovenous fistula
(dAVF)

Cases of higher cortical dysfunction have been
reported in association with intracranial dural ar-
teriovenous fistuals (dAVFs), sometimes amount-
ing to dementia. Although rare, such cases are
important because cognitive impairment may be
reversible with definitive treatment, either resec-
tion or embolization [139]. For example, in the
series of Hurst et al. [140], five out of 40 cases
had dementia or encephalopathy with remission
after embolization. Accounts of the precise neuro-
psychological deficits in dAVF and serial documen-
tation of cognitive function are few, perhaps due
in part to the necessity for prompt therapeutic
intervention when there is acute neurological de-
terioration. Wilson et al. [139] reported three cases
with pre- and posttreatment cognitive assessment,
finding deficits in all domains that improved after
embolization, most notably in memory and execu-
tive function, although complete reversal was not
seen.

The mechanism of cognitive impairment in
these patients relates to the high flow through
the AV shunt combined with venous outflow
obstruction resulting in impaired cerebral venous
drainage, slowed cerebral vascular transit time,
and hence widespread venous hypertension and
diffuse ischemia, which may be manifested neu-
roradiologically as a leukoencephalopathy [141],
sometimes with thalamic involvement [142]. Pro-
gressive cognitive dysfunction in intracranial dAVF
may thus be analogous to the progressive myelopa-
thy (Foix–Alajouanine syndrome) seen with spinal
dural AVFs [140]. Irreversible cognitive changes may
be a consequence of complete or partial venous
infarction of tissues subject to venous hypertension,
especially if prolonged [139].

3.4.3 Cavernous hemangiomas

Cavernous hemangiomas or cavernomas are thin-
walled vascular spaces lacking a shunt, hence are

not arteriovenous malformations. They may present
as space-occupying lesions, with epileptic seizures
or relapsing-remitting symptoms related to hemor-
rhage. Multiple cavernous angiomas (cavernomat-
osis) that undergo multiple and recurrent hem-
orrhages may rarely be associated with cognitive
decline and dementia [143–146]. Dementia asso-
ciated with right medial temporal lobe cavernous
angioma has been reported, although the cognitive
syndrome may have resulted, at least in part, from
partial epileptic seizures [147].

3.5 Vasculopathies

Vasculopathy is a relatively nonspecific term for
blood vessel abnormalities, which is interpreted
here to encompass not only primary abnormalities
of blood vessel wall structure predisposing to intra-
luminal thrombosis, but also rheologic abnormal-
ities promoting a thrombotic tendency. Although
there may be overlap at the level of pathophysi-
ology, inflammatory disorders of blood vessels such
as the primary and secondary cerebral vasculi-
tides are considered elsewhere (Sections 6.11.1 and
6.11.2, respectively), likewise primary metabolic dis-
orders affecting blood vessels such Fabry’s disease
(Section 5.5.3.2).

3.5.1 CADASIL

Cerebral autosomal dominant arteriopathy with
subcortical infarcts and leukoencephalopathy
(CADASIL) is an autosomal dominant vasculopathy
resulting from mutations within the gene encod-
ing the notch3 protein on chromosome 19q12
(OMIM#125310) [148]. It is characterized clinically
by recurrent subcortical strokes, both symptomatic
and silent, migraine, psychiatric disturbances, with
late pseudobulbar palsy, occasionally epilepsy, and
a reversible encephalopathy. Skin biopsy may show
granular osmiophilic material adjacent to the base-
ment membrane of smooth muscle cells of dermal
arterioles; similar deposits may be observed in the
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thickened arterial media in vessels on brain biopsy.
MRI of the brain shows confluent high signal in
periventricular and deep white matter, basal ganglia
lacunar infarcts, and characteristic high signal in
the anterior temporal pole and external capsule
[149].

A subcortical type, white matter vascular demen-
tia may also occur in CADASIL, with both step-
wise and progressive course. Cognitive impairment
may occur in the absence of neurological features
other than migraine [150], and changes in working
memory and executive function prior to stroke have
been documented [151,152]. The neuropsycho-
logical profile is characterized by a deficit in sus-
tained attention, cognitive slowing, impaired learn-
ing with intact recognition, and perseveration, in
other words a pattern resembling that in other white
matter disorders [153]. In a cross-sectional study
of 42 patients, Buffon et al. [154] found a hetero-
geneous cognitive profile at disease onset, most
often affecting executive skills leading to impaired
memory and attention, evolving to a more homo-
geneous pattern affecting all domains with increas-
ing age, including language and visuospatial func-
tion, although distinct from AD. Retrieval was better
with cueing, suggesting that encoding was relatively
spared, as were recognition and semantic memory.
The authors speculated that this pattern resulted
from initial damage to frontosubcortical networks
with sparing of the hippocampus, with diffuse cor-
tical dysfunction in later disease reflecting the accu-
mulation of subcortical ischemic insults, although
as history of stroke was not associated with demen-
tia, most of these events must be silent. In one
series of 64 patients, not selected for the presence or
absence of dementia, a significant inverse correla-
tion was noted between overall cognitive perform-
ance, as assessed with the MMSE score, and total
MRI lesion volume [155]. The NINDS–AIREN cri-
teria for SIVD are the most sensitive VaD critera in
CADASIL [156].

Cholinergic denervation was shown in one patho-
logically examined case of CADASIL, despite this
being a pure vascular dementia [157]. A trial of

donepezil for the subcortical vascular cognitive
impairment in CADASIL has been reported, show-
ing no effect on the primary outcome measure
(VADAS-Cog scores) but possibly some improve-
ments in executive function [158].

3.5.2 CARASIL

An autosomal recessive variant of CADASIL, cere-
bral autosomal recessive arteriopathy with subcor-
tical infarcts and leukoencephalopathy (CARASIL),
has also been described [159], often associated with
alopecia and degenerative disease in the lumbar
spine and knees. This condition is linked to chromo-
some 10q26.13 and results from mutations in the
HTRA1 gene (OMIM#600142). A condition ini-
tially described as “familial young-adult onset ar-
teriosclerotic leukoencephalopathy with alopecia
and lumbago without arterial hypertension” also
falls within this rubric. In this rare syndrome,
reported only in Japanese families, progressive sub-
cortical dementia is common, with accompanying
pseudobulbar palsy and pyramidal signs. Lacunar
strokes occurred in about half of the patients [160].
More recent descriptions of CARASIL with HTRA1
gene mutations noted the presence of progressive
dementia in some cases [161].

3.5.3 Cerebral amyloid angiopathies (CAA)

The cerebral amyloid angiopathies (CAA) are so
named because of the deposition of amyloidogenic
peptides in the walls of small parenchymal and
leptomeningeal arteries, known as congophilic
angiopathy, which sometimes extends from around
vessel walls into the brain parenchyma, known
as dyshoric angiopathy. CAA may be one feature
of AD brain pathology, but may also occur in
relative isolation as either a sporadic or familial
condition. Cerebral hemorrhage in a lobar distri-
bution is the most common complication of CAA
[162,163], although other transient focal neurologic-
al features may occur, including transient ischemic
attacks, focal epileptic seizures, and multifocal
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cortical myoclonus [164,165], as well as a leuko-
encephalopathy. Dementia without major lobar
hemorrhage is also reported [164]. A variant
in which CAA is associated with inflammatory
changes, CAA-I, has been described [166], and
which may produce prominent cognitive problems
(Section 6.11.1).

All sporadic CAA cases are due to deposition
of amyloid-�, originating from proteolytic cleav-
age of the amyloid precursor protein (APP) [163].
Of the familial CAAs, hereditary cerebral hemor-
rhage with amyloidosis Dutch type (HCHWA-D)
results from mutations at codon 693 of the APP
gene (OMIM#605714; other mutations within this
gene are deterministic for autosomal dominant AD;
Section 2.1.1). The phenotype is one of cerebral
hemorrhages that may result in cognitive impair-
ment of the cortical type [167], although dementia
in the absence of a history of stroke or focal radio-
logical change may occur. Dementia in HCHWA-D
is independent of neurofibrillary pathology, plaque
density, and age, but related to the CAA load
in the frontal cortex, as quantified by comput-
erized morphometry, and vessel-wall thickening,
suggesting that CAA per se may cause dementia
[168]. Hereditary cerebral hemorrhage with amy-
loidosis Icelandic type (HCHWA-I), resulting from
mutations in the cystatin c gene (OMIM#105150),
also causes intracerebral hemorrhages. One fam-
ily with a late-onset dementia as the only man-
ifestation of HCHWA-I has been reported, with
cortical and subcortical infarctions [169]. Famil-
ial British dementia and familial Danish demen-
tia are autosomal dominant familial CAAs that
cause dementia usually without strokes or hemor-
rhages. Both result from mutations in the ITM2B
gene on chromosome 13q14.2 (OMIM#176500 and
#117300, respectively; Section 5.1.3 for further
details).

Treatment options are currently limited in CAA,
but a favorable response to immunosuppressive
treatment has been noted in CAA-I [164], suggest-
ing that a trial of such medication might be con-
sidered without brain biopsy in suspected CAA
patients.

3.5.3.1 Familial occipital calcifications,
hemorrhagic strokes, leukoencephalopathy,
dementia, and external carotid dysplasia
(FOCHS–LADD)

Described in one family of Spanish descent, with
presumed autosomal dominant transmission, this
syndrome was characterized by dementia and cere-
bral hemorrhages with radiological evidence of fine
tram-line occipital calcifications. Of the six affected
individuals in two generations, neuropsychologic-
al testing was only reported in one patient who
developed progressive memory decline in the early
1960s with additional evidence of visuoconstruc-
tional problems, “ideokinetic” apraxia, calculation
and writing errors, and frontal lobe symptoms [170].
A mutation in the APP gene (N694D) was subse-
quently shown in two members of this pedigree
[171], demonstrating that this is a form of CAA
(OMIM#605714).

3.5.4 Hereditary endotheliopathy with
retinopathy, nephropathy, and stroke (HERNS)

This microangiopathy of the brain and retina, in-
herited as an autosomal dominant condition linked
to chromosome 3p21, is characterized clinically by
progressive visual loss, headache, epileptic seizures,
focal neurological deficits, and progressive cogni-
tive decline [172,173].

3.5.5 Hereditary multi-infarct dementia of
Swedish type

Sourander and Wålinder [174] described a Swedish
pedigree with a hereditary disorder characterized
by multiple infarcts and cognitive decline in 1977.
When CADASIL was described as such in 1993 (Sec-
tion 3.5.1), it was thought that the Swedish “heredi-
tary multi-infarct dementia” was in fact an exam-
ple of CADASIL. However, further clinical, neuro-
radiological, neuropathological, and neurogenetic
examination of the Swedish pedigree refutes this
suggestion. Patients from this kindred did not have
migraine, MRI appearances did not show the typical
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anterior temporal pole or external capsule hyper-
intensities seen in CADASIL, skin biopsy did not
show granular osmiophilic deposits, and neuro-
genetic testing found no pathogenic mutation in the
notch3 gene. Hence, Swedish multi-infarct demen-
tia is a novel small vessel disease [175].

3.5.6 Hughes’ syndrome (primary
antiphospholipid antibody syndrome)

Antiphospholipid antibodies may occur in associ-
ation with conditions such as systemic lupus ery-
thematosus (SLE), Sjögren’s syndrome, rheumatoid
arthritis, and systemic sclerosis (Sections 6.5, 6.6,
6.8, and 6.9, respectively), known as secondary
antiphospholipid antibody syndromes; or without
evidence of accompanying connective tissue dis-
ease, known as primary antiphospholipid antibody
syndrome or Hughes’ syndrome. There is over-
lap between Hughes’s syndrome and Sneddon’s
syndrome (Section 3.5.11). Suggested diagnostic
criteria for Hughes’ syndrome require both clinical
(thrombotic) and laboratory features, and there is
also a “probable” category in which the antibodies
occur without a history of large vessel thromboses
[176]. Antiphospholipid antibodies (lupus anticoag-
ulant, or anticardiolipin antibodies) may be asso-
ciated with various neurological features includ-
ing epileptic seizures, chorea, transverse myeli-
tis, migraine, depression, psychosis, and cognitive
decline. Whether these clinical features are linked
to arterial and venous thromboses or to immune-
mediated mechanisms, or both, remains uncertain.

Cognitive impairment and dementia have been
recorded in primary antiphospholipid antibody
syndrome. For example, in a young woman not
meeting diagnostic criteria for SLE, decline in intel-
lect and occupational failure were the presenting
features, with a MMSE score of 28/30 (5 minute
recall = 1/3), poor right–left orientation, right inat-
tention, reduced motor speed, mild impulsivity, and
poor concentration. MRI of the brain showed small
high signal lesions in the right caudate and fronto-
subcortical white matter. The patient improved
after treatment with corticosteroids, aspirin, and

hydroxychloroquine [177]. Reviewing the literature
over the period 1983–2003 and their own experi-
ence, Gómez-Puerta et al. [178] identified 30 cases
of dementia associated with antiphospholipid syn-
drome (primary:secondary = 14:16, the latter hav-
ing SLE or “lupus-like syndrome”). On brain imag-
ing, cortical infarcts were common (in more than
half of cases), subcortical and basal ganglia infarcts
less so (in less than one-third). Hence, demen-
tia would seem to be an unusual complication
of antiphospholipid syndromes. Because pathogen-
esis is uncertain, optimal treatment (antiplatelet
and anticoagulant therapy or immunosuppression
or both) is not established.

3.5.7 Intravascular lymphomatosis
(angioendotheliomatosis)

Intravascular lymphomatosis, also known as
angioendotheliomatosis or neoplastic angio-
endotheliomatosis, is a malignant intravascular
proliferation of endothelial cells or lymphocytes
defined as an angiotropic intravascular large-cell
lymphoma of B-cell type (see Section 7.1.6 for
cognitive effects of other forms of lymphoma).
The most common clinical presentation is with
multifocal ischemic events due to vascular occlu-
sion with neoplastic cells, but it may also cause
dementia, leading to classification with the vas-
cular dementias. Brain and/or meningeal biopsy
is usually required for diagnosis [179–183]. A case
associated with a reversible dementia following
immunosuppressive treatment in a transplant
recipient has been reported [181].

3.5.8 Moyamoya

Moyamoya is an occlusive vasculopathy of uncer-
tain etiology, often presenting in childhood as a syn-
drome of recurrent cerebral ischemia and infarc-
tion. There may be associated headache, epilep-
tic seizures, and cognitive impairment. In adults,
moyamoya more usually presents with recurrent
intracerebral hemorrhage or subarachnoid hem-
orrhage. Radiologically there is severe stenosis or
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occlusion of one or both distal internal carotid arter-
ies, sometimes extending to the circle of Willis, with
fine anastomotic (telangiectatic) collateral vessels
developing from perforating and pial arteries at the
base of the brain, orbital and ethmoidal branches of
the external carotid artery, and leptomeningeal ves-
sels. These vessels are the source of hemorrhage in
cases presenting in adulthood, and may be visual-
ized on cerebral angiography as a “puff of smoke” or
“haze,” from the Japanese term for which the syn-
drome takes its name.

A study of 29 adult patients found cognitive
impairment in two-thirds, particularly apparent in
tests of processing speed, verbal memory, verbal flu-
ency, and executive function, suggesting involve-
ment of frontal and subcortical regions, presumably
as a result of chronic small vessel ischemia due to
hypoperfusion [184].

Another series of adult patients noted that execu-
tive functioning was most affected with relative
sparing of memory and intellect, but not as severely
as in pediatric cases [185].

3.5.9 Polycythemia rubra vera

Polycythemia rubra vera is a myeloproliferative
disease characterized by increased red cell mass
and blood volume, resulting in erythrocytosis
(raised hematocrit) and increased blood viscos-
ity. Associated neurological features include tran-
sient ischemic attacks and thrombotic strokes,
less commonly with cerebral hemorrhage, and
chorea. Cases presenting with cognitive impair-
ment [186] or with cognitive decline, which partially
reversed on reduction of the hematocrit, have been
reported [187].

3.5.10 Sickle cell disease

Dementia may be a feature of sickle cell disease as a
consequence of multiple ischemic strokes, although
diffuse brain injury, perhaps related to hypoxia, may
also contribute [188]. Children with sickle cell dis-
ease have been found to have cognitive defects even
in the absence of cerebral infarction [189].

3.5.11 Sneddon’s syndrome

Sneddon’s syndrome is a noninflammatory,
thrombo-occlusive, arteriolar vasculopathy affect-
ing skin and brain, which is often but not invariably
associated with antiphospholipid antibodies (Sec-
tion 3.5.6). The disorder occurs primarily in young
patients, with a female preponderance. Clinical fea-
tures include livedo reticularis or livedo racemosa,
recurrent strokes in the absence of obvious risk
factors, focal neurological signs, epileptic seizures,
and sometimes cognitive decline [190,191]. Cases
presenting with cognitive decline or dementia
without a clinical history of stroke, but with imaging
evidence of cortical and subcortical infarcts with
brain atrophy, have been reported [192,193]. Of
30 patients with dementia and antiphospholipid
antibody syndrome reported in a 20-year literature
review, ten had Sneddon’s syndrome [178].

3.5.12 Spatz–Lindenberg disease (von
Winiwarter–Buerger’s disease)

This rarely described condition is characterized
pathologically by isolated cerebral noninflamma-
tory occlusive vasculopathy (“thromboangiitis oblit-
erans”), hence Buerger’s disease confined to the
brain [194]. A vascular dementia with additional
upper motor neuron signs (hemiparesis, aphasia)
and epileptic seizures may result [195], but no
systematic exploration of the neuropsychological
deficits has been reported.

3.5.13 Susac syndrome

Susac syndrome, or retinocochleocerebral vascu-
lopathy, is a rare, idiopathic, noninflammatory
vasculopathy principally affecting young women.
It usually follows a monophasic but fluctuating
course, causing small infarcts in the cochlea, retina,
and brain. Characteristic clinical features are sen-
sorineural deafness, branch retinal arteriolar occlu-
sions, encephalopathy, acute psychiatric features,
upper motor neuron limb signs, cranial nerve
palsies, and epileptic seizures.
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Cognitive dysfunction, specifically impaired
short-term memory, has been reported and demen-
tia is said to be a rare late sequela [196]. A detailed
study of three patients showed impaired verbal
long-term memory at disease onset with impaired
executive functions and reduced speed in atten-
tional tasks in two, but preserved language and
short-term memory. There was general cognitive
improvement over time, although full recovery was
not achieved, especially in executive function and
attention [197].

3.5.14 Venous sinus thrombosis

Cortical venous sinus thrombosis is a rare cause
of stroke, with many possible causes [198]. Stud-
ies examining cognitive outcomes have been few.
De Bruijn et al. [199] found cognitive impairments
in around one-third of survivors at one year, sug-
gesting an unfavorable outcome, whereas Buccino
et al. [200] found mild nonfluent aphasia in 9%
and working memory deficits in 18% of a cohort
of 34 patients seen over a 10-year period, suggest-
ing good cognitive long-term outcome. The vari-
able results may relate to case mix and duration of
follow-up.

3.6 Other disorders of possible vascular
etiology

3.6.1 Migraine, including familial hemiplegic
migraine (FHM)

Migraine is the most common cause of primary or
idiopathic headache, which may occur with or with-
out aura (MA, MO) [201]. Migraine is occasionally a
symptom of a neurological disorder that may also
cause cognitive impairment; for example, CADASIL
(Section 3.5.1) and mitochondrial disease (Section
5.5.1). The rare entity of migraine stroke, a diagno-
sis of exclusion, may be associated with focal deficits
including cognitive impairments, as with strokes of
other etiologies. White matter hyperintensities and
infarcts are often seen on MRIs of the brain in MA,

but are not associated with cognitive impairment
[202]. Whether migraine is associated with cognitive
deficits, either between or within attacks, is a sub-
ject of ongoing debate, with research findings being
inconsistent [203].

Mental slowness may be a feature of headache
prodrome, and amnesia is one of the atypical auras
of migraine [204,205]. During migraine attacks,
simple reaction time, sustained attention, and
visuospatial processing may be adversely affected
[206,207]. However, it is difficult to know whether
these findings relate to concurrent pain or the
neural pathophysiology of the headache syndrome
per se. Moreover, information processing speed
and memory may be influenced by age, indepen-
dent of migraine [208]. Migraine postdrome may be
attended with impaired concentration.

Interictal deficits have been reported involving
certain frontal lobe functions [209], or associated
with right-sided pain [210], or with higher frequency
of attacks or length of migraine history [211]. Cer-
tainly, migraine patients show a disturbance of sub-
cortical sensory modulation systems, which may
account for interictal loss of normal cognitive habit-
uation.

Epidemiological studies have not suggested any
long-term cognitive implications of a history of
migraine. A ten-year study suggested impairments
of immediate and delayed memory in MA patients
at baseline but less decline over time than in con-
trols [212]. Likewise, no increased risk for cog-
nitive decline from migraine has been found in
population-based studies [213–215].

Familial hemiplegic migraine (FHM) due to
mutations in the CACNA1A gene at chromosome
19p13.2 (OMIM#T41500) is allelic with episodic
ataxia type 2 and spinocerebellar ataxia type 6
(SCA6; Section 5.2.1.4). Cognitive deficits have been
detected in this form of FHM, sometimes with min-
imal headache history [216]. In a study of one family,
a distinct neuropsychological profile was recorded
with preserved linguistic and verbal memory abili-
ties but deficits in figural memory, executive func-
tions, and some aspects of attention [217]. These
findings were associated with cerebellar atrophy
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and ataxia, and converge with cognitive findings in
SCA6, previously considered to be a “pure” cerebel-
lar syndrome (Section 5.2.1.4).

3.6.2 Transient global amnesia (TGA)

The syndrome of transient global amnesia (TGA)
consists of an abrupt attack of impaired antero-
grade memory, often manifest as repeated ques-
tioning, without clouding of consciousness or focal
neurological signs. Episodes are of brief duration
(�24 hr), with no recollection of the amnesic period
following resolution [218,219]. TGA subgroups have
been suggested on the basis of different precipi-
tating events in men (physical) and women (emo-
tional), with headache being a risk factor in younger
individuals [220]. The etiopathogenesis of TGA is
imperfectly understood although there is evidence
of vascular involvement, specifically from diffusion-
weighted MRI techniques [221]. Others have taken
the view that “TGA is probably a migraine aura
in most cases” [222], or that the neurophysio-
logical process of spreading depression might be
causative [223]. Herpes simplex encephalitis (Sec-
tion 9.1.1) presenting with TGA has been reported
[224] and a TGA-like syndrome has been seen in
pure hippocampal stroke (Section 3.2.6). The differ-
ential diagnosis of TGA includes transient epileptic
amnesia (Section 4.3.1) but electroencephalography
(EEG) is generally normal during an attack of TGA
[225] and recurrence rate much lower. Psychogenic
amnesia (Section 12.5.1) also enters the differential
diagnosis.

As expected for an acute and transient syndrome,
most TGA cases that come to medical attention are
seen by primary care physicians in the community
or district general hospitals [226], thus neuropsy-
chological assessment during an attack is uncom-
mon. When undertaken, this shows dense antero-
grade amnesia, with a variably severe retrograde
amnesia, but intact working memory and seman-
tic memory. Implicit memory functions (e.g., for
driving) are usually intact [227]. A variant in which
transient impairment of semantic memory was
present has been described [228]. In the recovery

phase, retrograde amnesia recovers before antero-
grade amnesia, but the shrinkage of the former may
be heterogeneous, with or without temporal gradi-
ent [229].
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[31] Hénon H, Pasquier F, Durieu I, et al. Preexist-

ing dementia in stroke patients: baseline frequency,

associated factors, and outcome. Stroke 1997; 28:

2429–36.

[32] Klimkowicz A, Dziedzic T, Slowik A, et al. Incidence

of pre- and poststroke dementia: Cracow Stroke Reg-

istry. Dement Geriatr Cogn Disord 2002; 14: 137–40.

[33] Bour A, Rasquin S, Boreas A, Limburg M, Verhey F.

How predictive is the MMSE for cognitive perfor-

mance after stroke? J Neurol 2010; 257: 630–7.

[34] Bakker FC, Klijn CJM, Jennekens-Schinkel A, Kap-

pelle LJ. Cognitive disorder in patients with occlusive

disease of the carotid artery: a systematic review of

the literature. J Neurol 2000; 247: 669–76.

[35] Lehrner J, Willfort A, Mlekusch I, et al. Neuropsycho-

logical outcome 6 months after unilateral carotid

stenting. J Clin Exp Neuropsychol 2005; 27: 859–66.

[36] Landgraff NC, Whitney SL, Rubinstein EN, Yonas H.

Cognitive and physical performance in patients with

asymptomatic carotid artery disease. J Neurol 2010;

257: 982–91.

[37] Lunn S, Crawley F, Harrison MJG, Brown MM, New-

man SP. Impact of carotid endarterectomy upon cog-

nitive functioning. A systematic review of the litera-

ture. Cerebrovasc Dis 1999; 9: 74–81.

[38] Antonelli Incalzi R, Gemma A, Landi F, et al. Neuro-

psychologic effects of carotid endarterectomy. J Clin

Exp Neuropsychol 1997; 19: 785–94.

[39] Tatemichi TK, Desmond DW, Prohovnik I, Eidel-

berg D. Dementia associated with bilateral carotid

occlusions: neuropsychological and haemodynamic

course after extracranial to intracranial bypass



90 3: Cerebrovascular disease

surgery. J Neurol Neurosurg Psychiatry 1995; 58:

633–6.

[40] Selnes OA, Gottesman RF, Grega MA, et al. Cogni-

tive and neurologic outcome after coronary-artery

bypass surgery. N Engl J Med 2012; 366: 250–7.

[41] McKhann GM, Borowicz LM, Goldsborough MA,

Enger C, Selnes OA. Depression and cognitive decline

after coronary artery bypass grafting. Lancet 1997;

349: 1282–4.

[42] Larner AJ. “Dementia unmasked”: atypical, acute

aphasic, presentations of neurodegenerative

dementing disease. Clin Neurol Neurosurg 2005;

108: 8–10.

[43] Selnes OA, Grega MA, Bailey MM, et al. Cognition 6

years after surgical or medical therapy for coronary

artery disease. Ann Neurol 2008; 63: 581–90.

[44] Binswanger O. Die Abgrenzung der allgemeinen pro-

gressiven paralyse. Berliner Klinische Wochenschrift

1894; 31: 1102–5, 1137–9, 1180–6.

[45] Blass JP, Hoyer S, Nitsch R. A translation of Otto Bin-

swanger’s article, “The delineation of the generalized

progressive paralyses,” 1894. Arch Neurol 1991; 48:

961–72.

[46] Caplan LR, Gomes JA. Binswanger disease–an

update. J Neurol Sci 2010; 299: 9–10.

[47] Hachinski VC. Leukoaraiosis. Arch Neurol 1987; 44:

21–3.

[48] Marie P. Des foyers lacunaires de désintégration de
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[174] Sourander P, Wålinder J. Hereditary multi-infarct

dementia. Morphological and clinical studies of a

new disease. Acta Neuropathol (Berl) 1977; 39: 247–

54.

[175] Low WC, Junna M, Borjesson-Hanson A, et al. Here-

ditary multi-infarct dementia of the Swedish type

is a novel disorder different from NOTCH3 causing

CADASIL. Brain 2007; 130: 357–67.

[176] Asherson RA. New subsets of the antiphospho-

lipid syndrome in 2006: PRE-APS (probable APS)

and microangiopathic antiphospholipid syndromes

(MAPS). Autoimmun Rev 2006; 6: 76–80.



References 95

[177] Van Horn G, Arnett FC, Dimachkie MM. Reversible

dementia and chorea in a young woman with the

lupus anticoagulant. Neurology 1996; 46: 1599–603.
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4.1 Epilepsy and cognitive impairment

As far back as the seventeenth century, Thomas
Willis (1621–1675), in some senses the father of neu-
rology, recognized that chronic epilepsy could bring
on “stupidity,” a term roughly corresponding to our
notion of dementia [1]. In the nineteenth century,
authors such as Henry Maudsley (1835–1918) and
William Gowers (1845–1915) regarded epileptics as
prone to dementia or defective memory; indeed,
Maudsley thought such decline inevitable [2]. These
views may have been determined, at least in part,
by clinical practice among patients with very severe
seizure disorders, but regrettably brought with them
stigmatizing notions of epilepsy as a marker of crim-
inality, mental abnormality, and degeneration, also
reflected in popular culture [3]. With the advent
of effective antiepileptic drugs in the twentieth
century, a more optimistic outlook for cognition in

epilepsy generally prevailed. Now, however, cogni-
tive impairment in epilepsy is once again a sub-
ject of increasing concern and investigation [4].
Rather than an “epileptic dementia,” this problem is
now better conceptualized as dementia or cognitive
impairment in people with epilepsy [2], a syndrome
with various possible causes.

Historically, epilepsy surgery has provided a criti-
cal insight into the relevance of certain brain struc-
tures to cognitive function. One of the most remark-
able cases in the history of neuropsychology is that
of Henry or HM (Henry Gustav Molaison, 1926–
2008) who developed profound anterograde amne-
sia following surgical removal of the anterior tem-
poral lobes bilaterally, including the hippocampus,
for intractable seizures of temporal lobe origin [5,6].
Occasional cases of amnesia following unilateral
surgery have also been reported, when there is

97
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subclinical damage in the unoperated, contralat-
eral, temporal lobe, often as a result of birth
asphyxia [7]. Cases such as these have demonstrated
the critical relevance of the hippocampus in mem-
ory function.

The marked heterogeneity of epilepsy syndromes,
with respect to factors such as site of seizure ori-
gin (generalized vs. partial, or localization-related),
etiology (idiopathic vs. symptomatic), and pathol-
ogy [8,9], means that definition of a specific pro-
file of neuropsychological impairments is as unten-
able for epilepsy as it is for cerebrovascular dis-
ease (Chapter 3). Nonetheless, certain common
patterns may be identified in particular epilepsy
syndromes.

There are at least three possible reasons for an
association between cognitive decline and epileptic
seizures [10–15]:
� cognitive decline and epilepsy may be phenotypic

expressions of a shared etiopathogenesis;
� epileptic seizures per se may lead to acquired cog-

nitive impairment;
� antiepileptic drug therapy may cause cognitive

decline.
These variables are not necessarily independent;
specific brain diseases or brain injuries may be
associated with a longer duration of seizure disor-
der and/or more frequent seizures, requiring poly-
therapy and/or higher doses of antiepileptic drugs.
Because of this potential confounding, it is difficult
to separate the various parameters. Indeed, most
cognitive problems in patients with epilepsy are of
multifactorial origin. Psychiatric comorbidity may
also need to be taken into account; depression may
contribute more to subjective memory complaints
and poor quality of life in epilepsy than seizures
per se. Brain plasticity and epilepsy surgery may
also have cognitive consequences [13], but neither
is considered further here.

Memory complaints in epilepsy patients are a
subject of increasing concern in disease manage-
ment, over and above simple reduction in seizure
frequency and severity [4]. How appropriate stan-
dard neuropsychological tests are in the detection of
cognitive impairments in epilepsy patients is open

to question, particularly in the assessment of execu-
tive functions [16].

4.2 Cognitive decline and epilepsy: shared
etiopathogenesis

Cognitive decline and epilepsy may both be pheno-
typic features of brain pathophysiology. A study of
patients newly diagnosed with epilepsy and without
known brain pathology found evidence that these
individuals were cognitively compromised, particu-
larly in the domains of memory and psychomotor
speed. These deficits were unrelated to the num-
ber of seizures, type of epilepsy, or mood, and were
present prior to treatment with antiepileptic drugs
[17]. Furthermore, these cognitive domains, along
with higher executive functioning, showed a decline
in the first twelve months after epilepsy diagnosis
in comparison to healthy volunteers, even if seizure
remission was achieved [18]. These findings suggest
that the phenotypic features of epilepsy and cog-
nitive decline may possibly have a shared or over-
lapping etiopathogenesis. Five-year follow-up of a
small cohort (n = 50) of newly diagnosed epilepsy
patients found stability in the majority of cogni-
tive measures but subtle declines in memory and
psychomotor speed in around one-third of cases
[19].

The symptomatic epilepsies include those due to
brain tumor, stroke (infarct or hemorrhage), inflam-
mation of autoimmune (demyelination) or infec-
tive (encephalitis, meningitis) etiology, and various
dementia syndromes. The concurrence of seizures
and cognitive impairment does not necessarily
imply a causal link (i.e., seizures causing cogni-
tive impairment) in these conditions. For example,
seizures may sometimes be a feature of Hunting-
ton’s disease (HD; Section 5.1.1), particularly early
onset forms, but there is no suggestion that they
are responsible for, or even contribute to, the cog-
nitive deficits of HD. However, in other clinical situ-
ations, there may be a link, as for example in neuro-
cysticercosis with mesial temporal sclerosis (Section
9.4.4) and tuberous sclerosis and the number of cor-
tical tubers (Section 5.6.2). Epileptic seizures may be
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a symptomatic feature of various other pathologies
associated with cognitive decline (e.g., encephali-
tides, mitochondrial disease, progressive myoclonic
epilepsy syndromes, Hashimoto’s encephalitis). The
corollary of this observation is that treatment of the
underlying disease, where possible, might amelior-
ate both seizures and cognitive decline.

Alzheimer’s disease (AD) has long been recog-
nized to be a risk factor for the development of
late-onset epileptic seizures [20,21], of both par-
tial and generalized onset [22]. Seizures become
increasingly common with the progression of AD
[23,24], although may sometimes occur in the ear-
liest stages of the disease [25]. It was thought
previously that seizures were epiphenomenal to
the neurodegenerative changes of AD, but more
recently animal model studies have prompted a
view that subclinical seizures may be an inte-
gral part of the AD phenotype. Cognitive decline
and seizures may reflect a shared pathogenesis
in terms of neuronal disconnection [23,26], which
in part may be genetically determined [27]. Like-
wise in Down syndrome, where AD-type pathol-
ogy inevitably develops, there is a strong associa-
tion between seizure onset or exacerbation and cog-
nitive decline [28]. Whether treatment of seizures
in AD might ameliorate cognitive decline remains
unknown [29].

Early group studies suggested that epilepsy
patients had reduced speed of mental processing,
and reaction and response times [30], as well as
impairments in remembering lists of words and
geometric patterns [31]. Attention deficits may be
more common in generalized than focal epilepsy
[32,33], and memory difficulties more common in
focal (temporal lobe) epilepsy.

4.2.1 Idiopathic generalized epilepsies

Idiopathic generalized epilepsies (IGE) are char-
acterized by primary generalized seizures which,
unlike localization-related epilepsies, occur in the
absence of any macroscopic brain abnormalities
[8,9]. Hence, IGEs may facilitate the study of the
effect of seizures on cognitive function. Primary

generalized seizures may take various forms, includ-
ing generalized tonic-clonic seizures (GTCS), also
known in the older literature as “grand mal,” and
absence seizures (AS) or “petit mal.” One of the
most common forms of IGE is juvenile myoclonic
epilepsy (JME).

Controlled studies of cognitive function in homo-
geneous groups of adult IGE patients are relatively
few. In one small study (n = 30; mean age 30+/−
12.6 years), IGE patients were reported to perform
worse than controls on speed of information pro-
cessing and in tests of memory encompassing word
and face recognition and verbal and visual recall,
with evidence from magnetic resonance (MR) spec-
troscopy that this correlated with neuronal dys-
function secondary to epileptic activity [34]. Chil-
dren with IGE (AS and GTCS) showed poorer perfor-
mance than healthy controls in attention, with ver-
bal learning and memory and word fluency impair-
ments in those children with AS [35]. Currently,
there is no definitive answer as to whether verbal or
nonverbal memory is more impaired in IGE.

Hommet et al. [36] suggested that disorders of
social integration and personality in JME patients
might suggest the presence of impaired execu-
tive functions, and that benign childhood epilepsy
with centrotemporal spikes (BCECTS) might pro-
vide a useful model for the study of the relation-
ship between epileptiform electroencephalographic
(EEG) discharges in the perisylvian region and lan-
guage functions. There are reports, in one study, of
mild impairments of working memory, verbal flu-
ency, abstract reasoning, planning, and mental flex-
ibility in JME, suggesting frontal type dysfunction
[37,38], but Roebling et al. [39] ascribed the slightly
worse performance of JME patients in semantic and
verbal fluency compared to controls to concurrent
antiepileptic medication, which was not controlled
for in some studies [38].

4.2.2 Localization-related (partial) epilepsies

Partial or focal seizures may be of temporal,
frontal, or occipital lobe onset, with or with-
out secondary generalization. These may be a
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consequence of defined pathological processes
(e.g., tumor, stroke, inflammation), but many
remain cryptogenic despite extensive investigation.
Generally, cognitive deficits are those anticipated
for the affected brain region. Thus, partial seizures
with epileptic foci in the temporal lobes show
lateralized material-specific deficits, left-sided
lesions generally being associated with impaired
verbal long-term memory, while right temporal
lobe foci cause greater difficulty with visual long-
term memory. Patients with well-controlled partial
seizures, doing a regular job or attending a nor-
mal school, may be found on neuropsychological
testing to have impairments in cognition [40].
Secondary generalized seizures may be associated
with lower intelligence and a trend toward cognitive
decline [41].

4.2.2.1 Temporal lobe epilepsy

Cognitive features have been most extensively
investigated in temporal lobe epilepsy (TLE). Symp-
tomatic TLE with the neuroradiological signature
of hippocampal sclerosis or mesial temporal scler-
osis (MTS), mesial temporal lobe epilepsy (MTLE),
is thought to be the most common form of
localization-related epilepsy [42]. Precipitating inci-
dents such as febrile convulsions, brain trauma,
ischemia, or intracranial infection are common, and
most individuals have seizure onset in childhood or
adolescence. Because of the involvement of struc-
tures important for memory processes in TLE, it has
been logical to examine cognitive function in these
patients.

Cognitive deficits, specifically memory distur-
bances, may be apparent even at disease onset
in MTLE, suggesting that these are symptoms
of the disease and not simply consequences of
frequent seizures or the effects of antiepileptic
drug therapy [43]. Left-sided (dominant hemi-
sphere) MTLE is characterized by deficits in
material-specific verbal memory [44], although this
may disappear at older age [45]. Right-sided (non-
dominant hemisphere) MTLE is associated with

nonverbal/visual memory deficit, albeit less consis-
tently [46], perhaps in part an artifact of the neuro-
psychological tests being insufficiently nonverbal in
nature [47]. Other cognitive profiles are sometimes
encountered in TLE; for example, relatively selective
autobiographical amnesia [48]. Semantic memory
deficits involving verbal and visual information
may be found in left MTLE [49]. Examining cog-
nitively based daily living skills (daily living tests
from the Neuropsychological Assessment Bat-
tery), a test of “everyday cognition,” TLE patients
showed significant impairments in daily memory
functioning [50].

In addition to these memory impairments, a
phenomenon of accelerated forgetting of material
despite normal learning and retention over 30 min-
utes has been described in patients with left tem-
poral lobe epileptic foci, suggesting impaired mem-
ory consolidation processes [51].

Some quantitative MR imaging (MRI) studies
have suggested that both the hippocampus and
other related structures such as the fornix are atro-
phied in TLE patients [52]. Other studies could not
relate cognitive impairments to hippocampal vol-
ume changes, but rather to reduced functional con-
nectivity in prefrontal networks involving the an-
terior cingulate and middle and inferior frontal
gyrus [53].

Some studies have indicated that higher seizure
frequency and duration of MTLE are associated
with more severe cognitive decline [54], but in a
report on patients with MTLE undergoing tem-
poral lobe resection, no correlation was found
between disease-related parameters, such as cumu-
lative number of seizures, and neuropsychological
deficits, suggesting that factors other than repetitive
seizures are responsible for cognitive dysfunction in
these patients [55]. MTS is reported to be associ-
ated with poorer cognitive performance than other
pathologies [45].

The question whether cognitive impairments
in epilepsy may progress to dementia has been
examined. It would seem that there is a negative
interaction of cognitive impairment with mental
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ageing rather than progressively dementing decline
[45,56].

MTLE may be complicated by the development
of an interictal psychosis, which is reminiscent in
some ways of schizophrenia (Section 12.2). Patients
with the schizophrenia-like psychosis of epilepsy
(SLPE) have been reported to show executive func-
tion deficits that lie intermediate between those of
patients with schizophrenia and epilepsy/controls
[57]. There may also be deficits in working memory
and semantic memory in SLPE [58].

4.2.2.2 Frontal lobe epilepsy

The frontal lobe epilepsies (FLE), resulting from a
primary epileptic focus anywhere within the frontal
lobe, have various seizure patterns. Motor manifes-
tations are more common than in seizures arising
elsewhere; for example, simple focal motor seizures
with or without Jacksonian march, and tonic postur-
ing in seizures of supplementary motor area origin
(fencer’s posture, en garde, salutatory seizures). FLE
may be idiopathic or symptomatic.

Early group studies found patients with unilat-
eral frontal lobe seizure foci to be no different
cognitively from controls [59,60]. However, more
recent studies have provided evidence for frontal-
type, executive, cognitive dysfunction in FLE, in
terms of attention, working memory, planning, and
psychomotor speed [61]. Problems with shifting
cognitive sets, abstraction, and inhibition are also
reported [62,63]. Elements of social cognition, such
as humor appreciation and ability to detect emo-
tional expression, but not tests of theory of mind,
may also be impaired [64]. Examining cognitively
based daily living skills, FLE patients showed signifi-
cant impairments in daily memory functioning, like
TLE patients, but no impairment in executive daily
functioning; whether these tests are sufficiently sen-
sitive to identify such deficits was questioned [50].
Unlike the situation in MTLE, encoding and retrieval
memory functions may be normal in FLE, although
memory processes related to attentional and execu-
tive function may be impaired.

