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Abstract

In information security systems, block ciphers play a crucial role. They are deployed to protect
confidential data and as building blocks in many cryptographic designs. This thesis focuses on
the design and analysis of block ciphers.

After motivating the topic and introducing the basics, the thesis is divided into three parts.
The first part is a systematization of knowledge of linear cryptanalysis and provides new insights
in the areas of key schedule design and tweakable block ciphers. The second part is an analysis
of the ASASA structure, which was proposed as a building block for several cryptographic
designs. Finally, the third part discusses methods for finding efficient implementations of matrix
multiplications and using them to construct building blocks for secure lightweight block ciphers.
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Zusammenfassung

In informationssichernden Systemen spielen Blockchiffren eine entscheidende Rolle. Sie werden
eingesetzt um vertrauliche Daten zu schützen und als Baustein in vielen kryptographischen
Konstruktionen verwendet. Diese Arbeit legt das Augenmerk auf den Entwurf und die Analyse
von Blockchiffren.

Nach einer Motivation des Themas und einer Einführung in die Grundlagen teilt sich diese
Arbeit in drei Teile. Der erste Teil systematisiert das Wissen über lineare Kryptanalyse und
gibt neue Einblicke in den Entwurf von Schlüsselableitungsfunktionen und in das Thema der
veränderbaren Blockchiffren. Der zweite Teil ist eine Analyse der ASASA Struktur, welche als
Baustein für verschiedene kryptographische Entwürfe vorgeschlagen wurde. Zuletzt behandelt
der dritte Teil Methoden, um effiziente Implementierung von Matrix Multiplikationen zu finden
und diese zu nutzen, um Bausteine für sichere leichtgewichtige Blockchiffren zu konstruieren.
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Notation

In the following, we present a list of symbols and a list of abbreviations. The list of symbols
contains the most important symbols that occur throughout the whole thesis. More specific ones
will be introduced in the text as needed.

List of Symbols

Ek A block cipher.
Dk The inverse of a block cipher.
m,x A plaintext.
c,y A ciphertext.
n The block size of a block cipher.
k The key of a block cipher.
κ The key length.
S An S-box, i. e. a non-linear bijection.
m The size of an S-box.
t The number of S-boxes. / The tweak of a tweakable block cipher.
τ The tweak length.
L A linear map.
LT The adjoint of a linear map L.
F` The finite field with ` elements.
Fn
`

The n-dimensional vector space over F`.
〈x , y〉 The canonical scalar product of two vectors, i. e.

∑

x i yi .
x‖y Concatenation of the binary strings x and y .
hw(·) The number of non-zero entries of a matrix or vector. In the case of

a polynomial, the number of non-zero coefficients.
x ⊕ y Bitwise exclusive-or of x and y .
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viii NOTATION

List of Abbreviations

AES Advanced Encryption Standard
ARK AddRoundKey
ARX Addition-Rotation-XOR
CCA Chosen-ciphertext attack
CDF Cumulative distribution function
CPA Chosen-plaintext attack
DDT Difference distribution table
DES Data Encryption Standard
DRM Digital rights management
ECB Electronic Codebook
FPGA Field Programmable Gate Array
HSM Hardware Security Module
IoT Internet of Things
IV Initialization vector
KPA Known-plaintext attack
LAT Linear approximation table
MC MixColumns
MDS Maximum Distance Separable
NIST National Institute of Standards and Technology
PRP Pseudorandom permutation
SB SubBytes
SPN Substitution-permutation network
SR ShiftRows
XOR Exclusive-or
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1
Introduction

Today, information security is of major importance for many aspects of our everyday life. For
example, it is fundamental for the privacy of individuals, for business success of companies, or
for preventing crimes. The study of mathematical techniques related to aspects of information
security is called cryptography or cryptology1 [MVO96, Definition 1.1].

Cryptology offers a wide range of tools for enabling secure communication and data storage.
Typical examples are encryption algorithms that yield confidentiality or digital signatures that can
be used to assure data integrity or user authentication. Such basic tools are called cryptographic
primitives.

The field of cryptography is typically divided into two categories: asymmetric cryptography
and symmetric cryptography. This categorization is best described by a short example of how
encryption works in each category for a sender who wants to send a message to a recipient via an
insecure channel. In symmetric cryptography, the sender uses a secret key to encrypt a message.
The recipient then needs the same key to decrypt the encrypted message. Whoever knows the
key can break the confidentiality. Thus, the obvious problem is that both the sender and the
recipient first need to agree on some secret key, but they do not have a secure channel to do that.
In asymmetric cryptography, a recipient of a message has a public key and a private/secret key.
As the name suggests, the public key is made public and the secret key is kept secret. The sender
can use the public key to encrypt the message, and the recipient needs the private key to decrypt
the encrypted message. Whoever knows the private key can read the message. So the problem
from the symmetric scenario is solved, as the public key may be disseminated via an insecure
channel. However, a new problem arises. Namely the question of authenticity. The sender must
be sure that the public key really belongs to the intended recipient. This problem is addressed

1In a strict sense, cryptology is a generic term for cryptography and cryptanalysis. The former denotes the design
and latter the analysis. However, the terms cryptology and cryptography are often used interchangeably in the
literature.

1



2 CHAPTER 1. INTRODUCTION

by so-called certificates that we will not discuss in this thesis. While asymmetric cryptography
solves the problem of key distribution, it comes with the major drawback that the computations
are rather slow compared to symmetric cryptography. That is why in practice typically a hybrid
approach is chosen. The key distribution or key agreement is done by asymmetric primitives.
Afterward, symmetric ciphers are used to carry out the bulk data encryption as fast as possible.
Thus, symmetric cryptography builds the backbone of today’s information security systems.

There exist different symmetric primitives like block ciphers, stream ciphers, and hash
functions. The above-mentioned bulk data encryption is typically carried out by block ciphers.
Besides being used for encrypting the major fraction of our sensible data, block ciphers are
important building blocks in many cryptographic constructions and protocols.

For the application of block ciphers, the obvious research question is “How can we design
secure block ciphers?”. This question cannot be answered without also looking at techniques
for attacking block ciphers. Besides this, another research question directly connected to the
application of block ciphers is “How can we design/implement efficient block ciphers?”. While
efficiency is always a goal in computing, it becomes imperative in small devices with constrained
resources.

These two research questions have been the motivation for the work presented in this thesis.

Contribution and Outline

We first introduce the basics and touch different aspects of the design and analysis of block
ciphers. For a more fundamental and broad introduction to cryptology the reader is referred
to [BR05; KL14; MVO96; PP09] and for basic textbooks about block ciphers we additionally
recommend [DR02] and [KR11].

While Chapter 2 and Chapter 3 are dedicated to the analysis of block ciphers, Chapters 4
and 5 deal with design issues for lightweight cryptography.

Linear Cryptanalysis Chapter 2 serves as a systematization of knowledge of linear cryptanalysis
and provides new insights in the areas of key schedule design and tweakable block ciphers. We
examine the famous linear hull theorem [DGV95; Nyb95] in a step by step manner in a general
and consistent setting. Based on this, we study the influence of the choice of the key scheduling
on linear cryptanalysis, a – notoriously difficult – but important subject. Moreover, we investigate
how tweakable block ciphers can be analyzed with respect to linear cryptanalysis. These results
have been published in [KLW17].

Structural Cryptanalysis of ASASA Afterward, we deal with the analysis of the ASASA struc-
ture in Chapter 3 [Din+15]. That is, we consider the problem of recovering the internal specifi-
cation of a general SP-network consisting of three affine layers (A) interleaved with two S-box
layers (S), given only black-box access to the scheme. The decomposition of such general ASASA
schemes was first considered at ASIACRYPT 2014 by Biryukov et al. [BBK14] who used the al-
leged difficulty of this problem to propose several concrete block cipher designs as candidates for
white-box cryptography. We present several attacks on general ASASA schemes that significantly
outperform the analysis of Biryukov et al. As a result, we are able to break all the proposed
concrete ASASA constructions with practical complexity. For example, we can decompose an
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ASASA structure that was supposed to provide 64-bit security in roughly 228 steps, and break the
scheme that supposedly provides 128-bit security in about 241 steps. Whenever possible, our
findings are backed up with experimental verifications.

Lightweight Linear Layers Finally, Chapters 4 and 5 consider the problem efficiently imple-
menting MDS matrices in hardware. Here, “efficiently” means that the area needed for the
hardware circuit shall be as small as possible. For measuring this efficiency, we use the so-called
XOR count, i. e. the number of XOR operations needed to implement the matrix multiplication.
In Chapter 4, we consider the more general and fundamental question of optimizing finite field
multiplications with one fixed element. We investigate which field representation, that is which
choice of basis, allows for an optimal implementation. Based on the results, we construct new
MDS matrices. When these results were published in 2016 [BKL16] they outperformed or were
on par with all previous results when focusing on a round-based hardware implementation.
Subsequently, a lot of attention was paid to this problem and most of the work also concentrated
on locally optimizing the multiplication with single matrix elements with the effect of small
further improvements. In Chapter 5, we then shift the focus from the local optimization of single
matrix elements to the global optimization of the whole matrix multiplication. It turns out that
in a separate line of work, several heuristics were developed to find shortest linear straight-line
programs. Solving this problem actually corresponds to globally optimizing multiplications by
matrices. We combine this separate line of work with our problem of finding efficiently imple-
mentable MDS matrices. As a result, we achieve implementations of known, locally optimized,
and new MDS matrices that significantly outperform all implementations from the literature.
Interestingly, almost all previous locally optimized constructions behave very similarly with
respect to the globally optimized implementation. As a side effect, our work revealed the by that
time best implementation of the AES MixColumn operation with respect to the number of XOR
operations needed. The according results were published in [Kra+17].

1.1 Block Ciphers

Let us consider one of the most basic and most important cryptographic goals: confidentiality.
It is established by so-called ciphers or encryption functions. The input of such a function is
typically called the message or the plaintext and will be denoted by m or x . Any unauthorized
party should then be unable to derive any information whatsoever about the plaintext from
the output data which is typically called the ciphertext and denoted by c or y. Authorization is
usually proven by the knowledge of a secret value k, called the key.

Above, we presented the example of two parties who want to privately communicate over
some insecure channel, e. g. via email. Any other party listening to the communication should
then not be able to gain any information about the content of the messages. Another example
of the need of encryption is the storage of secret data on some hard drive that might also be
accessible to an unauthorized person.

A block cipher is a special kind of encryption function. But it can also be used as a building
block to construct other symmetric algorithms such as hash functions or stream ciphers.
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F
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m c

Figure 1.1: A block cipher.

Definition 1.1 (Block Cipher). An n-bit block cipher is defined as a function F : Fn
2 × Fκ2 → Fn

2
where n,κ > 0 and for any fixed k ∈ Fκ2 the function Ek(·) := F(·, k) is bijective. ◊

Thus, as depicted in Figure 1.1, a block cipher can be seen as a family of permutations that is
indexed by a key k. Each permutation maps an input block of n bits to an output block of n bits.
The according family of inverse permutations is called decryption and denoted by Dk(·).

Typical values for n are 64 and 128. Typical values for κ are 80, 128, and 256. For designing
and analyzing a block cipher, we need to define in which case the cipher is considered secure and
in which case it is not. This consists of two parts. On the one hand, we need to define what is
considered a successful attack. On the other hand, we need to define the abilities of the attacker,
the so-called attacker model.

1.1.1 Security Definition

Obviously, if the attacker knows the secret key, he can directly decrypt ciphertexts and learn the
according plaintexts. Thus, one might have the first idea of defining a block cipher as secure,
if the attacker cannot learn the secret key. However, there is a trivial example showing that
this definition is not sufficient. Just imagine a block cipher that computes the identity mapping
independently of the key. Such a block cipher is secure against key-recovery, but it is certainly
not something that we want to denote as a secure block cipher.

Instead, we use the notion of a distinguishing attack, where the attacker has to find out if
he is interacting with the actual block cipher or with a random permutation. If the attacker can
distinguish between these two cases, the cipher is considered as broken. We can directly see, that
indistinguishability implies security against key-recovery. On the other hand, distinguishability
often leads to a key-recovery attack, as we will discuss in Section 1.3.2. The intuition behind this
security definition is that a perfect cipher would just be a random permutation for every key and
thus if we cannot distinguish our cipher from a random permutation we are very close to this
perfect scenario. For this reason, indistinguishability from a random permutation is a well-known
concept in provable security, where the security proofs of bigger constructions usually rely on
the assumption that the block ciphers can be modeled as (strong) pseudorandom permutations
(PRPs), i. e. as functions that cannot be efficiently distinguished from random permutations with
a probability that has a non-negligible difference from 1/2. Typical examples of such bigger
constructions are the so-called modes of operation that define how the block cipher is used to
process a number of bits that differs from the block size. However, so far no practical block cipher
could be proven to be a PRP. Thus, in block cipher design, one does not make use of the formal
PRP definition which is used in the area of provable security. Since we cannot prove the security,
the best we can do is to give good arguments against its insecurity. Here, we consider the block
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cipher as insecure as soon as we have a distinguisher that works faster than an exhaustive search2.
This constraint simply comes from the fact that a trivial distinguisher can always be found by
searching through the whole key space. This way of defining (in)security directly implies parts
of the attacker model presented in the next section, namely the assumption that an attacker can
carry out any attack that has lower time complexity than exhaustive search. In the end, a block
cipher is believed to be secure if it was thoroughly analyzed by multiple experts for some years
and still could not be broken.

1.1.2 Attacker Model

The attacker model defines the resources of the attacker and the scenario in which the cipher is
attacked. First of all, there exists the consensus that in every attacker model, the attacker must
have full access to the cipher design. This important principle was established by Kerckhoffs in
1883.

Kerckhoffs’ Principle [Ker83]. The security of a cryptosystem should not rely on its secrecy. It
should not cause any inconvenience if it falls into the hands of the attacker. ◊

The obvious reason for this principle is that it is very hard to keep a cryptographic algorithm
secret. Often, the algorithms can be recovered by reverse-engineering techniques. There exist
numerous cases in which cryptographic systems were broken because the designers did not adhere
to Kerckhoffs’ principle. One famous example is the Content Scramble System that was used for
the protection of DVD-Video content and has been completely broken once the specification
became public. Another more recent example is the Megamos Crypto transponder which was
reverse-engineered and broken in 2012 [VGE15] and is used as an electronic vehicle immobilizer
by many car manufacturers, including Audi, Fiat, Honda, Volkswagen, and Volvo.

In addition to Kerckhoffs’ principle, another important part of the attacker model is the
scenario in which the attacker is interacting with the block cipher. Here, we define the type of
data that the attacker can get his hands on and also his potential knowledge about the secret key.

The data that the attacker can use in his attack is plaintexts and ciphertexts. We denote by d
the amount of data that the attacker can use. Depending on the way this data is collected, we
differentiate between the following scenarios:

• Ciphertext-only attack. The attacker knows a set of ciphertexts {c1, . . . , cd}.
• Known-plaintext attack (KPA). The attacker knows pairs {(m1, Ek(m1)), . . . , (md , Ek(md))}.
• Chosen-plaintext attack (CPA). The attacker can choose plaintexts {m1, . . . , md} and receives
{Ek(m1), . . . , Ek(md).

• Chosen-ciphertext attack (CCA). The attacker can choose ciphertexts {c1, . . . , cd} and receives
{Dk(c1), . . . , Dk(cd).

2Exhaustive search, also called “brute-force” is the attack that just tries out all keys until finding the correct one.
It will be explained in Section 1.3.1.
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Additionally, the CPA and the CCA might be adaptive. In an adaptive CPA, the attacker does not
need to choose all plaintexts in advance, but he can choose the plaintext mi with the knowledge
of the pairs {(m1, Ek(m1)), . . . , (mi−1, Ek(mi−1))}. The adaptive CCA works analogously. The
ciphertext-only is obviously the weakest attacker model and it is the typical model that one has
in mind when thinking about an attacker who eavesdrops on some communication channel.
However, also the KPA is a very common attack and even the (adaptive) CPA/CCA might be
practically relevant. Namely in situations in which the attacker can query the encryption or
decryption function, for example in certain communication protocols or because he has physical
access to the cryptographic device. In block cipher design, we have very high standards and
typically assume very strong attackers, that is, adaptive CPA/CCA. However, as we will see later,
linear cryptanalysis is one of the strongest attacks on block ciphers although it is only a KPA.

When it comes to the attacker’s knowledge about the key, the most common scenario is the
secret-key model, where we assume that the attacker has no information about the key. In the
related-key model introduced by Biham [Bih94], the attacker knows relations between different
keys that are used in different instantiations of the cipher. This model has become very relevant in
the context of tweakable block ciphers that will be discussed in Section 1.2.3. Here, the attacker
might not only be able to know but actually to choose an XOR-difference in the key. In addition
to the secret-key model and the related-key model, there also exists the known-key model [KR07]
and the chosen-key model [BKN09]. These models can be relevant if the block cipher is used to
instantiate a hash function. However, in this thesis, we will always assume to be in the secret-key
model.

When an attack is presented, it always comes with an attack complexity, which is measured
in time, memory, and data. Here, the time complexity gives the number of computations that
need to be carried out, memory gives the number of values that need to be stored, and data gives
the number of plaintexts or ciphertexts that need to be available to the attacker. Whether or
not this attack can be carried out by an attacker depends on the attacker’s hardware resources
and on the scenario in which the cipher is used. And it also depends on the time the attacker
is willing to spend3. These points of the attacker model are defined in the block cipher design
and are based on the main idea already presented above: that any attack which is better than
exhaustive search is considered a successful attack. Note, that this approach is sound because on
the one hand exhaustive search always works, so it does not make sense to regard any attack
that has higher complexity. On the other hand, good block cipher design can ensure that all
known attacks have higher complexity then exhaustive search4. This is in contrast to public key
cryptography, where the key length must often be chosen much higher because there exist attacks
that cannot be avoided and are faster than an exhaustive search. Thus, in a block cipher design,
the key length defines the computation power and the time of the attacker, because it is assumed
that the attacker can run any attack that needs fewer computations than exhaustive search.
The block length gives a natural bound for the amount of data that is available to the attacker.

3The attacker’s time should not be confused with the time complexity which is the number of computations that
need to be carried out in a specific attack.

4This does not hold anymore in a post-quantum scenario, where Grover’s algorithm [Gro96] can be used to reduce
the effective key length of block ciphers by a factor of two. Also, as pointed out by Leander and May [LM17], there
is not much work about post-quantum symmetric cryptography Grover’s algorithm might not be the only threat for
post-quantum symmetric cryptography. Throughout this thesis, we will not consider post-quantum scenarios.
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However, one might want to explicitly define the amount of data available in the attacker model,
for example if there are functional (non-cryptographic) reasons for choosing a particularly high
block length. An example of this scenario is the block cipher LOWMC [Alb+15] where the authors
explicitly decouple the block size from data available in the attacker model because they use
large block sizes. Anyway, note that the amount of available data is already naturally bounded
by the time complexity because the data needs to be collected first which can also be seen as part
of the attack. In the same way, we can argue that the amount of memory is also already bounded
by the time complexity.

1.2 Design of Block Ciphers

As already stated in the discussion of security definitions, we are not aware of any method to
design a block cipher that can be proven secure while being practical at the same time. Instead,
in block cipher design, security is achieved by giving arguments on why the cipher withstands all
known attacks. We will present the basic design principles of block cipher design in the following,
leading to today’s most popular design called substitution-permutation network (SPN). Later,
when discussing the specific attack techniques in Section 1.3, we will show how concrete security
arguments can be given based on the design. After presenting the basic design principles, we will
introduce four areas of block cipher design that will be important for the subsequent chapters.

1.2.1 Design Principles

The basic principles in block cipher design date back to the seminal work of Shannon [Sha49]
and his concept of confusion and diffusion. These notions have been created by Shannon in 1949
and there exist numerous reinterpretations for the design of modern cipher design. Here, we
quote a modern description attributed to James L. Massey [KR11]:

Confusion: The ciphertext statistics should depend on the plaintext statistics in a manner too
complicated to be exploited by the cryptanalyst.

Diffusion: Each digit of the plaintext and each digit of the secret key should influence many
digits of the ciphertext.

As remarked in [KR11], the properties of confusion and diffusion are not absolute, quantifiable
concepts. It should rather be seen as basic design principles or as an intuition of what a block
cipher designer should strive for. In block cipher design, the concepts of confusion and diffusion
are often attributed to specific parts of the cipher. Most block ciphers use the concepts of
substitution and permutation. This is, as the name suggests, most obvious for the substitution-
permutation network (SPN) which is introduced below. Substitution is an operation that realizes
the concept of confusion by carrying out a non-linear operation. Often this is implemented by
a lookup table, such that the input is just substituted with a predefined output. An according
lookup table is called an S-box. Due to implementation limitations, the S-boxes cannot operate
on the full block size. Typical input sizes for S-boxes are 4 or 8 bits. The permutation operation
then contributes to the diffusion and is often implemented by a bit-permutation. However,
nowadays, many ciphers do not use bit-permutations any more. Instead, the more general
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Figure 1.2: A round-based block cipher.

operation of a linear function is used which can be nicely implemented by a matrix multiplication
and can introduce more diffusion per application than a mere bit-permutation. However, the
term “permutation” has become established and is still used, even when we do not talk about a
bit-permutation5.

Virtually all relevant block ciphers nowadays are round-based block ciphers that can be
written as F = Gr−1 ◦ · · · ◦ G1 ◦ G0. Here, every round Gi uses some means for confusion and
diffusion and some information derived from the key. This information is called the round key
and will be denoted by ki for round Gi. To make clear the difference between the round keys
and the original key, the latter is sometimes also referred to as the master key. The function that
derives the round keys from the master key is called the key schedule. Fig. 1.2 shows the structure
of a round-based block cipher. These ciphers are also often referred to as product ciphers.

For a fixed round key, each round function Gi must be an invertible mapping from Fn
2 to

Fn
2. Decryption can then be carried out by using the same round keys and computing F−1 =

G−1
0 ◦· · ·◦G−1

r−2◦G−1
r−1. If the round functions are identical, i. e. G0 = G1 = · · · = Gr−1, this is called

an iterated cipher. Iterated ciphers are very popular because they allow efficient implementations
and nice proofs against existing attacks as we will see in Section 1.2.4 and Section 1.3, respectively.
The two most common designs for round-based ciphers are Feistel networks and substitution-
permutation networks (SPNs). Another important class of round-based block ciphers are so-called
Addition-Rotation-XOR (ARX) ciphers that only use modular addition, bitwise rotation, and the
XOR operation. However, we will not consider ARX designs in this thesis and only introduce
Feistel networks and SPNs in the following.

Feistel Ciphers

In a Feistel cipher, each round treats the input as two halves. The output is then computed
by applying a key-dependent function f to the right half and adding the result to the left half.
Finally, the two halves are swapped and form the input for the next round.

5In some sense, this is fine since also a linear function which is not a bit-permutation is a permutation in terms of
being bijective. However, this can get confusing, because also bijective S-boxes are often said to be permutations with
the same reasoning in mind.
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Figure 1.3: A Feistel cipher.

Definition 1.2 (Feistel-round). Let f : Fn/2×Fκ→ Fn/2. Now let x = xL‖xR be the input where
xL , xR ∈ Fn/2 and ’‖’ denotes the binary concatenation. The output y = yL‖yR is computed as
follows:

yL = xR

yR = xL + f (xR, k)

◊

The design of a Feistel cipher is depicted in Fig. 1.3. Note that the swap in the last round
of Fig. 1.3 has no cryptographic relevance and is thus often omitted, for example in the well-
known Data Encryption Standard (DES) [DES77]. However, it might also be useful for efficient
implementation because if f0 = . . . = fr−1, we have an iterated cipher and the same round
function can then be reused for every round.

The functions fi are used to implement the principles of confusion and diffusion and to insert
the key. They do not have to be invertible, because each round can be inverted without inverting
fi by computing xR = yL and xL = yR + fi(yL , k). The most famous Feistel cipher undoubtedly
is the Data Encryption Standard (DES) [DES77]. Due to its short key-length, it should not be
used anymore today and was replaced by the Advanced Encryption Standard (AES) [AES01].
However, a variant which is called 3DES solves the problem of the short key length by applying
the DES three times in a row and is still widely used in commercial products, for example in the
financial sector.
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Substitution-permutation networks (SPNs)

The SPN is a very popular structure for block cipher design. It is simple to analyze and enables
the designer to give strong arguments for the security against existing attacks as we will learn in
Section 1.3. As explained in [DR02, Chapter 5.2], simplicity comes with the additional advantage
that it leads to more external analysis because cryptographers, in general, prefer to study simple
ciphers rather than obscure ones. In an SPN, each round consists of a substitution layer followed
by a permutation layer. These two building blocks were already discussed above when introducing
the concepts of confusion and diffusion. Recall that the substitution layer consists of predefined
lookup tables that typically operate on small bit sizes, for example 4 or 8 bits. The permutation
layer is an F2-linear function that operates on the whole state6 and is therefore also called the
linear layer.

Definition 1.3 (SP-round). Let Si : Fm
2 7→ Fm

2 be bijections for 0≤ i < t. Further, let L : Fn
2 7→ Fn

2
be an F2-linear invertible function. Now, given the n-bit input x = x0‖x1‖ . . .‖x t−1 with x i ∈ Fm

2 ,
the output of the SP-round is computed as

y = L(S0(x0)‖S1(x1)‖ . . .‖St−1(x t−1)).

◊

The functions Si are called m-bit S-boxes. The invertibility of the S-boxes and the linear
function implies invertibility of the whole SP-round. Often, all the S-boxes in the whole cipher
are the same. This simplifies the algorithm and the proof of security against existing attacks.
Also, it enables are more efficient implementation. In Definition 1.3 we directly notice that the
influence of the round key is missing. This is because the SPN is a so-called key-alternating block
cipher that consists of r key-independent rounds and r + 1 round keys that are added at the
beginning, at the end, and in between every round.

Definition 1.4 (Key-alternating block cipher). Let Hi : Fn
2 7→ Fn

2 be key-independent invertible
round functions for 0≤ i < r. Further, let k0, . . . , kr ∈ Fn

2 be r + 1 round keys derived from the
master key. A key-alternating block cipher computes the ciphertext as

c = Hr−1(· · · (H1(H0(m+ k0) + k1) + k2) · · · ) + kr .

◊

Note that we use H for denoting a key-independent round function whereas G was used
above to denote a key-dependent round function when describing a round-based block cipher. A
key-alternating block cipher can be represented as a special case of a round-based block cipher.
A first motivation for the key-alternating structure is that it makes sense to start and to end with
introducing key material because according to Kerckhoffs’ principle, the attacker knows every
detail of the cipher except for the key. Thus, he can always compute forward from the plaintext
or backward from the ciphertext until the first or the last round key. Accordingly, any part of

6The notion “state” is used to describe the intermediate results of the encryption function and thus the inputs and
outputs of the round functions.
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Figure 1.4: A substitution-permutation network (SPN).

the block cipher that comes before the first or behind the last round key must be regarded as
cryptographically irrelevant. Now, starting the first and ending the last round with a key addition,
it seems natural to continue this approach by starting and ending every round with a key addition
and indeed it is this simple structure which can be very helpful. A good example is the linear
hull theorem which is the basic theorem from linear cryptanalysis and simplifies very much in
the case of a key-alternating structure. This will be shown in detail in Chapter 2. Finally, note
that addition is understood with respect to the binary strings being represented as elements of
the vector space Fn

2. This is sometimes also called exclusive-or (XOR). Especially, it is convention
to use the ’⊕’ symbol in figures for this operation.

We want to point out that SPNs and key-alternating ciphers are not the same. SPNs are a
special class of key-alternating ciphers, but one can easily think of key-alternating ciphers that
are not SPNs. Actually, many Feistel ciphers are also key-alternating ciphers which can be seen if
they are represented in an alternative way7, as illustrated for example in [DR05, Figure 5].

Fig. 1.4 depicts an SPN that uses the same S-box and the same permutation throughout the
whole cipher. The most famous representative of this block cipher class is the already mentioned
AES, which is nowadays the most studied block cipher of the world.

The key schedule

We already introduced the key schedule as a function that derives the round keys from the master
key. But so far, we have not given any detail on design principles for the key schedule. However,
before bothering too much with key schedule design, we might first ask why there needs to be a
key schedule at all. Why do we not define all the round keys as the master key and get rid of
the key schedule? The reason is that we want to minimize the information that we have to keep
secret and, according to Kerckhoffs’ principle, this is only the master key. Naturally, keeping for
example 128 bits secret is easier than keeping 11 ·128 = 1408 bits secret what would be the case
for a 10-round key-alternating cipher with 128-bit block size. In practice, secret keys are often
stored in trust anchors with constrained resources. This could be a smartcard or a Hardware

7Note, however, that such an alternative representation typically also restricts the choice of the key schedule of
the according key-alternating cipher.
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Security Module (HSM). Especially if many keys have to be stored, big keys could then cause
problems due to memory constraints. Also, small keys significantly simplify key management
processes such as key updates and key imports/exports. Altogether, this leads to the design
principle of choosing keys as small as possible but of course as big as necessary for our security
requirements. In light of this, it now becomes even clearer why we defined a block cipher as
insecure if there exists an attack that is faster than brute-force (see Section 1.1.1).

When it comes to the design of the key schedule, things turn out to be not so easy. In general,
it is not clear what properties a good key schedule has to have. There are some general guidelines
on what a key schedule should not look like. These guidelines are rather basic and ensure mainly
that trivial guess-and-determine or meet-in-the-middle attacks are not possible. In a nutshell, it
should not be possible to compute large parts of the encryption algorithm, i. e. a large number of
rounds in the case of round-based ciphers, without having to know or guess the whole master
key. An example of such a trivially bad key schedule is the idea of using two independent keys in
order to double the key length, i. e. double encryption.

There are also a few more sophisticated attacks that exploit weaknesses in the key schedule.
Accordingly, a key schedule should be designed such that such attacks (e. g. slide-attacks [BW99],
invariant subspace attacks [Lea+11; LMR15], non-linear invariant attacks [TLS16]) are not
possible. It is often possible to check, for a given key schedule, if it fulfills this criterion, as for
example in recent work of Beierle et al. [Bei+17]. The application of round constants is a typical
design principle that is used to counter such attacks.

However, the most well-known attacks on block ciphers are differential and linear attacks
which will be introduced in Section 1.3.3 and Chapter 2, respectively. Here, the influence of
the key schedule is to a large extent completely open. Simply put, for claiming a cipher secure
against linear and differential attacks, one has to demonstrate that the cipher does not possess
certain statistical irregularities.

To be able to do so, it is in many cases necessary to assume that all round keys are indepen-
dently and uniformly chosen as we will see later when discussing these attacks in detail. While
this is hardly the case for any real cipher, this assumption is on the one hand needed to make the
analysis feasible and on the other hand often does not seem problematic as even with the keys not
independently and uniformly chosen, most ciphers (experimentally!) do not behave differently
from the expectation. Accordingly, different approaches for the design of key schedules exist.
Knudsen and Robshaw suggest the following classification of existing key schedules in [KR11,
Section 8.5]:

• Affine key schedules. Subkeys are derived as an affine transformation of the master key.

• Non-linear key schedules. Subkeys are generated as simple non-linear transformations of
the master key.

• Complex key schedules. The subkeys are generated as complex non-linear transformations
of the master key.

For example, DES has an affine key schedule while AES has a non-linear key schedule involving
S-boxes. The fact that the decision for one of these approaches in terms of security is basically a
matter of taste is highly unsatisfying both from a scientific and from a practical point of view. In
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Chapter 2, we address this problem and take some steps forward to increase our understanding of
the influence of the key schedule on the security of a block cipher with respect to linear attacks.

1.2.2 Finite Field Representations and the Linear Layer

Many cryptographic schemes are built on finite fields as their underlying mathematic structure,
most prominently the AES. In almost all cases, the schemes can be designed without having
to specify a concrete representation of the finite field in advance. However, for the sake of
interoperability, one necessarily has to choose a particular representation of the finite field
when implementing the cipher on the bit-level. In general, this choice does not influence the
security of the scheme, but might well influence the performance of the resulting implementation.
This is actually a very natural separation of the design of the cipher and its specification (and
thus implementation) on the bit-level. This separation has been nicely explained in [DR11] by
introducing RIJNDAEL-GF, which is an abstracted version of AES specified using only algebraic
operations in F28 . Now, by choosing a specific representation of the finite field, one can derive
AES as an instance of RIJNDAEL-GF. Following [DR11], the choice of basis is to a large extent
independent of the design and the security of the cipher. However, the choice of basis might have
a significant impact on the efficiency of the cipher on certain platforms.

Let us first recall some basics about finite fields [LN97] and their representations [War94].
F2m is the finite field with 2m elements, often also denoted as GF(2m). Up to isomorphism, every
field with 2m elements is equal to F2[x]/(q), where the F2[x] is the polynomial ring over F2 and
(q) denotes the ideal generated by an irreducible polynomial q of degree m: F2m

∼= F2[x]/(q).
Although there exists up to isomorphism only one finite field for every possible order, we are
interested in the specific representation.

Let V ∼= Km be a finite-dimensional vector space over the field K. Every linear mapping
f : V → V can be described as v 7→ AB v by a left-multiplication with a matrix AB being an
m × m matrix over K. This representation is dependent on the choice of the basis B for V .
For instance, if B = {b1, . . . bm}, the j-th column of AB consists of the coefficients a1, j , . . . , am, j
of f (b j) =

∑m
i=1 ai, j bi. Thus, changing the basis from B to B′ results in a different matrix

representation of f .
There is a natural way of representing the elements in a finite field with characteristic 2

as vectors with coefficients in F2. More precisely, there exists a vector space isomorphism
ΦB : F2m → Fm

2 which maps elements α ∈ F2m to its vectorial representation over F2 with regard
to a basis B (and Φ−1

B vice versa). Every multiplication by an element α ∈ F2m can then be
described by a left-multiplication with a matrix Tα,B ∈ Fm×m

2 as shown in the following diagram.

F2m F2m
·α

Fm
2 Fm

2

ΦB Φ−1
B

Tα,B

Tα,B is usually called the multiplication matrix of the element α.
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Now, when designing a block cipher, one of the most important design strategies is the
so-called wide trail strategy, which was initiated in [Dae95] and will shortly be discussed in
Section 1.3.3. The main observation of the wide trail strategy is that it is actually the linear layer
that is to a large extent responsible for the security of the primitive against linear and differential
attacks. Moreover, the wide trail strategy allows a natural decoupling of the design choice for a
linear layer and an S-box.

Interestingly, for the linear layer, not many general constructions are known. Two basic
approaches can be identified. On the one hand, an ad-hoc approach that requires computer-aided
tools. This approach is used for example for the block cipher Serpent [BAK98] or the hash
function Keccak [Ber+11]. On the other hand, a code-based approach, where the linear layers
are chosen in such a way that they correspond to good (often locally optimal) linear codes. This
is, most prominently, the case for AES where a Maximum Distance Separable (MDS) code is
implemented via the MixColumns operation.

Even in the theoretically better circumstantiated code-based approach, many fundamental
questions are left open. Here, when using an MDS matrix for (parts of) the linear layer, the main
challenge is to choose an MDS matrix that is most suitable for an efficient implementation. As
those MDS matrices are usually defined over a finite field with characteristic two, i. e. F2m , one
important question is the choice of an F2-basis of F2m and its impact on the implementation
efficiency. From a design point of view, one has to choose a linear layer given as a mapping on
Ft

2m and an F2-basis of F2m to concretely specify the primitive.
For hardware implementations, the impact of the choice of basis already becomes apparent

when focusing on how to implement the multiplication with one given element α in F2m . For
different choices of bases, the efficiency of implementations of the resulting F2-linear mappings
differs significantly.

In Chapter 4, we study the task of finding a basis for a given element α ∈ F2m , such that
multiplication can be implemented most efficiently. We then use the results for designing efficient
linear layers for block ciphers, i. e. we present linear layers that can be implemented efficiently
by an appropriate choice of basis. Afterward, in Chapter 5, we present methods to find efficient
implementations of binary matrix multiplications. We then make a paradigm shift by applying
these methods not only to the single multiplication matrices Tα,B, but to the binary representation
of the whole MDS matrix. In this way, even more efficient implementations can be obtained.

1.2.3 Tweakable Block Ciphers

This deterministic behavior can lead to critical problems in the application of a block cipher.
Block ciphers, as defined in Definition 1.1, are deterministic algorithms, i. e. if the same message
is encrypted multiple times, it will result in the same ciphertext every time. Following the naive
approach and encrypting a set of plaintext blocks one-by-one independently of each other would
lead to a set of ciphertexts in which it is possible to determine which ciphertexts correspond to
equal plaintexts, which can lead to information leakage. A classical example is image encryption
where the image can still be recognized because areas with the same plaintext color yield identical
ciphertext colors. This problem is addressed by choosing a proper mode of operation8. But still,

8Modes of operation define how to process messages that consist of multiple blocks. For example, the aforemen-
tioned naive idea of just encrypting each block one-by-one is called the Electronic Codebook (ECB).
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Figure 1.5: A tweakable block cipher.

every time the same set of plaintext blocks is encrypted, it will then result in the same set of
ciphertext blocks. To deal with this problem, modes of operation usually come with an additional
input, typically called initialization vector (IV), that can be changed for eliminating the described
deterministic behavior also on the whole set of blocks. Unlike the key, the IV is public.

A tweakable block cipher now brings this concept of an additional randomizing input to the
block level. Tweakable block ciphers were introduced by Liskov et al. in 2002 [LRW02]. The
traditional definition of a block cipher (see Definition 1.1) is extended by an additional τ-bit
input called the tweak, denoted by t.

Definition 1.5 (Tweakable Block Cipher). A n-bit tweakable block cipher is defined as a function
F : Fκ×Fτ×Fn→ Fn where n,κ,τ > 0 and for any fixed t ∈ Fτ and k ∈ Fκ the function F(k, t, ·)
is bijective. ◊

Informally, the intuition is that each tweak selects a different block cipher, i. e. a different,
unrelated, family of permutations. An according diagram is shown in Fig. 1.5. While the key is,
obviously, assumed to be unknown to an attacker, the tweak is assumed to be public. Moreover,
following the chosen-plaintext/ciphertext model, we usually assume that also the tweak is under
full control of the adversary. That is, the adversary is allowed to query the tweakable block cipher
under a plaintext/ciphertext and tweak of his choice.

Tweakable block ciphers have many important applications, e. g. ciphers for memory encryp-
tion can use the memory address as a tweak and then decrypt with random access. An example
of a cipher that is designed to be suitable for this use case is the block cipher QARMA [Ava17].
A further application is the design of efficient authenticated encryption. For example, the
authenticated encryption design DEOXYS-II [Jea+16] is based on the tweakable block cipher
DEOXYS-BC [JNP14b] and it was recently selected as a finalist in the CAESAR competition9.
Another application of tweakable block ciphers are online ciphers [Bel+01; RZ11]. Further-
more, the tweakable block cipher QARMA [Ava17] is used in the ARMv8.3-A architecture for
hardware-based pointer authentication [Qua17].

