
Research Article
Cloudroid Swarm: A QoS-Aware Framework for Multirobot
Cooperation Offloading

Yuanzhao Zhai , Bo Ding , Pengfei Zhang, and Jie Luo

College of Computer, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Bo Ding; dingbo@nudt.edu.cn

Received 7 December 2020; Revised 4 April 2021; Accepted 17 May 2021; Published 21 June 2021

Academic Editor: Paul Honeine

Copyright © 2021 Yuanzhao Zhai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Computation offloading has been widely recognized as an effective way to promote the capabilities of resource-constrained mobile
devices. Recent years have seen a renewal of the importance of this technology in the emerging field of mobile robots, supporting
resource-intensive robot applications. However, cooperating to solve complex tasks in the physical world, which is a significant
feature of a robot swarm compared to traditional mobile computing devices, has not received in-depth attention in research
concerned with traditional computation offloading. In this study, we propose an approach named cooperation offloading, which
offloads the intensive communication among robots as well as the computation for compute-intensive and data-intensive tasks.
We analyze the performance gain of cooperation offloading by formalizing multirobot cooperative models; in addition, we study
offloading decisions. Based on this approach, we design a cloud robotic framework named Cloudroid Swarm and develop several
QoS-aware mechanisms to provide a general solution to cooperation offloading with QoS assurance in multirobot cooperative
scenes. We implement Cloudroid Swarm to transparently migrate multirobot applications to cloud servers without any code
modification. We evaluate our framework using three different multirobot cooperative applications. Our results show that
Cloudroid Swarm can be applied to various robotic applications and real-world environments and bring significant benefits in
terms of both network optimization and task performance. Besides, our framework has good scalability and can do support as
many as 256 robot entities simultaneously.

1. Introduction

The idea of offloading computation from resource-constrained
devices to external platforms (e.g., the cloud) emerged in the
field of mobile computing due to the limited computational
power, storage, and energy of the mobile device [1]. More
recently, the idea has also grown in popularity in the mobile
robot community because achieving “autonomy” on a mobile
robot usually involves intensive or even highly paralleled com-
puting, which can easily exceed the resources available to
robots in their onboard computers [2]. The exceptional benefits
of introducing computation offloading, such as enhancing
processing capabilities and speeding up application execution,
have achieved great success in various robotic tasks such as
simultaneous localization and mapping (SLAM) [3], object
recognition, and grasp planning [4].

It is common in the robotic field to use a group of robots to
handle complex real-world tasks that extend a single robot’s
capabilities. Compared to traditional mobile computing
devices, a distinguishing characteristic of mobile robots in the
robot swarm is that they are inherently cooperative. Robots
usually need to exchange intensive data with each other to
complete tasks. In these tasks, the overall performance of the
robot team can be greatly enhanced by cooperation among
team members. However, data-intensive tasks usually imply
substantial communication costs. With the increasing group
size, the large volumes of data exchange between robots may
become the bottleneck of a multirobot application, a problem
that does not exist among traditional mobile computing
devices (e.g., smartphones or IoTs). Continued application of
computation offloading to the robot swarm does not alleviate
the communication problem between robots and introduces

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 6631111, 18 pages
https://doi.org/10.1155/2021/6631111

https://orcid.org/0000-0003-1385-0074
https://orcid.org/0000-0002-1236-8318
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6631111


additional communication between robots and the cloud. In
this situation, the benefit of computation offloading would be
counterproductive.

For example, multirobot SLAM, one of the representative
robotic applications, is a compute-intensive and data-intensive
task. SLAM aims to perform real-time localization and
mapping “simultaneously” with a sensor (e.g., LiDAR or depth
camera) moving through an unknown environment without
any exogenous means of the location. Multirobot SLAM is an
extension of single-robot SLAM in terms of parallel and distrib-
uted processing. As shown in Figure 1, each robot in the robot
swarm processes its own localization and local map construc-
tion in an unknown environment. Then, all local maps are
merged cooperatively for the global map. In the traditional
setup in Figure 1(a), each robot executes the computationally
intensive SLAM algorithm locally and independently, and
the local maps from each robot are exchanged periodically to
merge with the ever-increasing global map. The communica-
tion cost of the latter increases either when the size of the robot
team increases or during attempts to improve the timeliness of
the global map; this causes poor quality of service (QoS) such
as high latency or even no response. In our experiments, to
build a midsize indoor map with four robots, the communica-
tion among robots occupies up a bandwidth up to 40-80Mb/s,
which is unacceptable for most common robot swarms. With
the traditional computation offloading method in Figure 1(b),
we independently migrate the local map-building process on
each individual robot to cloud servers. It means that firstly,
the local sensor data needs to be sent to the cloud servers,
and then, the map data needs to be transferred back to the
robot from the server and finally exchanged among robots as
before. Computation offloading doubles the bandwidth con-
sumption and neutralizes the benefit of introducing computa-
tion offloading in this situation.

Therefore, we cannot simply offload the computation of
each individual in a multirobot cooperative application. We
argue that offloading the communication inside the robot
swarm is equally vital to improving cooperative tasks’ efficiency
in a “cloud + robot” architecture. This reasoning is inspired by
the simple idea that, because computationally intensive
modules can be migrated to the cloud, the possibility exists to
offload the considerable quantity of data transmission gener-
ated by robot cooperation to the cloud as well. This solution
would promote cooperation efficiency by utilizing the high-
bandwidth network inside the cloud platform instead of the
local low-bandwidth wireless network. As shown in Figure 1,
by offloading the cooperation among robots to the cloud
servers, not only can the localization and mapping processes
be performed on the servers, but also the output maps can be
transferred within the cloud to another computation module
in need. The bandwidth is less likely to be overoccupied in this
situation, thereby improving the cooperation efficiency in
generating global maps. Another problem in computation off-
loading is that the offloading performance would deteriorate
due to low data rates if too many mobile users choose to off-
load their tasks via the same wireless access channel simulta-
neously. QoS is one of the most important factors to
consider for robotic applications because these applications
interact directly with the physical world [5]. So offloading

decisions and some additional mechanisms should be studied
to adopt such a new approach to boost cooperation with QoS
assurance in robot swarms.

In this study, to address the challenge mentioned above,
we introduce the concept of cooperation offloading. Cooper-
ation offloading is a new offloading approach for multirobot
cooperative tasks, which treats the cooperative robot swarm
as an entirety when offloading by taking the factor of cooper-
ation among robots as well as computation into account. It
can offload the original communication and cooperation in
robot swarms instead of introducing additional cooperation
for computation offloading [6], making the cooperative sys-
tem more efficient. The overall goal of our work is to propose
a general solution that would enable existing multirobot
cooperative tasks to be executed more efficiently by using
the cooperation offloading method and that would satisfy
the QoS requirement of the robots at the same time.

In summary, the key contributions of this paper are as
follows.

(i) We propose cooperation offloading, which offloads
cooperation in robot swarms to the cloud servers. We
calculate the time cost of local computing, computation
offloading, and cooperation offloading by formalizing
the multirobot cooperative architecture model. Then,
we study the performance gain contributed by cooper-
ation offloading and provide offloading decisions

(ii) We design a cloud-based robotic framework, named
Cloudroid Swarm. Cloudroid Swarm performs coop-
eration offloading in addition to computation offload-
ing, utilizing the high-speed network infrastructure in
the cloud. To assure QoS in Cloudroid Swarm, we
propose a distributed link detection algorithm at the
local level and link capacity adjustment at the global
level to adapt to the poor and dynamic network
environment

(iii) We implement Cloudroid Swarm to support cooper-
ation offloading for multirobot applications and
transparently migrate multirobot tasks to the cloud
servers without any code modification. We also
propose several effective mechanisms to improve
the QoS and scalability of Cloudroid Swarm

(iv) We investigate the performance of the proposed
QoS-aware cooperation offloading framework by
evaluating three different multirobot applications
in both simulation and real-world environments.
The applications include cooperative SLAM, multi-
robot exploration, and multirobot collision avoid-
ance. The results demonstrate the efficiency of
Cloudroid Swarm in terms of network optimization,
task performance, and scalability

This article is an extension of our previous conference ver-
sion [7], which presents a cloud robotic framework that boosts
the efficiency of cooperation for multiple robot applications in
robot swarms and evaluates the framework using both the
public data sets and simulator. However, it is observed that

2 Wireless Communications and Mobile Computing



the framework cannot provide physical robots’ satisfactory
behavior due to many interference factors in the real world,
which has unstable input and network environment. Thus,
QoS property is required, especially in a highly dynamic and
resource-competitive environment. To overcome this diffi-
culty left in the previous work, we propose several QoS-
aware algorithms and mechanisms to make our framework
more robust. Thus, we can obtain the performance gain even
in the real-world mobile robot system. Besides, to demonstrate
the proposed QoS-ware framework’s excellent performance,
we evaluate our framework in extensive experiments, includ-
ing quantitative analysis of QoS’s benefits in the cooperative
SLAM application and collision avoidance test conducted on
real-world robots.