A nocturnal variant of FLE may be either sporadic
or inherited as an autosomal dominant disorder,
the latter (autosomal dominant nocturnal frontal
lobe epilepsy, ADNFLE) associated with mutations
in at least two genes, CHRNA4 and CHRNB2
(OMIM#600513 #605375, respectively). ADNFLE
associated with one point mutation (I312M) in
CHRNB2, is reported to be associated with distinct
memory deficits involving storage of verbal infor-
mation [65,66].

4.2.3 Rasmussen’s syndrome (chronic
encephalitis and epilepsy)

A syndrome of chronic partial, often intractable,
epileptic seizures attended by progressive focal
sensorimotor neurological deficit and cognitive
decline was described by Rasmussen et al. in
1958 [67]; a similar syndrome was described by
Kozhevnikov in Russia in 1952. The pathogenesis
of Rasmussen’s syndrome, also known as chronic
encephalitis and epilepsy, remains uncertain: pos-
sibilities include viral infection and autoimmune
mechanisms [68,69]. Although typically a disor-
der with childhood onset [70], cases with adult
onset have been described [71–74]. These appear to
have a more protracted and milder clinical course
with less in the way of residual functional deficits,
lesser degrees of brain hemiatrophy, but with iden-
tical clinical, EEG, neuroimaging, and histopathol-
ogy findings. Cases of NMDA-receptor encephalitis
(Section 6.12.2) resembling Rasmussen’s syndrome
have been reported [75; W Pietkowicz, personal
communication, 26/09/12].

Neuropsychological assessment of patients with
Rasmussen’s syndrome is subject to various biases,
such as selected cohorts, ongoing seizures or even
epilepsia partialis continua, and surgical interven-
tions. Low IQ is typical in childhood-onset cases,
usually with little change after surgery although
exceptionally, improvement is noted. In adult-onset
cases, McLachlan et al. [71] noted decline in IQ
in two of their three patients, with greater left
hemisphere dysfunction, consistent in one patient
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with exclusively left hemisphere involvement. Over
an eight-year period, between the ages of 22
and 30 years, another adult-onset patient devel-
oped IQ decline, impaired auditory verbal mem-
ory, motor and sensory aphasia in association with
left temporo-occipital cortical MRI change and
EEG multifocal spike discharges in the left poster-
ior quadrant [72]. Improvements in neuropsycho-
logical function, as well as in seizure frequency, have
been recorded in adult-onset cases following cycles
of treatment with human intravenous immunoglob-
ulin [73].

4.3 Epileptic seizures causing acquired
cognitive impairment

Epileptic seizures may lead unequivocally to cog-
nitive impairment [76]. Deficits have been noted
in psychomotor speed, attention, memory, and
visuomotor tasks, which cannot be ascribed to the
encephalopathy associated with status epilepticus,
postictal state, or antiepileptic drug toxicity, and
which are reversible with good seizure control. Lon-
gitudinal studies suggest a link between adverse
cognitive change and number of seizures or pres-
ence of tonic-clonic status epilepticus [77].

Electroconvulsive therapy (ECT), a treatment for
depression that aims to cause epileptic seizure
through application of an electric current, is asso-
ciated with subsequent impairments of episodic
memory [78].

The impact of frequent interictal epileptiform dis-
charges on cognitive function remains a subject
of debate [76,79–81], specifically whether such dis-
charges could be responsible for transitory cog-
nitive impairment. It may be difficult to distin-
guish such EEG changes from subtle nonconvul-
sive seizures, but nonetheless, there is evidence
that EEG discharges may be associated with brief
effects on mental alertness and speed [81]. Whether
drug treatment, with its attendant risk of adverse
effects (Section 4.4), is indicated in these situations
remains to be determined.

Amnesia for complex partial, primary and secon-
darily generalized seizures is the norm. Sometimes
the effects of frequent complex partial seizures are
sufficient to manifest as an amnesic or dementia
syndrome, which may even be confused with AD
[82–85]. The frequency of such “epileptic pseudo-
dementia” is not known, but merits consideration
in light of the fact that the incidence of com-
plex partial seizures rises sharply after the age of
60 years. However, the classic example of epilep-
tic seizures causing cognitive impairment is seen
in the syndrome of transient epileptic amnesia
(Section 4.3.1).

Progressive dementia does not seem to be a con-
sequence of temporal lobe epilepsy [45].

4.3.1 Transient epileptic amnesia (TEA)

Attacks of transient amnesia of epileptic origin were
first described by Hughlings Jackson (1835–1911)
in the physician patient “Dr Z” in 1888 [86]. How-
ever, although occasional cases of epileptic amnesia
were reported subsequently [87,88], it was not until
the 1990s that the syndrome of transient epileptic
amnesia (TEA) was characterized [89,90] and sys-
tematic studies undertaken [91–93].

Typically, TEA manifests with brief amnesic
attacks, usually one hour or less in duration, often
occurring on waking. Attacks have a high recurrence
rate, and may be accompanied by other features
suggestive of epilepsy, such as automatisms or olfac-
tory hallucinations. Autobiographical amnesia may
be prominent [94]. Many TEA patients also report
interictal memory problems. An accelerated loss of
new information (as in MTLE; Section 4.2.2.1; [51])
and impaired remote autobiographical memory has
been demonstrated in TEA patients, but the etiol-
ogy of these deficits remains uncertain, possibilities
including ongoing seizure activity, seizure-induced
medial temporal lobe damage, or subtle ischemic
pathology [95]. Although usually idiopathic, cases of
secondary or symptomatic TEA have been reported;
for example, a case possibly associated with the
onset of AD [96].
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The EEG in TEA may be associated with clearcut
seizure activity during amnesic episodes. Abnor-
malities may be found in interictal EEG record-
ings in about one-third of TEA patients, although
sometimes sleep-deprived EEG may be required.
Management may require not only antiepileptic
drug therapy (TEA generally responds favorably to
standard antiepileptic medications such as sodium
valproate or carbamazepine), but also advice on
appropriate lifestyle modifications, including refer-
ence to DVLA (Driver and Vehicle Licensing Agency)
restrictions on driving [93].

Clinically, TEA resembles transient global amne-
sia (TGA; Section 3.6.2), but attacks are briefer and
have a higher recurrence rate. The “absence of
epileptic features” is one of the proposed diagnostic
criteria for TGA [97], although EEG is seldom per-
formed in TGA, other than fortuitously, and is nor-
mal [98].

4.3.2 Epileptic aphasia; ictal speech arrest

Aphasia is the principal symptom in the childhood
epilepsy disorder of the Landau–Kleffner syndrome
(acquired epileptic aphasia), possibly reflecting a
verbal auditory agnosia [99].

Isolated epileptic aphasia is uncommon, perhaps
obscured in some cases by ictal motor activity
[100]. Nonconvulsive status epilepticus may mani-
fest with aphasia (“status aphasicus”), usually with
abrupt onset and rapid resolution with appropri-
ate antiepileptic drug therapy, although persistent
aphasia has also been reported [101,102]. Apha-
sic status most often reflects left-sided (frontotem-
poral or temporoparietal) pathology [103], as would
be anticipated, although visual stimuli provoking
an occipital lobe seizure spreading to the left infer-
ior frontal lobe has been reported [104], as has a
right-sided focus [101]. Parasagittal lesions confined
to the left superior frontal gyrus (supplementary
motor area) may be sufficient to cause the syndrome
[105]. Other reported causes of epileptic apha-
sia include nonketotic hyperglycemia [106], AIDS-
related toxoplasmosis [107], and multiple sclerosis

[108] (Section 6.1). Recurrent Wernicke-type apha-
sia of epileptic origin, misdiagnosed as transient
ischemic attacks, has also been reported [109].

4.4 Antiepileptic drug therapy causing
cognitive impairment

Although individuals developing epilepsy have evi-
dence for cognitive compromise prior to treatment
with antiepileptic drugs (AEDs) [17,43], reduction
in seizure frequency as a consequence of AED
treatment may improve cognitive function. How-
ever, AEDs feature in any list of medicines that are
reported to cause cognitive decline or even demen-
tia. It has even been claimed that patients were
“reduced to practical dementia by bromides” [110].
The cognitive adverse effects of chronic AED ther-
apy, to which elderly individuals are more suscepti-
ble, have long been a topic of research interest [111–
114]. The vexed questions of the effects of AEDs,
particularly sodium valproate, on the IQ of children
exposed in utero during development remain highly
topical but are not discussed here [115].

Sedation may be an important factor in adults
receiving AEDs, as judged by increased reac-
tion times [30] and specific deficits in atten-
tion and working memory observed in some but
not all patients taking drugs such as phenobar-
bitone, phenytoin, and benzodiazepines, recog-
nized to have sedative effects. Patients receiving
monotherapy with phenytoin, sodium valproate,
or carbamazepine, who were tested before and
after changes in drug dosage, either up or down,
showed deficits in cognitive performance in the
high serum level group, especially those receiving
phenytoin or sodium valproate, whereas the car-
bamazepine group showed no change or even a
trend toward improvement in the high serum level
group [116,117]. Volunteers receiving phenytoin,
carbamazepine, sodium valproate, clonazepam,
and clobazam have shown significant deficits, most
marked with phenytoin and clonazepam. A large
study in the U.S. that compared the efficacy and tox-
icity of monotherapy with four antiepileptic drugs
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(phenobarbitone, primidone, phenytoin, and car-
bamazepine) found that when controlling for age,
education, and IQ, carbamazepine had fewer cog-
nitive effects than the other drugs [118], confirm-
ing previous smaller studies. However, other stud-
ies have not found a difference between carba-
mazepine and phenytoin when drug levels have
been taken into account [119]. Polypharmacy is cer-
tainly associated with more severe adverse conse-
quences for cognitive function [120].

Newer AEDs generally have improved adverse
effect profiles in comparison with previously used
medications, but the increased scrutiny to which
these medications have been subject has shown that
they are not exempt from cognitive adverse effects
[114,121]. Lamotrigine, probably the most exten-
sively studied AED from the cognitive perspective,
seems well tolerated [122], and the same is prob-
ably true of gabapentin [123] and oxcarbazepine
[124]. However, impaired attention, psychomotor
slowing, and memory deficits have been recorded
with topiramate, which seems more prone to cogni-
tive adverse effects than lamotrigine or gabapentin
[18,125,126], although this may be related to rapid
drug titration in some studies. Pragmatic compar-
ative drug trials have shown that memory dis-
turbance is a common symptom and one of the
most common adverse effects to result in treat-
ment failure; again this may be the case partic-
ularly with topiramate [127,128]. Currently there
are few studies evaluating cognitive adverse effects
of vigabatrin, levetiracetam, tiagabine, zonisamide,
and lacosamide [114], with no evidence for sig-
nificant cognitive problems with these drugs with
the possible exception of zonisamide [129,130]. In
the absence of randomized studies, patient self-
reported symptoms may be used to gain insight into
cognitive adverse effects [131].

4.5 Treatment of cognitive
problems in epilepsy

Treatment of cognitive complaints needs to be indi-
vidualized to each patient with epilepsy, but some

general guidelines may be enunciated. Optimizing
seizure control with AEDs that have a good adverse
effect profile as far as cognitive function is con-
cerned, and avoiding polypharmacy, is paramount.
Treating confounding factors such as depression
and sleep disorders is mandatory. However, it must
be recognized that the underlying etiology of epilep-
tic seizures is often a major contributing factor that
may not be amenable to specific treatment [17,18].

Whether cognitive enhancers such as
cholinesterase inhibitors, licensed for use in
AD, have anything to offer in epilepsy-related
cognitive impairment is uncertain [132], with only
a few small studies having been reported. A pilot
open-label study of donepezil over three months
in 18 epilepsy patients found greater recall in the
Buschke Selective Reminding Test, but no changes
were noted in attention, visual sequencing, mental
flexibility, or psychomotor speed. There was no
significant increase in seizure frequency [133]. A
randomized double-blind placebo-controlled trial
of donepezil over three months in 23 patients was
not associated with improvement in memory or
other cognitive functions, nor with any increase in
seizure frequency or severity [134]. A randomized
trial of galantamine for 12 weeks in 28 patients
again showed no significant differences in memory
measures at retest [135]. The lack of effect seen in
these trials may, in part, reflect underpowered trials,
the brief dosing period, and the heterogeneous
nature of epilepsy patients with subjective memory
difficulty.
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Although great advances have been made in
elucidating the genetic basis of neurological dis-
orders in recent years, with profound implications
not only for diagnosis but also for beginning
to understand disease pathogenesis, a clin-
ical rather than a pathogenetic classification of
disorders is used here, in part because the patho-
genetic pathway or pathways from mutant gene
to disease phenotype remain uncertain in many
instances.

5.1 Hereditary dementias

Dementia syndromes with a confirmed genetic
basis, with or without additional neurological fea-
tures, and which have not been discussed else-
where, are included under this rubric. Other heredi-
tary dementias include familial (autosomal domi-
nant) Alzheimer’s disease (AD) (Section 2.1.1) and
frontotemporal dementias (e.g., FTDP-17; Section
2.2.5.1), and hereditary forms of prion disease (Sec-
tion 2.5.3), CADASIL (Section 3.5.1), and some of the
hereditary cerebral amyloid angiopathies (Section
3.5.3).

5.1.1 Huntington’s disease (HD)

In the 1872 description of the disorder that now
bears his name, George Huntington not only delin-
eated the movement disorder, most usually chorea
(cortical myoclonus and parkinsonism may also
occur), the neuropsychiatric features, and the mode
of inheritance, but also alluded to the gradually

progressive impairment of the mind [1]. Cogni-
tion is one of the four characteristics, along with
motor function, behavior, and functional abilities,
assessed by the Unified Huntington’s Disease Rating
Scale (UHDRS), which has now become the univer-
sal scale for measuring HD function [2].

HD results from a trinucleotide (CAG, poly-
glutamine, polyQ) repeat expansion in the IT15
gene on chromosome 4 (OMIM#143100), which
encodes the huntingtin protein [3]. A significant
inverse relationship exists between the CAG repeat
length and age at clinical onset. Clinical pheno-
type also varies with age of onset; juvenile dis-
ease (Westphal variant; onset before the age of
20 years) has a prominent parkinsonian syndrome
and sometimes epileptic seizures whereas very late-
onset disease may be associated with chorea and
little intellectual impairment. Neuropathologically,
there is a loss of medium spiny neurons and gli-
osis in the caudate nucleus and putamen, resulting
in shrinkage of the caudate that may be observed
on structural brain imaging, as well as degenerative
change in the cortex and hippocampus. Intranu-
clear inclusions immunopositive for huntingtin and
ubiquitin are found [4]. The availability of a diag-
nostic neurogenetic test has made possible not
only definitive diagnosis of symptomatic cases but
also the detection of presymptomatic cases in at-
risk family members. Such predictive testing should
only be undertaken with appropriate genetic coun-
seling under the auspices of accredited clinical
genetics services, guidelines for which exist [5].

HD phenocopies, without trinucleotide repeats
in the huntingtin gene, are described [6]. These
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Table 5.1. Typical neuropsychological deficits in Huntington’s disease

Attention ↓ Divided, sustained attention; impaired working memory

Memory “Subcortical pattern”: impaired encoding and retrieval, recognition better than recall; impaired skill

learning. Semantic memory relatively spared

Language Naming errors. Impaired oral and reading comprehension. Letter fluency worse than category

fluency

Perception Visuoperceptual problems: defects in judging distance, spatial relationships

Praxis Ideomotor apraxia

Executive function Dysexecutive syndrome (impaired Stroop, Wisconsin Card Sorting Test); may contribute to many of

the observed neuropsychological deficits

Huntington’s disease-like (HDL) syndromes include
insertions in the prion protein PRNP gene (Sec-
tion 2.5.3), and expansions in the genes encoding
JPH3 junctophilin or the TATA box-binding protein
gene (TBP), the latter allelic with spinocerebellar
ataxia (SCA) type 17 (Section 5.2.1.9). SCA8 may
also cause a HD phenocopy syndrome occasionally
(Section 5.2.1.6). Other conditions that enter the dif-
ferential diagnosis of HD include dentatorubropalli-
doluysian atrophy (Section 5.1.2), neuroferritinopa-
thy (Section 5.4.5), pantothenate-kinase-associated
neurodegeneration (Section 5.4.3), and neuroacan-
thocytosis (Section 5.4.4) [6].

As yet, no curative treatment is available for HD
and symptomatic treatments are limited in their
effect. The natural history is one of relentless pro-
gression. Cell-based treatments (neural transplant-
ation) remain experimental [7].

Neuropsychological profile (Table 5.1)

The cognitive disorder of HD has been investigated
extensively [8]. Following the characterization of
“subcortical dementia” in progressive supranuclear
palsy (Sections 1.3.3.1 and 2.4.3) [9], the core deficits
in HD were also labeled as subcortical [10], and
subsequent investigations have confirmed a pat-
tern of cognitive deficits distinct from that in AD.
Using the Mini-Mental State Examination (MMSE),
HD patients perform worse than AD patients on
the attention item (serial sevens) but better on
the orientation in time and memory items [11].
Likewise, HD patients administered the Mattis

Dementia Rating Scale show more impairment on
the initiation/perseveration subtest and less impair-
ment on the memory subtest than AD patients [12].
Reviewing a large number of studies of HD patients,
Zakzanis [13] reported deficits in memory acquisi-
tion and delayed recall, cognitive flexibility, abstrac-
tion, attention, and concentration. It may be that a
dysexecutive syndrome accounts for the poor per-
formance in many areas, reflective of pathological
involvement of the basal ganglia and frontostriatal
connections. The natural history of cognitive func-
tion is one of decline, but the rate is variable as are
the different domains affected. In one longitudinal
study, significant decline was detected over a one-
year period in low-level psychomotor tasks, object
recall, and verbal fluency whereas executive func-
tion (Wisconsin Card Sorting Test; WCST) remained
stable [14]. However, in a group of mild to moder-
ate HD patients studied over a three-year period,
progressive impairments were noted in attention,
executive function, immediate memory, and timed
tests of psychomotor skill while semantic mem-
ory and delayed recall memory were relatively pre-
served [15]. Cognitive decline may also occur early
in the course of juvenile HD [16].

Attention

Attentional control mechanisms are compromised
in symptomatic HD [11], as attested to by poor
performance on Wechsler Adult Intelligence Scale
(WAIS) subtests such as Digit Span and Digit Sym-
bol, which probe attention and working memory.
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Shifting of attention to new information may be par-
ticularly impaired, whereas attention to previously
learned information is maintained with persev-
eration on previously correct responses [17]. This
may be manifested in the clinical observation that
HD patients perform worse when required to divide
attention between tasks or stimuli. Selective and
progressive attentional and executive dysfunctions
are features of early HD [15], and assessment of
attentional tasks has been used to monitor disease
progression [18].

Neglect, an attentional deficit resulting in a failure
to orient or respond to stimuli in one side of space,
has rarely been reported in HD [19].

Memory

Learning and memory difficulties are a com-
mon complaint of HD patients and their relatives.
There is a problem with information encoding and
retrieval, as verbal recognition memory is preserved
relative to recall [20]. This may relate to ineffi-
cient encoding strategies, itself reflective of execu-
tive dysfunction. Retention of information over a
delay period is relatively intact, hence there is no
abnormal forgetting [21], and on remote memory
tests there is no temporal gradient. Compared to
AD individuals, HD patients matched for overall
level of dementia had less impairment of delayed
verbal and figural episodic memory but were worse
on letter fluency, suggesting a double dissociation
of semantic and episodic memory impairment [22].
Semantic memory and delayed recall memory are
relatively unaffected in early HD [15] but visuospa-
tial memory may be impaired [17].

Implicit memory as tested by skill learning is
impaired in HD, indicating a role for the basal gan-
glia in such learning processes, particularly “open-
loop” skills, a finding which possibly may be related
to working memory deficits.

Language

Naming errors in HD seem to be largely visu-
ally based, reflecting disrupted perceptual analysis,

while phonemic processes remain relatively intact
[23]. This contrasts with the semantic breakdown
observed in AD, and is corroborated by verbal flu-
ency tests showing greater impairment in letter
fluency rather than semantic fluency in HD, even
early in the disease [22,24], presumably related to
frontostriatal dysfunction. Late deficits in con-
frontation naming are more likely due to visuoper-
ceptual deficits and retrieval slowing rather than a
disintegration of semantic knowledge. In a system-
atic study of language function in HD, compared to
controls impairments in oral comprehension, rep-
etition, oral agility, and reading comprehension as
well as poorer verbal fluency were noted [25].

The motor disorder of HD may affect phon-
ation, speech output becoming increasingly limited
as the disease progresses. Apathy and psycho-
motor slowing may also contribute to this loss of
speech. Additionally, there may be impaired com-
prehension of affective and propositional speech
prosody [26].

Perception

Visuospatial disorder may be evident on object
assembly and block design tasks and tests of pattern
and spatial recognition memory, but again these
deficits may reflect problems with other processes
such as planning [27]. A defect in the perception of
personal (egocentric) space has been documented
consistently, with difficulty judging distances and
the spatial relationship to other objects [28], the
clinical correlate of which is a tendency to bump
into things; it may contribute to falls. Impaired con-
trast sensitivity for moving sinusoidal gratings has
also been noted [29].

Praxis

Although the assessment of praxis may be diffi-
cult in the context of the motor disorder of HD,
nonetheless occasional studies have been under-
taken. Shelton and Knopman [30] found ideomotor
apraxia to be common in a small cohort of patients
with long-standing disease (mean duration �10 yr),
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particularly for imitation of nonsymbolic move-
ments, whereas recognition of gestures was pre-
served. These changes were thought to be primar-
ily subcortical in origin. However, Hamilton et al.
[31] found apraxia to be more common in patients
with greater neurological involvement and longer
disease duration, suggesting that apraxia resulted
from damage to corticostriate pathways rather than
restricted basal ganglia involvement as in early dis-
ease, which fits better with the notion of apraxia
as a feature of cortical dementias. Hödl et al. [32]
confirmed the high frequency of ideomotor limb
apraxia in HD, which they found to be independent
of cognitive decline and the severity of most neuro-
logical symptoms.

Executive function

Progressive impairment in executive function is
found in early HD [17,19] and is associated with
bilateral striatal (caudate) and extrastriatal (insu-
lar) atrophy [33]. Typical of patients with execu-
tive deficits, verbal fluency tests show poor cate-
gory fluency but worse letter fluency, the reverse
of the pattern seen in AD [24], plus impair-
ments on the Stroop Test and the WCST [18]. This
dysexecutive syndrome may account for many of
the cognitive impairments documented in HD, due
to striatal and corticostriatal involvement. Assess-
ment of executive functions may be used to monitor
progression of disease [18].

Presymptomatic gene mutation carriers

With the characterization of the CAG trinucleotide
repeat expansion on chromosome 4 as determinis-
tic for HD [3], testing of presymptomatic, perhaps
better termed premanifest carriers of the HD gene
mutation has become possible. Such studies have
indicated that cognitive impairment may be present
at least 15 years prior to motor diagnosis [8], yet in
clinical practice, HD almost invariably presents as
a consequence of movement disorder rather than
because of cognitive decline [34].

While premanifest HD patients show little cog-
nitive deterioration compared to controls [35,36],
those nearing clinical onset may show deficits in
sustained attention and mental processing speed.
There is an association between CAG repeat length
and poorer performance on learning and mem-
ory tests, suggesting that cognitive deficits may be
an early, subclinical manifestation of disease [37].
In one study, these premanifest deficits were sug-
gested to be highly specific for attentional set shift-
ing and semantic verbal fluency, reflecting impaired
striatofrontal mechanisms [38]. In another study,
carriers performed worse on digit symbol, pic-
ture arrangement, and arithmetic tests, and also
showed mild impairment on reaction time tasks
[39]. A prospective study of genetically defined
disease carriers found impairments in attentional
and visuoperceptual and executive functions com-
pared to controls [18]. Clearly, these observations
of cognitive impairments in premanifest carriers
have implications for preventive therapeutic strat-
egies and monitoring of the efficacy of therapeutic
measures.

5.1.2 Dentatorubropallidoluysian
atrophy (DRPLA)

This autosomal dominant trinucleotide repeat dis-
order due to a CAG (polyglutamine) expansion
in the gene encoding atrophin-1 on chromosome
12p13.31 (OMIM#125370) often has a clinical pre-
sentation identical to HD, with movement disorders
including chorea, dystonia, myoclonus, and parkin-
sonism, as well as cerebellar ataxia, psychosis, and
epilepsy; the latter may be more common than
in HD. Likewise, cognitive dysfunction similar to
that in HD may be seen, including slowed thinking,
difficulty retrieving information, and in sequenc-
ing tasks, progressing to a more severe demen-
tia; in other words, a subcortical pattern of deficits
[40,41]. Chiefly described in reports from Japan,
DRPLA has also been seen in European and North
American families, in which clinical features are
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noted to be heterogeneous even within individual
families.

5.1.3 Familial British dementia (FBD) and
familial Danish dementia (FDD)

Familial British dementia (FBD), previously known
as Worster–Drought syndrome, is an autosomal
dominant progressive dementia syndrome, with
associated cerebellar ataxia and spastic parapar-
esis with pathological evidence of deposition
of cerebrovascular amyloid distinct from that
observed in AD [42,43]. Familial Danish demen-
tia (FDD), originally known as heredopathia
ophthalmo-oto-encephalica, is an autosomal
dominant disorder characterized by cataracts and
ocular hemorrhages occurring around the age of
30 years, impaired hearing and hearing loss in the
40s–50s, cerebellar ataxia in the 40s, and paranoid
psychosis and dementia in the 50s [44]. Both FBD
and FDD result from mutations in the ITM2B gene
(previously known as the BRI gene) on chromosome
13q14.2 (OMIM#176500 and #117300, respectively),
in which substitution in a stop codon increases the
length of the open reading frame, resulting in the
production of amyloidogenic C-terminal peptides
[45,46]. These conditions are sometimes classified
with the cerebral amyloid angiopathies (Section
3.5.3).

Memory impairment early in the course of FBD
is marked, ultimately progressing to global demen-
tia. Personality change, either irritability or depres-
sion, may also be an early manifestation [43]. In a
study of patients at risk, cognitive problems were
identified in some patients thought to be affected
clinically (with limb/gait ataxia, mild spastic para-
paresis). Impairments in delayed recognition and,
particularly, recall memory were found, with addi-
tional impairments in delayed visual recall in some
patients. General intelligence, naming, frontal lobe
functions, and perception were preserved. These
changes were associated with deep white matter
hyperintensities and lacunar infarcts on MRI of the
brain [47].

5.1.4 Familial encephalopathy with
neuroserpin inclusion bodies (FENIB)

This rare autosomal dominant disorder is one of
the serpinopathies linked to a point mutation in
the gene on chromosome 3 encoding neuroserpin
(OMIM#604218), a serine proteinase inhibitor, the
mutant protein undergoing polymerization. FENIB
is characterized pathologically by cytoplasmic
neuroserpin inclusions (Collins bodies) within the
deep cortical layers, substantia nigra, and subcor-
tical nuclei. Clinical phenotype is determined by
genotype; neuroserpin mutations causing greater
conformational change (G392E) result in early
onset progressive myoclonus epilepsy, whereas
lesser degrees of conformational change (S49P)
cause dementia in the fifth decade of life [48,49].

Neuropsychological assessment of patients with
the S49P mutation in the neuroserpin gene showed
frontal or frontosubcortical impairment in mildly
to moderately affected individuals, with impaired
attention, concentration, and response regulation
functions, while recall memory was not as affected
as other cognitive domains. A more global pat-
tern of impairment was seen in more severely
affected individuals. This pattern was corroborated
by single-photon emission computed tomography
(SPECT) imaging studies, which showed exclusively
frontal anomalies in the less affected patients, with
more global but patchy hypoperfusion in the more
severely affected individuals [50].

5.1.5 Polycystic lipomembranous
osteodysplasia with sclerosing
leukoencephalopathy (PLOSL); Nasu–Hakola
disease; presenile dementia with bone cysts

This autosomal recessive disorder, described in
both Japan and Finland, is characterized by large-
scale destruction of cancellous bone, resulting in
bone cysts in the third decade of life that cause
pain, swelling, and sometimes fracture of the wrists
and ankles; and presenile dementia in the fourth
decade, sometimes with epileptic seizures. MRI
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of the brain reveals frontal myelin loss and mas-
sive gliosis (“sclerosing leukoencephalopathy”) as
well as basal ganglia calcification. The condition
is genetically heterogeneous, with mutations being
identified in the TYROBP (also known as DAP12)
gene on chromosome 19q13.12 (deletions, point
mutations, and single base deletions) in some fami-
lies, and in the TREM2 gene on chromosome 6p21.1
in others (OMIM#221770). Both genes encode sub-
units of a multisubunit receptor complex, resulting
in an identical phenotype [51].

The cognitive impairment in PLOSL may be of
the frontal lobe type, sometimes without preceding
osseous symptoms [52]. Healthy subjects heterozy-
gous for a TREM2 mutation have been reported
with a deficit of visuospatial memory, with basal
ganglia hypoperfusion on functional neuroimaging
(SPECT), not seen in homozygotes for the wild-type
allele [53].

5.2 Hereditary ataxias

Classically, the cerebellum has been viewed as a
component of the motor system, with damage
resulting in motor signs of localizing value (ataxia,
dysdiadochokinesia, nystagmus), first clearly
defined by Gordon Holmes (1876–1965) [54]. A role
for the cerebellum in cognition has been acknow-
ledged increasingly in recent times (Section 1.3.3.2),
particularly since the description of a “cerebellar
cognitive affective syndrome” in association with
posterior lobe and vermis lesions, characterized
by executive dysfunction (in set-shifting, planning,
verbal fluency, abstract reasoning, working mem-
ory) and difficulties with spatial cognition, memory,
and language, as well as personality change [55].
In this section, hereditary ataxias are considered
according to their pattern of inheritance, although a
pathogenetic classification of the hereditary ataxias
may be more appropriate eventually [56]. So-called
idiopathic late-onset cerebellar ataxias, possibly
with added cognitive problems, may be caused by
multiple system atrophy (MSA-C; Section 2.4.5),
fragile-X tremor/ataxia syndrome (FXTAS; Section

5.4.1), or gluten sensitivity with or without celiac
disease (Section 8.2.1.3).

5.2.1 Autosomal dominant cerebellar ataxias
(ADCA); spinocerebellar ataxias (SCA)

The phenotypic classification of autosomal domi-
nant cerebellar ataxias (ADCA) proposed by Anita
Harding (1952–1995) acknowledged the concur-
rence of dementia in some patients with these
conditions, specifically in type I, whereas type II
was characterized by pigmentary maculopathy and
type III by a pure ataxia [57]. This nosology has
been superseded by a genotypic classification of
the SCAs based on the discovery of gene loci and
specific genetic mutations responsible for some of
these syndromes. At the time of writing, over 30
loci had been defined. SCAs are characterized by
ataxia of gait and limb, ataxic dysarthria, spasticity,
and decreased vibration perception, with additional
parkinsonism, tremor, neuropathy, ophthalmopare-
sis, and epileptic seizures, with cognitive impair-
ment in some cases. Marked cerebellar atrophy,
sometimes with cerebral cortical atrophy, is seen on
structural brain imaging. Variability of phenotype
despite identical genetic mutation may occur. Sev-
eral SCAs may fall within the old clinical classifica-
tion of ADCA type I (i.e., with cognitive impairment),
including SCAs 1–4, 12, and 17. Clues to the particu-
lar SCA may be obtained from clinical examination;
the presence of early and/or prominent dementia
suggests that SCA2 or SCA17 may be the cause.
Guidelines for the molecular genetic testing of SCAs
have appeared [58].

The differential diagnosis of hereditary ataxias
also includes the episodic ataxias, channelopathies,
the prion disease Gerstmann–Straussler–Scheinker
disease (GSS; Section 2.5.3), and vanishing white
matter disease (Section 5.5.2.6). Although episodic
ataxia type 2 (EA2) is allelic with one form of familial
hemiplegic migraine (Section 3.6.1) and with SCA6
(Section 5.2.1.4), both of which have been associ-
ated with cognitive impairments, at the time of writ-
ing no report of cognitive dysfunction in EA2 had
been identified.
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5.2.1.1 SCA1

SCA1 is associated with a CAG/polyQ mutation in
the ataxin-1 gene at 6p22.3 (OMIM#164400). Gen-
erally, intellect remains intact until the late stages
of disease when behavioral changes and a frontal
lobe-like syndrome may occur. One study found
impairments of verbal memory and executive dys-
function with relative preservation of visuospatial
memory and attention, a pattern labeled as typi-
cal of frontosubcortical dementia [59]. As for other
SCAs, cognitive impairments were not related to age
of onset, disease duration, or trinucleotide repeat
length.

5.2.1.2 SCA2

SCA2 is associated with a CAG/polyQ mutation
in the ataxin-2 gene at 12q24.12 (OMIM#183090);
expansions in this gene are also associated with
the development of motor neuron disease. Although
ataxia is the chief sign, SCA2 may also produce a
levodopa-responsive parkinsonism, and cognitive
changes are sometimes prominent. In one series,
25% of patients were demented, and cognitive
defects were also apparent in nondemented individ-
uals [60]. Impairments have been noted in frontal
executive function, as measured by the Stroop Test,
verbal fluency, and WCST. Attention and verbal and
visual memory are sometimes affected [61,62]. Var-
ious studies have reached different conclusions as
regards correlations between cognitive deficits and
age at disease onset, clinical severity, and motor dis-
ability [60–65].

5.2.1.3 SCA3, Machado–Joseph
disease (MJD)

This is probably the most common dominantly
inherited ataxia worldwide, resulting from a
CAG/polyQ mutation in the ataxin-3 gene at
14q32.12 (OMIM#109150). In addition to ataxia,
there is levodopa-responsive parkinsonism, and
variable peripheral involvement, ophthalmopar-
esis, and lingual and facial fasciculations. Cognitive

impairments have also been described, sometimes
amounting to a mild dementia [66]. Deficits in
visual attentional function with slowed process-
ing of visual information were reported using a
computerized test battery, along with inability
to shift attention to previously irrelevant stimuli;
learning and visual memory were normal. A fronto-
subcortical pattern of impairments was claimed,
apparently independent of motor dysfunction
[67]. Abnormal behavior, uncooperativeness, cry-
ing, slow thought processes, hallucinations, and
delusions were reported in four Japanese patients,
developing disease after the age of 40 years and
progressing to dementia [68]. Deficits in memory,
executive functions, naming, and attention, with
preserved calculation and visuospatial processing
have also been reported in SCA3 [69]. Depres-
sive symptoms have been said to characterize
SCA3 [70].

5.2.1.4 SCA6

SCA6 results from a CAG/polyQ mutation in
the alpha1A voltage-dependent calcium chan-
nel (CACNA1A) gene at chromosome 19p13.2
(OMIM#183086), and is allelic with some cases
of familial hemiplegic migraine (Section 3.6.1)
and episodic ataxia type 2. This common SCA is
generally a “pure” cerebellar ataxia, hence orig-
inally classified as ADCA type III [57], and thus
provides an intriguing opportunity to examine pos-
sible contributions of the cerebellum to cognitive
functioning.

A case of SCA6 with slowly progressive mental dis-
orders labeled as schizophrenia and dementia has
been reported [71]. A more systematic study found
deficits in memory, executive functions, naming,
and attention but with preserved calculation and
visuospatial processing [69]. In a Japanese study,
verbal fluency and immediate visual memory were
markedly impaired, independent of ataxic motor
dysfunction [72]. The largest study reported to date
(n = 27) found no intellectual or memory decline
in SCA6 but executive dysfunction, involving cog-
nitive flexibility, inhibition of response, and verbal
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reasoning and abstraction. These data were felt to
support a role for the cerebellum in cognitive pro-
cesses [73]. Imaging studies in this cohort have sug-
gested the specific cerebellar subregions that may
play a role in verbal working memory [74]. The
memory symptoms seen in other SCA groups are
said to be relatively spared in SCA6 [70].

5.2.1.5 SCA7

SCA7 results from a CAG/polyQ mutation
in the ataxin-7 gene at chromosome 3p14.1
(OMIM#164500). The clinical phenotype is marked
by progressive visual loss due to retinal dystrophy,
hence the condition was originally classified as
ADCA type II [57]. Dementia has been mentioned
as a symptom in some cases [75].

5.2.1.6 SCA8

SCA8 results from a CTA/CTG expansion
in the ataxin-8 gene at chromosome 13q21
(OMIM#608768). Two of seven patients with
SCA8 in a case series reported from Portugal were
said to have mild to moderate memory impair-
ment [76]. A study of ten patients in Finland
noted deficits in executive functions, with memory
and visuoperceptual functions preserved [77]. A
dysexecutive syndrome was also noted in SCA8
patients from Scotland [78]. A Greek patient with
HD phenocopy syndrome was found to have a
SCA8 expansion; memory decline and impairment
of frontal assessment tests were associated with
choreiform movements and psychiatric symptoms
[79].

5.2.1.7 SCA12

SCA12 results from a CAG expansion in the PPP2R2B
gene at chromosome 5q32 (OMIM#604326).
Dementia has been reported in some patients in
the later stages of SCA12. Disorientation, memory
loss, inability to calculate, and perseveration were
the reported clinical features [80].

5.2.1.8 SCA15

In an Italian family with SCA15, a disorder result-
ing from mutations or deletions of the ITPR1 gene
on chromosome 3p26 (OMIM#606658), all affected
members presented with cognitive impairment as
well as gait ataxia, dysarthria, and impaired balance,
with or without involuntary movements [81].

5.2.1.9 SCA 17

Cognitive decline and dementia, as well as
extrapyramidal features are common in SCA17 [82],
resulting from a CAG/polyQ mutation in the TATA
binding protein gene (TBP or TFIID) at chromo-
some 6q27 (OMIM#607136). Behavioral disorder
and dementia may dominate the early stages of
disease. This is one of the Huntington’s disease-like
(HDL) syndromes (Section 5.1.1) [6]. In a study
of 15 Italian patients, 9 of 11 symptomatic indi-
viduals had cognitive impairment, but no further
neuropsychological characterization was presented
[83]. A frontal picture with distractibility, poor
judgment, and impaired verbal fluency has been
reported [84].

5.2.1.10 SCA19

Frontal executive dysfunction has been recorded in
a Dutch family with SCA19, linked to chromosome
1p21-q21, with some members developing global
cognitive impairment [85].

5.2.1.11 SCA21

Mild cognitive impairment has been reported in a
French family with SCA21, linked to chromosome
7p21.3-p15.1 [86].

5.2.2 Autosomal recessive hereditary ataxias

5.2.2.1 Friedreich’s ataxia (FA)

The most common autosomal recessive cause
of ataxia, Friedreich’s ataxia (FA) is a disorder
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characterized by ataxia, dysarthria, axonal
polyneuropathy, and pyramidal weakness of
the legs (absent ankle jerks and upgoing plantar
reflexes), optic atrophy, scoliosis, and cardiac con-
duction abnormalities, usually with onset before the
age of 20 years. Intronic trinucleotide (GAA) repeat
expansions in the frataxin gene on chromosome
9q13 (OMIM#229300) are the cause of FA, resulting
in disordered mitochondrial function. Some FA
patients are compound heterozygotes with GAA
expansion on one allele and a point mutation on
the other. The clinical phenotype has broadened
as a result of the discovery of the causative genetic
mutations [87].

Any assessment of neuropsychological function
in FA must take account of possible confounders
such as dysarthria and fatigue, and any educa-
tional shortcomings as a consequence of physical
disability. Nonetheless, studies suggest that FA is
attended by cognitive impairments, such as length-
ened mental reaction times and color–word inter-
ference in the Stroop task. One study found no
impairment in tests sensitive to neocortical (par-
ticularly prefrontal cortex) function, including ver-
bal fluency, WCST, Tower of Hanoi, and picture
arrangement [88], whereas another found deficits in
letter fluency, as well as impaired acquisition and
consolidation of verbal information, and alterations
in visuoperceptual and visuoconstructive abilities
[89]. All studies agree that cerebellar degeneration
and interruption of cerebellar afferent and effer-
ent connections is probably responsible for these
findings.

5.2.2.2 Ataxia telangiectasia (AT)

This childhood onset autosomal recessive syn-
drome is characterized by progressive ataxia, oculo-
motor apraxia requiring head thrusts to achieve
ocular fixation, dysarthria, telangiectasia, and a ten-
dency to develop recurrent infections (especially
sinopulmonary) and malignancies. The molecular
defect is in the ATM gene on chromosome 11
(OMIM#208900), which encodes a protein required
for DNA repair.

Cognitive status is said to be normal in most
cases, some patients completing university level
education, and significant neuropsychological
impairments have been said to be uncommon.
However, Colvin and Lennox [90] reported frontal
lobe dysfunction in a series of 18 AT patients as
assessed with WCST, Tower of London Test, verbal
fluency, and similarities. Impairments of visual
memory assessed with the Warrington Recognition
Memory Test, and failure on some elements of
the Visual Object and Space Perception Battery
(VOSP), were attributed to impaired oculomotor
function. Mild to moderate cognitive impairment
was detected in eight children with AT, with deficits
in attention, nonverbal memory, and verbal fluency
[91].