When designing a block cipher, one has to argue why the cipher is secure against all the
existing methods of cryptanalysis. As we will learn in Section 1.3, the two most prominent attacks
are differential and linear cryptanalysis. Now, using a tweak equips the attacker with additional
degrees of freedom because he has an additional input in the chosen-plaintext/ciphertext model.
It is known and well-understood what this means for differential cryptanalysis and how to take it
into account in the design of tweakable block ciphers. However, the impact for linear cryptanalysis
was not so clear. In Section 2.5, we address exactly this important problem. Our results can be

9CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness.
https://competitions.cr.yp.to/caesar.html

https://competitions.cr.yp.to/caesar.html
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helpful for the design of tweakable block ciphers. For example, they were used in the security
analysis of the tweakable block cipher family SKINNY [Bei+16].

1.2.4 Lightweight Block Ciphers

When thinking about cryptographic applications, one might first have in mind a typical personal
computer that is operated directly by an end-user. However, there also exists a huge market of
embedded microcontrollers. Typical applications are smartcards, televisions, home automation,
or automobiles. A modern automobile has dozens of microcontrollers to control various systems
like the airbags, the brakes, or the engine. The trend of equipping many things in daily life
with small microcontrollers and connecting them is often termed the Internet of things (IoT)
or ubiquitous computing. Within this trend, many of these embedded systems also have to
run cryptographic functions to ensure privacy and security, for example in the realm of smart
homes or connected automobiles. In contrast to powerful general-purpose computer systems,
most embedded systems have only very constrained resources. Such resources might be the
amount of memory, the battery, or also the area on the chip in case of hardware implementations.
Additionally, latency might be a hard requirement if the embedded system controls time-critical
applications like an automobile’s braking system. Traditional cryptographic primitives are often
not suited for embedded systems because they cannot fulfill these special requirements. They
occupy too much hardware area, use too much memory, consume too much energy, or have
an unacceptably high latency. Therefore, the development of special cryptographic primitives
that are dedicated to these situations is very important. The according area of research is called
lightweight cryptography.

At this point, we want to mention that lightweight cryptography is also sometimes related to
a trade-off between key length and efficiency. In some scenarios, a rather small key length might
indeed be sufficient, for example if the data does only need to be protected for a rather short
period of time. One might even decide to accept the risk of a brute-force attack if the attacker
would have to be very powerful and invest lots of money. Actually, such risk assessments are quite
normal in the industry. However, designing a cipher with small key length always comes with the
risk of it being misused by people who are not aware of the presumed special operating conditions.
In the currently ongoing standardization process for lightweight cryptographic algorithms, the
United States National Institute of Standards and Technology (NIST) does require lightweight
block ciphers to withstand cryptanalytic attacks with up to 2112 computations [NIST18] and thus
does not allow for such trade-offs.

In the recent two decades, lots of research on lightweight cryptography has been done. Many
block ciphers have been designed with different goals like minimizing chip area (e. g. [Bei+16;
Bog+07; Guo+11; Shi+11]), program memory (e. g. [Alb+14; Dae+00]), energy (e. g. [Ban+15]),
or latency (e. g. [Bei+16; Bor+12]). However, the categorization is not always that easy. Many
lightweight block ciphers are designed with multiple goals in mind and often a good software or
hardware implementation also refers to an according high throughput. There also exist further
design goals besides the classical ones. For example, some ciphers have been designed to allow
for efficient masking which is a countermeasure against side-channel attacks [Gér+13; Gro+15;
PRC12] . Recently, more extreme designs in this direction have been proposed following the goal
of constructing ciphers with a minimal AND count, that is, a cipher that can be implemented with
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as few AND operations as possible [Alb+15; Dob+18]. Minimizing the AND count is motivated by
the fact that for certain applications like for example homomorphic encryption, the computation
of an AND operation is especially expensive. Depending on the application, the goal might be
to reduce the total number of ANDs, the number of ANDs per bit, or the AND depth (that is,
the number of AND operations, that cannot be parallelized). For an overview of lightweight
symmetric cryptography including an extensive list and benchmarks of lightweight block ciphers,
the reader is referred to [BP17].

When it comes to the goal of minimizing the occupied chip area, a classical approach of
designing a block cipher is to use an iterated cipher. The round function than just needs to be
implemented once with some additional overhead that realizes a loop. Another typical design
strategy to minimize the chip area is to use a simple affine key schedule instead of a complex
non-linear one (see Section 1.2.1). In Chapter 2, we examine simple affine and linear key
schedules and proof that such key schedules can indeed be used to construct secure ciphers with
respect to linear cryptanalysis.

Besides these rather general design strategies, it is also possible to focus on the single building
blocks of a block cipher. Using small hardware implementations of S-boxes and linear layers
can lead to a significantly reduced hardware area for the whole cipher. Moreover, lightweight
implementations of such building blocks can also lead to more efficient implementations in other
areas than block ciphers, for example in the area of hash functions. There are two interesting
sides to this research. On the one hand, one can search for new building blocks with very small
hardware implementations. These building blocks can subsequently be used in the design of
new lightweight ciphers. On the other hand, the implementation of existing building blocks can
be improved such that it is also possible to find smaller hardware implementations for already
existing ciphers. Obviously, both is important, finding very light new designs on the one hand,
but also improving lightweight implementations of already established ciphers.

When we try to compare lightweight implementations in terms of small hardware area, an
important question that arises is what metric should be used. A typical approach is to compare
the gate equivalents needed for an implementation on a field-programmable gate array (FPGA).
In this case, we have several aspects influencing the final outcome, namely the written code
using some hardware description language, but also the library used for synthesizing and the
underlying technology. In the case of linear layers, a more abstract metric called XOR count has
gained acceptance. The XOR count is the number of used XOR operations, where the whole
implementation uses no other operation than XOR. This simplified metric has the advantage
of having a simple mathematical description and being independent of the applied technology.
The XOR count was first used in [Kho+14] where it also became clear that there is a correlation
between low XOR count and small hardware area. In Chapters 4 and 5, we address the problem
of optimizing the hardware area of linear layer implementations measured by the XOR count.
We present new theoretical results and new implementations that have a significantly lower XOR
count compared with previous publications.

1.2.5 White-Box Cryptography

Traditionally, implementations of block ciphers have been regarded as black-box implementations.
That is, while the attacker is able to observe ciphertexts, maybe some plaintexts and also knows
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what encryption algorithm is used, he is not able to observe any intermediate results of the
encryption. Neither does he know any details about the implementation such as the source code in
case of a software implementation. This black-box model holds for the traditional setup in which
the communicating parties are considered to be located in trusted environments. However, this
is not always the case in real-world applications. In the late nineties, research about side-channel
attacks broke up with the black-box model and considered implementation details like the time
required for computation [Koc96] or power consumption that might be measured by an attacker
who has physical access to the device running the cryptographic algorithm [KJJ99]. Furthermore,
if an attacker has physical access to a cryptographic device, the secret keys must be stored in a
secure way such that they cannot easily be read from the memory by an attacker. By now, the
area of physical attacks has evolved into a vivid field of research and according countermeasures
are implemented in many civil and military devices. Unfortunately, the deployment of hardware
security measures is rather expensive. Consequently, we have many platforms in use today that
are not equipped with any hardware protection mechanisms, especially in the market of low cost
embedded devices. Having such devices at hand, attackers can use reverse engineering methods
to obtain information about the source code. They can also manipulate the source code as in the
simple key whitening attack where the S-boxes of the last round are reverse-engineered and set
to zero, such that the output of the cipher is simply the last round key [KK06].

White-box cryptography is trying to address these problems by offering to protect crypto-
graphic assets in software although assuming the white-box model, i. e. the attacker has full
access to the source code and all intermediate results. The first white-box implementations were
presented in 2002 in the seminal works of Chow et al. [Cho+02; Cho+03], motivated by digital
rights management (DRM) applications. These initial works focused on the prevention of key
extraction. Thus, while being aware that an attacker who controls the device can obviously
make use of the functionality (e. g. decryption of protected media content in the DRM example),
the goal is to prevent the attacker from learning the secret key. This obviously comes with the
problem that the attacker can simply extract the whole implementation instead of the secret
key, which is called code lifting. A suggestion to thwart such an attack, which is for example
discussed in [Cho+03], is to apply random input and output encodings as bijections F and G.
The white-box implementation then computes G ◦ Ek ◦ F−1 which is useless for a code lifting
attacker. The encodings must be added and removed at another place in the system in a way
such that an attacker cannot learn them. And here, we see the logical flaw of this suggestion,
namely it solves the inherent problems of the white-box scenario by creating a new domain
that is able to hide from the white-box access. This is, at least from an academic point of view,
an extremely unsatisfying solution. In the aftermath of these seminal papers, lots of practical
work on white-box cryptography has been done [Wys09] and more security notions besides key
extraction have been suggested [Del+14]. A very important one is incompressibility. It basically
means that an attacker who has access to the white-box implementation of a block cipher is not
able to find a significantly smaller representation of the cipher. If the white-box implementation
is sufficiently large, this makes large scale sharing of the implementation very inconvenient. For
this security notion, Biryukov et al. [BBK14] present a white-box scheme is based on big lookup
tables that are constructed by alternating layers of affine transformations and S-boxes. That is,
while there exists a small black-box version of the cipher that uses the affine transformations and
the S-boxes, the white-box version only uses the according big lookup table. In Chapter 3, we
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show that an attacker can compute the single building blocks from the lookup table and thus this
white-box scheme is insecure. Developing secure white-box implementation has turned out to
be very challenging. All known schemes that are suited for practical use have been broken in
academia. Nevertheless, white-box cryptography is used in several products and companies such
as Microsoft, Apple or Sony and many more have announced to deploy white-box techniques
and/or have shown to have deployed such technology [Wys12]. This stresses the practical impor-
tance of the research in this field. The game of white-box schemes being developed, attacked and
broken is an important process on the way to a secure design and can also bring new insights to
basic cryptographic topics not only limited to white-box cryptography. For example, in his keynote
talk about white-box cryptography at FSE 2016 , Henri Gilbert, the head of the Cryptography
Laboratory at the French Network and Information Security Agency (ANSSI), called the results
presented in Chapter 3 a breakthrough in structural cryptanalysis [Gil16].

1.3 Cryptanalysis of Block Ciphers

In cryptanalysis, we analyze block ciphers from the attacker’s point of view. As mentioned before,
nobody so far could find an efficient block cipher that can be proven to be secure. However,
when designing a new block cipher one should present a detailed security analysis with sound
arguments why the cipher is secure against known attacks. Recall from Section 1.1.2 that any
attack which is better than exhaustive search is considered a successful attack.

In the following, after shortly treating brute-force attacks, we present the basic idea using a
distinguishing property to recover the key. We then introduce the most important attacks for
block ciphers. Using the example of the SPN design introduced in Section 1.2.1, we will see how
concrete security arguments against single attacks can be derived.

1.3.1 Brute-Force Attack

The brute-force attack is also called exhaustive search and works with only a few plaintext-
ciphertext pairs (mi , ci). The attacker searches for the single key k ∈ Fκ2 such that ci = Ek(mi) for
all i. Recall that a cipher resembles a random family of permutations and thus the probability of
mi being encrypted to ci under a fixed wrong key should be 2−n where n is the block size. Thus,
indeed a few plaintext-ciphertext pairs will suffice to find the key. In the worst case, the attacker
needs to search through all 2κ keys.

The only way to make a block cipher withstand this attack (besides the not recommendable
way of constructing a really bad cipher that behaves similarly under different keys) is to choose
κ so large that a brute-force attack becomes practically infeasible. As noted above, attacks with
complexity larger then 2κ will not be considered because one could just as well run a brute-force
attack.

1.3.2 Using distinguishers for Key-Recovery

All the more sophisticated attacks presented in the remainder of this section are distinguishing
attacks. That is, they find a property of (parts of) the block cipher which can be used to distinguish
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Figure 1.6: The whole substitution-permutation network (SPN) computes c = Ek(m). The result
after r − 1 rounds is c′ = E′k.

it from a random permutation. Based on the example of an SPN, we will now explain how such
a distinguisher can be used to recover the key.

As also shown in Fig. 1.6, let Ek be an r-rounds SPN and let E′k be the (r − 1)-rounds SPN
obtained from Ek by removing the last round. We assume to have a distinguisher over E′k, that
is, we have observed a correlation between m and c′ = E′k(m) that allows for distinguishing E′k
from a random permutation if we have enough pairs (m, c′) at our disposal. Of course, as an
attacker, we can only query pairs of the form (m, c), but we can then guess the last round key
and derive (m, c̃). If the guessed round key was incorrect, the distinguisher will most probably
not work and we can discard the key candidate. If the guessed round key was correct, we have
c̃ = c′ and the distinguisher will work as expected and we have successfully recovered the last
round key. Given a round key, it is often possible to easily compute all the other round keys and
the master key from the key schedule. If this is not possible, the next step would be to apply the
same kind of attack to derive the second last round key and so on. (Note that recovery of all
round keys is as bad as recovery of the master key.) However, looking at Fig. 1.6 we note that
the size of a round key is equal to the block size and it is actually often also equal to the size of
the master key which defines the complexity of a brute-force attack. Thus, in these cases, the
above presented key-recovery attack is not better than a brute-force attack and does not harm
the security of the cipher. An attacker can avoid this high complexity by finding a distinguishing
property that only depends on some bits of c′ which in turn only depend on some bits of kr . Then,
only the according key bits of the round key need to be guessed. The remaining bits are then
recovered by repeatedly applying similar attacks or by exhaustively searching the now reduced
set of possible round keys.

This attack can of course also be used to recover the first round key instead of the last one.
Actually, it is not unusual to recover the first and the last round key at the same time. This might
be done if the attacker wants to break a r-round cipher, but only has a (r−2)-round distinguisher.
He then guesses parts of the first round key and parts of the last round key at once.

It depends on the specific distinguisher if known-plaintext pairs are sufficient or if chosen-
plaintexts/chosen-ciphertexts need to be used. For example, the two most prominent distinguish-
ing techniques differential cryptanalysis (Section 1.3.3) and linear cryptanalysis (Chapter 2) are
CPAs/CCAs and KPAs, respectively.

In general, for an increasing number of rounds, it gets more and more difficult to find a
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distinguisher. Hence, the design consequence of this attack is straight forward: use enough rounds.
In the design process of a block cipher, a thorough security analysis should be carried out. This
way, one can get an idea of how many rounds can be attacked. One then adds more rounds to be
sure that the cipher also withstands further attacks in the future. These additional rounds are
called the security margin. On the one hand, the security margin should be as large as possible
because it increases the security of the cipher. On the other hand, additional rounds use additional
computing resources and this should be avoided, especially for lightweight applications. While
it is typically not possible to easily find an attack on some block cipher right away, it might
be possible to decrease the security margin. This way, cryptanalysis of block ciphers often is
an incremental process in which more and more rounds can be attacked until finally no more
progress is made or the cipher is broken.

1.3.3 Differential Cryptanalysis

Differential cryptanalysis was introduced in 1991 by Biham and Shamir [BS91] and is one of
the most important cryptanalytic techniques. The basic idea is to look at the difference between
two plaintexts and make statements about the expected difference between the according two
ciphertexts. More formally, the goal of the attacker is to find a differential with high probability
were a differential and its probability is defined as follows:

Definition 1.6 (Differential and its Probability). Given a block cipher Ek : Fn
2→ Fn

2, a differential
is a pair of differences (α,γ) with α,γ ∈ Fn

2. Let X be a random variable that takes any value in
Fn

2 with uniformly distributed probability. The probability of the differential is defined as:

Pr
X
[α

Ek→
X
γ] := Pr

X
[Ek(X) + Ek(X+α) = γ].

α is called the input difference and γ is called the output difference. ◊

Note that the differences are computed by addition instead of subtraction because these
operations are the same in Fn

2. A differential with high probability can be used as a distinguisher,
because, from a random permutation, we would expect that for any two inputs the according
outputs are not related, and thus, given any non-zero input difference, the output difference
should not be predictable. Therefore, it is desirable to upper bound the differential probability
when designing a cipher. This would give a security guarantee against differential cryptanalysis.
Unfortunately, going through all the 22n differentials is not feasible for typical block sizes like
n = 128. Instead, attackers and designers are looking at how a given input difference propagates
through a cipher. This leads to the notion of a differential characteristic for round-based ciphers.

Definition 1.7 (Differential Characteristic). Given an r-round block cipher with a block size of n
bits, a differential characteristic, also called a differential trail, is an (r + 1)-tuple (θ0,θ1, . . . ,θr)
with elements θi ∈ Fn

2. The first difference θ0 is called the input difference and the last difference
θr is called the output difference. ◊

The idea of a differential characteristic is to describe the difference not only between two
plaintexts and the according ciphertexts, but also between all the intermediate results computed
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after every round. More precisely, let (m0, m1, . . . , mr) describe the intermediate results of a
plaintext m that is processed by the cipher. That is, mi denotes the plaintext processed for
i rounds. In particular m0 = m and mr = Ek(m). Now, let (m′0, m′1, . . . , m′r) describe the
intermediate results of a second plaintext m′. Then the according differential characteristic is
given as (m0+m′0, m1+m′1, . . . , mr +m′r). The probability of a differential characteristic for some
round-based block cipher is the probability that two randomly drawn plaintexts with the given
input difference yield exactly this characteristic.

Definition 1.8 (Probability of a Differential Characteristic). Given an r-round block cipher
F = Gr−1 ◦ · · · ◦ G1 ◦ G0 with Gi : Fn

2→ Fn
2. and a differential characteristic (θ0,θ1, . . . ,θr) with

elements θi ∈ Fn
2. Let X be a random variable that takes any value in Fn

2 with uniformly distributed
probability. The probability of the differential characteristic is defined as:

Pr
X
[θ0

G0→ θ1
G1→ . . .

Gr−1→ θr] := Pr
X
[θ0

G0→
X
θ1 ∧ θ1

G1→
G0(X)

θ2 ∧ · · · ∧ θr−1
Gr−1→

Gr−2◦...◦G0(X)
θr] (1.1)

◊

Please note that in the above definition, we deviated from the previously introduced notation
by not explicitly writing out the key dependency for the sake of a simple notation.

Looking back at the more general definition of a differential, we can now see that a differential
“contains” many characteristics. Namely, a differential describes the possibility of somehow
getting from an input mask to an output mask without considering any intermediate steps.
The intermediate steps are only considered in the according characteristics. In particular, the
probability of a differential is the sum of the probabilities of all characteristics with the respective
input and output masks:

Theorem 1.1. Given an r-round block cipher F = Gr−1 ◦ · · · ◦ G1 ◦ G0 with Gi : Fn
2→ Fn

2, it holds:

Pr
X
[α

F→
X
γ] =

∑

θi∈Fn
2

θ0=α,θr=γ

Pr
X
[θ0

G0→ θ1
G1→ . . .

Gr−1→ θr] (1.2)

◊

Block cipher designers would like to upper bound the probability of a differential to prove
that the cipher resists differential cryptanalysis. As discussed before, this fails due to the high
complexity of the problem. Instead, the best we can do is to upper bound the probabilities of
the differential characteristics. Of course, we might be unlucky and such small probabilities still
might add up to a big probability in Eq. (1.2). However, the practice has shown that this is a
sound design idea and often the high probability differentials are dominated by only one or a
few high probability characteristics. Also, the attacker is in the same unpleasant situation as
the designer, not being able to compute the differential probabilities and thus being forced to
search for high probability characteristics. Such an attack is of course properly thwarted by upper
bounding the probabilities of the characteristics.

But when we look at Eq. (1.1), we note that this equation is not suited to be used for practical
cryptanalysis either. However, in a so-called Markov cipher [LMM91], Eq. (1.1) can be simplified
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to the product of the probabilities of the single round differentials, which can be practically
computed for many ciphers.

Definition 1.9 (Markov cipher). An r-round block cipher F = Gr−1◦· · ·◦G1◦G0 is called a Markov
cipher if, for every round Gi with a uniformly chosen round key, the differential probability is
independent of the choice of the input text(s). ◊

In other words, in any round of a Markov cipher with uniform and independent round keys,
the round differential does only depend on the input difference. It does not matter which specific
pair is used to construct this difference. Looking again at Eq. (1.1), we can now deduce the
following corollary:

Corollary 1.1. Given an r-round Markov cipher F = Gr−1 ◦ · · · ◦ G1 ◦ G0 with uniformly chosen
independent round keys with Gi : Fn

2 → Fn
2 and a differential characteristic (θ0,θ1, . . . ,θr) with

elements θi ∈ Fn
2. The probability of the differential characteristic is:

Pr[θ0
G0→ θ1

G1→ . . .
Gr−1→ θr] = Pr[θ0

G0→ θ1 ∧ θ1
G1→ θ2 ∧ . . .∧ θr−1

Gr−1→ θr]

=
r−1
∏

i=0

Pr[θi
Gi→ θi+1]

◊

Above, we omitted the random variables because the according dependency from Eq. (1.1)
has vanished and this leads to a simpler notation. Famous examples of Markov ciphers are AES
or DES. All classical SPN ciphers as they are discussed in this thesis are Markov ciphers. However,
the subkeys of such ciphers are not uniformly chosen and independent, but derived from a single
master key by means of a key schedule. One therefore typically just assumes that the cipher
shows a similar behavior when instantiated with the key schedule or with independent round
keys. This is called the hypothesis of independent round keys. Furthermore, so far we considered
probabilities of differentials and characteristics over the choice of messages and keys. However,
when attacking a concrete instance of a cipher, the key is fixed. Here, the hypothesis of stochastic
equivalence is used. It states that for virtually all keys, the differential trail probability can be
approximated by averaging over all possible keys. In [DR02, Section 8.7.2], the authors point out
two problems of this theory and the according assumptions. First, the conditions are sufficient,
but not necessary, and it is often misunderstood as an incentive to avoid simple non-random key
schedules. In fact, we show in Chapter 2, that also very simple linear key schedules can lead to
strong designs. The second problem is that there are known practical examples of ciphers with
big amounts of weak keys, contradicting the hypothesis of stochastic equivalence. Fortunately,
the attacker of course does not know which key was used and typically also builds on the theory
of averaging over all keys. And as long as the probability of a weak key being chosen is very small,
the according attacks are not practically relevant. But still, it is highly unsatisfying from a design
perspective to know that one is building on incorrect assumptions. Therefore, one should try to
avoid these kinds of problems when designing a cipher. The hypothesis of independent round keys
is critically analyzed for example in [Abd+12] and also in this thesis in Chapter 2. Despite these
objections, in most cases, the Markov theory and the corresponding assumptions have turned out
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Figure 1.7: Propagation of a differential α→ β → γ through a round of an SPN cipher.

to be a sound approach leading to strong ciphers. Looking at Corollary 1.1, we can now see how
a cipher designer finds an upper bound for the probability of the differential characteristics of
the cipher. First, upper bounds for the probability of the single-round differentials are computed.
Then, the upper bound for the probability of the differential characteristics is computed as the
product of the single-round upper bounds. This process can be additionally simplified by using
an iterated cipher where the bounds for the differential characteristics in every round are the
same.

Using the example of an SPN cipher, we will now show how to compute the upper bound for
the probability of a single-round differential. We recall from Section 1.2.1 that a round of an
n-bit SPN cipher consists of a layer of t parallel m-bit S-boxes followed by a linear transformation.
Let us assume the very common case in which all S-boxes are the same which again simplifies
the analysis. Now let α be the input difference of the S-box layer, let θ be the difference between
the S-box layer and the linear layer, and let γ be the output difference of this round. According
to the inputs and outputs of the S-boxes, we can view α ∈ Fn

2 as (α1, . . . ,αt) ∈ (Fm
2 )

t and β
as (β1, . . . ,βt) ∈ (Fm

2 )
t as shown in Fig. 1.7. As the S-boxes process the data independently,

the probability of a differential through the S-box layer can be computed as the product of the
probabilities of the according differentials through the single S-boxes.

Pr[α→ β] =
t
∏

i=1

Pr[αi → βi] (1.3)

The trivial case of maximizing this probability is to choose the same inputs and thus having
differences αi = βi = 0 for every S-box, resulting in an overall probability of one. If we exclude
this trivial case, the probability can be maximized by choosing αi = βi = 0 for all but one single
S-box difference. This S-box is then called active.
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Definition 1.10 (Active S-boxes). In differential cryptanalysis, S-boxes with an input difference
unequal to zero are called active. Non-active S-boxes are called passive. ◊

For the active S-box, a non-trivial differential with maximum differential probability needs to
be chosen. To this end, we can use the difference distribution table (DDT) of the S-box.

Definition 1.11 (Difference Distribution Table (DDT)). Let f : Fm
2 → Fm

2 . The DDT of f is a
table that contains the probabilities of all differentials through f . ◊

As discussed at the beginning of this section, with 22n steps, the complexity of computing the
DDT for the whole cipher is far too high. However, for an S-box, it is feasible. The DDT of an m-bit
S-box contains 22m entries. It is typically presented as a matrix in which each row corresponds to
an input difference and each column corresponds to an output difference. Finally, assuming that
all other S-boxes have a zero input difference, the highest entry in the DDT (excluding the trivial
differential) gives us the upper bound for the one-round differential probability of the S-box layer.
It can easily be checked that the subsequent linear transformation P with the input difference β
produces the output difference γ= P(β) with probability one. Thus, the aforementioned upper
bound holds for the whole round.

Above, we showed how to find an upper bound for a one-round differential in an SPN. Using
the hypothesis of independent round keys and Corollary 1.1, this can be used to derive an upper
bound for the whole cipher. In the analysis, solely the quality of the S-box plays a role. The upper
bound can be decreased by using a good S-box with a small maximum entry in the DDT. An
even smaller upper bound can be shown by also taking into account the linear layer. Above, we
assumed that only a single S-box is active in every round of the cipher. However, a good linear
layer ensures that many S-boxes are activated throughout the whole cipher. The design idea of
activating as many S-boxes as possible by a good choice of the linear layer is called the wide trail
design strategy [Dae95; DR01; DR02]. If multiple S-boxes are activated within a round, then the
upper bound for that round is computed by multiplying the maximum probabilities given by the
DDTs of the according S-boxes. Eventually, the upper bound for the whole cipher is computed as
the product of the upper bounds for the single rounds. Thus, if the same S-box is used throughout
the whole cipher and if it is an iterated cipher, then the upper bound can be computed as p`S
where pS is the maximum differential probability of the S-box and ` is a lower bound for the
number of active S-boxes. A commonly used way to derive a lower bound for the number of
active S-boxes in the whole cipher is to use the branch number which gives the minimal number
of active S-boxes within two rounds. Given an SPN with t S-boxes, the branch number cannot be
greater than t + 1. This can be seen by looking at the case with only one active S-box in one of
the two rounds. Linear layers with branch number t + 1 are called Maximum Distance Separable
(MDS) layers and the matrices describing the according linear transformation are called MDS
matrices. Such matrices are well-known from coding theory which provides various methods
of constructing them. An overview can be found in Section 5.2.2. MDS matrices are one of the
most important building blocks in block ciphers, the most famous example of a cryptographic
scheme that uses an MDS matrix is the AES. The problem of finding efficient implementations
for linear layers in general and for MDS matrices in particular has high relevance for lightweight
implementations, for example in embedded systems and IoT devices. Chapters 4 and 5 of this
thesis are discussing exactly this problem.
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1.3.4 Boomerang Attacks and Integral Cryptanalysis

There exist multiple advanced methods based on differential cryptanalysis that might be par-
ticularly effective in special cases. Often, it turns out that such methods are related to each
other or sometimes even essentially the same. For example, the two attacks that are presented
in this section can both be seen as special versions of the so-called higher-order differential
cryptanalysis [Lai94] which is, in turn, an advanced version of the previously described differ-
ential cryptanalysis. In the following, we shortly introduce boomerangs attacks and integral
cryptanalysis.

Boomerang Attacks

The boomerang attack [Wag99] splits the cipher under attack into two halves such that F = F2◦F1.
It is well-suited in situations where an attacker cannot find a good differential over the full cipher,
but good differentials over the two halves. This attack uses two differentials. One over the

encryption of the first half α
F1→ β with probability p and another one over the decryption of

the second half γ
F−1

2→ δ with probability q. The boomerang attack is depicted in Fig. 1.8.10 In
the first step, the chosen plaintexts m1 and m2 = m1 +α are used to compute c1 = F(m1) and
c2 = F(m2). In the second step, the chosen ciphertexts c3 = c1 + γ and c4 = c2 + γ are used
to compute m3 = F−1(c3) and m4 = F−1(c4). Finally, the condition m3 + m4 = α is used as
a distinguisher. In this case, the difference α was “thrown into” the cipher as m1 + m2 and
“comes back” as m3 +m4, giving this attack its name. Assuming the probabilities of the single
differentials to be independent, the boomerang is successful with probability p2q2. To show
this, let us denote the intermediate values between F1 and F2 with x i = F1(mi) = F−1

2 (ci). First,
the difference m1 +m2 = α leads to the difference y1 + y2 = β with probability p. Then, the
difference c1+ c3 = γ leads to the difference y1+ y3 = δ with q. In the same way, c2+ c4 = γ leads
to the difference y2 + y4 = δ with q. Now we have y3 + y4 = (y1 +δ) + (y2 +δ) = y1 + y2 = β
and this leads to m3 +m4 = α with probability p. All in all, four differentials must hold for the
boomerang. Two of them hold with probability p and the other two with probability q, which
gives us the overall probability p2q2. Actually, we can notice that the value of the difference δ is
not important for a successful attack. The relevant condition in this step is y1 + y3 = y2 + y4.
Thus, the value of δ can vary which leads to a higher success probability.

There also exist advanced versions of this attack called amplified boomerangs and rectangle
attacks. The amplified boomerang attack does not require chosen ciphertexts any more. It
encrypts many pairs with input difference α and then uses the birthday paradox to estimate
the probability of y1 + y3 = δ which also leads to y2 + y4 + δ. As a result, we have a pure
chosen-plaintext attack at the cost of a higher complexity. A further extension of the amplified
boomerang attack is the rectangle attack. Here, the observation is that actually only α and δ are
fixed. As in the usual case for differentials, all intermediate values may vary, this also holds for β .

It should be mentioned that Murphy showed that the probability analysis used in the basic
and advanced attacks can be highly inaccurate and that according complexity estimates must be
treated with caution [Mur11]. Therefore, as always in symmetric cryptology when assumptions

10Fig. 1.8 is based on TikZ code from [Jea17].
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Figure 1.8: The boomerang attack.

are used, additional practical experiments should be used to back up the theoretical results
whenever possible.

The boomerang attacks and its advanced versions are used in Chapter 3 as one of several
possibilities to attack a white-box construction.

Integral Cryptanalysis

Integral cryptanalysis belongs to the so-called structural attacks. That is, attacks that make use of
the structure of cipher rather than the concrete building blocks. Such attacks will still work when
the cipher is instantiated with other building blocks. The attack was first described in [DKR97]
and later more generally explained in [KW02]. An integral attack uses a specifically chosen set
of plaintexts that sum up to zero in certain bits. By analyzing the propagation of this zero-sum
property, one can build distinguishers over several rounds of modern ciphers. We will explain
this in the following, by presenting an integral attack on a reduced-round version of the AES. In
the literature, this attack is often called the SQUARE attack, because it was first presented as an
attack on the cipher SQUARE [DKR97], a predecessor of the AES.

The AES [AES01] is a 128-bit block cipher. The 128 bits are arranged in a 4×4 matrix where
each element constitutes a byte. It is a key-alternating cipher where each (but the last) round
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Figure 1.9: An integral attack on 3 rounds of AES.

consists of three steps:

1. An S-box is applied to each of the 16 bytes. This step is called SubBytes (SB).

2. The i-th row is rotated left by i steps. This step is called ShiftRows (SR).

3. Each byte is represented by an element of the finite field F28 . Now, each column is multiplied
by a fixed 4× 4 matrix over F28 . This step is called MixColumns (MC).

The key additions between the rounds are called AddRoundKey (ARK). All details including the
representation of the finite field, the specification of the S-boxes, and the key schedule can be
found in [AES01].

The integral distinguisher over 3 rounds of AES is shown in Fig. 1.911. It uses a set of 216

plaintexts. Here, one byte takes all possible 216 values while the other 15 bytes are constant. The
property of a byte taking all 216 values is noted with a ’?’. This can also be used as a distinguisher.
In fact, it implies the property that the sum will be zero in the according byte, which is denoted
by a ’0’. A blank space means that the according value is constant for all texts.

The initial state with the 216 plaintexts in one byte is shown at the top. First, the ARK step
does not change the properties because it is an addition with a constant which is a bijective
operation. Next, the SR step also does not change anything since the first row is not affected.
Writing out the MC step as a multiplication with a constant matrix, one can easily see that the

11Fig. 1.9 is based on TikZ code from [Jea17].
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resulting first column takes every value in every row. In the same way, we can easily follow the
propagation of the properties until we reach the MC step of the third round. Now, writing out
the MC step for any byte we have y = M x , where M is the matrix and x and y are the input and
output columns, respectively. Computing the sum over the output column for all 216 texts we
have

∑

y =
∑

M x = M
∑

x = 0. Thus, adding the 216 outputs after three rounds will result in
only zeros. This distinguisher holds with probability 1 and can be used as a basis for attacks over
even more rounds.

Just like boomerang attacks, the technique of integral cryptanalysis is also used in Chapter 3
to attack a white-box construction.

1.3.5 Linear Cryptanalysis

In many ways, linear cryptanalysis [Mat94] is similar to differential cryptanalysis. But instead of
differences, linear functions are used. That is, rather then checking if a certain input difference
leads to a certain output difference, one checks the correlations between a linear function of
the input and a linear function of the output. Whereas we talk about differentials in differential
cryptanalysis, we talk about linear hulls in linear cryptanalysis. As in the differential case, a linear
hull is composed of many linear characteristics, also called linear trails. And as in the differential
case, the wide trail design strategy can be applied to upper bound the probabilities of these
characteristics. This is done by using linear approximation tables (LATs) instead of difference
distribution tables (DDTs). However, there are also important differences. The main theorem of
linear cryptanalysis (see Section 2.2) can be proven without any need for assumptions like the
hypothesis of independent round keys. Furthermore, biases are used instead of probabilities. As
a consequence, the effect of multiple linear trails within a linear hull might cancel each other out.

The basics of linear cryptanalysis are described within the next chapter. There, we also dive
deeper into some more advanced topics like the influence of the choice of the key schedule. In
the end, we show an important difference between linear and differential cryptanalysis when it
comes to proving security for the aforementioned tweakable block ciphers.





Part I

Linear Cryptanalysis
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2
Linear Cryptanalysis: Key Schedules

and Tweakable Block Ciphers

The results from this chapter have been published in the IACR journal Transactions on Symmetric
Cryptology [KLW17] and presented at the conference Fast Software Encryption 2017 in Tokyo,
Japan. This is joint work with Gregor Leander and Friedrich Wiemer. All authors equally
contributed. The main contributions of the thesis author are in the systematization of linear
cryptanalysis (Section 2.2) and in the findings about linear key schedules (Section 2.4) and
tweakable block ciphers (Section 2.5).

2.1 Introduction

Linear cryptanalysis, introduced by Matsui [Mat94], is one of the major statistical attacks on
block ciphers. Since its invention in the early 1990s, many extensions and variations have been
considered. The most important theoretical investigation is certainly the work of Nyberg [Nyb95],
where the concept of linear hulls was introduced and the assumption of round-independence
needed in Matsui’s original approach was clarified. Similar results can be derived by using the
concept of correlation matrices, as done by Daemen and Rijmen [DR02]. A statistical model for
estimating the data complexity of various linear attacks is presented in [BN17]. The concept
of the linear hulls in particular shows the key-dependency of the correlation of a given linear
approximation. Due to the key-dependency of the distribution, for a complete understanding
of the security of a block cipher with respect to a linear attack, one has to understand not only
one correlation, but rather the distribution of the correlations taken over all possible master
keys. Only then one is able to estimate the fraction of weak keys, that is, keys such that the
corresponding correlation is high enough to be exploitable in an attack. Following Nyberg’s
fundamental theorem, it is possible, at least theoretically, to compute the mean and the variance
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of this distribution in the case of independent round keys. But it seems hard to derive more
information about the distribution. It would be especially interesting to derive bounds on the
tails, i. e. the fraction of weak keys. Moreover, even for just estimating the variance in practice,
the assumption of independent round keys is crucial [BN16] (while it is also possible to compute
the variance without this assumption, see [BTV18], doing so in practice seems to be hard).

When it comes to the key schedule part, there is a clear lack of understanding in block cipher
design. Let us quickly recall the role of the key schedule algorithm in a block cipher. The key
schedule takes as input a master key (in the case of AES-128 this is a 128-bit string) and outputs
so-called round keys that are used in each round to mix the current state with the key (most
often by simply XORing the round key to the state). In the case of AES-128, the total length of
the round keys is 11 ·128 = 1408 bits, and thus the AES key schedule, as a function, is a mapping
from {0,1}128 to {0,1}1408.

However, as already motivated in Section 1.2.1, the influence of the key schedule on linear
and differential attacks is to a large extent unknown. One usually assumes that all (round) keys
are independently and uniformly chosen. While this is hardly the case for any real cipher, this
assumption is on the one hand needed to make the analysis feasible and on the other hand often
does not seem problematic as even with the keys not independently and uniformly chosen, most
ciphers (experimentally!) do not behave differently from the expectation.

Note that the above of course extends, and in some respect becomes even more relevant,
when we consider the case of a tweakable block cipher and discuss how a suitable tweak schedule
should be constructed. This analogy is maybe most obvious in the TWEAKEY setup [JNP14b]
where key and tweak are just parts of the same object, but is certainly important for any kind of
tweak schedule.

In this chapter, we aim to systemize the theoretical notions underlying linear cryptanalysis.
Furthermore, we take some steps forward to increase our understanding of the influence of key
and tweak schedules on the security of (tweakable) block ciphers with respect to linear attacks.

Our Contributions

Systematization of Linear Cryptanalysis

We begin by presenting the idea of linear cryptanalysis in Section 2.2. By doing so, we try to
express all terms as Fourier coefficients instead of using correlations, as we feel that this gives
a more clear picture. This perspective turns out to be especially nice when it comes to the
correlation of a linear trail. In many papers on linear cryptanalysis, the correlation of a linear trail
is either not well-defined (when using the piling-up lemma) or not well-motivated (when given
as a pure definition). However, in our setup, the correlation of the linear hull nicely corresponds
to a Fourier coefficient. Note that this perspective is implicitly already contained in Nyberg’s
original paper on the linear hull [Nyb95], but we feel that it did not get the attention it deserves.

To support the general understanding, we develop the Fourier coefficient of the linear hull by
first considering a generic key-dependent block cipher Ek, then specializing it to a round-based
structure and finally to the most commonly used key-alternating case. While the corresponding
proofs involve only basic techniques and may have appeared elsewhere, we nevertheless include
them again in order to preserve their educational value and to aid researchers unfamiliar with
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the topic to gain a better understanding. Building on these fundamentals, we then turn to key
schedules.