2. Related Work

2.1. Cloud Computing in Robotics. In the domain of cloud
computing, computation offloading is regarded as an effec-
tive way to alleviate the constrained resources on mobile
phones and Internet of Things (IoT) devices as well as reduc-

ing the running cost in mobile cloud computing (MCC) [8]
and mobile edge computing (MEC) [9]. In the robotic field,
because of the similarity of the computational patterns to
those in mobile computing, computation offloading is also
demanded by robot tasks. A series of recent research studies
have been dedicated to boosting robotic applications. Chen
et al. propose the term “Robot as a Service” (RaaS) and present
a self-contained unit in the cloud computing environment
[10]. However, the development and deployment of robot
applications are limited to a certain programming language
and architecture (Intel), without the ability to migrate the
existing robot software to the cloud. Seminal work in this field
is DAvinCi [11], a particle-based SLAM framework for service
robots in a large-scale Internet environment. However, it
requires the entire process running in the cloud to be deployed
and configured manually. Another closely related study is
Rapyuta [12], a framework that enables robots to offload their
complex computation to the cloud. Rapyuta is a typical clone-
based PaaS architecture based on the Linux Container (LXC).
To solve Rapyuta’s limitations of dynamical deployment for
complex tasks and the lack of cloud management tools, our
previous work, Cloudroid [13], supports the automatic

Map
Map

Map

(a) Local setup of multiple robots

Map Map

Map

Computing
module

Computing
module Computing

module

Cloud/Edge server

(b) Multiple robots with computation offloading

MapMap

Map

Computing
module

Computing
module

Computing
module

Cloud/Edge server

(c) Multiple robots with cooperation offloading

Figure 1: Different configurations of multirobot SLAM. The SLAM task is aimed at simultaneously drawing a map of the surrounding
environment and locating the poses of the robots themselves. Two phases, pose localization and mapping construction, are coupled in a
typical SLAM procedure. The localization phase requires the map constructed in the previous frame for matching, and the mapping phase
needs the pose information in the previous frame for accurate results.

3Wireless Communications and Mobile Computing



deployment of existing robotic software packages to the cloud,
thus transparently transforming them into Internet-accessible
cloud services with QoS assurance. However, both Rapyuta
and Cloudroid only focus on one individual robot for compu-
tation offloading and our evaluation in Section 6 shows that
they are not suitable for a cooperative multiple robot
applications.

2.2. Multi-user Computation Offloading. Concerning multi-
user computation offloading, one of the major topics to be
investigated is the decision of whether mobile users offload
their computation task to the cloud or not. There is offload-
ing transmission competition among users because several
users may choose the same wireless access channel and off-
load tasks to the cloud simultaneously.

Some studies adopt centralized approaches [14, 15],
which update the offloading decision iteratively to solve joint
task offloading and resource allocation in MEC networks.
Chen [16] demonstrates that it is NP-hard to optimal multi-
user computation offloading solutions in a multichannel
wireless interference environment, and hence proposes a
game-theoretic approach for achieving efficient computation
offloading in a distributed manner. Considering social and
behavioral characteristics of users in the overall computation
offloading process, Apostolopoulos et al. [17] exploit pros-
pect theory instead to account for users’ risk-seeking and
loss-aversion behavior in offloading decisions. All the afore-
mentioned methods are limited by the trade-off between
optimality and computational complexity.

Deep learning shows excellent potential in the field of
wireless communications to deal with multiuser task offload-
ing decisions [18]. Wu et al. [19] propose a distributed deep
learning-driven task offloading for collaborate edge and
cloud computing, where multiple parallel DNNs are used to
generate offloading decisions. Then the offloading decision
with the lowest system utility is chosen as the output and
the label to train deep neural networks. To characterize
long-term computation offloading performance, Dinh et al.
[20] propose a distributed model-free reinforcement learning
offloading mechanism, which reaches 87.87% payoffs com-
pared to the optimal condition. Since security is one of the
critical issues in mobile edge computing and mobile edge
computing, Huang et al. [21] propose a security and cost-
aware computation offloading strategy based on the popular
deep reinforcement learning approach, deep Q-network.
These distributed deep learning methods assume that the
mobile device has sufficient computing capability to compute
and obtain the offloading decision in real time. However,
mobile robots usually have limited computing and commu-
nicating capabilities to satisfy this assumption.

Besides, none of these studies consider the cooperative
tasks that need data-intensive communication among users,
which are common in robot swarms. What is more, all of
their evaluations are carried out in a simulation environment.
As we know, real-world experiments would be affected by
more interference factors and omnipresent uncertainty, thus
requiring stricter QoS requirements. In this paper, we pro-
pose a link capacity adjustment algorithm to ensure QoS of
multiuser computation offloading, which is proven to be

effective in real-world multirobot resource competition
environment.

2.3. Multi-robot Cooperation. The architecture of multirobot
cooperative applications has been studied for years. One of
the crucial research topics is the communication model,
which indicates the data exchange pattern used in multirobot
systems [22]. It is demonstrated that the minimum amount
of network consumption in a swarm of n robots where there
is communication between any two robots could be Oðn1:5Þ,
which is not linearly scalable when the number of entities
increases [23]. Cloud-based studies are carried out to avoid
this limitation. In [24], robots are grouped into different clus-
ters. Communication between different clusters is promoted
via the cloud, whereas the direct local transmission method
is used for internal communication within each cluster.
However, because of the mobility of robots, maintaining the
cluster division is complicated, and it is also difficult to deter-
mine the boundary between local and cloud methods. A
cloud-based research using multiple low-cost robots is pro-
posed in [3]. This approach leverages the Rapyuta [12] robot
framework, and all the data exchange occurs in the cloud.
However, it is a task-specific solution that can only be applied
to a specific 3D mapping task. Chen et al. propose a frame-
work of robotic cooperation on computation offloading to
enable both robot–robot and robot–cloud cooperation [25].
By implementing a method that is different from all the
abovementioned solutions, we utilize advances both in the
local and the cloud computing environments to complete
different kinds of cooperative tasks of robots. Identifying
and optimizing communication bottlenecks exploit the large
bandwidth inside the cloud while maintaining the benefit of
flexibility in the original local network environment.

3. Cooperation Offloading Decision

3.1. Multi-robot Cooperative Models. Because our method tar-
gets decentralizedmultirobot applications, we utilize the widely
used Publish-Subscribe model, which is also the main messag-
ing pattern in Robot Operating system (ROS) (https://www.ros
.org/), as the foundation of our formalization. A task is assigned
to different processing units inside robots, in the form of pro-
cesses running on the onboard computer system. We denote
each process as an operator. As shown in Figure 2(a), we clas-
sify the operators into two categories. The nonmigratable oper-
ators directly interact with the physical world, e.g., laser
scanner, camera reader, and the velocity controller of moving
wheels. And the migratable operators do not directly interact
with the peripheral device, typically performing intensive com-
puting. The communication pattern between operators is based
on topic. One operator can publishmessages on a specific topic,
whereas all other operators that subscribe to this topic will
receive the message. When the case comes to computation off-
loading, the migratable operators are safely transferred to the
cloud for computing acceleration and are wrapped into a
computation module. The local robot node and computation
module are connected with the dedicated channel for data
exchange. Though publishers and subscribers are at the two
ends, the channel has the ability to forward the message across

4 Wireless Communications and Mobile Computing

https://www.ros.org/
https://www.ros.org/


the network between the two sides transparently. As the illumi-
nation in Figure 2(b), offloading is achieved by deployment
configuration with keeping source code unmodified.

As shown in Figure 3, we model decentralized multirobot
architectures, where n robots perform the cooperative task.
Figure 3(b) depicts a multirobot computation offloading
scenario. The migratable operators are safely transferred to
the cloud (we do not explicitly differentiate between edge
servers and remote cloud servers because edge servers can
be modeled as cloud servers with lower latency but thinner
computing resources) for enhancement and are wrapped into
a single computation module. The local robot node and com-
putation module are connected with the dedicated channel
for data exchange. Note that data for cooperation in the robot
swarm still need to be exchanged in local data links.
Figure 3(c) illustrates our proposed cooperation offloading
model, which adds shortcut links between computational
modules. These robots make a graph with n nodes, where

the node for the ith robot is Ni. From every node Ni to
another Nj, there exists a local data link, which is denoted
as NLij. In the case of computation offloading for a multiro-
bot arrangement, the cloud side computation module of Ni is
denoted as CMi, and the channel connecting Ni and CMi is
CHi. In the case of cooperation offloading, the additional
cloud link between CMi and CMj is CLij.