5.2.2.3 Autosomal recessive spastic ataxia of
Charlevoix–Saguenay (ARSACS)

This autosomal recessive disorder of childhood,
initially reported from northeastern Quebec in
Canada, is characterized by childhood onset of a
slowly progressive pyramidal syndrome, dysarthria,
ataxia, abnormal eye movements (nystagmus), ret-
inal striation (i.e., hypermyelinated retinal fibers),
sphincter involvement, mitral incompetence, and
motor neuropathy. It has been classified variously
as either a “complicated” hereditary spastic para-
plegia (Section 5.3) or as an early onset autosomal
recessive cerebellar ataxia with retained reflexes.
Pedigrees from Quebec and Tunisia showed link-
age to chromosome 13q11–12, whence positional
cloning techniques permitted characterization of
the sacsin gene (OMIM#270550). Many sacsin gene
mutations have now been reported from pedigrees
throughout the world, expanding the spectrum of
sacsinopathies [92]. Cognitive function is usually
not affected but two siblings reported from Japan
had a unique phenotype of dementia, ophthalmo-
plegia, and absence of prominent retinal myelinated
fibers [93]. The cerebellar cognitive affective syn-
drome [55] has been reported in two siblings with
ARSACS, one of whom presented with behavioral
disinhibition [94].
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5.2.2.4 Ataxia with vitamin E
deficiency (AVED)

This autosomal recessive disorder manifests as
spinocerebellar ataxia and polyneuropathy without
evidence of cognitive impairment, suggesting that
vitamin E may not be crucial to cognitive function.

5.3 Hereditary spastic paraplegia (HSP)

The hereditary spastic paraplegias (HSP) are a
heterogeneous group of inherited motor sys-
tem disorders, typically presenting with lower
limb spasticity and, to a lesser extent, weakness.
Clinically, HSP may be divided into pure (uncom-
plicated; mostly autosomal dominant) and compli-
cated (mostly autosomal recessive) types, the latter
manifesting other neurological features in addition
to spasticity, such as epileptic seizures, amyotrophy,
extrapyramidal signs, peripheral neuropathy, and
cognitive impairment sometimes amounting to
dementia. Subtle cognitive deficits have also been
detected in so-called “pure” HSP types. Cognitive
impairment has been noted in both autosomal
recessive [95] and autosomal dominant [96] HSP.

At the time of writing, approaching 50 genetic
loci linked to HSP had been described, with
dominant, recessive, and X-linked patterns of
inheritance, and deterministic mutations have
been described in more than a dozen genes,
encoding the proteins L1-CAM, proteolipid protein
(PLP), atlastin, spastin, CYP7B1, NIPA1, paraplegin,
strumpellin, spatacsin, spastizin, spartin, maspar-
din, hsp60, and KIF5A. Guidelines for the molecular
genetic testing of HSPs have appeared [97].

Spastic paraparesis may be a feature of other
monogenic Mendelian disorders, which may also be
associated with cognitive impairment, such as some
examples of autosomal dominant AD (Section 2.1.1)
associated with certain of the presenilin-1 muta-
tions [98], some of the hereditary cerebral amyloid
angiopathies (Section 3.5.3), and autosomal reces-
sive spastic ataxia of Charlevoix–Saguenay (ARSACS;
Section 5.2.2.3). Spastic paraparesis has also been
reported in Krabbe disease (Section 5.5.2.5).

5.3.1 SPG4

The most common form of autosomal dom-
inant HSP is that linked to the SPG4 locus
encoding the spastin gene on chromosome 2p22
(OMIM#182601). Although classified as a pure form
of HSP, cognitive deficits have been noted in
patients, sometimes amounting to a global demen-
tia with a profile similar to that in subcortical
dementias. Mild cognitive problems may be the first
clinical manifestation in spastin gene carriers. Stud-
ies in Irish families reported cognitive decline affect-
ing orientation, memory, and language, which was
age-dependent and progressive over time [99–101],
whereas in a French study, cognitive decline was
found to be correlated with disease progression and
not with age [102]. This study found only mild,
asymptomatic, cognitive loss, particularly affect-
ing executive functions, that was more frequently
observed in patients with missense rather than
truncating spastin mutations.

5.3.2 SPG21, Mast syndrome

Mast syndrome, also known as SPG21, is an auto-
somal recessive, complicated form of HSP with a
clinical phenotype of paraplegia, dysarthria, athe-
tosis, and dementia, with onset in the second
decade of life. It was originally described in the
Old Order Amish community [103], but possible
non-Amish cases have been reported with a phe-
notype of bradyphrenia and comprehension diffi-
culties in the patients’ 40s, progressing to rare and
inappropriate single syllable answers in their 50s
[104]. SPG21 is slowly progressive, with cerebellar
and extrapyramidal features emerging in advanced
disease. It maps to chromosome 15q22.31 and
frameshift mutations have been identified in a gene
named maspardin [105].

5.4 Hereditary movement disorders

The focus here is largely on movement disor-
ders that show a monogenic Mendelian pattern of
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inheritance with identified genetic mutations. Rest-
less legs syndrome, which may have genetic deter-
minants, is discussed with sleep-related disorders
(Section 11.5.1); Tourette syndrome, which is fre-
quently accompanied by obsessive-compulsive dis-
orders, is discussed with psychiatric disorders (Sec-
tion 12.4.1).

5.4.1 Fragile-X syndrome (FRAX), fragile-X
tremor/ataxia syndrome (FXTAS)

Fragile-X-associated disorders include the fragile-
X syndrome (FRAX) and the fragile-X tremor/ataxia
syndrome (FXTAS) [106,107].

FRAX is the most common genetically determined
cause of intellectual disability in males [108], result-
ing from a trinucleotide (CGG) repeat expansion
in the 5′ promoter region of the fragile site men-
tal retardation 1 (FMR1) gene, located on the X
chromosome (OMIM#300624) [109]. Various mech-
anisms may mediate the effects of this mutation,
including effects on the cytoplasmic protein FMRP,
which has RNA-binding properties, and on synap-
tic plasticity [107]. Healthy male patients with FRAX
have been reported to show poorer attention and
short-term memory function than a comparison
group of Down’s syndrome patients [110]. Women
with FRAX are worse than controls on tests of execu-
tive function [111].

Lesser numbers of CGG repeats in the FMR1 gene,
50–200, are termed premutations and are asso-
ciated with the fragile-X tremor/ataxia syndrome
(FXTAS; OMIM#300623) [106,107]. Clinically, FXTAS
is characterized by progressive cerebellar ataxia and
tremor (which may be postural, action, or resting),
with or without parkinsonism, peripheral neurop-
athy, and autonomic features, symptoms which do
not occur in FRAX and which have caused frequent
misdiagnosis of FXTAS, for example, as other tremor
or ataxia syndromes [112]. MRI of the brain typ-
ically shows high signal intensity lesions on T2-
weighted images in the cerebellar peduncles and in
white matter inferior and lateral to the deep cere-
bellar nuclei, with additional cerebellar and cortical
atrophy [113,114].

Cognitive impairment and dementia may also be
a feature of FXTAS, which has been misdiagnosed
as a dementia syndrome of the Alzheimer or vascu-
lar type [112], although one study found no cogni-
tive deficits in premutation carriers under the age
of 50 years old [115]. In those who develop cogni-
tive problems, deficits in the domains of short-term
memory and executive function were specified ini-
tially and included in suggested diagnostic criteria
[114]. A study of over 100 patients found that men
with FXTAS scored worse than normal controls in
measures of intelligence, working memory, remote
recall, declarative learning and memory, informa-
tion processing speed, and executive function, but
with relative sparing of language and verbal com-
prehension, while asymptomatic carriers of the pre-
mutation were worse than controls in declarative
learning and memory, and executive function [116].
The profile was dissimilar to that seen in mild AD
[117].

FXTAS has also been described in women. Some
were reported to perform poorly on certain tests
of visual selective attention [118], but initially it
was thought that dementia did not occur [119].
More recent studies have identified women who
develop dementia [120,121], some with typical
AD pathology suggesting a possible synergistic
effect [121].

5.4.2 Wilson’s disease (hepatolenticular
degeneration)

Wilson’s disease is an autosomal recessive disorder
of copper metabolism resulting from mutations
in the ATP7B gene on chromosome 13q14.3–q21.1
(OMIM#277900), which encodes a copper-binding
membrane-bound ATPase, resulting in elevated
blood and urine copper and reduced blood ceru-
loplasmin levels. The condition usually presents
in young adults with hepatic and/or neurological
disease due to accumulation of copper in affected
tissues. In the brain, although copper deposition
occurs throughout, it is the basal ganglia that are
particularly vulnerable, resulting in movement
disorders (parkinsonism, dystonia, grimacing,
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excessive salivation); likewise the cerebellum
(ataxia, wing-beating tremor, dysarthria). Copper
deposition in the eye in Descemet’s membrane may
be observed as Kayser–Fleischer rings, a reliable
sign of brain copper deposition. Neuropsychiatric
features are also common, such as personality
change, depression, and occasionally psychosis.
Motor and neuropsychiatric features might possibly
confound neuropsychological testing in Wilson’s
disease.

In his seminal paper on the disorder that now
bears his name, Kinnier Wilson [122] noted a
distinct pattern of neurobehavioral disturbances
without agnosia, apraxia, or severe memory loss
in association with disease of the basal ganglia.
The cognitive impairments in patients with neuro-
logical and/or hepatic symptoms may be mild
[123], or involvement may be widespread, including
impaired memory, visuospatial processing, atten-
tion, and frontal-executive functions [124–126].
Rate of information processing may be spared,
although response latencies are prolonged, prob-
ably as a consequence of the motor disorder [127].
Neuropsychological deficits may be present early in
the course of the disease [128], but patients with
exclusive hepatic involvement do not differ from
controls, and adequate early treatment may pre-
vent cognitive decline [129]. If untreated, demen-
tia develops with disease progression, hence the
need to screen all younger patients with movement
disorders for abnormalities of copper metabolism.
Once established, the dementia is generally held to
be irreversible, although anecdotal reports of cogni-
tive (as well as motor) improvement after chelation
therapy [130] and liver transplantation ([131],
case 2) have appeared.

5.4.3 Neurodegeneration with brain iron
accumulation (NBIA);
pantothenate-kinase-associated
neurodegeneration (PKAN)

Mutations in the gene encoding pantothen-
ate kinase (PANK2) on chromosome 20p13
(OMIM#234200) have been identified in the

disorder variously known as neurodegener-
ation with brain iron accumulation (NBIA) or
pantothenate-kinase-associated neurodegener-
ation (PKAN) [132]. Typically, this is a disorder of
either familial or sporadic origin with childhood
onset with a fairly homogeneous phenotype of
dystonia, dysarthria, rigidity, choreoathetosis, and
pigmentary retinopathy. “Atypical” cases are usually
of later onset (second to third decade of life), with
speech difficulty, with or without extrapyramidal
and pyramidal signs, and in some cases cognitive
decline that is said to be reminiscent of FTD with
personality change, impulsivity, violent outbursts,
and emotional lability. Neuropathological findings
are of pallidal iron deposition, axonal spheroids,
and gliosis. T2-weighted MRI scans of the brain
may show decreased signal intensity in the pallidal
nuclei with central hyperintensity, the “eye-of-
the-tiger” sign, which is highly suggestive of the
diagnosis although not specific. PANK2 mutations
have been found in both classic cases and in around
one-third of atypical late-onset cases [133,134].

Historically, PKAN has been associated with
cognitive decline, but a recent study of child-
hood cases has questioned whether, in fact, such
findings are confounded by dystonia [135]. A
neuropsychological profile of bradyphrenia,
reduced verbal fluency, judgment difficulties,
and attentional impairment, but with relative
preservation of memory (i.e., of frontosubcortical
type, as might be expected) has been reported.
Phenotype may be variable, even in siblings sharing
the same mutation [136].

5.4.4 Neuroacanthocytosis

There are various neuroacanthocytosis syn-
dromes [137], of which chorea–acanthocytosis is a
multisystem neurodegenerative disorder inherited
as an autosomal recessive condition linked to
chromosome 9q21 and associated with mutations
in the VPS13A gene encoding the protein chorein
(OMIM#200150). The clinical phenotype includes
movement disorders (orofaciolingual dystonia,
chorea, parkinsonism), axonal polyneuropathy,
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epileptic seizures, and neuropsychiatric abnor-
malities, as well as cognitive impairments. Salient
investigation findings are acanthocytes on fresh
blood films (more than one film may need to be
examined) and raised creatine phosphokinase, but
there is no abnormality of lipid metabolism [138].

Personality change such as impulsive and dis-
tractible behavior or apathy and loss of insight may
be observed, and is sometimes sufficient to prompt
legal intervention [139]. Consistent with this sug-
gestion of frontal lobe dysfunction, tests of execu-
tive function may be impaired enough to amount
to a subcortical dementia [140]. Hence, in both its
clinical and neuropsychological features, neuroa-
canthocytosis may resemble HD (Section 5.1.1).

5.4.5 Neuroferritinopathy

Mutations in the gene encoding ferritin light
polypeptide or ferritin light chain (FTL) located on
chromosome 19q13.33 (OMIM#606159) have been
associated with a variety of autosomal dominant
movement disorders, including dystonia, chorea,
and akinetic-rigid syndrome. The extrapyramidal
features may resemble HD or parkinsonism. There
is a low serum ferritin with brain aggregates of fer-
ritin and iron [141,142].

Cognitive decline is associated with neurofer-
ritinopathy in some instances. In one case, frontal
lobe function was particularly affected (persever-
ation, poor cognitive estimates, impaired nonverbal
abstract reasoning, and some word retrieval diffi-
culties), although the patient had been treated with
high-dose anticholinergic agents for the movement
disorder before cognitive decline occurred [143]. In
a French family, two of the seven members had a
frontal syndrome and another was demented [144],
and in another family, the index case had a frontal
syndrome and dementia [142]. The index case in a
Portuguese family had nonprogressive mental retar-
dation with an IQ of 60 [145]. Overall, cognitive
impairment seems to be absent or subtle in the early
stages, unlike the situation in HD, with subcortical-
frontal dysfunction developing in the later stages
[146].

5.4.6 Aceruloplasminemia

Aceruloplasminemia is an autosomal recessive con-
dition resulting from the absence of ceruloplas-
min ferroxidase activity due to mutations in the
ceruloplasmin gene on chromosome 3q24-q25
(OMIM#604290), with subsequent effects on iron
metabolism. There is low serum iron, raised ferritin,
absent ceruloplasmin, and increased liver iron on
biopsy. Although serum copper is low, this is in pro-
portion to reduced ceruloplasmin, as normal urine
and liver copper indicate that there is no copper
overload (cf., Wilson’s disease, Section 5.4.2). Dia-
betes mellitus is a common feature. Unlike the sit-
uation with hemochromatosis, another iron-related
disorder (Section 5.5.5), neurological presentations
are common in aceruloplasminemia, usually with a
movement disorder (dystonia, chorea, ataxia), with
imaging evidence of iron deposition in the brain,
particularly the basal ganglia. A role for ceruloplas-
min in brain iron metabolism is likely, therefore
[147].

Dementia has been reported in association
with aceruloplasminemia [147–149]. The limited
information available on the pattern of cogni-
tive impairments indicates defects in immediate
and delayed recall of verbal material, inability to
learn new verbal material, but with preservation of
long-term memory, at least initially. The findings
were said to be “similar to subcortical dementia”
[147,149].

5.4.7 Kufor–Rakeb syndrome (PARK9)

Unlike the clinically similar pallidopyramidal
syndrome [150], dementia may be a feature of
Kufor–Rakeb syndrome, a very rare autosomal
recessive nigrostriatal-pallidopyramidal degener-
ation syndrome [151] linked to chromosome 1p36
(designated PARK9), and resulting from mutations
in a neuronal P-type ATPase gene, ATP13A2, the
product of which may be located in lysosomes
(OMIM#606693). Detailed description of the
dementia has not been identified, but considering



124 5: Neurogenetic disorders

the topography of disease, a frontosubcortical pat-
tern might be anticipated. Juvenile-onset dementia
has been described [152].

5.4.8 Fahr’s disease (bilateral
striatopallidodentate calcinosis)

This rubric encompasses a heterogeneous group
of conditions, both familial and sporadic, charac-
terized variably by calcification of the basal gan-
glia, dentate nucleus, and deeper cortical layers,
which may be detected radiologically or sonograph-
ically. The calcinosis may be asymptomatic or asso-
ciated with any combination of movement disorder
(parkinsonism, dystonia, tremor, ataxia), epileptic
seizures, and cognitive decline or dementia, with or
without endocrine parathyroid disorder of calcium
metabolism.

The familial idiopathic syndrome may often be
associated with intellectual decline, with impair-
ment of recent memory and memory retention, as
well as parkinsonism and cerebellar ataxia [153].
Cases of Fahr’s disease presenting with subacute
dementia and without a movement disorder have
been reported [154,155], characterized in one case
by executive deficits, anterograde amnesia, atten-
tional impairment, and neuropsychiatric features,
with the functional imaging correlate of reduced
glucose metabolism in the basal ganglia and frontal
lobes [154]. One wonders if there might be over-
lap here with polycystic lipomembranous osteodys-
plasia with sclerosing leukoencephalopathy (Nasu–
Hakola disease), a condition characterized by pre-
senile dementia with basal ganglia calcification
(Section 5.1.5).

5.4.9 Urbach–Wiethe disease (lipoid
proteinosis)

This rare autosomal recessive condition is char-
acterized by bilateral calcification of the anterior
medial temporal lobe, especially the amygdala, but
with sparing of the hippocampus, thus permitting
an analysis of the contribution of the amygdala
to cognitive function. It results from mutation in

the extracellular matrix protein 1 (ECM1) gene on
chromosome 1q21 (OMIM#247100). Clinical studies
suggest impaired learning and recall of odor–figure
associations but no amnesia as such [156], and also
impairments in emotional judgment and memory
[157].

5.4.10 Myoclonus–dystonia syndrome (MDS),
DYT11

Myoclonus–dystonia syndrome (MDS) is an auto-
somal dominant disorder most often resulting
from mutations in the epsilon-sarcoglycan gene on
chromosome 7q21.3 (DYT11; OMIM#159900).
In addition to myoclonus and dystonia, alcohol
responsiveness and psychiatric symptoms are char-
acteristic. Cognitive impairment has been reported
[158].

5.4.11 Essential tremor (ET)

Classic hereditary essential tremor (ET), in which
similarly affected family members are found in at
least three generations, is typified by early onset,
complete penetrance by the age of 65 years, invari-
able onset of tremor in the hands, and absence
of rigidity, rest tremor, persistent unilateral tremor,
and isolated head, tongue, voice, jaw, or leg tremor
[159]. The role of genetic factors has been confirmed
by the demonstration of the linkage of ET to various
chromosomal loci (e.g., 3q13, 2p24.1, 6p23). How-
ever, many cases clinically labeled as ET lack either
a family history (nonfamilial or sporadic ET), sug-
gesting that environmental factors may contribute
to the etiology, or vary from the classical clinical
phenotype. Such cases are sometimes labeled as
“possible ET,” although other diagnoses need to
be borne in mind, such as enhanced physiological
tremor, early Parkinson’s disease (PD), or dys-
tonic tremor [160,161]. Pathological examinations
in ET cases are few, but have suggested cerebellar
involvement.

ET was previously considered a monosymp-
tomatic tremor disorder, but administration of
neuropsychological tests has revealed subclinical
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impairments in tests sensitive to frontal lobe func-
tion. One early study noted impaired verbal flu-
ency, naming, mental set-shifting, verbal memory,
and working memory. Deficits did not correlate
with tremor severity. Prefrontal cortical involve-
ment, perhaps encompassing frontocerebellar cir-
cuits, was surmised [162]. Impairments in atten-
tional and conceptual thinking tasks were noted in
a further study, akin to those seen in idiopathic
PD, prompting the suggestion that this frontal lobe
dysfunction may reflect dysregulation of frontosub-
cortical dopamine pathways [163]. There is rea-
sonable evidence of an epidemiological associ-
ation between ET and neurodegenerative disorders,
specifically PD and AD [164], and the occasional
concurrence of familial ET and restless legs syn-
drome [165] may support the idea of dopaminergic
dysfunction. Attentional problems were also identi-
fied in another study [166].

Lacritz et al. [167] found mild cognitive impair-
ment in about half of a small cohort of ET patients
being evaluated for tremor surgery (hence, a highly
selected group), with deficits identified in cognitive
flexibility, figural fluency, and selective attention.
A population-based study from Spain has found
that older-onset ET (�65 yr) is associated with mild
cognitive impairment and with an increased risk
of incident dementia, supporting the hypothesis
that cognitive impairments are part of the core ET
phenotype [168,169].

5.4.12 Dystonia

The dystonias constitute a heterogeneous group of
hyperkinetic movement disorders characterized by
involuntary sustained muscle contractions that pro-
duce abnormal postures and repetitive movements.
These may be primary (idiopathic) or secondary
(symptomatic), genetic or sporadic, focal or gener-
alized [170].

Although principally manifested as a movement
disorder, there may be subtle cognitive impairments
associated with dystonias. Attentional-executive
deficits were identified in a heterogeneous group
of 14 primary dystonia patients, although speed of

information processing, language, spatial, memory,
and general intellectual skills were well preserved
[171]. However, another study found no difference
from controls in any measure of executive function
other than category word fluency in 10 patients with
idiopathic dystonia [172]. In patients with focal dys-
tonias, Ochudlo et al. [173] reported impairments
on the Frontal Assessment Battery in cervical dys-
tonia, Meige’s syndrome, and blepharospasm.

5.5 Hereditary metabolic disorders

This section encompasses those disorders once
styled, after Archibald Garrod, as “inborn errors
of metabolism.” Another condition that might be
included within this rubric is cobalamin C disease
(Section 8.2.1.2).

5.5.1 Mitochondrial disorders

Mitochondrial disorders are a heterogeneous group
with respect to both phenotype and genotype.
Both peripheral and central nervous systems may
be affected, the former including myopathy and
peripheral neuropathy, the CNS features including
epilepsy, migraine, stroke-like episodes, ophthal-
moplegia, ataxia, and spasticity, as well as cogni-
tive impairment. There may also be involvement of
other body systems, with clinical features including
cardiomyopathy, diabetes mellitus, pigmentary ret-
inal degeneration, and sensorineural hearing loss.
Various more or less characteristic phenotypes or
syndromes associated with mitochondrial dysfunc-
tion may be identified, including Kearns–Sayre syn-
drome (KSS), chronic progressive external ophthal-
moplegia (CPEO), the syndrome of mitochondrial
encephalomyopathy, lactic acidosis and stroke-like
episodes (MELAS), and the syndrome of myoclonic
epilepsy and ragged red fibers (MERRF), but so-
called “non-syndromic” forms also occur. At the
level of genotype, mitochondrial disorders may
result from mutations (deletions, point mutations)
within the small mitochondrial genome or within
nuclear genes (autosomal, X-linked) that encode
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mitochondrial respiratory chain proteins. Guide-
lines for the molecular genetic testing of mitochon-
drial disorders have appeared [174].

The possibility that neuropsychological deficits
might be common in mitochondrial disorders was
suggested by Kartsounis et al. [175], who noted
in a series of 36 patients with myopathies and
encephalomyopathies that 14 patients were thought
to be cognitively impaired on clinical grounds,
but 21 were found to have general intellectual
decline on testing, and a further five of the remain-
ing 15 had focal cognitive deficits in the domains
of language, memory, or perception (frontal lobe
tests were not administered in this series). Tur-
coni et al. [176] found no global cognitive decline
in 16 patients with mitochondrial encephalomy-
opathies but selective impairments of visuospa-
tial skills and short-term memory, unrelated to
clinical phenotype and genetic mutations. Korn-
blum et al. [177] studied 18 patients with CPEO
and KSS. None had general intellectual deterior-
ation but disturbances were identified in visual
construction, vigilance and concentration, abstrac-
tion/flexibility, and verbal/visual memory, suggest-
ing the presence of frontal and parieto-occipital
deficits. Evolution of cognitive deficits in MELAS
in the absence of stroke-like episodes has been
reported [178], perhaps reflecting the alterations
in cerebral oxygen and glucose metabolism in this
condition [179].

Cognitive decline or dementia (“mitochondrial
dementia”) is said to have been reported in var-
ious mitochondrial syndromes, including MELAS,
MERRF, CPEO, KSS, Leber’s hereditary optic neu-
ropathy (LHON), mitochondrial neurogastrointes-
tinal encephalopathy (MNGIE), NARP syndrome,
Leigh syndrome, and Alpers–Huttenlocher disease
[180,181]. Occasionally, dementia has been reported
as a prominent feature in nonsyndromic mitochon-
drial disorders [182].

5.5.2 Leukodystrophies

Leukodystrophies are genetic metabolic disor-
ders that generally present in early childhood,

often at the time of brain myelination. Occa-
sionally, however, these disorders may present in
adulthood [183], and dementia may be one fea-
ture of the clinical phenotype. These conditions
may be autosomal recessive (e.g., metachromatic
leukodystrophy) or sex-linked (e.g., X-linked
adrenoleukodystrophy) in their inheritance pat-
tern. This is a heterogeneous group, including
both lysosomal and peroxisomal disorders. Cere-
brotendinous xanthomatosis (Section 5.5.4) is
classified sometimes with the leukodystrophies.
White matter change as a consequence of treatment
with radiotherapy may be described occasionally as
a leukodystrophy (Section 7.1.8).

5.5.2.1 Metachromatic leukodystrophy (MLD)

In metachromatic leukodystrophy (MLD), reduced
enzymatic activity of arylsulfatase A (ARSA) results
in accumulation of sulfatides (sulfogalactosy-
lceramides) in Schwann cells and oligodendroglia
with peripheral and central demyelination, caus-
ing peripheral neuropathy and leukodystrophy,
respectively. Depending on the degree of residual
enzyme activity, disease may range from severe with
late-infantile onset to mild with adult onset. Clas-
sically, MLD is due to deficiency of the lysosomal
hydrolase arylsulfatase A (also known as cerebro-
side sulfate sulfatase) associated with mutations in
the arylsulfatase A gene on chromosome 22q13.31
(OMIM#250100). The normal catalytic function of
arylsulfatase A requires a sphingolipid activator
protein, saposin B, deficiency of which may be
associated with mutations in the prosaposin gene
on chromosome 10q21 (OMIM#249900).

Cases of MLD with adult-onset dementia have
been reported. These may vary in the pattern
of cognitive impairment; cases with amnesia,
visuospatial dysfunction, and attentional diffi-
culties, with medial temporal and frontal cortical
hypometabolism on functional imaging, are
reported [184], as are cases with typical frontal
features of behavioral change, apathy, psychosis
akin to schizophrenia, and with frontal hypoperfu-
sion on functional imaging [185,186], sometimes
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simulating FTD [187]. Concurrent peripheral
neuropathy may be a clue to the diagnosis of MLD
although cases with adult-onset dementia without
neuropathy have been reported [187,188]. It has
been suggested that Alzheimer’s first patient, in
fact, had MLD [189,190].

5.5.2.2 X-linked adrenoleukodystrophy
(X-ALD)

X-linked adrenoleukodystrophy (X-ALD) is a peroxi-
somal disorder associated with mutations in the
ATP-binding cassette (ABCD1) gene, which encodes
a peroxisomal membrane protein (OMIM#300100).
The clinical phenotype varies, dependent on the age
of presentation; children most often have rapidly
progressive cerebral disease, whereas adults most
often present with adrenomyeloneuropathy (AMN),
these two phenotypes accounting for more than
75% of all cases. Adult cerebral disease is the least
frequently observed phenotype [191].

X-ALD cases presenting with adult-onset demen-
tia have only occasionally been reported. Fea-
tures suggestive of frontal lobe dysfunction have
been prominent in many of these cases [192–
197], some with confirmed ABCD1 gene mutations
[196,197]. X-ALD patients presenting with marked
personality change and labeled as having manic-
depressive psychosis [198] or mania with disinhibi-
tion, impulsivity, hypersexuality, and perseveration
[199] possibly may represent the same phenotype.
Presentation with Balint’s syndrome and demen-
tia has also been described [200]. The pathogene-
sis of these features is presumably the functional
disconnection (Section 1.3.4) of cortical regions
by an advancing wave of inflammatory demyelin-
ation, either anterior or posterior, which is the typ-
ical pathological substrate of X-ALD. A correlation
between frontal type dementia and an anterior pat-
tern of white matter change on MRI has been noted
in one case [196].

With developments in diagnostic techniques,
particularly neuroimaging and neurogenetic test-
ing, X-ALD now may be diagnosed in asymp-
tomatic at-risk individuals. Study of neurologically

and radiologically asymptomatic boys has shown
overall normal cognitive function, with the emer-
gence of subtle visual perceptual and visuomotor
deficits with age in a few [201]. In a family with
the R152C ABCD1 mutation, the proband of which
had presented with a frontal dementia [196], two
asymptomatic individuals who had been treatment
compliant since childhood showed neither neuro-
radiological nor neuropsychological evidence of
subclinical disease [202]. Early therapeutic inter-
vention might be predicted to preserve cognitive
function in such cases. Options include Lorenzo’s oil
[203] and hematopoietic cell transplantation [204].

5.5.2.3 Alexander’s disease and Rosenthal fiber
encephalopathy (RFE)

Alexander’s disease is typically a disorder of child-
hood characterized by megalencephaly and relent-
less neurological deterioration, with a leukodystro-
phy and the neuropathological finding of Rosenthal
fibers, eosinophilic cytoplasmic inclusions within
astrocyte processes adjacent to areas of demyeli-
nation. These are immunopositive for glial fibril-
lary acidic protein (GFAP), ubiquitin, and heat shock
proteins such as hsp27 and ��crystallin. Mutations
in the gene encoding GFAP on chromosome 17 have
been associated with the condition (OMIM#203450)
[205], including occasional adult-onset cases [206].

Rosenthal fiber encephalopathy (RFE) is the name
used for a condition in which the pathological find-
ing of Rosenthal fibers occurs without clinical fea-
tures of demyelinating lesions typical of Alexan-
der’s disease. Rosenthal fibers are typically found
in subependymal, subpial, and perivascular regions,
often confined to the brainstem, and often in the
context of systemic illness [207].

Adult-onset cases of Alexander’s disease and
RFE have been described [206,208,209], some with
dementia; for example, in a patient with learning
disability who developed further cognitive decline,
ataxia, and dysarthria [210]. A review of adult-
onset cases [208] suggested that dementia was
more common in RFE (4/11) than in Alexander’s
disease (2/15). A nationwide questionnaire-based
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survey of Alexander’s disease in Japan found that
4/16 cases (25%) with the adult form had demen-
tia, and reported that “three cases with clinical find-
ings similar to FTD were mentioned in the free com-
ments section of the questionnaire” [209].

5.5.2.4 Pelizaeus–Merzbacher disease (PMD)

Pelizaeus-Merzbacher disease (PMD) is an X-linked
recessive disorder of myelin due to deficiency of
proteolipid protein (PLP), which usually presents
in the first months of life with a combination of
a movement disorder (head tremor, laryngeal stri-
dor, choreoathetosis, spastic paraparesis) and intel-
lectual decline. Various forms have been described,
including a late-onset form known as Löwenberg–
Hill syndrome [211]. Point mutations, duplications
and deletions of the PLP gene on chromosome
Xq 22.2 have been identified (OMIM#312080), as
have cases with the clinical phenotype of PMD but
normal PLP gene, suggesting that other regulatory
genes may also be involved in disease pathogenesis
[212].

Adult cases of PMD with dementia and movement
disorder are unusual. Cases with or without PLP
gene mutation have been described, as has a case
of dementia and gait disorder with MRI evidence
of leukodystrophy in the mother of a man with
PMD, presumably a manifesting carrier [213–215].
In a Cajun kindred, heterozygous females developed
progressive gait disturbances and cognitive deterio-
ration starting in the fourth decade of life [216].

5.5.2.5 Krabbe disease (globoid cell
leukodystrophy)

This autosomal recessive leukodystrophy results
from deficiency of the lysosomal enzyme galacto-
cerebroside �-galactosidase (GALC) due to muta-
tions in the encoding gene located on chromo-
some 14q24.3-q32.1 (OMIM#245200). In addition
to infantile and late-infantile/juvenile forms, which
account for most cases, an adult form is described
manifesting with spastic paraparesis. Dementia,
optic atrophy, and peripheral neuropathy also

develop, although a protracted course with appar-
ently preserved intellect has been reported [217].

5.5.2.6 Vanishing white matter disease (VWMD)

Vanishing white matter disease (VWMD) encom-
passes a group of disorders with leukoencephalopa-
thy or leukodystrophy resulting from mutations
in the eIF2B gene (OMIM#603896), usually domi-
nated clinically by cerebellar ataxia [218]. Presenile
dementia has been reported as an unusual presen-
tation [219–221].

5.5.2.7 18q deletion (18q-) syndrome

Deletion of the long arm of chromosome 18, also
known as de Grouchy syndrome (OMIM#601808),
produces a variable phenotype encompassing
learning disability, short stature, variable dysmor-
phism, and neurological symptoms and signs [222].
Brain MRI shows white matter abnormalities with
incomplete myelination and poor differentiation of
gray and white matter, features ascribed to loss of
the myelin basic protein (MBP) gene which lies on
chromosome 18q. For this reason, the condition has
been classified with the leukodystrophies, although
rare deletions in which the MBP gene is retained
have normal appearing white matter. Occasional
cases presenting in adult life have been reported,
but these are due to a seizure disorder rather than
cognitive decline [223]. Lower cognitive ability
predicts larger 18q deletion size [224].

5.5.2.8 Hereditary diffuse
leukoencephalopathy with axonal
spheroids (HDLS)

Hereditary diffuse leukoencephalopathy with
spheroids (HDLS) is a rare autosomal-dominant
CNS white matter disease, which may present
with cognitive, behavioral, epileptic, and motor
features (both pyramidal and extrapyramidal).
The differential diagnosis includes FTD, multiple
sclerosis (patchy or diffuse white matter changes
are seen on MRI of the brain), atypical Parkinson’s
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disease, AD, and CADASIL. Diagnosis has relied on
examination of brain tissue, showing loss of myelin
sheaths, axonal destruction, axonal spheroids, gli-
osis, and autofluorescent lipid-laden macrophages.
Recently, mutations in the colony stimulating factor
1 receptor (CSF1R) on chromosome 5q have been
demonstrated in HDLS [225].

5.5.3 Lysosomal storage disorders

Around 40 lysosomal storage disorders affecting
the brain are described [226]. Learning disabil-
ity/mental retardation is a feature in many of these
disorders, but some may present in adulthood with
cognitive impairment as a feature. Some of these
are mentioned elsewhere; for example, metachro-
matic leukodystrophy (Section 5.5.2.1), Krabbe dis-
ease (Section 5.5.2.5).

5.5.3.1 Acid maltase deficiency (glycogenosis
type IIb, Pompe’s disease)

This autosomal recessive lysosomal disorder of
glycogen storage results from deficiency of the lyso-
somal enzyme acid �-glucosidase, or acid maltase,
due to mutation of the gene located on chromo-
some 17 that encodes this protein (OMIM#232300).
The clinical phenotype is variable, with age of onset
ranging from infancy to adulthood, and clinical
features may include myopathy, cardiomyopathy,
and organomegaly. Adult-onset disease (Engel’s dis-
ease) may present with respiratory failure due to
diaphragmatic involvement [227]. Enzyme replace-
ment therapy is now available [228].

One case of adult-onset acid maltase deficiency
(AMD) associated with low IQ and impairments of
frontal lobe function has been reported; other fam-
ily members with AMD did not have dementia. As
the authors point out, this may be a fortuitous asso-
ciation, but equally, acid maltase is expressed in
brain as well as in muscle and brain levels may be
low [229]. A review of 225 published cases of “non-
classic” Pompe’s disease noted abnormal mental
development in only three, and no other reports of
dementia [230].

5.5.3.2 Fabry’s disease (Anderson–Fabry
disease; angiokeratoma corporis diffusum;
hereditary dystonic lipidosis)

This autosomal recessive lysosomal storage dis-
order is due to mutations in the gene encoding
�-galactosidase A (OMIM#301500), with resultant
enzyme deficiency leading to accumulation of gly-
cosphingolipids, such as ceramide trihexoside in the
vascular endothelium and smooth muscle cells of
visceral tissues including brain, and in body flu-
ids. The resultant multisystem disease has a broad
phenotype, with neurological (peripheral and cen-
tral nervous system), dermatological, renal, ocu-
lar, gastroenterological, cardiac, and respiratory
features with variable age at diagnosis [231].

A slowly progressive vascular dementia (Chapter
3) has been described in Fabry’s disease with mul-
tiple cognitive deficits including memory impair-
ment, anomia, perseveration, and visuospatial dif-
ficulties, with additional behavioral changes. This
was a result of multiple subcortical strokes and dif-
fuse ischemic white matter disease due to patho-
logical involvement of small penetrating arter-
ies, hypertension (secondary to renal disease),
and cardiogenic emboli [232]. An autopsy case
of a demented Fabry patient confirmed ischemic
changes [233]. Although this is an extremely rare
presentation of Fabry’s disease, a case-registry
series reported dementia in 18% of patients, in all
cases associated with recurrent strokes or transient
ischemic attacks [234]. Prevention may be feasible
with enzyme replacement therapy [231].

5.5.3.3 GM2 gangliosidosis, Tay–Sachs
disease

GM2 gangliosidosis or Tay–Sachs disease, resulting
from autosomal recessive hexosaminidase A defi-
ciency (OMIM#272800), is usually a relentlessly pro-
gressive disease of infancy with paralysis, blindness,
and mental retardation. The condition may some-
times have adult onset. Cognitive dysfunction has
been reported in about half of adult patients, with
impaired executive and memory function, although
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studies disagree as to whether dementia occurs at all
[235] or is common [236].

5.5.3.4 Gaucher’s disease, type III

A rare subacute neuronopathic form (type III) of this
autosomal recessive disease, due to deficiency of
�-glucocerebrosidase (GBA; OMIM#231000), which
presents in juveniles and adults [237], is recognized
as causing an akinetic-rigid syndrome, supranu-
clear gaze palsy, myoclonus, epileptic seizures, and
cognitive decline. There is elevated serum acid
phosphatase and bone marrow infiltration with
lipid-laden fibroblasts known as Gaucher’s cells.

Multiple studies have identified an association
between GBA mutations and synucleinopathies
(parkinsonism and other Lewy body disorders; Sec-
tion 2.4), including dementia with Lewy bodies
[238].

5.5.3.5 Neuronal ceroid lipofuscinosis (NCL);
Kufs disease

The neuronal ceroid lipofuscinoses (NCL) consti-
tute a large group of neurodegenerative disorders
with onset between infancy and adulthood, char-
acterized by accumulation of autofluorescent inclu-
sion bodies in neurons and other tissues. Various
genetic loci and mutations have been defined in
NCLs, with both autosomal recessive and dominant
patterns of inheritance [239].

Kufs disease is the name which has often been
applied to adult-onset NCL variants, which may be
sporadic or inherited, and manifest with a progres-
sive myoclonus epilepsy (Type A), or with cogni-
tive decline and dementia with movement disor-
ders (Type B). Families with disease onset in the
fourth decade of life, heralded by epileptic seizures
and with subsequent dementia, have been reported
[240]. In addition to the various pathological
inclusions (fingerprint, curvilinear, rectilinear, gran-
ular, osmiophilic), neuritic plaques and possibly
neurofibrillary tangles may be seen in Kufs disease,

prompting the suggestion of an overlapping patho-
genesis with AD [241]. Mutations in the CLN6 gene
on chromosome 15 seem to be a common cause of
type A Kufs disease (OMIM#204300) [242].

5.5.3.6 Niemann–Pick disease type C

This autosomal recessive neurovisceral disorder
is a lipidosis, resulting from a defect in intra-
cellular trafficking of cholesterol and glycosph-
ingolipids leading to their accumulation in late
endosomes/lysosomes in the brain and other tis-
sues. It results from mutations in the genes NPC1
(around 95% of cases) on chromosome 18q11.2
(type C1; OMIM#257220) and NPC2 (around
5% of cases) on chromosome 14q24.3 (type C2;
OMIM#607625). The clinical phenotype is similar
in both forms, including dystonia, supranuclear
gaze palsy, ataxia, dysarthria, epileptic seizures,
and progressive cognitive decline, with onset
from the first to the fifth decade of life [243,244].
Mutations in the gene encoding the cholesterol-
binding protein HE1 (NPC2) have been reported
to cause dementia in the 30s with focal frontal
involvement. Tau-positive neurofibrillary tangles
as well as lysosomal inclusions were seen at post-
mortem [245]. Although rare, the diagnosis should
be considered as disease-specific therapy with
miglustat is now available [246], to which end a
“Suspicion Index” to facilitate early diagnosis has
been developed [247].

5.5.3.7 Sanfilippo syndrome
(mucopolysaccharidosis III)

This autosomal recessive disorder associated with
excessive urinary excretion of heparan sulfate
comes in four biochemical and genetic vari-
ants, all due to deficiencies of different enzymes,
usually causing childhood-onset dementia and
neurobehavioral problems. The clinical phenotype
is variable, and type B cases (OMIM#252920) with
dementia onset in the third decade of life or later
have been reported [248,249].
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5.5.4 Cerebrotendinous xanthomatosis
(CTX)

Cerebrotendinous xanthomatosis (CTX) is an auto-
somal recessive lipid-storage disorder resulting
from mutations in the mitochondrial enzyme
27-sterol hydroxylase located on chromosome 2p
(OMIM#213700), causing impaired bile acid syn-
thesis. Brain imaging shows global atrophy and
demyelination, such that some authorities classify
CTX with the leukodystrophies. Spasticity, ataxia,
and peripheral neuropathy, as well as dementia
are included among the neurological features, with
onset in the third decade of life.