Bizarre Examples: The Tail of the Distributions

First, we start by exploring how the key schedule can influence the distribution of Fourier
coefficients. This first part, in Section 2.3 builds upon the example on PRESENT from [Abd+12].
Besides the result of Abdelraheem et al., many papers cover experiments on PRESENT – to name
just a few: [BPW15; BTV18; Cho10; Hua+15]. As observed in [Ohk09] the distribution of
the correlation for PRESENT follows closely a normal distribution with mean zero. Moreover,
the variance of this distribution fits to what can be expected for independent round keys. The
observation in [Abd+12] was that, when replacing the key schedule of PRESENT by a key schedule
that produces identical round keys in every round, the variance increases significantly. This, in
particular, means that the cipher becomes weaker against linear cryptanalysis, as the fraction
of keys that have a large correlation (in absolute terms) increases significantly (see Fig. 2.4).
However, although the variance increases, the distribution still follows a normal distribution
closely.

By doing extensive experiments with a large set of variants of the PRESENT cipher, we eventu-
ally observe many interesting examples of how the key schedule can influence the distribution
of Fourier coefficients in a much more dramatic manner. While we show several of those dis-
tributions in the appendix, the main interesting conclusion actually follows from an example
depicted in Fig. 2.7. Recall from above that one important question is if we can prove stronger
statements about the number of keys with a large absolute Fourier coefficient, beyond what is
given by Tchebysheff’s general upper bound on any distribution. Now, the example we found
leads to a negative conclusion. That is, in general, it seems that we cannot hope to prove any
stronger statements. This follows from the fact that, when increasing the number of rounds,
the distribution of the example corresponding to Fig. 2.7 tends to (the unique) distribution for
which Tchebysheff’s general upper bound is tight. In other words, there exist Fourier coefficient
distributions with mean zero and variance σ2, such that the fraction of keys with an absolute
correlation greater than or equal to σk equals 1

k2 .

Linear Key Schedule

The next contribution leads to a much more positive, constructive result. Here, in Section 2.4 we
focus on the case of a linear key schedule. Linear key schedules are very common in block ciphers.
Besides the DES, many lightweight ciphers actually use the easiest possible linear key schedule,
i. e. simply use identical round keys. In order to avoid structural attacks, in particular slide attacks,
and in order to break symmetries, it is common sense to add varying round constants to every
round key. Now, in Section 2.4 we prove that any linear key schedule is sound, concerning linear
cryptanalysis, in the following sense: For any given linear key schedule, the average variance of
the distribution of the Fourier coefficients, taken over all possible round constants, is exactly the
same as for independent round keys. Thus, as a designer, after fixing any linear key schedule
of one’s choice, one can expect that when adding a randomly chosen set of round constants,
the distribution of the Fourier coefficients closely follows the one in the case of independent
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round keys. This adds some theoretical foundation on the hypothesis of independent round keys
criticized above in the case of linear key schedules. We back up this theoretical observation by
experiments on PRESENT.

Tweakable Block Ciphers

Finally, we turn our attention to tweakable block ciphers and how the additional input, i. e. the
tweak, possibly helps an attacker. The main possible advantage of the tweak, when it comes
to linear cryptanalysis, is that instead of approximating a linear function of the ciphertext by a
linear function of the plaintext only, the attacker can now try to approximate (a linear function
of) the ciphertext by a linear function of the plaintext and a linear function of the tweak.

To study this potentially new attack vector, we elaborate on the linear hull of a tweakable block
cipher. We look at the case of a linear tweak schedule and later specialize on tweak-alternating
and key-alternating block ciphers. It turns out that the linear hull, and therefore the Fourier
coefficient an attacker can use, is composed of the same linear trails as in the non-tweaked
case. In other words, by adding the tweak, no new linear characteristics are introduced. Thus,
protecting a tweakable cipher with linear tweak schedule against linear cryptanalysis basically
does not need any additional considerations, but can be done in the same way as it is done for a
non-tweakable block cipher, i. e. by upper bounding the Fourier coefficient of any single linear
characteristic. Note that this is in sharp contrast to the differential case, where using a difference
in the tweak often leads to differential characteristics with a significantly higher probability.

We like to clearly mention that, from a technical point of view, we mainly reuse standard
approaches. Still, our results shed some new light on the wide-open field of the design of a sound
key schedule.

2.2 Systematization of Linear Cryptanalysis

In the course of this section, we develop in a step by step manner the setting of linear cryptanalysis
in a general and consistent way. Within our systematization, we also highlight the meaning of a
linear trail as this seems to be not well-known.

Recall, that we denote by F2 the finite field with two elements and by Fn
2 the n-dimensional

vector space over F2, i. e. the set of all n-bit strings together with the bitwise XOR-addition. When
dealing with linear cryptanalysis, we need to define a scalar product on Fn

2. For x , y ∈ Fn
2 by

〈x , y〉 we denote the canonical scalar product, i. e. 〈x , y〉 :=
∑

x i yi. We will often deal with
linear mappings on Fn

2 and, given a linear mapping L : Fn
2 → Fn

2 we denote by LT its adjoint
linear mapping, i. e. the mapping such that




x , L(y)
�

=



LT (x), y
� ∀x , y ∈ Fn

2.

Note that, when L is given as an n× n binary matrix, then LT is nothing else than the linear
mapping corresponding to the transposed matrix.
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Linear Cryptanalysis

Next, we present the basic concepts of linear cryptanalysis. For this, let

Ek : Fn
2→ Fn

2

be a block cipher on n-bit blocks, indexed by a key k. In classical linear cryptanalysis, we try to
approximate a linear Boolean function of the output Ek(x) by a linear Boolean function of the
input x . More precisely, we search for a pair of input and output masks (α,γ), such that the bias
of the linear approximation

〈γ, Ek(x)〉 ≈ 〈α, x〉
is large in absolute terms. We define the bias εEk

(α,γ) by

Prx [〈γ, Ek(x)〉= 〈α, x〉] = 1
2
+ εEk

(α,γ),

and to make linear cryptanalysis successful we have to choose α and γ such that |εEk
(α,γ)| is

large since the linear approximation can then be used as a distinguishing property. Due to scaling
issues, it is often more convenient to work with the correlation cEk

(α,γ) := 2εEk
(α,γ) instead of

the bias directly.
In this chapter, however, we are mainly working with the Fourier (or Walsh) transformation

of Ek. The Fourier coefficient of a vectorial Boolean function f : Fn1
2 → Fn2

2 at position α ∈ Fn1
2

and γ ∈ Fn2
2 is defined as

bf (α,γ) :=
∑

x∈Fn1
2

(−1)〈α,x〉+〈γ, f (x)〉.

In terms of linear cryptanalysis, the Fourier coefficient of Ek is nothing else than a scaled version
of the bias (and therefore nothing else than a scaled version of the correlation). More precisely it
holds that

cEk(α,γ) = 2ncEk
(α,γ) = 2n+1εEk

(α,γ).

Next, we will present some very useful lemmas about the Fourier coefficient that will be used
in the subsequent proofs and in general provide a valuable set of tools for proofs regarding linear
cryptanalysis. The first one was proven by Nyberg [Nyb01, Theorem 3].

Lemma 2.1 (Consecutive Functions).

Given

f : Fn1
2 × F`2→ Fn2

2 , g : Fn1
2 × Fκ2 → Fn2

2 , h : F`2→ Fκ2 ,

f (x , y) := g(x , h(y)).

Then

2κ bf ((α,β),γ) =
∑

β ′∈Fκ2
bg
��

α,β ′
�

,γ
� ·bh�β ,β ′

�

.

◊
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Proof. We only need the well-known fact that for the dot product it holds:

∑

β∈Fn
2

(−1)〈β ,x〉 =
�

2n , if x = 0

0 , else
.

Hence:
∑

β ′∈Fκ2
bg
��

α,β ′
�

,γ
� ·bh�β ,β ′

�

=
∑

β ′

∑

x∈Fn1
2

y∈Fκ2

(−1)〈α,x〉+〈β ′,y〉+〈γ,g(x ,y)〉∑

z∈F`2
(−1)〈β ,z〉+〈β ′,h(z)〉

=
∑

x ,y,z

(−1)〈α,x〉+〈β ,z〉+〈γ,g(x ,y)〉∑

β ′
(−1)〈β ′,y+h(z)〉

= 2κ
∑

x ,z

(−1)〈α,x〉+〈β ,z〉+〈γ,g(x ,h(z))〉

= 2κ bf ((α,β),γ)

The next lemma was discussed by Daemen et al. [DGV95, Eq. (15)] and describes the Fourier
coefficient of a composite function.

Lemma 2.2 (Function Composition).

Given

f : Fn1
2 → Fn3

2 , g : Fn1
2 → Fn2

2 , h : Fn2
2 → Fn3

2 ,

f := h ◦ g

Then

2n2 bf (α,γ) =
∑

β∈Fn2
2

bg(α,β) ·bh(β ,γ).

◊

Proof.
∑

β∈Fn2
2

bg(α,β) ·bh(β ,γ) =
∑

β

∑

x∈Fn1
2

(−1)〈α,x〉+〈β ,g(x)〉∑

y∈Fn2
2

(−1)〈β ,y〉+〈γ,h(y)〉

=
∑

x ,y

(−1)〈α,x〉+〈γ,h(y)〉∑

β

(−1)〈β ,y+g(x)〉

= 2n2

∑

x

(−1)〈α,x〉+〈γ,h(g(x))〉

= 2n2 bf (α,γ)

We can easily prove a variant of this lemma for functions with another, independent input.
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Lemma 2.3.

Given

f : Fn1
2 ×

�

Fκ1
2 × Fκ2

2

�→ Fn3
2 , g : Fn1

2 × Fκ1
2 → Fn2

2 , h : Fn2
2 × Fκ2

2 → Fn3
2 ,

f (x , (y, z)) := h(g(x , y), z).

Then, for β = (β0,β1)

2n2 bf ((α,β),γ) =
∑

θ∈Fn2
2

bg((α,β0),θ ) ·bh((θ ,β1),γ).

◊

Proof.
∑

θ∈Fn2
2

bg((α,β0),θ ) ·bh((θ ,β1),γ) =
∑

θ

∑

x∈Fn1
2

z∈Fκ1
2

(−1)〈α,x〉+〈β0,z〉+〈θ ,g(x ,z)〉∑

y∈Fn2
2

z′∈Fκ2
2

(−1)〈θ ,y〉+〈β1,z′〉+〈γ,h(y,z′)〉

=
∑

x ,y
z,z′

(−1)〈α,x〉+〈β0,z〉+〈β1,z′〉+〈γ,h(y,z′)〉∑

θ

(−1)〈θ ,y+g(x ,z)〉

= 2n2

∑

x ,z,z′
(−1)〈α,x〉+〈β0,z〉+〈β1,z′〉+〈γ,h(g(x ,z),z′)〉

= 2n2 bf ((α,β),γ)

Bogdanov and Rijmen [BR14, Lemma 1] studied how the XOR operation influences linear
cryptanalysis.

Lemma 2.4 (XOR at input).

Given

g : Fn1
2 × Fn1

2 → Fn2
2 , and f : Fn1

2 → Fn2
2 ,

g(x , y) := f (x + y).

Then

bg((α,β),γ) =

�

2n1 bf (α,γ) , if α= β

0 , else
.

◊
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Proof.

bg((α,β),γ) =
∑

x ,y∈Fn1
2

(−1)〈α,x〉+〈β ,y〉+〈γ, f (x+y)〉

=
∑

x ′,y
(−1)〈α,x ′+y〉+〈β ,y〉+〈γ, f (x ′)〉

=
∑

x ′,y
(−1)〈α,x ′〉+〈α,y〉+〈β ,y〉+〈γ, f (x ′)〉

=
∑

x ′
(−1)〈α,x ′〉+〈γ, f (x ′)〉∑

y

(−1)〈α+β ,y〉

= bf (α,γ) ·
∑

y

(−1)〈α+β ,y〉

=

�

2n1 bf (α,γ) , if α= β

0 , else

Lemma 2.5 (XOR at output).

Given

g : Fn2
2 × Fn1

2 → Fn1
2 , and f : Fn2

2 → Fn1
2 ,

g(x , y) := f (x) + y.

Then

bg((α,β),γ) =

�

2n1 bf (α,γ) , if β = γ

0 , else
.

◊

Proof. The proof works analogously to the proof of Lemma 2.4.

As it is usually computationally infeasible to compute the (exact) Fourier coefficient of any
reasonable block cipher Ek, we make use of the fact that almost all block ciphers are round-based.
That is, Ek is then the composition of several (comparably simple) round functions Gi : Fn

2→ Fn
2.

Those round functions are actually key-dependent, but in order to simplify notation, we ignore this
key-dependency for now (and come back later to this topic extensively). So instead of computing
the exact Fourier coefficient, or correlation, of a linear approximation, one usually focuses on
what is called linear trail (synonymously often called linear path or linear characteristic). For an
r-round cipher

Ek(x) = Gr−1 ◦ · · · ◦ G1 ◦ G0(x)

a linear trail θ is a collection of r + 1 masks

θ = (θ0,θ1, . . . ,θr)
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and the correlation of a trail is defined as

Cθ :=
r−1
∏

i=0

cGi
(θi ,θi+1). (2.1)

Initially, in his seminal work [Mat94], Matsui derived the correlation of a trail by the so-called
piling-up lemma, assuming that the approximations of different rounds behave as independent
Boolean random variables. Later, Nyberg [Nyb95] showed how this assumption can be avoided
by introducing the concept of the linear hull. She also showed that Matsui’s famous Algorithm
2, which he used to break DES, was actually making use of the linear hull and not of a single
linear trail. This has also nicely been shown for iterated block ciphers by using the technique of
correlation matrices [Dae95; DGV95; DR02]. We recall Nyberg’s results in terms of the Fourier
coefficients of Ek. The first and crucial idea is to consider Ek as a function in two variables, one
being the plaintext and the second being the key. For a κ-bit key k, we consider

F : Fn
2 × Fκ2 → Fn

2

with
Ek(x) := F(x , k),

see also Fig. 2.1a. Nyberg basically showed that

2κcEk(α,γ) =
∑

β∈Fκ2
(−1)〈β ,k〉

bF((α,β),γ), (2.2)

i. e. the Fourier coefficient of Ek corresponds to the (signed) sum of Fourier coefficients of F
over all possible masks for the key-input. This is what is referred to as the linear hull. We recall
Eq. (2.2) and its key scheduled variant in Proposition 2.1. In addition to the already mentioned
results, Nyberg [Nyb01, Theorem 3] also covered this generic influence of a key schedule by the
notation of one function having as an input the output of another function.

F

k Ek

m c

(a) Generic key-dependent function Ek

F

KS

k

EKSk

m c

(b) and its key scheduled variant EKS
k

Figure 2.1: Most generic function.
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Proposition 2.1. Let Ek and EKS
k be the functions (see Fig. 2.1a and Fig. 2.1b)

Ek : Fn
2→ Fn

2

Ek(x) := F(x , k)

EKS
k : Fn

2→ Fn
2

EKS
k (x) := EKS(k)(x) = F(x ,KS(k))

with F : Fn
2 × Fκ2 → Fn

2 and key schedule KS : F`2→ Fκ2 . Then

2κcEk(α,γ) =
∑

β∈Fκ2
(−1)〈β ,k〉

bF((α,β),γ),

2`+κÔEKS
k (α,γ) =

∑

β∈F`2
β′∈Fκ2

(−1)〈β ,k〉
ÓKS
�

β ,β ′
�

bF
��

α,β ′
�

,γ
�

.

◊

Proof. We compute directly
∑

β

(−1)〈β ,k〉
bF((α,β),γ) =

∑

β

(−1)〈β ,k〉∑

x ,k′
(−1)〈α,x〉+〈β ,k′〉+〈γ,F(x ,k′)〉

=
∑

β ,x ,k′
(−1)〈α,x〉+〈β ,k+k′〉+〈γ,Ek′ (x)〉

=
∑

x ,k′
(−1)〈α,x〉+〈γ,Ek′ (x)〉∑

β

(−1)〈β ,k+k′〉

= 2κ
∑

x

(−1)〈α,x〉+〈γ,Ek(x)〉

= 2κcEk(α,γ).

For the key scheduled variant: EKS
k (x) = FKS(x , k) = F(x ,KS(k)). With the first part of Proposi-

tion 2.1 for the non-key-scheduled variant we have

2`ÔEKS
k (α,γ) =

∑

β

(−1)〈β ,k〉
ÔFKS((α,β),γ),

applying Lemma 2.1 results in

2`+κÔEKS
k (α,γ) =

∑

β ,β ′
(−1)〈β ,k〉

ÓKS
�

β ,β ′
�

bF
��

α,β ′
�

,γ
�

,

which concludes the proof.

From Eq. (2.2) we can easily deduce the following equation by a simple application of the
well-known fact [Car07, Corollary 2] that the Fourier transform is its own inverse, up to a constant
factor.

bF((α,β),γ) =
∑

k∈Fκ2
(−1)〈β ,k〉

cEk(α,γ) (2.3)
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Eq. (2.3) might not seem helpful at first sight because it would mean a known-key attack.
However, it turns out to be very meaningful in multiple ways. First of all, it will enable us to
assert a clear meaning to the definition of a linear trail later in this section. Second, this is
already the most basic form of the linear hull theorem for tweakable block ciphers which will be
discussed in Section 2.5 extensively.

Next, we consider the already mentioned case of round-based block ciphers. The linear hull
theorem can then be simplified such that the right-hand side of the equation only contains Fourier
coefficients of the round functions. This specialization of the first proposition has applications for
block ciphers that introduce the key material in other ways than simply XORing it onto the state.

G0

k0

· · · Gr−1

kr−1

m c

r-Roundk

(a) Round-based key-dependent func-
tion r-Roundk

G0 · · · Gr−1

Key Schedule KS

k

m c

r-RoundKSk

(b) and its key scheduled variant
r-RoundKS

k

Figure 2.2: Round-based functions.

Proposition 2.2. Let r-Roundk and r-RoundKS
k be the functions (see Fig. 2.2a and Fig. 2.2b)

r-Roundk : Fn
2→ Fn

2

r-Roundk(x) := Gr−1(. . . (G0(x , k0), . . .), kr−1)

r-RoundKS
k : Fn

2→ Fn
2

r-RoundKS
k (x) := r-RoundKS(k)(x)

with Gi : Fn
2 × Fκ2 → Fn

2 and key schedule KS : F`2→
�

Fκ2
�r

. Then

2rκ+(r−1)n
Ûr-Roundk(α,γ) =

∑

β∈(Fκ2)
r

(−1)〈β ,k〉 ∑

θ∈(Fn2)
r+1

θ0=α,θr=γ

r−1
∏

i=0

ÒGi((θi ,βi),θi+1),

2`+rκ+(r−1)n Ûr-RoundKS
k (α,γ) =

∑

β∈F`2
β′∈(Fκ2)

r

(−1)〈β ,k〉
ÓKS
�

β ,β ′
�

∑

θ∈(Fn2)
r+1

θ0=α,θr=γ

r−1
∏

i=0

ÒGi

��

θi ,β
′
i

�

,θi+1

�

.

◊

Proof.
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Recall r-Roundk(x) = Gr−1(. . . (G0(x , k0), . . .), kr−1). With the first part of Proposition 2.1 for
the non-key-scheduled variant it holds

2rκ
Ûr-Roundk(α,γ) =

∑

β

(−1)〈β ,k〉
bF((α,β),γ).

Applying Lemma 2.3 iteratively r − 1 times we then get

2rκ+(r−1)n
Ûr-Roundk(α,γ) =

∑

β

(−1)〈β ,k〉 ∑

θ
θ0=α,θr=γ

r−1
∏

i=0

ÒGi((θi ,βi),θi+1).

The key scheduled variant follows from the second part of Proposition 2.1 and again applying
Lemma 2.3 iteratively r − 1 times.

As this proposition looks a bit puzzling, let us elaborate a bit on it. We only need to pay
attention to the rightmost part, the sum over θ and the product over the round functions’ Fourier

coefficients, as we know the other part already from Proposition 2.1. So basically Ûr-Roundk is the
product of the round functions’ Gi Fourier coefficients. But instead of having only one possible
trail through all round functions, we can choose, after each round, which intermediate mask to
use. Eventually, we end up with the sum over all possible θ , beginning with α and ending in γ,
and thus having a linear hull over the round functions.

Finally, we focus on the case where Ek is round-based and the key-dependency is introduced
by XORing a key onto the current state in each round, i. e. if Ek is a key-alternating cipher as
depicted in Fig. 2.3a. This special case of the linear hull theorem is the most famous one. It is
usually cited using the correlation of linear trails as defined in Eq. (2.1).

Another point that is nicely highlighted by this stepwise development via the round based
function is the only small difference between Propositions 2.2 and 2.3. While we sum over both
the key mask β and the round functions input mask θ in the former, the second sum collapses
in the latter, as we will see in the next paragraph. This is due to the fact that we cannot say
anything about the introduction of key material in a generic round function. But instead, if the
key is simply XORed onto the input of the round function, this fixes the corresponding masks
θi = βi , see [Bih95] or [BR14, Lemma 1].

Proposition 2.3. Let r-KeyAltk and r-KeyAltKS
k be the functions (see Fig. 2.3a and Fig. 2.3b)

r-KeyAltk : Fn
2→ Fn

2

r-KeyAltk(x) := Hr−1(. . . H0(x + k0) + . . .) + kr

r-KeyAltKS
k : Fn

2→ Fn
2

r-KeyAltKS
k (x) := r-KeyAltKS(k)
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m H0 . . . Hr−1 c

k0 k1 kr−1 kr

r-KeyAltk

(a) Key-Alternating function r-KeyAltk over r rounds with k =
(k0, . . . , kr)

m H0 . . . Hr−1 c

Key Schedule KS

k r-KeyAltKSk

(b) and its key scheduled variant r-KeyAltKS
k

Figure 2.3: Key-Alternating functions.

with Hi : Fn
2→ Fn

2 and key schedule KS : F`2→
�

Fn
2

�r+1
. Then

2(r−1)n
Ûr-KeyAltk(α,γ) =

∑

β∈(Fn2)
r+1

β0=α,βr=γ

(−1)〈β ,k〉
r−1
∏

i=0

cHi(βi ,βi+1)

= 2rn
∑

β
β0=α,βr=γ

(−1)〈β ,k〉Cβ ,

2`+(r−1)n Ûr-KeyAltKS
k (α,γ) =

∑

β∈F`2
β′∈(Fn2)

r+1

β′0=α,β′r=γ

(−1)〈β ,k〉
ÓKS
�

β ,β ′
�

r−1
∏

i=0

cHi

�

β ′i ,β
′
i+1

�

= 2rn
∑

β ,β′
β′0=α,β′r=γ

(−1)〈β ,k〉
ÓKS
�

β ,β ′
�

Cβ ′ .

◊

Proof.

Using Proposition Proposition 2.1, Lemma Lemma 2.5, and Lemma 2.3 results in

2(2r−1)n
Ûr-KeyAltk(α,γ) =

∑

β
βr=γ

(−1)〈β ,k〉 ∑

θ
θ0=α,θr=γ

r−1
∏

i=0

ÒGi((θi ,βi),θi+1),
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and applying Lemma 2.4 for each round yields

2(r−1)n
Ûr-KeyAltk(α,γ) =

∑

β
β0=α,βr=γ

(−1)〈β ,k〉
r−1
∏

i=0

cHi(βi ,βi+1).

The key scheduled variant follows analogously from the second part of Proposition 2.1.

Furthermore, in the case of a key-alternating cipher with independent round keys, i. e. the
case without a key schedule, the following lemma holds:

Lemma 2.6. Let Ek = r-KeyAltk be a key-alternating cipher and F as defined in Proposition 2.1.
Then

2−(r+2)n
bF((α,β),γ) =











r−1
∏

i=0

cHi
(βi ,βi+1) = Cβ , if (α,γ) = (β0,βr)

0 , else

.

◊

Proof. We first use Eq. (2.3) and then Proposition 2.3:

bF((α,β),γ) =
∑

k

(−1)〈β ,k〉
cEk(α,γ)

=
∑

k

(−1)〈β ,k〉





2n

∑

β′
β′0=α,β′r=γ

(−1)〈β ′,k〉
r−1
∏

i=0

cHi

�

β ′i ,β
′
i+1

�







= 2n
∑

β ′,k
(−1)〈β+β ′,k〉

r−1
∏

i=0

cHi

�

β ′i ,β
′
i+1

�

=







2(r+2)n
r−1
∏

i=0
cHi

�

β ′i ,β
′
i+1

�

, for (α,γ) = (β0,βr)

0 , else
.

We like to highlight this fact as we feel it is not well-known, although it is of course implicitly
contained in Nyberg’s work, see e. g. [Nyb15, Theorem p. 12]: The correlation of a linear trail

is nothing but the Fourier coefficient of F where F : Fn
2 ×

�

Fn
2

�(r+1) → Fn
2 is the key-alternating

cipher and the first and last key masks correspond to the message input and message output
mask, respectively. Hence, alternatively to Eq. (2.1) we can write

Cθ = 2−(r+2)n
bF((θ0,θ ),θr).

This is important to keep in mind as it asserts a clear meaning to the correlation of a trail. And
this is in contrast to many papers in the literature where either the trail is derived by the piling-up
lemma or the correlation of a trail is given directly by using Eq. (2.1) as a definition, as done
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above to link the usual notation to what we feel is a cleaner way of presenting those connections.
Given Lemma 2.6, one can also easily see the connection between Propositions 2.1 and 2.3. Here,
all masks that do not start and end in α and γ vanish in the linear hull sum.

Distributions

When applying linear cryptanalysis in practice, we have to compute Fourier coefficients cEk for
some fixed key k. But as the Fourier coefficient exhibits a key-dependent behavior, see Eq. (2.2),
we need to take into account how cEk is distributed over the key space, i. e. what is the probability
Prk

�

cEk(α,γ) = X
�

. In the case of key-alternating block ciphers with independent round keys,
r-KeyAlt in our notation, the Fourier coefficient follows a normal distribution N and there
are already results about the expected value and the expected squared value, e. g. see [DR02,
pp. 103–108]. Namely,

E
�

Ûr-KeyAltk(α,γ)
�

=
1

2(r+1)n

∑

k∈F(r+1)n
2

Ûr-KeyAltk(α,γ) = 0,

and

E
�

Ûr-KeyAltk(α,γ)2
�

=
1

2(r+1)n

∑

k∈F(r+1)n
2

Ûr-KeyAltk(α,γ)2 = 22n
∑

β∈(Fn2)
r+1

β0=α,βr=γ

C2
β .

Thus, the mean µ is 0 and the variance σ2 = 22n
∑

C2
β

.
Daemen and Rijmen [DR07] did also extensively study the probability distributions for block

ciphers with independent round keys in both, the setting for differential and linear cryptanalysis.
However, they did not regard possible influences of the key schedule. But usually, real block
ciphers have a (often linear) key schedule to generate round keys. In particular, we are interested
in exactly this case, where the key schedule is linear. Such a key schedule can have unexpected
influences on our standard assumptions for block cipher designs. In the following section, we
investigate the special case of identical round keys.

2.3 Bizarre Examples

When we design a new cipher, we typically assume independent round keys and analyze the
behavior of linear trails in the hope that the behavior when using an actual key schedule does not
differ too much in practice. Note that, mainly due to Nyberg [Nyb95], the behavior of independent
round keys is well-scrutinized. Here, one understands theoretically the basic parameters of the
distribution of possible Fourier coefficients for varying keys. In particular, the average Fourier
coefficients, that is the mean of the distribution, and the average squared Fourier coefficients can
be formalized, as shown in Section 2.2. Moreover, we often expect the Fourier coefficients of
linear trails to follow a normal distribution in the case of independent round keys.

Aside from this general result, only few research was conducted for round keys derived by a
key schedule. One rather recent contribution by Abdelraheem et al. [Abd+12] exhibited Fourier
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Figure 2.4: Distribution of Fourier coefficients for standard PRESENT reduced to 10 rounds. Possible
Fourier coefficients of the mask (e21, e21) are plotted on the abscissa, while the number of keys that
lead to this Fourier coefficient is plotted on the ordinate.

coefficient distributions as in Fig. 2.4. Here, the distribution for identical round keys has a
significantly bigger variance than independent round keys, but still follows a normal distribution.
Continuing this analysis, we conduct extensive experiments with PRESENT variants and report
the observed distributions.

The main motivation behind those experiments was to explore if one can bound the fraction
of weak keys, that is keys with a large absolute bias, tighter than by using the very general result
by Tchebysheff’s bound. In other words, we are interested in studying what can be said about
the tails of the Fourier coefficient distribution over the keys.

Recall that, for any probability distribution Tchebysheff ’s inequality gives a result about
deviations from the distribution’s mean. Let D be a distribution with mean µ and variance σ2.
Then for any random variable x ∼ D,

Prx [|x −µ| ≥ k ·σ]≤ 1
k2

.

While this is a general result for any probability distribution, we know much stronger results for
some common distributions. In particular for the normal distribution that often seems a good
approximation of the distribution of Fourier coefficients, much stronger bounds can be proven.
More precisely, when considering a normal distribution, the cumulative distribution function
(CDF) results in the well-known 68–95–99.7 rule (or three-sigma rule of thumb [Gra06]) that says

• 68 % of the probability mass lies within one,

• 95 % lies within two, and

• 99.7 % lies within three standard deviations away from the mean.

The remainder of the section discusses our results for some selected S-boxes. Additionally, all
results are given in Appendix A.
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Experimental setting

PRESENT is a classical Substitution-Permutation-Network with a 64-bit block size and uses a
substitution layer based on a 4-bit S-box with optimal properties regarding differential and
linear cryptanalysis, together with a bit-permutation-based linear layer. In [LP07], the authors
classified all 4-bit S-boxes and found 16 so-called optimal equivalence classes and 20 Serpent-
type equivalence classes.1 While optimal 4-bit S-boxes exhibit the best uniformity and linearity
possible, the notion of Serpent-type S-boxes also include desired attributes to ensure a higher
number of active S-boxes for differential cryptanalysis. The PRESENT S-box was chosen from one
of these Serpent-type equivalence classes.

In order to better understand the behavior of identical round keys, we conducted extensive
experiments with modified PRESENT versions. Our modifications are of the following form. We
substituted the used S-box within the encryption with each of the optimal representatives O0
to O15 and Serpent-type representatives R0 to R19 given in [LP07]. Additionally, we reduced
the encryption to 10 rounds. For each experimental distribution, we then computed the Fourier
coefficients of 1-bit trails for 20 000 independent and 20 000 identical round keys.

Before discussing our results, let us recall some observations of PRESENT. In [Ohk09] Ohkuma
has shown that 1-bit trails dominate the linear hull in the case of PRESENT, at least for a limited
number of rounds. Later, Abdelraheem [Abd13] showed that with an increasing number of
rounds, one has to take into account more trails in order to get good estimates of the total Fourier
coefficient. A 1-bit trail θ = (θ0, . . . ,θr) is a trail, for which all intermediate masks θi have
Hamming weight 1, i. e. hw(θi) = 1.

We build on these findings and run our experiments under the following assumption:

Assumption 2.1. 1-bit trails dominate the linear hull of PRESENT. ◊

We discuss the validity of this assumption in the next subsection, see Figs. 2.7 and 2.8.
As we consider a small number of rounds, we can thus approximate the Fourier coefficient of

PRESENT by
cEk(α,γ) =

∑

θ∈(Fn2)
r+1

θ0=α,θr=γ

(−1)〈θ ,k〉Cθ ≈
∑

θ
θ0=α,θr=γ
hw(θi )=1

(−1)〈θ ,k〉Cθ .

We can exploit this observation in our experiments in two ways. First, as we have to consider
only 1-bit trails, computing the Fourier coefficient becomes very efficient compared to computing
Fourier coefficients of all trails. The reason for the reduced complexity is the following. Normally
we utilize correlation matrices [DGV95] to compute the trail’s Fourier coefficient. But as we
restrict the trails to 1-bit masks only, we also greatly reduce the size of the corresponding
correlation matrix.

Additionally, we can use the resulting matrix as an intuitive illustration of the Fourier
coefficient-influencing parts of the cipher. For that purpose, we interpret the correlation matrix
restricted to 1-bit trails as an adjacency matrix of a graph G . We call G the induced graph.
Standard PRESENT induces the graph depicted in Fig. 2.5. A vertex in G corresponds to a bit in

1Actually, a more general classification was already published in [Can07]
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the cipher’s state, an edge from α to γ to a trail over one round with non-zero Fourier coefficient.
That is, α is connected to γ by an edge if

ÒH
�

eα, eγ
� 6= 0,

where H denotes the PRESENT round function, and e j the jth unit vector.
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Figure 2.5: Graph induced by PRESENT. Vertices α, γ correspond to possible 1-bit masks (eα, eγ)
and are thus connected by an edge, if the Fourier coefficient at

�

eα, eγ
�

is non-zero. The highest
number of trails is achieved by starting and ending in the marked vertex, eα = eγ = e21.

Note that finding 1-bit trails over r rounds now reduces to finding paths in G of length r.
G can be reduced in size, if we discard vertices not covered by paths of length r. Counting the
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Figure 2.6: Graph induced by PRESENT and R1. Vertices α, γ correspond to possible 1-bit masks
(eα, eγ) and are thus connected by an edge, if the Fourier coefficient at
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eα, eγ
�

is non-zero. The
highest number of trails is achieved for (eα = e63, eγ = e42).

number of 1-bit trails from α to γ over r rounds can now simply be done, by raising the adjacency
matrix to the rth power. The resulting element at position (α,γ) is the number looked for.

Returning to Ohkuma’s observations, the second advantage of this phenomenon is, it limits
the number of keys that result in different behavior. Consider Eq. (2.2) and only 1-bit trails. The
key-dependent sign of the Fourier coefficient now depends only on the few key bits masked by
1-bit trails. In the case of PRESENT, there are 27 out of the possible 64 bits of each round key.

Thus, significantly fewer key bits influence the Fourier coefficient, and further, all keys which
are equal in these masked bits behave identically. For some S-boxes, we can then compute the
distribution of Fourier coefficients of 1-bit trails over all keys.

The induced graph can differ significantly in size for different S-boxes. Fig. 2.6 shows the
graph induced by PRESENT and R1. Compared to standard PRESENT, only 8 of the originally 27
key bits influence the Fourier coefficient.



52 CHAPTER 2. LINEAR CRYPTANALYSIS

Table 2.1: S-box representative for the equivalence class R1 that is used in our experi-
ments.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R1(x) 0 3 5 8 6 9 10 7 11 12 14 2 1 15 13 4

Resulting distributions and behavior over several rounds

In our experiments, various distributions occur. For some S-boxes, we observe the same behavior
as for standard PRESENT. Several other S-boxes exhibit unexpected distributions. We do not
want to cover every individual distribution in detail here, but plots for each can be found in the
appendix. Instead, we concentrate on R1 (see Table 2.1), which is the most interesting example
with respect to our initial question, i. e. to study the tails of the distribution. Fig. 2.7 shows the
resulting distribution of 1-bit Fourier coefficients for R1, see the bar plot. In Fig. 2.8 we plot the
CDF, which has the advantage that the scaling issue of Fig. 2.7 vanishes.

Clearly, the resulting distribution does not follow a normal distribution.
When observing such a different distribution to the expected normal distribution, the question

arises if Ohkuma’s initial observation on PRESENT’s behavior still is correct. That is, do the 1-bit
trails still dominate the distribution of the Fourier coefficient?

In order to investigate this, we computed the distribution for all 2-bit trails on top of the
1-bit trails. As can be seen in Fig. 2.7 the 1-bit trails still dominate the general shape of the
distribution. The 2-bit trails alone roughly follow a normal distribution with a relatively small
variance. In total, this has the effect that the 2-bit trails together with the 1-bit trails differ from
the 1-bit trails by changing the isolated discrete distribution into roughly bell-shaped parts. Thus,
we can still see a clear dominance of the 1-bit trails in the 2-bit trail distribution, which supports
the underlying assumption. In particular, the tail of the distribution is still far from following the
normal distribution.

Most importantly in our context of studying the tails of the distributions, Fig. 2.7 exhibits
two deviates “quite far” from the distribution’s mean. Indeed, those outliers are more than three
standard deviations away from the mean and have a joint probability of roughly 3 %. For the
standardly assumed normal distribution the corresponding probability to lie outside of 3 ·σ is
roughly a factor of 10 smaller, i. e. approximately 0.3 %, see the 68–95–99.7 rule. Moreover,
when assuming independent round keys (which implies a significantly smaller variance) and a
normal distribution, the fraction of keys with an absolute bias larger than 3 ·σ would be roughly
2−25, which is an underestimation by a factor of roughly 220.

Table 2.2 summarizes the probabilities of these outliers for ten and twelve rounds.
When increasing the number of rounds further, it can be expected that at some point the

dominance of the 1-bit trails vanishes, especially when the correlation of the 1-bit trails drops
below 2−n/2. However, for an increasing number of rounds, the 1-bit trails show a fascinating
behavior that we like to shortly elaborate below.

We normalize the Fourier coefficient by the distribution’s standard deviation. For an increasing
number of rounds, the above-mentioned outliers then converge to four standard deviations. Recall
that for R1, only 28 = 256 keys exhibit distinct Fourier coefficients, due to the fact that we only
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Figure 2.7: Distribution of Fourier coefficients for PRESENT with R1 S-box, reduced to 10 rounds.
Again, Fourier coefficients for the mask (e63, e42) are plotted on the x-axis, the corresponding number
of keys on the y-axis. Note that the plot for 2-bit trails is plotted against the right y axis.

Table 2.2: Probability of outliers deviating more than 3 ·σ, or Pr [|X |> 3 ·σ], for 1-bit
and 2-bit distributions. For X ∼N (0,σ), Pr [|X |> 3 ·σ] = 0.0027.

Rounds log2 (σ) log2 (σN ) Pr1bit Pr2bit log2 (PrN )

10 −16.50 −17.41 0.03130 0.0343 −25.59
12 −19.76 −21.01 0.03205 0.0342 −40.14

consider 1-bit trails. The outliers cover 16 out of the 256 possible keys, converging to the
following distribution Dlim, see Fig. 2.9:

cEk(α,γ)∼ Dlim











−4σ with probability 1
32

0 with probability 15
16

4σ with probability 1
32

.

Thus, this distribution fulfills Tchebysheff’s bound with equality:

256 · Pr
��

�
cEk(α,γ)

�

�≥ 4 ·σ�= 256 ·
�

1
32
+

1
32

�

= 256 · 1
42
= 16.

From our perspective of cipher designers, this is a worst-case behavior, as such a distribution not
only exhibits a wider variance, but also shows a maximal fraction of weak keys possible for a
given variance.

Although this resulting distribution is quite contrary to what we typically expect, we have
to keep in mind that identical round keys can per se be insecure due to slide [BW99], invariant
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Figure 2.9: Convergence distribution for PRESENT with R1 S-box and many rounds. Here, the
Fourier coefficient of (e63, e42) is normalized by the standard deviation σ (x-axis), while the corre-
sponding probability to obtain such a Fourier coefficient is denoted on the ordinate.

subspace [Lea+11], or non-linear invariant attacks [TLS16]. Therefore designs usually involve
round constants. The next section takes their influence into account.
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2.4 Linear Key Schedules

As mentioned above, in cipher design one typically makes use of the hypothesis of independent
round keys, which states that the analyzed cipher shows a similar behavior when instantiated
with the key schedule or with independent round keys. However, as discussed in the previous
section, this assumption might actually be wrong.