3.2. Time Cost for Offloading Decisions. Besides the charac-
teristics of computation offloading, cooperation offloading
has its unique features, such as high communication costs
among robots as well as between robots and servers, which
bring new challenges to offloading decisions. To simplify
the estimation without loss of generality, we consider the fol-
lowing particular situation:

(i) There exists only one topic in the robot swarm

Obstacle
detection

Motion
planning

Map
update

Camera
reader

Laser
scanner

Wheel
control

Node

(a) The local native scene

Obstacle
detection

Motion
planning

Map
update

Camera
reader

Laser
scanner

Wheel
control

Node

Channel

Computation module

(b) The computation offloading scene

Figure 2: We illuminate a node for the navigation application on a wheeled mobile robot as an example. The nonmigratable operators, which
handle the input of sensors and the control of wheels, are depicted in green. The migratable operators are depicted in yellow. When the node
comes to the computation offloading case, the yellow migratable operators are transferred to the cloud and communication with the local
operators by the full-duplex channel.

N1

N3

N2NL13

NL12

NL23

(a) The local native scene

N1

N3

N2

NL12

NL13

NL23

CH1 CM1

CH2 CM2

CH3 CM3

Cloud side

(b) The computation offloading scene

N1

N3

N2

CL12

CL13

CL23

CH1

CH2

CH3

CM1

CM2

CM3

Cloud side

(c) The cooperation offloading scene

Figure 3: Different models of multirobot cooperative scenes.

5Wireless Communications and Mobile Computing



(ii) All m computation modules publish on the topic
and continuously send messages

(iii) All m computation modules subscribe to this topic
and continuously receive messages emitted from all
other m − 1 computation modules

(iv) For a robot swarm, either all tasks are performed
locally or all of them are offloaded to servers. We
propose this assumption because cooperation off-
loading considers cooperative tasks as an entirety

First, we consider the local situation in Figure 3(a). Let sm

be the computing speed of mobile robots and ss be the com-
puting speed of servers. Each robot i needs to perform part of
a cooperative computationally intensive task denoted by Ti
= ðdi, hi, xiÞ, where di is the data size of the migratable part
of Ti, hi is the number of CPU cycles, and xi is the amount
of data exchange with other robots for the robot i to complete
the entire task. Suppose all robots have the same communica-
tion ability and RNL is the communication rate between local
robots. Thus, the computing time for the Ti of local comput-
ing is hi/s

m and the cooperative time is ðn × xiÞ/RNL. And the
total time cost of local computing for robot i can be expressed
as

tlocal computing
i =

hi
sm

+
n × xi
RNL

: ð1Þ

In Figure 3(b), let RCHi
be the channel’s communication

rate between robot i and its computation module in the cloud
side. If we simply apply computation offloading to each robot
independently, although the computing time is reduced to hi
/ss, the cooperative time is the same as before, and the addi-
tional transmission delay between robot i and the cloud is
(di + xi)/RCHi

.
Note that we consider both the upload and download

delays here. Then, the total time cost of multirobot computa-
tion offloading is

tcomputation offloading
i =

hi
ss

+
n × xi
RNL

+
di + xi
RCHi

: ð2Þ

Let dmax be the maximum value of {d1, d2,⋯, dn}, and let
the other variables have similar maximum definitions. Tak-
ing a global view of the entire task, the time cost depends
on the last robot to complete the execution. Without loss of
generality, we assume that robot i entails processing the larg-
est amount of data and requires the most data to exchange
and is thus the most time-consuming. Thus, traditional com-
putation offloading for robot swarm improves performance

when tlocal computing
max > tcomputation offloading

max :

hi
sm

+
n × xið Þ
RNL

>
hi
ss

+
n × xið Þ
RNL

+
di + xi
RCHi

⇔ hi ×
1
sm

−
1
ss

� �
>
di + xi
RCHi

:

ð3Þ

We argue that (3) is difficult to satisfy in most situations,
especially in the event of intensive communication between

robots (large xi), and many robots compete for the offloading
resource in a poor network environment (small or unstable
BCHi

). Considering the situation that hi/sm < ðdi + xiÞ/RCHi
,

even if the processing speed of the server is infinitely large
(i.e., ss → +∞), computation offloading results in counter-
productive performance. With cooperation offloading, the
use of communication shortcuts in the cloud side in
Figure 3(c) would enable messages to be exchanged directly
via the cloud links. The communication speed inside the
cloud is extremely high, such that the cooperative time inside
the cloud can be ignored. Furthermore, it is unnecessary to
send the data for communication xi back to the local side
for cooperation. So we can ignore the download delay here.
Thus, the total time cost of multirobot cooperation offloading
is

tcooperation offloading
i =

hi
ss

+
dmax
RCHi

: ð4Þ

Compared to (2), we find that cooperation offloading can
reduce the time cost by reducing the communication data
among robots in our scenario. The cooperation offloading

decisions can be made by tlocal computing
max > tcooperation offloading

max :

hi
sm

+
n × xið Þ
RNL

>
hi
ss

+
di

RCHi

⇔ hi ×
1
sm

−
1
ss

� �
>

di
RCHi

−
n × xið Þ
RNL

:

ð5Þ

We can define the difference between the two sides of the
inequality as the performance gain. Then, we can learn that
cooperation offloading achieves more performance gain than
computation offloading under the same conditions in multi-
user offloading scenes from (3) and (5). On the other hand,
we can monitor BCHi

in real time using the method proposed
in Section 4.1. When the condition of (5) holds, which is
more easily established than (3), it is a sensible option to
use cooperation offloading to improve the system perfor-
mance (line 2 in Algorithm 2).

4. QoS-Aware Framework

To enable the cooperation offloading, we propose a frame-
work named Cloudroid Swarm, which leverages the network
environment inside the cloud to support communication
between computation modules. Built on the foundation of
Cloudroid [13], Cloudroid Swarm still exploits the splitting
computation module for each robot. The new components
designed for each robot are the network module in the cloud
side and the network operator inside local robots. For the
entire application, the main improvement is the establish-
ment of the topology engine, the control plane for task-wide
cooperation, as shown in Figure 4.

Network module: for each robot participating in the
application, a network module termed NMi runs on the
cloud side and is launched along with the corresponding
computation module CMi. Its primary responsibility is to
handle communication resulting from cooperative multiro-
bot computation offloading. NMi, in place of CMi, is directly

6 Wireless Communications and Mobile Computing



connected with channel CHi to intercept all the network
messages from/to it. In addition, because of its network
awareness, NMi can sense other network modules and send
messages directly to them via cloud links inside the cloud.

Network operator: in Cloudroid Swarm, communication
on the robot side is handled by the network operator, with
a similar function to the network module in the cloud side.

This kind of operator, which is directly connected with the
channel and node links, acts as the bridge between the other
operators inside the robot and the outside world. Similar to
nonmigratable operators, network operators are also pro-
cesses in robot nodes. But network operators have special
characters that communicate with other cloud components,
including topology engines and other modules in the cloud.

Input: Time interval between two successive detections: T
Width of sliding window: W

Output: Communication rate, RðtÞ and latency, latðtÞ of the channel at time t
initialization:echo⇐∅, BðtÞ = 0,f lying timeðtÞ = 0

1: whileSrc is not shut down do
2: Emit a new message from the source end to the destination end
3: for eachmsg returned at ½t − T , tÞdo
4: echoi ⇐ echoi ∪ fmsgg
5: f lying timeðtÞ ⇐ f lying timeðtÞ + RRTðmsgÞ
6: end for
7: for eachmsg returned at ½t −W − T , t −WÞdo
8: echoi ⇐ echoi \ fmsgg
9: f lying timeðtÞ ⇐ f lying timeðtÞ − RRTðmsgÞ
10: end for
11: RðtÞ ⇐ β ∗ sizeof ðechoiÞ
12: latðtÞ ⇐ f lying timeðtÞ/sizeof ðechoiÞ
13: t⇐ t + T
14: end while

Algorithm 1: Sliding-window algorithm.