A survey of 32 CTX patients found low IQ in 66%,
and in 81% of 181 patients reported in the litera-
ture [250,251]. No detailed neuropsychological pro-
file has been identified, although a subcortical pat-
tern might be expected. Occasional patients with a
FTD phenotype have been reported [252,253]. Reso-
lution of cognitive deficits in 10/17 patients treated
with CDA (chenodeoxycholic acid) was claimed by
Berginer et al. [254], but not all patients show a cog-
nitive response to CDA [253].

5.5.5 Hemochromatosis

Genetic, primary, or hereditary hemochromatosis is
an autosomal recessive disorder characterized by
iron overload with pathological deposition in the
liver and pancreas, with resulting impairment of
liver function and diabetes mellitus, respectively.
Iron does not normally cross the blood–brain bar-
rier, and elevated brain iron content is rarely, if
ever, a feature of hemochromatosis, the clinical cor-
relate being that neurological symptoms are also
rare, despite systemic iron overload equivalent to
that seen in aceruloplasminemia (Section 5.4.6),
with which hemochromatosis may be misdiagnosed
[255]. Cognitive features may be seen in heredi-
tary movement disorders associated with abnormal
iron metabolism (e.g., neuroferritinopathy, aceru-
loplasminemia; Sections 5.4.5 and 5.4.6), and iron
content is reported to be increased in the striatum in

HD and in the posterior putamen in parkinsonian-
type MSA.

Cases of hemochromatosis presenting with
dementia and ataxia have been documented in the
context of advanced liver disease, progressing to
death within two years of the onset of neurological
features [256]. Two cases with mild systemic fea-
tures and concurrent dementia of frontotemporal
type (one semantic dementia, one frontal variant)
have been reported, with the suggestion that this
may reflect linkage of genetic diseases, rather than
a toxic consequence of abnormal iron metabolism,
although in the absence of brain pathology the
question remained unresolved [257]. One patient
had sensorineural hearing loss, which may be
significant (see Superficial siderosis of the nervous
system, Section 3.3.3).

The association of these cases may be no more
than chance concurrence. It has been argued
that movement disorders occurring in the context
of hereditary hemochromatosis should prompt a
search for another cause [258], and the same is
probably true of cognitive impairment, although
this might be anticipated as a consequence of com-
plications of the disease, such as hepatic failure
and/or diabetes mellitus.

5.5.6 Polyglucosan body disease (PGBD)

Glycogen storage disease type IV (GSDIV), also
known as amylopectinosis or Andersen’s disease, is
an autosomal recessive disorder associated with a
deficiency of the glycogen branching enzyme (GBE)
encoded on chromosome 3p14. The clinical pheno-
type of GSDIV is extremely heterogeneous, ranging
from progressive liver cirrhosis and death in child-
hood, through cardiomyopathic and benign myo-
pathic variants, to an adult-onset neurodegener-
ative disorder, polyglucosan body disease (PGBD;
OMIM#263570). This latter condition is a rare disor-
der, often characterized by a combination of upper
and lower motor neuron signs, the latter due to an
axonal sensorimotor peripheral neuropathy, along
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with urinary incontinence and other motor disor-
ders. Nerve biopsy may be diagnostic, showing the
typical polyglucosan bodies, which may also be seen
in dermal sweat glands or brain tissue [259].

Cognitive impairment and dementia have been
reported in PGBD, apparently of frontal type, some-
times associated with white matter changes on MRI,
and sometimes nonprogressive [260–263]. Famil-
ial cases have been reported [264]. Mild cognitive
impairment has been documented in an individual
heterozygous for a point mutation in the GBE gene,
and with other clinical features suggesting mani-
festing heterozygote status [265]. An “AD-type” has
also been presented [266], emphasizing the clinical
phenotypic heterogeneity of PGBD.

5.5.7 Lafora body disease

This autosomal recessive progressive myoclonic
epilepsy syndrome typically presents in the 10–
18-year-old age group with epileptic seizures,
myoclonus, and neurological deterioration with
cognitive impairment and eventually dementia,
with typical Lafora body inclusions in the brain,
liver, skin, and muscle. Deterministic mutations
have been demonstrated in two genes, EPM2A and
EPM2B, encoding the proteins laforin and malin,
respectively (OMIM#254780), which colocalize to
the endoplasmic reticulum.

Delayed onset of Lafora body disease up to about
the age of 25 years has been reported infrequently
[267] and presenile dementia has been described in
the older literature [268].

5.5.8 Myoclonic epilepsy of Unverricht and
Lundborg (Baltic myoclonus)

This autosomal recessive condition due to muta-
tions in the cystatin B gene on chromosome 21q22.3
(OMIM#254800) enters the differential diagnosis of
progressive myoclonic epilepsy along with Lafora
body disease, neuronal ceroid lipofuscinosis, and
mitochondrial disorders, among others. In addition
to the polymyoclonus and cerebellar ataxia, there is
said to be minimal or no cognitive decline [269], but

the phenotype may include a mild and slowly pro-
gressive dementia occasionally [270].

5.5.9 Porphyria

Although a recognized cause of various neurological
and neuropsychiatric syndromes, including delir-
ium in response to precipitating factors such as
infection or drugs [271,272], it is not clear that any
one of the porphyrias causes or leads to dementia,
although there may be complaints of poor memory.
The popular association of porphyria with the mad-
ness of King George III (1738–1820) seems to have
no compelling evidence to support it [272].

5.6 Hereditary neurocutaneous syndromes
(phakomatoses)

Inherited disorders in this category are character-
ized by involvement of ectodermal structures (ner-
vous system, skin, eyes) with slow evolution dur-
ing childhood and adolescence with a tendency to
the formation of benign tumors or hamartomas.
The terminology may also be taken to include
conditions with cutaneous angiomatosis and CNS
abnormalities, such as ataxia telangiectasia (Section
5.2.2.2) and Fabry disease (Section 5.5.3.2).

5.6.1 Neurofibromatosis

Neurofibromatosis type 1 (NF1) is one of the most
common monogenic Mendelian disorders seen in
general neurology outpatient practice, but reasons
for consultation may often be incidental to the diag-
nosis of NF1 [34], although there are many possible
neurological problems that may be encountered in
both NF1 and NF2 [273,274].

In a series of 103 NF1 patients aged between
six and 75 years, IQ was lower than in control
patients, although the impairment was generally
mild. NF1 patients had poorer reading and impaired
short-term memory, and on computerized tests
had slower reaction times, higher error rates, and
impaired attention. However, no particular profile
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emerged [275]. Intellectual problems in NF1 are not
thought to be progressive. Severe impairments are
unusual and should mandate a search for another
cause, either related to NF1 such as cerebral tumor
or hydrocephalus, or unrelated.

Deficits of spatial memory and navigation associ-
ated with bilateral hippocampal atrophy have been
reported in bilateral vestibulopathy associated with
NF 2 (Section 6.16).

5.6.2 Tuberous sclerosis

Tuberous sclerosis was identified initially as a syn-
drome of mental retardation, epilepsy, and facial
angiofibroma, with the neuropathological finding
of tubers. It is now recognized to be an autosomal
dominant condition that is clinically and genetically
heterogeneous, with chromosomal linkage to two
loci, at 9q34.13 (TSC1) encoding hamartin and at
16p13.3 (TSC2) encoding tuberin (OMIM#191100).

Neuropsychological studies have confirmed
variability in cognitive function, with a possible
emphasis on executive tasks related to prefrontal
pathology [276]. Many patients have normal cog-
nition. Refractory seizures and presence of the
TSC2 mutation have been associated with adverse
cognitive outcome [277]. In children, a negative
correlation has been found between the number of
tubers and IQ [278]. Mutation location may also be
significant; TSC1 mutations in the tuberin interac-
tion domain were associated with lower intellectual
outcomes as were TSC2 protein-truncating and
hamartin interaction domain mutations, whereas
TSC2 missense mutations and small in-frame
deletions were associated with higher IQ [279].

5.7 Sex chromosome aneuploidies

Although these disorders might be classified as
learning disability syndromes, nonetheless patients
with these conditions may be seen in adult cognitive
disorders clinics occasionally, hence their inclusion
here.

5.7.1 Turner syndrome

Turner syndrome is characterized by complete
(XO) or partial monosomy for the X-chromosome
in a phenotypic female. As well as characteristic
morphological abnormalities, these women have
cognitive deficits that persist into adult life. The cog-
nitive profile is typically one of relatively weak visu-
ospatial, executive, and social cognitive domains
but with intact intellectual function and verbal abil-
ities [280]. Despite estrogen replacement therapy,
adult patients have been found to have difficulty on
spatial and perceptual skills, visual memory, visuo-
motor integration, attention, and executive func-
tion, but have normal verbal IQ [281].

5.7.2 Klinefelter syndrome (47,XXY) and
47,XYY syndrome

Klinefelter syndrome is characterized by an extra
X chromosome (47,XXY) in a phenotypic male. As
well as typical morphological abnormalities, there
is a characteristic cognitive profile with increased
risk of language disorders and reading disabilities,
with a reduction in overall IQ, possibly with execu-
tive function deficits as well [282].

Boys with the 47,XYY genotype have more severe
and pervasive language impairment than Klinefel-
ter boys, although they also show below average per-
formance on tests of verbal memory, attention, and
executive function [283].
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[32] Hödl AK, Hödl E, Otti DV, et al. Ideomotor limb

apraxia in Huntington’s disease: a case-control study.

J Neurol 2008; 255: 331–9.

[33] Peinemann A, Schuller S, Pohl C, et al. Executive

dysfunction in early stages of Huntington’s disease

is associated with striatal and insular atrophy: a

neuropsychological and voxel-based morphometric

study. J Neurol Sci 2005; 239: 11–19.

[34] Larner AJ. Monogenic Mendelian disorders in gen-

eral neurological practice. Int J Clin Pract 2008; 62:

744–6.

[35] Campodonico JR, Codori AM, Brandt J. Neuropsy-

chological stability over two years in asymptomatic

carriers of the Huntington’s disease mutation. J

Neurol Neurosurg Psychiatry 1996; 61: 621–4.

[36] Stout JC, Jones R, Labuschagne I, et al. Evaluation of

longitudinal 12 and 24 month cognitive outcomes in

premanifest and early Huntington’s disease. J Neurol

Neurosurg Psychiatry 2012; 83: 687–94.

[37] Hahn-Barma V, Deweer B, Dürr A, et al. Are cogni-
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6.1 Multiple sclerosis (MS)

Multiple sclerosis (MS) is a common inflammatory,
demyelinating disorder of central nervous system
(CNS) white matter, the most common cause of
neurological disability in young adults. Ultimately,

it results from immune-mediated attack on the
myelin–oligodendrocyte complex, although many
features of pathogenesis remain unclear [1,2]. Viral
infections may be a sufficient but not necessary
triggering or exacerbating factor [3–5]. Natural his-
tory studies indicate that the disease may follow a
variable course, permitting classification into

145



146 6: Inflammatory, immune-mediated, and systemic disorders

a number of groups, which are helpful in
defining cohorts for study: relapsing-remitting
disease (RRMS), when acute exacerbations resolve
over time with no permanent disability, is common
at disease onset, but this may evolve into secondary
progressive disease (SPMS) when disability accrues
between or in the absence of acute exacerbations;
rarely, disease is relentlessly progressive from the
onset, the primary progressive pattern (PPMS).
Benign variants are also recognized. Diagnostic
criteria for MS encompass the clinical, neuroradio-
logical, and laboratory findings [6].

Although MS is most commonly envisaged as a
cause of physical disability, cognitive impairment
is also a frequent occurrence. This was recognized
by Charcot in his Lectures on the Diseases of the
Nervous System delivered at the Salpetriere in 1877,
but it has only been in the last two decades that
a large literature on the subject has developed
[7–10].

Community and clinical samples have suggested
consistently that around 45%–60% of MS patients
have some degree of cognitive impairment [11],
although severe dementia is uncommon. Etiologic-
ally, cognitive dysfunction in MS is currently
viewed as a multiple disconnection syndrome
(Section 1.3.4).

This high frequency of cognitive deficits, with
implications for quality of life and vocational sta-
tus, has prompted recommendations that cognitive
impairment be actively sought in MS, using instru-
ments sensitive to the most commonly affected
domains. Because, typically for a white matter dis-
order, these deficits may be regarded as subcorti-
cal [12], commonly used bedside neuropsycholog-
ical tests such as the Mini-Mental State Examin-
ation (MMSE) may be insensitive, particularly to
early changes [13]. Screening tests suggested to be
both valid and relevant include the Symbol–Digit
Modalities (or Substitution) Test (SDMT), Paced
Auditory Serial Addition Test (PASAT) and its visual
equivalent (PVSAT), the Clock Drawing Test (CDT),
backward Digit Span, the learning stage of the
California Verbal Learning Test (CVLT), and ver-
bal fluency [7,14–16]. Test batteries designed for

use in MS also exist, such as the Brief Repeat-
able Battery of Neuropsychological Tests (BRB-N;
[11]), the MS Inventory of Cognition (MUSIC; [17]),
the Minimal Assessment of Cognitive Function in
MS (MACFIMS; [18]), and the MS Neuropsychologi-
cal Questionnaire (MSNQ; [19]). Concurrent neuro-
logical and psychiatric features may contribute to
cognitive morbidity, including depression, fatigue,
primary sensory abnormalities of vision or hear-
ing, dominant hand dysfunction, or medication
use, factors which need to be considered when
assessing subjective memory complaints in MS
patients [10].

Neuropsychological profile (Table 6.1)

The cognitive profile in MS is heterogeneous, as
for the neurological findings, so only a general
picture can be given. Domains most frequently
affected include verbal and nonverbal memory, with
impaired attention, reduced speed of information
processing, abstract reasoning and verbal fluency
deficits, with or without mild visuospatial impair-
ments. As deficits typical of cortical dementia, such
as aphasia, agnosia, and apraxia, seldom occur, the
cognitive impairment in MS has been classified as a
subcortical dementia [12].

Attention

Although simple tests of attention such as Digit
Span may be normal in MS, analysis of the
more demanding backward component of this task
demonstrates more impairment in MS patients than
in controls [11]. More stringent tests of attention,
such as the PASAT and PVSAT [20], may be abnormal
even in early disease [21]. The capacity to store and
access information held in working memory seems
intact, although it may become impaired in disease
exacerbations [22] or if the disease course becomes
progressive [23].

These results may reflect an inability to devote
sufficient attentional resources to process simulta-
neously the multiple components of these tasks.
These are also tests of speed of information
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Table 6.1. Typical neuropsychological deficits in multiple sclerosis

Attention Impaired processing speed, working memory (backward digit span, PASAT)

General intelligence ↓ FSIQ vs. premorbid IQ; PIQ typically more impaired than VIQ

Memory Impaired verbal and spatial learning, acquisition +/− encoding; semantic and implicit memory

relatively preserved

Language Aphasia rare

Perception Visuospatial and visuoperceptual deficits may occur

Praxis Praxis difficult to assess with concurrent motor deficits but apraxia may occur

Executive function Dysexecutive syndrome common: impaired abstract reasoning, concept formation, and problem

solving

processing, as well as of arithmetical ability and
short-term memory, such that fatigue is a poten-
tial confounder. In support of a defect in cognitive
speed, slowed scanning of working memory (Reed–
Sternberg paradigm) has been demonstrated [24],
as has slowed information processing in both audi-
tory and visual tasks when controlling for accuracy
of task performance. On the basis of these find-
ings, it has been suggested that impaired speed
of information processing may be a key deficit in
MS, with implications for rehabilitation strategies
[25,26]; for example, avoidance of “multitasking”
(switching between two or more tasks). Slowed cog-
nitive processing in MS may be related to atrophy in
the thalamus and putamen [27].

General intelligence (IQ)

Measures of general intelligence in MS, virtually all
using the National Adult Reading Test (NART) to
predict premorbid IQ, have consistently found a fall
in IQ, but this is mainly related to measures on
the performance scales, impairments in which may
be related to sensorimotor dysfunction. Verbal IQ
scores generally remain stable.

Memory

Although impairments in “short-term memory” are
present in MS (considered under Attention), deficits
specifically of long-term (secondary) memory are
probably the most common type of memory impair-
ment in MS, affecting both verbal and nonverbal

categories [11,22,28]. As deficits are more apparent
on tests of recall than recognition, a greater defect
of retrieval rather than of encoding has been pos-
tulated, although there is also evidence of impaired
acquisition or encoding of new information [29].
As regards remote (retrograde) memory, deficits in
famous faces recognition tests have been reported
by some authors [23] but not others [11], although
the patient case mix in these two studies was not
comparable. Impairments in verbal fluency also
suggest a retrograde memory loss [11]. Implicit (pro-
cedural) memory seems relatively intact in MS [30].
Mesial temporal lobe including hippocampal at-
rophy correlates with memory impairment in MS
[31,32].

A relatively isolated acute amnesic syndrome is
rarely encountered in MS [33,34], although a “cor-
tical variant” of MS, which presents with progres-
sive dementia with prominent amnesia, has been
described [35].

Language

Although disorders of speech (dysarthria) are
common in MS, disorders of language (aphasia)
have been considered rare [36]. However, care-
ful assessment of language function may reveal
abnormalities in patients with onset of cognitive
decline [37]. Verbal fluency impairments have
already been mentioned [11]. Aphasia, alexia, and
agraphia may be present in the “cortical variant” of
MS [35].
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A study of 2700 patients from three centers in
France found 22 cases (0.81%) of acute aphasia
in MS, rarely occurring as a monosymptomatic
presentation [38] or as an acute exacerbation in
established disease associated with new left hemi-
sphere white matter lesions on magnetic resonance
imaging (MRI) of the brain [39]. However, etiolo-
gies other than acute inflammation need to be con-
sidered in MS patients with acute aphasia, includ-
ing nonconvulsive “aphasic” status epilepticus [40]
or a second pathology [41]. It has also been sug-
gested that aphasic presentations of MS may, in fact,
be cases of acute disseminated encephalomyelitis
(ADEM; Section 6.2) [42].

Perception

Assessment of visuospatial and visuoconstruc-
tive functions is problematic in MS because
of concurrent peripheral visual impairments
(optic/retrobulbar neuritis); motor deficits may
also contribute to testing difficulties. Impair-
ments in tests reliant on complex spatial stimuli,
such as Raven’s Progressive Matrices, have been
detected by some authors [11] but not others
[43]. Visual-form agnosia has been reported [44].
A neuropsychological study in which 31 tasks
assessing visuoperceptual abilities were given to
49 MS patients found that about one-quarter of
patients failed four or more tasks, particularly color
discrimination, the Müller–Lyer illusion, and two
tests of object recognition [45].

Praxis

Motor deficits including weakness and spasti-
city may confound any assessment of praxis in
MS patients. Apraxia has occasionally been men-
tioned as a symptom [44]. Callosal disconnection
syndromes seem to be rare in MS [46], notwith-
standing the predilection for corpus callosum
involvement evident on brain MRI. A more recent
study documented apraxia in about one-quarter
of patients examined, in progressive more than

relapsing-remitting disease, and found that this
contributed to disability [47].

Executive function

Tests of planning, problem solving, concept forma-
tion, utilization of feedback, and abstract reasoning,
all of which may be subsumed under the heading
of “executive function” or cognitive flexibility (even
though different skills and neuroanatomical sub-
strates may be implicated), have often been found
to be impaired in MS patients.

On the Wisconsin Card Sorting Test (WCST), MS
patients may show poor performance sufficient to
differentiate them from healthy controls, perhaps
more so in chronic progressive disease. Problem
solving with Raven’s Progressive Matrices is also
impaired, although this similarly tests visuospatial
skills. Tests of verbal fluency, such as the Controlled
Oral Word Association Test (COWAT), are affected
[11]. WCST performance has been associated with
frontal white matter demyelinating lesions [48],
although in other studies, poor performance on
executive tasks could not be attributed solely to
frontal lobe MR changes, suggesting that there was
a general effect of cerebral dysfunction on tasks
such as WCST [49]. Because of the links between
frontal cortex and subcortical structures (thalamus,
basal ganglia), remote lesions might account for
these symptoms; for example, through undercut-
ting of frontosubcortical circuits by white matter
lesions.

Etiology: relationship of MS cognitive
impairment to natural history of disease

The relationship of cognitive impairment to the
natural history of MS has been investigated exten-
sively. Cognitive impairment is not predicted by dis-
ease duration. It may be an early feature of MS,
but may be absent even after many years of dis-
ease. IQ decline and auditory attention deficits were
found in one study of patients with clinically iso-
lated syndromes of the kind that often evolve to
MS (optic neuritis, brainstem and partial spinal cord
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syndromes) with a mean duration of symptoms of
over two years [50]. Even in patients with symptoms
of only a few days duration, impaired PASAT and
PVSAT performance has been recorded, particularly
in patients with neuroradiological evidence of brain
lesions [21].

Disease course is also poorly predictive of cog-
nitive impairment. A review of cross-sectional and
longitudinal studies came to the conclusion that
cognitive dysfunction was more frequent in SPMS
than in PPMS and RRMS [51]. However, cognitive
impairment may occur with any disease course,
including mildly affected RRMS patients [52]. Longi-
tudinal studies suggest that cognitive deterioration
occurs in a minority of MS patients, with consid-
erable individual variation over time. For example,
follow-up of a cohort of patients with clinically iso-
lated syndromes [50] found that at the group level
only visual memory had deteriorated significantly,
while patients who had developed a chronic pro-
gressive course were more impaired on tests of ver-
bal memory and auditory attention [53]. Follow-up
studies of patients with established MS have shown
considerable individual variation, many patients
not progressing, although new deficits may become
apparent in others. Those with cognitive impair-
ment at baseline seem more likely to develop pro-
gressive cognitive decline, whereas those who are
cognitively normal may remain so [54]. A study of
patients with primary progressive disease (PPMS)
showed no change in mean cognitive scores over
a two-year follow-up period, although one-third
showed absolute cognitive decline on individual test
scores, but only a weak relationship between cogni-
tive and MRI measures was found [55]. It is unsur-
prising, therefore, that correlations between cog-
nitive impairment and neurological dysfunction in
MS are generally weak.

Etiology: relationship of MS cognitive
impairment to neuroimaging correlates

The relationship of cognitive impairment to neuro-
imaging correlates has been investigated increas-
ingly in recent years. Total lesion score in terms

of area or volume on MRI has shown significant
correlation with cognitive dysfunction [21,56] and
longitudinal studies indicate that progression of
brain pathology correlates with cognitive decline
[53]. Stable MRI lesion scores seem to be associ-
ated with no cognitive decline. Brain atrophy may
also be relevant. Rao et al. [56] showed an associ-
ation between corpus callosum atrophy and
reduced speed of information processing, and
Zivadinov et al. [57] showed a correlation between
cognitive deterioration and brain parenchymal
volume atrophy in RRMS, suggesting that axonal
loss was the key substrate for early disease devel-
opment and progression. In a five-year prospective
cohort study of RRMS, T1 lesion volumes were
predictive of future cognitive impairment, and IQ
decline and memory impairment were more severe
in those with higher atrophy scores [58]. Hence,
both inflammatory and degenerative processes may
contribute to cognitive dysfunction.

The appreciation of gray matter lesions [59] and
ultrastructural injury in normal-appearing white
matter in MS brains has prompted a multiple
disconnection model of cognitive dysfunction in
MS. MS lesions involving subcortical periventricular
white matter fiber pathways effectively disconnect
cortical and subcortical regions, with variable cog-
nitive domains being functionally interrupted, and
hence the heterogeneity of cognitive impairments
encountered clinically [60].

Treatment of neuropsychological deficits

Currently, little is known about the optimal treat-
ment of cognitive disorders in MS. Options include
disease-modifying agents, symptomatic treatments,
and cognitive rehabilitation techniques including
cognitive behavioral therapy, and restorative and
compensatory strategies [10]. Increasingly, cogni-
tive measures are being included as endpoints in
therapeutic trials.

Occasionally, acute focal cognitive deficits
may resolve following administration of steroids
[39,61], but generally deficits are more likely to
accrue. Trials of “disease-modifying drugs” have
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sometimes suggested benefits in particular cog-
nitive domains; for example, with the interferons
beta-1a [62] and beta-1b [63,64], and the mono-
clonal antibody natilizumab [65], or stability (at
best) of cognitive function over time with glatiramer
acetate [66].

Cholinesterase inhibitors (ChEIs) and meman-
tine, established agents in the treatment of
Alzheimer’s disease (AD), have been suggested for
use in MS, but few data have been published [67].
A small trial suggested that ChEIs might be helpful
in MS patients with mild cognitive impairments
[68]. A functional imaging study, which suggested
that ChEIs may modulate functional adaptive
neuroplasticity in the MS brain [69], lent some
support to the rationale for ChEI use in MS. How-
ever, changes in brain activation patterns observed
on fMRI during cognitive testing in MS patients
compared with controls may be interpreted as com-
pensatory, adaptive responses, reflecting inherent
brain neuroplasticity [70]. Such changes may need
to be taken into account when assessing whether
MS disease-modifying drugs or ChEIs have any
effect on cognitive function. Trials of memantine
in MS patients have been negative, and some-
times associated with worsening of neurological
symptoms [71,72].

6.2 Acute disseminated encephalomyelitis
(ADEM)

Acute disseminated encephalomyelitis (ADEM)
is an inflammatory CNS disorder of presumed
autoimmune etiology. ADEM affects children
mainly, sometimes following infection or immu-
nization, but is also well recognized in adults,
usually as a monophasic illness although multi-
phasic and recurrent variants have occasionally
been described, making it difficult to differentiate
ADEM from a first episode of MS. Suggested opera-
tional diagnostic criteria [73] may be confounded in
clinical practice [74].

The clinical picture is heterogeneous, with
encephalopathy, focal neurological signs, and

even psychosis being the presenting features.
Aphasia has been reported as a presenting feature
with hemiplegia, hemisensory deficit, and facial
palsy, prompting the suggestion that acute aphasic
presentations of MS may, in fact, be cases of ADEM
[42].

Follow-up of ADEM patients has reported cog-
nitive impairment in children affected before
the age of five years [75], but no account of
such problems in adult-onset ADEM has been
identified.

6.3 Neuromyelitis optica (NMO)

Neuromyelitis optica (NMO), sometimes known as
Devic’s disease (but probably described by others
before Devic, including most notably Allbutt in 1870
[76]), is an inflammatory demyelinating disorder of
the CNS associated with antibodies to aquaporin-
4 and amenable to immunosuppressant treatment
with agents such as azathioprine, mycophenolate,
and rituximab to prevent relapses [77]. The path-
ology was initially conceived to be limited to the
optic nerves and the spinal cord, hence the name,
with sparing of brain parenchyma, but it has
become evident that the brain may be involved clin-
ically in NMO spectrum disorders, with homony-
mous hemianopia, aphasia, hemiparesis, and cog-
nitive impairment [78]. In a group of 30 NMO
patients, performance was impaired on tests of
attention and verbal fluency, akin to deficits in
MS patients [79]. Cognitive impairment in NMO
patients may be correlated with a decrease in global
and focal white matter brain volume [80].

6.4 Neurosarcoidosis

Sarcoidosis is a systemic immunologically medi-
ated disorder of uncertain etiology characterized
pathologically by noncaseating epithelioid cell
granulomata. The organs most commonly affected
are the lymph nodes, lungs, liver, spleen, skin, and
eyes. Neurosarcoidosis as one feature of systemic
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sarcoidosis is relatively rare (5%–15% of cases),
isolated intracranial disease even more so,
the most common neurological features being
hypothalamic involvement and cranial nerve
palsy [81].

In a series of 68 patients with or without sys-
temic sarcoidosis, cognitive decline was reported to
be the clinical presentation of neurosarcoidosis in
seven (10%) patients [82]. Flowers et al. [83] reported
five patients with biopsy-confirmed neurosarcoid-
osis with dementia. The index case presented at the
age of 29 years with short-term and spatial memory
difficulties. Neuropsychological assessment showed
impairments in mental tracking, concentration,
cognitive speed, and memory retrieval, as well as
subtle expressive language difficulties. Improve-
ment was reported following immunosuppressive
treatment, prompting the authors to suggest that
sarcoidosis is a treatable cause of cognitive impair-
ment. A prior review of dementia as a presenting
manifestation of neurosarcoidosis identified only 10
cases, in which frontosubcortical deficits were evi-
dent, including apathy, bradyphrenia, verbal perse-
veration, impaired speech fluency, as well as mem-
ory difficulties, with associated paratonia, grasp
reflex, and motor perseveration. All patients had
abnormal cerebrospinal fluid (CSF) indices (raised
protein, white cell count) where these were tested.
The importance of obtaining tissue confirmation of
diagnosis prior to commencement of steroid ther-
apy and exclusion of CNS tuberculosis was empha-
sized. These patients were noted to be older at age of
onset (�50 yr) than expected for systemic sarcoid-
osis (median, 35 yr) [84]. In this context, it should be
remembered that chance concurrence of dementia
and sarcoidosis may occur; a patient with relatively
indolent pulmonary sarcoidosis who developed AD
has been seen in the author’s clinic.

Neurosarcoidosis causing an isolated amnesic
syndrome has been reported [85], but without
neuropsychological assessment and with diagnosis
based on histological appearances of a skin lesion.
Focal cognitive deficits related to the rare presenta-
tion of neurosarcoidosis as a cerebral mass lesion
(“sarcoid tumor” [86]) or as cerebral hemorrhage

related to thrombocytopenia [87] might also be
anticipated.

6.5 Systemic lupus erythematosus (SLE)

Systemic lupus erythematosus (SLE) is a multisys-
tem autoimmune disorder of the collagen–vascular
disease group, seldom associated with true vasculi-
tis, with systemic, dermatological, rheumatological,
renal, pulmonary, cardiac, and hematological,
as well as neurological complications. Neuro-
logical features may affect both the central
(delirium, psychosis, headache, cerebrovascular
disease, myelopathy, movement disorder, demyelin-
ation, epileptic seizures, aseptic meningitis)
and peripheral nervous systems (cranial neuro-
pathy, polyneuropathy, plexopathy, mononeuro-
pathy/multiplex, Guillain–Barré syndrome, auto-
nomic neuropathy, myasthenia gravis) [88]. Because
of the frequency of neuropsychiatric complications,
nervous system involvement is sometimes referred
to as “NP-SLE”. What contribution antiphospho-
lipid antibodies, found in around 30% of SLE cases,
make to these clinical features is uncertain (see
Hughes’ syndrome, Section 3.5.6).

Cognitive deficits observed in SLE patients
involve attention, information processing, mem-
ory, and executive function domains with relative
sparing of language, but no dominant pattern has
emerged and it is likely that there is no single syn-
drome of cognitive dysfunction in SLE. Deficits may
be subclinical, fluctuating, and only a minority of
patients progress [89]. Confounding factors such as
pain, depression, and fatigue need to be taken into
account when assessing cognitive function in SLE.
Up to 66% of adult SLE patients without a history
of NP-SLE have “mild cognitive impairment” and
many patients with a previous history of NP-SLE
have significant cognitive dysfunction that may
progress to dementia, possibly due to active CNS
disease, “burned-out” NP-SLE, and/or multiple
infarcts [90–93].

One longitudinal study found cognitive impair-
ment in around one-third of SLE patients in “stable
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neurological condition” with or without neuropsy-
chiatric symptoms, deficits which remained at retest
(mean interval between assessments, 21.5 months),
suggesting that cognitive impairment is a persistent
finding in SLE with CNS involvement. No relation-
ship with neuropsychiatric disorder, neuroradiolog-
ical findings, disease activity, or use of immuno-
suppressive therapy was found in this study. The
most sensitive tests were those examining visuo-
spatial reasoning and visuoconstructive function
[94]. Another study found cognitive impairments
in SLE patients included attentional skills, psy-
chomotor speed, and abstract problem solving; in
other words, executive function. This was felt to
be largely due to cerebral infarction, and hence
potentially amenable to prevention with anticoagu-
lation [95]. Focal, cortical-type deficits may also
occur in SLE. A case of Gerstmann syndrome (fin-
ger agnosia, right–left confusion, agraphia, acal-
culia) with an appropriately placed white mat-
ter lesion (left parieto-occipital, underlying the
angular gyrus) due to SLE has been reported
[96]. Likewise, amnesia associated with hippocam-
pal damage has been presented [97], as has an
amnesic syndrome mimicking limbic encephalitis
(Section 6.12) [98].

The etiology of cognitive deficits in SLE is uncer-
tain but thought to be related to damage to white
matter tracts; the profile of impairment is simi-
lar to that in MS [99]. There is no linkage to
markers of disease activity other than an associ-
ation between persistent elevation of antiphospho-
lipid antibodies and cognitive decline. An observa-
tional study suggested that regular aspirin use may
be associated with better cognitive performance
[100]. One small double-blind placebo-controlled
study reported improved cognition in a trial of
daily prednisolone, but no long-term outcome was
reported [101].

6.6 Sjögren’s syndrome

Sjögren’s syndrome is a chronic autoimmune
disorder of the exocrine glands associated with

lymphocytic infiltrates, occurring either alone
(primary Sjögren’s syndrome) or in the presence of
another autoimmune disorder such as rheumatoid
arthritis, SLE, or progressive systemic sclerosis
(secondary or associated Sjögren’s syndrome).
Extraglandular manifestations may occur in the
skin, lungs, heart, kidneys, and nervous system,
both central and peripheral [102]. Diagnostic
criteria [103] include ocular and oral symptoms,
objective evidence of dry eyes and salivary gland
involvement, and laboratory abnormalities (at
least one of anti-SS-A [anti-Ro] or SS-B [anti-La],
ANA, IgM rheumatoid factor). Neurological mani-
festations occur in about 20% of patients and
include CNS involvement, cranial nerve palsies,
myelopathy, peripheral neuropathy (especially
sensory, including a ganglionopathy) and a MS-like
syndrome [104].

Cognitive impairment has been described in
Sjögren’s syndrome. The pattern of neuropsycho-
logical impairment in one series of patients was
fairly homogeneous, with either subcorticofrontal
or corticosubcortical dysfunction. In the former
group, there was normal IQ, memory, and visuo-
constructional skills but impaired attention control,
abstraction, response-inhibition and set-shifting
abilities, thus a dysexecutive-frontal type pattern;
in the latter group there was additional intellectual
decline and poor visuoconstructional abilities, asso-
ciated with overt signs of CNS involvement (spas-
tic tetraparesis, pseudobulbar syndrome, cerebellar
syndrome). Brain MRI was normal or showed only
nonspecific punctate periventricular white matter
high signal intensities on T2-weighted scans, with
normal findings in CSF or only mild protein eleva-
tion [105]. Another series reported cognitive impair-
ment with reduced speed of processing and exec-
utive dysfunction in all 11 patients [106]. Abnor-
malities on neuropsychological tests, particularly
of frontal lobe function and memory, have been
reported, which correlate with defects on functional
imaging with single-photon emission computed
tomography (SPECT) when MRI is normal; hence,
it has been argued that neuropsychological test-
ing is the most sensitive test for CNS involvement
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in Sjögren’s [107]. However, others have detected
similar functional imaging deficits in patients with
or without “psychoneurological” symptoms [108].
Pain and depression may be confounders when
assessing cognitive function in Sjögren’s syndrome,
particularly executive functions, but a recent study
suggested that impairment of verbal reasoning abil-
ity compared to controls could not be ascribed to
these factors [109].

Occasional cases mimicking AD have also been
reported, but retrospectively, certain features were
identified arguing against AD, including no dis-
proportionate loss of memory or anomia, and
presence of cognitive fluctuation, psychotic fea-
tures, and somatic symptoms, and signs such as
tremor, hyperreflexia and gait ataxia [110]. Like-
wise, three cases of rapidly progressive demen-
tia, manifesting as intellectual decline over months
with bradyphrenia and impaired executive func-
tion in previously undiagnosed Sjögren’s syndrome,
have been reported, two of whom showed marked
improvement with (unspecified) immunosuppres-
sion [111]. A patient with a 20-year history of poor
memory, impaired speech, and apathy provisionally
diagnosed as frontotemporal dementia underwent
diagnostic revision to Sjögren’s syndrome when a
positive Schirmer test and Ro and La antibodies
were found [112].

6.7 Neuro-Behçet’s disease

Behçet’s disease is a recurrent systemic inflamma-
tory disorder of unknown etiology, diagnostic cri-
teria for which include recurrent aphthous ulcera-
tion plus any two of genital ulceration, skin lesions
(such as erythema nodosum), eye involvement
(anterior or posterior uveitis, or retinal vasculitis),
and a positive pathergy test (skin hypersensitivity to
pin-prick) [113]. Neuro-Behçet’s disease, confined
almost entirely to the central rather than the periph-
eral nervous system, occurs in about 5% of cases.
Involvement may be defined as either parenchy-
mal or nonparenchymal, the former affecting
particularly the brainstem with ataxia, dysarthria,

hemiparesis, and pyramidal signs, with accom-
panying or preceding cognitive and neuropsychi-
atric changes. Nonparenchymal involvement usu-
ally takes the form of intracranial hypertension due
to dural sinus thrombosis, wherein cognitive evalu-
ation is usually normal [114–117].

Cognitive impairments may be common in
neuro-Behçet’s disease if specifically sought. For
example, of 74 patients tested in a cohort of 200,
65 were cognitively abnormal, the most common
impairments being in memory (verbal and visual),
attention, and frontal lobe functions, with rela-
tive sparing of orientation, language, arithmetic,
and visuospatial function [114]. In a more detailed
analysis of 12 patients with neuro-Behçet’s disease,
memory deficit was the most common finding, par-
ticularly delayed recall of both verbal and visual
material, suggesting a retrieval deficit, although
acquisition and storage were also affected. Attention
and executive function deficits also occurred while
language and visuospatial function were largely
spared. Neuropsychological deficits were evident
before there were detectable changes on struc-
tural brain imaging, and insidious deterioration
was observed independent of neurological relapses
[118]. Cases presenting with amnesia [119] or
resembling herpes simplex encephalitis [120] have
been reported. Another case series noted cognitive
and/or behavioral features in 16% of patients, a fre-
quency less common than headache, upper motor
neuron type weakness, and brainstem and cerebel-
lar signs [121]. Cognitive deficits may also be com-
mon in Behçet’s patients without overt neurological
involvement: Monastero et al. [122] found deficits
in almost half of a cohort of 26 patients, mem-
ory being the domain most often affected although
visuospatial skills were also impaired relative to con-
trols. High disease activity and high prednisolone
dosage were independently associated with cogni-
tive impairment after adjustment for demographic
variables. Contrariwise, Ozisik et al. [123] found
no difference in neuropsychological tests between
controls and 20 patients without neurological
involvement. Reports of dementia in neuro-Behçet’s
disease are rare [124].
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6.8 Rheumatoid arthritis (RhA)

CNS involvement is rare in rheumatoid arthritis
(RhA), although meningeal or parenchymal nodules
and vasculitis may occur. RhA with cerebral vas-
culitis causing Gerstmann syndrome and dementia
has been reported [125]. There may be an increased
risk of atrial fibrillation and stroke in RhA [126],
but whether this might increase the risk of vascu-
lar cognitive impairment and vascular dementia in
RhA is not established currently. An inverse relation
between RhA and AD was suggested, but this was
based on a study of a highly selected population of
geriatric in-patients [127].

Because of the rarity of CNS involvement in RhA,
these patients have sometimes been used as a con-
trol group (chronic, inflammatory, but non-CNS dis-
ease) in studies of cognitive deficits in other dis-
orders. However, in a study of the prevalence of
cognitive impairment in MS, in a group of RhA
patients included to control for any possible effects
of depression related to chronic illness, 12% of the
group were found to be impaired [128]. A more
recent study in a cohort of RhA patients suggested
that almost one-third had cognitive impairment,
defined as scoring one standard deviation below
age-based population norms on at least four of 16
indices. Oral glucocorticoid use and presence of vas-
cular risk factors were more likely in the impaired
patients [129].

6.9 Systemic sclerosis, scleroderma

Systemic sclerosis is characterized by excess colla-
gen deposition in blood vessels affecting the skin
particularly; CNS involvement is rare. Neverthe-
less, cognitive impairment typical of a dysexecu-
tive syndrome has been documented in individu-
als without overt neurological involvement, perhaps
related to cerebral hypoperfusion [130]. A vasospas-
tic mechanism was postulated in a patient with scle-
roderma and Raynaud’s phenomenon who suffered
two episodes of transient global amnesia [131].

6.10 Relapsing polychondritis

This rare disorder is characterized by recurrent
episodes of inflammation of the cartilage of the ear,
nose, trachea, and larynx, as enshrined in proposed
clinical diagnostic criteria [132]. It may be com-
plicated by systemic and cerebral vasculitis, with
clinical presentations including aseptic meningitis,
encephalopathy, epileptic seizures, stroke, and tran-
sient ischemic attacks. Cases with cognitive impair-
ment, sometimes amounting to dementia, have
been reported, probably due to nonparaneoplastic
limbic encephalitis [133–136].

6.11 Cerebral vasculitides

The vasculitides are inflammatory disorders of
blood vessels, probably of autoimmune origin. Vas-
culitis may be exclusive to the CNS, as in primary
or isolated angiitis of the CNS (PACNS), also known
as intracranial vasculitis or, in older texts, granu-
lomatous angiitis [137], but more commonly CNS
involvement is part of a systemic disorder [138]. The
vasculitides include polyarteritis nodosa, Churg–
Strauss syndrome, Wegener’s granulomatosis, giant
cell (temporal) arteritis, and Takayasu’s arteritis.
Connective tissue disorders may also be compli-
cated by vasculitis, including RhA, SLE (rarely),
Sjögren’s syndrome, progressive systemic scler-
osis, and dermatomyositis/polymyositis. Vasculitis
is also recognized secondary to certain infections,
neoplasias, and toxins/drugs [139].