Here we show that for any linear key schedule together with randomly chosen round constants,
those distributions where the variance is significantly larger than for independent round keys
are rare exceptions. That is, we theoretically back-up the use of linear key schedules as a sound
design approach with respect to linear cryptanalysis. Interestingly, from a technical point of view,
this observation is almost trivial.

We consider a key-alternating cipher and analyze the effect of a key schedule that consists of a
linear function followed by the addition of a constant. Thus, the key schedule KS : F`2×

�

Fn
2

�r+1→
�

Fn
2

�r+1
is given as

KS(k, c) = KSc(k) = L(k) + c,

where L : F`2 →
�

Fn
2

�r+1
is a linear function, and c ∈ �Fn

2

�(r+1)
. The constant has the form

c = (c0, . . . , cr), where the ci ∈ Fn
2 are called the round constants.

Let us look at the key-alternating cipher r-KeyAlt using the key schedule KSc, that is
r-KeyAltKSc . First, we note that all constants from the same coset of the linear subspace U = L(F`2)
result in the same key schedule up to a permutation. Namely, given two constants c1 = L(k1)+ d
and c2 = L(k2) + d, it holds that KSc1

(k) = KSc2
(k+ k1 + k2). Accordingly, when analyzing the

squared Fourier coefficient over the keys, the choice of the constant c can be reduced to the
choice of a coset U + d.

Applying the linear hull theorem (see Proposition 2.3), we can compute the average squared
Fourier coefficient over the keys, that is the variance of the distribution for fixed input and output
masks (α,γ) as

Var(c) := 2−`
∑

k∈F`2

Û

r-KeyAltKSc
k (α,γ)2

= 22n−`∑

θ ,θ ′∈(Fn2)
r+1

θ0=θ
′
0=α

θr=θ ′r=γ

(−1)〈θ+θ ′,c〉CθCθ ′
∑

k

(−1)〈θ ,L(k)〉+〈θ ′,L(k)〉

= 22n−`∑

θ ,θ ′∈(Fn2)
r+1

θ0=θ
′
0=α

θr=θ ′r=γ

(−1)〈θ+θ ′,c〉CθCθ ′
∑

k

(−1)〈k,LT (θ )+LT(θ ′)〉

= 22n
∑

θ ,θ ′
θ0=θ

′
0=α

θr=θ ′r=γ
LT (θ )=LT (θ ′)

(−1)〈θ+θ ′,c〉CθCθ ′ .
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Next, we look at the average variance over all possible constants c. As discussed above, except
for a factor, this is actually the same as summing over one representative for each coset. We have

Ec (Var(c)) = 2−(r+1)n
∑

c∈(Fn
2)

r+1

Var(c)

= 22n−(r+1)n
∑

c

∑

θ ,θ ′
θ0=θ

′
0=α

θr=θ ′r=γ
LT (θ )=LT (θ ′)

(−1)〈θ+θ ′,c〉CθCθ ′

= 22n−(r+1)n
∑

θ ,θ ′
θ0=θ

′
0=α

θr=θ ′r=γ
LT (θ )=LT (θ ′)

CθCθ ′
∑

c

(−1)〈θ+θ ′,c〉

= 22n
∑

θ
θ0=α
θr=γ

C2
θ .

Thus, the average variance over all constants is the same as for independent round keys.
While this is actually quite clear, as in both cases we eventually sum over all possible 2(r+1)n-bit

round keys, this observation has an important implication for cipher design.
Having a key-alternating cipher, any linear key scheduling can be turned into a key schedule

which is on average as good as having independent round keys (in terms of the variance of
the distribution, and thus in terms of the fraction of weak keys): Simply choose random round
constants.

Known ciphers that actually deploy this approach (for different reasons) include the low-
latency cipher PRINCE [Bor+12] and the cipher LOWMC [Alb+15].

We conducted experiments on how the distributions vary for different choices of random
round constants. As we will see in the following, in this case not only the variance behaves as in
the independent round key setup, but the whole distribution does.

Experiments

We experimentally verified our results in the same setting as discussed in Section 2.3. Fig. 2.10
plots the resulting Fourier coefficient distribution.

The gray histogram in the background represents the distribution for independent random
round keys. It smoothly follows a normal distribution as expected. The dashed line in the
foreground depicts the distribution for identical round keys with an all-zero round constant.
This distribution is similar to the independent round key case, but exhibits a wider variance, as
already observed in [Abd+12] and discussed in Section 2.3. According to our results from above,
this behavior must be a clear outlier.

Indeed, all other lines correspond to identical round keys with a random round constant,
and all exhibit the same behavior following a normal distribution. While the plot only shows
256 different round constants, we conducted the same experiment for several thousand random
round constants, each resulting in the same behavior.
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Figure 2.10: Experimental distributions for PRESENT with different key schedules. The gray
histogram is for independent random round keys. The dashed line is for identical round keys and
an all-zero round constant. All other lines are for identical round keys and independent random
round constants.

2.5 Linear Approximations of Tweakable Block Ciphers

Tweakable block ciphers, introduced by Liskov et al. [LRW02], are an important cryptographic
primitive. Recall to the mind from Section 1.2.3 that the basic idea of a tweakable block cipher is
to use a public tweak as an additional input such that each tweak selects a different block cipher.
The adversary is allowed to query the tweakable block cipher under a message and tweak of his
choice. As motivated in Section 1.2.3, tweakable block ciphers have many important applications.

For a tweakable block cipher, the attacker is no longer restricted to linear approximations
from the plaintext to the ciphertext, but can also make use of the tweak. In this section, we
develop a formula for the linear hull of a tweakable block cipher and discuss its implications. We
again develop our formulas in a top-down manner starting with a generic tweakable block cipher
and then looking at the more special cases step by step.

A tweakable block cipher takes as input a key k, a tweak t, and a message x and computes
the ciphertext c. It can then be written as a function

F : Fn
2 × Fτ2 → Fn

2,

where m denotes the tweak size and, for simplicity, we hide the key-dependency in the function
F itself. This means that we do not explicitly mention the key-dependency of F in our notation.

As in the case of keys, real block ciphers usually do not have independent tweaks, but rather
have a tweak schedule generating the round tweaks. For the tweak schedule

TS : F`2→ Fτ2
we define

FTS : Fn
2 × F`2→ Fn

2

as
FTS(x , t) := F(x ,TS(t)).
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Analogous to Section 2.2, we define ETS
t (x) := FTS(x , t).

With the plaintext and the tweak, there are now two public inputs. Accordingly, an input
mask for a linear approximation now consists of two parts, (α,β), the plaintext mask α and the
tweak mask β . The main question is now how to express the Fourier coefficient of this linear
approximation, that is, how to compute ÔFTS((α,β),γ). While the most basic case of this linear
hull for tweakable block ciphers was already discussed in Eq. (2.3), one can observe the following
relation for a linear tweak schedule:

Proposition 2.4. With the notation from above, for a linear tweak schedule L, it holds that

cF L((α,β),γ) = 2`−τ
∑

θ∈Fτ2
LT (θ )=β

bF((α,θ ),γ).

◊

Proof. As we have used the notation of a block cipher in two variables already intensively in
Section 2.2, we can now reuse the results for tweakable ciphers. Accordingly, the basic ingredients
for the proof are already known from that section. We first apply Eq. (2.3), then Eq. (2.2) and
eventually use some basic summation techniques.

cF L((α,β),γ) =
∑

t∈F`2
(−1)〈β ,t〉

cE L
t (α,γ)

= 2−τ
∑

t∈F`2
(−1)〈β ,t〉∑

θ∈Fτ2
(−1)〈θ ,L(t)〉

bF((α,θ ),γ)

= 2−τ
∑

θ∈Fτ2

bF((α,θ ),γ)
∑

t∈F`2
(−1)〈β ,t〉+〈θ ,L(t)〉

= 2−τ
∑

θ∈Fτ2

bF((α,θ ),γ)
∑

t∈F`2
(−1)〈β+LT (θ ),t〉

= 2`−τ
∑

θ∈Fτ2
LT (θ )=β

bF((α,θ ),γ)

In the following, we will consider what we call tweak-alternating ciphers analogous to key-
alternating ciphers. Actually, all tweakable block ciphers we are aware of, including secondary
constructions, are of this form. A tweak-alternating cipher is defined as

r-TweakAlt(x , t) : Fn
2 ×

�

Fn
2

�r+1→ Fn
2

r-TweakAlt(x , t) := Hr−1(. . . H0(x + t0) + . . .) + tr

with Hi : Fn
2→ Fn

2. Analogous to above, the key-dependency is hidden in the round functions Hi .
Substituting this definition in Proposition 2.4 and using Lemma 2.6 directly gives the following

corollary:
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Corollary 2.1.

Ûr-TweakAltL((α,β),γ) = 2`−(r+1)n
∑

θ∈(Fn2)
r+1

LT (θ )=β

Ûr-TweakAlt((α,θ ),γ) = 2`+n
∑

θ∈(Fn2)
r+1

LT (θ )=β
θ0=α,θr=γ

r−1
∏

i=0

cHi
(θi ,θi+1)

◊

Note that we cannot yet write the last product as a trail correlation Cθ at this point because
the influence of the key is still hidden in the round functions Hi. However, looking at a cipher
that is not only tweak-alternating but also key-alternating, we can finally express the linear hull
in terms of the trail correlations.

Corollary 2.2. Let r-TweakAltL be a tweak-alternating cipher where the round keys k = (k0, . . . , kr)
are added in a key-alternating way. It holds that

Ûr-TweakAltL((α,β),γ) = 2`+n
∑

θ
LT (θ )=β
θ0=α,θr=γ

(−1)〈θ ,k〉Cθ .

◊

The crucial observation of Corollary 2.2 is that tweaking a block cipher with a linear tweak
schedule does not introduce any new linear trails. In other words, the tweakable block cipher’s
linear hulls consist of linear trails that already existed in the linear hulls for the non-tweakable
cipher. As explained in the introduction, this stands in contrast to differential trails, where it
might well be that adding a difference in the tweak leads to new differential characteristics with
a significantly higher probability than any differential characteristic for the non-tweaked version
of the cipher.

In particular, from a designer’s point of view, protecting a tweakable block cipher with a linear
tweak schedule against linear cryptanalysis is not more difficult than for non-tweaked ciphers.
In almost all settings, the best one can do as a designer, is to bound the correlation of single
trails. As those trails are valid both for the tweaked as for the non-tweaked version, no special
attention has to be paid to the additional freedom of the attacker. However, and this is important
to note, in a tweakable block cipher, the attacker is potentially able to collect more data than
in a traditional cipher, where the data complexity is clearly bounded by the block size. Thus,
while the bounds are valid for both scenarios, a tweakable block cipher might require stronger
bounds on the correlation of trails in order to argue its security. Again, the method of obtaining
this bound stays the same when moving from a non-tweaked to a tweakable block cipher. It is
an interesting question how the new degrees of freedom influence the linear hull in concrete
examples.

2.6 Conclusion and Further Research

In this chapter, we introduced and systemized the basic concepts of linear cryptanalysis. We also
provided new insights into the areas of key schedule design and tweakable block ciphers.
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While section Section 2.3 points out interesting examples and strange behavior of the resulting
distributions, we clearly lack insights on what causes those peculiarities exactly. We think that it
is an interesting and challenging task for future research to theoretically explain our observations.
In particular one might ask, why the S-box R1 shows such a peculiar behavior and if there is a
connection between the linear approximation table and the resulting distributions.

The theoretical and experimental results from Section 2.4 suggest that choosing random
round constants in a linear key schedule is a good design approach. Shortly after our results were
presented, Thomas Fuhr informed us that he found out that this observation actually holds for
all key schedules, not only for linear ones. This significantly increases the impact of this result.
For the proof, let the key schedule be KSc(k) = f (k) + c for any function f (k) : F`2→

�

Fn
2

�r+1
.

Then we get

Ec (Var(c)) = 2−(r+1)n−` ∑

c∈(Fn
2)

r+1

∑

k∈F`2

Û

r-KeyAltKSc
k (α,γ)2

= 22n−(r+1)n−`∑

c,k

∑

θ ,θ ′∈(Fn2)
r+1

θ0=θ
′
0=α

θr=θ ′r=γ

(−1)〈θ+θ ′, f (k)+c〉CθCθ ′

= 22n−(r+1)n−`∑

k,θ ,θ ′
CθCθ ′

∑

c′=c+ f (k)

(−1)〈θ+θ ′,c〉.

When c takes all possible constant values, so does c’=c+f(k), therefore the last sum in the
expression above equals 0 unless θ ,θ ′ and we get:

Ec (Var(c)) = 22n−(r+1)n−`∑

k,θ

C2
θ

∑

c′=c+ f (k)

(−1)0

= 22n−`∑

k,θ

C2
θ

= 22n
∑

θ

C2
θ .

Also, the results from Section 2.5 are valuable for the practical design of cryptographic
schemes. The fact that the tweak of a block cipher does not introduce new trails simplifies
the security analysis when designing a tweakable block cipher. For example, our results have
been directly applied in the design and analysis of the block ciphers SKINNY [Bei+16] and
CRAFT [Bei+19]. Nevertheless, the linear hull is composed differently than before. It might
therefore in some cases still enable the attacker to run a better linear attack than originally,
although the underlying linear trails have not changed. To this end, future work could consist
in experimentally analyzing and comparing the success of these attacks for concrete examples.
Another obvious possibility of future work is the analysis of tweakable block ciphers with other
than the basic linear and differential attacks. Here, very interesting results have been obtained
by Ankele et al. [Ank+19]. They showed that our results for linear cryptanalysis do not hold
for zero-correlation attacks [BR14] for block ciphers with a linear tweak schedule. That is, the
introduction of a tweak often enabled them to attack additional rounds of the cipher.
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3
Decomposing the ASASA Block Cipher

Construction

This chapter is based on the publication [Din+15], which is joint work with Itai Dinur, Orr
Dunkelmann, and Gregor Leander. All authors equally contributed. The main contributions of the
thesis author are in the integral attack (Section 3.3) and in the differential attack (Section 3.5).

3.1 Introduction

In this chapter we consider generic substitution permutation networks consisting of linear layers
interleaved with S-box layers. The linear layers considered are arbitrary linear bijections on the
full state, whereas the S-box layers partition the state into several fixed-size parts and apply a
non-linear permutation to each part in parallel. Special cases of this general setup include a large
variety of well-known block ciphers, most prominently the AES.

Such constructions are far from being new. The first construction, due to Patarin and Goubin,
is the ASAS construction, i.e., two rounds of a linear layer (A) followed by an S-box layer
(S) [PG97]. The scheme was later broken by Biham, exploiting the fact that the S-boxes were
chosen to be non-bijective [Bih00] (which allowed for a simple differential attack).

Later, Biryukov and Shamir explored the general construction, denoted by SASAS (three
S-box layers and two linear layers) [BS01; BS10]. In the context of this system, the cryptanalytic
task is to recover the actual specification of the secret S-boxes and linear layers, given only
black-box access to the SP-network and its inverse. The attack is a generalization of the integral
attack [KW02] (a.k.a. SQUARE attack) which was already shortly introduced in Section 1.3.4
and originally proposed by Knudsen as an attack on the block cipher SQUARE [DKR97]. It is thus
a structural attack in nature, exploiting the fact that the SASAS construction is composed of only

63
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three permutation layers over a smaller alphabet interleaved with linear layers, but ignoring the
actual specification of these layers.

Besides the very general results of [BS01], several papers have focused on special cases of the
above scenario where more information about the internal structure is known. Most prominently,
a case that has received considerable attention is where only the S-boxes are unknown but
the specification of the linear layers is completely revealed to the attacker (see e.g. [Bor+13;
Tie+15]).

Here we focus not on a special case of the most general setting but rather on the natural
complement of the SASAS structure, namely ASASA. That is, we consider an n-bit SP-network
consisting of three linear (or affine) layers, interleaved with two S-box layers, where each S-box
is a permutation over b bits. Our main motivation for analyzing this particular setup was given by
a proposal from ASIACRYPT 2014 [BBK14] which constructed block ciphers with the additional
property of having memory-hard white-box implementations (see [BBK14] for details). Such
a block cipher is represented as a black-box (or a few black-boxes) describing how each input
is mapped to an output. The goal of the adversary is to find a succinct representation of the
given black-box mapping, which in our case implies recovering (or decomposing) the actual
specifications of the affine and S-box layers.

Since the security of generic ASASA constructions was not previously analyzed, the authors
of [BBK14] supported their designs by claiming that they resist standard attacks (such as dif-
ferential and integral cryptanalysis, and boomerang attacks), essentially due to the external
affine layers that hide the internal structure of the S-boxes. The best generic attack on the
ASASA construction proposed in [BBK14] is a variant of the attack by Biryukov and Shamir
on the SASAS structure, and is extremely inefficient, having a time complexity of 2m(n−m). For
example, [BBK14] claims that an ASASA scheme with a block size of n = 16 and an S-box size of
m= 8 provides security of 28(16−8) = 264.

It should be noted that [BBK14] also uses a special case of the ASASA structure with expanding
S-boxes to construct strong white-box cryptography (again we refer to the paper for details) and
that this part has been later broken [GPT15] by algebraic cryptanalysis. However, those attacks
do not seem to carry over to the general ASASA case that we consider here. Furthermore, other
attacks on the ASASA constructions have been found independently from our work by Minaud
et al. [Min+15; Min+18]. This also includes an attack on the white-box scheme from [BBK14],
that we are analyzing in this chapter.

Our Contribution

In this chapter, we describe several attacks that decompose the ASASA structure significantly
faster than the 2m(n−m) complexity of [BBK14]. Our most efficient attacks have time complexity
of roughly n · 23n/2, and when applied to the specific instances proposed in [BBK14], they have
practical complexities. For example, the ASASA scheme with n = 16 and m = 8, which was
claimed to provide security of 264, can in fact be broken in 16 · 2(3·16)/2 = 228 time.

Table 3.1 shows the effectiveness of our attacks when applied to the instances given in
[BBK14] in detail.

More precisely, we present and analyze three different attack strategies. The first attack
follows the general idea of an integral attack and is thus a structural attack. The second and third
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Table 3.1: Attack complexities for the ASASA instances suggested in [BBK14].

ASASA instance Security claim [BBK14] Our attack complexity (Section 3.3.3)
2× 8-bit 64 bits 28 bits
2× 10-bit 100 bits 35 bits
3× 8-bit 128 bits 41 bits

attacks, on the other hand, are statistical attacks: the second attack is based on a boomerang
attack, making use of boomerang distinguishers in the known-plaintext setting. The authors
of [BBK14] were aware of the existence of such boomerang distinguishers, but left the possibility
of exploiting them efficiently in an attack as an open problem, which we address. Finally, the third
attack is a variant of a differential attack making use of non-random behavior of the differential
distribution table. The running time of the integral attack is roughly n · 23n/2, the boomerang
has an attack complexity of roughly 23n/2+3m/2 and the differential attack a complexity of 22n.

The integral attack is generally the most efficient attack and should be used whenever possible.
However, this attack is applicable with the claimed complexity only to ASASA constructions in
which m >

p
n. In cases where m ≤ pn, the boomerang attack is generally the most efficient

attack, as its time complexity is at most 23n/2+3
p

n/2. However, the success and efficiency of the
integral and boomerang attacks are based on some assumptions on ASASA instances in which the
linear and S-box layers are chosen at random. These assumptions seem rather natural and were
verified whenever possible on random instances of ASASA with small state sizes. Nevertheless, it
is clear that our assumptions do not hold for all ASASA instances, and in such cases (which seem
rather sparse), one can try to apply the differential attack which has a higher time complexity of
22n, but is based on different assumptions. Finally, we note that we focus on ASASA constructions
in which all S-boxes have the same size, but our algorithms easily generalize to schemes built
with different S-box sizes.

The chapter is organized as follows. After fixing the notation and some preliminary results
outlining the general attack vector in Section 3.2, we present our integral attack in Section 3.3.
The boomerang attack is given in Section 3.4. Finally, the differential attack is described in
Section 3.5.

3.2 Preliminaries

Let
F : Fn

2→ Fn
2

be the ASASA construction with t S-boxes on m bits each (n = tm). More precisely, F is
constructed as

F = L2 ◦ S1 ◦ L1 ◦ S0 ◦ L0
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where Li are linear bijections on Fn
2 and Si consist of parallel applications of t m-bit S-boxes.

That is,
Si(x1, . . . , x t) =

�

S(1)i (x1), . . . , S(t)i (x t)
�

with x i ∈ Fm
2

If we can recover the first linear layer, we are left with the SASA construction that can be
decomposed very efficiently as shown in [BS10]. Thus, the aim of our attacks is to recover L0 (or
L2 by considering the inverse of F). For this, first, note that it is impossible – and unnecessary – to
recover L0 exactly. This is due to the fact that a given ASASA instance is not uniquely determined
by F . More precisely, replacing L0 by

L′0 =









T1
T2
...

Tt









◦ L0

and S(i)0 by

S′(i)0 = S(i)0 ◦ T−1
i ,

where Ti : Fm
2 → Fm

2 are linear bijections, results in the same ASASA instance F . This observation
motivates the following definition.

Definition 3.1. Two linear bijections L and L′ on Fn
2 are ASASA-equivalent if there exist linear

bijections Ti on Fm
2 such that

L′ =









T1
T2
...

Tt









◦ L

◊

For recovering L0 (up to equivalence) we are actually going to recover the subspaces

Vi = L−1
0 (Ui)

where
Ui = {(x1, x2, . . . , xk) | x j ∈ Fm

2 and x j = 0 if j 6= i}.
As formalized in the proposition below, given the set of Vi ’s basically determines L0 up to
(unavoidable) equivalences.

Proposition 3.1. Given t subspaces Vi of dimension m it holds that any linear bijection L : Fn
2→ Fn

2
such that L(Vi) = Ui with Ui as above is ASASA equivalent to L0. ◊

Proof. We consider T = L ◦ L−1
0 and observe that T maps inputs from Ui to Ui since

T (Ui) = L(L−1
0 (Ui)) = L(Vi) = Ui .
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As a result, T represents t parallel linear bijections Ti over Fm
2 and L is ASASA equivalent to L0:

L ◦ L−1
0 = T ⇒ L = T ◦ L0

Thus, after recovering the spaces Vi we can set up linear equations for L0 and any bijective
linear mapping fulfilling all those linear equations will be a valid solution for L0.

More precisely, L0 can be written as

L0 =











L(1,1)
0 L(1,2)

0 . . . L(1,t)
0

L(2,1)
0 L(2,2)

0 . . . L(2,t)
0

...
...

. . .
...

L(t,1)0 L(t,2)0 . . . L(t,t)0











where L(i, j)0 are m×m submatrices over F2. Then, for any element (x1, . . . , x t) ∈ Vi ⊆ (Fm
2 )

t we
obtain m equations

L( j,1)0 x1 + L( j,2)0 x2 + . . .+ L( j,t)0 x t = 0 ∀ j ∈ {1, . . . , t}, j 6= i.

Choosing m linearly independent vectors from every Vi leads to a system of

t(t − 1)m2 = t2m2 − tm2

linearly independent equations over F2 with t2m2 unknowns for L0. This system of equations
has 2tm2

solutions and we know that the invertible solutions are exactly the linear bijections that
are ASASA equivalent to L0. The number of such linear bijections for a given L0 is N t

m where

Nm =
m−1
∏

i=0

(2m − 2i) = 2m2
m
∏

i=1

(1− 2−i) = 2m2
pm

is the number of invertible m×m matrices and pm is the probability that a randomly chosen
m×m matrix is invertible. Accordingly, the fraction of invertible solutions for the system of linear
equations is

2tm2
pt

m

2tm2 = pt
m.

Thus, if we know the set of Vi ’s for an ASASA construction with t m-bit S-boxes, we try out pt
m

solutions on average. Since pm > 2−1.792, it holds that

pt
m > 2−1.792t

when considering constructions with up to tS-boxes. This step is completely separated from the
attacks that find the set of Vi ’s. Accordingly, the complexities do not multiply and as we will see
this step does not dominate the overall attack complexity.

Note that it is sufficient to know Vπ(i) for an unknown permutation π. The solution will then
be a matrix which is ASASA equivalent to L0 with its rows permuted according to π. This is also
a valid solution as additionally permuting the S-boxes in S1 and the columns in L1 results in the
same ASASA instance.
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3.3 Integral Attack

In this section, we describe our integral attack on the ASASA construction. For integral attacks,
also see Section 1.3.4. We start by describing a basic integral attack that recovers the subspaces
Vi for i ∈ {1, . . . , t} in time complexity of about n ·22n. Finally, we optimize the attack and reduce
its time complexity to about n · 23n/2.

The analysis of the attack assumes that the parameters of the ASASA construction satisfy
m > t, or equivalently m >

p
n (and t <

p
n). Moreover, it assumes that the algebraic degree

of the S-box layers S0 and S1 and their inverses is the maximal possible value of m− 1.1 We
note that if the S-boxes are selected at random, then this will be the case with high probability.
Additionally, the analysis is based on more subtle and heuristic (but natural) assumptions that
we specify later in this section.

The starting point of the attack is the following integral property, which was used to devise a
related attack in the original ASASA paper [BBK14]. We begin with a short definition, followed
by the property and its proof.

Definition 3.2. Given a set R and x ∈ Fn
2, define R+ x := {x + y | y ∈ R} ◊

Proposition 3.2. Let x ∈ Fn
2 and i ∈ {1, . . . , t}, then

∑

y∈Vi

F(x + y) = 0. ◊

Similar properties have been used before in integral and related attacks, most notably in the
cryptanalysis of the SASAS structure [BS10]. It is possible to prove this property combinatorially
(as done in [BS10]), but here we give an algebraic proof, as it is more relevant to the rest of this
section. The proof is based on the use of high-order derivatives (see [Knu95; Lai94] for details
about high-order differential cryptanalysis).

Proof. Due to the linearity of L0, we have L0(x + Vi) = L0(x) + L0(Vi) = L0(x) + Ui. Namely,
S-box i is active in S0 (its input attains all 2m possible values), while all other S-boxes are inactive,
as their inputs are fixed to the corresponding m bits of L0(x). Since S(i)0 is a permutation, then
S0(L0(x)+Ui) = S0(L0(x))+Ui , which is an affine subspace of dimension m. We are interested in
computing the sum of outputs (over F2) of this subspace through the remaining layers L2 ◦S1 ◦ L1,
which is equivalent to evaluating an m-order derivative of these layers on their n output bits.
Therefore, in order to show that

∑

y∈Vi
F(x + y) = 0, it is sufficient to show that the algebraic

degree of every output bit of L2 ◦ S1 ◦ L1 is less than m, which implies that all of the m-order
derivatives are zero.

All the m-bit S-boxes in the scheme (and in S1) are bijective, and therefore, their algebraic
degree is at most m− 1, implying that the degree of S1 is upper bounded by m− 1. Since L1 and
L2 are affine, the degree of L2 ◦ S1 ◦ L1 is less than m, proving the claim.

In the attack, we sum over the encryption values of larger affine subspaces and use the
following (more general) property.

Proposition 3.3. Let x ∈ Fn
2, i ∈ {1, . . . , t}, and let R be a linear subspace such that Vi ⊆ R , then

∑

y∈R
F(x + y) = 0. ◊

1This condition can be somewhat relaxed, but we do not go into details for the sake of simplicity.
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Proof. Write R as a direct sum of orthogonal subspaces R= Vi ⊕ R′. Then
∑

y∈R

F(x ⊕ y) =
∑

y1∈R′,y2∈Vi

F(x + y1 + y2) =
∑

y1∈R′
(
∑

y2∈Vi

F((x + y1) + y2)) = 0,

using the previous property.

When we select at random a linear subspace R of a fixed dimension d such that m≤ d < n,
Proposition 3.3 implies that we can potentially distinguish between the case Vi ⊆ R (where
∑

y∈R F(y) = 0), and the case Vi * R (assuming
∑

y∈R F(y) 6= 0). Distinguishing between these
two cases is very useful, as it narrows down the search for Vi from the full n-dimensional space
to the smaller space R of dimension d < n. Assuming that we find two subspaces R1 6= R2 such
that Vi ⊆ R1 and Vi ⊆ R2, then Vi ⊆ R1

⋂

R2, which further narrows down the search for Vi. We
then continue the search until we find sufficiently many subspaces such that their intersection
gives the m-dimensional subspace Vi . This gives rise to the attack given in Algorithm 1.

The success and complexity of the attack are determined by the two quantities defined below.

Definition 3.3. Let R be a subspace chosen at random by Algorithm 1 and fix i ∈ {1, . . . , t}. The
covering probability is defined as

pc := Pr[Vi ⊆ R].

◊

Definition 3.4. Let R be a subspace chosen at random by Algorithm 1. The false alarm probability
is defined as

p f := Pr[
∑

y∈R

F(y) = 0 | Vi * R for each i ∈ {1, . . . , t}].

◊

Our analysis is based on the two assumptions below. The validity of these assumptions
depends on the concrete ASASA scheme and we cannot prove them in general. The assumptions
are discussed at the end of Section 3.3.2.

Assumption 3.1. There are no false alarms in Line 17 of Algorithm 1. Namely, if s′ = 0, then there
exists Vi such that Vi ⊆ R′. ◊

This assumption guarantees that if the algorithm halts, it returns the correct answer. This
assumption can be somewhat relaxed, as noted at the end of Section 3.3.2.

Assumption 3.2. For d = n − t, the false alarm probability in Line 7 of Algorithm 1 satisfies
p f < 2−n/2. Namely,

Pr[
∑

y∈R

F(y) = 0 | Vi * R for each i ∈ {1, . . . , t}]< 2−n/2.

◊

Note that if
∑

y∈R F(y) is uniformly distributed when Vi * R for each i ∈ {1, . . . , t}, then

p f = 2−n. Assumption 3.2 is weaker and only requires p f < 2−n/2.
The analysis of the algorithm is rather involved, and we start with a high-level description.
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Algorithm 1: Integral Attack
Input : An integer d
Output : Subspaces Vi for i ∈ 1, . . . , t

1 begin
// The set of candidate subspaces

2 Candidates←− ;;
3 Found ←− 0;
4 while Found < t do
5 Pick a subspace R of dimension d at random;
6 s←− ∑

y∈R
F(y);

7 if s = 0 then
// Iterate over found subspaces

8 for j← 1 to size(Candidates) do
9 R′←− R

⋂

Candidates[ j];
10 if R′ = Candidates[ j] then

// R contains a previously found subspace
11 go to 4;
12 end
13 if dim(R′)< m then

// The dimension of R′ is too small
14 go to 8;
15 end
16 s′←− ∑

y∈R′
F(y);

17 if s′ = 0 then
// Narrow down subspace

18 Candidates[ j]← R′;
19 if dim(R′) = m then

// Found a subspace of dimension m
20 VFound ← R′;
21 Found ← Found + 1;
22 end
23 go to 4;
24 end
25 end

// Store R, as it does not narrow down any previously
found subspace

26 NewIndex ← size(Candidates) + 1;
27 Candidates[NewIndex]← R;
28 end
29 end
30 end
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3.3.1 Analysis Overview

We estimate the time complexity of the algorithm based on several propositions which are stated
below and proved in Section 3.3.2.

Proposition 3.4. Let R be an affine subspace of dimension d > m chosen at random by Algorithm 1,
then

pc ≥ 2m(d−n) · (1− 2m−d−1)≈ 2m(d−n).

◊

Proposition 3.5. Let e be the number of subspaces R that Algorithm 1 considers before halting, then

e ≈ n · p−1
c .

◊

Proposition 3.6. The expected total time complexity of Algorithm 1 is about

(2d · e) · (1+ e · p2
f ).

◊

Plugging the value of pc obtained from Proposition 3.4 into the value of e, obtained from
Proposition 3.5, we get

e ≈ n · p−1
c ≈ n · 2m(n−d).

Plugging this value of e into the total time complexity of the attack obtained from Proposition 3.6,
we can conclude that it is preferable to select the largest dimension d which does not significantly
affect p f . However, according to the upper-bound of Proposition 3.7, we cannot take d too large,
as this will result in p f = 1, causing the algorithm to fail (or to be extremely inefficient). We note
that unlike the previous propositions, the upper bound on d is not directly used in the complexity
analysis of the attack, but rather restricts the possible choice of parameters.

Proposition 3.7. Assume that the parameters of the ASASA construction satisfy m> t and d > n− t,
then p f = 1. ◊

Since we require p f < 1, we select the maximal possible value for which this may occur,
namely d = n− t. According to Proposition 3.4,

pc ≈ 2m(d−n) = 2−mt = 2−n.

Plugging the value pc = 2−n into the expression obtained in Proposition 3.5, we get

e ≈ n · p−1
c ≈ n · 2n.

The total time complexity of the attack is estimated in Proposition 3.6 as (2d · e) · (1+ e · p2
f ),

where e ≈ n · 2n. According to Assumption 3.2, p f < 2−n/2, implying that 1+ e · p2
f ≈ 1 and the

time complexity of the algorithm is about

2d · e ≈ n · 22n,

since d = n− t ≈ n when t <
p

n.
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3.3.2 Detailed Analysis

In this section, we prove Propositions 3.4 to 3.7 and consider Assumptions 3.1 and 3.2.

Proofs of Propositions 3.4 to 3.7

Proof of Proposition 3.4. Let (a1, . . . , am) be an arbitrary basis of Vi. We have Vi ⊆ R if and only
if a j ∈ R for j ∈ {1, . . . , m}. Since R is a random d-dimensional subspace, then Pr[a1 ∈ R] =
2d−n. Next, since a1 and a2 are linearly independent Pr[a2 ∈ R | a1 ∈ R] = 2d−n − 2−n, and
Pr[{a1, a2} ⊆ R] = Pr[a1 ∈ R] · Pr[a2 ∈ R | a1 ∈ R] = 2d−n · (2d−n − 2−n).

In general, for j > 1

Pr[{a1, . . . , a j} ⊆ R | {a1, . . . , a j−1} ⊆ R] = 2d−n − 2 j−2−n

and therefore

pc = Pr[{a1, . . . , am} ⊆ R] =

Pr[{a1, . . . , am} ⊆ R | {a1, . . . , am−1} ⊆ R] · Pr[{a1, . . . , am−1} ⊆ R] =

Pr[a1 ∈ R] ·
m
∏

j=2

Pr[{a1, . . . , a j} ⊆ R | {a1, . . . , a j−1} ⊆ R]>

m
∏

j=1

(2d−n − 2 j−2−n) =

(2d−n)m ·
m
∏

j=1

(1− 2 j−2−d)≥

2m(d−n) · (1− 2m−d−1),

where the last inequality can be easily proved by induction.

Proof of Proposition 3.5. We estimate e as follows. Fix i ∈ {1, . . . , t} and let R1, . . . , R` be `
random d-dimensional subspaces under the restriction that Vi ⊆ R j for each j ∈ {1, . . . ,`}. Since
each subspace R j is of dimension n − t, it is easy to see that for ` = n/t = m, with good

probability,
⋂̀

j=1
R j = Vi (as every subspace in the sequence is expected to reduce the dimension of

the intersection by about t, until the intersection is equal to Vi). Therefore, after about m · p−1
c

choices of random subsets, we expect that Vi will be recovered in Line 20. Note that this assumes
that there are no false alarms in Line 17, as such false alarms will disrupt the sequence

⋂`
j=1 R j ,

stored in memory.2 In order to recover all Vi for i ∈ {1, . . . , t}, we need to try about

e ≈ log(t) ·m · p−1
c < n · p−1

c

random subsets of dimension d = n− t.
2We also assume that we did not select R such that Vi ⊆ R and Vj ⊆ R for i 6= j. This is event is very unlikely and

can be ignored.
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Proof of Proposition 3.6. The time complexity of summing over all the d-dimensional subspaces
in Line 6 of the attack is e · 2d . Moreover, there are additional operations on the set of candidates
that we need to take into account. At the end of the attack, the size of the stored subspaces
in Candidates depends on p f and is about e · p f , in addition to the t subspaces which are not
false alarms. Therefore, at the end of the attack size(Candidates) ≈ t + e · p f ≈ e · p f . Every
candidate subspace R is intersected with all previous subspaces in Candidates, and the sum over
the intersection R′ is computed. In total, the amount of additional work for the candidates is
dominated by Line 16 and is about (e · p f )2 · 2d . The total time complexity of the attack is about

e · 2d + (e · p f )
2 · 2d = (2d · e) · (1+ e · p2

f ).

Proof of Proposition 3.7. Assume that d > n− t, and we want to show that p f = 1. Since R is a
linear subspace, the expression

∑

y∈R F(y) evaluates a derivative of F of order higher than n−t for
each of the n output bits. Therefore, it is sufficient to show that deg(F)< n− t+1, which implies
that the outcome of the derivation is zero regardless of R. In other words, Pr[

∑

y∈R F(y) = 0] = 1,
and this holds in particular if Vi * R for each i ∈ {1, . . . , t}, implying p f = 1.

The fact that deg(F) < n − t + 1 is derived from a theorem due to Boura and Canteaut
in [BC13] (stated below in a slightly modified form).

Theorem 3.1 ([BC13]). Let H be a permutation of Fn
2 and let G be a function from Fn

2 to Fn
2. Then

we have

deg(G ◦H)< n− bn− 1− deg(G)
deg(H−1)

c.

◊
In our case, let H = L1 ◦ S0 ◦ L0 and G = L2 ◦ S1, then deg(G) = deg(H−1) = m − 1 (as

assumed at the beginning of the section). Therefore,

deg(F)< n− bn− 1−m− 1
m− 1

c= n− bmt −m
m− 1

c=

n− b(m− 1)(t − 1) + (t − 1)
m− 1

c=

n− (t − 1) + b t − 1
m− 1

c= n− t + 1,

as t < m.

Assumptions on False Alarms

Assumption 3.1 states that false alarms do not occur in Line 17 of Algorithm 1. A false alarm in
Line 17 occurs in case there are false alarms for both R and the smaller subspace R′ ⊆ R. This
event is significantly less likely than p f , but may occur nevertheless. Therefore, we relax the
assumption and slightly modify the algorithm to deal with such false alarms: in case s′ = 0 in
Line 17, before updating the candidate list we add an additional filtering to test the condition
Vi ⊆ R′. This is done by selecting at random a vector x which is not in R′, and testing whether
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∑

y∈span({x}⋃R′) F(y) = 0. The additional filtering will not result in deterioration in performance
(again, assuming false alarms in Line 17 do not occur often).