Input: Collection of robots using the same wireless access to offload: N = fN1,N2,⋯,Nmg
Load value of channels at every timestamp: loadðtÞCH
Global control parameter: λ

Output: The offloading strategy and capacity value of channels at the next timestamp: capðt+TÞCH
1: for each time interval Tdo
2: Choose the cooperation offloading strategy
3: while The task is not completed do

4: latðtÞCH , R
ðtÞ
CH , R

ðtÞ
NL ⇐ Sliding-window Algorithm

5: if Inequality (5) is True then
6: Choose the cooperation offloading strategy
7: else
8: Choose the local computing strategy
9: end if
10: if Cooperation Offloading then
11: for eachNi ∈N do

12: demand⇐ ðloadðtÞCHi
− capðtÞCHi

Þ
13: weight⇐ exp ðlatðtÞCHi

/λÞ/∑n
k=1 exp ðlatðtÞCHk

/λÞ
14: capðt+TÞCHi

⇐ capðtÞCHi
+ demand ∗weight

15: end for
16: end if
17: t⇐ t + T
18: end while
19: end for

Algorithm 2: QoS-aware link capacity adjustment algorithm.

7Wireless Communications and Mobile Computing



Topology engine: the topology engine acts as the coordinator
on the cloud side, processing the global topological information
of the entire task. It is designed to be started along with the
launch of the application routine and maintain interaction
between the network modules and network operators. With
the real-time metrics of links, the global topology engine per-
forms the global planning method to control the capacity,
which can control the message flow in dynamic equilibrium.

A notable challenge in cooperation offloading is the uncer-
tainties it introduces, which influence the specific QoS proper-
ties of the multirobot applications. Therefore, the architecture
must be designed to include real-time monitoring of the
capacity of links and global network planning to manage the
behavior of the computation modules for improved perfor-
mance. Based on the components mentioned above, we design
a set of QoS awareness mechanisms on the robot, cloud, and
network topology to minimize the impact of uncertainties
caused by poor network conditions or resource competition.
Note that the client-side and cloud-side QoS mechanisms
are described in detail in our previous paper [13], and in the
current paper, we mainly introduce the key mechanisms of
the network side. Scheduling and optimization of communica-
tion at the scale of the application can hardly drive the optimal
solution while maintaining real-time performance because
these functions are involved in the interaction with dynamic
workload and network conditions. However, with deep insight
into this distributed optimization problem, we can split the
entire optimization approach into two different levels:

(i) On the local level for each robot, the network module
and network operator can work collaboratively to
determine the path to forward the message and detect
the link status

(ii) On the global level, even though applications are a
black box from the perspective of the cloud platform,

the behavior of message transmission can be
inspected by the network stack. Then, they can be
scheduled by modifying the capacity of the links

4.1. Link Detection. For all the channels between robots and
their corresponding computational modules, we introduce
three variables to describe the communication quality of link

L: (1) loadðtÞL , for measuring the current transmission load at

timestamp t; (2) latðtÞL , indicating the transmission latency of

the message at timestamp t; and (3) capðtÞL , which represents
the capacity of the link. These variables are measured contin-
uously during the entire task. It should be pointed out that it
is difficult to obtain the exact value at time t, and the average
from t − T to t is used alternatively in most cases.

Because the wireless network conditions can change dra-
matically with the movement of the robot, the bandwidth

and latðtÞL of channels vary from time to time. Estimating
these time-related variables is essential for planning the route
of messages to improve the performance. Though it is impos-
sible for a central coordinator to sense the message flow in
each data link in exact real time, it is still feasible to periodi-
cally acquire the communication metric at a suitable time
interval with the collaboration of network operators on node
Ni and network module NMi. In our scenario, we are only
concerned with the end-to-end parameters of the data links.
Therefore, we apply a sliding-window method for detection,
which has a negligible impact on the network.

As shown inFigure5, at thebeginningof each time interval
T , the source end emits amessage with a fixed size to the other
end of the link. Upon receiving this message, the destination
end echoes the same message back to the source. The round
trip time is recorded by the source module as RRTðmsgÞ.
Simultaneously, a sliding window with a fixed length ofW is
maintained, which spans from t −W to t. We can count the

Cloud side

Channel Channel Channel

Cloud links

Computation module Computation module Computation module

Network module Network module Network module

Network
operator

Network
operator

Network
operator

Topology
engine

Robot node Robot node Robot node

Node links

Robot side

Operator 3

Operator 1 Operator 1 Operator 1Operator 2 Operator 2 Operator 2

Operator 3 Operator 3

Operator 4 Operator 4 Operator 4

Operator 5 Operator 5 Operator 5

Figure 4: Architecture of Cloudroid Swarm

8 Wireless Communications and Mobile Computing



number of echomessages in the window tomeasure the band-

width, and average the round trip time to calculate latðtÞL . The
time interval T used for detecting capability and performing
a capacity assignment for each link is set to 200ms. This value
is determined by various experiments on real-world applica-
tions to obtain more precise metrics and execute more fine-
grained control to the data links, yet with negligible impact
on the entire network. The whole algorithm is shown in
Algorithm 1.

4.2. Global Link Capacity Adjustment. The added network
components enable direct data exchange inside the cloud with
the sacrifice of increasing the traffic in the channels between
robots and servers. The latter is more likely to become a bottle-
neck because of constrained bandwidth and competition
among robots that choose the same wireless access route to
offload. So we need to carefully adjust their capacity to guide
the flow and prevent the bottleneck from occurring. We
design the global capacity assignment policy deployed at the

topology engine and dynamically adjust the capðtÞL of channels
in each timestamp, thereby scheduling message flows. The
policy is based on the following principles:

(i) When a new operator is launched at one end of a
link, a larger number of messages are transferred
via this link. In this case, the capacity of this link
tends to increase

(ii) The source module sends a large number of mes-
sages in a short period, and then, it recovers to the
previous state. We argue that these conditions indi-
cate an emergency signal arising from the source
module, for example, the obstacle encountered by a
wheeled robot or passages in front of an autono-
mous vehicle. This situation should be quickly
reflected in the capacity

(iii) The number of messages on one or more existing
topics is increased. In this situation, the capacity of
the relational data links should be increased for
long-term governance

Based on the above analysis, we design a QoS-aware
distributed link capacity adjustment algorithm, which is pre-
sented in Algorithm 2. For each task, we choose the cooper-
ation offloading strategy by default. Then, we detect link
status using the sliding-window method described in Section
4.1. If bandwidth is too low to satisfy the cooperation offload-

ing decision, the system will choose the local computing
strategy to guarantee the basic QoS. Otherwise, we choose
the cooperation offloading to boost cooperation and adjust
the capacity of the channels between robots and the cloud.
The topology engine executes the policy routine proposed
above and sends the results back to the local component for
assigning capacity in the next timestamp (from line 11 to line
15 in Algorithm 2).

4.3. Computational Complexity. We provide the theoretical
analysis of the computational complexity of the proposed
algorithm. Algorithm 1, the sliding-window algorithm, is
distributed on each mobile robot. So the computational com-
plexity of the sliding-window algorithm does not scale with
the group size, n (i.e., Oð1Þ complexity).

Algorithm 2 has two main steps, which are cooperation
decision making and link capacity adjustment. Since we
assume that all tasks are either performed locally or offloaded
to servers for a robot swarm, we can obtain the optimal coop-
eration offloading decisions by comparing the maximum
total time cost of local computing and cooperation offload-
ing. Then, we adjust the capacity of channels between robots
and the cloud if using cooperation offloading. The computa-
tional complexity of both steps increases at a linear rate OðnÞ
of the group size. So the computational complexity of the
QoS-aware link capacity adjustment algorithm is OðnÞ.

Overall, the computational complexity increases linearly
with the increasing number of robots, making our platform
have good scalability.

5. Implementation

We implement the prototype of Cloudroid Swarm based on
the ROS programming model to adapt to existing multirobot
applications. Cloudroid Swarm is an extension of the single-
robot-oriented framework, Cloudroid, which can transpar-
ently migrate computation-intensive modules to the cloud
servers and wrap them as computation modules for enhance-
ment. While exploiting the existing systems, we still devise sig-
nificant mechanisms to improve the QoS and scalability of
Cloudroid Swarm. These improvements include the following:

Topic remapping: to intercept messages from/to compu-
tation modules, we utilize the building function of the ROS
launching mechanism to remap all the originally subscri-
bed/published topics to new ones. In this situation, the net-
work modules, which are related to both the original and
remapped topics, can successfully manipulate and forward
the messages that are transferred between the computational
module and other components.

Container cluster orchestration: because all modules,
including the computation modules, network modules, net-
work operators, and topology engine are self-contained Docker
instances, the coordination and management of them are
essential for Cloudroid Swarm. In this regard, we adopt a pop-
ular open-source container cluster orchestration tool known as
Kubernetes (KubeEdge: https://kubeedge.io/). It enables load
balance, deployment replication, and elastic consolidations. In
addition, we also use KubeEdge (KubeEdge: https://kubeedge
.io/) for edge management if our system contains edge servers.

Source end

Destination end

Sliding window

0 T 2T 3T 4T 5T 6T 7T

... ...