6.11.1 Primary angiitis of the CNS (PACNS)

Our understanding of PACNS has developed greatly
over recent years [140], although diagnostic criter-
ia were suggested over 20 years ago [141]. In a
series of over 100 patients, altered cognition was
noted in about 50% [142]. Dementia may be a fea-
ture of pathologically confirmed PACNS [143,144]
and is occasionally the neuropathological substrate
for dementia of unknown cause submitted to brain



6.11 Cerebral vasculitides 155

biopsy [145]. “Rapidly progressive dementia” as the
presentation of primary (isolated) angiitis of the
CNS has been reported [146], although it is possi-
ble that this was a disease-related encephalopathy,
as intermittent confusion, and behavioral and psy-
chiatric symptoms are not uncommon in PACNS.
Dementia evolving in a patient with biopsy-proven
but quiescent angiitis may reflect a second path-
ology such as AD [147].

Cognitive problems are reported to be promi-
nent in the rare syndrome of amyloid �-related
angiitis (ABRA), a granulomatous angiitis resem-
bling PACNS with additional sporadic amyloid �-
peptide-related cerebral amyloid angiopathy. Alter-
ations in mental status were common in ABRA
and, although not systematically examined, were
said to include confusion, poor memory, and con-
centration, sometimes progressing to frank demen-
tia, which was sometimes diagnosed premortem as
AD [148].

6.11.2 Systemic vasculitides

The systemic vasculitides may be classified accord-
ing to the size of the affected blood vessels [149]:
� Large arteries: giant cell (temporal) arteritis;

Takayasu’s arteritis;
� Medium arteries: Kawasaki disease; classical

polyarteritis nodosa;
� Small vessels and medium arteries: Wegener’s

granulomatosis; Churg–Strauss syndrome; micro-
scopic polyangiitis;

� Small vessels: Henoch–Schonlein purpura; essen-
tial cryoglobulinemia; cutaneous leukocytoclastic
vasculitis.

Some of these systemic vasculitides may be accom-
panied by autoantibodies directed against con-
stituents of the neutrophil azurophilic granules
(anti-neutrophil cytoplasmic antibodies, ANCA);
cytoplasmic ANCA (c-ANCA) is associated with
Wegener’s granulomatosis with approximately 95%
specificity; perinuclear ANCA (p-ANCA) directed at
myeloperoxidase is found in microscopic polyangi-
itis and Churg–Strauss syndrome with lesser speci-
ficity. A distinction may be drawn between primary

disorders and vasculitides occurring secondary to
infection (e.g., hepatitis B, syphilis, HIV), drugs (e.g.,
sulfonamides, cocaine), or other connective tis-
sue disorders (e.g., RhA, SLE, Sjögren’s syndrome).
ANCA assays are sometimes positive in SLE [150].

Neurological presentations of systemic vasculitis
are very diverse, but those affecting the CNS gener-
ally manifest as an acute or subacute encephalop-
athy, or as an “MS-like” relapsing-remitting disor-
der with features atypical for MS, such as epilep-
tic seizures and headache, or as a rapidly pro-
gressive space-occupying lesion [151]. Cognitive
disorders are unusual, but occasionally described.

Occasional reports of dementia as a symptom,
sometimes the presentation, of giant cell arteri-
tis (GCA) have appeared, the dementia presumed
to reflect multiple infarctions, sometimes in asso-
ciation with bilateral carotid artery occlusion, but
without brain pathology to confirm the supposi-
tion [152]. This must be a rare scenario as GCA typ-
ically affects the extracranial carotid arteries and
stroke is an uncommon vasculitic complication that
usually involves the posterior intracranial circula-
tion. Moreover, most patients with GCA are over
50 years of age so there may be other, confounding
factors that might contribute to cognitive decline.
CNS involvement in Takayasu’s arteritis is due to
carotid stenosis, cerebral hypoperfusion, and sub-
clavian steal syndrome.

In polyarteritis nodosa, dementia has been
reported in the context of lymphocytic meningitis
and encephalitis, reversing after immunosuppres-
sive treatment [153]. In Churg–Strauss syndrome,
encephalopathy and stroke-like episodes may
occur, although peripheral nervous system involve-
ment is more common. Rapid onset dementia with
microscopic polyangiitis, ascribed to CNS small ves-
sel disease but without pathological proof and also
causing peripheral neuropathy, has been described,
with some patients improving cognitively following
institution of immunosuppressive therapy [154].
In RhA, cerebral vasculitis has been reported as a
cause of Gerstmann syndrome and dementia [125].
Cerebral vasculitis causing severe autobiographical
amnesia but with preserved semantic memory has
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also been documented [155]. In a group of nonde-
mented patients with ANCA-associated small vessel
vasculitides (Wegener’s granulomatosis, Churg–
Strauss syndrome, microscopic polyangiitis),
neuropsychological testing revealed subclinical
deficits in abstract reasoning, speed of information
processing, and visual memory in just under a third
of patients, the suggestion being that small vessel
vasculitis may mediate subcortical brain damage
[156].

6.12 Limbic encephalitides

Limbic encephalitis is a syndrome of subacute
onset characterized by cognitive decline, particu-
larly memory impairment, due to limbic system
involvement, with or without additional epileptic
seizures of temporal lobe origin and MRI evidence
of signal change in the limbic system, particularly
the hippocampus. Initially described as a remote
effect of occult neoplasia (paraneoplasia), a similar
picture may also result from infective and autoim-
mune pathologies.

6.12.1 Paraneoplastic limbic encephalitis
(PNLE)

Paraneoplastic limbic encephalitis (PNLE) was first
described as such in the 1960s [157]. The syn-
drome is most often associated with lung tumors
but also with breast and testicular neoplasms, and
a variety of onconeural antibodies may be found,
including anti-Hu (ANNA1), anti-Ma2, and ANNA-3,
although their absence does not exclude the diagno-
sis [158,159]. Whole body positron emission tomog-
raphy (PET) scanning may identify an occult tumor
when other imaging modalities have been negative
[160].

Detailed reports of neuropsychological assess-
ment in PNLE are relatively few, perhaps because
of concurrent confusion, altered consciousness, and
psychiatric features precluding assessment. Martin
et al. [161] found severe anterograde amnesia for
both verbal and visual information but preserved
visual perception and construction, language, speed

of information processing, and verbal abstract
reasoning, all consistent with pathology confined to
the mesial temporal lobes. A case with topographi-
cal disorientation as well as amnesia in association
with anti-Hu antibodies has been reported, with MR
signal change not only in the anteromedial tem-
poral lobes bilaterally but also in the right retro-
splenial region and inferior precuneus [162]. More
widespread deficits and imaging changes may have
prognostic implications. Bak et al. [163] reported
two patients with PNLE, one with pure antero-
grade amnesia and a normal MRI, who recov-
ered completely with tumor remission, the other
with dense anterograde and extensive retrograde
amnesia with anomia and executive impairments,
and atrophy of the hippocampus and amygdala on
MRI and frontotemporal hypoperfusion on SPECT,
who showed no cognitive recovery following tumor
regression. Progressive atrophy after transient cog-
nitive improvement following tumor resection has
also been recorded [164].

6.12.2 Nonparaneoplastic limbic encephalitis
(NPLE): LGI1, NMDA-R

Non-paraneoplastic limbic encephalitis (NPLE) is
a syndrome of limbic encephalitis associated with
antibodies directed against cell membrane anti-
gens, including LGI1 (previously attributed to
voltage-gated potassium channels, VGKC [165]),
and receptors for NMDA (often associated with
ovarian teratoma in young women [166]), GABA(B),
and AMPA, among others.

Probably the best defined among these NPLE
syndromes is LGI1-associated NPLE, a subacute
amnesic syndrome with associated behavioral fea-
tures, epileptic seizures, and sometimes hypona-
tremia due to the syndrome of inappropriate anti-
diuretic hormone (ADH) secretion. The neuropsy-
chological profile, when it can be tested, shows
prominent episodic memory impairment with fron-
totemporal dysfunction but with relative sparing of
parietal lobe function. Treatment with immunosup-
pressive agents (high dose steroids, IVIg, plasma
exchange) may ameliorate many of the symptoms
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if commenced early, but memory problems may
persist particularly if there is associated medial tem-
poral lobe atrophy (possibly associated with high
initial antibody titers) [167]. Early treatment has
also been reported to be associated with better out-
comes in anti-NMDA receptor encephalitis [168].

Cases resembling limbic encephalitis have occa-
sionally been reported in association with connec-
tive tissue disorders such as SLE (Section 6.5) [98],
Behçet’s disease (Section 6.7) [120], and relapsing
polychondritis (Section 6.10). Of the infective causes
of limbic encephalitis, herpes simplex encephalitis
is the most common (Section 9.1.1), but other
pathogens include herpes simplex type 2 (Section
9.1.5) and human herpes viruses 6 and 7 (Section
9.1.6), particularly in immunocompromised
patients, and neurosyphilis (Section 9.4.1) [169].

6.13 Hashimoto’s encephalopathy (HE)

This entity, first reported in the 1960s [170], consists
of a clinical syndrome of encephalopathy associ-
ated with stroke-like episodes, epileptic seizures,
and psychosis in association with high serum
titers of antithyroid autoantibodies (microsomal,
thyroglobulin). Thyroid function may vary from
overt hypothyroidism to overt hyperthyroidism,
but most commonly there is subclinical hypothy-
roidism. Females are more commonly affected
(4:1). The course may be relapsing-remitting in
around half of the patients, for which reason
some authors envisage Hashimoto’s encephalop-
athy as a form of recurrent acute disseminated
encephalomyelitis (Section 6.2) [171]. CSF protein
is often elevated and electroencephalogram (EEG)
abnormalities (diffuse slowing) are almost ubi-
quitous. The condition is usually (96%) responsive
to steroids [172]. The antithyroid autoantibodies
are probably epiphenomenal, unrelated to dis-
ease pathogenesis; �-enolase antibodies may be
a better marker. It has been suggested by some
authors that the name Hashimoto’s encephalop-
athy be abandoned because of uncertainty about
nosology, “steroid-responsive encephalopathy”

being one proposed alternative name. Differential
diagnosis encompasses mitochondrial disease,
vasculitides, nonparaneoplastic limbic encephalitis
due to voltage-gated potassium channel antibodies,
and Creutzfeldt–Jakob disease (CJD) [173].

Cognitive dysfunction ranging from subtle execu-
tive and linguistic disturbance [174] to rapidly pro-
gressive dementia [175–177] has been reported in
HE, the clinical phenotype often closely resembling
sporadic CJD (Section 2.5.1) [178]. Indeed, cases of
pathologically confirmed CJD resembling HE have
been reported [173]. Although rare, HE is an impor-
tant diagnosis to consider, especially in rapidly pro-
gressive dementia with epileptic seizures and psy-
chiatric features, as the condition may be reversed
with steroid treatment.

6.14 Sydenham’s chorea; pediatric
autoimmune neuropsychiatric
disorders associated with streptococcal
infections (PANDAS)

Sydenham’s chorea is a movement disorder of child-
hood and early adulthood related to infection with
group A streptococci, now regarded as an example of
postinfectious (post-streptococcal) movement and
neuropsychiatric disorders of autoimmune origin
(PANDAS). The neuropsychiatric features usually
reported have been those of obsessive-compulsive
disorder (Section 12.4.1). Basal ganglia (striatal)
involvement may be observed on structural and
functional imaging (hyperperfusion and hyper-
metabolism).

Neuropsychological deficits do not seem to be
a clinical feature of these conditions, although
dementia associated with striatal hypermetabolism
and the detection of antistriatal antibodies that
reversed with steroids has been reported [179].
Cases clinically resembling Sydenham’s chorea
but with additional dementia and associated
with antiphospholipid antibodies have also been
described [180]. Patients with childhood Syden-
ham’s chorea examined in adulthood have been
found to have reduced performance in attention,
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information processing speed, executive func-
tions, and working memory, suggesting persistent
dysfunction in basal ganglia circuits [181].

6.15 Histiocytosis

The histiocytoses or histiocytic disorders are a
diverse group in which proliferation of phagocytic
or antigen-presenting dendritic cells may occur.
Typical patterns of CNS involvement include infil-
trative parenchymal disease (especially involving
the hypothalamopituitary axis), meningeal infiltra-
tion, and a neurodegenerative pattern that may
include cognitive decline. Langerhans cell histiocyt-
osis and Erdheim–Chester disease are examples of
dendritic cell-related disorders, and Rosai–Dorfman
disease (also known as sinus histiocytosis with mas-
sive lymphadenopathy; sometimes confused with
meningioma; Section 7.1.2) is a macrophage-related
disorder [182].

6.15.1 Neurodegenerative Langerhans
cell histiocytosis (ND-LCH)

Patients with Langerhans cell histiocytosis (LCH),
a rare granulomatous disorder of broad pheno-
type, may develop neurodegeneration in addition to
hypothalamic-hypophyseal axis involvement. Low
IQ, problems with perceptual tasks, and verbal
and visuospatial working memory dysfunction were
recorded in one series of patients [183].

6.15.2 Erdheim–Chester disease

Erdheim–Chester disease is a rare, sporadic, non-
Langerhans cell histiocytosis, which may affect
multiple organs, including the CNS [184]. Pro-
posed diagnostic criteria require typical histo-
logical findings of foamy histiocytes nested
among polymorphic granuloma and fibrosis or
xanthogranulomatosis with CD68-positive and
CD1a-negative immunohistochemical staining,
with typical skeletal findings of bilateral symmetri-
cal cortical osteosclerosis and/or increased labeling
of the distal ends of the lower limb long bones on

99Tc bone scintigraphy [185]. In addition to skele-
tal involvement, common findings are diabetes
insipidus, and retroperitoneal, orbital, cutaneous,
and cardiac involvement. In a review of over 200
cases, Lachenal et al. [186] found neurological
features in about one-third of patients, most often
cerebellar and/or pyramidal signs, but in six cases
there was dementia, cognitive impairment, or
amnesia.

6.16 Bilateral vestibulopathy

The syndrome of bilateral peripheral loss of vestibu-
lar function is characterized by oscillopsia dur-
ing walking and head movements, and unsteadi-
ness of gait in the dark and on uneven ground.
Although often idiopathic, some cases are associ-
ated with autoantibodies to inner ear structures.
Deficits of spatial memory and navigation associ-
ated with bilateral hippocampal atrophy have been
reported in bilateral vestibulopathy associated with
neurofibromatosis type 2 [187].

6.17 Chronic inflammatory demyelinating
polyneuropathy (CIDP)

There has been a report that cognitive impairment
may be present in up to 50% of CIDP patients,
manifested as slowed speed of information process-
ing and executive dysfunction on the Brief Repeat-
able Battery of Neuropsychological Tests, changes
the authors claim are comparable to those in
MS [188].
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7.1 Brain tumors and their treatment

7.1.1 Brain tumors

Cognitive decline in patients with brain tumors may
have many causes, including the tumor itself, con-
current tumor-related epileptic seizures, mood dis-
order, steroid therapy, and as a sequel of surgery,
radiotherapy and chemotherapy for the tumor,
or any combination thereof [1]. For impairment
related to the tumor per se, both tumor type
and tumor location may be relevant. For exam-
ple, an amnesic syndrome may accompany tumors

involving temporal-limbic structures while frontal
tumors may cause a frontal lobe syndrome [2].

Cognitive decline may be more common with
certain tumor types, such as central nervous sys-
tem (CNS) lymphoma and gliomatosis cerebri, and
with slowly rather than rapidly growing tumors.
Dominant as opposed to nondominant hemisphere
lesions may be associated with greater cognitive
deficit, but the profile is more global than localized.
Lesions located in specific, eloquent structures such
as the hippocampus, frontal lobes, or fornix may
produce specific deficits. In glioma patients with
lesions in the temporal or frontal lobes examined
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before treatment initiation, 90% were found to have
neurocognitive dysfunction, with executive impair-
ments in 78% and memory and attention deficits in
60% of cases [3]. Longitudinal neuropsychological
decline may be an early marker of tumor recurrence
[4].

7.1.2 Meningioma

Meningiomas have a predilection for certain
intracranial sites, including the olfactory groove,
falx, parasagittal region, and sphenoid bone, in
some of which there may be prominent cognitive as
well as focal neurological signs.

Meningioma has long been recognized to be a
potentially treatable cause of dementia, sometimes
with dementia as the presenting feature [5–7]. Inter-
hemispheric, parafalcine (subfrontal) meningiomas
may grow to a huge size without producing neuro-
logical signs but with evidence of impaired exec-
utive function on neuropsychological testing [8].
Rare intraventricular meningiomas may also be
associated with cognitive change [9]. Postopera-
tive improvement in attention and working memory
has been documented following resection of frontal
meningiomas [10].

7.1.3 Glioma and gliomatosis cerebri

Cognitive impairment may be detected in some
patients with low-grade glioma prior to treatment,
especially with left frontal lobe tumors [11]. Another
study found that mass effect, larger size, and higher
grade were the tumor-related factors most likely
to be associated with cognitive deficits, particu-
larly in verbal and visual memory and verbal
fluency [12].

Following treatment, cognitive deficits are com-
mon in survivors of low-grade glioma, whether they
have or have not received radiotherapy, suggest-
ing that the tumor per se, and/or other factors
(e.g., antiepileptic drug therapy) may contribute
to impairment [13,14]. In high-grade gliomas, sur-
vivors may have moderate to severe cognitive

deficits; although these may be treatment-related;
nonetheless, there is evidence that the tumor itself
may also contribute [15]. However, both cognitive
improvement and worsening may be seen in glioma
patients postoperatively [12]. In recurrent malig-
nant glioma, cognitive test performance is a predic-
tor of survival [16].

Gliomatosis cerebri is a neoplastic disorder in
which malignant cells infiltrate the brain widely
without forming mass lesions. Clinically, the condi-
tion most often presents with progressive headache,
gait disorder, and epileptic seizures (partial, with
or without secondary generalization), with signs
of raised intracranial pressure (papilloedema, oph-
thalmoparesis), hemiparesis, and neurobehavioral
changes [17]. Neuropsychological deficits reflect-
ing affected brain regions may occur; for example,
profound abulia with unilateral right hemisphere
involvement [18] and executive dysfunction and
verbal memory impairment with bifrontal and left
temporal white matter involvement, progressing to
a dementia of white matter type with bihemispheric
white matter infiltration [19]. Progressive cognitive
decline and parkinsonism said to resemble sporadic
Creutzfeldt–Jakob disease has been reported [20], as
has rapidly progressive dementia with parkinson-
ism [21].

7.1.4 Pituitary tumors

Tumors of the pituitary gland usually manifest with
local effects of space occupation and compression
of adjacent structures (e.g., the optic chiasm), or
with endocrine effects.

Memory disturbance has been noted with mas-
sive pituitary tumors [22] and potentially reversible
dementia has also been reported. For example, Bris-
man et al. presented a patient with personality
change labeled as depression but unresponsive to
antidepressant medication, with inappropriate and
disinhibited behavior that evolved to apathy, and
with memory loss (five-minute recall 0/3), who on



168 7: Structural brain lesions

imaging had a large pituitary tumor with suprasel-
lar extension, which proved to be a macroprolacti-
noma. Within a month of starting treatment with
a dopamine agonist (bromocriptine), the patient
was subjectively normal. No detailed neuropsycho-
logical assessment was performed [23]. Decrements
in both memory and attention in comparison to
normative data were observed in patients with both
treated pituitary Cushing’s disease and nonfunc-
tioning pituitary adenomas [24], perhaps reflecting
an effect of pituitary tumors per se. A more recent
study found memory impairment in patients with
nonfunctioning pituitary adenomas compared to a
reference sample, with no adverse effect in those
receiving radiotherapy in addition to transphe-
noidal tumor resection [25]. This latter finding was
in contrast to that of a retrospective study that con-
cluded that treatment of pituitary tumors, either
with surgery or radiotherapy, was culpable for asso-
ciated memory disorders due to damage to dien-
cephalic structures [26].

7.1.5 Craniopharyngioma

Memory disturbances may occur in association with
craniopharyngiomas [22]. Cases of severe antero-
grade amnesia associated with third ventricle cran-
iopharyngioma causing relatively selective dam-
age to the mammillary bodies have been reported
[27,28]. In one case, amnesia improved follow-
ing tumor removal, although memory was still
impaired, and brain MRI showed small atrophic
mammillary bodies [27]. In another case in which
the right hippocampus was involved as well as the
mammillary bodies, albeit to a lesser extent, tumor
removal was associated with complete recovery
of memory function. Functional imaging (positron
emission tomography, PET) showed no preope-
rative activity in memory-related structures, but
improved perfusion of anterior thalamic nuclei
postoperatively [28]. Relatively selective mammil-
lary body damage thus may result in severe antero-
grade amnesia, which may be partially or com-
pletely reversible.

7.1.6 Primary CNS lymphoma (PCNSL) and
lymphomatosis cerebri

Primary CNS lymphoma (PCNSL) is a rare high-
grade non-Hodgkin’s lymphoma that typically
appears on MRI of the brain as homogeneously
enhancing periventricular or subependymal mass
lesions. However, diagnosis ultimately depends on
histology, following which a variety of staging inves-
tigations are recommended to exclude systemic
disease (around 10% of cases initially thought to be
confined to the CNS are reported to have evidence
of systemic involvement) and document the extent
of CNS involvement [29]. Transient clinical and
radiological response to steroids is well attested,
but optimal treatment involves methotrexate-based
combination chemotherapy followed by radio-
therapy, despite which survival is around 10 to
20 months.

The risk of developing dementia in PCNSL sur-
vivors has been high, possibly related to the patient’s
age and to treatment-related neurocognitive tox-
icity. Cognitive impairment in the domains of mem-
ory and executive function was noted to be more
pronounced following whole brain radiotherapy
with or without chemotherapy, and correlated with
the extent of white matter disease [30]. Whether
tumor-related factors render these patients more
susceptible to cognitive impairment, such as the
tendency to seed by cerebrospinal fluid (CSF) path-
ways [31] or to the adverse effects of treatment, is
unknown.

Rarely, PCNSL presents as a diffuse infiltrat-
ing small cell B-cell lymphoma, lymphomat-
osis cerebri, without formation of the more com-
mon cohesive mass lesion(s). Lymphomatosis
cerebri has been reported to present as a rapidly
progressive dementia [32–34]. Differential diag-
nosis in this situation may include subcortical
vascular ischemic dementia, leukoencephalop-
athy or gliomatosis cerebri [33], or “white matter
dementia” [32].

CNS lymphoma may also occur in the context of
HIV infection (Section 9.3).
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7.1.7 Splenial tumors

Tumors involving the splenium of the corpus callo-
sum are reported to produce amnesia, thought to be
related to damage to the fornix due to its anatomi-
cal propinquity to the splenium, and visual percep-
tual impairment due to hemispheric disconnection,
while intellect is relatively preserved [35].

7.1.8 Radiotherapy and chemotherapy

The risk of cognitive deficits related to radiother-
apy is a vexed question. The risk is known to
increase with high radiation dose, large fraction,
and field size (whole brain versus focal), but is
also related to the patient’s age and concurrent
chemotherapy. Moreover, there are potential con-
founders, including the malignancy per se (e.g.,
disease progression), comorbid medical, neuro-
logical (e.g., epilepsy), or psychiatric conditions
(e.g., depression), and surgical treatment [1,36–39].
Reviews of the literature have concluded that focal
radiotherapy in patients with glioma is not the main
reason for cognitive deficits [1] and that radiation
effects on cognition are severe in only a minority
of patients [36]. Impaired hippocampal neurogene-
sis following radiotherapy may contribute to neuro-
cognitive impairment in cases without residual
tumor [39].

Late delayed postradiation cognitive decline,
occurring more than three years posttreatment,
is a rare but feared complication of treatment,
and of increasing importance as an outcome
measure with improved survival from underlying
malignancy. It is associated with diffuse white
matter change (leukoencephalopathy) and cortic-
al/subcortical atrophy on brain imaging, a subcor-
tical pattern of cognitive deficits, with psychomotor
slowing, executive and memory dysfunction, some-
times sufficiently severe to constitute dementia, and
pathological changes of gliosis, demyelination, and
thickening of small vessels [36,40,41]. In a series
of patients with primary CNS lymphoma, five-year
cumulative incidence of delayed neurotoxicity was

nearly 25% [41]. An annual incidence of 11% was
noted in an older, retrospective series, in which rel-
atively high doses of radiation were used [42].

Neurotoxicity from chemotherapeutic agents is
more likely if they are given concomitantly with
radiotherapy, or via intrathecal or intra-arterial
routes as compared to systemically, all these factors
increasing drug concentration in normal brain tis-
sue by compromising or bypassing the blood–brain
barrier.

7.2 Hydrocephalic dementias

The association of dementia with hydrocephalus
may arise in a number of situations [43]. Hydro-
cephalus may be classified according to whether
there is obstruction to the flow of CSF, and whether
the ventricles are communicating. Obstructive
noncommunicating hydrocephalus in the context
of neoplasms, inflammation (ependymitis, arach-
noiditis, pachymeningitis), and acquired aqueduct
stenosis may present as a subacute dementia.
Nonobstructive communicating hydrocephalus
may result from ex vacuo brain atrophy, perhaps
in the context of parenchymal brain disease or
previous brain trauma, or extremely rarely, from
CSF hypersecretion, as for example from a choroid
plexus tumor.

Perhaps the most challenging clinical situation,
both in terms of diagnosis and management, relates
to cases of communicating hydrocephalus. These
may be obstructive, secondary to subarachnoid
hemorrhage, trauma, meningitis, or diffusely infil-
trating tumor, or some other process (for example,
Paget’s disease of the skull; Section 7.2.4); or primary
or idiopathic, the condition that has come to be
known as normal pressure hydrocephalus (iNPH).
Whether these latter cases represent some form of
occult obstruction remains unclear. Because of the
uncertainties about etiopathogenesis, retention of
the term “occult hydrocephalus,” as originally sug-
gested by Adams et al. [44], or use of the term
“chronic hydrocephalus” [45] may be theoretically
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preferable, although pragmatically neither is likely
to supplant the entrenched usage of “normal pres-
sure hydrocephalus.”

7.2.1 Normal pressure hydrocephalus (NPH)

That normal pressure hydrocephalus (NPH) com-
prises the clinical triad of gait difficulties of
parkinsonian type, urinary problems, and cogni-
tive decline is a fact known to virtually every med-
ical student, and a huge literature on the sub-
ject has developed since the condition was first
described [44,46], much of it related to predict-
ing which patients will respond to surgical shunt-
ing procedures [45,47]. The advent of widespread
structural neuroimaging with computerized tomog-
raphy (CT) has increased the frequency with which
this disorder is considered; relative preservation
of cortical gyri despite ventricular expansion is
suggested to point to this diagnosis, and vari-
ous radiological parameters (e.g., Evans ratio) have
been suggested to be helpful in predicting shunt
responsiveness.

Yet, despite this “evidence base,” NPH remains in
many ways obscure and perplexing, perhaps par-
ticularly for neurologists with an interest in cog-
nitive disorders. Is it certain, for example, that
at least some of these patients do not have an
ex vacuo nonobstructive communicating hydro-
cephalus due to occult primary intraparenchy-
mal pathology causing subcortical atrophy, a well-
recognized correlate of Alzheimer’s disease (AD)?
Very few NPH patients come to pathological ana-
lysis, either biopsy or autopsy, and when they do,
alternative pathologies may be found, such as AD
[48,49], cerebrovascular disease [48], Parkinson’s
disease [50], or progressive supranuclear palsy [51],
even when patients have proven to be temporar-
ily “shunt-responsive.” The presence of AD pathol-
ogy in suspected iNPH patients has been associ-
ated with lack of response to shunting [49]. Patients
shunted for presumed NPH without benefit and
whose phenotype subsequently evolved to that of
behavioral variant frontotemporal dementia (Sec-
tion 2.2.1) have also been noted [52]. Secondary or

symptomatic causes of NPH have been reported,
such as neuroborreliosis (Section 9.4.2).

The CSF tap test, withdrawing 25–30 mL of CSF
with pre- and posttest assessment of gait and cogni-
tive function, has been advocated as a predictor of
shunt responsiveness, but both false negatives and
false positives may occur, the latter possibly due to
the presence of alternative, primary neurodegener-
ative pathology [53].

With these diagnostic uncertainties, it might be
anticipated that delineating the neuropsychologi-
cal profile of iNPH would be difficult, yet there has
been no shortage of attempts [54,55]. For example,
Ogino et al. [56] found disproportionate impairment
of frontal lobe functions (attention/concentration
subtest of WMS-R; digit span, arithmetic, block
design, and digit symbol substitution subtests of
WAIS-R) in iNPH patients compared to AD patients
but disproportionately mild memory impairment
(general memory and delayed recall in WAIS-R).
Impaired frontal lobe function as assessed by the
Frontal Assessment Battery and verbal fluency tests
was also reported by the same group [57]. The
typical cognitive profile of frontal deficits in NPH
(psychomotor slowing, impaired attention, work-
ing memory, verbal fluency and executive func-
tion) has prompted its classification as a subcortical
dementia. However, in addition to frontal deficits,
posterior (cortical) deficits have been reported
in NPH such as visuospatial and visuopercep-
tual difficulties [58]. Indeed, in comparison with
Binswanger’s disease, a prototypical subcortical
dementia (Section 3.1.2), impairment of memory
and visuospatial attention may be more severe in
NPH [55].

Amelioration of executive dysfunction is reported
after shunting for NPH [58], whereas low verbal
memory baseline scores were found to be predict-
ors of poor response, the more so if there was con-
current visuoconstructional deficit or executive dys-
function [59]. It might be asked whether these more
impaired patients may have been harboring pri-
mary neurodegenerative disease [49].

Hence, there are significant methodological dif-
ficulties in defining the cognitive profile of iNPH,
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perhaps related, at least in part, to etiological
heterogeneity. Nonetheless, disruption of fronto-
subcortical pathways would seem the most likely
pathological substrate (for example, to account for
the parkinsonian gait) with a corresponding neuro-
psychological profile dominated by, although not
limited to, subcortical features. Efforts to exclude
other pathologies, particularly AD, in suspected
iNPH cases should be made before deciding on sur-
gical treatment.

7.2.2 Aqueduct stenosis

Idiopathic stenosis of the aqueduct of Sylvius, or
mesencephalic duct, which runs through the mid-
brain to connect the third and fourth ventricles,
results in hydrocephalus. This is often thought to
be congenital, but a late-onset idiopathic form has
also been described, presenting with headache, gait
disturbance, and cognitive deficits. The latter may
be subtle, insufficient to interfere with occupa-
tion or everyday activities. A small study of adult
patients submitted to third ventriculostomy found
combined deficits of memory and frontal executive
function, which resolved promptly and almost com-
pletely postoperatively [60].

7.2.3 Colloid cyst; fornix lesions

Colloid cysts are thought to arise from ependy-
mal cells in the vestigial paraphysis in the ante-
rior portion of the third ventricle, where they may
block the third ventricle and cause obstructive
hydrocephalus. Clinical presentation is either with
intermittent obstruction causing severe bifrontal-
bioccipital headache, unsteady gait, incontinence,
visual impairment, and drop attacks without loss of
consciousness, or with a picture resembling “NPH”
(Section 7.2.1). Some cases are now found inciden-
tally when patients undergo structural brain imag-
ing for other reasons. Surgical resection of the cyst
may be undertaken, although symptoms may some-
times be more easily controlled with shunting or
stereotactic decompression.

Colloid cyst may present to the cognitive clinic
with psychomotor slowing. Preoperative memory
problems have also been noted [61]. However, post-
operative cognitive problems as a consequence of
damage to the fornix during surgery for colloid cyst
are well described, specifically a persistent antero-
grade amnesia [62–66]. Bilateral fornix interruption
was a predictor of poor memory performance in one
study [64]; severity of damage to the left fornix was
suggested to be the most important determinant of
severity of impairment in verbal memory in another
[63]. Recall may be less impaired than recognition
[64]. Relative absence of retrograde amnesia was
noted in some reports [62,65], but in others retro-
grade amnesia for autobiographical episodes and
for semantic memory was recorded [66].

Fornix damage with subsequent neuropsycho-
logical deficits may also be seen as a consequence
of surgery for other brain tumors [67–69], as well
as with other pathologies such as focal or strategic
stroke [70] (Section 3.2.2) and carbon monoxide poi-
soning [71] (Section 8.2.2.2).

7.2.4 Paget’s disease of bone
(osteitis deformans)

Paget’s disease is a disorder of increased bone
turnover with excessive osteoclastic resorption and
disorganized new bone formation, with a predilec-
tion for involvement of the skull and vertebral
column. Neurological complications are well rec-
ognized, particularly cranial nerve palsies due to
foraminal entrapment, and extradural myelopathy
due to disease in vertebral bodies [72]. Dementia as
a consequence of basilar invagination is reported,
producing a syndrome sometimes likened to NPH,
although there has been debate as to whether the
hydrocephalus is in some sense obstructive or non-
communicating, and hence amenable to treatment
with some form of ventricular shunting [73,74].

Paget’s disease may rarely occur in associ-
ation with an autosomal dominant frontotem-
poral dementia with or without inclusion body
myopathy (IBMPFD) caused by mutations in the
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valosin-containing protein gene on chromosome 9
[75] (Section 2.2.5.2).

7.3 Other structural lesions

Subdural hematoma, arachnoid cyst, and spontan-
eous intracranial hypotension are considered here.
Other potentially relevant structural brain lesions,
such as arteriovenous malformations and fistulae
are considered elsewhere (Section 3.4).

7.3.1 Subdural hematoma (SDH)

Cognitive sequelae associated with acute subdural
hematoma (SDH) may be related to traumatic brain
injury in the context of head injury, the most com-
mon cause of acute SDH; alcohol misuse may be
a precipitating factor. Chronic SDH without a his-
tory of head trauma most commonly occurs in the
elderly, where concurrent neurodegenerative dis-
ease (AD, dementia with Lewy bodies), with associ-
ated risk of repeated falls, may be present. Despite
these possible confounding factors, SDH per se may
be associated with cognitive deficits [76].

Chronic SDH most commonly presents with an
alteration in mental state, with features of delir-
ium or dementia, with or without fixed focal
neurological deficit such as hemiparesis, or tran-
sient deficits such as aphasia, hemisensory loss,
epileptic seizures, headache, and occasionally an
akinetic-rigid syndrome. Recognized risk factors for
the accumulation of blood and its liquefaction in
the subdural space include increasing age, his-
tory of direct head trauma (although not invariably
present), use of antiplatelet or anticoagulant drugs,
and alcohol misuse. A history of falls may be a par-
ticular “red flag” [77]. The diagnosis may be over-
looked, symptoms being attributed to other causes,
such as a dementia syndrome, and structural brain
imaging with CT may not be diagnostic if the collec-
tion is isodense rather than hyperdense (acute) or
hypodense (�4 wk), or if bilateral collections cause
no mass effect or midline shift. Surgical evacuation
is often the treatment of choice.

Variable mental changes have been reported in
chronic SDH, the most common being lethargy and
poor concentration, withdrawal, confusion with
aggressive outbursts, and failing memory and intel-
ligence reminiscent of a dementia syndrome [78].
Slowed mental abilities with an akinetic-rigid syn-
drome but normal Abbreviated Mental Test Score
have been reported [79], as has Gerstmann’s syn-
drome [80].

Chronic subdural hematoma is often listed in
textbooks as a cause of reversible dementia, but
the published evidence base for this is slim [81].
Ishikawa et al. [82] reported that nearly 70% of a
series of 26 patients operated on for chronic SDH
(i.e., a highly selected cohort) were demented pre-
operatively on the basis of their performance on
MMSE, with 50% (9 patients) making a good recov-
ery. Younger patients with a higher preoperative
MMSE showed better recovery, as did patients diag-
nosed and evacuated early.

7.3.2 Arachnoid cyst

Arachnoid cysts are not infrequent incidental find-
ings on structural brain imaging, most commonly
seen in the middle cranial fossa. Whether they have
symptomatic effects related to space occupation
(pressure, brain displacement, both, or other mech-
anisms) is debated. A literature search concluded
that arachnoid cysts may be associated with cog-
nitive impairments in various functions, includ-
ing perception, memory, complex verbal tasks,
visuospatial functions, and visual attention, with
improvements noted after cyst surgery [83]. How-
ever, it remains uncertain what proportion of arach-
noid cysts are symptomatic.

7.3.3 Spontaneous intracranial
hypotension (SIH)

Spontaneous intracranial hypotension (SIH) is char-
acterized by postural headache and low CSF open-
ing pressure, thought to result from leakage of CSF,
usually idiopathic. An epidural blood patch may
help symptoms.
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Cases of SIH associated with dementia, with
features reported to be typical of frontotemporal
dementia, and which remit following treatment with
prednisolone, have been presented [84,85].
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8.1 Endocrine disorders

8.1.1 Diabetes mellitus

The relationship between diabetes mellitus and
cognitive function is an area of significant cur-
rent research interest, in particular because of the
increasing prevalence of type 2 diabetes [1]. Cogni-
tive dysfunction may be one of the chronic com-
plications of diabetes, but the pathophysiology is
uncertain. Possible mediating and modulating fac-
tors may include the effects of glycemic control:
hyperglycemia, insulin resistance (hyperinsulin-
emia), and treatment-induced hypoglycemia.

8.1.1.1 Impaired glucose tolerance;
hyperglycemia

A link between diabetes mellitus per se and cog-
nitive decline may be obscured by comorbid

cerebrovascular disease (both microvascular and
macrovascular), hypertension, or depression [2], as
these conditions may confound any assessment of
cognitive performance. Nonetheless, a systematic
literature search that analyzed 23 studies examining
glucose tolerance and cognitive function found that
poor glucose tolerance was associated with cogni-
tive impairment, particularly in verbal memory [3].
A meta-analysis of studies of cognitive perform-
ance in type 1 diabetes found evidence for
slowing of mental speed and diminished men-
tal flexibility with sparing of learning and memory
[4]. Observational studies suggest that acute hyper-
glycemia is associated with a slowing of cognitive
performance in some subjects with either type 1 or
type 2 diabetes, with a possible threshold around 15
mmol/L [5]. Whether this is a consequence of hyper-
glycemia per se or of underlying insulin resistance
is not certain; hyperinsulinemia has been reported
in epidemiological studies to be a risk factor for
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the development of dementia and memory decline
[6].

Systematic reviews have shown a greater risk
and rate of cognitive functional decline [7] and of
dementia [8] in diabetes, with processing speed and
verbal memory the most affected cognitive domains
[2]. Epidemiological studies provide some evidence
that cognition may be impaired in the early stages of
type 2 diabetes. In the Whitehall II study, a prospec-
tive study of the incidence of diabetes, an associ-
ation was noted between diabetes and poor per-
formance on a test of inductive reasoning (Alice
Heim 4) in stroke-free patients, but verbal memory,
verbal meaning, and verbal fluency tests were not
affected. The study suggested that effects of diabetes
on cognitive performance might be evident within
five years of diagnosis [9].

Diabetes does not appear to be a risk factor for
the development of Alzheimer’s disease (AD) over-
all, but might increase relative risk in certain sub-
groups [10]. Whether AD may be characterized as
“type 3 diabetes” because of a potential pathogenic
role for brain insulin resistance remains a topic of
debate [11].

8.1.1.2 Hypoglycemia

A management strategy of strict glycemic con-
trol in diabetes mellitus may exacerbate the risk
of episodes of treatment-induced hypoglycemia,
which potentially might contribute to cognitive
impairment. Hypoglycemia is recognized to cause
acute neuropsychiatric features as a consequence
of neuroglycopenia, with or without concurrent fea-
tures of autonomic activation.

Severe hypoglycemia is a recognized cause of
acute amnesia [12]. An amnesic syndrome has been
reported in patients with diabetes following hypo-
glycemic coma [13], or as a consequence of inten-
sive insulin treatment using a subcutaneous pump
causing profound hypoglycemia [14,15]. Bilateral
high signal intensity hippocampal lesions on mag-
netic resonance imaging (MRI) of the brain have
been noted in some patients [14] but are not invari-
ably found [15]. Prognosis is variable: the amnesia

may be completely [14] or partially reversible [15],
or irreversible [13], presumably a reflection of the
extent of hippocampal vulnerability to the effects of
neuroglycopenia.

Whether repeated episodes of hypoglycemia
cause persistent cognitive deficits in diabetes
remains an open question. Small studies initially
suggested that adults with a history of severe hypo-
glycemia (i.e., episodes requiring assistance from
another person to be reversed) scored lower on
some neuropsychological tests than those who had
never experienced severe hypoglycemia [16,17], and
cohort studies also suggested a modest associa-
tion between reported frequency of severe hypo-
glycemia, lower IQ, and slowed and more variable
reaction times [18,19]. In contrast, some longitudin-
al studies have failed to find any deleterious cogni-
tive effects of repeated severe hypoglycemia [20,21],
but a large study in type 2 diabetics (n = 16667) with
prolonged follow-up (27 years) found that hypo-
glycemia severe enough to require emergency room
attendance or hospitalization was a risk factor for
dementia [22]. It is possible that this association
may result from an effect of hypoglycemia on age-
related cognitive decline [23].

8.1.2 Thyroid disorders

The focus here is on under- and over-active thy-
roid states. Thyroid dysfunction may also be seen in
association with cognitive disorder in Hashimoto’s
encephalopathy (Section 6.13). A high prevalence of
thyroid dysfunction has been noted in a memory
clinic population, although the clinical relevance of
these findings is uncertain [24].