Recall that in the attack we evaluate arbitrary d-order derivatives of F , and therefore the
value of p f in Assumption 3.2 depends on the density of monomials of degree (at least) d in its
algebraic normal form. We select the maximal possible value d = n− t for which it is theoretically
possible that deg(F)≤ d, or p f < 1 (and in particular, we assume that p f < 2−n/2). Indeed, as
shown above, the bound due to [BC13] implies that deg(F)< n− t + 1, but does not rule out
the possibility that deg(F) = n− t. Moreover, the trivial bound on the algebraic degree of F
gives deg(S0) · deg(S1) = (m− 1) · (m− 1) ≥ (pn)2 = n > n− t, and does not contradict the
possibility that deg(F) = n− t.

Our experiments of toy ASASA variants confirm our assumption about p f . In fact, for
ASASA schemes with 2 or 3 S-boxes,

∑

y∈R F(y) was almost uniformly distributed when Vi *
R for each i ∈ {1, . . . , t}, namely p f ≈ 2−n.

3.3.3 Optimized Integral Attack

The basic integral attack sums the outputs of e ≈ n ·2n subspaces, each containing 2d = 2n−t ≈ 2n

elements. Therefore, its total time complexity is about n · 22n. The complexity of summing over
the subspaces can be significantly reduced if we choose correlated subspaces instead of picking
them at random. More specifically, as we show next, it is possible to sum over the outputs of 2n/2

carefully chosen subspaces in about 2n time. This reduces the complexity of the attack to about
n · 23n/2 under the assumption that p f < 2−3n/4, which is stronger than the assumption made in
the basic attack.

One way to optimize the summation process is to divide the n-bit block into two equal halves
(assuming n is even). First, for each value of the n/2 most significant bits (MSBs), compute the
sums over the outputs of all possible 2n/2 values of the n/2 least significant bits (LSBs). This
gives an array of partial sums of size 2n/2 which is computed in time 2n. Next, choose a subspace
of dimension d − n/2 from the n/2 MSBs, and sum over the outputs of the bigger subspace of
dimension d that includes the n/2 LSBs. Using the recomputed array, this can be done in time
2d−n/2. Repeating the process for 2n/2 subspaces of dimension 2d−n/2, the sums over the outputs
of all of them can be computed in about 2d time using the precomputed array. In total, we sum
over the outputs of 2n/2 subspaces in about 2n time, as claimed.

In general, instead of dividing the bits of the block into two halves, we can work with two
orthogonal subspaces of dimension n/2. The pseudocode of the general procedure is given in
Algorithm 2.

We consider slightly modify Definitions 3.3 and 3.4 which refer to subspaces selected according
to the procedure of Algorithm 2. The analysis at the end of this section shows that the covering
probability of the algorithm pc remains roughly 2−n, and thus the attack still requires evaluating
e ≈ n · 2n subspaces. The sums over these subspaces are computed by running the procedure of
Algorithm 2 about n · 2n/2 times.3

3Note that, in order to recover the final subspaces Vi , the base n/2-dimensional subspace T in the full attack
must be randomized frequently enough (as done in our algorithm), since the intersection of d-dimensional subspaces
produced with the same choice of T will always contain T .
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Algorithm 2: Efficient Sum over Subspaces
Input : An integer d > n/2
Output : Sums on outputs of 2n/2 d-dimensional subspaces s j

1 begin
2 Pick a subspace T of dimension n/2 at random;

// Array of 2n/2 auxiliary sums
3 A←− A[1, . . . , 2n/2];

// Iterate over the n/2-dimensional subspace orthogonal to T
4 for each x ∈ T⊥ do

// A is accessed using an n/2-bit representation of x
5 A[x]← ∑

y∈T
F(x + y);

6 end
7 for j← 1 to 2n/2 do
8 Pick a subspace T ′ ⊂ T⊥ of dimension d − n/2 at random;
9 s j ←

∑

x∈T ′
A[x];

10 end
11 end

Recall from Proposition 3.6 that the work spent on false alarms is about 2d ·(e·p f )2 ≈ 23n·(p f )2.
Therefore, in order to run in the claimed time complexity of about n ·23n/2, we need to strengthen
Assumption 3.2 and assume that the false alarm probability satisfies p f < 2−3n/4 (and this
assumption was supported by our experiments, as noted above).

Analysis of Covering Probability

Fix a subspace T of dimension n/2 and write Vi =Wi ⊕W ′
i , where Wi ⊆ T and W ′

i ⊆ T⊥. For a
random subspace T ′ ⊆ T⊥ of dimension d − n/2, Vi ⊆ T ⊕ T ′ if and only if W ′

i ⊆ T ′. In order to
estimate pc , we distinguish between two cases according to the S-box size m: either m = n/2, or
m≤ n/3. If m≤ n/3, the worst (and likely) case for our attack is dim(W ′

i ) = dim(Vi) = m. In
this case, (reusing the analysis of Proposition 3.4) pc remains about 2−n for our choice of T ′ of
dimension d ′ = n/2− t (up to the small multiplicative factor 1− 2m−d ′−1 = 1− 2m+t−n/2−1 ≈ 1.

For m= n/2 the previous worst-case analysis assumes dim(W ′
i ) = dim(Vi) = n/2 and gives

pc = 0, as we need to cover the n/2-dimensional subspace W ′
i with a smaller subspace T ′

of dimension n/2 − 2. It is possible to show that in this case pc remains roughly 2−n using
the randomness in the choice of T . However, it is somewhat simpler to slightly tweak the
algorithm, and use subspaces T of dimension n/2− 3, implying dim(T⊥) = n/2+ 3 and d ′ =
dim(T ′) = d − (n/2 − 3) = n/2 + 1. Therefore, even if dim(W ′

i ) = dim(Vi) = n/2, then
pc ≥ 2−n · (1−2m−d ′−1) = 2−n · (1−2−2)≈ 2−n. The tweaked algorithm sums over 2n/2 subspaces
of dimension 2n−2 in time 2n/2 · 2d ′ = 2n+1 which is slower compared to what is claimed, but
only by a small multiplicative factor of 2.
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3.4 Boomerang Attack

3.4.1 Distinguishing Boomerang Attack on the Core S1 ◦ L1 ◦ S0

The boomerang attack [Wag99], introduced by Wagner in 1999, allows for breaking a cipher
with short high-probability differentials (rather than one long low-probability differential), also
see Section 1.3.4. When we consider the core of the ASASA construction, the S1 ◦ L1 ◦ S0 layer, it
can be easily identified that very good short differentials exist for the S0 and the S1 ◦ L1 layers.4

For each such layer, it is easy to see that many single active S-box differentials exist.
Consider the first layer S0, it is easy to see that one can pick any of the t ·(2m−1) possible input

differences composed of a single active S-box, and obtain differentials (which in this degenerate
case correspond to differential characteristics), each with probability of at least 2 · 2−m. Similarly,
one can find t · (2m − 1) possible output differences composed of a single active S-box in the
second layer. Again, each such differential has a probability of at least 2 · 2−m.

One advantage of the boomerang attack is that once the input difference to the first layer is
fixed, or once the output difference of the second layer is fixed, one can use multiple differentials
(see [BDK01] for the full analysis). So a simple boomerang distinguisher for the core of S1◦ L1◦S0
can be easily constructed as follows:

• Pick an input difference α with one active S-box,

• Pick an output difference δ with one active S-box,

• Generate c ·22m boomerang quartets (pick a pair with input difference α, encrypt, XOR each
ciphertext with δ, and decrypt the newly obtained ciphertexts), and expect a boomerang
quartet.

We note that for a random permutation, in c ·22m boomerang quartets, we expect cd ·22m ·2−mt

quartets such that the newly decrypted plaintexts satisfy that their difference is α (as this is an
mt-bit condition). For the core we discuss the probability of a quartet to become a right one is:

pboomerang =
∑

β ,γ

Pr 2[α
S0−→ β] · Pr 2[γ

S1◦L1−−−→ δ]

=

 

∑

β

Pr 2[α
S0−→ β]

!

︸ ︷︷ ︸

(∗)

·
�

∑

γ

Pr 2[γ
S1◦L1−−−→ δ]

�

︸ ︷︷ ︸

(∗∗)
≥ 2−m+1 · 2−m+1 = 2−2m+2

The last transition follows the fact that the sums (∗) and (∗∗), reach minimal value for S-boxes
which are 2-differentially uniform, i. e. for any given non-zero input (or output) difference to
(from) the S-box, there are exactly 2m−1 possible output (input) differences, each with probability
2 · 2−m.

4We note that we can decompose the core into L1 ◦ S0 and S1, and obtain essentially the same results.



3.4. BOOMERANG ATTACK 77

Hence, for c = 1/4, we expect one right boomerang quartet for the core S1 ◦ L1 ◦S0. Moreover,
as the actual number of right quartets follows a Poisson distribution, for c = 1/4, we indeed
expect to get (at least) one quartet with probability of 63%. Obviously, increasing c allows a
better success rate.

To conclude, there are several (actually, (t · (2m − 1))2) boomerang distinguishers for the
core. Each such distinguisher can be applied using 1/4 · 22m quartets, i. e. 22m adaptive chosen-
plaintexts and ciphertexts. The identification of the right quartets is immediate, and the memory
complexity is restricted to storing a single quartet each time.

3.4.2 Extending the Attack to L2 ◦ S1 ◦ L1 ◦ S0

The main problem that prevents a simple adaptation of the above attack to two full layers is the
fact that due to the L2 layer, we cannot identify by which δ we need to XOR the ciphertexts to
obtain the new ciphertexts. This prevents an adaptive chosen-plaintext and ciphertext attack,
and forces us to use a chosen-plaintext attack (as we can still control the α difference). To this
end, we just transform the above boomerang attack into an amplified boomerang attack [KKS01]
(or the rectangle attack [BDK01]).

The amplified boomerang attack starts with pairs of plaintexts (mi , m′i = mi +α), encrypted
into (ci , c′i). If the amplified boomerang condition holds for some quartet ((mi , m′i), (m j , m′j)),
then we know that the partial encryption of mi and m j through S1 ◦ L1 ◦ S0 have difference δ (of
one active S-box), and that the same holds for m′i , m′j . Unlike the case of the boomerang attack
on the core, we do not have the differences mi +m j and m′i +m′j exposed to us as δ. However,
we know that L2 is a linear transformation, namely,

S1(L1(S0(mi))) + S1(L1(S0(m j))) = δ⇒ L2(S1(L1(S0(mi)))) + L2(S1(L1(S0(m j)))) = L2(δ)

⇒ ci + c j = L2(δ)

S1(L1(S0(m
′
i))) + S1(L1(S0(m

′
j))) = δ⇒ L2(S1(L1(S0(m

′
i)))) + L2(S1(L1(S0(m

′
j)))) = L2(δ)

⇒ c′i + c′j = L2(δ)

⇒ ci + c j = c′i + c′j ⇒ ci + c′i = c j + c′j

The result is an amplified boomerang attack which takes c ·2n/2+m pairs with input difference
α, and searches for the right quartets, which can be identified by the fact that for right quartets,
the above condition (which can be checked by analyzing a pair (mi , m′i = mi +α) and storing in
a hash table the value ci + c′i of the corresponding ciphertexts).

The analysis of the number of right amplified quartets is relatively straightforward, and we
obtain that of the c2 ·2n+2m possible quartets5 about 4c2 are right quartets. Hence, for the correct
value of L2(δ) we expect to encounter 4c2 quartets (identified as collision in the hash table).

Given the large number of quartets, we expect wrong quartets to offer collisions in the hash
table. There are going to be (about) additional c2 · 22m such collisions in the table, but as they
happen randomly, they are going to be scattered over the 2n possible L2(δ) values. Hence, as
long as 4c2� c2 · 22m−n, we expect the right value to be identified.

5We refer the interested reader to [BDK01] for the full analysis, e. g. why there are c2 ·2n+2m rather than c2/2·2n+2m

quartets.
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The result is an attack that takes c ·2n/2+m chosen plaintexts, time, and memory, and identifies
L2(δ). We later show how to transform this knowledge into (partial) key recover attack on L2.

A Small (and somewhat insignificant) Technicality

We note that the probability estimation that we have used assumes that the S-box in use is
differentially 2-uniform. Obviously, if the S-boxes are chosen at random, it is highly unlikely
that this condition holds. In these circumstances, the probability of the boomerang pboomerang is
actually slightly higher.

We can use [OCo94; OCo95] to evaluate the way the difference distribution table behaves
for an S-box chosen at random. Namely, an entry in the difference distribution table of an m-bit
S-box (besides those involved with input/output zero), has a value distributed according to
2 · Poi(1/2). As a result, the sums (∗) and (∗∗) are expected to obtain the value:

(∗) =
∑

β 6=0

Pr2[α
S0−→ β] = (2m − 1) · 2−2m ·

2m−1
∑

i=0

(2 ∗ i)2 · e−1/2 · (1/2)i/i!

≈ 3 · 2−m

(compared with the value 2 · 2−m which is a lower bound).

A Small (but Important) Technicality

We note that the amplified boomerang attack is being run in parallel for all t · (2m − 1) possible
values of δ, each resulting in about 4c2 quartets. Hence, we can obtain almost an exhaustive list
of all the output differences of L2 that originate from a single active S-box.

Due to the nature of the amplified attack, we do not need additional data to find all these
values. They are just suggested by the different boomerangs. The only thing we need to take into
account is that we want all t · (2m − 1) boomerangs to “succeed” (i.e., have enough quartets). In
Table 3.2 we give an example of parameters that follows AES ones (t = 16, m= 8, n= 128).

One additional technicality is the fact that there is some (non-zero) chance that differential
characteristics with two active S-boxes in the second-layer, may also be encountered. A simple
analysis reveals that the expected number of quartets for a given two-active-S-boxes differences
is 4c2 · 2−m. Moreover, there are

� t
2

� · (2m − 1)2 possible such differences. Hence, to avoid too
much noise from these cases we must demand that about t2/2 · 22m random variables following
a Poisson distribution with a mean value of about 4c2 · 2−m+1 will not interfere with the correct
differences (whose number of right quartets follows a Poisson distribution with a mean value of
4c2).6 Luckily, it is easy to see that for reasonable values of c, the problem is far from causing
trouble. Obviously, the problem generalizes to more active S-boxes in the second layer, but it

6We alert the reader that it is easy to overcome a “small” number of two-active-S-boxes differences in the other
steps of the attack, and as we see later, they may even be useful for the attack. Moreover, one can start the exploration
of the differences with those that are suggested by as many quartets as possible. These values are very likely to be
with a single active S-box in S2. Using the fact that if all non-zero differences of a single S-box form a linear subspace,
one can check whether differences with a smaller amount of quartets is actually of single active S-box, and even
complete the space for values that received no quartet.
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Table 3.2: Number of differences discovered by the (amplified boomerang) attack as a
function c for AES parameters (t = 16, m= 8, n= 128).

c Expected Threshold Discovered differences
Number of (for ident.) Single S-box Two S-boxes
Quartets (out of 4,080) (out of 7,803,000)

1 4 1 4,005 240,073
2 3,706 3,732
3 3,109 39
4 2,311 0.3

2 16 3 4,079 2,313
4 4,079 72
5 4,078 2
6 4,074 0.03

is (again) of no effect on the main result. We list in Table 3.2 also the expected number of
two-active S-boxes differences that might pass for a cipher with AES parameters.

This leads to the following problem, which we address next: once we have all these t ·(2m−1),
can we recover all (or part) of L2?

Partial Key-Recovery

At this point, we obtain t · (2m − 1) output differences L2(δi, j) where δi, j is a difference of j in
the i’th S-box (and zero in all other S-boxes). We now show how to divide this difference into
the t different S-boxes (as the order between them can be fixed arbitrarily, given that any order
can be “adjusted” by using L1).

The simplest method to do so is to actually increase a bit the data/time complexity and
look for two active S-boxes in the second layer. It is easy to see that once we identify all
δi, j ’s values, then a difference in two active S-boxes can be written as ∆ = δi, j + δi′, j′ , i. e.
L2(∆) = L2(δi, j + δi′, j′) = L2(δi, j) + (δi′, j′). This holds only when i 6= i′, and thus, we can
identify when two of the one active S-box differences do not share an S-box (as there will be
a corresponding two active S-box difference for them). Hence, the separation into different
S-boxes can be done quite immediately, resulting in an attack that requires c · 2n/2+3m/2 chosen
plaintexts, and about the same amount of time.

3.4.3 Attacking the Full Structure

We now turn our attention to the full ASASA construction. The main problem with directly
applying the amplified boomerang attack to the full construction is that we cannot have a
difference in the first S-box layer in only a single S-box.

Luckily, the solution to the problem is to perform another birthday paradox argument and use
a known-plaintext boomerang. The known-plaintext boomerang was first mentioned in [Wag99],
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and it is a natural extension of the boomerang (and the amplified boomerang attack). A random
set of c ·23n/4+m/2 known plaintexts contains c2/2 ·23n/2+m pairs at the entrance to S0, i. e. offers
c2/2 ·2n/2+m pairs with any given input difference, including those with a single active S-box. As
shown earlier, such amount of pairs is sufficient to generate right amplified boomerang quartets.

The only remaining task is the identification of the quartets ((m1, m2), (m3, m4)) themselves.
If both (m1, m2) and (m3, m4) are pairs which are part of the quartet, in other words, have the
same difference in a single byte after L0 (i. e. L0(m1 +m2) = L0(m3 +m4) with a single active S-
box), then m1+m2 = m3+m4. As before, we can also detect that L2(c1)+L2(c2) = L2(c3)+L2(c4).
This suggests that finding the quartets ((m1, m2), (m3, m4)) can be easily done by:

• For all pairs of plaintext (mi , m j) store in a hash table mi +m j||ci + c j (along with mi and
m j).

• Collect all collisions in the table as candidate quartets, and analyze them as before.

Given c ·23n/4+m/2 known plaintexts, we expect c2/2 ·23n/2+m pairs, and in total c4/2 ·23n+2m

quartets.7 Hence, we expect c4/2 · 2n+2m quartets to be suggested by the collisions in the table,
out of which c4/2 are right quartets that suggest the correct differences in the plaintexts and
in the ciphertexts. These differences are, of course, differences that become an active single
S-box (either through L0 or the inverse of L2). Hence, once again, it is possible to identify all the
differences that are transformed into a single active S-box (on both sides of the scheme). Again,
increasing the data complexity a bit (to c · 23n/4+3m/4 known plaintexts), allows finding all the
differences that go to a single active S-box, by working with differences of two active S-boxes.

To conclude, one can easily identify the t · (2m − 1) differences that lead to a single active
S-box thorough L0 or L2, using a known-plaintext boomerang. The attack takes c · 23n/4+3m/4

plaintexts and has memory and time complexity of c2/2 · 23n/2+3m/2.

3.5 Differential Attack: Using the DDT

We denote by
d(α) := |{F(x) + F(x +α) | x ∈ Fn

2}|
the number of possible output differences for a given input difference.

The basic idea is that the number of possible output differences depends on the number of
active S-boxes in the first layer of S-boxes. More precisely, we rely on the following assumption.

Assumption 3.3. The number of possible output differences is (expected to be) smaller if only one
S-box is active in the first layer compared to the case when more than one S-box is active in the first
layer. ◊

So the attack starts by computing d(α) for all non-zero α values. This takes time 22n and will
be the bottleneck of the attack. Afterward, the list of all d(α) is sorted in increasing order. We
denote the sorted list by T with T0 corresponding to the α with the smallest d(α) value.

7We note that the quartet ((m1, m2), (m3, m4)) differs from the quartet ((m1, m2), (m4, m3)).
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The assumption is now that the top of the list contains mostly input differences α such that

L(α) = (β1, . . . ,βt)

with only one non-zero βi ∈ Fm
2 . In other words, the top of the list contains mainly elements α

such that α ∈ Vi for some (unknown) 1≤ i ≤ t.
For recovering Vi we next have to sort those α values into different bins such that two α

values are in the same bin if and only if they are both in the same subspace Vi .
We explain how to recover the first Vi, without loss of generality V0 , in detail. Recovering

the remaining ones is very similar and will only be briefly sketched.
We start by considering the first ` entries in the sorted table T . Choosing ` such that

�

`
m

�

is
smaller than 22n makes sure that this step is not the bottleneck of the attack. In most cases (as
long as m≤ 22t) it would be sufficient to choose `≤ 22t , as

�

22t

m

�

≤ �22t
�m
= 22n.

However, our experiments show that the success probability of the attack is reduced for high
values of `. The best results have been obtained when ` was set to a small multiple of m.

The idea now is to identify a basis of V0. For any choice of m (linearly independent) elements
α1, . . . ,αm among the first ` elements of T we compute a penalty value

P({α1, . . . ,αm}) :=
∑

u∈span({α1,...,αm}),u6=0

d(u) ,

According to Assumption 3.3, there are now two cases to be considered. First, if all αi values
actually belong to V0 the penalty P({α1, . . . ,αm}) is simply the sum over all d(u) values for u ∈ Vi
and thus expected to be small. Second, if at least one α j does not belong to V0, at least (2m−1−1),
that is roughly half, of the elements in span({α1, . . . ,αm}) do not belong to any Vi and thus the
penalty value is expected to be significantly higher.

Thus, this procedure allows to identify a basis of V0. As will be shown below in the experi-
mental results, this is successful with very good probability.

After recovering V0 we simply remove all elements in V0 from the list T and repeat the same
procedure again. Experimentally, the overall success probability, i. e. the probability that we
recover all Vi correctly is again rather high, as shown in Table 3.3 below.

It can be seen that the success probability increases for increasing t and m, with the exception
of m= 3. The reason for this exception might be linear components that occur in the randomly
chosen 3-bit S-boxes.
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Table 3.3: Result of 100 runs of the attack for various parameters. In each run, a new
random ASASA instance has been generated. The numbers correspond to the success
probability to recover all Vi correctly. The dashes correspond to experiments we did not
run due to limited resources.

H
HHH

HHm
t

2 3 4 5

3 0.16 0.06 0.02 0
4 0.78 0.92 1 −
5 1 1 − −
6 1 − − −
7 1 − − −
8 1 − − −

3.6 Conclusion and Further Research

In this chapter, we analyzed efficient decomposition algorithms for the ASASA structure. In
particular, we described three different attack vectors, two based on differential properties and
one on an integral – i. e. a structural – property. In all the attacks, the difficulty lies not in
exploiting the properties, but rather in locating them as they are hidden by the external linear
layers. Reciprocally, as soon as such a property has been detected, information on the linear
layers can be easily deduced, and combining the data gathered from several properties allows to
peel off the external linear layers efficiently. While our integral attack is the most efficient, it is
not always applicable, and in such cases the other attacks should be considered.

As our most efficient attacks have time complexity of roughly n · 23n/2, it seems that ASASA
schemes must have a large block size n in order to be considered as secure candidates for white-
box cryptography. However, this requires their black-box representations to be extremely large
and inappropriate for practical use (e. g. in order to guarantee a minimal security level of 64 bits,
an ASASA scheme requires storage of about 243 words, which is more than 10 terabytes).

A natural future work item is to study the security of general SP-networks with more layers
and to investigate if any of the attacks presented here can be generalized or improved on these
constructions. This was picked up by Biryukov and Khovratovich, who extended the existing
attacks to structures with up to 9 layers [BK15]. Afterward, this was generalized to a closed
formula describing the number of attackable rounds r of the A(SA)r construction depending on
the size and number of S-boxes [BKP16].

Subsequent research on affine equivalence algorithms by Dinur [Din18] led to an improvement
of the integral attack presented in Section 3.3. In particular, the efficient computation of the sum
over the subspaces from Section 3.3.3 can be improved by using a symbolic algorithm, leading to
an overall complexity of about n · 2n.

Despite all these attacks, the ASASA construction was actually used in a recent design for a
family of stream ciphers called RASTA [Dob+18]. The authors used it in a setting such that the
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presented attacks are not feasible.
A possible direct application of cryptanalytic attacks on ASASA is the research problem of

reverse engineering secret S-boxes [BPU16]. However, secret building blocks of ciphers are of
course not restricted to SPN structures. Results in this area have also been published for Feistel
structures [BLP16; PU16].

Finally, another obvious research problem motivated by our work is to continue the vivid
research on white-box cryptography and to design improved, secure, and practically usable
schemes. There has been quite some work after the presentation of our findings in 2015. A
white-box design that completely avoids the attacks from above was presented by Bogdanov
and Isobe [BI15]. Afterward, Fouque et al. made a first proposal for provable and efficient
white-box cryptography [Fou+16]. Further research on efficient and secure white-box schemes
was conducted for example in [Cho+16] and [BIT16].
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4
Lightweight Multiplication in GF(2m)

with Applications to MDS Matrices

The results from this paper have been published in the proceedings of the IACR conference
CRYPTO 2016 [BKL16] and presented at that conference in Santa Barbara, USA. This is joint work
with Christof Beierle and Gregor Leander. All authors equally contributed. The main contributions
of the thesis author are in the construction of lightweight MDS matrices (Section 4.4).

4.1 Introduction

Many cryptographic schemes build on finite fields as their underlying mathematic structure. In
almost all cases, the schemes can be designed without having to specify a concrete representation
of the finite field in advance. However, when finally being implemented in practice, one necessarily
has to choose a particular representation of the finite field, basically as bit strings. In general, this
choice does not influence the security of the scheme, but might well influence the performance
of the resulting implementation. In this chapter, we focus on this choice of field representations
and derive theoretical results on how to choose an optimal field representation with respect to
multiplication with fixed field elements. Before going into details, we elaborate on this setup in
the special case of symmetric cryptography.

Today, we are in the comfortable situation of having at hand a choice of strong block ciphers
and hash functions that seem secure against even the strongest adversaries with practically
unlimited computational resources. As discussed in Section 1.2.1, those primitives are based on
rather well-understood design principles that allow constructing efficient, simple and easy to
analyze ciphers. Especially in the case of substitution-permutation (SP) networks, following the
seminal ideas of AES [DR98] and its predecessor SQUARE [DKR97], arguing for the security of

87
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ciphers against the two most powerful generic attacks, that is, differential and linear attacks [BS91;
Mat94], became significantly easier (see Section 1.3.3 and Chapter 2). Recall from Section 1.2.1
that the cipher (or the cryptographic permutation) in an SP-network consists of a number of
almost identical rounds, each of which consists of a layer of S-boxes and an F2-linear layer to
mix those parts.

One of the most important design strategies for those primitives is the so-called wide trail
strategy (see Section 1.2), initiated in [Dae95]. Here, the main observation is that it is actually
the linear layer that is to a large extent responsible for the security of the primitive against linear
and differential attacks. Linear layers are often designed via MDS matrices defined over F2m .
As discussed in Section 1.2.2, one then has to choose a mapping on Ft

2m and an F2-basis of F2m

to concretely specify the primitive. This is actually a very natural separation of the design of
the cipher and its specification (and thus implementation) on the bit-level. As nicely explained
in [DR11] by introducing RIJNDAEL-GF this separation is probably most obvious for AES itself,
but in principle possible for any cipher. Following [DR11], the choice of basis is to a large extent
independent of the design and the security of the cipher. However, the choice of basis might have
a significant impact on the efficiency of the cipher on certain platforms. This is actually a very
natural separation of the design of the cipher and its specification (and thus implementation)
on the bit-level. As nicely explained in [DR11] by introducing RIJNDAEL-GF this separation is
probably most obvious for AES itself, but in principle possible for any cipher. Following [DR11],
the choice of basis is to a large extent independent of the design and the security of the cipher.
However, the choice of basis might have a significant impact on the efficiency of the cipher on
certain platforms.

For software implementations, depending on the details, the choice of basis is either irrelevant
(e. g. in a table-based implementation) or hard to capture (e. g. in a bit-sliced implementation) as
the efficiency might depend on the exact instructions offered by a given platform. For hardware
implementations, one has to distinguish between a serial implementation or a round-based
implementation. As the round-based implementation seems most relevant in practice (see
[Sim+15]), we mainly focus on this use-case here. Surprisingly, compared to a serial hardware
implementation, the case of a round-based hardware implementation has attracted less attention
so far.

For a round-based hardware implementation, the impact of the choice of basis already be-
comes apparent when focusing on how to implement the multiplication with one given element α
in F2m . For different choices of bases, the efficiency of implementations of the resulting F2-linear
mappings differs significantly. Thus, the very fundamental task we study in the first part of this
chapter is:

For a given element α ∈ F2m find a basis such that multiplication by α can be implemented most
efficiently.1

It is worth pointing out that the related question of how to efficiently multiply two arbitrary
field elements has been studied extensively in the past.

1Note that the choice of basis is of course not restricted to choosing different irreducible polynomials to represent
the finite field.
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While the above question is of independent interest, with potentially very different applica-
tions, we use our results for designing efficient linear layers. Thus, in the second part, we will
give several constructions of MDS matrices. Echoing the above, the construction of our MDS
matrices are independent of the choice of the basis – actually to a large extent independent of
the field size as well.

The combination of the first part, i. e. how to choose a basis that allows for an optimal
implementation, and the second part, i. e. the construction of MDS matrices, finally results in
implementations of MDS matrices that are more efficient for a large variety of parameters than
the best matrices discussed so far in literature.

Thus, this application serves as a nice example were an improved understanding of how
to choose the field representation immediately leads to improved results. This is even more
interesting as the construction of efficient MDS matrices has been an active field of research
recently.

4.1.1 Previous Research

In particular, the construction of efficient serial MDS matrices is a well-studied subject. Consid-
ering serial implementations of MDS matrices is based on the initial idea of Guo et al. used in
the design of PHOTON [GPP11] and later in the block cipher LED [Guo+11]. In a nutshell, the
idea is not to implement an MDS matrix directly, but rather implement a matrix A such that Ad is
MDS for some small d. When considering a hardware implementation, it reduces the chip area if
implementing A is significantly cheaper than Ad . The circuit implementing A is then iterated d
times, which does not increase its size significantly. This basic idea has been further generalized
and improved in a series of subsequent papers. In [Saj+12b] and [WWW13] the authors focus
on even more efficient choices for A by considering additive, i. e. F2-linear MDS codes. Their
approach uses symbolic computations in order to derive general conditions on how to choose the
matrix entries independent of the dimension.

In [XZL14] Xu et al. furthermore took into account the cost of implementing the inverse
matrix. At FSE 2014, Augot and Finiasz [AF15] improved significantly upon the efficiency of
the search algorithm of [Saj+12b], allowing them to search for MDS matrices of a much larger
dimension than previously possible.

For a round-based implementation, less work has been done so far. The authors of [Sim+15]
focus on MDS matrices that have an efficient implementation (in terms of the XOR count) and put
special emphasis on involutory MDS matrices, i. e. MDS matrices that are their own inverse. They
derive several constructions and rather efficient search methods for MDS matrices meeting their
goals. Liu and Sim [LS16] improved upon some of those results by characterizing equivalences in
circulant (and circulant-like) MDS matrices and thus further reducing the search space. In both
works, in order to improve the efficiency for a given MDS matrix defined over a finite field, the
authors considered different representations of the underlying finite fields by running through
all possible irreducible polynomials of the given degree. However, in view of the question of how
to choose an optimal basis, this corresponds to investigating only a small subset of all possible
bases. Work on investigating the XOR count distribution for other than the polynomial bases has
been done in [SS16a].
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Li and Wang constructed circulant involutory F2-linear MDS matrices [LW16]. While it was
already known that circulant MDS matrices over a finite field cannot be involutory [GR14], they
have shown their existence in the additive case. Independently, Liu and Sim [LS16] have shown
the existence of cyclic involutory MDS matrices over finite fields, where cyclic matrices are closely
related to circulant matrices.

4.1.2 Our Contribution

After fixing our notation and recalling basic facts in Section 4.2, in the first part of the paper
we focus on the question on how to find an optimal implementation of the multiplication by a
given field element α (see Section 4.3). Here efficiency is measured in terms of the number of
XOR operations needed to implement the corresponding binary matrix. Note that this metric
differs from the XOR count used in [Sim+15]. In [Sim+15] the XOR count of an m×m matrix
M was defined as the number of ones in M minus m. However, the number of (additional)
ones in a matrix does not necessarily correspond to the number of XOR operations needed for
implementation. Thus, while the number of ones in M is certainly an easier to handle metric,
in our opinion it is more appropriate to consider the actual number of XOR operations as the
efficiency metric. Note that this improved notion was first introduced in [Jea+17b]. For technical
reasons, we focus on the number of XOR operations without temporary registers, i. e. in-place
XOR operations. One of our main results in this first part of the paper is, that for a non-trivial
element α one can find a basis such that the resulting matrix can be implemented with one
XOR operation if and only if the characteristic polynomial of α is an irreducible trinomial. Note
that an XOR count equal to one in our notion coincides with the definition of the XOR count
in [Sim+15]. The interesting part here is that the condition on the characteristic polynomial
is not only sufficient but also necessary. As an immediate consequence, one cannot hope to
implement the multiplication by any element α 6= 1 in F∗28 with one XOR only. This follows by
the above and the well-known fact that there are no irreducible trinomials of degree 8 [Swa62].

We furthermore show that, for any given basis, there are at most two (non-trivial) elements
α and β such that the multiplication with those elements can be implemented with one XOR
operation. In fact, β is necessarily the multiplicative inverse of α.

While the weight of the (irreducible) characteristic polynomial of an element α clearly gives
an upper bound of the number of XOR operations needed to implement the corresponding
multiplication, we show that this bound is in general not tight in the case where the characteristic
polynomial is of weight larger than three.

In particular, for all elements α ∈ F∗2m with m≤ 8 we present an optimal representation such
that the multiplication with α can be implemented with a minimal number of XOR operations. For
all those elements α, that are not contained in a proper subfield of F2m , the multiplication can be
implemented with at most 3 XOR operations (and often with two only). Those results are given
in Tables 4.1 and 4.5 and cover the cases which are most relevant for symmetric cryptography.
Interestingly, and maybe counter-intuitive, multiplication with non-trivial elements in a proper
subfield turns out to be among the most expensive in all the cases explored here.

Moreover, for all m≤ 2048 for which no irreducible trinomial of degree m exists, we present
one element α ∈ F2m such that multiplication by α requires two XOR operations, see Table B.1 in
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the appendix. Those results are proven optimal by the above mentioned necessary and sufficient
condition.

In the second part of this chapter (see Section 4.4) we present several (circulant) matrices.
Entries in those matrices are represented as powers of a generic field element α. By symbol-
ically computing all minors, i. e. the determinants of all square submatrices, we derive a list
of polynomials in F2[α]. Now, whenever α is chosen such that it is not a root of any of those
polynomials, the matrix is MDS. One nice consequence of this approach is that, as the degree of
those polynomials is limited, our matrices are MDS for almost all elements in F2m as soon as m is
large enough, i. e. larger than the maximal degree of those polynomials.

Finally, the first and second part are combined in Section 4.4.2 to result in efficient MDS
matrices. When these results were first presented in 2016, those were the most efficient MDS
matrices in terms of the XOR count. A summary of our results and comparison with previous
work is given in Table 4.6 and Table 4.7, respectively. The main observation here is that if
multiplication by α can be implemented with d XOR operations, then multiplication by α±i for
i ≥ 0 can be implemented with at most d · i XOR operations.2 Thus, by simply minimizing the
sum of the (absolute) exponents for our circulant MDS matrices, we immediately reduce the XOR
count.

As an interesting side result, we like to point out that the XOR count per bit actually decreases
with increasing field size.3 For example, our 4× 4 MDS matrices have a per bit XOR count of
3+ 3

m , or 3+ 6
m in the case that no irreducible trinomial of degree m exists.

Thus, even so reducing the number of XOR operations has already received considerable
attention, this part nicely shows that our improved understanding of how to choose an optimal
basis allows us to easily improve upon previous constructions. Note that such improvements are
possible independent from which XOR count definition is used, that is, we were able to improve
existing results also in the old XOR count definition by changing the basis. For example, we
found an element in F28 with only 2 additional non-zero entries which directly improves the
results of [Sim+15].

Finally, in Section 4.5 we give a perspective on non-linear, additive MDS matrices. In particular,
we point out that while there exists no α ∈ F28 (resp. F213 , F216) which can be implemented with
only one XOR operation, there does exist an 8× 8 (resp. 13× 13, 16× 16) binary matrix, that
can be used in place for the multiplication by α in the above mentioned 4× 4 matrix to result
in an additive MDS matrix with reduced cost.4 Again, the idea of considering the entries of the
matrix as powers of a single field element is beneficial as the conditions for the matrix to be MDS
remain basically unchanged.

We conclude the paper by pointing to some interesting questions for future investigations.

2It is exactly this part where considering only in-place XOR operations becomes very helpful, as otherwise
multiplication by α and by α−1 might differ in their XOR count.

3This is also true for the constructions given in [WWW13], but does not hold for the subfield (or code-interleaving)
construction.

4Note that the authors of [LW16] recently constructed a similar 32× 32 F2-linear MDS matrix.
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4.2 Preliminaries

The basic concepts and notations of finite field representations were introduced in Section 1.2.2.
The multiplicative group of some field K is denoted by K∗. The ring of m×m matrices over a field
K will be denoted by Matm(K) in this chapter. The symbol 0m will denote the zero matrix and Im
will be the identity matrix. As a third important type of matrix in Matm(F2), we introduce Ei, j
which consist of all zeros except in the i-th row of the j-th column for i, j ∈ {1, . . . , m}. We denote
a block diagonal matrix consisting of d matrix blocks Ak as

⊕d
k=1 Ak. By hw(A), we denote the

number of non-zero entries of a matrix A. Analogously, hw(q) denotes the number of non-zero
coefficients of a polynomial q.

4.2.1 Some Basic Facts about Linear Transformations

Recall from Section 1.2.2 that the multiplication by an element α ∈ F2m can be described by a
matrix Tα,B. This representation depends on the basis B for F2m and changing the basis from
B to B′ results in a different matrix representation. This transformation is called the change of
basis transformation, which is simply a conjugation of Tα,B. Thus, Tα,B′ = STα,BS−1 using an
invertible matrix S. In this case, Tα,B and Tα,B′ are called similar (resp. permutation-similar
if S is a permutation matrix). We denote similarity of matrices with the relation symbol ∼,
(resp. ∼π for permutation-similarity). The characteristic polynomial of a matrix A is defined as
χA := det(λIm−A) ∈ F2[λ] and the minimal polynomial is denoted by mA. Recall that the minimal
polynomial is the (monic) polynomial p of least degree, such that p(A) = 0m. It is a well-known
fact that the minimal polynomial divides the characteristic polynomial, thus χA(A) = 0m. As the
minimal polynomial and the characteristic polynomial are actually properties of the underlying
linear mapping, similar matrices have the same characteristic and the same minimal polynomial.

A special type of matrix, that will play an important role in the following is the companion
matrix of a polynomial. For a polynomial

q = xm + qm−1 xm−1 + · · ·+ q1 x + q0 ∈ F2[x]

of degree m, the companion matrix of q is defined as

Cq =













0 q0
1 0 q1

. . . . . .
...

1 0 qm−2
1 qm−1













.

It is known from linear algebra that the characteristic polynomial and the minimal polynomial of
Cq are equal to q itself, i. e. χCq

= mCq
= q. In addition, any matrix A is similar to a companion

matrix if and only if its characteristic polynomial coincides with its minimal polynomial. In
particular, Cq is exactly the rational canonical form [DF04, Section 12.2] of A in this case.