... ...

t

Figure 5: The sliding-window method for link detection.

9Wireless Communications and Mobile Computing

https://kubeedge.io/
https://kubeedge.io/
https://kubeedge.io/


Message deduplication: because the ROS programming
model commonly uses a topic-based communication pattern,
the publisher must send identical message data to each
subscriber in local native setups, for the reason that ROS net-
work stack has no knowledge of the underlying topology. In
Cloudroid Swarm, the approach of message deduplication
is applied to handle inefficiencies of this nature. When node
Ni sends messages on a topic to which the other computation
modules subscribe, only one copy of the data needs to be
transferred via channel CHi. All the topics published by Ni
are delegated by NMi on the cloud side, and when NMi
receives the message, it takes the stored subscriber list shared
by Ni to forward the message to the other computation mod-
ules. Situations in which a message is sent from the network
module to other local robots are processed similarly.

Optional message pull: the ROS message model defines
that as long as there exists a subscriber of a topic, the publisher
must send every message whether the subscriber uses it or not.
Under the split model of Cloudroid, this situation will press a
large impact on the network bandwidth. To solve this prob-
lem, we allow the user to define the optional argument of each
message to define whether publishers use “pull” or “push”
mode to send messages when robots upload the application
to Cloudroid Swarm. The push mode is the default behavior
of the ROS model, and on the other hand, the pull mode
enables the on-demand sending of the message only at the
time when the subscriber request this message. We design
the pull mode as optional because it may cause more compli-
cated behavior in a real-time consideration of some messages.
However, in the performance evaluation of our system, we
have noticed a significant improvement in network bandwidth
and QoS under the on-demand pull mode.

Time sequence message elimination: another essential
optimization point targets the time-efficient topics. Receiving
the latest message is vital for a subscriber to maintain real-
time performance. Instead of sending each message using
the default FIFO (first in first out) behavior of ROS, for this
kind of topic, we optimize it by always publishing the latest
message over the network. Other previous historical mes-
sages have been of little use and can be safely eliminated for
increased network efficiency.

Custom compress transport: message compression is
enabled to reduce the network footprint, and we choose Google
Protobuf (Google Protobuf serialization: https://developers
.google.com/protocol-buffers/) to (de)serialize messages. For
communication via cloud links (if more than one server is
configured), we exploit the ZeroMQ (ZeroMQ: http://zeromq
.org/) distributed messaging system, which is more friendly to
the cloud environment and provides significant efficiency.

We reuse the infrastructure of ROS and Cloudroid to
implement certain components of Cloudroid Swarm. Our
framework is designed at the platform level and is transpar-
ent to the overlying robot application, which allows the orig-
inal application to be safely migrated to the cloud without the
need for any code modification. In addition, the code for the
topology engine is approximately 1,100 lines of code, whereas
another 1,400 lines of code are devoted to the network mod-
ule and network operator.

6. Evaluation

This section presents our evaluation of the performance of
Cloudroid Swarm with three different types of multirobot
applications, whose inputs are from the public data set, simu-
lation environment, and real-world turtlebot system, respec-
tively. These representative tasks are multirobot SLAM,
collision avoidance, and exploration, all of which call for coop-
eration between robots and involve a large amount of data
exchange among robots. The evaluation of each application
also includes an experiment we conduct on other offloading
or local native configurations for comparison. To the best of
our knowledge, work that focuses on cooperation offloading
has not yet been reported. Thus, during the evaluation, we
compare our work with the following baselines.

(i) Local native: without any assistance from the cloud,
all the computation and cooperation occur locally

Odometry

Laser scan

Condensed
map

Robot

Robot

Laser scan

OdometryWheel
Wheel

SLAM
process SLAM

process

LiDAR LiDAR

Figure 6: The architecture of CG_MRSLAM.

Table 1: The input public data set used by each robot.

Robot
indexa

Duration
Trajectory
length

Laser scan
inputs

Odometry
inputs

1 155.72 s 40.380m 1457 1548

2 115.63 s 21.735m 1074 1152

3 111.91 s 18.135m 1046 1116

4 72.75 s 16.118m 679 723
aThe names of corresponding data sequences are freiburg2_pioneer_slam,
freiburg2_pioneer_slam2, freiburg2_pioneer_slam3, and freiburg2_pioneer_
360, respectively.

10 Wireless Communications and Mobile Computing

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://zeromq.org/
http://zeromq.org/


0

10

20

30

40

50

60

O
cc

up
an

cy
 ra

te
 o

f c
ha

nn
el

 b
an

dw
id

th

Channel of robot 1
CH1

Channel of robot 2
CH2

Node link
NL12

Cloudroid Cloudroid Swarm
Cloudroid Swarm
without QoSRapyuta

(a) Bandwidth usage of data links

Cloudroid Cloudroid
Swarm

Cloudroid Swarm
without QoS

RapyutaLocal native
0 0

200

400

600

800

1000

1200

10

20

30

40

50

60

M
es

sa
ge

 tr
av

el
in

g 
tim

e (
m

s)

To
ta

l n
um

be
r o

f m
es

sa
ge

s

(b) Metrics of the condense map message. The message count is represented by the black

line, whereas the latency (including the median and variance in each scene) is shown in the
form of bars (lower or narrower is more favorable)

Figure 7: Communication performance in each of the scenes.

–4 –3
–3

–2

–2

–1

–1

1

1

2

2

3

3

4

0

0

x [m]

y
 [m

]

Ground truth
Estimated
Difference

(a) Local native: ATE = 0:21

–4 –3 –2 –1 1 2 30

x [m]

–3

–2

–1

1

2

3

4

0y
 [m

]

Ground truth
Estimated
Difference

(b) Cloudroid: ATE = 0:47

–4 –3 –2 –1 1 2 30
–3

–2

–1

1

0

2

3

4

y
 [m

]

x [m]

Ground truth
Estimated
Difference

(c) Rapyuta: ATE = 0:27

–4 –3 –2 –1 1 2 30

x [m]

–3

–2

–1

1

2

3

4

0y
 [m

]

Ground truth
Estimated
Difference

(d) Cloudroid Swarm: ATE = 0:11

Figure 8: Built trajectories and ATE values of robot 3 for the four setups.

11Wireless Communications and Mobile Computing



on the robots. This is also the target environment for
the design of the three applications

(ii) Cloudroid: Cloudroid is a general framework for
computation offloading. Certain computationally
intensive tasks are configured to be migrated to the
cloud side for enhancement

(iii) Rapyuta: although the architecture of Rapyuta sup-
ports computation offloading, similar to Cloudroid,
Rapyuta is consolidated with more cloud-based
techniques such as a load balancer to provide more
flexible control for developers

(iv) Cloudroid Swarm without QoS: Cloudroid Swarm is
our framework designed for multirobot cooperation
offloading with network optimization for QoS. We
set this baseline without a QoS mechanism, such as
link detection and global link capacity adjustment
for ablation studies

We deploy an outstanding commercial public cloud with
four computation hosts as the testbed for all cloud-based setups
on the cloud side. Each host is configured with a four Intel Xeon
E5-2682 CPU, 16GB RAM, and hosts are interconnected with
1Gbps Ethernet. On the robot side, the physical platform for
the four robots is the wheel-driven robot TurtleBot3 (Turtlebot:
http://www.turtlebot.com/), which is equipped with LiDAR for
laser scanning. The onboard robot processing computer used is
Raspberry Pi 3 Model B (Raspberry Pi 3 Model B: https://www
.raspberrypi.org/products/raspberry-pi-3-model-b/), with a
CPU containing four cores, 1GB RAM, and BCM43438 wire-
less LAN (802.11b/g/n standard with up to 72.2Mbps net
throughput).

6.1. Evaluation Case 1: Cooperative SLAM. This section
describes our evaluation of the efficiency of Cloudroid Swarm
on CG_MRSLAM [26], a ROS-based framework designed to
enable multiple robots to participate in a cooperative SLAM
process. Each robot continuously and incrementally sends
the map built by itself to another robot nearby using peer-
to-peer communication during the task. When other robots
receive these local maps, they integrate them into their own
maintained map to build the global one. From the perspec-
tive of message flow, the architecture of CG_MRSLAM is
depicted in Figure 6, where the area enclosed within the blue
line can be migrated to the cloud platform for enhancement
in our setup of cloud offloading. Operators that are intensive
in terms of computation and communication, such as locali-
zation and mapping, can be migrated to the cloud platform
for increased execution efficiency in our cloud offloading
setup. The robots only process the laser scan and odometry
inputs related to the hardware. Unlike the original local
setup, where a message can only be sent when two robots
are sufficiently close in proximity, our cooperation offloading
method eliminates the distance limitation.