8.1.2.1 Hypothyroidism

Neuropsychiatric features complicating hypothy-
roidism are well recognized, popularized by Richard
Asher in his 1949 paper as “myxoedematous mad-
ness.” Interestingly, a number of Asher’s cases were
stated to have dementia (cases 4, 6, 13), one was
initially referred with a suspected diagnosis of AD,
and others were mentally slow, becoming more
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alert with treatment [25], these symptoms perhaps
reflecting neuropsychological deficits in addition to
neuropsychiatric features.

Hypothyroidism features ubiquitously in the text-
book rubric of “reversible dementia,” and few
patients presenting with memory complaints do
not have thyroid function tests checked. An exam-
ination of the evidence base, however, discloses
rather few convincing cases. In a literature search of
studies on the etiology of dementia, Clarnette and
Patterson [26] found only a single case due to
hypothyroidism in 2781 cases of reversible demen-
tia. Dugbartey [27] noted that hypothyroidism has
been associated with deficits in general intelligence,
complex attention and concentration, memory, per-
ceptual and visuoperceptual function, expressive
and receptive language, and executive/frontal func-
tions. A study of thyroid cancer patients on and
off thyroxine suggested that the memory defect in
delayed recall of verbal information could not be
solely attributed to reduced attentional resources
[28]. Hypothyroid patients were found to have
cognitive impairments that were predominantly
mnemonic in nature, and not simply indicative of
cognitive slowing, prompting the proposal that hip-
pocampal structure and/or function is disrupted in
hypothyroidism [29].

Subclinical hypothyroidism (SCH) is character-
ized by low levels of thyroid stimulating hormone
(TSH) but with normal levels of T4, T3, free T4, and
free T3, and may reflect incipient hypothyroidism.
Some studies have found cognitive performance
to be within the normal range in SCH [30] while
others have found mnemonic deficits less marked
than those in overt hypothyroidism [29,31]. A pos-
itive correlation between plasma thyroid hormone
(T4) level and cognitive function as assessed with
Mini-Mental State Examination (MMSE) has been
noted in euthyroid older women [32].

Because the risk of hypothyroidism, like demen-
tia, increases with age, the possibility that cogni-
tive impairment is a comorbid rather than a causal
relation in some cases cannot be ruled out. Mood
may also need to be taken into account [30]. Cur-
rently, there seems little justification in performing

thyroid function tests in all patients with cognitive
complaints unless there are other somatic and/or
neurological symptoms and signs pointing to the
possibility of thyroid dysfunction. However, at the
time of writing, TSH remained a mandatory test
in the revised guidelines for dementia investigation
promulgated by the European Federation of Neuro-
logical Societies [33].

8.1.2.2 Hyperthyroidism

Occasional reports of dementia associated with
hyperthyroidism with reversal upon correction of
thyroid status have appeared [34], but such cases
must be exceptionally rare.

A case control study of patients with newly diag-
nosed thyrotoxicosis of Graves’ type (a condition
originally described by Caleb Hillier Parry [35])
found subjective reports of cognitive deficits in
the toxic phase, but no impairment was found
on comprehensive neuropsychological testing [36],
contrasting with a case report of impairments of
attention, memory, and constructive skills in a
man with Graves’ disease, whose symptoms and
temporoparietal hypoperfusion on single-photon
emission computed tomography (SPECT) scanning
improved with a return to euthyroidism [37]. Cog-
nitive dysfunction in a patient with sporadic peri-
odic hypokalaemic paralysis and hyperthyroidism
has been reported [38].

Epidemiological studies have suggested that sub-
clinical hyperthyroidism is a risk factor for dementia
and AD [39,40].

8.1.3 Parathyroid disorders

8.1.3.1 Hypoparathyroidism

Idiopathic hypoparathyroidism, probably an
immune diathesis of the parathyroid glands, may
result in a variety of systemic and neurological
disorders, the latter including epileptic seizures,
extrapyramidal signs, altered mental state, signs of
raised intracranial pressure including papilledema,
neuromuscular hyperactivity (carpopedal spasm,
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muscle cramps, Chvostek’s and Trousseau’s signs),
as well as dementia. Many of these clinical fea-
tures may be explained by the accompanying
hypocalcemia, and reverse with its correction.

Dementia has been reported as the present-
ing sign of hypoparathyroidism [41–43], as well as
a postsurgical phenomenon [44], and in associa-
tion with other neurological features [45]. Demen-
tia in hypoparathyroidism, which reverses with
1,25-dihydroxycholecalciferol treatment, has been
documented [46], including a case associated with
normocalcemia [47].

8.1.3.2 Hyperparathyroidism

Occasional cases of cognitive impairment associ-
ated with hypercalcemia due to primary hyper-
parathyroidism have been reported, with reversal
after parathyroidectomy [48,49].

8.1.4 Adrenal hormone disorders

8.1.4.1 Cushing’s syndrome (hypercortisolism)

Most cases of Cushing’s syndrome, due to hypercor-
tisolemia, result from pituitary adenomas secreting
adrenocorticotrophic hormone (ACTH; Cushing’s
disease), others from ectopic ACTH-producing
tumors (usually in the lung), and adrenal cor-
tex tumors. Exogenous steroid, most often given
therapeutically for a wide variety of diseases,
neurological and otherwise, can also result in
cushingoid features. Complications include hyper-
tension, impaired glucose tolerance or diabetes,
osteoporosis, cushingoid habitus, cutaneous striae,
myopathy, and neuropsychiatric features such
as depression. Cognitive dysfunction may also
occur; experimental animal studies have shown the
hippocampus to be vulnerable to glucocorticoid
excess.

The cognitive impairments identified in Cushing’s
syndrome patients have varied between studies;
selective memory impairments were documented
in one case-control study [50], whereas selective
attention and visual spatial processing seemed

most affected in another report [51]. Another
study showed no differences in cognitive function
between patients with pituitary Cushing’s disease
and a control group composed of patients with
nonfunctioning pituitary adenomas, although the
scores of both groups for memory and attention
showed significant decrements compared to nor-
mative data [52], perhaps reflecting an effect of
pituitary tumors per se (Section 7.1.4). A study
comparing patients with Cushing’s syndrome, age-
matched healthy controls, and older subjects, sug-
gested that the performance of the first and third
groups was similar on a range of cognitive tests, and
hence that hypercortisolism exacerbates cognitive
aging [53].

Some studies have reported cognitive improve-
ment after pituitary surgery for Cushing’s disease
[50], while others document little or no change
in performance, suggesting long-lasting deleteri-
ous effects of hypercortisolism [54]. A follow-up
study found that verbal fluency and recall improved
after surgery, with an association noted between
improved verbal recall and decreased cortisol levels
and an increase in hippocampal volume assessed
using serial MRI. Patient age was a significant
factor in recovery, with younger patients regain-
ing and sustaining cognitive improvement more
quickly than older patients [55], an observation
which may support the notion of enhanced cog-
nitive aging in Cushing’s syndrome [53]. Although
cognitive improvement may occur up to 18 months
postsurgery [55], persistent subtle cognitive deficits
in the domains of memory and executive function
have been noted following cure of Cushing’s disease
in comparison with patients with nonfunctioning
pituitary macroadenomas [56].

8.1.4.2 Addison’s disease (hypocortisolism)

Addison’s disease may be associated with cog-
nitive impairment in the context of cerebral
forms of X-linked adrenoleukodystrophy (Sec-
tion 5.5.2.2), but reports of cognitive impair-
ment in isolated Addison’s disease have not been
identified.
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8.1.4.3 Conn’s syndrome (primary
hyperaldosteronism)

Gudin et al. [57] reported a 64-year-old woman
with a confusional state, disorientation, and ap-
athy, with investigation findings of hypokalemia,
metabolic alkalosis, raised aldosterone levels, and
radiological evidence of a suprarenal adenoma. A
seven-year history of decline in cognitive function
had been noted two years earlier, ascribed to vascu-
lar dementia because of hypertension and CT evi-
dence of cerebrovascular change. The patient’s con-
fusional state improved with ion replacement and
spironolactone, and following surgical removal of
the adenoma, the pre-existing cognitive decline also
improved. The authors suggested Conn’s syndrome
is a treatable cause of dementia, albeit extremely
rare.

8.2 Metabolic disorders

Discussed here are cognitive disorders related to
gastrointestinal disease (certain vitamin deficien-
cies such as thiamine deficiency are covered else-
where; see Section 8.3.1.1), respiratory disease, and
renal and electrolyte-related problems.

8.2.1 Gastrointestinal disease

8.2.1.1 Cobalamin (vitamin B12) deficiency

Addison’s original description of pernicious anemia
in 1853 included the clinical observation that “the
mind occasionally wanders.” Cobalamin (vitamin
B12), deficiency of which is the cause of pernicious
anemia, is a cofactor in several metabolic pathways.
Deficiency may also be associated with dementia;
indeed, this may be the sole manifestation, macro-
cytic anemia may be absent. The belief that vita-
min B12 deficiency is a reversible cause of dementia
became prevalent in the 1950s. Reversible demen-
tias in general are increasingly uncommon [58], and
convincing documentation of cognitive impairment
associated with vitamin B12 deficiency with reversal
on repletion is rare in the literature.

In a 17-year study of cobalamin deficiency, Heal-
ton et al. [59] recorded 18 cases of mental impair-
ment in 143 cases, eight with global dementia
and nine with recent memory loss; 11/18 recov-
ered completely with repletion. Chiu [60] found
25 cases of dementia attributed to B12 deficiency
reported between 1958 and 1995, 10 with marked
improvement on repletion; all had some hemato-
logical abnormality (anemia, raised mean corpus-
cular volume [MCV], hypersegmented neutrophils)
or neurological signs in addition to cognitive
impairment.

Reports with careful and sequential neuropsycho-
logical assessment are also sparse. The case
reported by Meadows et al. [61] was confounded
by a history of alcohol misuse. Another patient, a
health professional with marked clinical improve-
ment after repletion therapy, declined a repeated
neuropsychological assessment [62,63]. A report
claiming a subcortical dementia pattern associated
with vitamin B12 deficiency was based on clini-
cal observations, unsubstantiated by neuropsycho-
logical assessment [64]. In a study that examined the
cognitive profile in patients with vitamin B12 defi-
ciency, those who improved with repletion were said
to have more deficits in concentration, visuospatial
performance, and executive functions (as well as
more psychotic problems) than those who did not
improve, who had language problems and ideo-
motor apraxia. The profile was said to be distinct
from that in AD, although the study did not have an
AD comparator group [65].

A low vitamin B12 is not an uncommon find-
ing in patients with dementia or cognitive decline.
For example, in 170 consecutive patients diagnosed
with dementia, Teunisse et al. [66] found low vita-
min B12 in 26 (15%), all but one of whom ful-
filled the then current diagnostic criteria for AD.
At the group level, no patient improved with vita-
min B12 repletion, nor was there any evidence for
slowing of AD progression. One patient with a
sudden onset of cognitive decline after a respira-
tory tract infection did improve, but this may have
been coincidental with recovery from the infection.
Likewise, Eastley et al. [67] found low vitamin B12
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in 125 of 1432 consecutive clinic attendees (8.7%).
No demented patient improved with vitamin B12

repletion, although patients with cognitive decline
but without dementia did show improvement in
verbal fluency with repletion at the group level,
leading to the suggestion that vitamin B12 may
improve frontal lobe and language function in
patients with cognitive impairment. Hence, these
studies would seem to suggest that, in most cases,
a low vitamin B12 in a demented patient is a coex-
istent rather than a causal abnormality, perhaps
related to prolonged dietary neglect and weight loss
[68] (a common observation before AD diagnosis).
A low vitamin B12 measurement has a low positive
predictive value [60,69]. Vitamin B12 estimation is
now said to be “often required” rather than manda-
tory in the investigation of suspected dementia
[33]. However, using surrogate measures of vita-
min B12 status, namely serum methylmalonic acid
and holotranscobalamin, in nondemented elderly
patients, likely vitamin B12 deficiency was found
to be associated with lower cognitive function
scores [70].

A separate issue is whether low vitamin B12

levels may be a risk factor for the development of
dementia. Some studies have found low vitamin B12

and folate with elevated levels of total homocysteine
in AD patients, independent of nutritional status
[71,72], and some epidemiological studies have sug-
gested that low vitamin B12 may increase the risk of
developing AD [73]. The mechanism is not known,
but a hypothesis has been proposed suggesting that
functional vitamin B12 deficiency contributes to the
pathogenesis of AD [74].

8.2.1.2 Cobalamin C disease

Cobalamin C disease, combined methylmalonic
aciduria and homocystinuria, is an inborn error of
cobalamin metabolism with an autosomal reces-
sive mode of inheritance resulting from muta-
tions in the MMACHC gene on chromosome 1p34
(OMIM#277400). Most cases have neonatal onset
but occasional cases with adolescent or adult
onset have been described [75,76]. The phenotype

encompasses dementia, myelopathy, neuropsychi-
atric features, and thromboembolic phenomena.
The dementia sometimes responds to intramus-
cular or intravenous hydroxycobalamin treatment;
therefore, although this is a rare disorder, the
diagnosis is worth considering in young adults with
a suggestive phenotype.

8.2.1.3 Gluten sensitivity and celiac disease

The neurological associations of gluten sensitiv-
ity, with or without bowel disease (celiac disease),
are protean, the most common being epilepsy,
cerebellar ataxia, axonal neuropathy, myelopathy,
myoclonus, intracerebral (especially occipital) cal-
cification, migraine, and cerebral vasculitis with
encephalopathy [77], as well as neurological seque-
lae following dissemination of enteropathy-type
T-cell lymphoma, which may complicate the disease
[78].

A presenile dementia of uncertain etiology has
been reported in celiac disease, most patients fail-
ing to respond to a gluten-free diet [79]. Hu et al. [80]
reported a series of 13 patients seen over a 35-year
period with cognitive impairment coincident with
gastrointestinal symptom-onset or exacerbation. A
frontosubcortical pattern of cognitive impairment
was said to be typical; many patients had concur-
rent ataxia or neuropathy. In three patients, cogni-
tive function was reported to improve or stabilize on
gluten withdrawal.

8.2.1.4 Pellagra

This condition, a deficiency of vitamins of the B
group, including but not necessarily confined to
niacin (nicotinic acid, nicotinamide), is sometimes
remembered as the “3Ds”: diarrhoea, dermatitis,
dementia; or sometimes 4Ds (plus death). As far
as can be ascertained, the nature of this dementia
has not been described fully. A pellagra encephalop-
athy of alcoholic etiology has been described [81],
but alcohol per se may contribute to any cog-
nitive impairment irrespective of vitamin status
(Section 8.3.1).
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8.2.2 Respiratory disorders

In addition to the disorders considered here, respi-
ratory compromise with hypoxemia may contribute
to the cognitive dysfunction seen in obstructive
sleep apnea–hypopnea syndrome (Section 11.1.1).

8.2.2.1 Chronic obstructive pulmonary
disease (COPD)

A number of studies have examined neuropsycho-
logical function in patients with chronic obstructive
pulmonary disease (COPD), and in general, have
found impairments in comparison with control
groups [82–85]. For example, a study of 36 patients
with COPD reported that just under half had a spe-
cific pattern of cognitive deterioration characterized
by impairments of verbal and visual memory tasks
despite preserved visual attention, and with diffuse
worsening of other functions. These changes were
distinct from those seen in AD patients, and were
correlated with age and duration of respiratory fail-
ure [86]. In a further study from the same group,
decline of verbal memory was found to parallel that
of overall cognitive function, due to impairment of
both active recall and passive recognition of learned
material. Poor adherence to medication was associ-
ated with abnormal delayed recall scores [87]. In a
follow-up study, onset of depression was identified
as a risk factor for cognitive decline [88].

Roehrs et al. [89] found deficits in complex rea-
soning and memory in COPD patients as well as
motor skills, the latter sensitive to hypoxemia. One
study found chronic oxygen therapy was associ-
ated with a small improvement in neuropsycholog-
ical functioning, with a suggestion that continuous
therapy was better than solely nocturnal treatment
[83]. Another group reported MMSE abnormalities
in COPD patients, affecting recent memory, con-
struction, attention, language, and orientation, the
cognitive abnormalities correlating with functional
abnormalities; many were classified as questionable
or mild dementia. These impairments could not be
explained by depression [90]. However, a study by
Kozora et al. [91] found that most COPD patients

studied were similar to controls on most cognitive
tests, and easily distinguishable from mild AD, the
exception being reduced letter fluency. The fact that
three-quarters of the patients were receiving sup-
plementary oxygen therapy may account for the
preservation of cognitive function in this study.

In a community-based longitudinal study of cog-
nitive impairment and dementia, COPD was noted
to be more likely in patients with nonprogressive
cognitive decline; that is, in those patients in whom
an original diagnosis of dementia was not con-
firmed at follow-up [92].

8.2.2.2 Carbon monoxide poisoning

The French physiologist Claude Bernard (1813–
1878) was the first to elucidate the mechanism
of carbon monoxide (CO) poisoning. A delayed
encephalopathy may develop a few days to weeks
after CO poisoning, with or without a history of
acute poisoning, sometimes with extrapyramidal
or pyramidal signs and psychosis. MRI abnormal-
ities occur in about 12% of patients, most typically
widespread periventricular white matter changes,
although basal ganglia involvement is also reported
[93,94].

A prospective study of episodes of CO poison-
ing found cognitive deficits in 30% of patients [95].
Occasionally these deficits may be very focal, as for
example in a renowned case of visual form agnosia
[96], and a case of apparent visual motion blindness
(akinetopsia) has been reported [97]. Delayed onset
of cognitive (including memory) problems by up to
30 days after acute poisoning may occur, associated
with extensive diffuse white matter change. Delayed
atrophy of the fornix, correlating with decline on
tests of verbal memory, has also been reported in
patients poisoned with CO [98].

The complications of CO poisoning typically
improve with time, but patients may sometimes
be left with permanent neurological and/or neu-
ropsychological sequelae [96]. Acute treatment
with hyperbaric oxygen is indicated [99], and
cholinesterase inhibitors have been used off-licence
to try to ameliorate cognitive sequelae [100].
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8.2.3 Renal and electrolyte disorders

8.2.3.1 Renal failure, dialysis

A relation between chronic kidney disease (CKD)
and cognitive decline might be anticipated because
of the prevalence of cardiovascular risk factors in
CKD patients. However, a population-based cohort
of nearly 8000 older adults followed up for seven
years identified no increased risk of cognitive
decline in those with a low estimated glomerular fil-
tration rate (eGFR) at baseline. A rapid decline in
eGFR was associated with global cognitive decline
and incident vascular dementia, suggesting that the
association between the two is probably mediated
by vascular mechanisms [101]. Increasing severity of
CKD is probably associated with progressive cogni-
tive decline [102]. Cognitive impairment is common
in patients receiving hemodialysis [103].

A syndrome of “dialysis dementia,” now very rare,
used to be seen in chronic dialysis patients and was
thought to be related to aluminum in dialysate flu-
ids; reduction of aluminum levels in these fluids
was associated with a marked reduction in the inci-
dence of this condition. Clinically, patients devel-
oped hesitant speech and even speech arrest, which
progressed to cognitive decline with delusions, hal-
lucinations, epileptic seizures, myoclonus, asterixis,
and gait abnormalities. The electroencephalogram
(EEG) showed slowing with multifocal bursts of
more profound slowing and spikes. Patients typi-
cally died within six to 12 months [104]. Alzheimer-
like changes in tau protein were demonstrated in
the brains of patients on renal dialysis [105].

8.2.3.2 Central pontine (and extrapontine)
myelinolysis; osmotic demyelination
syndrome

Central pontine myelinolysis was first described as
such by Adams et al. [106], as a relatively sym-
metrical destruction of myelin sheaths in the basal
pons and sometimes extending beyond (hence
“extrapontine myelinolysis”), often associated with
hyponatremia or its treatment, and particularly
but not exclusively seen in chronic alcoholics or

other patients with chronic undernourishment. As
change in serum osmolality is common to many
of the recognized precipitating factors, the terms
osmotic demyelination or osmotic myelinolysis are
preferred by some authors [107]. Clinical presenta-
tions include quadriparesis, bulbar palsy, epileptic
seizures, and locked-in syndrome.

Although some patients recover completely from
profound neurological deficits without residual dis-
ability [108], postrecovery cognitive deficits have
been documented. Odier et al. [109] noted sub-
cortical/frontal dysfunction in survivors, which sig-
nificantly limited return to normal activities. “Cal-
losal dementia” (Section 1.3.4), a disconnection syn-
drome, has been described in association with cen-
tral and extrapontine myelinolysis [110].

8.3 Toxin-related disorders

8.3.1 Alcohol-related disorders

Alcohol is probably the most widely available and
socially tolerated neuroactive substance. A meta-
analysis of prospective studies suggests moderate
alcohol consumption is protective against demen-
tia although the question of heavy drinking remains
uncertain [111,112], some studies indicating that
escalating alcohol dosage unequivocally increases
the risk of late life dementia [113], an association
perhaps related to genetic susceptibility (carriage of
the apolipoprotein E epsilon-4 allele [114]). Chang-
ing drinking habits in the population, especially the
binge culture among young people, has prompted
the speculation that an epidemic of alcohol-related
dementia may occur in the future [115]. Wernicke–
Korsakoff syndrome is probably the best known
of the syndromes of cognitive impairment related
to alcohol misuse (amnesia in this context was
described by Robert Lawson some years before Kor-
sakoff [116]), although it can occur in the absence
of a history of alcohol use. Other syndromes of
cognitive impairment, which might also be encom-
passed under the rubric of “alcohol-related” as
alcohol overuse is a risk factor for their develop-
ment, include subdural hematoma (Section 7.3.1),
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pellagra (Section 8.2.1.4), and obstructive sleep
apnea–hypopnea syndrome (Section 11.1.1).

8.3.1.1 Wernicke–Korsakoff syndrome (WKS)

The neurological and neuropsychological con-
sequences of the Wernicke–Korsakoff syndrome
(WKS) due to thiamine (vitamin B1) deficiency
have been studied extensively [117]. Although most
cases relate to alcohol misuse with consequent
undernutrition, WKS may also occur in the con-
text of malnutrition from other causes, such as
prolonged vomiting in pregnancy (hyperemesis
gravidarum), parenteral nutrition with inadequate
supplementation, hunger strike, bariatric surgery,
or with other diencephalic lesions such as tumors or
trauma [118].

WKS was classically described as a neurologi-
cal disorder characterized by nystagmus, ophthal-
moplegia, and ataxia, and a neuropsychological
syndrome of selective anterograde amnesia with rel-
ative preservation of intelligence, sometimes com-
plicated by confabulations [119]. For this rea-
son, Korsakoff patients have often been used in
group studies to compare their cognitive profile
with that seen in other cognitive disorders such
as AD and Huntington’s disease [120]. However,
with the development of new WKS diagnostic cri-
teria [121], the phenotypic spectrum broadened to
include patients without the classical neurologic-
al signs. In this broader group, there is evidence
for generalized cognitive impairment or dementia
(“thiamine dementia”) rather than solely selective
(“diencephalic”) amnesia [122].

Neuropathologically, WKS is characterized by
shrinkage of the mammillary bodies, structures
around the third and fourth ventricles (i.e., the
diencephalon), and the medial thalamus. Which
of these is the substrate of the cognitive impair-
ments has been argued, but generally the mammil-
lary bodies are not thought to be relevant [123],
with better correlations for the medial thalamus,
although the exact nuclei involved (mediodorsal,
centromedial, anterior) may vary [124–126]. There
may be loss of hippocampal volume but without

neuronal loss [127], but this does not necessar-
ily imply normal hippocampal function; functional
imaging studies have suggested loss of hippocam-
pal memory encoding in WKS patients, possibly as
a consequence of hippocampal-thalamic involve-
ment [128].

Alcohol cessation must be the first step in man-
agement of any alcohol-related cognitive problem.
Because of the potential reversibility of the cogni-
tive deficits of WKS with thiamine repletion, and
the fact that many cases were previously overlooked
on clinical grounds, there is a strong case for mak-
ing a presumptive diagnosis of WKS in any patient
with a history suggestive of nutritional deficiency,
with or without alcohol dependence, albeit that
both the definitive dosage and route of thiamine
treatment remain unknown [118]. Other options
have only been mentioned anecdotally. The selec-
tive noradrenaline reuptake inhibitor reboxetine
has been reported to produce cognitive improve-
ments in WKS [129]. Rodent models of WKS show
loss of cholinergic innervation and reduced acetyl-
choline release, and loss of neurons in the nucleus
basalis of Meynert might also be relevant to WKS
pathogenesis, observations which may justify use of
cholinesterase inhibitors for the memory defect in
WKS [130].

8.3.1.2 Alcohol-related dementia,
alcohol-induced dementia

Whether alcohol (i.e., ethanol) per se is neuro-
toxic and may cause cognitive decline indepen-
dent of thiamine deficiency remains a subject of
debate [122,131]. Although provisional diagnostic
criteria for alcohol-related dementia have been pro-
posed [132], this syndrome may be better con-
ceptualized as a multifactorial “alcohol-induced
dementia,” related to comorbidities including nutri-
tional deficiency (perhaps causing prior episodes
of WKS); damage to other organs, particularly the
liver, with repeated episodes of hepatic encephalop-
athy; head injury; subdural hematoma; epilep-
tic seizures; hydrocephalus; Marchiafava–Bignami
disease (Section 8.3.1.3); obstructive sleep apnea
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(Section 11.1.1); and pre-existing cognitive status.
Concurrent morbidity such as cerebrovascular dis-
ease and/or AD might also contribute to cogni-
tive decline. Many patients conforming to the pro-
posed criteria might also conform to the criteria
for WKS [121]. An important differential diagnosis
is behavioral variant frontotemporal dementia (Sec-
tion 2.2.1), in which disinhibition and hyperorality
may include alcohol overconsumption.

Neuroradiological studies of alcoholics with no
obvious history of nutritional deficiency show vol-
ume loss, particularly in prefrontal cortex white
matter [133]. Neuropathological studies have shown
cerebral atrophy due to white matter loss, and
neuronal and synaptic losses in some areas such
as the frontal association cortex [134], changes
likened by some authors to those seen in frontotem-
poral dementia [135], but no specific form of neu-
ropathology has been identified [122]. There is
relative sparing of other areas including the hip-
pocampus [127]. In keeping with these observa-
tions, frontal type cognitive deficits are often seen
(planning, organization, problem solving, lack of
insight, disinhibition, perseveration), along with
visuospatial impairments [136], but again no spe-
cific profile has emerged. It is argued that, with
appropriate assessment, most aspects of cognition
will be found affected, but with considerable hetero-
geneity between patients, related at least in part to
current alcohol consumption. Cognitive improve-
ment with alcohol abstinence is recognized. It is
possible that cases of “alcohol-related dementia”
are, in fact, cases of “atypical” or, more plaus-
ibly, unrecognized WKS [122]. Donepezil treatment
for alcohol-related dementia has been reported
[137].

8.3.1.3 Marchiafava–Bignami disease

Marchiafava–Bignami disease is a rare alcohol-
associated disorder characterized by demyelin-
ation and necrosis of the corpus callosum; lesions
may also occur in the putamen. Clinically, a dis-
tinction may be drawn between those cases in
which impaired consciousness occurs, with a poorer

prognosis, and those in which consciousness is
preserved. Cognitive impairment may occur in both
the prodrome and recovery phase of the former,
as may interhemispheric disconnection syndromes
(Section 1.3.4) [138,139]. The latter may include
combinations of apraxia, agraphia, and Balint’s syn-
drome, along with neurobehavioral features [140], a
syndrome which has been labeled “callosal demen-
tia” [110].

8.3.1.4 Acquired (non-Wilsonian)
hepatocerebral degeneration (ANWHCD)

Acquired (non-Wilsonian) hepatocerebral degener-
ation (ANWHCD) has been characterized as a syn-
drome of fixed or progressive neurological deficits,
including dementia, dysarthria, gait ataxia, inten-
tion tremor, parkinsonism, spastic paraparesis, and
choreoathetosis, as a consequence of cerebral
degeneration in the context of repeated episodes
of hepatic encephalopathy, the liver damage usu-
ally following alcohol misuse. It is argued that, indi-
vidually, such episodes of hepatic encephalopathy
may be reversible, but that, cumulatively, there is
a degenerative effect on neural tissue, with micro-
cavitary changes in layers V and VI of the cortex,
underlying white matter, basal ganglia, and cere-
bellum [141,142]. Others have doubted whether this
condition exists as a separate entity. Cases with
features overlapping those of extrapontine myelin-
olysis (Section 8.2.3.2) have been reported [143].
Structural MRI of the brain shows high signal inten-
sity on T1-weighted images in the internal pallidum,
and sometimes in the putamen, caudate nucleus,
internal capsule, mesencephalon, and cerebellum,
changes which are thought to reflect accumula-
tion of manganese [142]. Manganese poisoning
or manganism, first described in miners of man-
ganese ore, is a recognized cause of a parkin-
sonian syndrome with neuropsychiatric features.
Although the movement disorder of ANWHCD may
sometimes be helped (with levodopa, branched-
chain amino acid therapy, trientine, liver transplant-
ation), no report of cognitive improvement has been
identified.
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8.3.2 Solvent exposure

Long and intense occupational exposure to certain
organic solvents may cause chronic organic sol-
vent neurotoxicity (e.g., painter’s encephalopathy),
manifested as neuropsychiatric symptoms and cog-
nitive decline, particularly slowed information pro-
cessing and reaction time, easy fatigue, and impair-
ments on tests of frontal lobe function and memory
for new material [144–146]. Individuals with lower
levels of education may be at greater risk of poor
cognition after solvent exposure [147].

Recreational solvent inhalation (“glue sniffing”)
may produce impairments in memory, attention
and concentration, and nonverbal intelligence in
the long-term [148], as well as neuropsychiatric
symptoms.

8.3.3 Domoic acid poisoning (amnesic
shellfish poisoning)

In Prince Edward Island, Canada, an outbreak
of food poisoning following ingestion of mussels
occurred in 1987. Patients presented within hours of
eating mussels with diarrhea, vomiting, abdominal
cramps, with or without headaches. Other features
included delirium, epileptic seizures, myoclonus,
ataxia, alternating hemiparesis, and complete exter-
nal ophthalmoplegia. In the acute stages, EEG
showed slowing and positron emission tomog-
raphy (PET) scanning showed hypometabolism
of the amygdala and hippocampus. Gradual and
spontaneous recovery occurred over three months
but some patients were left with residual antero-
grade amnesia, temporal lobe epilepsy, and motor
neuronopathy or sensorimotor axonal neuropathy.
Autopsy studies of nonsurvivors showed cell loss
and astrocytosis in the amygdala and hippocam-
pus. The syndrome of amnesic shellfish poison-
ing was shown to be due to production of domoic
acid, an excitotoxin that binds to kainate-type gluta-
mate receptors, produced in mussels infested with
the phytoplankton Nitzschia pungens. The diagno-
sis can be made using a mouse bioassay for the
toxin, although the condition is no longer seen in

Canada as shellfish are now screened for the toxin
[149].
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The spectrum of infectious diseases causing cogni-
tive impairment and dementia has changed over the
past century. Whereas neurosyphilis was once com-
mon, now infection with human immunodeficiency

virus (HIV) and herpes viruses, and diseases caused
by prions (Section 2.5) are perhaps the most notable
infectious causes of cognitive decline and dementia
[1,2].
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9.1 Encephalitides and
meningoencephalitides

Infection of the brain parenchyma with or without
involvement of the surrounding meninges may be
caused by a wide variety of organisms, most usu-
ally viruses, but sometimes protozoa, rickettsiae,
or fungi [3]. Despite intensive investigation, a
causative organism is not always found and treat-
ment may of necessity be empirical, covering the
most likely candidate organisms.

Encephalitis is often a medical emergency, requir-
ing intensive supportive care and control of epilep-
tic seizures. With the advent of antiviral agents such
as aciclovir, mortality has declined considerably,
leaving increased numbers of survivors who may
have neuropsychological sequelae.

Encephalitides and meningoencephalitides, cov-
ered elsewhere, include Rasmussen’s syndrome of
chronic encephalitis and epilepsy (Section 4.2.3),
in which an infective etiology remains a possibil-
ity; and chronic inflammatory meningoencephali-
tis, a term sometimes used for Sjögren’s syndrome
(Section 6.6).

9.1.1 Herpes simplex encephalitis (HSE)

Herpes simplex virus type 1 (HSV) is the most com-
mon recognized cause of encephalitis, although it
is more often clinically suspected than clinically
proved [4], and there is a broad differential diag-
nosis including stroke, meningitis, subarachnoid
hemorrhage, sinus thrombosis, and even central
nervous system (CNS) tumor [5]. HSE produces
acute necrotizing encephalitis of orbitofrontal and
temporal lobes, sometimes involving insular and
cingulate cortices, with overlying meningitis. Typi-
cally, the presentation is with fever and headache,
sometimes with behavioral changes, which may
progress to clouding of consciousness and coma,
sometimes complicated by focal or secondarily gen-
eralized seizures [6]. However, presentation with
isolated memory impairment has been described
[7]. Magnetic resonance imaging (MRI) of the brain

may show focal edema in the medial temporal
lobes, orbital surface of the frontal lobes, insu-
lar and cingulate cortex, sometimes asymmetri-
cally, with gadolinium enhancement. Cerebrospinal
fluid (CSF) is typically under raised pressure with
a lymphocytic pleocytosis (10–200 cells/mm3) with
a raised protein (0.6–6.0 g/L) but a normal glucose
level. CSF polymerase chain reaction (PCR) for HSV
is a highly sensitive and specific test for confirma-
tion of the diagnosis, although false negatives may
be encountered early (�48 hr) or late (�10 d) in
the disease process. Electroencephalography (EEG)
is invariably abnormal, showing nonspecific disor-
ganized and slow background rhythm in the early
stages, with epileptiform abnormalities such as high
voltage periodic lateralizing epileptiform discharges
(PLEDs) appearing later. Because early and appro-
priate treatment of HSE (e.g., aciclovir) has been
shown to reduce mortality and morbidity signifi-
cantly, brain biopsy may be considered to establish
the diagnosis in atypical cases, or when a tumor in
the temporal lobe is considered part of the differ-
ential diagnosis. The role of steroids remains uncer-
tain, with no randomized study having yet been
performed, although a retrospective study found a
poorer outcome in patients who did not receive
steroids [8].

Cognitive sequelae of HSE are well recognized
[9–12], although cognitive recovery occurs in many
patients [13]. The typical profile of cognitive impair-
ment comprises deficits of new learning in both
verbal and visual domains. In addition to amnesia,
deficits in retrograde memory, executive functions,
and language (with mild anomia) may be found,
albeit less frequently. Semantic impairments akin to
those seen in semantic dementia (Section 2.2.3) may
occur as a consequence of temporal lobe damage
[14]. Impaired autobiographical memory may occur
in patients with bilateral damage [15].

Although persistent anterograde and retrograde
(global) amnesia after HSE is well described in
patients selected for symptoms of memory impair-
ment, it seems to be an unusual complication,
although the risk is greater (by 2–4 times) than in
nonherpetic encephalitis. Greater deficits in verbal
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memory, verbal semantic functions, and visuoper-
ceptual functions have been noted in herpetic as
compared to nonherpetic encephalitis [16,17]. Exec-
utive deficits may also be seen following recov-
ery from HSE, presumably reflecting orbitofrontal
injury [12]. Duration of transient encephalitic
amnesia correlates with neuropsychological out-
come [13,18].

Amnesia may occur despite appropriate treat-
ment of HSE with aciclovir, but shorter delay
between symptom onset and treatment may be
associated with better outcome.

The severity of the amnesic syndrome is related
to the severity of damage, judged neuroradiologic-
ally, to medial limbic structures (hippocampus and
amygdala). Intractable epilepsy and affective disor-
der may contribute to neuropsychological outcome.

9.1.2 Herpes zoster encephalitis

Varicella zoster virus (VZV), a herpes virus, may lay
dormant for many years after a primary infection,
to be reactivated as herpes zoster or shingles, which
may sometimes be complicated by an encephalitis
(herpes zoster encephalitis, HZE).

Neuropsychological sequelae of HZE were
reported by Hokkanen et al. in nine immunocompe-
tent patients. These included forgetfulness, slowing
of thought processes, emotional and personality
changes, and impaired cognitive ability, suggesting
a subcortical type of impairment [19]. In con-
trast, a report of eight patients undergoing neuro-
psychological assessment four to 52 months after
the onset of HZE found no significant differences
between patients and controls [20]. The discrep-
ancy in these studies may relate to the timing of
assessment, which was carried out in most of the
patients in the Hokkanen et al. study directly after
they were able to cooperate adequately after the
acute stage of infection [19].

Dementia has been reported following HZE, but
it is not clear whether there was an etiological rela-
tionship or whether this was chance concurrence of
a neurodegenerative dementia in an elderly individ-
ual [21].

9.1.3 Adenovirus encephalitis

Cases of adenovirus encephalitis with severe
amnesia, resembling that seen in herpes simplex
encephalitis, have been reported [16].

9.1.4 Coxsackie virus encephalitis

A possible case of subcortical type cognitive impair-
ment has been described following encephalitis due
to this RNA virus [22].

9.1.5 Herpes simplex type 2 encephalitis

Herpes simplex type 2 encephalitis is most com-
monly encountered in the neonatal period, but
occasional adult cases have been described with
mild widespread cognitive difficulties [23] or
dementia [24], with CSF lymphocytic pleocytosis
and low CSF glucose but with unremarkable brain
imaging. Cognitive normalization following anti-
viral (acyclovir, valaciclovir) treatment was reported
in one case [24].

9.1.6 Human herpes virus-6 infection

Infection with human herpes virus-6 (HHV-6)
causes fever and a rash (exanthema subitum) in
children; a benign, self-limiting condition. Seropos-
itivity occurs in most children by the age of three
years, with a decline after the age of 40 years.
Symptomatic infection in adults is very rare, mostly
occurring in the context of immunosuppression.
Cases of persistent amnesia (anterograde and retro-
grade) have been reported as a consequence of
HHV-6 infection [25]; for example, in the context
of immunosuppression associated with lung trans-
plantation [26], or bone marrow and stem cell trans-
plantation [27–29]. High intensity signal change
may be seen on brain MRI in the medial temporal
lobe including the hippocampus; hence, this may
be considered a form of nonparaneoplastic limbic
encephalitis (Section 6.12.2). Response of amnesia
to antiviral treatment is noted. Similar cases have
been seen rarely with an HHV-7 infection [30].
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9.1.7 Japanese encephalitis

Japanese encephalitis (formerly known as Japanese
type B encephalitis) is caused by an RNA flavivirus,
which has its reservoir in pigs, birds (heron, egrets),
cows, and buffalo, and is spread by mosquitoes,
most commonly Culex but also Anopheles, with
humans a “dead-end” host. Japanese encephalitis
is an example of the zoonotic arboviral encephali-
tides, and causes disease epidemics in the monsoon
months in Asia [31]. According to one review, 20%
of survivors have severe cognitive and language as
well as motor impairment [32]. A follow-up study
of more than 600 survivors in India reported higher
cerebral dysfunction, especially memory and con-
centration, in more than half of the cases, with grad-
ual improvement over time [33].

9.1.8 Rotavirus encephalitis

A case with cognitive impairment has been reported
[16], although this is likely to be the exception rather
than the rule.

9.1.9 Subacute sclerosing panencephalitis
(SSPE)

Subacute sclerosing panencephalitis (SSPE) is usu-
ally a disorder of late childhood or early adoles-
cence due to reactivation of the measles virus infec-
tion causing progressive inflammation and gliosis
of the brain. The clinical phenotype is character-
ized by behavioral change, myoclonic jerks, epilep-
tic seizures, abnormalities in vision often due to a
necrotizing retinitis, and progressive dementia, fol-
lowed by pyramidal signs, stupor, decorticate pos-
tures, and death. Characteristic investigation find-
ings include antibodies against the measles virus
and oligoclonal bands in CSF, a pathognomonic EEG
signature with 2- to 3-per second periodic bursts of
high voltage waves, and periventricular and subcor-
tical white matter change on MRI. There is no effec-
tive treatment currently, although oral isoprinosine
and intrathecal or intraventricular �-interferon may
prolong survival [34].

Only occasional adult-onset cases have been
reported [35,36], usually with the characteristic clin-
ical picture, but one atypical case presenting with a
“pure cortical dementia” without movement disor-
der has been presented [37]. The clinical description
was of initial apathy, disorientation in time, psycho-
motor slowing, and depression, followed three years
later by verbal perseverations, anomia, phonemic
paraphasia, dysgraphia, dyslexia, ideomotor and
ideational apraxia, with Mini-Mental State Exami-
nation score of 9.5/30. No more detailed neuropsy-
chological assessment was presented. Serial brain
MRI showed progressive generalized cerebral atro-
phy.

9.1.10 Tick-borne encephalitis

Cognitive impairment has been described as a
long-term complication of tick-borne encephal-
itis, specifically deficits in memory, concentration,
verbal fluency, and verbal learning [38]. A study
from Poland has suggested that amnestic cognitive
impairment may be a long-term sequel of the illness
[39].

9.1.11 Postencephalitic parkinsonism,
encephalitis lethargica, von Economo disease

The exact relationship of this condition, which
occurred in epidemic proportions following the
First World War, to brain infection remains uncer-
tain; a suspected relationship to influenza infec-
tion has not been corroborated by examination
of archival tissues. Basal ganglia autoimmunity
may play a role in pathogenesis (as in Syden-
ham’s chorea; Section 6.14). Occasional cases
of encephalitis lethargica still occur, the clinical
picture generally dominated by movement disor-
ders (parkinsonism, dystonia, oculogyric crises,
myoclonus) and neuropsychiatric features [40].
Neuropsychological features have been little stud-
ied, but in one case, a general cognitive decline
was seen initially, particularly affecting memory
and executive functions, which improved over
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time concurrent with cognitive rehabilitation
strategies [41].