4.2.2 The XOR Count and the Cycle Normal Form

The XOR count of a field element was already studied in [Kho+14] and [Sim+15]. In the formal
definition in [Sim+15], an invertible m-dimensional matrix A has an XOR count of d if and
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only if A can be written as a permutation matrix with d additional non-zero entries. Formally,
A= P+

∑d
k=1 Eik , jk and hw(A) = m+d. Although all matrices of that structure can be implemented

with at most d XOR operations (not necessarily without temporary registers), the construction
does not contain all possible matrices which are realizable with at most d XOR operations. For
instance, there are matrices with three additional non-zero entries such that the result of their
defining linear function can be computed with just two additions. As an example, consider





1 0 1
1 1 1
0 0 1









v1
v2
v3



=





v1 + v3
(v1 + v3) + v2

v3



 .

In the following, we provide an alternative definition which includes the cases described
above. Note that the improved notion of the XOR count was first introduced in [Jea+17b].

Definition 4.1. An invertible matrix A has an XOR count of d, denoted wt⊕(A) = d, if d is the
minimal number such that A can be written as

A= P
d
∏

k=1

(I + Eik , jk)

with ik 6= jk for all k. ◊

Note that if a matrix can be represented in the form P
∏d

k=1(I + Eik , jk), the number of factors
(I + Eik , jk) clearly gives an upper bound on the actual XOR count. It is worth pointing out that
the definition above just counts the number of XOR operations without using temporary registers.
Those are technically somewhat easier to handle. However, this restriction does not make a
difference for matrices with XOR count less or equal to 2, which we are most concerned about in
the following. In general, allowing temporary registers might well reduce the number of XOR
operations needed for an implementation.

Our definition coincides with the one from [Sim+15] for the case that d = 1, that is, for
matrices of XOR count 1. For other cases, the number of additional non-zero entries can increase.
We will often consider d = 2 within this work. By evaluating the product, it follows that any A
with wt⊕(A) = 2 is of the form

A=

¨

P + P(Ei1, j1 + Ei2, j2) iff i2 6= j1
P + P(Ei1, j1 + Ei2, j2 + Ei1, j2) iff i2 = j1.

The XOR count is invariant under permutation-similarity. Moreover, naturally in the setting
not allowing temporary registers, the XOR count is invariant under taking the inverse. This is
summarized and formally proven in the following Lemma and Corollary.

Lemma 4.1. If A∼π A′, then wt⊕(A) = wt⊕(A′). ◊

Proof. Let A′ =QAQ−1 where Q is the permutation matrix representing the permutation σ ∈ Sm.
Let I + Eik , jk be a factor in the XOR count representation of A = P

∏d
k=1(I + Eik , jk) where

d = wt⊕(A). Then the following identity holds:

(I + Eik , jk)Q
−1 =Q−1 + Eik ,σ−1( jk) =Q−1(I + Eσ−1(ik),σ−1( jk)).
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One is able to commute Q−1 to the front before the first factor by proceeding for all of the d
factors and finally obtain

A′ =QPQ−1
d
∏

k=1

(I + Eσ−1(ik),σ−1( jk)).

It follows that wt⊕(A′)≤ wt⊕(A). By reverting the above steps we obtain wt⊕(A)≤ wt⊕(A′).

Corollary 4.1. If wt⊕(A) = d, then also wt⊕(A−1) = d. ◊

Proof. We show that A−1 is permutation-similar to a matrix with an XOR count of d.

�

P
d
∏

k=1

(I + Eik , jk)

�−1

=
1
∏

k=d

(I + Eik , jk)P
−1 ∼π P−1

1
∏

k=d

(I + Eik , jk)

Later, we would like to be able to exhaustively search over all matrices with low XOR count for
a given dimension m. Since the number of permutation matrices (which is m!) rapidly increases
with m, an exhaustive search will quickly become infeasible if we do not restrict the structure of
P. By a well-known fact from combinatorics, one is able to assume P to be in a specific form.

Lemma 4.2. For any permutation matrix P of dimension m, it is

P ∼π
d
⊕

k=1

Cxmk+1

for some mk with
∑d

k=1 mk = m and m1 ≥ · · · ≥ md ≥ 1. ◊

Proof. It is well-known that two permutations with the same cycle type are conjugate [DF04,
Chapter 4.3, Proposition 11]. That is, given the permutations σ,τ ∈ Sm as

σ = (s1 , s2 , . . . , sd1
)(sd1+1 , . . . , sd2

) . . . (sdm−1+1 , . . . , sdm
)

τ= (t1, t2, . . . , td1
)(td1+1, . . . , td2

) . . . (tdm−1+1, . . . , tdm
)

in cycle notation, one can find some π ∈ Sm such that πσπ−1 = τ. This π operates as a relabeling
of indices.

Let σ in the form above be the permutation defined by P. Now, there exists a permutation
π such that πσπ−1 = (d1, 1, 2, . . . , d1 − 1)(d2, d1 + 1, d1 + 2, . . . , d2 − 1) . . . (dm, dm−1 + 1, dm−1 +
2, . . . , dm − 1). If Q denotes the permutation matrix defined by π, one obtains QPQ−1 in the
desired form.

We say that any permutation matrix of this structure is in cycle normal form. The cycle normal
form of P is denoted by C(P). Up to permutation-similarity, we can always assume that the
permutation matrix P of a given matrix with XOR count d is in cycle normal form, as stated in
the following corollary.
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Corollary 4.2.

P
d
∏

k=1

(I + Eik , jk) ∼π C(P)
d
∏

k=1

(I + Eσ−1(ik),σ−1( jk))

for some permutation σ ∈ Sm. ◊

4.3 Efficient Multiplication in Finite Fields

In this section, we first present some theoretic results towards understanding the structure
of matrices Tα,B representing (left-)multiplication by some finite field element α ∈ F∗2m . The
parameter B indicates a basis of F2m considered as an m-dimensional vector space over F2. The
XOR count of Tα,B is indeed depending on the choice of the basis B. As described in Corollary 4.2,
we can assume a certain normal form for matrices with an XOR count of d.

Not every (invertible) matrix is a representation of a field multiplication. For example, an
obvious condition for that is that the multiplicative order of the matrix divides 2m − 1. In order
to understand exactly which matrices indeed represent multiplication with some field element α,
Theorem 4.1 below gives a characterization that allows to efficiently decide when a given matrix
corresponds to multiplication by a field element. The crucial part is the minimal polynomial of α.
It is a property of the linear mapping

fα : F2m → F2m ,β 7→ αβ
and is invariant under changing the specific representation of fα to β 7→ Tα,Bβ .

Theorem 4.1. Let A∈Matm(F2) \ {0m}. Then A= Tα,B for some element α ∈ F∗2m with respect to
some basis B if and only if mA is irreducible. ◊

Proof. As described in [War94], the ring generated by some matrix A defines a field of order 2m

if and only if the characteristic polynomial χA is irreducible. This is the case since χA(A) = 0
and thus A is the root of an irreducible polynomial of degree m. One can see that F2(A) =
{∑m−1

i=0 αiA
i | αi ∈ F2} since it must contain all sums of powers of A. However, for F2(A) being a

field it is not necessary that A has an irreducible characteristic polynomial. It can be possible that
A generates a subfield F2m′ of F2m . As we show now, this is the case if and only if the minimal
polynomial of α is irreducible and has degree m′.

If mA is not irreducible, F2(A) is not a field and thus A cannot represent a field multiplication.
Let now mA be irreducible. The characteristic polynomial χA is necessarily a power of mA, since
both of these polynomials share the same irreducible factors. So, χA = (mA)d for some positive
integer d. Both d and deg(mA) divide m. Because of the irreducibility of mA, the rational
canonical form of A consists of d blocks of CmA

. Thus, we obtain the similarity

A∼
d
⊕

k=1

CmA
.

Since χCmA
= mA, the matrix A defines a multiplication with some element in a subfield of

F2m .
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Note that, any field element α is, up to its conjugates α,α2,α22, . . . ,α2m−1, uniquely identified
by its minimal polynomial. For every field element α, the minimal polynomial mα is exactly
the minimal polynomial mA of a matrix A representing multiplication with α. Furthermore,
two matrices A, A′ ∈Matm(F2) with the same irreducible minimal polynomial are similar. Thus,
given a matrix A, identifying the element α such that A= Tα,B is equivalent to computing the
(irreducible) minimal polynomial of A.

The main question is which field elements can be implemented with a minimal number of
XOR operations, or in particular, what is the minimal XOR count for a given (non-trivial) field
element α ∈ F∗2m . Trivially, multiplication with α= 1 can be implemented with zero additions
since T1,B = Im for all bases B. On the other hand, if the XOR count is 0, the element is equal to 1.
In the first place, we thus aim for an XOR count of 1 whenever possible. By a simple observation,
this optimal result can be realized if the minimal polynomial of α is a trinomial of degree m.

Example 4.1. Let the field with 2m elements be represented as F2m = F2[x]/(q) for an irreducible
q of degree m. For the (left-)multiplication with x in the canonical basis B = {1, x , x2, . . . , xm−1},
it is Tx ,B = Cq. Thus, wt⊕(Tx ,B) = hw(q) − 2 and the XOR count of Tx ,B equals 1 if q is a
trinomial. ◊

Since our approach is about finding any (non-trivial) element α ∈ F∗2m such that multiplication
with α can be implemented with minimal additions, this fact implies that we cannot hope to
improve upon the implementation costs if there exists an irreducible trinomial of degree m.
However, for several m, including the interesting case where m is a multiple of 8, there does not
exist such a trinomial [Swa62]. The question is what happens in these cases. As one of our main
results, we show that the condition on the minimal polynomial is not only sufficient but also
necessary.

4.3.1 Characterizing Elements with Optimal XOR Count

In this section, we prove the converse of the fact described in Example 4.1, namely the necessary
condition on the minimal (resp. characteristic) polynomial of α resulting in an XOR count of 1.

Theorem 4.2. Let α ∈ F2m . Then there exists a matrix A with wt⊕(A) = 1 such that A= Tα,B for
some basis B if and only if mα is a trinomial of degree m. ◊

Proof. Let Tα,B represent multiplication by some element α ∈ F2m with respect to the basis
B = {b1, . . . , bm} and let further wt⊕(Tα,B) = 1. We show that the characteristic polynomial χTα,B

is a trinomial and coincides with mα. Since the XOR count is 1, we can assume without loss
of generality that Tα,B = P + Ei, j such that P =

⊕l
k=1 Cxmk+1 is in cycle normal form. We first

show that l = 1. Suppose l > 1, then, depending on Ei, j, the matrix Tα,B is either in upper or
lower triangular form consisting of at least two diagonal blocks. Since one of them must be of
the form Cxm′+1, the polynomial xm′ + 1 must divide the characteristic polynomial χTα,B

. Since

further (x + 1) | (xm′ + 1), the minimal polynomial of α is necessarily a multiple of x + 1. This is
a contradiction since α 6= 1 and mα must be irreducible. Hence, Tα,B is permutation-similar to
Cxm+1 + Ei, j . It is further i 6= j + 1 mod m since otherwise Tα,B would be singular.



4.3. EFFICIENT MULTIPLICATION IN FINITE FIELDS 97

We now investigate how α operates on the basis elements bk ∈ B. Considering the structure
of Tα,B, we obtain the following list of equations.

αb1 = b2

...

αb j−1 = b j

αb j = b j+1 + bi

αb j+1 = b j+2

...

αbn = b1.

By defining γ := b j+1, one can express every basis element bk as a power of α multiplied by γ.
In particular,

b j+k mod m = α
k−1γ (4.1)

for k ∈ {1, . . . , m}. Combining this observation with the identity αb j = b j+1 + bi , one obtains

αmγ= γ+αtγ (4.2)

for some exponent t 6= 0. Since γ 6= 0, the field element α is a root of the trinomial p =
xm + x t + 1. It is left to show that p is exactly the minimal polynomial of α. Suppose that
mα = xm′ +

∑m′−1
k=0 ck xk with constants ck ∈ {0,1} and m′ < m. By multiplying mα(α) with γ,

one obtains

αm′γ=
m′−1
∑

k=0

ckα
kγ

and thus btm′ =
∑m′−1

k=0 ck btk
for some basis elements btk

. We are now able to express one basis
element btk

as a sum of other elements from B which is contradictory to the linear independence
of the basis. Hence, deg(mα) = m and thus mα = p which finally proves the theorem.

Note that the polynomial p is exactly the characteristic polynomial of Tα,B since it must be
a monic multiple of mα having degree m. An alternative way of proving that the characteristic
polynomial of a matrix Cxm+1 + Ei, j is a trinomial is given in the following lemma which holds in
general, even if T does not represent a multiplication with a field element. This lemma will be
helpful later on.

Lemma 4.3. For T = Cxm+1 + Ei, j with hw(T ) = m+ 1, the characteristic polynomial χT of T is a
trinomial of degree m. ◊

Proof. It is to compute χT = det(λIm−T ) = det(λIm+Cxm+1+Ei, j). If j = m, then T = Cxm+x i−1+1

and χT = λm + λi−1 + 1 is a trinomial of degree m. Thus, without loss of generality one can
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assume j < m. To compute the determinant we use Laplace’s formula by expanding along the
m-th column. One obtains

χT = det

























1 λ
1 λ

. . .
. . .
1 λ

1













+ Ei−1, j













+λdet

























λ
1 λ

. . .
. . .
1 λ

1 λ













+ Ei, j













,

where E0, j := 0 and Em, j := 0. Both of these remaining matrices are of dimension (m−1)×(m−1).
We now distinguish three cases:

(i) i < j: The additional 1 lies in the upper triangle of T . Now, χT reduces to χT = 1 +
λdet(λIm−1 + Cxm−1 + Ei, j)). In order to compute the remaining determinant, we keep on
expanding along the last column for m− 1− j times until the additional 1 is located in the
rightmost column. We now obtain the determinant of a companion matrix. Thus,

χT = 1+λm− j det(λI j + Cx j+x i−1)

= 1+λm− j(λ j +λi−1) = λm +λm− j+i−1 + 1.

(ii) i = j: In this case, the additional 1 lies on the main diagonal of T and

χT = 1+λ(λm−2(λ+ 1)) = λm +λm−1 + 1.

(iii) i > j: The additional 1 lies in the lower triangle of T . Because of the structure of T , it is
further i > ( j + 1). Defining the m′ ×m′ matrix Sλm′ as

Sλm′ :=













1 λ

1 λ
. . . . . .

1 λ

1













,

the characteristic polynomial of T reduces to χT = det(Sλm−1 + Ei−1, j) + λm. We expand
along the last row of Sλm−1 + Ei−1, j for m− i times and get χT = det(Sλi−1 + Ei−1, j) +λm.

Now, the additional 1 lies in the last row of the remaining (i − 1)× (i − 1)-dimensional
matrix. The goal is now to shift this 1 to the first column. This is done by expanding
j − 1 times along the first column. We now obtain χT = det(Sλi− j + Ei− j,1) + λm and the
additional 1 is in the lower left corner of the matrix. As the last step, we expand along the
first column for one more time and finally get

χT = λ
m + det(Sλi− j + Ei− j,1) = λ

m + det(λIi− j−1 + Cx i− j−1) + 1

= λm +λi− j−1 + 1.
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As a simple corollary one obtains that any α ∈ F∗2m with an XOR count of 1 cannot be contained
in a proper subfield.

Corollary 4.3. Let α ∈ F∗2m \ {1} and let further deg(mα) < m, indicating that α lies in a proper
subfield of F2m . Then, any matrix Tα,B representing multiplication by a field element α with respect
to some basis B has wt⊕(Tα,B)> 1. ◊

This result implies that building MDS layers using a block interleaving construction [Alb+14],
also called subfield construction in [Kho+14], almost always results in suboptimal implementation
costs. Note that specific instances of this construction are also implicitly used in the AES, LS-
Designs [Gro+15] and the hash function Whirlwind [Bar+10].

Now let α be an element with XOR count 1. From Corollary 4.1 we know that α−1 has the
same XOR count. Next, we show that there do not exist any further elements with an XOR count
equal to 1.

Theorem 4.3. For any given basis B of F2m , there exist at most two field elements α and α−1 with
wt⊕(Tα,B) = wt⊕(Tα−1,B) = 1. ◊

Proof. Let α ∈ F∗2m with wt⊕(Tα,B) = 1 for the basis B = {b1, . . . , bm}. We show that for any
β ∈ F2m with wt⊕(Tβ ,B) = 1 it holds that β = α±1.

Since without loss of generality Tα,B can be assumed to be of the form Cxm+1 + Ei, j , we know
that Eq. (4.1) and Eq. (4.2) hold. We further know that Tβ ,B is of the form P + Ei′, j′ and thus
there exist l, l ′ ∈ {1, . . . , m} with l 6= l ′ and β b j+l mod m = b j+l ′ mod m. Using Eq. (4.1), we can
write β = αl ′−l =: αs where s ∈ {−(m− 1), . . . , m− 1}. We directly see that s 6= 0. It remains to
show that −1≤ s ≤ 1.

Assume s ≥ 2. We use equations Eqs. (4.1) and (4.2) to obtain

β b j+(m−s+1) mod m = α
mγ= γ+αtγ= b j+1 mod m + b j+t+1 mod m.

Since 0< t < m, it holds that b j+1 mod m 6= b j+t+1 mod m and thus the according column contains
an additional 1. For the next column, we have

β b j+(m−s+2) mod m = α
m+1γ= αγ+αt+1γ

=

¨

b j+2 mod m + b j+t+2 mod m, for t < m− 1

b j+2 mod m + b j+1 mod m + b j mod m, for t = m− 1

Hence, this column also contains at least one additional 1 which is contradictory to the XOR
count of 1.

For −s ≥ 2 we can construct the same contradiction by considering β−1.

We now understand the structure of field elements α that can be implemented with a single
addition. One might think that also for the other cases, the weight of the minimal polynomial of
α strictly lower-bounds XOR count as hw(mα)− 2. As we will see next, this is not the case.



100 CHAPTER 4. LIGHTWEIGHT MULTIPLICATION IN GF(2m)

Table 4.1: Minimal XOR counts for all elements in F∗24 .

minimal polynomial mα min wt⊕(α) matrix
x + 1 0 I

x2 + x + 1 2 Cmα ⊕ Cmα
x4 + x + 1 1 Cmα
x4 + x3 + 1 1 Cmα

x4 + x3 + x2 + x + 1 2 Cx4+1 + E2,2 + E3,4

Table 4.2: Minimal XOR counts for all elements in F∗25 .

minimal polynomial mα min wt⊕(α) matrix
x + 1 0 I

x5 + x2 + 1 1 Cmα
x5 + x3 + 1 1 Cmα

x5 + x3 + x2 + x + 1 2 Cx5+1 + E2,4 + E4,2
x5 + x4 + x2 + x + 1 2 Cx5+1 + E2,2 + E3,5
x5 + x4 + x3 + x + 1 2 Cx5+1 + E2,3 + E3,1 + E3,3
x5 + x4 + x3 + x2 + 1 2 Cx5+1 + E2,2 + E3,4

4.3.2 Experimental Search for Optimal XOR Counts

Surprisingly, we often can improve the XOR count, compared to using the companion matrix
for multiplication, if the weight of the minimal polynomial is greater than 3. For instance, if mα
is an irreducible pentanomial, that is of weight 5, of degree m there often exists a basis B such
that wt⊕(Tα,B) = 2. Indeed, for all m ≤ 2048 for which no irreducible trinomial of degree m
exists, we found some element α ∈ F∗2m with an XOR count of 2 for some basis B. For every such
dimension, we present an example of such a matrix in Table B.1 in the appendix. Thus, for all
practically relevant fields, we are able to identify an element such that multiplication can be
implemented with one or two XOR operations. By Theorem 4.2, these results are proven to be
optimal.

Moreover, as fields of small size are most interesting for SP-networks, we investigated those in
full detail. For the fields F24 , F25 , F26 , F27 and F28 we present the optimal XOR count for each non-
trivial element α in Table 4.1, Table 4.2, Table 4.3, Table 4.4 and Table 4.5, respectively. The main
observation is that each element that is not contained in a proper subfield can be implemented
with at most 3 additions. Furthermore, whenever an XOR count of 2 is possible, the minimal
polynomial of α is a pentanomial in all those cases. However, a more thorough characterization
of elements with non-optimal XOR count is left as an open problem (see Section 4.6 for more
details).

Those results are based on a search. Since we are only interested in matrices up to similarity
(due to the change of basis), we just need to consider all matrices in the normal form described
in Corollary 4.2. This will exhaust all possibilities of similarity classes for a given XOR count d.
In particular, the search space is reduced from m!(m(m− 1))d to only p(m)(m(m− 1))d where
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Table 4.3: Minimal XOR counts for all elements in F∗26 .

minimal polynomial mα min wt⊕(α) matrix
x + 1 0 I

x2 + x + 1 3 Cmα ⊕ Cmα ⊕ Cmα
x3 + x + 1 2 Cmα ⊕ Cmα
x3 + x2 + 1 2 Cmα ⊕ Cmα
x6 + x + 1 1 Cmα
x6 + x3 + 1 1 Cmα

x6 + x4 + x2 + x + 1 2 (Cx4+1 ⊕ Cx2+1)(I + E1,5 + E5,4)
x6 + x4 + x3 + x + 1 2 Cx6+1 + E2,3 + E4,6

x6 + x5 + 1 1 Cmα
x6 + x5 + x2 + x + 1 2 Cx6+1 + E2,2 + E3,6
x6 + x5 + x3 + x2 + 1 2 Cx6+1 + E2,2 + E3,5
x6 + x5 + x4 + x + 1 2 Cx6+1 + E2,3 + E3,1 + E3,3
x6 + x5 + x4 + x2 + 1 2 (Cx4+1 ⊕ Cx2+1)(I + E1,5 + E6,1 + E6,5)

Table 4.4: Minimal XOR counts for all elements in F∗27 .

minimal polynomial mα min wt⊕(α) matrix
x + 1 0 I

x7 + x + 1 1 Cmα
x7 + x3 + 1 1 Cmα

x7 + x3 + x2 + x + 1 2 Cx7+1 + E2,6 + E4,2
x7 + x4 + 1 1 Cmα

x7 + x4 + x3 + x2 + 1 2 (Cx4+1 ⊕ Cx3+1)(I + E1,5 + E5,3)
x7 + x5 + x2 + x + 1 2 (Cx5+1 ⊕ Cx2+1)(I + E1,6 + E6,5)
x7 + x5 + x3 + x + 1 2 Cx7+1 + E2,3 + E4,7
x7 + x5 + x4 + x3 + 1 2 (Cx4+1 ⊕ Cx3+1)(I + E1,5 + E7,2)

x7 + x5 + x4 + x3 + x2 + x + 1 3 Cx7+1 + E2,3 + E4,6 + E4,7
x7 + x6 + 1 1 Cmα

x7 + x6 + x3 + x + 1 2 (Cx6+1 ⊕ Cx1+1)(I + E1,7 + E7,4)
x7 + x6 + x4 + x + 1 2 (Cx6+1 ⊕ Cx1+1)(I + E1,7 + E7,3)
x7 + x6 + x4 + x2 + 1 2 Cx7+1 + E2,4 + E4,1 + E4,4
x7 + x6 + x5 + x2 + 1 2 (Cx5+1 ⊕ Cx2+1)(I + E1,6 + E7,1 + E7,6)

x7 + x6 + x5 + x3 + x2 + x + 1 3 Cx7+1 + E2,2 + E2,3 + E4,7
x7 + x6 + x5 + x4 + 1 2 Cx7+1 + E2,2 + E3,4

x7 + x6 + x5 + x4 + x2 + x + 1 3 Cx7+1 + E2,2 + E3,4 + E3,7
x7 + x6 + x5 + x4 + x3 + x2 + 1 3 Cx7+1 + E2,2 + E2,3 + E4,6
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Table 4.5: Minimal XOR counts for all elements in F∗28 .

minimal polynomial mα min wt⊕(α) matrix
x + 1 0 I

x2 + x + 1 4
⊕4

k=1 Cmα
x4 + x + 1 2 Cmα ⊕ Cmα
x4 + x3 + 1 2 Cmα ⊕ Cmα

x4 + x3 + x2 + x + 1 4
⊕2

k=1(Cx4+1 + E2,2 + E3,4)
x8 + x4 + x3 + x + 1 2 Cx8+1 + E2,6 + E4,2
x8 + x4 + x3 + x2 + 1 3 Cmα
x8 + x5 + x3 + x + 1 2 (Cx5+1 ⊕ Cx3+1)(I + E1,6 + E6,5)
x8 + x5 + x3 + x2 + 1 2 Cx8+1 + E2,6 + E5,2
x8 + x5 + x4 + x3 + 1 2 (Cx5+1 ⊕ Cx3+1)(I + E1,6 + E6,2)

x8 + x5 + x4 + x3 + x2 + x + 1 3 Cx8+1 + E2,5 + E2,7 + E4,2
x8 + x6 + x3 + x2 + 1 2 (Cx6+1 ⊕ Cx2+1)(I + E1,7 + E8,5)

x8 + x6 + x4 + x3 + x2 + x + 1 3 Cx8+1 + E2,3 + E4,7 + E4,8
x8 + x6 + x5 + x + 1 2 Cx8+1 + E2,4 + E4,2
x8 + x6 + x5 + x2 + 1 2 (Cx6+1 ⊕ Cx2+1)(I + E1,7 + E7,2)
x8 + x6 + x5 + x3 + 1 2 Cx8+1 + E2,3 + E4,6
x8 + x6 + x5 + x4 + 1 3 Cmα

x8 + x6 + x5 + x4 + x2 + x + 1 3 Cx8+1 + E2,3 + E2,4 + E5,8
x8 + x6 + x5 + x4 + x3 + x + 1 3 Cx8+1 + E2,3 + E2,5 + E6,8

x8 + x7 + x2 + x + 1 2 Cx8+1 + E2,2 + E3,8
x8 + x7 + x3 + x + 1 2 (Cx7+1 ⊕ Cx+1)(I + E1,8 + E8,5)
x8 + x7 + x3 + x2 + 1 2 Cx8+1 + E2,2 + E3,7

x8 + x7 + x4 + x3 + x2 + x + 1 3 Cx8+1 + E2,2 + E3,6 + E3,8
x8 + x7 + x5 + x + 1 2 (Cx7+1 ⊕ Cx+1)(I + E1,8 + E8,3)
x8 + x7 + x5 + x3 + 1 2 (Cx5+1 ⊕ Cx3+1)(I + E1,6 + E8,1 + E8,6)
x8 + x7 + x5 + x4 + 1 2 Cx8+1 + E2,2 + E3,5

x8 + x7 + x5 + x4 + x3 + x2 + 1 3 Cx8+1 + E2,2 + E3,5 + E3,7
x8 + x7 + x6 + x + 1 2 Cx8+1 + E2,3 + E3,1 + E3,3

x8 + x7 + x6 + x3 + x2 + x + 1 3 Cx8+1 + E2,2 + E2,3 + E4,8
x8 + x7 + x6 + x4 + x2 + x + 1 3 (Cx6+1 ⊕ Cx2+1)(I + E1,7 + E7,3 + E7,8)
x8 + x7 + x6 + x4 + x3 + x2 + 1 3 Cx8+1 + E2,2 + E2,3 + E4,7
x8 + x7 + x6 + x5 + x2 + x + 1 3 Cx8+1 + E2,2 + E3,4 + E3,8
x8 + x7 + x6 + x5 + x4 + x + 1 3 Cx8+1 + E2,3 + E3,1 + E3,3 + E8,3
x8 + x7 + x6 + x5 + x4 + x2 + 1 3 Cx8+1 + E2,2 + E2,5 + E6,7
x8 + x7 + x6 + x5 + x4 + x3 + 1 3 Cx8+1 + E2,2 + E2,3 + E4,6
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p(m) denotes the number of partitions of m, which is exactly the number of possible cycle normal
forms of dimension m. This allows us to exhaustively search over all similarity classes up to d = 3
XOR operations for the fields of small size. The key-point here is that, instead of searching for
an optimal basis for a given field element, we generated all matrices with small XOR count and
used Theorem 4.1 in order to check which field element (if any) the given matrix corresponds to.

In order to identify a single lightweight element for larger field sizes, we identified conditions
in which cases the characteristic polynomial of a matrix with XOR count 2 has weight 5, see
Theorem 4.4 below. During the search, one only has to check for irreducibility. This allows to
compute the results presented in Table B.1 extremely fast, that is, within a couple of minutes on
a standard PC.

Theorem 4.4. Let T = Cxm+1 + Ei1, j1 + Ei2, j2 such that the following relations hold:

i1 < j1 6= m, i2 > j2 + 1, i1 ≤ j2, i2 ≤ j1, j1 − (i1 − 1) 6= m, m− ( j1 − i1) 6= i2 − j2

The characteristic polynomial of T is a pentanomial of degree m. In particular

χT = λ
m +λm+i1− j1+i2− j2−2 +λm+i1− j1−1 +λi2− j2−1 + 1.

◊

Proof. The first two conditions ensure that T has exactly one additional non-zero entry in the
upper and one in the lower triangle (not on the main diagonal). Since j1, j2, i2 6= m, we can
expand along the last column and obtain

χT = det(Sλm−1 + Ei1−1, j1 + Ei2−1, j2) +λdet(λIm−1 + Cxm−1 + Ei1, j1 + Ei2, j2).

For simplicity, we define A := Sλm−1 + Ei1−1, j1 + Ei2−2, j2 and B := λIm−1 + Cxm−1 + Ei1, j1 + Ei2, j2 .
In order to compute the latter part, we “push” the additional non-zero entry from the upper
triangle to the top-right corner by first expanding m− 1− j1 times along the last column and
then expanding i1 − 1 times along the first row. The condition i2 ≤ j1 ensures that Ei2, j2 will not
be eliminated from expanding along the last column and the condition i1 ≤ j2 ensures that Ei2, j2
will not be eliminated from expanding along the first row. Using Lemma 4.3, one obtains

λdet(B) = λλm−1− j1λi1−1 det(λI j1−i1+1 + Cx j1−i1+1+1 + Ei2−i1+1, j2−i1+1)

= λm−1− j1+i1(λ j1−i1+1 +λi2−i1+1− j2+i1−1−1 + 1)

= λm +λm+i1− j1+i2− j2−2 +λm+i1− j1−1.

For det(A), we proceed similar to case (iii) in Lemma 4.3. We first expand j2 − 1 times along
the first column in order to get the additional non-zero value from the lower triangle to the
leftmost column. Because of the condition i1 ≤ j2, this eliminates Ei1−1, j1 . Now, one can expand
m− j2 − (i2 − j2) times along the last row, until the remaining additional non-zero entry lies in
the lower left corner of the remaining matrix. We finally expand along the first column one more
time and obtain

det(A) = det(Sλm− j2
+ Ei2− j2,1) = det(Sλi2− j2

+ Ei2− j2,1) = λ
i2− j2−1 + 1.

The last two assumptions make sure that all of the five coefficients of det(A)+λdet(B) are distinct
such that χT is indeed a pentanomial.
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4.4 Constructing Lightweight MDS Matrices

Our goal is now to construct lightweight MDS matrices. We use the results obtained in the
previous sections and restrict our search to circulant matrices and entries with low XOR count.
This simplifies checking the MDS property and computing an upper bound of the XOR count of
the whole matrix. The complexity of our algorithm enables us to easily search for MDS matrices
up to dimension 8. Our construction is generic and works for all finite fields F2m with m> b for
a given bound b.

More precisely, we construct circulant matrices with entries of the form α±i where α is an
element in F2m . Choosing entries of this form enables us to easily upper-bound the XOR count of
the elements since

wt⊕(x±k)≤ k wt⊕(x).

This can be easily seen by using Corollary 4.1 and the fact that αk can be implemented by k
times implementing α. We want to keep the size of the finite field, over which the matrix is
defined, generic. Thus, we choose the matrix entries from a subgroup of the field of fractions of
the polynomial ring F2[x], denoted Quot(F2[x]). That is, every element is of the form

x s + as−1 x s−1 + · · ·+ a1 x + a0

x s′ + bs′−1 x s′−1 + · · ·+ b1 x + b0
.

More precisely, and as mentioned above, we restrict our search to elements from 〈x〉 which is the
multiplicative subgroup of Quot(F2[x]) generated by x . Our search works by constructing MDS
conditions for a t × t matrix M with entries in 〈x〉. This approach later allows us to substitute
the indeterminate x by any α ∈ F2m that fulfills all of the conditions given below. In this context,
we let M(α) ∈Matt(F2m) denote the matrix obtained by substituting x with α ∈ F2m .

We define the weight of some circulant matrix with entries in 〈x〉 as the sum of the absolute
values of the exponents in its first row, that is, the number of times α has to be applied per row.
Then, for a given dimension, we are interested in finding the lightest matrix M which can be
made MDS for as many finite fields as possible. Note that the higher priority here was to find
a lightweight matrix. Thus, there might exist matrices which can be made MDS for even more
fields, but with a probably higher cost.

MDS conditions

Note that a matrix is MDS, if and only if all its square submatrices are invertible [MS77, page
321, Theorem 8]. Thus, given a matrix M ∈Matt(Quot(F2[x])), we compute the determinants
of all square submatrices (called minors) of M in order to check the MDS property. This way one
obtains a list of conditions (polynomials in F2) for a matrix to be MDS. Since the determinant of a
matrix with elements from a field is an element of the field itself, all of these determinants can be
represented as the fraction of two polynomials. Thus, M is MDS if and only if the numerator of all
minors is non-zero. One can decompose the numerators into their irreducible factors and collect
all of them in a set S. This set now defines the MDS conditions. In particular, M(α) is MDS if and
only if α is not a root of any of these irreducible polynomials in S, that is, iff mα /∈ S. This trivially
holds for m>maxp∈S{deg(p)} and any α ∈ F2m which is not contained in a proper subfield. In



4.4. CONSTRUCTING LIGHTWEIGHT MDS MATRICES 105

Listing 4.1: Sage code for computing the set S.

P.<x> = GF(2) [ ]
K = F r a c t i o n F i e l d (P)

def mds_equations (M) :
S = [P( x ) ]
for i in range ( len (M. rows ( ) )+1) [1 : ] :

L = M. minors ( i )
for l in L :

i f ( l != 0) :
F = l i s t ( l . numerator ( ) . f a c t o r ( ) )
for f in F :

S . append ( f [0 ])
else :

return
return l i s t ( set (S ))

general, if α is not contained in a proper subfield, the necessary and sufficient condition for
the existence of an MDS matrix M(α) is that not all irreducible polynomials of degree m are
contained in S. We note that there exists a value b which lower bounds the field size for which
M can always be made MDS. That is, for all b′ > b, there exists an irreducible polynomial of
degree b′ which is not in S.

4.4.1 Generic Lightweight MDS Matrices

We now present some results obtained by the approach described above. Given the restrictions,
these matrices achieve the smallest weight, i. e. the smallest sum of (absolute) exponents of x .
Later, we will use these generic matrices to build concrete instantiations of t × t MDS matrices
M(α) for t ∈ {2,3, . . . , 8} over a finite field F2m with m> b. We note that the given results are
not necessarily the only possible constructions with the smallest weight.

We also present the conditions for the matrix to be MDS, that is, the irreducible polynomials
that must not be equal to mα. However, since the number of conditions rapidly increases with
the dimension of the matrix, we refrain from presenting a complete list for dimensions 6 to 8.
Instead, we give the SageMath source code that was used to compute the set S of irreducible
polynomials in Listing 4.1.

2× 2 and 3× 3 matrices.

The matrices

circ(1,α) =

�

1 α

α 1

�

and

circ(1, 1,α) =





1 1 α

α 1 1
1 α 1





are MDS for all α 6= 0,1.
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4× 4 matrices.

For m> 3, there exists an α ∈ F2m such that the matrix circ(1, 1,α,α−2) is MDS. More precisely,
the matrix is MDS iff α is not a root of any of the following polynomials:

x

x + 1

x2 + x + 1

x3 + x + 1

x3 + x2 + 1

x4 + x3 + x2 + x + 1

x5 + x2 + 1

5× 5 matrices.

For m> 3, there exists an α ∈ F2m such that the matrix circ(1, 1,α,α−2,α) is MDS. More precisely,
the matrix is MDS iff α is not a root of any of the following polynomials:

x

x + 1

x2 + x + 1

x3 + x + 1

x3 + x2 + 1

x4 + x + 1

x4 + x3 + 1

6× 6 matrices.

For m> 5, there exists an α ∈ F2m such that the matrix circ(1,α,α−1,α−2, 1,α3) is MDS.

7× 7 matrices.

For m> 5, there exists an α ∈ F2m such that the matrix circ(1,1,α−2,α,α2,α,α−2) is MDS.

8× 8 matrices.

For m> 7, there exists an α ∈ F2m such that the matrix circ(1, 1,α−1,α,α−1,α3,α4,α−3) is MDS.

4.4.2 Instantiating Lightweight MDS Matrices

We now combine the efficient multiplication in finite fields from Section 4.3 with our construction
of MDS matrices. That is, the presented generic MDS matrices are instantiated with elements α
with low XOR count.
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Table 4.6: Optimal instantiations of the generic MDS matrices for 2 ≤ t ≤ 8. In each
cell, the first entry describes the minimal polynomial of α ∈ Fm

2 and the second entry
describes the overhead of the instantiated t × t matrix M(α). The trinomial xm+ xa + 1
is denoted by (a) and the pentanomial xm + xa + x b + x c + 1 is denoted by (a, b, c).

H
HHH

HHt
m

2 3 4 5 6 7 8 9 10 11 12 13

2 (1), 1 (1), 1 (1), 1 (2), 1 (1), 1 (1), 1 (6,5, 1), 2 (1), 1 (3), 1 (2), 1 (3), 1 (10,9, 1), 2
3 (1), 1 (1), 1 (1), 1 (2), 1 (1), 1 (1), 1 (6,5, 1), 2 (1), 1 (3), 1 (2), 1 (3), 1 (10,9, 1), 2
4 − − (1), 3 (3), 3 (1), 3 (1), 3 (6,5, 1), 6 (1), 3 (3), 3 (2), 3 (3), 3 (10,9, 1), 6
5 − − (3, 2, 1), 8 (2), 4 (1), 4 (1), 4 (6,5, 1), 8 (1), 4 (3), 4 (2), 4 (3), 4 (10,9, 1), 8
6 − − − − (1), 7 (1), 7 (6,5, 1), 14 (1), 7 (3), 7 (2), 7 (3), 7 (10, 9,1), 14
7 − − − − (1), 8 (1), 8 (6, 5,1), 16 (1), 8 (3), 8 (2), 8 (3), 8 (10, 9,1), 16
8 − − − − − − (6, 5,2), 26 (8), 13 (3), 13 (2), 13 (3), 13 (10, 9,1), 26

In a matrix multiplication, every element is computed as the sum over multiplications. The
according XOR count was already discussed in [Kho+14] and [Sim+15]. For our matrices, the
total number of XOR operations needed per row is upper bounded by

(t − 1)m+w ·wt⊕(α).