To compare the influence of communication on the final
accuracy of the task, we choose to conduct the experiments
using public sensor and actuator data [27], which was
captured by the Technical University ofMunich using the Pio-

neer robot (Pioneer P3-DX: https://www.generationrobots
.com/en/402395-robot-mobile-pioneer-3-dx.html). The four
data sequences in Table 1 were collected in the same indoor
scene, and we apply each one separately to our robots as the
simulation input data.

(1) Communication performance

To evaluate the network optimization efficiency of the
QoS-aware link capacity adjustment algorithm proposed in
Section 4.2, we introduce an additional cooperation offload-
ing setup without QoS algorithms and mechanisms for base-
line in this section; the link capacity of the channel is equally
shared among users.

To demonstrate our framework’s ability to relieve the
pressure of communication, we also investigate the band-
width usage during the task in Figure 7(a). The results show
that for three representative links (CH1, CH2, and NL12), the
usage of links in Cloudroid Swarm is the lowest, especially for
the channels between robots and the cloud, which are more
easily to be bottlenecks. In particular, CH2 exhibited a 57%
decrease in bandwidth usage compared with Cloudroid,
whereas for CH1, the decrease exceeded 80%. It is also
observed that for all links, adding QoS mechanisms increases
the bandwidth occupancy slightly. This is because, except for
data exchange, our sliding-window algorithm for link detec-
tion also takes up bandwidth.

During the evaluation, we record the latency for each map
message data and the total number of messages transferred

Local native
Rapyuta

Cloudroid Swarm
Cloudroid

The time used for exploration (s)

Th
e p

ro
gr

es
s o

f e
xp

lo
ra

tio
n 

(%
)

0
0

50

20

40

60

80

100

100

150 200 250 300

Figure 9: Exploration progress of AAU.

Table 2: The overlapping of exploration.

Setup Overlapping ratio

Local native 21%

Cloudroid 37%

Rapyuta 35%

Cloudroid Swarm 5%

12 Wireless Communications and Mobile Computing

http://www.turtlebot.com/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.generationrobots.com/en/402395-robot-mobile-pioneer-3-dx.html
https://www.generationrobots.com/en/402395-robot-mobile-pioneer-3-dx.html


during the task, as depicted in Figure 7(b) From the number of
messages depicted by the black line, we learn that the number
of messages increases significantly with Cloudroid Swarm,
compared with the other three setups. More messages
exchanged indicates more cooperation among robots. With
direct message transmission between network modules, the
latency with our framework is also largely reduced and
becomes more stable; the variance is the smallest of all scenes.
It is observed that when we introduce the QoS-aware link
capacity adjustment algorithm, Cloudroid Swarm obtains the
lowest average and maximum message traveling time and
the highest number of messages, indicating the best network
optimization performance. This is because our framework will
choose the local computing strategy when the message travel-
ing time of cooperation offloading is longer than the message
traveling time of local computing. The QoS mechanisms guar-
antee the task performance under poor or dynamic network
environments. Note that without enhancement using cooper-
ation offloading, our original framework, Cloudroid, has the
most unstable network performance with a large variance in
message latency.

(2) Task accuracy performance

We also conduct the task accuracy evaluation using the
ground-truth trajectory data provided, inspecting and dis-
cussing the trajectory we generated from the CG_MRSLAM.
Our results with the data set named freiburg2_pioneer_slam3
for all four setups are depicted in Figure 8. The ground-truth
trajectory is also shown for comparison, and the red line rep-
resents the transitional error. For tracking precision, we use
ATE, a metric defined in [27], to describe the difference
between the ground-truth and the estimated trajectory.

ATE is calculated using the least-squares method to find a
rigid-body transformation T , which maps the estimated tra-
jectory En onto the ground truth Gn. Then, the root-mean-
square error over all time indices of the transformation com-
ponents is evaluated using the following expression:

ATE Enð Þ = 1
n
〠
n

i=1
∥trans E−1

i TGi

� �
∥

 !1/2

: ð6Þ

Comparing the red accumulated error and ATE value, we
learn that in Figure 8, especially in subfigures (b) and (c),
because parts of the condensed map cannot be transferred
smoothly between robots with limited bandwidth, the locali-
zation phase of CG_MRSLAM easily drifts from the ground
truth. This phenomenon causes a considerable increase of
the ATE. We find the ATE of Cloudroid and Rapyuta to be
2.24 and 1.28 times higher, respectively, than the local native
setup. This indicates that with computation offloading, the
message overload is so high that it makes the performance
even worse. These results also correspond with the analysis
shown in Section 3.2. With our Cloudroid Swarm, the ATE
decreases to 0.11, which nearly doubles the performance of
the local native. Thus, cooperation offloading instead of only
computation offloading is adaptive to this task.

6.2. Evaluation Case 2: Multi-robot Exploration. Multirobot
exploration, a task that collaboratively explores the frontier
of an unknown environment by a robot group, is also evalu-
ated by our environment. During this task, the information
about the frontier and border is transmitted to other robots
to negotiate the explored areas.

The application suite we leverage is the collaborative
exploration framework proposed by Alpen-Adria-Universität
Klagenfurt [28], abbreviated as AAU. Different robots individ-
ually conduct frontier exploration, which sends the local map
and robot location to all the other robots for merging into a
global map. The architecture of AAU has many similarities
with the architecture of CG_MRSLAM, and both use laser
scans and odometry to sense the environment. Although both
CG_MRSLAM and AAU broadcast the local map to peers,
AAU chooses the entire local map whereas CG_MRSLAM
only sends the condensed map. However, because exploration
is an application that requires the robot to be able to move
freely, the timeliness of the interrobot message is a dominating

Wheel Velocity command 

Motion
planning

Odometry

Laser scan

Robot position

Robot positionObstacle
avoidanceAMCL

localization

Robot

Other
robot
peers

LiDAR

Figure 10: The architecture of Collvoid.

Figure 11: The robot group used for real-world applications.

13Wireless Communications and Mobile Computing



factor in the accuracy of mapmerging, which directly becomes
an important factor in the speed and accuracy of exploration.
In order to evaluate the performances of the multirobot sys-
tem quantitatively, we use a ROS stage simulator similar to
[28]. In addition, AAU uses another communication mecha-
nism for its local architecture; specifically, robots that are not
sufficiently close to each other but want to exchange data
can use the third robot as a relaying router for message for-
warding. Although this would be an effective optimization
approach for local communication, in the setup of Cloudroid
Swarm, it becomes unnecessary and can even increase the
latency. To accommodate this situation, we configured the
internal ad hoc communication of each node to be migrated
to the cloud side such that it is transferred directly inside the
cloud to boost performance.

The performance of multirobot exploration tasks can be
measured as the time used to expand the entire area of an
explored place. The communication efficiency has a strong
influence on the overlapping area, which in turn affects the
coverage speed of the entire robot group. Based on this fact,
we measure the total exploration progress of the four robots

during the task, as shown in Figure 9. To eliminate the effect
of differences in the size of the total area, we normalize the
size as a ratio of the total size. In the initial phase of the task,
the size of the overlapping area between robots is very small,
and the progress in this phase increases rapidly. However,
when the overlapping begins to increase, the message trans-
mission path optimized by Cloudroid Swarm begins to
increase and becomes advantageous relative to the other three
setups. Note that although the additional communication path
suppresses data exchange, it still outperforms the local native
setup because the computation is offloaded in Rapyuta; i.e.,
inequality (3) can be satisfied in this configuration. Addition-
ally, the capability of our method on AAU is also demon-
strated in the exploration overlapping in Table 2, where
Cloudroid Swarm has the smallest value. This is because the
transmission of messages between robots is more efficient so
that 5% overlapping is enough to match and joint the local
maps of every robot to construct a global map.

6.3. Evaluation Case 3: Multi-robot Collision Avoidance. In
this section, we present our investigation of the performance

–1.00
–1.00

–0.75

–0.75

–0.50

–0.50

–0.25

–0.25

0.00

0.00

0.25

0.25

0.50

0.50

0.75

0.75

1.00

1.00

(a) Results of local native

–1.00 –0.75 –0.50 –0.25 0.00 0.25 0.50 0.75 1.00
–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

(b) Results of Cloudroid

–1.00 –0.75 –0.50 –0.25 0.00 0.25 0.50 0.75 1.00
–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

(c) Results of Rapyuta

–1.00

–0.75

–0.50

–0.25

0.00

0.25

0.50

0.75

1.00

–1.00 –0.75 –0.50 –0.25 0.00 0.25 0.50 0.75 1.00

(d) Results of Cloudroid Swarm

Figure 12: Result of the evaluation of Collvoid: (a–d) show the motion trajectories of the four robots with the Local Native, Cloudroid,
Rapyuta, and Cloudroid Swarm setups, respectively.