9.2 Meningitides

The meningitides are infections of the meningeal
coverings of the brain (pia, arachnoid, dura mater),
sometimes with involvement of the underlying
brain parenchyma (meningoencephalitis; Section
9.1). Meningitis may be caused by a wide variety
of organisms, including bacteria, viruses, fungi, and
protozoa (see Section 9.4.3 for tuberculous menin-
gitis) [42,43].

9.2.1 Bacterial meningitis

Although neurological recovery is now the norm
when bacterial meningitis is promptly diagnosed
and appropriately treated in adults, functional
impairments precluding return to employment may
persist, particularly in the cognitive domain.

One cohort study of adult patients found impair-
ments in psychomotor performance, concentration,
visuoconstructive capacity, and memory functions
compared to healthy controls, a pattern said to
resemble the subcortical type of cognitive impair-
ment [44]. Deficits were found in 73% of patients in
this study whereas in another study [45] only 27% of
cases were impaired, although both suggested that
pneumococcal meningitis had a worse cognitive
outcome than meningococcal meningitis. This dif-
ferential outcome according to infecting organism
was not found in the study of Schmidt et al. [46], in
which a history of alcoholism, a recognized predis-
posing cause for pneumococcal meningitis, was an
exclusion criterion. This study found impairments
in short-term and working memory and in executive
tasks, with additional difficulties in language and
visuoconstructive function. Reduced brain volume
and increased ventricular volume were noted in
neuroradiological studies, and white matter lesions
correlated negatively with short-term and working
memory performance. A pooled analysis found sim-
ilar proportions with cognitive impairment after

pneumococcal and meningococcal meningitis, but
the former group performed worse on memory
tasks and tended to be cognitively slower, and
impairment was stable over time [47]. A long-term
follow-up study found normalization of cognitive
function over a period of nine years [48].

9.2.2 Viral meningitis

Viral meningitis is generally considered a benign,
self-limiting condition without cognitive sequelae.
Mild cognitive impairment has been reported fol-
lowing viral meningitis due to enterovirus, myxo-
virus, and herpes virus infection [49], but follow-
up studies to see whether such deficits progress,
reverse, or remain static are awaited. Schmidt et al.
found impairments in cognitive performance in
viral meningitis patients in similar domains as in
bacterial meningitis patients, but these were less
severe and lacked the neuroradiological correlates
found in bacterial meningitis patients [46].

9.2.3 Fungal meningitis

Meningitis due to the fungus Cryptococcus neofor-
mans has been reported to mimic both vascular
dementia [50] and Alzheimer’s disease (AD) [51].

9.3 Human immunodeficiency virus (HIV)
and related conditions

Human immunodeficiency virus (HIV; originally
named human T-lymphotropic virus type III,
HTLVIII) is the best known of the retroviruses and
is the causative agent of the acquired immuno-
deficiency syndrome (AIDS) pandemic. In the body,
HIV spreads hematogenously and is neurotropic,
probably entering the brain within blood-derived
macrophages. Neurological complications are
prominent in HIV infection [52,53]. Pathogenesis
is thought to be multifactorial, related to pri-
mary HIV infection, opportunistic CNS infection
(e.g., with toxoplasmosis, cryptococcal menin-
gitis, cytomegalovirus encephalitis, tuberculous
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meningitis, neurosyphilis, progressive multifocal
leukoencephalopathy related to John Cunningham
[JC] virus activation), or tumor formation (CNS
lymphoma), sometimes resulting in dementia.
Concurrent substance misuse and mood disorder
may also contribute to cognitive impairment in
some cases.

9.3.1 HIV dementia, AIDS dementia;
HIV-associated neurocognitive
disorder (HAND)

Cognitive impairment associated with HIV infec-
tion in the absence of mood disorder or oppor-
tunistic infection was recognized soon after the HIV
epidemic was first defined, ranging from psycho-
motor slowing and mental dullness through to
frank dementia [54]. Criteria for the diagnosis
of HIV dementia and lesser degrees of cognitive
impairment, HIV-associated neurocognitive disor-
der (HAND), have been proposed [55] and updated
[56]. Assessment of cognition in the context of
HIV infection may be confounded by other fac-
tors including drug and alcohol misuse, educational
attainment, and head injury.

Dementia as the initial manifestation of HIV
infection has been reported [57], with more rapid
progression in association with advanced immuno-
suppression (CD4 count �200), and hence in paral-
lel with progressive systemic disease. The neuropsy-
chological profile of HIV dementia is characterized
by psychomotor slowing, memory impairment (typ-
ically impaired free recall with relatively preserved
recognition recall), and executive dysfunction, all
suggestive of a subcortical pattern of dementia.
There may be concurrent motor problems with
gait and postural reflexes, and impaired reac-
tion times. Neuropsychological deficits correlate
with neuroradiological and neuropathological stud-
ies indicating frontostriatal involvement, although
cortical areas may also be affected with disease
evolution [58,59].

Treatment with antiretrovirals, and particularly
combination highly active antiretroviral treatment
(HAART), has resulted in a dramatic decline in

the incidence of HIV dementia [60,61], but with
increased patient survival, there has been an
increase in the prevalence of HAND, with around
50% of patients in the CHARTER Study having neu-
ropsychological impairments [62] with slowness,
and difficulties in planning and concentration. In
addition, there may also have been a change in
disease phenotype, with more cortical features and
a resemblance to AD [63]. Persistent neuroinflam-
mation may lead to accelerated neurodegenerative
changes and pathological overlap with AD, deposi-
tion of amyloid plaques being a common finding
in HIV infection, possibly as a consequence of the
action of antiretroviral medications on amyloid-�

metabolism [64,65].

9.3.2 Progressive multifocal
leukoencephalopathy (PML)

Progressive multifocal leukoencephalopathy (PML)
is a white matter disorder related to JC virus acti-
vation. It was rarely seen other than in the con-
text of HIV-induced immunosuppression, but cases
related to treatment of multiple sclerosis with natal-
izumab have caused concern in recent years [66].
Hemiparesis, hemianopia, and dementia are com-
mon clinical features of PML. One series from the
early years of the AIDS pandemic, which examined
the initial symptoms of PML, found cognitive disor-
ders in 36% and speech disturbance in 40% of cases
[67]. With the advent of HAART for AIDS, the prog-
nosis for PML has improved greatly (one-year sur-
vival of 50% vs. 10%) [68]. Mefloquine, an antimalar-
ial agent with efficacy against JC virus, is being eval-
uated for use in PML [69].

9.3.3 HTLV-1

The retrovirus HTLV-1 classically causes a myelop-
athy (HTLV-1 associated myelopathy, HAM; or
tropical spastic paraparesis, TSP), but other fea-
tures have been described including cognitive
decline and even subcortical dementia [70]. Silva
et al. [71] reported psychomotor slowing, verbal
and visual memory deficits, impaired attention,
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and visuomotor problems in both asymptomatic
HTLV-1 carriers and patients with HAM/TSP,
but there was no association with the degree of
motor disability. MRI of white matter changes in
HTLV-1 infected individuals may represent chronic
perivascular inflammation causing cognitive
deficits.

9.4 Other disorders of infective
etiology

9.4.1 Neurosyphilis

Neurosyphilis has long been recognized to cause
dementia; in the parenchymatous form as “gen-
eral paresis [or paralysis] of the insane” (GPI), it
was once a common cause of cognitive and behav-
ioral decline [72–74]. Meningovascular syphilis may
cause a vascular dementia. The advent of the antibi-
otic era saw a dramatic decline in cases, but a resur-
gence was seen in association with HIV infection
and AIDS [75].

In a case series, in which neurosyphilis was
defined by a positive CSF fluorescent trepone-
mal antibody absorption test and very few cases
had concurrent HIV positivity, the most com-
mon presentation (50%) was with “neuropsychi-
atric” disease (i.e., psychosis, delirium, demen-
tia). Stroke, spinal cord disease (myelopathy), and
epileptic seizures were the other typical presenta-
tions. No neuropsychological data were presented,
and hence the pattern, if any, of cognitive deficits
was not disclosed. Residual cognitive loss was
reported in nearly 50% of patients for whom the
outcome was known. The authors suggested that
the term “syphilitic encephalitis” was preferable to
GPI [76].

Syphilis has always been described as the great
mimic of other conditions, and one important dif-
ferential diagnosis is with limbic encephalitis [77].
Dementia related to meningovascular neurosyphilis
in the context of HIV infection (Section 9.3) has been
reported [78], as has a reversible amnestic syndrome
[79].

9.4.2 Neuroborreliosis (Lyme disease)

Infection with the spirochate Borrelia burgdor-
feri, transmitted by the bite of infected Ixodes
ticks, causes the zoonosis borreliosis or Lyme
disease, which may produce multisystem disease
with dermatological, cardiological, and neurologic-
al involvement. Features of neuroborreliosis may
include aseptic meningitis with or without mul-
tiple radicular or peripheral nerve lesions, myeli-
tis, cranial neuropathy especially involving the
facial nerve, and meningoradiculitis of the cauda
equina. Guidelines for the diagnosis and manage-
ment (antibiotics) of neuroborreliosis have been
published [80,81].

Cognitive complications may occur in late (Stage
III) Lyme disease. Cases of dementia with Borrelia
spirochetes found in the brain have been reported
[74]. Lyme encephalopathy occurring years after the
acute illness was reported, in one series, to produce
defects in verbal memory, mental flexibility, ver-
bal associative functions, and articulation, but with
preserved intellectual and problem solving skills,
sustained attention, visuoconstructive abilities, and
mental speed [82]. Mental activation speed, as mea-
sured by response times, was found to be slower
in Lyme patients but perceptual and motor speed
was preserved [83]. Involvement primarily of frontal
systems was the conclusion of one review of neu-
ropsychological function in Lyme disease [84], and
a case of rapidly progressive frontal-type dementia
has been reported [85]. Occasional cases of borreli-
osis have been noted, presenting as “normal
pressure hydrocephalus” (Section 7.2.1), cognitive
impairments reversing after appropriate antibiotic
treatment [86,87].

Although depression may complicate the pre-
sentation, memory impairment does seem to be
associated with evidence of CNS involvement (CSF
intrathecal antibodies to B. burgdorferi, elevated
protein, or positive PCR for B. burgdorferi DNA)
[88]. Few cases have come to autopsy; one showed
evidence of spongiform change, neuronal loss, and
microglial activation, along with silver-impregnated
organisms strongly suggesting B. burgdorferi in both
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cortex and thalamus to account for the cognitive
changes [89].

A study of 50 patients with Lyme neuroborreliosis,
examined 30 months posttreatment, found lower
scores in tests of processing speed, visual and verbal
memory, and executive/attention functions when
compared to matched controls, but these aggregate
data concealed the fact that only a small subgroup
of the patients (eight) had chronic and debilitating
cognitive sequelae [90].

9.4.3 Tuberculosis and tuberculous
meningitis

Infection with Mycobacterium tuberculosis can
spread to intracranial contents, either as tubercu-
lous meningitis or as focal tuberculomas. Although
largely a disease of the past in developed countries,
a resurgence in cases of tuberculosis as an oppor-
tunistic infection in the context of HIV infection
has been noted, and is an infection which needs to
be considered when assessing cognitive sequelae of
tuberculosis. Studies from the Indian subcontinent
list tuberculosis as a cause of dementia [91].

Disseminated brain tuberculomas may cause
cognitive features [92], sometimes sufficient to
mimic a primary dementia [93]. Dementia has been
associated with a dorsal midbrain tuberculous gran-
uloma [94]. A pure amnesic syndrome has been
reported following recovery from probable tubercu-
lous meningitis, with evidence of medial temporal
lobe and mammillary body involvement [95].

9.4.4 Neurocysticercosis

Infection with the larval stage (cysticercus) of the
helminth cestode Taenia solium, the pork tape-
worm, usually results from eating undercooked
pork. Various neurological syndromes may occur
when cysticerci reach the CNS; intraparenchy-
mal disease typically induces focal or generalized
epilepsy, extraparenchymal disease causes mass
effect and intracranial hypertension [96,97].

Cognitive impairment has been reported in
neurocysticercosis. Cognitive evaluation of 40

treatment naı̈ve patients found impairment of
executive function, verbal and nonverbal memory,
praxis, and verbal fluency to be ubiquitous com-
pared to healthy controls, with 12.5% of patients
being diagnosed with dementia. Comparison
with patients with cryptogenic epilepsy suggested
that seizure frequency and antiepileptic drug use
could not account for the observed cognitive pro-
file [98]. A study from Mexico City found 15% of
patients with untreated neurocysticercosis fulfilled
DSM-IV criteria for dementia, of whom more than
three-quarters no longer fulfilled the criteria after
treatment with albendazole and steroids, suggest-
ing that neurocysticercosis is a reversible cause
of dementia. Dementia was associated with the
number of parasitic lesions seen in the frontal,
temporal, and parietal lobes [99]. In a study from
Brazil, patients with mesial temporal lobe epilepsy
due to hippocampal sclerosis with incidental cal-
cified neurocysticercosis had no greater cognitive
deficits than those without, suggesting that these
chronic lesions do not contribute to cognitive
performance [100].

9.4.5 Whipple’s disease

Although extremely rare, Whipple’s disease is a
diagnosis that is often considered by neurologists
because of the possibility of reversing the move-
ment and cognitive disorder that results from infec-
tion with the causative organism, Tropheryma whip-
pelii. It is a multisystem granulomatous disorder,
the clinical phenotype of which is pleomorphic, but
neurological signs may occur in isolation from the
more familiar gastrointestinal and systemic symp-
toms [101]. Diagnostic guidelines for neurological
Whipple’s have been published and it has been esti-
mated that 11% of CNS Whipple’s disease cases
present with cognitive decline in the absence of
other neurological symptoms and signs [102]. Cog-
nitive features may be prominent in primary Whip-
ple’s disease of the brain along with other symptoms
such as epileptic seizures and ataxia [103].

Detailed reports of the cognitive impairments
in Whipple’s disease are few. Manzel et al. [104]
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reported a biopsy-confirmed case with impairments
in sustained attention, memory, executive func-
tion, and constructional praxis, with behavioral
disinhibition and confabulation, features which
correlated with MRI changes in the mesial tem-
poral lobe and basal forebrain. The cognitive
picture was thought to resemble that seen after
herpes simplex encephalitis or subarachnoid hem-
orrhage from a ruptured anterior communicating
artery aneurysm. Reversible dementia has been
reported [105], one case with a “frontotemporal-like
dementia” [106]. A case of isolated limbic encephal-
itis due to Whipple’s disease has been reported,
in which anterograde amnesia and temporospatial
disorientation improved after antibiotic treatment.
MRI of the brain showed intense high signal in
the amygdalae and hippocampi typical of limbic
encephalitis [107].
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It may seem odd that diseases of muscle or
of the neuromuscular junction (NMJ), the most
distal outposts of the nervous system, might be
associated with dysfunction of higher cortical func-
tion. However, diseases manifesting with neurop-
athy or myopathy may, in fact, be multisystem disor-
ders with a broad phenotype that also encompasses
cognitive processes, sometimes related to expres-
sion of abnormal or dysfunctional proteins that are
common to muscle/NMJ and brain [1]. Myotonic
dystrophy type 1 is perhaps the classic exam-
ple. Other neuropathic and myopathic disorders
with concurrent cognitive features, which are dis-
cussed elsewhere, include mitochondrial disorders
(Section 5.5.1), acid maltase deficiency (Section
5.5.3.1), Fabry’s disease (Section 5.5.3.2), neuro-
fibromatosis (Section 5.6.1), adult polyglucosan
body disease (Section 5.5.6), and chronic inflamma-
tory demyelinating polyneuropathy (Section 6.17).

10.1 Myotonic dystrophy

Myotonic dystrophies are classified on a genetic
basis. Myotonic dystrophy type 1 (DM1)

corresponds to classical dystrophia myoton-
ica or Steinert’s disease, and is associated with
CTG trinucleotide repeat expansions in the 3′

untranslated region of the dystrophia myotonica
protein kinase (DMPK) gene on chromosome
19q13 (OMIM#160900). Myotonic dystrophy type
2 (DM2), previously known as proximal myotonic
myopathy (PROMM) or Ricker’s syndrome, is asso-
ciated with heterozygous expansion of a CCTG
tetranucleotide repeat in intron 1 of the zinc
finger protein-9 (ZNF9) gene on chromosome 3q
(OMIM#602668) [2].

Despite the terminology, brain involvement is rec-
ognized in both DM1 and DM2, more so in the
former [3,4]. A non-DM1 non-DM2 multisystem
myotonic disorder with frontotemporal dementia
has been described, for which the designation DM3
has been proposed [5].

10.1.1 Myotonic dystrophy type 1 (DM1;
Steinert’s disease)

Adult-onset DM1 is a pleiotropic disorder, one com-
ponent of which may be cognitive impairment. Fea-
tures such as cognitive dysfunction, visuospatial
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deficits, behavioral abnormalities, and hypersom-
nia are reported to be more prominent in DM1 than
DM2 [6], concordant with the neuroimaging and
neurophysiological findings of more severe brain
involvement in DM1 [3].

The most commonly observed cognitive impair-
ments in DM1 relate to executive dysfunction [7,
8], seen for example in performance of the Stroop
color–word and phonemic verbal fluency tests [3],
with lack of initiative and apathy despite preserved
general intelligence. Features may be static or pro-
gressive, sometimes with temporal lobe (memory)
impairments. Weber et al. [4] found pronounced
impairments of nonverbal episodic memory in
DM1. Decline in abilities over time, particularly
linguistic and executive functions, was found in a
follow-up study [9].

Atypical presentation of DM1 as apparent pri-
mary dementia may occur. There is noted to be a
high risk of cognitive impairments in childhood-
onset disease, particularly associated with maternal
inheritance, whereas adult-onset disease is at lower
risk. Wilson et al. [10] reported an adult patient with
paternal inheritance and an 11-year decline in cog-
nitive function, for which no cause other than DM1
was identified.

IQ has been reported to decline in DM1 as the
size of the CTG expansion increases [11]. A correla-
tion between cognitive deficits and CTG expansion
size has also been reported [7,12,13]. However, other
studies have found no correlation between cogni-
tive impairment in DM1 and CTG repeat number
or severity of muscle involvement [9,14,15], includ-
ing progression of cognitive decline over time [9].
The explanation for these discrepant findings is cur-
rently unclear.

DM1 may be accompanied by white matter
changes on magnetic resonance imaging (MRI)
of the brain [16], which may [17] or may not [18]
correlate with neuropsychological impairment.
Weber et al. [4] found a correlation between the
extent of white matter lesions and psychomotor
speed. Sophisticated neuroimaging techniques
indicate neocortical damage in DM1 brains even
in the absence of white matter change [19], which

might possibly be related to cognitive deficits.
Voxel-based morphometry showed bilateral hip-
pocampal volume reduction that correlated with
episodic memory deficits [4].

Concurrent hypersomnia was excluded as a cause
for impaired cognitive performance in DM1 in a
study that examined both neuropsychological per-
formance and polysomnography [8].

Neurofibrillary tangles (NFTs) comparable to
those seen in Alzheimer’s disease (AD) have been
observed in DM1 brains [20], perhaps related to the
altered splicing patterns of the tau gene in the DM1
brain [21]. One study found NFTs in the limbic sys-
tem and brainstem of all cases examined, but no
senile plaques [22]. Mutant DMPK transcripts were
found to be widely expressed in discrete foci in the
nuclei of cortical and subcortical neurons in DM1
[23].

10.1.2 Myotonic dystrophy type 2 (DM2;
PROMM; Ricker’s syndrome)

The cognitive phenotype of DM2 is less well charac-
terized than DM1. Impaired visuospatial recall and
construction has been noted, more prevalent than
in DM1 [24]. Pronounced impairments of nonverbal
episodic memory have also been reported in DM2,
as in DM1, which correlate with hippocampal vol-
ume reduction [4]. NFTs were identified in a cog-
nitively normal patient with DM2, suggesting that
abnormal processing of tau isoforms may occur in
DM2 as well as DM1 [25].

10.2 Limb-girdle muscular
dystrophy (LGMD)

Limb-girdle muscular dystrophy (LGMD) is a
heterogeneous group of muscular dystrophies
characterized clinically by wasting and weakness
of limb-girdle musculature with or without cardiac
involvement. Over 20 genetic types have been
defined to date. Of these, LGMD type 2I, due to
mutations in the gene on chromosome 19q13.3
encoding fukutin-related protein (OMIM#607155),
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which is expressed in the brain and may be impor-
tant in brain development, has been reported to
be associated with deficits in executive function,
visuospatial abilities, and visual memory [26].

10.3 Oculopharyngeal muscular dystrophy
(OPMD)

Oculopharyngeal muscular dystrophy (OPMD) is
an autosomal dominant muscle disorder char-
acterized by late onset (fifth to sixth decade)
of ptosis, dysphagia, and ophthalmoplegia, with
characteristic muscle biopsy appearances of sar-
coplasmic rimmed vacuoles with intranuclear fila-
mentous/tubular inclusions. OPMD results from
expansions of a trinucleotide repeat sequence
(GCG) in the poly(A) binding protein II on chromo-
some 14q (OMIM#164300).

Cognitive decline has been recorded in some
OPMD homozygotes, with the features of a sub-
cortical dementia [27]. More recently, a study of
heterozygotes has shown impaired executive func-
tion (reduced working memory, cognitive flexibil-
ity, and selective attention), with a negative correl-
ation between cognitive function and trinucleotide
expansion size, suggesting that this could be linked
to the genetic defect possibly through a toxic gain-
of-function mechanism, perhaps related to the
intranuclear inclusions [28].

10.4 Spinal and bulbar muscular atrophy
(Kennedy’s syndrome)

Spinal and bulbar muscular atrophy (SBMA), also
known as Kennedy’s syndrome or bulbospinal
neuronopathy, is an X-linked recessive syndrome of
motor neuron dysfunction resulting from CAG trin-
ucleotide repeat expansion in exon 1 of the gene
encoding the androgen receptor on chromosome
Xq12 (OMIM#313200). Unlike motor neuron disease
(Section 2.3.1), with which it is sometimes confused
clinically, SBMA is only slowly progressive with a
generally good prognosis.

Neuropsychological deficits have been docu-
mented in SBMA, in both symptomatic patients
and some female mutation carriers [29]. Subclin-
ical deficits in verbal and nonverbal fluency, con-
cept formation, working memory, and attentional
mechanisms, suggesting impairment of frontotem-
poral cognitive functions, have been documented,
indicating that extramotor as well as motor net-
works may be affected in this disorder [30].

10.5 McArdle’s disease

McArdle’s disease is due to myophosphorylase defi-
ciency, an inborn error of metabolism, result-
ing from homozygous or compound heterozygous
mutations in the gene encoding muscle glycogen
phosphorylase (PYGM) on chromosome 11q13.1
(OMIM#232600). It is classified as glycogen stor-
age disease type V (cf. acid maltase deficiency,
glycogenosis type IIb; Section 5.5.3.1). Typical clin-
ical features are exercise-induced muscle cramps
and sometimes rhabdomyolysis in young adults,
with almost invariably elevated blood creatine
kinase levels [31].

The muscle isoform of glycogen phosphorylase
is also expressed in astrocytes and may play a role
in neuronal energy metabolism. A case of cognitive
impairment in McArdle’s disease has been reported,
in which there was neuropsychological and func-
tional neuroimaging evidence of frontal and pre-
frontal cortex dysfunction [32].

10.6 Myasthenia gravis

Myasthenia gravis (MG) is an antibody-mediated
disorder of neuromuscular transmission causing
painless fluctuating fatigable skeletal muscle weak-
ness that worsens with exercise and improves with
rest, affecting particularly extraocular, bulbar, and
proximal limb muscles. Autoantibodies directed
to the postsynaptic muscle nicotinic acetylcholine
receptor (AChR) are the most commonly detected
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autoantibodies; antibodies directed against muscle-
specific tyrosine kinase (MuSK) are found in some
AChR seronegative MG patients. Cholinesterase
inhibitors are effective symptomatic agents in MG
patients, although treatment with immunomodu-
latory and disease-modifying agents may also be
required [33].

A central cholinergic deficit, mirroring the periph-
eral (neuromuscular junction) cholinergic trans-
mission deficit, has been suggested in myasthe-
nia gravis, which might result in impaired memory
[34,35]. Central cholinergic dysfunction is thought
to be of central importance to the pathophysiology
of cognitive deficits in AD and, possibly, dementia
with Lewy bodies (Sections 2.1 and 2.4.2). Tucker
et al. [34] found MG subjects to be impaired rel-
ative to both healthy controls and subjects with
chronic nonneurological disease on the Boston
Naming Test, WMS Logical Memory, and WMS
Design Reproduction. Moreover, one patient with
MG showed improvement in memory after treat-
ment with plasmapheresis. A case control study
found MG patients performed worse than con-
trols on measures of response fluency, informa-
tion processing, verbal and visual learning, but
not on attention span or information retention
[36]. A subsequent study by the same group found
that increased subjective mental (but not physical)
fatigue correlated with patient cognitive measures
[37].

However, other researchers have found no evi-
dence for memory impairments in MG patients in
comparison with normal controls, and hence no
support for the idea of impaired central choliner-
gic mechanisms [38–40]. Sleep abnormalities were
suggested to be the cause of memory impair-
ments noted in some studies of MG patients [39].
Impairments of attention, praxis, and frontal con-
trol observed in severe MG were found to be related
to “general visual motor slowness” and other dis-
eases, specifically diabetes mellitus and thyroid dys-
function [40].

A patient with anti-MuSK-positive MG and
parkinsonism with cognitive impairment has
been reported with the suggestion of a shared

pathogenesis related to impaired cholinergic
neurotransmission [41].
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The study and understanding of sleep-related disor-
ders has been an area of major clinical advance over
the last 20 to 30 years. Sleep disorders have been
classified in the International Classification of Sleep
Disorders (ICSD-2) into eight broad categories (with
several subcategories) [1]:
� Insomnias;
� Sleep-related breathing disorders, such as sleep

apnea syndromes;
� Hypersomnias of central origin, such as nar-

colepsy;
� Circadian rhythm sleep disorders;
� Parasomnias;
� Sleep-related movement disorders, such as rest-

less legs syndrome;
� Isolated symptoms, apparently normal variants,

and unresolved issues;
� Other sleep disorders.
There are also two appendices in ICSD-2, which
list:
� Sleep disorders associated with conditions

classifiable elsewhere, such as fatal familial
insomnia (Section 2.5.3);

� Other psychiatric and behavioral disorders fre-
quently encountered in the differential diag-
nosis of sleep disorders, such as somatoform
disorders.

Sleep deprivation is recognized to have adverse
consequences on cognitive function [2]. Poor sleep
quality correlates with subjective memory com-
plaint [3], and objectively measured sleep distur-
bance but not total sleep time is related to poorer
cognition, suggesting that quality rather than quan-
tity of sleep is the important factor affecting cogni-
tion [4].

Study of the cognitive impairments associated
with sleep-related disorders is a developing area of
clinical inquiry.

11.1 Sleep-related breathing disorders

Sleep-related breathing disorders include the sleep
apnea syndromes. Sleep apnea refers to a tem-
porary cessation or absence of breathing during
sleep. Sleep apnea syndromes may be broadly

212
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divided into three categories: obstructive, central,
and mixed [5,6].

11.1.1 Obstructive sleep apnea–hypopnea
syndrome (OSAHS)

Obstructive sleep apnea-hypopnea syndrome
(OSAHS) is caused by critical narrowing of the
upper airway during sleep when reduced muscle
tone leads to increased resistance to the flow of
air, and partial obstruction often results in loud
snoring. Sleep is restless due to successive episodes
of apnea, often witnessed by the bed partner, which
are relieved by brief arousal from sleep. A narrow
pharyngeal anteroposterior diameter, obesity, high
alcohol intake, and the male gender seem to be
risk factors for the development of OSAHS. As a
consequence of sleep fragmentation, the most com-
mon daytime symptom is excessive somnolence,
manifest as a tendency to fall asleep in monotonous
or inappropriate situations, a symptom which
may be assessed with scales such as the Epworth
Sleepiness Scale (ESS) [7]. OSAHS may be diag-
nosed using nocturnal polysomnography or, more
practically in routine clinical work, pulse oximetry.
The severity of OSAHS may be measured using
the apnea/hypopnea index (AHI), or respiratory
disturbance index (RDI), which is calculated from
polysomnographic recordings as the number of
apneas/hypopneas per hour of sleep: AHI or RDI
of 10–20/hr indicates mild, 20–50/hr moderate,
and �50/hr severe disease. With pulse oximetry,
a desaturation index (DI) may be calculated as
the number of desaturations (decrease in oxygen
saturation by ≥4%) per hour of sleep or, if the
recording is unattended, per time of recording.
DI ≥5/hr may be used to define sleep-disordered
breathing [8]. Treatment of OSAHS includes noc-
turnal continuous positive airway pressure (CPAP)
via a mask. Surgery to palatal structures, such as
uvulopalatopharyngoplasty, may sometimes have a
place.

OSAHS may present with various neurological
symptoms besides excessive daytime sleepiness,
including blackouts and headache, sometimes with

features suggestive of raised intracranial pressure,
and may be mistaken for narcolepsy, epilepsy, and
idiopathic intracranial hypertension, respectively.
Apparent intellectual decline, which may be mis-
taken for dementia, is also reported as a recog-
nized feature of OSAHS, which may improve after
appropriate treatment of the underlying condition
[6,9,10].

Findley et al. [11] found impairments in mea-
sures of attention, concentration, complex prob-
lem solving, and short-term recall of verbal and
spatial information in OSAHS patients with hypox-
emia as compared with OSAHS patients without
hypoxemia; cognitive impairment did not correlate
with measures of sleep fragmentation, suggesting
that it was hypoxia rather than sleep disturbance
that accounted for the cognitive deficits. A patient
reported by Scheltens et al. [12], in whom cogni-
tive impairment was the presenting feature of a
sleep apnea syndrome, had impaired learning and
retention, impaired sustained attention, impaired
visuospatial reasoning, vulnerability to interference,
impaired verbal fluency, but no aphasia, apraxia, or
agnosia. Polysomnography showed mixed, central,
and obstructive apneas in this patient. The authors
suggested that both cerebral hypoxia and sleep frag-
mentation contributed to cognitive impairment,
which reversed with nocturnal CPAP. Impairments
in selective and continuous attention correlating
with the degree of hypoxemia were documented in
untreated OSAHS patients by Kotterba et al. [13]. A
study in older persons (�65 years of age) at high
risk for sleep-disordered breathing found that cog-
nitive decline was associated with increased day-
time sleepiness [14].

In a typical OSAHS patient (weight 140 kg; Body
Mass Index (BMI) 40 kg/m2; ESS 18/24; DI �60/hr;
see reference [10], case 2 for further details), neuro-
psychological assessment showed mild impairment
of cognitive function, with slight reductions in ver-
bal reasoning and verbal comprehension perfor-
mance, poor performance on tests of short-term
memory and learning, reduced verbal fluency, and
mild attentional problems, while nonverbal reason-
ing, language, and visuospatial and constructional
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functions were intact [15]. These impairments were
more typical of those ascribed to subcortical rather
than cortical pathology, and might reflect white
matter change, as seen in “white matter demen-
tias” such as multiple sclerosis (Section 6.1). Cere-
bral metabolic impairments have been identified
in OSAHS using magnetic resonance spectroscopy,
in association with white matter change [16]. Car-
rying the apolipoprotein E epsilon-4 allele, a risk
factor for Alzheimer’s disease (AD), may increase
risk of memory impairment in OSAHS patients
[17].

An overview of case-control studies of neuro-
psychological function in patients with sleep-
disordered breathing found that impairment was
generally greater with increasing severity of dis-
ease [9], recognizing that some tasks are more
sensitive to hypoxemia, and others more sensitive
to sleepiness. Comparing groups of patients with
OSAHS and chronic obstructive pulmonary disease
(COPD), Roehrs et al. [18] found that deficits in com-
plex reasoning and memory were not specific to
diagnosis, whereas sustained attention was worse
in the OSAHS group, reflecting its sensitivity to
sleepiness, while motor skills were worse in the
COPD group, reflecting its sensitivity to hypoxemia.
A study comparing OSAHS patients with AD, multi-
infarct dementia, and COPD patients found a dis-
tinctive cognitive profile in OSAHS that was sugges-
tive of subcortical damage [19].

Recently, Yaffe and colleagues reported that sleep-
disordered breathing, defined as AHI ≥15/hr, was
associated with an increased likelihood of devel-
oping mild cognitive impairment or dementia over
a follow-up period ranging from two to six years.
Measures of disordered breathing (elevated oxy-
gen desaturation index, percentage of sleep time in
apnea or hypopnea) were associated with increased
risk, whereas measures of sleep fragmentation or
sleep duration were not, suggesting that hypoxemia
was the key factor predisposing to cognitive decline
[20]. If confirmed, these data may have import-
ant implications for assessment and treatment of
patients developing cognitive complaints. A large
cross-sectional study found no association between

OSAHS severity and cognitive function, although
subjects in this study did not have significant day-
time sleepiness [21]. It is possible that only sub-
sets of individuals with OSAHS may have cognitive
changes.

The current consensus is that sleep fragmentation
and nocturnal hypoxemia and not apnea recurrence
are the key determinants of cognitive dysfunction in
OSAHS, with hypoxemia contributing to the execu-
tive impairment and sleep fragmentation influenc-
ing attention. It is suggested that OSAHS accelerates
the process of brain ageing, hence mandating early
treatment.

CPAP has frequently been reported to improve
cognitive deficits in OSAHS [12,13,22,23], but not
all patients benefit and complete reversal of atten-
tion and executive dysfunction may not occur.
Identifying whether there are subgroups of OSAHS
patients who are more likely to benefit from CPAP
is required. Another approach has been to exam-
ine the utility of cholinesterase inhibitors. A trial of
donepezil in AD patients with concurrent OSAHS
showed an improvement in AHI and oxygen satura-
tion as well as in ADAS-Cog scores at three months
in the treatment group (n = 11) [24]. A more recent
study of donepezil in non-AD OSAHS reported
improved AHI, oxygen saturation and sleepiness
measured by ESS after one month in the treat-
ment group (n = 11). A possible role for cholinergic
neurotransmission in the regulation of breathing in
OSAHS patients was suggested [25].

11.1.2 Central sleep apnea

Central sleep apnea (CSA) is characterized by peri-
odic apnea owing to loss of ventilatory motor out-
put, because of an unstable ventilatory control sys-
tem, resulting in lack of inspiratory muscle effort
[5,6,26]. There are diverse causes of CSA, includ-
ing congestive cardiac failure and neurological dis-
eases such as stroke and multiple system atrophy,
but some cases remain idiopathic.

A patient with CSA who presented with cognitive
complaints had a neuropsychological profile that
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showed marked impairments in nonverbal reason-
ing and processing speed, indicative of a subcortical
type of dementia, but the interpretation was con-
founded by prior radiotherapy for a malignant brain
tumor [15].

11.2 Central hypersomnias

The central hypersomnias include narcolepsy with
or without cataplexy, idiopathic hypersomnias, and
hypersomnia due to a medical condition, drug, or
substance [1].

11.2.1 Narcolepsy

Narcolepsy, or the narcoleptic syndrome, is char-
acterized by excessive daytime sleepiness with
brief “sleep attacks” lasting 10–20 minutes, often
occurring in inappropriate circumstances such as
when driving, eating, or talking. Additional features
sometimes seen include cataplexy, sleep paraly-
sis, hypnagogic (and/or hypnapompic) hallucina-
tions, and insomnia. The pathogenesis relates to
loss of hypothalamic hypocretin neurons in genet-
ically predisposed individuals who carry the HLA
DQB1*0602 allele [27].

Cognitive complaints are not uncommon in nar-
coleptics but detailed studies of cognitive function
with correction for sleepiness/arousal are few. Nau-
mann et al. [28] found impairments in continuously
maintained selective attention, slowed information
processing but with intact quality of performance,
mild verbal memory deficits but with preserved
visuospatial memory, and deficits in executive func-
tions (verbal fluency, deficient inhibition, and high
susceptibility to interference on the Hayling Sen-
tence Completion Task). The overall pattern of cog-
nitive performance was judged to be consistent with
a limitation of cognitive processing resources [28].

Modafinil has proved efficacious for the sleep
disorder in narcolepsy and has been reported to
improve executive function [29]. There are anecdo-
tal reports of the use of cholinesterase inhibitors in

narcolepsy, predicated upon changes in the cholin-
ergic system in this disorder [30]. For example, in
two nondemented patients with narcolepsy treated
with rivastigmine, improvements were noted in
excessive daytime somnolence and in the ESS [31].

11.2.2 Kleine–Levin syndrome

Kleine–Levin syndrome is characterized by recur-
rent episodes of hypersomnia, typically occurring in
adolescent males, in which episodes of hypersom-
nolence and bulimia last days to weeks. The eti-
ology remains unknown and there is no effective
treatment, although modafinil may reduce the dura-
tion of a symptomatic episode [32].

Cases of Kleine–Levin syndrome have been
reported with short-term memory deficits during
periods of remission, associated in some cases with
frontotemporal hypoperfusion on single-photon
emission computed tomography (SPECT) imaging
[33]. Another patient with deficits of visual and ver-
bal recall after remission of an episode was also
found to have selective deficits of visual recall six
months later [34].

11.3 Circadian rhythm sleep disorders

Circadian rhythm sleep disorders are characterized
by desynchronization between internal circadian
rhythms and external time, jet lag being an example
[1]. Shift-workers are also at risk of circadian rhythm
sleep disorder.

11.3.1 Shift-work sleep disorder (SWSD)

Shift-work sleep disorder (SWSD) is classified as a
secondary circadian rhythm disorder resulting from
exogenous factors. Poor sleep quality is common-
place in shift-workers [35], thus the observation of
patients with SWSD presenting to cognitive clin-
ics with subjective memory complaints but with no
source amnesia [36] is perhaps not surprising, as
poor sleep quality is recognized to be associated
with subjective memory impairment [3].
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11.4 Parasomnias

The parasomnias include sleep walking (somnam-
bulism), night terrors (pavor nocturnus), sleep
groaning (catathrenia), exploding head syndrome,
and sleep-related eating disorders [1,37,38]. How-
ever, from the cognitive perspective, rapid eye
movement (REM) sleep behavior disorder (REMBD)
is the parasomnia that has attracted most attention,
as this may be an early symptom of neurodegenera-
tive disorders, in particular synucleinopathies such
as dementia with Lewy bodies and multiple system
atrophy (Sections 2.4.2 and 2.4.5), sometimes pre-
dating by decades the emergence of motor and cog-
nitive symptoms [39].

11.4.1 REM sleep behavior disorder (REMBD)

REM sleep behavior disorder (REMBD) occurs when
the physiological muscular atonia of sleep is lost,
resulting in motor behaviors during sleep that are
sometimes characterized as “dream enactment.”
Symptoms are often improved with clonazepam.

A distinction is drawn between idiopathic REMBD
and REMBD associated with neurodegenerative dis-
eases such as Parkinson’s disease, dementia with
Lewy bodies, and multiple system atrophy (Sections
2.4.1, 2.4.2, and 2.4.5).

Neuropsychological assessment of idiopathic
REMBD cases has produced somewhat variable
results in the cognitive profile, with the most
affected domains typically being attention, execu-
tive functions, episodic verbal memory, and non-
verbal learning [40–42], deficits that may persist at
longitudinal follow-up [43]. Language and praxis
appear to be well preserved. As far as visuospatial
functions are concerned, matters are less certain,
although deficits have been noted in some reports.
For example, one study of 17 cases of idiopathic
REMBD found impaired visuospatial constructional
function (Rey-Osterrieth Figure copying) and visuo-
spatial learning (Corsi Supraspan) compared to
normal controls [40].

Whether these “idiopathic” cases in fact represent
synucleinopathies with currently isolated REMBD
remains to be determined [44]. Screening for mild
cognitive impairment in REMBD may be possible
using the Montreal Cognitive Assessment [45].

11.5 Sleep-related movement disorders

11.5.1 Restless legs syndrome (RLS)

Restless legs syndrome (RLS), or Ekbom’s syndrome,
is characterized clinically by an intense discomfort
within the legs associated with a desire to move
them, the discomfort being temporarily relieved by
movement. Symptoms are often worse at rest or
during the evening or night. RLS is a recognized
cause of secondary insomnia and excessive daytime
somnolence. RLS is frequently associated with peri-
odic limb movement disorder (PLMD, also known
as periodic limb movements of sleep, PLMS). RLS
pathogenesis may be related to a central imbalance
of serotoninergic and dopaminergic pathways, pos-
sibly at the level of the basal ganglia, linked in some
way with disordered brain iron metabolism. A num-
ber of linked genetic loci have been defined in famil-
ial RLS [46].

The impact of RLS on sleep may also affect cog-
nitive functions, particularly those thought to be
mediated by the prefrontal cortex [47], producing
deficits similar to those seen with sleep depriva-
tion [2]. Presentation of RLS de novo to a cogni-
tive clinic has been reported [48]. Possible asso-
ciations of RLS with Parkinson’s disease, essential
tremor [49], and migraine [50] (Sections 2.4.1, 5.4.11,
and 3.6.1, respectively) might also contribute to
observed cognitive complaints.
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Disorders with impaired cognitive function tran-
scend the classical professional boundaries of neur-
ology and psychiatry, all being brain disorders, so
it is not surprising that patients with what may
be labeled as “psychiatric disorders” [1] present
to cognitive clinics. While the psychiatric symp-
toms that may be encountered in neurological dis-
eases are well described [2–4], the neuropsycho-
logical deficits in psychiatric disorders that may
result in their presentation to cognitive clinics are
perhaps less well authenticated [5]. This scenario
may present a very significant challenge to cog-
nitive neurologists who may have received little if
any training in the art of psychiatric assessment
and diagnosis. While some clinics enjoy the pres-
ence of both psychiatrists and neurologists jointly
undertaking patient assessment, this is by no means
universal.