Here, (t − 1)m XORs are the static part which comes from summing over the multiplication
results and w is the weight as defined above. The overhead of w ·wt⊕(α) XORs is needed for
multiplying with the single elements. The static part cannot be changed by fast multiplication.
Therefore, this overhead is the part that has to be minimized.

The cost per bit for the whole matrix is given by

t((t − 1)m+w wt⊕(α))
tm

= t − 1+
w wt⊕(α)

m
.

One can notice that it decreases for larger field sizes.
For each of the matrices M described in Section 4.4.1, Table 4.6 presents choices for α such

that M(α) is MDS. Note that concrete instantiations are only given up to the field size m= 13.
The reason is that for larger m, all possible Cp with p as an irreducible degree-m polynomial of
weight 3 are valid choices. If no such trinomial exists, one can choose Tα,B as in Table B.1.

Table 4.7 compares the results presented in this section to the best constructions known
at the time of presenting the results in 2016. It turned out that our construction of the 4× 4
MDS matrix in F24 is identical to the F2-linear matrix constructed in [LS16; LW16]. We stress
that our construction led to the lightest MDS matrices in 2016, improving the results described
in [LS16; Sim+15] for 8× 8 MDS matrices in F24 and F28 respectively. This is also the case when
considering an unrolled implementation of the serial implementations in [WWW13]. Unrolled
variants of their implementations have an XOR count that is slightly larger than ours. Moreover,
and more importantly, the circuit depth is considerably increased due to the optimization with
respect to a serial implementation.

Note that our results in Table 4.7 are measured by the XOR count from Definition 4.1 while
the results from [LS16; LW16; Sim+15] use the old XOR count definition. Additionally to these
results, our understanding of how to choose an optimal basis can also be used to improve existing
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Table 4.7: Comparison of our results with the (non-involutory) F2m -linear MDS matrices
from [Sim+15, Section 6.2],[LS16] and [LW16] by overhead. †: In these constructions,
the XOR count is measured by counting the number of additional 1’s in the corresponding
matrix.

(t,m) our construction construction in [Sim+15]† construction in [LS16]† construction in [LW16]†

(4,4) 3 5 3 3
(4,8) 6 10 8
(8,8) 26 40 30

results in the old XOR count definition. For example, we can represent the 8× 8 MDS matrix in
F28 from [LS16] with 28 additional ones instead of 30 by a change of basis.
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4.5 Generalizing the MDS Property

Here, following e. g. [WWW13], we consider a generalization to additive MDS codes in order to
improve efficiency.

There are some dimensions for which no field element with an XOR count of 1 exists, for
instance m= 8. However, especially this dimension is very important since lots of block cipher
designs are byte-oriented. One would wish to have some element α with wt⊕(α) = 1. A way
of solving this problem is to not restrict to field elements. Instead, α can be chosen to be some
other matrix in the ring R =Matm(F2). Given a t × t matrix M with elements in Quot(F2[x]),
the substitution M(α) now consists of elements in a commutative ring with unity, which is the
subring of R generated by α. In general, given a commutative ring with unity R, one can define
the determinant detR : Matt(R)→ R in a similar way than for matrices over fields. As described
in [Kna07, p. 212 - 215], any A∈Matt(R) is invertible if and only if detR(A) is a unit in R. We
now define the MDS property for matrices over a commutative ring.

Definition 4.2. Let R be a commutative ring with unity. A matrix M ∈ Matt(R) is MDS if and
only if for every 1≤ t ′ ≤ t, any t ′ × t ′ submatrix of M is invertible. ◊

For checking the MDS property in our case, we use a well-known fact about block matrices.

Theorem 4.5 (Theorem 1 in [Sil00]). Let K be a field and let R be a commutative subring of
Matm(K) for some integer m. For any matrix M ∈Matd(R), it is

det(M) = det(detR(M)),

where det(M) is the determinant of M considered as M ∈Matdm(K). ◊

As an implication, M(α) is MDS if and only if p(α) is invertible for all p ∈ S, if and only if
det(p(α)) 6= 0 for all p ∈ S.

2× 2 and 3× 3 matrices.

Given M = circ(1, x) (resp. M = circ(1,1, x)), one has to make sure that both x and x + 1 are
invertible for M to be MDS. This is the case if x is substituted by the companion matrix Cxm+x+1
for m≥ 2. Thus, M(Cxm+x+1) is MDS and each entry has an XOR count of 1.

4× 4 matrices.

The MDS conditions are more complex than above. So, we only present some improvements for
m ∈ {8,13, 16}. The matrix M = circ(1,1,α,α−2) is MDS for

α ∈ {Cx8+x2+1, Cx13+x+1, Cx16+x+1}.

Note that a similar matrix for m= 8 was recently constructed in [LW16].
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4.6 Conclusion and Further Research

We presented a study of optimal multiplication bases with respect to the XOR count. When
applied to MDS matrices those lead to very efficient round-based implementations. We expect
our results to be applicable in other domains as well.

Our investigations leave many possibilities for future research. While we have been able to
characterize exactly which field elements can be implemented with one XOR operation only, the
general case is still open. For small fields of dimension smaller or equal to eight, we were able to
compute the optimal bases with the help of an exhaustive computer search. However, for larger
dimensions, this approach turns quickly inefficient and more insight would be needed. As a first
step, we conjectured the following statement in 2016.

Conjecture 4.1. If wt⊕(Tα,B) = 2, then mα is of weight smaller or equal to 5. ◊

Note that the converse of the conjectured statement is (unlike the case of trinomials) wrong.
As can be seen in Table 4.5, there exists a pentanomial of degree 8 which cannot be implemented
with two XOR operations only. Beyond that, our intuition was that the larger the weight of
the minimal polynomial, the larger the gap between the most efficient multiplication and the
efficiency of multiplying by means of the companion matrix. Quantifying and demonstrating
such a statement is an interesting and challenging problem which was later picked up by Kölsch
who was able to prove the above conjecture [Köl19]. Another proof of the conjecture was
independently found by Mesnager et al. [Mes+19].

A further interesting question is to get an improved understanding of how to most efficiently
multiply with elements in proper subfields. More specifically, as a generalization of Corollary 4.3,
one may ask the following question.

Question 4.1. Is the most efficient way to multiply with a subfield element given by multiplying
in the subfield d times, where d is the extension degree of the field when viewed as an extension
of the subfield? More precisely, given an α ∈ F∗

2m′ ⊂ F∗2m in a proper subfield of dimension
m′ = m

d and let Tα∈F
2m′ ,B′ be the multiplication matrix in F2m′ with an optimal XOR count. Is

Tα∈F2m ,B =
⊕d

k=1 Tα∈F
2m′ ,B′ a matrix with the lowest possible XOR count for multiplication with

α ∈ F2m? In particular, is wt⊕(Tα∈F2m ,B) = d wt⊕(Tα∈F
2m′ ,B′)? ◊

Furthermore, when optimizing for software, similar questions can be phrased and investigating
solutions that are valid for more than one specific platform is a challenging research topic.

After the publication of our results, many more papers about finding MDS matrices with few
XOR operations have been published. A comprehensive overview of the related work can be
found in Section 5.3.1 and Section 5.5. As in our results from Section 4.4, the typical procedure
is to locally optimize the finite field multiplication, leading to an overall (global) decreased
number of XOR operations. However, rather than finding globally optimized solutions by local
optimizations, the problem of global optimization could be tackled more directly. This is exactly
what we are doing in the next chapter, where we significantly improve all previous results with
respect to this problem.



5
Shorter Linear Straight-Line Programs

for MDS Matrices

The results from this paper have been published in the IACR journal Transactions on Symmetric
Cryptology [Kra+17] and presented at the conference Fast Software Encryption 2018 in Brugges,
Belgium. This is joint work with Gregor Leander, Ko Stoffelen, and Friedrich Wiemer. All authors
equally contributed.

5.1 Introduction

In the area of lightweight cryptography, several researchers started to optimize the construction
of many parts of block ciphers. As already motivated in the previous chapter, there recently was a
special focus on the linear layers and even more specifically the implementation of MDS matrices.
That is, linear layers with an optimal branch number.

The first line of work focused solely on minimizing the chip area of the implementation. This
started with the block cipher PRESENT [Bog+07] and goes over to many more designs, such as
LED [Guo+11] and the hash function PHOTON [GPP11], where MDS matrices were constructed
that are especially optimized for chip area by allowing a serialized implementation. However,
there seem to be only a few practical applications where a small chip area is the only optimization
goal and for those applications very good solutions are already available by now.

Later, starting with [Kho+14], researchers focused on round-based implementations with
the goal of finding MDS constructions that minimize the number of XOR operations needed for
their implementation. As explained in Section 4.2.2, the number of XOR operations needed was
initially bounded by the number of ones in the binary representation of the matrix.

However, as the number of ones only gives an upper bound on the number of required XORs,
several papers started to deviate from this conceptually easier but less accurate definition of
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XOR count and started to consider more efficient ways of implementing MDS matrices. One
of such contributions was presented in the previous chapter. Considering a t × t MDS matrix
over a finite field F2m given as M = (αi, j) the aim was to choose the elements αi, j in such a
way that implementing all of the multiplications x 7→ αi, j x in parallel becomes as cheap as
possible. In order to compute the matrix M entirely, those partial results have to be added
together, for which an additional amount of XORs is required. It became common to denote the
former cost as the overhead and the later cost, i. e., the cost of combining the partial results as
a fixed, incompressible part. A whole series of papers [BKL16; Jea+17b; LS16; LW16; LW17;
Sim+15; SS16a; SS16b; SS17; ZWS17], including the work from Chapter 4, managed to reduce
the overhead.

From a different viewpoint, what happened was that parts of the matrix, namely the cost
of multiplication with the αi, j, were extensively optimized, while taking the overall part of
combining the parts as a given. That is, researchers have focused on local optimization instead
of global optimization.

Indeed the task of globally optimizing is far from trivial, and thus the local optimization is
a good step forward. However, as discussed in Section 4.6, the natural next step is to directly
focus on the global optimization.

Interestingly, the task to optimize the cost of implementing the multiplication with a relatively
large, e. g., 32× 32 binary matrix, is another extensively studied line of research. It is known
that the problem is NP-hard [BMP08; BMP13] and thus renders quickly infeasible for increasing
matrix dimension. However, quite a number of heuristic algorithms for finding the shortest linear
straight-line program, which exactly corresponds to minimizing the number of XORs, have been
proposed in the literature [BFP17; BMP08; BMP13; BP10; FS10; FS12; Paa97; VSP17]. Those
algorithms produce very competitive results with a rather reasonable running time for arbitrary
binary matrices of dimension up to at least 32.

Thus, the natural next step in order to optimize the cost of implementing MDS matrices is to
combine those two approaches. This is exactly what we are doing in our work.

Our contribution, which we achieve by applying the heuristic algorithms to find a short linear
straight-line program to the case of MDS matrices, is threefold.

First, we use several well-locally-optimized MDS matrices from the literature and apply the
known algorithms to all of them. This is conceptually easy, with the main problem being the
implementation of those algorithms. In order to simplify this for follow-up works, we make our
implementation publicly available.

This simple application leads immediately to significant improvements. For instance, we get
an implementation of the AES MixColumn matrix that outperforms all previous implementations
in the literature, i. e., we use 97 XORs while the best implementation before used 103 XORs
([Jea+17a]). In the case of applying it to the other constructions, we often get an implementation
using less XOR operations than what was considered fixed costs before. That is, when (artificially)
computing it, the overhead would actually be negative. This confirms our intuition that the
overhead was already very well optimized in previous work, such that now optimizing globally is
much more meaningful.

Second, we took a closer look at how the previous constructions compare when being globally
optimized. Interestingly, the previous best construction, i. e., the MDS matrix with the smallest
overhead, was most of the time not the one with the fewest XORs. Thus, with respect to the global
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Table 5.1: Best-known MDS matrices. Matrices in the lower half are involutory. The
implementations are available on GITHUB and in Appendix D.

Type Previously Best-Known New Best-Known

GL(4,F2)
4×4 58 [Jea+17b; SS16b] 36* Eq. (5.1) (Hadamard)

GL(8,F2)
4×4 106 [LW16] 72 Eq. (5.2) (Subfield)

(F2[x]/0x13)
8×8 384 [Sim+15] 196† Eq. (5.3) (Cauchy)

GL(8,F2)
8×8 640 [LS16] 392 Eq. (5.4) (Subfield)

(F2[x]/0x13)
4×4 63 [Jea+17b] 42* [SS16b]

GL(8,F2)
4×4 126 [Jea+17b] 84 Eq. (5.5) (Subfield)

(F2[x]/0x13)
8×8 424 [Sim+15] 212† Eq. (5.6) (Vandermonde)

GL(8,F2)
8×8 736 [Jea+17b] 424 Eq. (5.7) (Subfield)

* Computed with heuristic from [BMP13].
† Computed with heuristic from [Paa97].

optimum, the natural question was, which known construction actually performs best. In order
to analyze that, we did extensive experimental computations to compare the distribution of the
optimized implementation cost for the various constructions. The, somewhat disappointing,
result is that all known constructions behave basically the same. The one remarkable exception
is the subfield construction for MDS matrices, first introduced in WHIRLWIND [Bar+10].

Third, we looked at finding matrices that perform exceptionally well with respect to the
global optimization, i. e., which can be implemented with an exceptionally low total number of
XORs. Those results are summarized in Table 5.1. Compared to previous known matrices, ours
improved on all – except for one, where the best-known matrix is the already published matrix
from [SS16b].

Finally, we like to point out two restrictions of our approach. First, we do not try to minimize
the amount of temporary registers needed for the implementation. Second, in line with all
previous constructions, we do not minimize the circuit depth. The latter restriction is out of the
scope of the current work but certainly an interesting task for the future.

All our implementations are publicly available on GITHUB:

https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices

Additionally, our straight-line programs for the matrices from Table 5.1 are given in Appendix D
and our straight-line program for the AES MixColumn matrix is given in Section 5.4.

5.2 Preliminaries

Before getting into details about the XOR count and previous work, let us recall some basic
notations and matrix constructions.

https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices
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5.2.1 Basic Notations

In this chapter, in favor of a more compact notation, we stick to the common habit and write
a polynomial as its coefficient vector interpreted as a hexadecimal number, i. e., x4 + x + 1
corresponds to 0x13.

We know from Section 1.2.2 and from the previous chapter that every multiplication by
an element α ∈ F2m can be described by a left-multiplication with a matrix Tα ∈ Fm×m

2 , called
the multiplication matrix of the element α. Given a t × t matrix M = (αi, j) with αi, j ∈ F2m for
1≤ i, j ≤ t, we defineB(M) := (Tαi, j

) ⊆ GL(m,F2)t×t ⊆ (Fm×m
2 )t×t ∼= Ftm×tm

2 . Its corresponding
binary tm× tm matrix is called the binary representation. Here, GL(m,F2) denotes the general
linear group, that is the group of invertible matrices over F2 of dimension m×m.

Given a matrix M and a vector u, the Hamming weights hw(M) and hw(u) are again defined
as the number of non-zero entries in M and u, respectively. In the case of a binary vector
v ∈ Ftm

2 , we define hwm(v) := hw(v′), where v′ ∈ (Fm
2 )

t is the vector that has been constructed
by partitioning v into groups of m bits. Furthermore, the branch number of a matrix M is defined
as bn(M) :=minu6=0{hw(u) + hw(Mu)}. For a binary matrix B ∈ Ftm×tm

2 , the branch number for
m-bit words is defined as bnm(B) :=minu∈Ftm

2 \{0}{hwm(u) + hwm(Mu)}.
Now, we recall the MDS definition from Section 1.3.3.

Definition 5.1. A t × t matrix M is MDS if and only if bn(M) = t + 1. ◊

It has been shown, that a matrix is MDS if and only if all its square submatrices are invert-
ible [MS77, page 321, Theorem 8]. (This theorem was used in Section 4.4 for finding the MDS
conditions.) MDS matrices do not exist for every choice of t, m. The exact parameters for which
MDS matrices do or do not exist are investigated in the context of the famous MDS conjecture
which was initiated in [Seg55]. For binary matrices, we need to modify Definition 5.1.

Definition 5.2. A binary matrix B ∈ Ftm×tm
2 is MDS for m-bit words if and only if bnm(M) =

t + 1. ◊

We typically deal with t × t MDS matrices over Fm
2 , respectively binary Ftm×tm

2 matrices that
are MDS for m-bit words where m ∈ {4, 8} is the size of the S-box. In either case, when we call a
matrix MDS, the size of m will always be clear from the context when not explicitly mentioned.

It is easy to see that, if M ∈ Ft×t
2m is MDS, then alsoB(M) is MDS for m-bit words. On the

other hand, there might also exist binary MDS matrices for m-bit words that have no according
representation over Fm

2 .
Other, non-MDS matrices are also common in cipher designs. To name only a few ex-

amples: PRESENT’s permutation matrix [Bog+07], lightweight implementable matrices from
PRINCE [Bor+12], or PRIDE [Alb+14], or the recently used almost-MDS matrices, e. g. in MI-
DORI [Ban+15], or QARMA [Ava17].

5.2.2 MDS Constructions

Cauchy and Vandermonde matrices are two famous constructions for building MDS matrices.
They have the advantage of being provably MDS.
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However, as known from the MDS conjecture, for some parameter choices, MDS matrices are
unlikely to exist. E. g., we do not know how to construct MDS matrices over F22 of dimension
4× 4.

Definition 5.3 (Cauchy matrix). Given two disjoint sets of t elements of a field F2m , A =
{a1, . . . , at}, and B = {b1, . . . , bt}. Then the matrix

M = cauchy(a1, . . . , at , b1, . . . , bt) :=











1
a1−b1

1
a1−b2

· · · 1
a1−bt

1
a2−b1

1
a2−b2

· · · 1
a2−bt

...
. . .

...
1

at−b1

1
at−b2

· · · 1
at−bt











is a Cauchy matrix. ◊

Every Cauchy matrix is MDS, e. g. see [GR13, Lemma 1].

Definition 5.4 (Vandermonde matrix). Given a t-tuple (a1, . . . , at) with ai ∈ F2m . Then the
matrix

M = vandermonde(a1, . . . , at) :=









a0
1 a1

1 · · · at−1
1

a0
2 a1

2 · · · at−1
2

...
. . .

...
a0

t a1
t · · · at−1

t









is a Vandermonde matrix. ◊

Given two Vandermonde matrices A and B with pairwise different ai , b j , then the matrix AB−1

is MDS, see [LF04, Theorem 2]. Furthermore, if ai = bi +∆ for all i and an arbitrary non-zero
∆, then the matrix AB−1 is also involutory [LF04; Saj+12a].

5.2.3 Specially Structured Matrix Constructions

Other constructions, such as circulant, Hadamard, or Toeplitz, are not per se MDS, but they have
the advantage that they greatly reduce the search space by restricting the number of submatrices
that appear in the matrix. For circulant matrices, this was e. g. already noted by Daemen et al.
[DKR97].

In order to generate a random MDS matrix with one of these constructions, we can choose
random elements for the matrix and then check for the MDS condition. Because of many repeated
submatrices, the probability to find an MDS matrix is much higher than for a fully random matrix.

Definition 5.5 (Circulant matrices). A right-circulant t × t matrix is defined by the elements of
its first row a1, . . . , at as

M = circr(a1, . . . , at) :=









a1 a2 · · · at
at a1 · · · at−1
...

. . .
...

a2 · · · at a1









.
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A left-circulant t × t matrix is analogously defined as

M = circ`(a1, . . . , at) :=









a1 a2 · · · at
a2 a3 · · · a1
...

. . .
...

at a1 · · · at−1









.

◊

While in the literature circulant matrices are almost always right-circulant, left-circulant
matrices are equally fine for cryptographic applications. The often noted advantage of right-
circulant matrices, the ability to implement the multiplication serialized and with shifts in order
to save XORs, of course also applies to left-circulant matrices. Additionally, it is easy to see that
bn(circr(a1, . . . , at)) = bn(circ`(a1, . . . , at)), since the matrices only differ in a permutation of
the rows. Thus, for cryptographic purposes, it does not matter if a matrix is right-circulant or
left-circulant and we will therefore simply talk about circulant matrices in general. The common
practice of restricting the matrix entries to elements from a finite field comes with the problem
that circulant involutory MDS matrices over finite fields do not exist, see [JA09]. But Li and
Wang [LW16] showed that this can be avoided by taking the matrix elements from the general
linear group.

Definition 5.6 (Hadamard matrix). A (finite field) Hadamard matrix M is of the form

M =

�

M1 M2
M2 M1

�

,

where M1 and M2 are either Hadamard matrices themselves or one-dimensional. ◊

The biggest advantage of Hadamard matrices is the possibility to construct involutory matrices.
If we choose the elements of our matrix such that the first row sums to one, the resulting matrix
is involutory, see [GR13].

Definition 5.7 (Toeplitz matrix). A t × t Toeplitz matrix M is defined by the elements of its first
row a1, . . . , at and its first column a1, at+1, . . . , a2t−1 as

M = toep(a1, . . . , at , at+1, . . . , a2t−1) :=











a1 a2 · · · at

at+1 a1
. . . at−1

...
. . . . . .

...
a2t−1 a2t−2 · · · a1











,

that is, every element defines one minor diagonal of the matrix. ◊

To the best of our knowledge, Sarkar and Syed [SS16b] were the first to scrutinize Toeplitz
matrices in the context of XOR counts.

Finally, the subfield construction was first used to construct lightweight linear layers in the
WHIRLWIND hash function [Bar+10, Section 2.2.2] and later used in [Alb+14; Cho+12; Jea+17b;
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Kho+14; Sim+15]. As its name suggests, the subfield construction was originally defined only
for matrices over finite fields: a matrix with coefficients in F2m can be used to construct a matrix
with coefficients in F22m . Here, we use the natural extension to binary matrices.

Definition 5.8 (Subfield matrix). Given a t × t matrix M with entries αi, j ∈ Fm×m
2 . The subfield

construction of M is then a t × t matrix M ′ with

M ′ = subfield(M) :=
�

α′i, j
�

,

where each α′i, j =
�

αi, j 0
0 αi, j

�

∈ F2m×2m
2 . ◊

This definition is straightforward to extend for more than one copy of the matrix M .
The subfield construction has some very useful properties, see [Bar+10; Jea+17b; Kho+14;

Sim+15].

Lemma 5.1. For the subfield construction, the following properties hold:

1. Let M be a matrix that can be implemented with d XORs. Then the matrix M ′ = subfield(M)
can be implemented with 2d XORs.

2. Let M be an MDS matrix for m-bit words. Then M ′ = subfield(M) is MDS for 2m-bit words.

3. Let M be an involutory matrix. Then M ′ = subfield(M) is also involutory.

◊

Proof.

(1) Due to the special structure of the subfield construction, we can split the multiplication
by M ′ into two multiplications by M , each on one half of the input bits. Hence, the XOR
count doubles.

(2) We want to show that hw2m(u) + hw2m(M ′u) ≥ t + 1 for every non-zero u. We split u
into two parts u1 and u2, each containing alternating halves of the elements of u. As
described in [Kho+14], the multiplication of M ′ and u is the same as the multiplication
of the original matrix M and each of the two ui, if we combine the results according
to our splitting. Let b = hw2m(u) > 0. Then, we have b ≥ hwm(u1) and b ≥ hwm(u2).
Without loss of generality, let hwm(u1) > 0. Since M is MDS for m-bit words, we have
hwm(Mu1)≥ n− b+ 1 which directly leads to hw2m(M ′u)≥ n− b+ 1.

(3) As in the above proof, this property is straightforward to see. We want to show that
M ′M ′u= u for any vector u. Again, we split u into two parts, u1 and u2, each containing
alternating halves of the elements of u. Now, we need to show that M Mui = ui. This
trivially holds, as M is involutory.

With respect to cryptographic designs, this means the following: assume we have a linear
straight-line program with d XORs for an (involutory) t × t MDS matrix and m-bit S-boxes. We
can then easily construct a linear straight-line program with 2d XORs for an (involutory) t × t
MDS matrix and 2m-bit S-boxes.
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5.3 Related Work

In 2014, [Kho+14] introduced the notion of XOR count as a metric to compare the area-efficiency
of matrix multiplications. Following that, there has been a lot of work [BKL16; Jea+17b; LS16;
LW16; LW17; Sim+15; SS16a; SS16b; SS17; ZWS17] , including the work from Chapter 4,
on finding MDS matrices that can be implemented with as few XOR gates as possible in the
round-based scenario.

In an independent line of research, the problem of implementing binary matrix multiplications
with as few XORs as possible was extensively studied [BFP17; BMP08; BMP13; BP10; FS10;
FS12; Paa97; VSP17].

In this section, we depict these two fields of research and show how they can be combined.

5.3.1 Local Optimizations

Let us first recall the scenario. In a round-based implementation, the matrix is implemented
as a fully unrolled circuit. Thus, in the XOR count metric, the goal is to find a matrix that can
be implemented with a circuit of as few (2-input) XOR gates as possible. Of course, the matrix
has to fulfill some criteria, typically it is MDS. For finding matrices with a low XOR count, the
question of how to create a circuit for a given matrix must be answered.

The usual way for finding an implementation of t × t matrices over F2m was introduced
in [Kho+14]. As each of the t output components of a matrix-vector multiplication is computed
as a sum over t products, the implementation is divided into two parts. Namely the single
multiplications on the one hand and addition of the products on the other hand. As F2m

∼= Fm
2 , an

addition of two elements from Fm
2 requires m XORs and thus adding up the products for all rows

requires t(t − 1)m XORs in the case of an MDS matrix where every element is non-zero. If one
implements the matrix like this, these t(t − 1)m XORs are a fixed part that cannot be changed.
Accordingly, many papers [BKL16; LS16; LW16; ZWS17], including the work from Chapter 4,
just state the number of XORs for the single field multiplications when presenting results. The
other costs are regarded as inevitable. The goal then boils down to constructing matrices with
elements for which multiplication can be implemented with few XORs. Thus, the original goal
of finding a global implementation for the matrix is approached by locally looking at the single
matrix elements.

To count the number of XORs for implementing a single multiplication with an element
α ∈ F2m , the multiplication matrix Tα ∈ Fm×m

2 is considered. Such a matrix can be implemented
in a straightforward way with hw(Tα)−m XORs by simply implementing every XOR of the output
components. We call this the naive implementation of a matrix and when talking about the naive
XOR count of a matrix, we mean the hw(Tα)−m XORs required for the naive implementation.
In [Jea+17b], this is called d-XOR. It is the easiest and most frequently used method of counting
XORs. Of course, in the same way, we can also count the XORs of other matrices over Fm×m

2 , i. e.,
also matrices that were not originally defined over finite fields.

For improving the XOR count of the single multiplications, two methods have been introduced
in Chapter 4. First, if the matrix is defined over some finite field, one can consider different
field representations that lead to different multiplication matrices with potentially different
Hamming weights, see [BKL16; Sim+15; SS16a]. Second, by reusing intermediate results, a
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m×m binary matrix Tα might be implemented with less than hw(Tα)−m XORs, see [BKL16;
Jea+17b]. In [Jea+17b], this is called s-XOR. The according definitions from [Jea+17b] and Chap-
ter 4 [BKL16] require that all operations must be carried out on the input registers. That is, in
contrast to the naive XOR count, no temporary registers were allowed. However, as we consider
round-based hardware implementations, there is no need to avoid temporary registers since
these are merely wires between gates.

Nowadays, the XOR count of implementations is mainly dominated by the t(t − 1)m XORs
for putting together the locally optimized multiplications. Lastly, we seem to hit a threshold and
new results often improve existing results only by very few XORs. The next natural step is to shift
the focus from local optimization of the single elements to the global optimization of the whole
matrix. This was also formulated as future work in [Jea+17b]. As described in Section 5.2, we
can use the binary representation to write a t × t matrix over F2m as a binary tm× tm matrix.
First, we note, that the naive XOR count of the binary representation is exactly the naive XOR
count of implementing each element multiplication and finally adding the results. But if we look
at the optimization technique of reusing intermediate results for the whole tm× tm matrix, we
now have many more degrees of freedom. For the MixColumn matrix, there already exists some
work that goes beyond local optimization. An implementation with 108 XORs has been presented
in [BBR16a; BBR16b; Sat+01] and an implementation with 103 XORs in [Jea+17a]. A first step
to a global optimization algorithm was done in [Zha+16]. However, their heuristic did not yield
very good results and they finally had to go back to optimizing submatrices.

Interestingly, much better algorithms for exactly this problem are already known from a
different line of research.

5.3.2 Global Optimizations

Implementing binary matrices with as few XOR operations as possible is also known as the
problem of finding the shortest linear straight-line program [BMP13; FS10] over the finite field
with two elements. Although this problem is NP-hard [BMP08; BMP13], attempts have been
made to find exact solutions for the minimum number of XORs. Fuhs and Schneider-Kamp [FS10;
FS12] suggested reducing the problem to satisfiability of Boolean logic. They presented a general
encoding scheme for deciding if a matrix can be implemented with a certain number of XORs.
Now, for finding the optimal implementation, they repeatedly use SAT solvers for a decreasing
number of XORs. Then, when they know that a matrix can be implemented with d XORs, but
cannot be implemented with d − 1 XORs, they are able to present d as the optimal XOR count.
They used this technique to search for the minimum number of XORs necessary to compute a
binary matrix of size 21×8, which is the first linear part of the AES S-box when it is decomposed
into two linear parts and a minimal non-linear core. While it worked to find a solution with
23 XORs and to show that no solution with 20 XORs exists, it turned out to be infeasible to
prove that a solution with 22 XORs does not exist and that 23 is therefore the minimum. In
general, this approach quickly becomes infeasible for larger matrices. Stoffelen [Sto16] applied
it successfully to a small 7× 7 matrix, but did not manage to find a provably minimal solution
with a specific matrix of size 19× 5. However, there do exist heuristics to efficiently find short
linear straight-line programs also for larger binary matrices.
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Back in 1997, Paar [Paa97] studied how to optimize the arithmetic used by Reed-Solomon
encoders. Essentially, this boils down to reducing the number of XORs that are necessary for a
constant multiplier over the field F2m . Paar described two algorithms that find a local optimum.
Intuitively, the idea of the algorithms is to iteratively eliminate common subexpressions. Let Tα be
the multiplication matrix, to be applied to a variable field element x = (x1, . . . , xm) ∈ Fm

2 . The
first algorithm for computing Tαx , denoted PAAR1 in the rest of this work, finds a pair (i, j), with
i 6= j, where the bitwise AND between columns i and j of Tα has the highest Hamming weight. In
other words, it finds a pair (x i , x j) that occurs most frequently as a subexpression in the output
bits of Tαx . The XOR between those is then computed, and M is updated accordingly, with x i+ x j
as a newly available variable. This is repeated until there are no common subexpressions left.

The second algorithm, denoted PAAR2, is similar, but differs when multiple pairs are equally
common. Instead of just taking the first pair, it recursively tries all of them. The algorithm is
therefore much slower, but can yield slightly improved results. Compared to the naive XOR count,
Paar noted an average reduction in the number of XORs of 17.5% for matrices over F24 and 40%
for matrices over F28 .

In 2009, Bernstein [Ber09] presented an algorithm for efficiently implementing linear maps
modulo 2. Based on this and on [Paa97], a new algorithm was presented in [BC14]. However, the
algorithms from [BC14; Ber09] have a different framework in mind and yield a higher number
of XORs compared to [Paa97].

Paar’s algorithms lead to so-called cancellation-free programs. This means that for every XOR
operation u+ v, none of the input bit variables x i occurs in both u and v. Thus, the possibility that
two variables cancel each other out is never taken into consideration, while this may in fact yield
a more efficient solution in terms of the total number of XORs. In 2008, Boyar et al. [BMP08]
showed that cancellation-free techniques can often not be expected to yield optimal solutions
for non-trivial inputs. They also showed that, even under the restriction to cancellation-free
programs, the problem of finding an optimal program is NP-complete.

Around 2010, Boyar and Peralta [BP10] came up with a heuristic that is not cancellation-free
and that improved on Paar’s algorithms in most scenarios. Their idea was to keep track of a
distance vector that contains, for each targeted expression of an output bit, the minimum number
of additions of the already computed intermediate values that are necessary to obtain that target.
To decide which values will be added, the pair that minimizes the sum of new distances is picked.
If there is a tie, the pair that maximizes the Euclidean norm of the new distances is chosen.
Additionally, if the addition of two values immediately leads to a targeted output, this can always
be done without searching further. This algorithm works very well in practice, although it is
slower compared to PAAR1.

Next to using the Euclidean norm as tie breaker, they also experimented with alternative
criteria. For example, choosing the pair that maximizes the Euclidean norm minus the largest
distance, or choosing the pair that maximizes the Euclidean norm minus the difference between
the two largest distances. The results were then actually very similar. Another tie-breaking
method is to flip a coin and choose a pair randomly. The algorithm is now no longer deterministic
and can be run multiple times. The lowest result can then be used. This performed slightly better,
but of course processing again takes longer.

The results of [BMP08] and [BP10] were later improved and published in [BMP13].
In early 2017, Visconti et al. [VSP17] explored the special case where the binary matrix is
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dense. They improved the heuristic on average for dense matrices by first computing a common
path, an intermediate value that contains most variables. The original algorithm is then run
starting from this common path.

At BFA 2017, Boyar et al. [BFP17] presented an improvement that simultaneously reduces
the number of XORs and the depth of the resulting circuit.

We refer to this family of heuristics [BFP17; BMP08; BMP13; BP10; VSP17] as the BP
heuristics.

5.4 Results

Using the techniques described above, we now give optimized XOR counts and implementations
of published matrices. Next, we analyze the statistical behavior of matrix constructions. Finally,
we summarize the best results.

5.4.1 Improved Implementations of Matrices

Using the heuristic methods that are described in the previous section, we can easily and sig-
nificantly reduce the XOR counts for many matrices that have been used in the literature. The
running times for the optimizations are in the range of seconds to minutes. All corresponding
implementations are available in the GITHUB repository. Table 5.2 lists results for matrices that
have been suggested in previous works where it was an explicit goal to find a lightweight MDS
matrix. While the constructions themselves will be compared in Section 5.4.2, this table deals
with the suggested instances.

A number of issues arise from this that are worth highlighting. First of all, it should be
noted that without any exception, the XOR count for every matrix could be reduced with little
effort. Second, it turns out that there are many cases where the t(t − 1)m XORs for summing
the products for all rows is not even a correct lower bound. In fact, all the 4× 4 matrices over
GL(4,F2) that we studied can be implemented in at most 48 XORs.

What may be more interesting, is whether the XOR count as it was used previously is in fact a
good predictor for the actual implementation cost as given by the heuristical methods. Here we
see that there are some differences. For example, [LW16]’s circulant 4×4 matrices over GL(8,F2)
first compared very favorably, but we now find that the subfield matrix of [Jea+17b] requires
fewer XORs.

Regarding involutory matrices, it was typically the case that there was an extra cost involved
to meet this additional criterion. However, the heuristics sometimes find implementations with
even fewer XORs than the non-involutory matrix that was suggested. See for example the matrices
of [SS16b] in the table.

Aside from these matrices, we also looked at MDS matrices that are used by various ciphers
and hash functions. Table 5.3 lists their results. Not all MDS matrices that are used in ciphers are
incorporated here. In particular, LED [Guo+11], PHOTON [GPP11], and PRIMATES [And+14] use
efficient serialized MDS matrices. Comparing these to our “unrolled” implementations would be
somewhat unfair.

The implementation of the MDS matrix used in AES with 97 XORs was, by the time of
presenting the results, the most efficient implementation so far and improved on the previous
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Table 5.2: Comparison of 4× 4 and 8× 8 MDS matrices over GL(4,F2) and GL(8,F2).

Matrix Naive Literature PAAR1 PAAR2 BP

4× 4 matrices over GL(4,F2)

[Sim+15] (Hadamard) 68 20+ 48 50 48* 48
[LS16] (Circulant) 60 12+ 48 49 46* 44
[LW16] (Circulant)† 60 12+ 48 48 47* 44
Section 4.4.2, Table 4.7 [BKL16] (Circulant)† 64 12+ 48 48 47 42
[SS16b] (Toeplitz) 58 10+ 48 46 45* 43
[Jea+17b] 61 10+ 48 48 47 43

[Sim+15] (Hadamard, Involutory) 72 24+ 48 52 48* 48
[LW16] (Hadamard, Involutory) 72 24+ 48 51 48* 48
[LW16] (Circulant, Involutory) 68 20+ 48 48 48 48
[SS16b] (Involutory) 64 16+ 48 50 48 42
[Jea+17b] (Involutory) 68 15+ 48 51 47* 47

4× 4 matrices over GL(8,F2)

[Sim+15] (Subfield) 136 40+ 96 100 98* 100
[LS16] (Circulant) 128 28+ 961 116 116 112
[LW16] 106 10+ 96 102 102 102
Section 4.4.2, Table 4.7 [BKL16] (Circulant) 136 24+ 96 116 112* 110
[SS16b] (Toeplitz) 123 24+ 961 110 108 107
[Jea+17b] (Subfield) 122 20+ 96 96 95* 86

[Sim+15] (Subfield, Involutory) 144 40+ 961 104 101* 100
[LW16] (Hadamard, Involutory) 136 40+ 96 101 97* 91
[LW16] (Circulant, Involutory) 132 36+ 96 104 104* 97
[SS16b] (Involutory) 160 64+ 96 110 109* 100
[Jea+17b] (Subfield, Involutory) 136 30+ 96 102 100* 91

8× 8 matrices over GL(4,F2)

[Sim+15] (Hadamard) 432 160+ 2241 210 209* 194
[SS17] (Toeplitz) 394 170+ 224 205 205* 201

[Sim+15] (Hadamard, Involutory) 512 200+ 2241 222 222* 217

8× 8 matrices over GL(8,F2)

[Sim+15] (Hadamard) 768 256+ 4481 474 — 467
[LS16] (Circulant) 688 192+ 4481 464 — 447
Section 4.4.2, Table 4.7 [BKL16] (Circulant) 784 208+ 4481 506 — 498
[SS17] (Toeplitz) 680 232+ 448 447 — 438

[Sim+15] (Hadamard, Involutory) 816 320+ 4481 430 — 428
[Jea+17b] (Hadamard, Involutory) 1152 288+ 448 620 — 599

* Stopped algorithm after three hours runtime.
† In Chapter 4 [BKL16] and[LW16], not only one matrix is given, but instead whole classes

of MDS matrices were given. For Chapter 4 [BKL16], we chose the canonical candidate
from its class. For [LW16], we chose the matrix presented as an example in the paper.

1 Reported by [Jea+17b].
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Table 5.3: Matrices used in ciphers or hash functions. Note that matrices in the lower
part of the table, marked with ‖, are not MDS. Additionally, these matrices are commonly
not a target for “XOR count”-based implementation optimizations, as they are per se
very efficiently implementable. Additionally, these matrices are commonly not a target
for “XOR count”-based implementation optimizations, as they are per se very efficiently
implementable.