14 Wireless Communications and Mobile Computing



of Cloudroid Swarm on a multirobot application with more
complex architecture with real-world robots. This task
requires each robot in the group to navigate to the specified
target position while avoiding the obstacles in the maps and
their robot peers. The application we use in the experiment
is Collvoid [29], which is a multirobot collision avoidance
system based on the velocity obstacle paradigm [30]. The
architecture of Collvoid is based on the original local wireless
network, and the pipeline of its algorithm is as follows:

(i) Each robot receives information about the odometry
of the wheels and uses a laser scanner for a more pre-
cise localization procedure

(ii) The position information is then broadcast over the
wireless network, and the peers receive these mes-
sages and integrate them to detect both the obstacles
and their peers

(iii) Based on self-estimated localization and obstacle
detection, the robot performs motion planning for
further navigation and guides the wheels for move-
ment with velocity commands

The modules and message flows are shown in Figure 10.
From the perspective of computation, the most computation-
ally intensive operator is AMCL localization. When this
operator is offloaded to the cloud for acceleration using
computation offloading in Cloudroid and Rapyuta, the locali-
zation messages are shared locally using the wireless network,
whereas in Cloudroid Swarm, it occurs in the cloud links. The
real-world experiment is conducted in a closed indoor envi-
ronment. Depicted in Figure 11, the four robots form a square,
and each one navigated to the position occupied by its peer
diagonally across while running Collvoid to avoid colliding
with its peers. The inputs are directly from the turtlebots’ laser

scanning, containing more noise. So more efficient communi-
cation is required to complete the cooperative task.

In the evaluation, two crucial metrics need to be evalu-
ated to compare the performance of Collvoid. The first is to
determine whether robots can complete the traveling tasks
and reach the specified target location, and the other is the
smoothness of the traveled trajectory. A smoother trajectory
indicates more flexible control of the robot. As we observe in
Figure 12, all four robots can reach their specified target in
Figure 12(d). On the other hand, in the other three setups,
because the message transmission is too inefficient to carry
precise information of obstacles and locations, one or more
of the robots failed to reach their target. However, the various
obstacle messages lower the yellow robot’s smoothness rela-
tive to others, especially using our framework. This is because
with cooperation offloading, robots receive more messages,
thus behaving more conservatively to avoid collisions. Since
we do not focus on the algorithm itself, this result is in line
with our expectations.

6.4. Scalability Evaluation. In this section, we evaluate our
framework with a large group of robots to show the scalability
of Cloudroid Swarm. However, the scalability validation of
most existing multirobot applications, such as multirobot
SLAM, is still limited to a small group of robots, which is hardly
directly scaled to dozens of robots. We improve ORB-SLAM
[31] for better scalability and propose a scalable and real-time
multirobot visual SLAM framework [32]. This framework can
effectively divide and schedule SLAM task inside a cluster, with
the group-based parallelism and the map point multicut algo-
rithm. The framework adopts a switchable messaging pattern
to meet different transmission scenarios to reduce the data
sharing latency between different hosts. And the map data
consistency is improved by the designed linage feedback and
timestamp versioning mechanisms.

8 16 32 64 128 256

The number of robots used in experiment

5

10

15

20

25

30

35

40
A

ve
ra

ge
 F

PS

Single host
2 hosts
4 hosts

8 hosts
16 hosts

(a) Average FPS

8 16 32 64 128 256

The number of robots used in experiment

0

25

50

75

100

125

150

175

A
ve

ra
ge

 d
at

a t
ra

ns
m

iss
io

n 
pe

r s
ec

on
d

Single host
2 hosts
4 hosts

8 hosts
16 hosts

(b) Data transmission rate (Mbps) in the cloud side

Figure 13: The scalability metrics in different configurations.

15Wireless Communications and Mobile Computing



Because we do not have the condition for the experiment
to exploit hundreds of real-world robots for evaluation,
during the simulation evaluation, we choose Docker con-
tainer to emulate the physical robots instead. Each container
is configured as one Xeon E5-2682 CPU and 2GB RAM, and
the network bandwidth is limited to 50Mbps, which is the
ceiling rate of the wireless and 4G cellular network devices
on robots. The used public data set is the same as in Section
6.1. In order to adapt the data set to large-scale robot swarms,
we divide each image data sequence into multiple pieces,
making every segment have a length of 20 s.

Since our method is fully distributed, the scalability of it
is demonstrated from two aspects, the number of robots
which our framework can support for performing coopera-
tive SLAM in real-time and the number of computation hosts
in the cloud side our method can extend to. In this situation,
we choose the number of computation hosts varied from 1, 2,
4, 8, to 16, and the different numbers of simulated front-end
robots ranged from 16, 32, 64, 128, to 256, to deep insight
into the effects on each combination.

The results are depicted in Figure 13, where the average
metrics, including FPS, data transmission rates, and group
sizes, are shown to characterize the performance of our
method. Although our method also encounters FPS decreas-
ing when the number of robots is increasing, FPS also has to
get promotions when the number of hosts increases. Especially
in the case of 16 hosts, even for 256 robots, it has retained the
rate to more than 20 FPS, which is enough for the real-time
requirements of SLAM applications. The data transmission
in the most remarkable case is 188Mbps (256 robots in 16
hosts), which is exceeding the local communication capabili-
ties of the mobile robot, but still much less than 1Gbps net-
work bandwidth in the cloud side. With more hosts (from 4
to 8, 16) deployed in the cloud side, the data transmission does
not show a significant increase, indicating that our framework
can be effectively scaled out in the cluster.

7. Discussion

Our approach has some limitations. Considering the limited
computing capabilities and real-time requirements of mobile
robots, we simplify the cooperation offloading problem by
assuming that either all tasks are performed locally or all of
them are offloaded to servers. However, it is common that
each robot can determine whether to offload or not in the
computation offloading scenes. We believe that deep learning
and reinforcement learning will play important roles in gen-
erating cooperation offloading decisions for each individual.

Security is one of the critical issues in mobile cloud com-
puting [33] and mobile edge computing [21]. Since our frame-
work is based on ROS, every user connecting to the ROS
master could leak sensitive information (such as data from
sensors or cameras) or even send commands to move robots,
creating privacy and safety risk. The problem becomes serious
if we extend ROS to the public Internet. To alleviate this prob-
lem, we restrict only authorized users to access the platform.
Some more advanced encryption algorithms should be intro-
duced to safeguard the robots during the cooperation offload-

ing process to deal with security threats (e.g., snooping and
alteration).

MEC servers are much closer to mobile devices and thus
have lower latency, while MCC servers can provide flexible
and scalable computing capability to support complicated
applications [34]. For simplicity, we do not explicitly differ-
entiate between edge servers and remote cloud servers in
our formulations. However, the distinguishing characteristics
of edge computing include its dense geographical distribution,
support for mobility, and proximity to end users [35]. Loghin
et al. [36] demonstrate that MEC is more effective than MCC
when the task has a higher input-to-output ratio and lower
computation-to-communication ratio for uploading and pro-
cessing the input on the cloud. Though we conduct our exper-
iments with MCC until now, we believe it is easy to extend
cooperation offloading to MEC according to the situation.

8. Conclusion

In this paper, we study the cloud-based offloading problem in
multirobot cooperative scenes and propose an approach
named cooperation offloading for robot swarms performing
a cooperative task. We analyze the time cost and then propose
offloading decisions by formalizing a general model for this
problem. To apply this concept in a practical situation, we pro-
pose a set of network components and develop an algorithm
on both the local and global levels to optimize the network
links. Next, we implement Cloudroid Swarm and use three
representative multirobot applications to validate the frame-
work in a constrained network environment. The results show
the efficiency of our approach, which enhances the communi-
cation performancemore than twice and the task performance
more than four times compared to the setup without offload-
ing or with well-known computation offloading frameworks.
Finally, we verify the feasibility of our framework in the real-
world environment and scalability with hundred-level robot
swarms.

Data Availability

The input public data set used by four robots in case 1, Coop-
erative SLAM, is available at https://vision.in.tum.de/data/
datasets/rgbd-dataset/download.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is partially supported by the major Science and
Technology Innovation 2030 “New Generation Artificial
Intelligence” project 2020AAA0104803.

References

[1] A. U. R. Khan, M. Othman, A. N. Khan, J. Shuja, and
S. Mustafa, “Computation offloading cost estimation in mobile
cloud application models,” Wireless Personal Communica-
tions, vol. 97, no. 3, pp. 4897–4920, 2017.