The observations in this chapter are necessar-
ily those of a neurologist, and may lack the know-
ledge and subtlety of those familiar with the art of
psychiatry. The classification used here follows that

outlined in the Diagnostic and Statistical Manual of
Mental Disorders, 4th edition, text revision (DSM-
IV-TR) [1]. Disorders that are classified in DSM-IV
but considered elsewhere in this volume include
dementia syndromes of neurodegenerative or vas-
cular etiology (see Chapters 2 and 3, respectively),
substance-related disorders including alcohol (Sec-
tion 8.3.1), and sleep disorders including narcolepsy
(Section 11.2.1).

12.1 Delirium

Delirium, or acute confusional state, enters the dif-
ferential diagnosis of cognitive disorders because,
by definition, one of the phenotypic features of
delirium is change in cognition (e.g., disorienta-
tion, language impairment, memory deficit, per-
ceptual disturbance) not better accounted for by
dementia [1]. Impairments of consciousness, a sine
qua non for the diagnosis of delirium, may be
subtle.

219
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Delirium and dementia may overlap, neuro-
degenerative brain disease being a recognized pre-
disposing factor for the development of delirium
[6]. Indeed, delirium may be the presenting fea-
ture of an underlying dementia syndrome [7,8],
presumably because cerebral reserve is reduced,
and hence the brain is less able to cope with
additional precipitating factors, of which infec-
tion or metabolic derangement are the most com-
mon (“toxic-metabolic encephalopathy”) [6]. Fur-
thermore, one study found that around one-quarter
of Alzheimer’s disease (AD) patients had an episode
of delirium during the course of their illness [9].
Guidelines for the prevention, diagnosis, and treat-
ment of delirium have been published [10–13].

12.2 Schizophrenia

Kraepelin originally designated the disorder now
known as schizophrenia as “dementia praecox,”
implying an early onset of cognitive decline. Sub-
sequently, the psychiatric features of schizophrenia
became the focus of clinical definition and man-
agement [1], especially Schneider’s first-rank symp-
toms [14], but interest in cognitive features has been
rekindled in recent years [15–21].

It is evident that schizophrenia is associated with
cognitive impairments affecting attention, memory
(both verbal and nonverbal), language (“schizopha-
sia”), and executive function. Reviews and meta-
analyses of large numbers of studies have confirmed
pervasive memory impairment in schizophrenics
(sometimes said to resemble an amnesic syndrome
[22]) independent of disease duration (i.e., present
in the first episode of psychotic illness as well as
in chronic disease), medication use, and premorbid
intelligence. These deficits may precede the onset
of symptoms, as noted by examination of high-
risk groups (especially executive function and work-
ing memory), but become more apparent once the
diagnosis is established.

What currently remains less clear is whether these
deficits change over time. Although some studies
report progressive cognitive decline in later life [23],

there is also a view that following a drop in cogni-
tive function early in the illness, there is little sub-
stantial change thereafter [24]. Certainly, the cog-
nitive profile in schizophrenia differs from that in
AD.

A schizophrenia-like psychosis has been reported
in some patients with very early onset frontotem-
poral dementia (Section 2.2), and has been inter-
preted as the presenting feature of neurodegener-
ative disease [25]. An interictal schizophrenia-like
psychosis may also occur in the context of epilepsy,
most commonly left-sided temporal lobe epilepsy
(Section 4.2.2.1) [26].

12.3 Mood disorders

12.3.1 Depression

Depression may be characterized as a disorder of
mood, behavior, sleep, and cognition. It is associ-
ated with both subjective complaints and objec-
tive measures of cognitive dysfunction, which at
their extreme resemble a dementia syndrome,
hence use of the term pseudodementia [27–29],
or the “dementia syndrome of depression,” or
“depression-related cognitive dysfunction.”

The pattern of cognitive deficits in individ-
uals with depression is typified by bradyphrenia
(sometimes labeled psychomotor retardation), with
impairments in attention, memory (episodic and
recognition), visuospatial skills, and executive func-
tion including phonemic verbal fluency (possibly as
a result of overall global cognitive slowing) [30–33].
The profile often most closely resembles that seen
in so-called subcortical dementias. A meta-analytic
study found depression had the largest effect on
measures of encoding and retrieval from episodic
memory, with intermediate effect sizes on tests of
psychomotor speed and sustained attention, with
relative sparing of semantic and working memory
[34]. In addition, there may be an apparent lack
of effort and application when performing cogni-
tive screening tests with frequent “No” or “Don’t
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know” answers, approximate answers (Ganser phe-
nomenon or vorbereiden), as well as evidence of
mood disturbance (tearfulness). Memory loss for
recent and distant events may be equally severe (cf.
the temporal gradient of memory loss in demen-
tia; e.g., due to AD). On recognition memory testing,
depressed patients are said to produce more false
negatives than AD patients who produce more false
positives or intrusions.

To ascertain with certainty whether manifest cog-
nitive decline, particularly in elderly patients, results
from depression or from an underlying neuro-
degenerative disorder, or both, is one of the great-
est challenges facing the clinician in the mem-
ory clinic [35], a task further complicated by the
frequency of depression in mild cognitive impair-
ment and dementia [36], one review suggesting that
depressive symptoms may occur in up to 40% of
AD patients [37]. Depression and impaired cogni-
tion may reflect a shared pathogenesis, or may coex-
ist independently. Elderly depressed patients may
risk being incorrectly labeled with dementia, or the
latter diagnosis may be overlooked if symptoms are
ascribed entirely to depression. Searching for symp-
toms and signs of affective disorder, therefore, is
critical in assessing cognitive complaints [27–29].
Provisional criteria for the identification of depres-
sion in AD have been published [38].

Neuropsychological assessment may not discrim-
inate dementia and depression reliably, as both
conditions may be associated with poor perform-
ance with overlapping profiles. Some cognitive
screening instruments have been claimed to facili-
tate differential diagnosis, such as the CANTAB-PAL
computerized battery [39] and the Addenbrooke’s
Cognitive Examination [40] (although other stud-
ies have not confirmed the latter finding [41]). A
22-item checklist to help differentiate pseudo-
dementia from AD has been described, based on
clinical history, behavior, and mental status [28].
Use of brief depression rating scales, such as the
Patient Health Questionnaire-9 (PHQ-9), may help
to identify patients attending cognitive clinics who
might benefit from a trial of antidepressant medica-
tion [42].

An empirical trial of antidepressant medication
may be given to patients with suspected depression-
related cognitive dysfunction, but response is vari-
able. Even clinical improvement may not abso-
lutely establish the diagnosis of depression, and
prolonged follow-up may be required. Depression
with executive dysfunction has been reported to
have a poor response to antidepressants [43]. Some
patients may progress to an irreversible dementia,
suggesting that depression may be the prodrome of
dementia in some cases [30].

12.3.2 Bipolar disorder

Bipolar disorder is a severe and common men-
tal disorder causing mood shifts (mania, depres-
sion), various subtypes of which are recognized
[1]. Cognitive disturbances have increasingly been
noted as phenotypic features of bipolar disorder,
even during remission [44,45]. Deficits in atten-
tion, learning and memory, and executive function
have been documented, particularly in the bipolar I
subtype, but no unique profile of neuropsycholog-
ical function has emerged. A meta-analysis found
that cognitive function was consistently better in
patients with bipolar disorder compared to patients
with schizophrenia [46]. Bipolar disorder enters the
differential diagnosis of pseudodementia. Whether
bipolar disorder represents a risk factor for develop-
ment of dementia is even less clear than is the case
with depression.

12.4 Anxiety disorders

12.4.1 Obsessive-compulsive disorder (OCD);
Tourette syndrome

Obsessive-compulsive disorder (OCD) is character-
ized by recurrent obsessions or compulsions that
are severe enough to be time consuming or cause
marked distress or impairment [1]. There is a high
concordance of OCD with Tourette syndrome (TS)
of multiple vocal and motor tics [47,48].
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Neuropsychological function is impaired in OCD
[49]. One review found evidence for memory dys-
function and executive deficits [50]. Other studies
have reported visual-constructive and verbal flu-
ency deficits that are apparently specific to OCD,
whereas spatial learning deficits are also seen in
panic disorder [51]. Although findings are vari-
able across studies, the memory deficit appears
to be principally nonverbal and related to encod-
ing and/or retrieval difficulties, with recall worse
than recognition. There may be poor organization of
information at the encoding stage, perhaps related
to difficulties in inhibitory functions [52] or in sus-
taining attention and forming internal representa-
tions of stimuli. Impairments in initiating encod-
ing strategies, but not in implementing them once
initiated, have been suggested [49]. Dysfunction in
orbitofrontolimbic networks (orbitofrontal cortex,
anterior cingulate cortex, striatum) is postulated
to underlie these cognitive impairments, consistent
with a disease model of corticostriatal dysfunction
[49,53].

Tourette syndrome is thought to result from dys-
function in frontostriatal networks [47,48], and the
documented neuropsychological features of the
condition correspond with this, specifically visuo-
motor integration problems, impaired fine motor
skill, and executive dysfunction [54,55]. A correla-
tion between OCD symptoms and performance on
the Wisconsin Card Sorting Test has been noted in
children with TS [56]. A Tourette-like syndrome of
vocal motor tics has also been reported in fronto-
temporal dementia (Section 2.2), responding to
clonidine [57].

12.5 Dissociative disorders

Dissociative disorders are characterized by disrup-
tion in the usually integrated functions of con-
sciousness, memory, identity, and perception [1].
Of the various conditions falling within this rubric,
psychogenic or dissociative amnesia is perhaps the
most likely to be encountered in cognitive disorders
clinics.

12.5.1 Psychogenic amnesia

Psychogenic amnesia is one of a number of terms
used to describe medically unexplained amnesia,
other labels including dissociative amnesia (as in
DSM-IV [1]) and functional amnesia. Psychogenic
amnesia enters the differential diagnosis of tran-
sient global amnesia (Section 3.6.2) and transient
epileptic amnesia (Section 4.3.1). The term encom-
passes transient or discrete episodes of antero-
grade and/or retrograde memory loss, which may
be global, as in psychogenic fugue or psychogenic
retrograde focal amnesia, or situation-specific as
in amnesia for offences or arising in posttraumatic
stress disorder. Predisposing factors for psychogenic
amnesia include emotional stress (e.g., relationship,
financial), depressed mood, and a history of tran-
sient organic amnesia [58].

In psychogenic retrograde focal amnesia (cf. Sec-
tion 1.1.3), all retrograde memories are lost (e.g.,
identity) whereas anterograde memory is entirely or
largely spared, such that patients can relearn per-
sonal semantic knowledge. The repetitive question-
ing typical of organic amnesias is replaced by a belle
indifference to the predicament. Interview under
sedation (amytal interview, abreaction) may help to
recover memories in psychogenic amnesia, accord-
ing to some authorities [58].

12.6 Disorders of uncertain etiology

For want of a better place, disorders of uncertain
etiology are included here. Whatever its ultimate
pathogenesis, fibromyalgia is a pain disorder, which
is a category in DSM-IV even though fibromyalgia
per se is not mentioned.

12.6.1 Fibromyalgia

Patients with a diagnostic label of fibromyalgia, a
syndrome of widespread musculoskeletal or soft
tissue pain with multiple tender points, may be
encountered in cognitive clinics with complaints of
poor memory. Studies suggest poor performance
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on memory tests (immediate and delayed recall)
and sustained concentration compared to con-
trols, with correlations between performance and
measures of pain and anxiety [59]. While some
authors have found that a history of major depres-
sive disorder is associated with poor memory [60],
others maintain that cognitive impairments cannot
be attributed solely to concomitant psychiatric con-
ditions such as depression and poor sleep, although
they do seem to be related to the level of pain
[61]. Pain is recognized as a potential confounder
of neuropsychological testing, as in mild traumatic
brain injury or headache [62], perhaps impacting on
attentional control [61]. Certainly, the apparent per-
ception of memory problems is often greater than
objective deficits [61].
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mild cognitive impairment (MCI)/prodromal AD, 29

normal pressure hydrocephalus (NPH) differentiation,
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posterior cortical atrophy (PCA) pathology, 9, 24

presymptomatic, 29

seizures, 99

Sjögren’s syndrome differentiation, 153

treatment, 28

vascular dementia (VaD) differentiation, 73–4

visual variant, 24

amnesia, 5–6. See also memory

Alzheimer’s disease (AD), 25

basal forebrain, 79

behavioural variant frontotemporal dementia (bvFTD),
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diencephalic, 77
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strategic strokes, 77, 79

systemic lupus erythematosus (SLE), 152

transient epileptic (TEA), 88, 102–3

transient global (TGA), 88, 103
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Anderson-Fabry disease, 129

androgen receptor gene mutations, 208
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angiokeratoma corporis diffusum, 129

angular gyrus infarction, 77

ANNA-3 antibodies, 156

anomia, 35

anterior communicating artery (AcoA) aneurysms, 79,

80

anti-acetylcholine receptor (AChR) antibodies, 208

antidepressant medication, 221

anti-epileptic drugs (AEDs), cognitive impairment

causation, 98, 103–4

anti-Hu antibodies, 156

anti-Ma2 antibodies, 156

anti-MuSK antibodies, 209

anti-neutrophil cytoplasmic autoantibodies (ANCA), 155,

156

antiphospholipid antibodies, 151, 152, 157

antiphospholipid antibody syndrome, 85, 86

antiretroviral therapy, 198

anti-striatal antibodies, 157

antithyroid autoantibodies, 157

anxiety disorders, 221–2

aphasia, 7–8. See also language

acute disseminated encephalomyelitis (ADEM), 150

Alzheimer’s disease (AD), 24, 27
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31–2
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conduction, 7, 16

epileptic, 103

multiple sclerosis (MS), 147–8, 150
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primary progressive (PPA), 30

lopogenic variant (LPA), 27

non-fluent (PNFA)/agrammatic variant, 32–4

semantic variant, 34–6

thalamic, 78

transcortical, 7, 24

Wernicke’s, 7

apnoea/hypopnoea index (AHI), 213–14

apraxia 9. See also praxis,

Alzheimer’s disease (AD), 25, 28

conceptual, 28

corticobasal degeneration, 49

Huntington’s disease (HD), 112–14

ideomotor, 16

multiple sclerosis (MS), 147–8

of speech, 33–4

Parkinson’s disease dementia (PDD)/dementia with

Lewy bodies (DLB), 46, 48

progressive non-fluent aphasia (PNFA), 33–4

aquaporin-4 antibodies, 150

aqueduct stenosis, 169, 171

arachnoid cyst, 172

argyrophyllic grain disease (AGD), 36–7

arteriovenous fistula, intracranial dural (dAVF), 82
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arteriovenous malformations (AVMs), 81

arylsulfatase A (ARSA), 126

aspirin, 152

ataxia

ataxia telangiectasia (AT), 119

autosomal recessive spastic ataxia of

Charlevoix-Saguenay (ARSACS), 119

fragile X tremor/ataxia syndrome (FXTAS), 121

Friedreich’s ataxia (FA), 118–19

spinocerebellar ataxias (SCA), 116–18

with vitamin E deficiency (AVED), 120

ataxin-1 gene mutations, 117

ataxin-2 gene mutations, 117

ataxin-3 gene mutations, 117

ataxin-7 gene mutations, 118

ataxin-8 gene mutations, 118

ATM gene mutations, 119

ATP 13A2 gene mutations, 123

ATP7B gene mutations, 121

ATP-binding cassette (ABCD1) gene mutations, 127

atrophin-1, 114

attention, 2–4

Alzheimer’s disease (AD), 25–6

basal ganglia support mechanism hypothesis, 14

behavioral variant frontotemporal dementia (bvFTD), 31

Huntington’s disease (HD), 112–13

motor neurone disease (MND)/amyotrophic lateral

sclerosis (ALS), 41

multiple sclerosis (MS), 146–7

Parkinson’s disease dementia (PDD)/dementia with

Lewy bodies (DLB), 46–7

progressive non-fluent aphasia (PNFA), 33

semantic dementia (SD), 34

autosomal recessive spastic ataxia of Charlevoix-Saguenay

(ARSACS), 119

azathioprine, 150

A�-related angiitis (ABRA), 155

bacterial meningitis, 197

Balint’s syndrome, 9, 127, 186

Baltic myoclonus, 132

basal forebrain infarction, 79

basal ganglia, 14

basophilic inclusion body disease (BIBD), 37

Behçet’s disease, neuro-Behçet’s disease, 153

beta-glucocerebrosidase deficiency, 130

bilateral striatopallidodentate calcinosis, 124

bilateral vestibulopathy, 158

Binswanger’s disease, 76–7

bipolar disorder, 221

blindsight, 9

bone cysts, presenile dementia with, 115–16

Borrelia burgdorferi, 199

bradyphrenia, 46

brain tumors, 166–7

craniopharyngioma, 168

glioma and gliomatosis cerebri, 167

meningioma, 167

pituitary tumors, 167–8, 180

primary CNS lymphoma (PCNSL) and lymphomatosis

cerebri, 168

radiotherapy and chemotherapy, 169

splenial tumors, 169

brainstem

cognitive impairment and isolated lesions, 15

infarction, 79

breathing disorders

carbon monoxide poisoning, 183

chronic obstructive pulmonary disease (COPD), 183

sleep-related, 212–15

C9ORF72 hexanucleotide repeat mutations, 39–40, 43–4

CACNA 1A gene mutations, 87, 117

CAG repeats, 111, 114

callosal dementia, 15–16, 184, 186

carbamazepine, 103–4

carbon monoxide poisoning, 183

cardiac surgery, cognitive impairment after, 75

carotid artery disease, 16, 75

carotid endarterectomy, 75

caudate nucleus infarction, 78

cavernous hemangiomas, 82

celiac disease, 182

central hypersomnias, 215

central pontine myelinolysis, 184

central sleep apnoea (CSA), 214–15

cerebellar cognitive affective syndrome, 116

cerebellar cognitive impairment, 15

cerebellar infarction, 79

cerebral amyloid angiopathies (CAA), 83–4

cerebral autosomal dominant arteriopathy with

subcortical infarcts and leukoencephalopathy

(CADASIL), 77, 82–5

cerebral autosomal recessive arteriopathy with subcortical

infarcts and leukoencephalopathy (CARASIL), 83

cerebral vasculitides, 154–6

cerebral visual motion blindness, 9

cerebroside sulphate sulphatase, 126
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cerebrotendinous xanthomatosis (CTX), 131

ceruloplasmin gene mutations, 123

charged multivesicular body protein 2B (CHMP2B)

mutations, 38, 40, 43

chemotherapy, 169

chenodeoxycholic acid (CDA), 131

cholinesterase inhibitors (ChEIs). See also specific drugs

Alzheimer’s disease (AD), 28

behavioral variant frontotemporal dementia (bvFTD), 32

carbon monoxide poisoning, 183

cerebral autosomal dominant arteriopathy with

subcortical infarcts and leukoencephalopathy

(CADASIL), 77

epilepsy, 104

mild cognitive impairment (MCI), 29

multiple sclerosis (MS), 150

myasthenia gravis (MG), 209

narcolepsy, 215

Parkinson’s disease dementia (PDD)/dementia with

Lewy bodies (DLB), 48

progressive supranuclear palsy (PSP), 49

vascular dementia (VaD), 77

Wernicke-Korsakoff syndrome (WKS), 185

chorein, 122

CHRNA4 gene mutations, 101

CHRNB2 gene mutations, 101

chromosome 3 linked frontotemporal dementia (FTD3),

40

chronic inflammatory demyelinating polyneuropathy

(CIDP), 158

chronic kidney disease (CKD), 184

chronic obstructive pulmonary disease (COPD), 183, 214

chronic progressive external ophthalmoplegia (CPEO),

125–6

Churg-Strauss syndrome, 154–6

circadian rhythm sleep disorders, 215

clipping, of aneurysms, 80

CLN6 gene mutations, 130

clobazam, 103

clonazepam, 103, 216

clonidine, 222

cobalamin C disease, 182

cobalamin deficiency, 181–2

cognitive function

domains of, 1–11. See also specific domains

neuropsychological assessment, 11–12

cognitive impairment

depression-related cognitive dysfunction, 220

mild. See mild cognitive impairment (MCI)

syndromes of, 12–16

vascular. See vascular cognitive impairment (VCI)

coiling (intravascular embolization), 80

collagen, excess deposition, 154

colloid cyst, 171

coma, 2

congophilic angiopathy, 83

Conn’s syndrome, 181

consciousness, 2–3

fluctuations in dementia with Lewy bodies (DLB), 46

continuous positive airway pressure (CPAP), 213–14

coronary artery bypass graft (CABG), 75

corpus callosum infarction, 77

corticobasal degeneration (CBD), 49–50

coxsackie virus encephalitis, 195

craniopharyngioma, 168

Creutzfeldt-Jakob disease (CJD)

familial (fCJD), 53

human growth hormone-related iatrogenic, 53

sporadic (sCJD), 51–2, 157

variant (vCJD), 52–3

Cryptococcus neoformans, 197

Cushing’s syndrome, 180

cutaneous leukocytoclastic vasculitis, 155

cystatin B gene mutations, 132

cystatin C gene mutations, 84

DAP12 gene mutations, 116

de Grouchy syndrome, 128

delirium, 2, 219–20

dementia, 13–16

alcohol-related/alcohol-induced, 185–6

anti-epileptic drugs (AEDs) and, 103

callosal, 15–16, 184, 186

cortical vs. subcortical, 14–15

dementia pugilistica/sports-related head injury, 50–1

diagnostic criteria, 13–14

dialysis, 184

disconnection syndromes, 15–16

frontotemporal. See frontotemporal dementia (FTD)

hereditary, 111–16

hippocampal sclerosis, 38

HIV/AIDS, 198

hydrocephalic. See hydrocephalic dementias

limbic, 14

Marianas, 51

neurofibrillary tangle (NTD), 37

Parkinson’s disease (PDD), 44–8

progressive supranuclear palsy (PSP), 48–9
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dementia (cont.)

pseudodementia, 220

semantic (SD), 34–6, 194

strategic infarct, 77–9

thalamic, 15, 77

thiamine, 185

vascular. See vascular dementia (VaD)

with Lewy bodies (DLB), 9, 14, 45–8, 216

dentatorubropallidoluysian atrophy (DRPLA),

114–15

depression, 220–1

Devic’s disease, 150

diabetes mellitus, 177–8

dialysis dementia, 184

diaschisis, 14

diffuse neurofibrillary tangles with calcification (DNTC),

37

disconnection syndromes, 15–16, 146

dissociative disorders, 222

distractibility, 3

domoic acid poisoning, 187

donepezil

alcohol-related dementia, 186

CADASIL, 83

epilepsy, 104

obstructive sleep apnoea-hypopnoea syndrome

(OSAHS), 214

progressive supranuclear palsy (PSP), 49

vascular dementia (VaD), 77

Down’s syndrome, 99

dural arteriovenous fistula (dAVF), intracranial, 82

dystonia, 124–5

dystrophia myotonica protein kinase (DMPK) gene

mutations, 206

DYT11, 124

eIF2B gene mutations, 128

Ekbom’s syndrome, 216

electroconvulsive therapy (ECT), 102

embolization, 80, 82

encephalitides and meningoencephalitides,

194

adenovirus encephalitis, 195

coxsackie virus encephalitis, 195

epilepsy and chronic encephalitis, 101–2

herpes simplex encephalitis (HSE), 194–5

herpes simplex type 2 encephalitis, 195

herpes zoster encephalitis (HZE), 195

human herpes virus-6 (HHV-6) infection, 195

Japanese encephalitis, 196

post-encephalitic parkinsonism (encephalitis

lethargica), 196–7

rotavirus encephalitis, 196

subacute sclerosing panencephalitis (SSPE), 196

tick-borne encephalitis, 196

endocrine disorders

adrenal hormone disorders, 180–1

diabetes mellitus, 177–8

parathyroid disorders, 179–80

thyroid disorders, 178–9

Engel’s disease, 129

epilepsy

benign childhood epilepsy with centrotemporal spikes

(BCECTS), 99

cognitive decline shared etiopathogenesis, 98–102

cognitive impairment and, 97–8

epileptic aphasia, 103

hereditary metabolic disorders, 130, 132

idiopathic generalized (IGE), 99

juvenile myoclonic epilepsy (JME), 99

localization-related (partial), 99–101

frontal lobe epilepsy (FLE), 101

autosomal dominant nocturnal (ADNFLE), 101

temporal lobe epilepsy (TLE), 100–1

myoclonic epilepsy and ragged red fibers (MERRF)

syndrome, 125–6

Rasmussen’s syndrome, 101–2

schizophrenia-like psychosis of (SLPE), 101, 220

seizures causing acquired cognitive impairment, 102–3

transient epileptic amnesia (TEA), 88, 102–3

treatment of cognitive problems, 104

EPM2A/EPM2B gene mutations, 132

epsilon-sarcoglycan gene mutations, 124

Erdheim-Chester disease, 158

essential cryoglobulinemia, 155

essential tremor (ET), 124–5, 216

executive function, 10–11

Alzheimer’s disease (AD), 25, 28

behavioral variant frontotemporal dementia (bvFTD),

31, 32

Huntington’s disease (HD), 112, 114

motor neurone disease (MND)/amyotrophic lateral

sclerosis (ALS), 41–2

multiple sclerosis (MS), 147–8

Parkinson’s disease dementia (PDD)/dementia with

Lewy bodies (DLB), 46, 48

progressive non-fluent aphasia (PNFA), 33–4

semantic dementia (SD), 35–6
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extinction, 3

extracellular matrix protein 1 (ECM1) gene mutations, 124

Fabry’s disease, 129

Fahr’s disease, 124

familial encephalopathy with neuroserpin inclusion

bodies (FENIB), 115

familial British dementia (FBD), 115

familial Danish dementia (FDD), 115

familial hemiplegic migraine (FHM), 87–8

familial occipital calcifications, hemorrhagic strokes,

leukoencephalopathy, dementia and external

carotid dysplasia (FOCHS-LADD), 84

fatal familial insomnia (FFI), 53–4

ferritin light polypeptide/ferritin light chain (FTL) gene

mutations, 123

fibromyalgia, 222–3

FIG4 gene mutations, 43

finger agnosia, 8

Flynn effect, 4

forgetting 7. See also amnesia; memory

fornix infarction/lesions, 77, 171

fragile site mental retardation 1 (FMR1) gene mutations,

121

fragile X syndrome (FRAX), 121

fragile X tremor/ataxia syndrome (FXTAS), 121

frataxin gene mutations, 119

Friedreich’s ataxia (FA), 118–19

frontotemporal dementia (FTD). See also frontotemporal

lobar degenerations (FTLD)

amyotrophic lateral sclerosis (ALS) and, 40–1

behavioral variant (bvFTD), 30–2

chromosome 3 linked FTD, 40

diagnostic criteria, 14

inclusion body myopathy with Paget’s disease and

frontotemporal dementia (IBMPFD), 40, 171

with parkinsonism linked to chromosome 17 (FTDP-17),

39–40

frontotemporal lobar degenerations (FTLD)

argyrophilic grain disease (AGD), 36–7

basophilic inclusion body disease (BIBD), 37

behavioral variant frontotemporal dementia (bvFTD),

30–2

diffuse neurofibrillary tangles with calcification (DNTC),

37

familial, 38–40

neurofibrillary tangle dementia (NTD), 37

neuronal intermediate filament inclusion disease

(NIFID), 37–8

overview, 29–30, 36

progressive non-fluent aphasia (PNFA), 32–4

progressive subcortical gliosis (PSG) (of Neumann), 38

pure hippocampal sclerosis/hippocampal sclerosis

dementia, 38

semantic dementia (SD), 34–6

fukutin-related protein, 207

fungal meningitis, 197

fused in sarcoma (FUS) protein, 37–9, 43

gabapentin, 104

galactocerebroside �-galactosidase (GALC), 128

galantamine, 77, 104

gambling, pathological, 32, 48

gastrointestinal diseases, 181–2

Gaucher’s disease, type III, 130

general intelligence. See intelligence (general)/IQ

genu of the internal capsule infarction, 78

Gerstmann syndrome, 8, 9, 27, 152, 154–5

Gerstmann-Straussler-Scheinker disease (GSS), 53

giant cell arteritis (GCA), 154–5

Glasgow Coma Scale (GCS), 3

glatiramer acetate, 150

glial fibrillary acidic protein (GFAP), 127

glioma, 167

gliomatosis cerebri, 167

globoid cell leukodystrophy, 128

globus pallidus infarction, 78

glucose tolerance, impaired, 177–8

gluten sensitivity, 182

glycogen branching enzyme (GBE) deficiency, 131

glycogen storage disease type IV (GSDIV), 131

glycogenosis type IIb, 129

GM2 gangliosidosis, 129–30

granulomatous angiitis (primary angiitis of the CNS

(PACNS)), 154–5

Graves’ disease, 179

Hashimoto’s encephalopathy (HE), 157

head injury, sports-related, 50–1

head turning sign, 12

hemangiomas, cavernous, 82

hemochromatosis, 131

hemodynamic dementia, 74

Henoch-Schonlein purpura, 155

hepatolenticular degeneration (Wilson’s disease), 121–2

hereditary ataxias 116–20. See also specific disorders

hereditary cerebral hemorrhage with amyloidosis Dutch

type (HCHWA-D), 84
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hereditary cerebral hemorrhage with amyloidosis

Icelandic type (HCHWA-I), 84

hereditary dementia 111–16. See also specific disorders

hereditary diffuse leukoenchephalopathy with axonal

spheroids (HDLS), 128–9

hereditary dystonic lipidosis, 129

hereditary endotheliopathy with retinopathy,

nephropathy, and stroke (HERNS), 84

hereditary metabolic disorders

cerebrotendinous xanthomatosis (CTX), 131

hemochromatosis, 131

Lafora body disease, 132

leukodystrophies, 126–9

lysosomal storage disorders, 129–30

mitochondrial disorders, 125–6

myoclonic epilepsy of Unverricht and Lundborg, 132

polyglucosan body disease (PGBD), 131–2

porphyria, 132

hereditary movement disorders

aceruloplasminemia, 123, 131

dystonia, 125

essential tremor (ET), 124–5

Fahr’s disease, 124

fragile X syndrome (FRAX)/fragile X tremor/ataxia

syndrome (FXTAS), 121

Kufor-Rakeb syndrome, 123–4

myoclonus-dystonia syndrome (MDS), 124

neuroacanthocytosis, 122–3

neurodegeneration with brain iron accumulation

(NBIA)/pantothenate-kinase associated

neurodegeneration (PKAN), 122

neuroferritinopathy, 123

Urbach-Wiethe disease, 124

Wilson’s disease, 121–2

hereditary multi-infarct dementia of Swedish type, 84–5

hereditary spastic paraplegia (HSP), 120

heredopathia ophthalmo-oto-encephalica, 115

herpes simplex encephalitis (HSE), 194–5

herpes simplex type 2 encephalitis, 195

herpes zoster encephalitis (HZE), 195

hexosaminidase A deficiency, 129

highly active retroviral therapy (HAART), 198

hippocampus

hippocampal infarction, 78–9

hippocampal sclerosis (pure)/hippocampal sclerosis

dementia, 38

memory function and, 5, 97–8

histiocytosis, 158

homocystinuria, 182

HTLV-1, 198–9

HTRA1 gene, 83

Hughes’ syndrome (primary antiphospholipid antibody

syndrome), 85–6

human growth hormone-related iatrogenic

Creutzfeldt-Jakob disease, 53

human herpes virus-6 (HHV-6) infection, 195

human immunodeficiency virus (HIV)/acquired

immunodeficiency syndrome (AIDS), 197–8

HIV/AIDS dementia, 198

HIV-associated neurocognitive disorder (HAND), 198

HTLV-1, 198–9

progressive multifocal leukoencephalopathy (PML), 198

Huntington’s disease-like (HDL) syndromes, 53, 112, 118

Huntington’s disease (HD), 111–14

hydrocephalic dementias, 169–71

aqueduct stenosis, 169, 171

colloid cyst and fornix lesions, 171

normal pressure hydrocephalus (NPH), 169–71

Paget’s disease of bone, 171–2

hyperaldosteronism, primary, 181

hypercortisolism, 180

hyperglycemia, 177–8

hyperinsulinemia, 177

hyperparathyroidism, 180

hyperthyroidism, 179

hypocortisolism, 180

hypoglycemia, 178

hypoparathyroidism, 179–80

hypoperfusion dementia, 74

hypothyroidism, 178–9

immunosuppressive therapy, 150, 155–6

inclusion body myopathy with Paget’s disease and

frontotemporal dementia (IBMPFD), 40, 171

infective disorders

encephalitides and meningoencephalitides, 194–7

HIV and related disorders, 197–9

meningitides, 197

neuroborreliosis, 199–200

neurocysticercosis, 200

neurosyphilis, 199

tuberculosis/tuberculous meningitis, 200

Whipple’s disease, 200–1

intelligence (general)/IQ, 4–5

Alzheimer’s disease (AD), 25–6

behavioral variant frontotemporal dementia (bvFTD),

31

epilepsy, 101–2
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motor neurone disease (MND)/amyotrophic lateral

sclerosis (ALS), 41

multiple sclerosis (MS), 147

Parkinson’s disease dementia (PDD)/dementia with

Lewy bodies (DLB), 46–7

progressive non-fluent aphasia (PNFA), 33

semantic dementia (SD), 34–5

interferon beta-1a/beta-1b, 150

intermediate filament (IF) proteins, 37–8

intracranial hypotension, spontaneous (SIH),

172–3

intracranial vasculitis (primary angiitis of the CNS

(PACNS)), 154–5

intravascular lymphomatosis, 85

iron metabolism abnormalities, 131

IT15 gene mutations, 111

ITM2B gene mutations, 84, 115

ITPR1 gene mutations, 118

Japanese encephalitis, 196

Kawasaki disease, 155

Kearns-Sayre syndrome (KSS), 125–6

Kennedy’s syndrome, 208

Kleine-Levin syndrome, 215

Klinefelter syndrome, 133

Kosaka-Shibayama disease, 37

Krabbe disease, 128

Kufor-Rakeb syndrome, 123–4

Kufs disease, 130

kuru, 52

lacosamide, 104

lacunar state, 76–7

Lafora body disease, 132

lamotrigine, 104

Langerhans cell histiocytosis (LCH), 158

language, 7–8. See also aphasia

Alzheimer’s disease (AD), 25–7

behavioral variant frontotemporal dementia (bvFTD),

31–2

Huntington’s disease (HD), 112–13

motor neurone disease (MND)/amyotrophic lateral

sclerosis (ALS), 41–2

multiple sclerosis (MS), 147–8, 150

Parkinson’s disease dementia (PDD)/dementia with

Lewy bodies (DLB), 46–7

progressive non-fluent aphasia (PNFA), 33–4

semantic dementia (SD), 35

Leber’s hereditary optic neuropathy (LHON), 126

Leigh syndrome, 126

leukoencephalopathy, 169

leukodystrophies, 126–9

18q deletion (18q-) syndrome, 128

Alexander’s disease and Rosenthal fiber encephalopathy

(RFE), 127–8

hereditary diffuse leukoencephalopathy with axonal

spheroids (HDLS), 128–9

Krabbe disease, 128

metachromatic leukodystrophy (MLD), 126–7

Pelizaeus-Merzbacher disease (PMD), 128

vanishing white matter disease (VWMD), 128

X-linked adrenoleukodystrophy (X-ALD), 127

levetiracetam, 104

LG11 non-paraneoplastic limbic encephalitis (NPLE),

156–7

limb-girdle muscular dystrophy (LGMD), 207–8

limbic encephalitides, 156–7

lipoid proteinosis, 124

lobectomy, effects on memory function, 5–6, 97

Löwenberg-Hill syndrome, 128

Lyme disease, 199–200

lymphoma, primary CNS (PCNSL), 168

lymphomatosis cerebri, 168

lysosomal storage disorders, 129–30

lytico-bodig, 51

Machado-Joseph disease (MJD), 117

manganese poisoning/manganism, 186

Marchiafava-Bignami disease, 186

Marianas dementia, 51

maspardin gene mutations, 120

Mast syndrome, 120

McArdle’s disease, 208

mefloquine, 198

memantine, 28, 48, 77, 150

memory, 5–7. See also amnesia

Alzheimer’s disease (AD), 25–6

behavioral variant frontotemporal dementia (bvFTD),

31

brain tumors, 167–8

epilepsy, 98, 100–3

Huntington’s disease (HD), 112–13

lobectomy effects, 5–6, 97

long term, 3, 5

motor neurone disease (MND)/amyotrophic lateral

sclerosis (ALS), 41

multiple sclerosis (MS), 147
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memory (cont.)

Parkinson’s disease dementia (PDD)/dementia with

Lewy bodies (DLB), 46–7

progressive non-fluent aphasia (PNFA), 33

semantic dementia (SD), 34–5

short term, 3, 5

working, 3, 5

meningioma, 167

meningitides, 197

bacterial meningitis, 197

fungal meningitis, 197

tuberculous meningitis, 200

viral meningitis, 197

meningoencephalitides. See encephalitides and

meningoencephalitides

metabolic disorders, 181

gastrointestinal disease, 181–2

hereditary. See hereditary metabolic disorders

renal and electrolyte disorders, 184

respiratory disorders, 183

metachromatic leukodystrophy (MLD), 126–7

methylmalonic aciduria, 182

microscopic polyangiitis, 155–6

microtubule associated protein tau (MAPT) mutations, 38,

39–40

migraine, 87–8, 216

mild cognitive impairment (MCI) 13. See also vascular

cognitive impairment

multiple system atrophy (MSA), 50

Parkinson’s disease (PD), 45

prodromal Alzheimer’s disease (AD), 29

Mills’ syndrome, 43

Mini-Mental State Examination (MMSE), 3

mitochondrial disorders, 125–6

mitochondrial encephalomyopathy, lactic acidosis and

stroke-like episodes syndrome (MELAS), 125–6

mitochondrial neurogastrointestinal encephalopathy

(MNGIE), 126

MMACHC gene mutations, 182

modafinil, 215

Modified Wisconsin Card Sorting Test (MWCST), 10

mood disorders, 220–1

motor neurone disease (MND)/amyotrophic lateral

sclerosis (ALS), 40–2

ALS/parkinsonism-dementia complex (ALS/PDC) of

Guam, 51

familial ALS, 43–4

frontotemporal dementia (FTD) and, 40–1

Mills’ syndrome variant, 43

primary lateral sclerosis (PLS) variant, 42

progressive muscular atrophy (PMA) variant, 43

movement disorders

hereditary. See hereditary movement disorders

sleep-related, 44, 216

moyamoya, 85–6

mucopolysaccharidosis III, 130

multi-infarct dementia (MID), 74

multiple sclerosis (MS), 16, 145–50

multiple system atrophy (MSA), 50, 216

muscular dystrophy

limb-girdle (LGMD), 207–8

oculopharyngeal (OPMD), 208

myasthenia gravis (MG), 208–9

Mycobacterium tuberculosis, 200

mycophenolate, 150

myelin basic protein (MBP) gene mutations, 128

myelinolysis, central pontine (and extrapontine), 184

myoclonic epilepsy and ragged red fibers (MERRF)

syndrome, 125–6

myoclonic epilepsy of Unverricht and Lundborg, 132

myoclonus-dystonia syndrome (MDS), 124

myophosphorylase deficiency, 208

myotonic dystrophy, 206–7

narcolepsy, 215

NARP syndrome, 126

Nasu-Hakola disease, 115–16, 124

natalizumab, 150, 198

National Adult Reading Test (NART), 4

neglect, 3–4

neuroacanthocytosis, 122–3

neuro-Behçet’s disease, 153

neuroborreliosis, 199–200

neurocutaneous syndromes (hereditary), 132–3

neurocysticercosis, 200

neurodegeneration with brain iron accumulation (NBIA),

122

neurodegenerative disease. See also specific diseases

terminology, 24

neuroferritinopathy, 123

neurofibrillary tangles (NFTs)

Alzheimer’s disease, 24, 25

diffuse neurofibrillary tangles with calcification (DNTC),

37

myotonic dystrophy, 207

neurofibrillary tangle dementia (NTD)/neurofibrillary

tangle-predominant dementia (NFTPD), 37

neurofibromatosis, 132–3
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neuroimaging, multiple sclerosis (MS), 148–9

neuromuscular disorders, 206

limb-girdle muscular dystrophy (LGMD), 207–8

McArdle’s disease, 208

myasthenia gravis (MG), 208–9

myotonic dystrophy, 206–7

oculopharyngeal muscular dystrophy (OPMD), 208

spinal and bulbar muscular atrophy (SBMA), 208

neuromyelitis optica (NMO), 150

neuronal ceroid lipofuscinosis (NCL), 130

neuronal intermediate filament inclusion disease (NIFID),

37–8

neuropsychological assessment

‘bedside’, 11–12

formal, 11

neurosarcoidosis, 150–1

neuroserpin gene mutations, 115

neurosyphilis, 199

niacin deficiency, 182

Niemann-Pick disease type C, 130

Nitzschia pungens, 187

NMDA-R non-paraneoplastic limbic encephalitis (NPLE),

156–7

non-paraneoplastic limbic encephalitis (NPLE), 156–7

normal pressure hydrocephalus (NPH), 169–71

notch3 protein mutations, 82
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