Cipher Type Naive Literature PAAR1 PAAR2 BP

AES [DR02]‡ (Circ.) (F2[x]/0x11b)
4×4 152 7+ 961 108 108* 97†

ANUBIS [BRa] (Had., Invol.) (F2[x]/0x11d)
4×4 184 80+ 962 121 121* 106

CLEFIA M0 [Shi+07] (Had.) (F2[x]/0x11d)
4×4 184 80+ 962 121 121* 106

CLEFIA M1 [Shi+07] (Had.) (F2[x]/0x11d)
4×4 208 —5 121 121* 111

FOX MU4 [JV04] (F2[x]/0x11b)
4×4 219 —5 144 143* 137

TWOFISH [Sch+98] (F2[x]/0x169)
4×4 327 —5 151 149* 129

FOX MU8 [JV04] (F2[x]/0x11b)
8×8 1257 —5 611 — 594

GRØSTL [Gau+] (Circ.) (F2[x]/0x11b)
8×8 1112 504+ 4482 493 — 475

KHAZAD [BRb] (Had., Invol.) (F2[x]/0x11d)
8×8 1232 584+ 4482 488 — 507

WHIRLPOOL [BRc]§ (Circulant) (F2[x]/0x11d)
8×8 840 304+ 4482 481 — 465

JOLTIK [JNP14a] (Had., Invol.) (F2[x]/0x13)
4×4 72 20+ 482 52 48 48

SMALLSCALE AES [CMR05] (Circ.) (F2[x]/0x13)
4×4 72 —5 54 54 47

WHIRLWIND M0 [Bar+10] (F2[x]/0x13)
8×8 488 168+ 2242 218 218* 212

(Had., Subf.)

WHIRLWIND M1 [Bar+10] (F2[x]/0x13)
8×8 536 184+ 2242 246 244* 235

(Had., Subf.)

QARMA128 [Ava17]‖ (Circ.) (F2[x]/0x101)
4×4 64 —5 48 48 48

ARIA [Kwo+03]‖ (Invol.) (F2)
128×128 768 4803 416 — —

MIDORI [Ban+15]‖,¶ (Circ.) (F24)4×4 32 —5 24 24 24

PRINCE ÒM0, ÒM1 [Bor+12]‖ (F2)
16×16 32 —5 24 24 24

PRIDE L0–L3 [Alb+14]‖ (F2)
16×16 32 —5 24 24 24

QARMA64 [Ava17]‖ (Circ.) (F2[x]/0x11)
4×4 32 —5 24 24 24

SKINNY64 [Bei+16]‖ (F24)4×4 16 124 12 12 12

* Stopped algorithm after three hours runtime.
† For the implementation see our GITHUB repository.
‡ Also used in other primitives, e. g. its predecessor SQUARE [DKR97], and MUGI [Wat+02].
§ Also used in MAELSTROM [FBR06].
¶ Also used in other ciphers, e. g. MANTIS [Bei+16], and FIDES [Bil+13].
‖ Not an MDS matrix.

1 Reported by [Jea+17a].
2 Reported by [Jea+17b].
3 Reported by [Bir+04].
4 Reported by the designers.
5 We are not aware of any reported results for this matrix.
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implementation of 103 XORs, reported by [Jea+17a]. As this is probably the most interesting of
the presented implementations, the according straight-line program is presented in Listing 5.1,
where x , y, t denote input, output, and temporary values, respectively. However, as noted before,
all implementations are available online on GITHUB (https://github.com/rub-hgi/shorter_linear_
slps_for_mds_matrices). Very recently, an implementation of the AES MixColumn matrix with 95
XORs has been reported by Banik et al. [BFI19].

Listing 5.1: Straight-line program for
the AES MixColumn matrix that uses
97 XORs.

1 t0 = x7 + x15
2 t1 = x23 + x31
3 t2 = x7 + x31
4 t3 = x15 + x23
5 t4 = x0 + x8
6 t5 = x6 + x14
7 t6 = x5 + x29
8 t7 = x16 + x24
9 t8 = x22 + x30

10 t9 = x13 + x21
11 t10 = x1 + x9
12 t11 = x10 + x18
13 t12 = x2 + x26
14 t13 = x17 + x25
15 t14 = x4 + x12
16 t15 = x3 + x27
17 t16 = x20 + x28
18 t17 = x11 + x19
19 t18 = x0 + t3
20 y8 = t7 + t18
21 t20 = x16 + t4
22 y24 = t2 + t20
23 t22 = t1 + t7
24 y16 = t20 + t22
25 t24 = x8 + t7
26 y0 = t0 + t24
27 t26 = x6 + t8
28 y14 = t9 + t26
29 t28 = x7 + x22
30 t29 = x21 + t5
31 t30 = x5 + y14
32 y6 = t29 + t30
33 t32 = x10 + t12
34 y18 = t13 + t32
35 t34 = x25 + t11
36 t35 = x1 + x2
37 y26 = t34 + t35
38 t37 = x9 + y18

39 y10 = t34 + t37
40 t39 = t0 + t32
41 t40 = x13 + t6
42 y21 = t16 + t40
43 t42 = x28 + t9
44 t43 = x4 + x5
45 y29 = t42 + t43
46 t45 = x12 + y21
47 y13 = t42 + t45
48 t47 = x14 + t1
49 y15 = t28 + t47
50 t49 = x6 + x15
51 y7 = t47 + t49
52 t51 = x15 + t2
53 y23 = t8 + t51
54 t53 = x22 + t5
55 y30 = t6 + t53
56 t55 = x25 + t10
57 y17 = t22 + t55
58 t57 = x26 + t10
59 y2 = t11 + t57
60 t59 = x29 + x30
61 y22 = t29 + t59
62 t61 = x29 + t9
63 y5 = t14 + t61
64 t63 = t3 + t26
65 y31 = t28 + t63
66 t65 = t4 + t37
67 y1 = t39 + t65
68 t67 = x1 + t13
69 t68 = t18 + t20
70 y9 = t67 + t68
71 t70 = x3 + t2
72 t71 = x27 + t14
73 t72 = x20 + t70
74 y28 = t71 + t72
75 t74 = t12 + t17
76 y27 = t70 + t74
77 t76 = x2 + x27
78 t77 = t39 + t74
79 y3 = t76 + t77

https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices
https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices
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80 t79 = t3 + t11
81 t80 = x19 + t15
82 y11 = t79 + t80
83 t82 = x4 + t3
84 t83 = t16 + t17
85 y12 = t82 + t83
86 t85 = x19 + t1
87 t86 = x28 + t71
88 y20 = t85 + t86

89 t88 = x9 + y17
90 t89 = y1 + t68
91 y25 = t88 + t89
92 t91 = x11 + y27
93 t92 = y3 + t79
94 y19 = t91 + t92
95 t94 = t14 + t70
96 t95 = y12 + t85
97 y4 = t94 + t95

As a side note, cancellations do occur in this implementation, we thus conjecture that such a low
XOR count is not possible with cancellation-free programs.

5.4.2 Statistical Analysis

Several constructions for building MDS matrices are known. But it is not clear which one is the
best when we want to construct matrices with a low XOR count. In this section, we present
experimental results on different constructions and draw conclusions for the designer. We also
examine the correlation between naive and heuristically improved XOR counts. When designing
MDS matrices with a low XOR count, we are faced with two major questions. First, which
construction is preferable? Our intuition in this case is, a better construction has better statistical
properties, compared to an inferior construction. We are aware that the statistical behavior of a
construction might not be very important for a designer who only looks for a single, very good
instance. Nevertheless, we use this as a first benchmark. Second, is it a good approach to choose
the matrices as sparse as possible? In order to compare the listed constructions, we construct
random instances of each and then analyze them with statistical means.

Building Cauchy and Vandermonde matrices is straightforward as we only need to choose
the defining elements randomly from the underlying field. For the other constructions, we use
the following backtracking method to build random MDS constructions of dimension 4 × 4.
Choose the new random elements from GL(m,F2) that are needed for the matrix construction in
a step-by-step manner. In each step, construct all new square submatrices. If any of these is not
invertible, discard the chosen element and try a new one. In the case that no more elements are
left, go one step back and replace that element with a new one, then again check the according
square submatrices, and so on. Eventually, we end up with an MDS matrix because we iteratively
checked that every square submatrix is invertible. The method is also trivially derandomizable,
by not choosing the elements randomly, but simply enumerating them in any determined order.

Apart from applying this method to the above-mentioned constructions, we can also use it to
construct an arbitrary, i. e. unstructured, matrix that is simply defined by its 16 elements. This
approach was already described in [Jea+17b].

In this manner, we generated 1 000 matrices for each construction and computed the distri-
butions for the naive XOR count, the optimized XOR count of PAAR1, and BP. Table 5.4 lists the
statistical parameters of the resulting distributions and Fig. 5.1 depicts them (the sample size N
is the same for Table 5.4 and Figs. 5.1, 5.2 and C.1 to C.4).

The most obvious characteristic of the statistical distributions is that the means µ do not
differ much for all randomized constructions. The variance σ2, on the contrary, differs much
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Figure 5.1: XOR count distributions for 4× 4 MDS matrix constructions over GL(4,F2).
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Table 5.4: Distributions for differently optimized XOR counts. By N we denote the
sample size, µ is the mean, and σ2 the variance.

Naive PAAR1 BP

Construction N µ σ2 µ σ2 µ σ2

4× 4 matrices over GL(4,F2)

Cauchy 1 000 120.7 77.3 62.9 11.0 53.1 4.0

Circulant 1 000 111.8 117.1 60.4 19.2 52.1 7.1

Hadamard 1 000 117.5 99.6 60.2 17.8 52.4 6.9

Toeplitz 1 000 112.8 39.9 59.9 7.4 51.3 3.9

Vandermonde 1 000 120.6 87.6 62.2 8.1 52.9 3.1

enumerated 4× 4 matrices over GL(4,F2)

Circulant 1 000 82.9 53.0 54.9 13.5 50.1 6.7

Hadamard 1 000 102.1 76.0 56.7 20.6 50.6 8.0

Toeplitz 1 000 86.1 43.9 55.3 8.3 49.4 3.9

Arbitrary 1 000 80.5 8.3 49.7 3.2 44.5 1.8

4× 4 matrices over GL(8,F2)

Cauchy 1 000 454.1 467.2 215.1 39.6 — —

Vandermonde 1 000 487.3 597.4 220.2 44.3 — —

4× 4 subfield matrices over GL(4,F2)

Cauchy 1 000 241.1 312.1 125.8 44.2 — —

Vandermonde 1 000 240.6 452.8 121.8 47.1 — —

more. This is most noticeable for the naive XOR count, while the differences get much smaller
when the XOR count is optimized with the PAAR1 or BP heuristic. One might think that the
construction with the lowest optimized average XOR count, which is for matrices over GL(4,F2)
the arbitrary construction with enumerated elements, yields the best results. However, the best
matrix we could find for this dimension was a Hadamard matrix. An explanation for this might
be the higher variance that leads to some particularly bad and some particularly good results.

The graphs in Fig. 5.1 convey a similar hypothesis. Looking only at the naive XOR count, we
can notice some differences. For example, circulant matrices seem to give better results than,
e. g., Hadamard matrices. Additionally, the naive XOR count increases step-wise as not every
possible count occurs. But when optimizing the XOR count, the distributions get smoother and
more similar.

We conclude that all constructions give similarly good matrices when we are searching for
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Figure 5.2: Correlations between naive (x-axis) and BP (y-axis) XOR counts for enumerated
Hadamard matrices.

the matrix with the lowest XOR count, with one important exception. For randomly generated
matrices the XOR count increases by a factor of four if we double the parameter m. Table 5.4
covers this for Cauchy and Vandermonde matrices. We do not compute the statistical properties
for Circulant, Hadamard and Toeplitz matrices with elements of GL(8,F2), as the probability
to find a random MDS instance for these constructions is quite low. Thus, generating enough
instances for a meaningful statistical comparison is computationally tough and – as we deduce
from a much smaller sample size – the statistical behavior looks very similar to that of the Cauchy
and Vandermonde matrices. Instead, and as already mentioned in Lemma 5.1, the subfield
construction has a much more interesting behavior. It simply doubles the XOR count. The lower
half of Table 5.4 confirms this behavior.

Thus, when it is computationally infeasible to exhaustively search through all possible
matrices, it seems to be a very good strategy to use the subfield construction with the best-known
results from smaller dimensions. This conclusion is confirmed by the fact that our best results for
matrices over GL(8,F2) are always subfield constructions based on matrices over GL(4,F2).

Next, we want to approach the question if choosing MDS matrices with low Hamming weight
entries is a good approach for finding low XOR count implementations. To give a first intuition of
the correlation between naive and optimized XOR count, we plot the naive XOR count against the
optimized one. For one exemplary plot see Fig. 5.2, which corresponds to the construction that
we used to find the best 4× 4 MDS matrix for m= 4. The remaining plots are in the appendix,
see Figs. C.1 to C.4.

In Fig. 5.2 one can see that several options can occur. While there is a general tendency of
higher naive XOR counts leading to higher optimized XOR counts, the contrary is also possible.
For example, there are matrices which have a low naive XOR count (left in the figure), while
still having a somewhat high optimized XOR count (top part of the figure). But there are also
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matrices where a higher naive XOR count results in a much better optimized XOR count. The
consequence is that we cannot restrict ourselves to very sparse matrices when searching for the
best XOR count, but also have to take more dense matrices into account. A possible explanation
for this behavior is that the heuristics have more possibilities for optimizations when the matrix
is not sparse.

5.4.3 Best results

Let us conclude by specifying the currently best MDS matrices. The notation Mt,m denotes a
t × t matrix with entries from GL(m,F2), an involutory matrix is labeled with the superscript
i. Table 5.1 covers non-involutory and involutory matrices of dimension 4× 4 and 8× 8 over
GL(4,F2) and GL(8,F2). M8,4 and M i

8,4 are defined over F2[x]/0x13.
The matrices mentioned there are the following:

M4,4 = hadamard(
� 0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

�

,
� 0 0 1 1

1 0 0 1
1 1 0 0
0 1 0 0

�

,
� 1 1 0 1

1 1 0 0
0 1 0 1
0 0 1 0

�

,
� 1 1 0 0

0 1 0 1
1 0 1 1
0 0 0 1

�

) (5.1)

M4,8 = subfield(M4,4) (5.2)

M8,4 = cauchy

�

x3+x2,x3,x3+x+1,x+1,0,x3+x2+x+1,x2,x2+x+1,

1,x2+1,x3+x2+x ,x3+1,x3+x2+1,x2+x ,x3+x ,x

�

(5.3)

M8,8 = subfield(M8,4) (5.4)

M i
4,8 is the subfield construction applied to [SS16b, Example 3] (5.5)

M i
8,4 = vandermonde

�

x3+x+1,x+1,x3+x2+x ,x3+x2+1,x3+1,x3,0,x3+x

x2+x+1,x3+x2+x+1,x ,1,x2+1,x2,x3+x2,x2+x

�

(5.6)

M i
8,8 = subfield(M i

8,4) (5.7)

All these matrices improve over the previously known matrices, with the only exception being
the involutory matrix from [SS16b] of dimension 4× 4 over GL(4,F2). M4,4 was found after
enumerating a few thousand Hadamard matrices, while M8,4 and M i

8,4 are randomly generated
and were found after a few seconds. The according linear straight-line programs with 36, 196,
and 212 XORs, respectively, are given in Appendix D. Every best matrix over GL(8,F2) uses the
subfield construction.

With these results we want to highlight that, when applying global optimizations, it is quite
easy to improve (almost) all previous best-known results. We would like to mention that our
results should not be misunderstood as an attempt to construct matrices, which cannot be
improved. Another point that was not covered in this work is the depth of the critical path as
considered in [BFP17]. This might well be a criterion for optimization in other scenarios.

5.5 Conclusion and Further Research

The results from this chapter constitute an important milestone in the theoretic research for
efficient linear layers. We showed that the widespread technique of local optimization can easily
be outperformed by global optimization. An example of the practical relevance of this work
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is the subsequent application of the PAAR1 algorithm in the design of the block cipher PYJA-
MASK [Gou+19] which is a submission to the current lightweight cryptography standardization
process of NIST1.

A different approach to find MDS matrices with a globally optimized implementation was
presented by Duval and Leurent [DL18]. Instead of looking for an efficient implementation for a
given MDS matrix, they are turning the tables. That is, they are searching through circuits with
increasing XOR count until one of them corresponds to an MDS matrix. While this approach
obviously cannot be used to improve implementations for existing matrices, the authors were
able to improve some of the above presented results. Specifically, they improved our results
(see Table 5.1) for 4 × 4 matrices over GL(4,F2) from 36 to 35 and for 4 × 4 matrices over
GL(8,F2) from 72 to 67. Following our approach of global optimization, Banik et al. [BFI19]
have recently improved many of our above presented results, including an implementation of the
AES MixColumn matrix with 95 instead of 97 XORs. Improvements of the heuristics have also
been presented in [TP19] together with a 94 XOR implementation of the AES MixColumn matrix.
The currently best implementation in terms of the number of XORs for the AES MixColumn
matrix was presented by Maximov [Max19] and needs 92 XORs.

While our work was solely motivated by the goal of small hardware circuits, also the depth
of the implementation (i. e. the length of the circuit’s critical path) is very important because
it directly influences the latency. The above mentioned work of Duval and Leurent [DL18]
already presented some trade-offs between the depth and the XOR count of an implementation .
Afterward, Li et al. [Li+19] focused on this problem while concentrating on involutory matrices.
They enhanced the BP algorithm with circuit-depth awareness and were able to find an MDS
matrix with the same (minimal) depth as the AES MixColumn matrix while using only 88 XORs
and being involutory. Furthermore, they improved our results (see Table 5.1) for 4×4 involutory
matrices over GL(8,F2) from 84 to 78 while using the same depth.

While there has been very much research about optimizing the XOR count of linear layers, we
should not forget that it is a simplified metric which is especially suitable for the easy comparison
of research results. It is important to also ask the question of how much practical relevance this
metric really has. In practice, the used hardware area also depends on the applied synthesis
tools and the technology. The linear program will usually not be mapped one-to-one to a circuit.
Instead, also XOR gates with more than two inputs are available which leads to more degrees of
freedom. Duval and Leurent [DL18] pointed out that in particular modern FPGAs contain large
lookup tables, so that a multi-input XOR gate is not much more expensive than a 2-input XOR
gate. They expected this effect to be rather limited for ASICs. However, Banik et al. [BFI19]
noted that in most standard cell libraries the area of a 3-input XOR gate is smaller than the area
of two 2-input XOR gates. They also presented an according method to convert a circuit with
only 2-input XOR gates into a smaller circuit with 2 and 3-input XOR gates.

The goal of minimizing the circuit area is of course not restricted to the linear layer. It is
natural to also look at the other basic building blocks of an SPN cipher, i. e. S-boxes. Here, one
cannot restrict to XOR gates because of the non-linearity. Instead, the typical metric is “gate
equivalents”, which basically just means that different gates are weighted differently according
to the occupied area. While the details in non-linear circuit minimization are out of the scope of

1https://csrc.nist.gov/projects/lightweight-cryptography

https://csrc.nist.gov/projects/lightweight-cryptography
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this thesis, we just want to mention that one of the most important constructions in this field
is the so-called Canright S-box [Can05]. More recently, further important improvements have
been published in [RTA18] and [ME19]. In the former work, Reyhani-Masoleh et al. [RTA18]
also present several improvements for the above discussed BP algorithm.

The efficiency of logical metrics for actual hardware implementation was studied by Raghu-
raman [Rag19]. Here, he also focused on non-linear circuits and did not explicitly investigate
the relevance of the XOR count for practical implementations of linear layers. A comprehensive
study on the practical relevance of the XOR count is still open work.
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Table B.1: For each m≤ 2048 for which no irreducible trinomial of degree m exists, this
table presents a matrix of the form Cxm+1 + Ei1, j1 + Ei2, j2 with irreducible characteristic
pentanomial. Such a matrix is represented as a 4-tuple (i1, j1, i2, j2). In all cases, the
characteristic polynomial is equal to λm +λm+i1− j1+i2− j2−2 +λm+i1− j1−1 +λi2− j2−1 + 1.

m m m m m m m m m m
8 (1,3,3,1) 237 (1,168,3,1) 451 (1,104,3,1) 659 (1,250,3,1) 869 (1,128,3,1) 1067 (1,960,5,1) 1274 (1,1176,3,1) 1480 (1,413,3,1) 1680 (1,645,3,1) 1867 (1,670,3,1)

13 (1,4,3,1) 240 (1,121,4,1) 452 (1,90,3,1) 661 (1,224,3,1) 872 (1,405,3,1) 1068 (1,54,3,1) 1275 (1,1265,3,1) 1483 (1,412,3,1) 1682 (1,5,3,1) 1868 (1,420,3,1)
16 (1,9,4,1) 243 (1,38,3,1) 453 (1,302,3,1) 664 (1,149,3,1) 874 (1,83,3,1) 1069 (1,338,3,1) 1277 (1,230,3,1) 1484 (1,41,3,1) 1683 (1,1278,3,1) 1869 (1,384,3,1)
19 (1,8,3,1) 245 (1,38,3,1) 454 (1,314,3,1) 666 (1,117,3,1) 875 (1,386,3,1) 1070 (1,228,3,1) 1280 (1,81,3,1) 1485 (1,1086,3,1) 1684 (1,730,3,1) 1872 (1,183,3,1)
24 (1,5,3,1) 246 (1,71,3,1) 456 (1,129,3,1) 667 (1,38,4,1) 877 (1,248,5,1) 1072 (1,789,4,1) 1283 (1,344,3,1) 1488 (1,1017,3,1) 1685 (1,816,3,1) 1874 (1,35,4,1)
26 (1,11,3,1) 248 (1,29,3,1) 459 (1,270,3,1) 669 (1,48,3,1) 878 (1,3,3,1) 1073 (1,362,3,1) 1285 (1,1174,3,1) 1491 (1,666,3,1) 1686 (1,72,3,1) 1875 (1,1386,3,1)
27 (1,3,3,1) 251 (1,24,3,1) 461 (1,170,3,1) 672 (1,567,3,1) 880 (1,11,3,1) 1074 (1,801,3,1) 1288 (1,379,3,1) 1493 (1,1002,3,1) 1688 (1,255,3,1) 1876 (1,1204,3,1)
32 (1,3,3,1) 254 (1,19,3,1) 464 (1,55,3,1) 674 (1,307,4,1) 883 (1,589,3,1) 1075 (1,142,3,1) 1290 (1,149,3,1) 1494 (1,620,3,1) 1690 (1,733,3,1) 1877 (1,628,3,1)
37 (1,16,4,1) 256 (1,157,3,1) 466 (1,451,3,1) 675 (1,225,3,1) 885 (1,512,3,1) 1076 (1,49,3,1) 1291 (1,302,3,1) 1496 (1,21,3,1) 1691 (1,26,3,1) 1880 (1,207,3,1)
38 (1,4,3,1) 259 (1,20,3,1) 467 (1,72,3,1) 677 (1,647,3,1) 886 (1,10,3,1) 1077 (1,706,4,1) 1292 (1,473,3,1) 1498 (1,223,3,1) 1693 (1,394,3,1) 1882 (1,399,4,1)
40 (1,14,3,1) 261 (1,12,3,1) 469 (1,188,3,1) 678 (1,312,3,1) 888 (1,501,3,1) 1080 (1,75,3,1) 1293 (1,212,3,1) 1499 (1,3,3,1) 1696 (1,19,3,1) 1883 (1,680,3,1)
43 (1,8,3,1) 262 (1,13,3,1) 472 (1,385,3,1) 680 (1,21,3,1) 891 (1,12,3,1) 1083 (1,92,3,1) 1296 (1,257,3,1) 1501 (1,1222,3,1) 1699 (1,404,3,1) 1885 (1,352,3,1)
45 (1,6,3,1) 264 (1,63,3,1) 475 (1,94,3,1) 681 (1,51,3,1) 893 (1,827,4,1) 1088 (1,3,3,1) 1299 (1,144,3,1) 1502 (1,5,3,1) 1701 (1,540,3,1) 1888 (1,905,3,1)
48 (1,21,3,1) 267 (1,182,3,1) 477 (1,286,4,1) 683 (1,104,3,1) 896 (1,87,3,1) 1091 (1,1026,3,1) 1301 (1,160,3,1) 1504 (1,559,3,1) 1702 (1,262,3,1) 1891 (1,280,3,1)
50 (1,7,3,1) 269 (1,64,3,1) 480 (1,273,5,1) 685 (1,172,3,1) 899 (1,64,3,1) 1093 (1,310,3,1) 1303 (1,380,3,1) 1506 (1,215,3,1) 1704 (1,1617,4,1) 1892 (1,440,3,1)
51 (1,12,3,1) 272 (1,165,3,1) 482 (1,115,3,1) 688 (1,149,3,1) 901 (1,504,4,1) 1096 (1,947,3,1) 1304 (1,391,3,1) 1507 (1,200,3,1) 1706 (1,843,3,1) 1893 (1,344,3,1)
53 (1,4,3,1) 275 (1,20,3,1) 483 (1,26,3,1) 691 (1,606,7,1) 904 (1,241,5,1) 1099 (1,644,3,1) 1307 (1,1200,3,1) 1509 (1,128,5,1) 1707 (1,150,3,1) 1894 (1,391,3,1)
56 (1,13,3,1) 277 (1,208,3,1) 485 (1,158,3,1) 693 (1,278,3,1) 907 (1,142,3,1) 1101 (1,474,3,1) 1309 (1,26,3,1) 1512 (1,381,3,1) 1709 (1,688,3,1) 1896 (1,1053,4,1)
59 (1,14,3,1) 280 (1,73,3,1) 488 (1,359,3,1) 696 (1,77,3,1) 909 (1,480,3,1) 1104 (1,515,3,1) 1312 (1,901,3,1) 1515 (1,14,3,1) 1712 (1,95,3,1) 1897 (1,80,3,1)
61 (1,4,3,1) 283 (1,154,3,1) 491 (1,477,3,1) 699 (1,360,3,1) 910 (1,8,3,1) 1107 (1,936,3,1) 1315 (1,508,3,1) 1517 (1,698,3,1) 1714 (1,1021,3,1) 1898 (1,241,3,1)
64 (1,61,3,1) 285 (1,158,3,1) 493 (1,20,3,1) 701 (1,238,3,1) 912 (1,627,3,1) 1109 (1,278,3,1) 1316 (1,204,3,1) 1520 (1,131,3,1) 1715 (1,250,3,1) 1899 (1,986,3,1)
67 (1,58,3,1) 288 (1,206,3,1) 496 (1,149,3,1) 703 (1,19,3,1) 914 (1,81,3,1) 1112 (1,35,3,1) 1317 (1,820,4,1) 1522 (1,985,3,1) 1717 (1,142,3,1) 1901 (1,230,3,1)
69 (1,42,4,1) 290 (1,96,3,1) 499 (1,40,3,1) 704 (1,195,5,1) 915 (1,320,3,1) 1114 (1,143,3,1) 1318 (1,109,3,1) 1523 (1,906,3,1) 1718 (1,242,3,1) 1904 (1,535,3,1)
70 (1,19,3,1) 291 (1,200,3,1) 501 (1,144,4,1) 706 (1,503,3,1) 917 (1,572,3,1) 1115 (1,328,3,1) 1320 (1,167,3,1) 1525 (1,602,3,1) 1720 (1,133,3,1) 1907 (1,780,3,1)
72 (1,15,5,1) 293 (1,16,3,1) 502 (1,245,3,1) 707 (1,376,3,1) 920 (1,535,3,1) 1117 (1,220,3,1) 1322 (1,405,3,1) 1528 (1,79,3,1) 1723 (1,322,3,1) 1909 (1,46,3,1)
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Figure C.1: Correlations between naive (x-axis) and PAAR1 (y-axis) XOR counts for randomly
generated matrices.
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Figure C.2: Correlations between naive (x-axis) and PAAR1 (y-axis) XOR counts for enumerated
matrices.
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Figure C.3: Correlations between naive (x-axis) and BP (y-axis) XOR counts for randomly generated
matrices.
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Figure C.4: Correlations between naive (x-axis) and BP (y-axis) XOR counts for enumerated
matrices.





D
Linear Straight-Line Programs for MDS

Matrices

In Table 5.1, we presented the XOR counts for our new best results. The according matrices were
given in Section 5.4.3, see Eqs. (5.1) to (5.7). In the following, the according linear straight-line
programs are presented in Listings D.1 to D.3. Here, we restrict to M4,4, M8,4, M i

8,4 (see Eqs. (5.1),
(5.3) and (5.6)) as the other matrices are subfield constructions, i. e. the implementations can
be derived straight forward from the underlying implementations. In the linear straight-line
programs, x , y, t denote input, output, and temporary values, respectively.

Listing D.1: Straight-line program for
the matrix M4,4 from Eq. (5.1) that
uses 36 XORs.

1 t0 = x0 + x5
2 t1 = x1 + x11
3 t2 = x8 + x13
4 t3 = x3 + x9
5 t4 = x7 + t2
6 y11 = x2 + t4
7 t6 = x12 + t3
8 y15 = x6 + t6
9 t8 = x15 + t0

10 y3 = x10 + t8
11 t10 = x4 + t1
12 y7 = x14 + t10
13 t12 = x3 + y7
14 y8 = t8 + t12
15 t14 = x11 + y15

16 y0 = t4 + t14
17 t16 = x7 + y3
18 y12 = t10 + t16
19 t18 = x15 + y11
20 y4 = t6 + t18
21 t20 = x0 + x13
22 y5 = t14 + t20
23 t22 = x0 + t6
24 y2 = y8 + t22
25 t24 = x1 + x12
26 y9 = t16 + t24
27 t26 = x4 + x9
28 y1 = t18 + t26
29 t28 = x4 + t4
30 y6 = y12 + t28
31 t30 = x5 + x8
32 y13 = t12 + t30
33 t32 = x8 + t10
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34 y10 = y0 + t32
35 t34 = x12 + t8

36 y14 = y4 + t34

Listing D.2: Straight-line program for the matrix M8,4 from Eq. (5.3) that uses 196
XORs.

1 t0 = x2 + x15
2 t1 = x3 + x14
3 t2 = x6 + x19
4 t3 = x7 + x18
5 t4 = x10 + x23
6 t5 = x11 + x22
7 t6 = x26 + x31
8 t7 = x27 + x30
9 t8 = x0 + x20

10 t9 = x4 + x28
11 t10 = x8 + x12
12 t11 = x16 + x24
13 t12 = x1 + x21
14 t13 = x5 + x29
15 t14 = x9 + x13
16 t15 = x17 + x25
17 t16 = t0 + t13
18 t17 = t1 + t15
19 t18 = t2 + t12
20 t19 = t3 + t14
21 t20 = t4 + t9
22 t21 = t5 + t11
23 t22 = t6 + t8
24 t23 = t7 + t10
25 t24 = t16 + t21
26 t25 = t17 + t20
27 t26 = t18 + t23
28 t27 = t19 + t22
29 t28 = x1 + x31
30 t29 = x3 + x29
31 t30 = x5 + x23
32 t31 = x7 + x21
33 t32 = x8 + t5
34 t33 = x9 + x19
35 t34 = x10 + t9
36 t35 = x11 + x17
37 t36 = x13 + x27
38 t37 = x15 + x25
39 t38 = x20 + t4
40 t39 = x22 + t11
41 t40 = x24 + t7
42 t41 = x26 + t8
43 t42 = x28 + t6
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44 t43 = x30 + t10
45 t44 = x0 + t1
46 t45 = x0 + t26
47 t46 = x2 + x19
48 t47 = x2 + x29
49 t48 = x3 + x18
50 t49 = x4 + t3
51 t50 = x4 + t24
52 t51 = x6 + x15
53 t52 = x6 + x21
54 t53 = x7 + x14
55 t54 = x8 + t27
56 t55 = x9 + x18
57 t56 = x11 + t43
58 t57 = x12 + t0
59 t58 = x12 + t27
60 t59 = x14 + x25
61 t60 = x16 + t2
62 t61 = x16 + t25
63 t62 = x20 + t26
64 t63 = x23 + t41
65 t64 = x24 + t25
66 t65 = x27 + t39
67 t66 = x28 + t24
68 t67 = x31 + t34
69 t68 = t0 + t42
70 t69 = t1 + t40
71 t70 = t2 + t38
72 t71 = t3 + t32
73 t72 = t4 + t29
74 t73 = t5 + t37
75 t74 = t6 + t31
76 t75 = t7 + t33
77 t76 = t16 + t35
78 t77 = t17 + t30
79 t78 = t18 + t36
80 t79 = t19 + t28
81 y0 = t10 + t14 + t31 + t65 + t68
82 y1 = x29 + t57 + t64 + t74
83 y2 = x13 + t13 + t40 + t41 + t48 + t73
84 y3 = x23 + t6 + t59 + t62
85 y4 = t11 + t15 + t29 + t56 + t70
86 y5 = x21 + t54 + t60 + t72
87 y6 = x17 + t12 + t32 + t34 + t53 + t75
88 y7 = x31 + t4 + t55 + t66
89 y8 = x4 + t10 + t21 + t46 + t79
90 y9 = x5 + t28 + t61 + t71
91 y10 = t55 + t60 + t63 + t76
92 y11 = x3 + x10 + x17 + t3 + t45



148 APPENDIX D. LINEAR STRAIGHT-LINE PROGRAMS FOR MDS MATRICES

93 y12 = x16 + t8 + t20 + t53 + t78
94 y13 = x17 + t36 + t50 + t70
95 y14 = t49 + t52 + t56 + t77
96 y15 = x5 + x15 + x22 + t2 + t58
97 y16 = t9 + t13 + t37 + t63 + t71
98 y17 = x9 + t49 + t62 + t73
99 y18 = x5 + t14 + t38 + t39 + t46 + t74

100 y19 = x27 + t5 + t52 + t64
101 y20 = x0 + t11 + t23 + t51 + t77
102 y21 = x1 + t30 + t58 + t69
103 y22 = t57 + t59 + t67 + t78
104 y23 = x7 + x13 + x26 + t1 + t50
105 y24 = t8 + t12 + t33 + t67 + t69
106 y25 = x25 + t44 + t66 + t75
107 y26 = x1 + t15 + t42 + t43 + t51 + t72
108 y27 = x11 + t7 + t47 + t54
109 y28 = x12 + t9 + t22 + t48 + t76
110 y29 = x13 + t35 + t45 + t68
111 y30 = t44 + t47 + t65 + t79
112 y31 = x1 + x19 + x30 + t0 + t61

Listing D.3: Straight-line program for the matrix M i
8,4 from Eq. (5.6) that uses 212

XORs.

1 t0 = x0 + x14
2 t1 = x1 + x10
3 t2 = x11 + x21
4 t3 = x19 + x20
5 t4 = x15 + x22
6 t5 = x16 + x30
7 t6 = x17 + x31
8 t7 = x18 + x28
9 t8 = x2 + x29

10 t9 = x3 + x5
11 t10 = x4 + t1
12 t11 = x9 + x23
13 t12 = x7 + x24
14 t13 = x12 + t3
15 t14 = x25 + t4
16 t15 = x6 + x13
17 t16 = x8 + t0
18 t17 = x27 + t5
19 t18 = t2 + t8
20 t19 = x26 + t7
21 t20 = t10 + t17
22 t21 = x24 + t14
23 t22 = x14 + t7
24 t23 = x23 + t6
25 t24 = t6 + t11
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26 t25 = t12 + t18
27 t26 = x13 + x17
28 t27 = x20 + t15
29 t28 = x26 + t16
30 t29 = x30 + t13
31 t30 = t2 + t12
32 t31 = x1 + t9
33 t32 = x2 + t16
34 t33 = x3 + x8
35 t34 = x4 + t5
36 t35 = x5 + t0
37 t36 = x9 + t20
38 t37 = x10 + x22
39 t38 = x17 + t15
40 t39 = x19 + t9
41 t40 = x21 + x29
42 t41 = x25 + x26
43 t42 = x25 + t24
44 t43 = x27 + t22
45 t44 = x28 + x29
46 t45 = x31 + t28
47 t46 = t6 + t21
48 t47 = t10 + t13
49 t48 = t11 + t19
50 t49 = x0 + x11
51 t50 = x3 + x15
52 t51 = x4 + t19
53 t52 = x5 + x8
54 t53 = x6 + x12
55 t54 = x6 + t29
56 t55 = x7 + x13
57 t56 = x7 + t0
58 t57 = x9 + t1
59 t58 = x10 + x18
60 t59 = x11 + t42
61 t60 = x12 + x16
62 t61 = x13 + x15
63 t62 = x16 + t13
64 t63 = x27 + t8
65 t64 = x28 + t18
66 t65 = x31 + t25
67 t66 = t3 + t7
68 t67 = t4 + t36
69 t68 = t9 + t27
70 t69 = t9 + t45
71 t70 = t14 + t22
72 t71 = t15 + t21
73 t72 = t19 + t57
74 t73 = t20 + t33
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75 t74 = t23 + t37
76 t75 = t23 + t52
77 t76 = t24 + t30
78 t77 = t25 + t43
79 t78 = t26 + t48
80 t79 = t27 + t44
81 t80 = t30 + t32
82 t81 = t35 + t65
83 t82 = t38 + t50
84 t83 = t46 + t49
85 y0 = x0 + x18 + t18 + t41 + t47 + t75
86 y1 = t17 + t33 + t37 + t42 + t79
87 y2 = x29 + t5 + t28 + t58 + t76
88 y3 = t36 + t66 + t83
89 y4 = x7 + t6 + t35 + t40 + t67
90 y5 = x4 + t11 + t53 + t77
91 y6 = x8 + x10 + t9 + t14 + t29 + t44 + t55
92 y7 = t2 + t11 + t34 + t45 + t79
93 y8 = x6 + t3 + t58 + t63 + t69
94 y9 = x15 + t5 + t72 + t81
95 y10 = x19 + t8 + t53 + t73 + t83
96 y11 = x2 + x30 + t31 + t51 + t55 + t59
97 y12 = t41 + t54 + t56 + t74
98 y13 = t2 + t3 + t20 + t38 + t70
99 y14 = x14 + t4 + t13 + t25 + t51 + t75

100 y15 = x18 + t11 + t17 + t39 + t40 + t71
101 y16 = x23 + t20 + t39 + t41 + t61 + t64
102 y17 = x21 + t1 + t16 + t23 + t62 + t71
103 y18 = x1 + t14 + t78 + t80
104 y19 = x3 + t0 + t21 + t47 + t48 + t63
105 y20 = t16 + t31 + t40 + t46 + t54
106 y21 = t8 + t39 + t56 + t60 + t78
107 y22 = x29 + t10 + t29 + t43 + t82
108 y23 = t34 + t61 + t66 + t81
109 y24 = x25 + t1 + t3 + t26 + t77
110 y25 = x26 + t4 + t12 + t26 + t73
111 y26 = x5 + x18 + x27 + t32 + t59 + t60
112 y27 = x0 + x24 + t62 + t72 + t82
113 y28 = x6 + x16 + t31 + t70 + t76
114 y29 = x9 + t47 + t64 + t69
115 y30 = x12 + t18 + t67 + t68
116 y31 = t34 + t68 + t74 + t80
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[JNP14a] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik. Submission to the CAESAR
competition. 2014.
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