16 Wireless Communications and Mobile Computing

https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/rgbd-dataset/download


[2] B. Ding, J. Xu, H. Wang, H. Zhang, H. Liu, and D. Feng,
“Invited paper: distributed computing in cyber-physical intel-
ligence: robotic perception as an example,” in IEEE Interna-
tional Conference on Service-Oriented System Engineering
(SOSE), pp. 1–17, San Francisco, CA, USA, 2019.

[3] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and
M. Waibel, “Cloud-based collaborative 3d mapping in real-
time with low-cost robots,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 423–431, 2015.

[4] A. K. Tanwani, N. Mor, J. Kubiatowicz, J. E. Gonzalez, and
K. Goldberg, “A fog robotics approach to deep robot learning:
application to object recognition and grasp planning in surface
decluttering,” in International Conference on Robotics and Auto-
mation (ICRA), pp. 4559–4566, Montreal, QC, Canada, 2019.

[5] Y. Li, H. Wang, B. Ding, and W. Zhou, “Robocloud: augment-
ing robotic visions for open environment modeling using
internet knowledge,” Science China Information Sciences,
vol. 61, no. 5, article 050102, 2018.

[6] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “QoS-
aware cooperative computation offloading for robot swarms
in cloud robotics,” IEEE Transactions on Vehicular Technol-
ogy, vol. 68, no. 4, pp. 4027–4041, 2019.

[7] Y. Zhai, B. Ding, P. Zhang et al., “Cooperative offloading for
multiple robot applications,” in IEEE International Conference
on Joint Cloud Computing, pp. 63–70, Oxford, UK, 2020.

[8] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of
mobile cloud computing: architecture, applications, and
approaches,” Wireless Communications and Mobile Comput-
ing, vol. 13, no. 18, 1611 pages, 2013.

[9] I. Farris, T. Taleb, H. Flinck, and A. Iera, “Providing ultra-
short latency to user-centric 5g applications at the mobile net-
work edge,” Transactions on Emerging Telecommunications
Technologies, vol. 29, no. 4, article e3169, 2018.

[10] Y. Chen, Z. Du, and M. García-Acosta, “Robot as a service in
cloud computing,” in Fifth IEEE International Symposium on
Service Oriented System Engineering, pp. 151–158, Nanjing,
China, 2010.

[11] R. Arumugam, V. R. Enti, L. Bingbing et al., “DAvinCi: a cloud
computing framework for service robots,” in IEEE interna-
tional conference on robotics and automation, pp. 3084–3089,
Anchorage, AK, USA, 2010.

[12] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel,
“Rapyuta: a cloud robotics platform,” IEEE Transactions on
Automation Science and Engineering, vol. 12, no. 2, pp. 481–
493, 2015.

[13] B. Hu, H. Wang, P. Zhang, B. Ding, and H. Che, “Cloudroid: a
cloud framework for transparent and QoS-aware robotic com-
putation outsourcing,” in IEEE 10th International Conference
on Cloud Computing (CLOUD), pp. 114–121, Honololu, HI,
USA, 2017.

[14] H. Yu, Q. Wang, and S. Guo, “Energy-efficient task offloading
and resource scheduling for mobile edge computing,” in 2018
IEEE International Conference on Networking, Architecture
and Storage (NAS), pp. 1–4, Chongqing, China, 2018.

[15] S. Bi and Y. J. Zhang, “Computation rate maximization for
wireless powered mobile-edge computing with binary compu-
tation offloading,” IEEE Transactions onWireless Communica-
tions, vol. 17, no. 6, pp. 4177–4190, 2018.

[16] X. Chen, “Decentralized computation offloading game for
mobile cloud computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 4, pp. 974–983, 2014.

[17] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou,
“Risk-aware data offloading in multi-server multi-access edge
computing environment,” IEEE/ACM Transactions on Net-
working, vol. 28, no. 3, pp. 1405–1418, 2020.

[18] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile
and wireless networking: a survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[19] H.Wu, Z. Zhang, C. Guan, K.Wolter, andM. Xu, “Collaborate
edge and cloud computing with distributed deep learning for
smart city internet of things,” IEEE Internet of Things Journal,
vol. 7, no. 9, pp. 8099–8110, 2020.

[20] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin, “Learning for
computation offloading in mobile edge computing,” IEEE
Transactions on Communications, vol. 66, no. 12, pp. 6353–
6367, 2018.

[21] B. Huang, Y. Li, Z. Li et al., “Security and cost-aware computa-
tion offloading via deep reinforcement learning in mobile edge
computing,” Wireless Communications and Mobile Comput-
ing, vol. 2019, Article ID 3816237, 20 pages, 2019.

[22] T. Arai, E. Pagello, and L. E. Parker, “Guest editorial advances
in multirobot systems,” IEEE Transactions on robotics and
automation, vol. 18, no. 5, pp. 655–661, 2002.

[23] E. Klavins, “Communication complexity of multi-robot sys-
tems,” in Algorithmic Foundations of Robotics V, 2004.

[24] R. Doriya, S. Mishra, and S. Gupta, “A brief survey and analysis
of multi-robot communication and coordination,” in Interna-
tional Conference on Computing, Communication & Automa-
tion, pp. 1014–1021, Greater Noida, India, 2015.

[25] W. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, K. Nakamura,
and J. Ogawa, “A study of robotic cooperation in cloud robot-
ics: architecture and challenges,” IEEE Access, vol. 6,
pp. 36662–36682, 2018.

[26] M. T. Lazaro, L. M. Paz, P. Pinies, J. A. Castellanos, and
G. Grisetti, “Multi-robot slam using condensed measure-
ments,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1069–1076, Tokyo, Japan, 2013.

[27] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers,
“A benchmark for the evaluation of RGB-D SLAM systems,” in
IEEE/RSJ International Conference on Intelligent Robots and
Systems, Vilamoura-Algarve, Portugal, 2012.

[28] T. Andre, D. Neuhold, and C. Bettstetter, “Coordinated multi-
robot exploration: out of the box packages for ROS,” in Globe-
com Workshops (GC Wkshps), Austin, TX, USA, 2014.

[29] D. Claes, D. Hennes, K. Tuyls, and W. Meeussen, “Collision
avoidance under bounded localization uncertainty,” in
IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 1192–1198, Vilamoura-Algarve, Portugal, 2012.

[30] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in 2008 IEEE
International Conference on Robotics and Automation,
pp. 1928–1935, Pasadena, CA, USA, 2008.

[31] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-
SLAM: a versatile and accurate monocular slam system,” IEEE
Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

[32] P. Zhang, H. Wang, B. Ding, and S. Shang, “Cloud-based
framework for scalable and real-time multi-robot slam,” in
2018 IEEE International Conference on Web Services (ICWS),
pp. 147–154, San Francisco, CA, USA, 2018.

[33] A. N. Khan, M. M. Kiah, S. U. Khan, and S. A. Madani,
“Towards secure mobile cloud computing: a survey,” Future

17Wireless Communications and Mobile Computing



Generation Computer Systems, vol. 29, no. 5, pp. 1278–1299,
2013.

[34] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, and M. Xu,
“EEDTO: an energy-efficient dynamic task offloading algo-
rithm for blockchain-enabled IoT-edge-cloud orchestrated
computing,” IEEE Internet of Things Journal, vol. 8, no. 4,
pp. 2163–2176, 2021.

[35] E. Ahmed, A. Ahmed, I. Yaqoob et al., “Bringing computation
closer toward the user network: is edge computing the solu-
tion?,” IEEE Communications Magazine, vol. 55, no. 11,
pp. 138–144, 2017.

[36] D. Loghin, L. Ramapantulu, and Y. M. Teo, “Towards analyz-
ing the performance of hybrid edge-cloud processing,” in 2019
IEEE International Conference on Edge Computing (EDGE),
pp. 87–94, Milan, Italy, 2019.

18 Wireless Communications and Mobile Computing


	Cloudroid Swarm: A QoS-Aware Framework for Multirobot Cooperation Offloading
	1. Introduction
	2. Related Work
	2.1. Cloud Computing in Robotics
	2.2. Multi-user Computation Offloading
	2.3. Multi-robot Cooperation

	3. Cooperation Offloading Decision
	3.1. Multi-robot Cooperative Models
	3.2. Time Cost for Offloading Decisions

	4. QoS-Aware Framework
	4.1. Link Detection
	4.2. Global Link Capacity Adjustment
	4.3. Computational Complexity

	5. Implementation
	6. Evaluation
	6.1. Evaluation Case 1: Cooperative SLAM
	6.2. Evaluation Case 2: Multi-robot Exploration
	6.3. Evaluation Case 3: Multi-robot Collision Avoidance
	6.4. Scalability Evaluation

	7. Discussion
	8. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

