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Superstring perturbation theory via super Riemann
surfaces: an overview∗

Edward Witten

Abstract: This article is devoted to an overview of superstring
perturbation theory from the point of view of super Riemann sur-
faces. We aim to elucidate some of the subtleties of superstring
perturbation that caused difficulty in the early literature, focusing
on a concrete example – the SO(32) heterotic string compacti-
fied on a Calabi-Yau manifold, with the spin connection embed-
ded in the gauge group. This model is known to be a significant
test case for superstring perturbation theory. Supersymmetry is
spontaneously broken at 1-loop order, and to treat correctly the
supersymmetry-breaking effects that arise at 1- and 2-loop order
requires a precise formulation of the procedure for integration over
supermoduli space. In this paper, we aim as much as possible for
an informal explanation, though at some points we provide more
detailed explanations that can be omitted on first reading.
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1. Introduction

String perturbation theory is based on a generalization from point particles
and Feynman graphs to strings and Riemann surfaces. It has the remarkable
property of preserving the general properties of relativistic quantum field
theory, while eliminating the ultraviolet region and forcing the inclusion of
gravity. For historical references, see [1].

The generalization from bosonic string theory to superstrings eliminates
infrared instabilities and leads to a theory with a well-behaved perturbation
theory, describing quantum gravity unified with other fields and forces.

The basic foundations of superstring perturbation theory – including su-
perconformal symmetry, modular invariance, worldsheet anomaly cancella-
tion, and fermion vertex operators – were all well established by the mid-
1980s. Roughly speaking, to complete that story in a natural way only re-
quires a couple of steps:

(A) One should formulate all essential arguments, and especially those
that involve integration by parts, on the moduli space of super Riemann
surfaces, and not on the moduli space of ordinary Riemann surfaces.

(B) One needs a careful treatment of integrals that are only conditionally
convergent in the infrared region. The supersymmetric version of the Deligne-
Mumford compactification of moduli space provides a natural infrared regu-
lator.
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To explain these points in the abstract can be rather dry, and, if one
chooses to fill in details, also long [2]. The purpose of this paper1 is to give
a more informal explanation in the context of a model – or more precisely a
class of models – that is known to give a significant test case for superstring
perturbation theory. In the most basic case, we consider the SO(32) heterotic
string compactified on a Calabi-Yau threefold, with the spin connection em-
bedded in the gauge group in the standard fashion; this was first studied in
[3, 4], with subsequent work in [5–7], following an earlier analysis of the asso-
ciated effective field theory [8]. This example is a prototype for a large class of
heterotic string compactifications to four dimensions that are supersymmetric
at tree level but have an anomalous U(1) gauge field. The loop corrections
that cancel the anomaly also trigger the spontaneous breaking of supersym-
metry, giving the only known method of supersymmetry breakdown by loop
effects in superstring perturbation theory. Such models turn out to provide
an important test case for arguments that claim to show why supersymmetry
is valid in loops. Oversimplified arguments can easily give the wrong answer
when applied to these models.

In analyzing this class of models, we will treat three topics:

1. the mass splitting between bosons and fermions that arises at one-loop
order;

2. the vacuum energy that arises at two-loop order;
3. the mechanism by which a Goldstone fermion appears in supersymmet-

ric Ward identities, signaling the spontaneous breakdown of supersym-
metry.

The three points are treated respectively in sections 2, 3, and 4. In section
2, we begin by summarizing the insights of the original papers [3–6, 8]. Then
we go on and explain how this example illustrates a general procedure to reg-
ularize conditionally convergent integrals in superstring perturbation theory.
In section 3, we show that the two-loop vacuum energy in the same model can
be understood by the same methods. In section 4, we first explain the general
formulation of a supersymmetric Ward identity in superstring perturbation
theory, along the lines of section 8 of [2], and then implement this in detail at
the one-loop level in our illustrative class of models, showing the appearance
of a Goldstone fermion contribution.

We aim in this paper for an informal explanation, though sections 3 and
4 both have concluding sections with technical details. The reader who works

1The article is based on a lecture presented at the conference The Search For
Fundamental Physics: Higgs Bosons And Supersymmetry, in honor of Michael Dine
and Howard Haber (University of California at Santa Cruz, January 4-6, 2013).
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through the present paper – or even most of it, without the more technical
parts – should emerge with a fairly clear picture of some of the points that
caused difficulty in the literature of the 1980s on superstring perturbation
theory. Among other things, it should become clear that the phenomena are
best described in terms of the full set of bosonic and fermionic variables.

The short version of this paper consists of section 2, which suffices for an
overview of many of the ideas. The mid-length version consists of omitting
the technical sections 3.3 and 4.3.

The models considered here, since they do have a dilaton tadpole at two-
loop order, are not models in which superstring perturbation theory works
to all orders, at least not in its usual form. But they illustrate some essential
subtleties of superstring perturbation theory in a particularly simple way.
Once one understands these subtleties, one is well-placed to demonstrate that
superstring perturbation theory works to all orders in those models in which
tadpoles and supersymmetry-breaking effects do not arise.

A procedure to generalize superstring perturbation theory to describe
vacuum shifts that are necessary when tadpoles appear has been developed
recently [9]. (This procedure can certainly be restated in terms of super Rie-
mann surfaces, though this has not yet been done.) We do not consider such
issues here. Our goal is only to explain how “integration over moduli space”
when implemented in the superworld resolves various issues that caused con-
fusion in the literature of the 1980s.

2. The mass splitting

2.1. Review of effective field theory

We begin by reviewing the models of interest in the context of effective field
theory [8]. We consider compactification of the heterotic string to four di-
mensions on a Calabi-Yau three-fold Y , with the SU(3) holonomy group
embedded in the gauge group in the usual fashion. In the case of the E8 ×E8
heterotic string, the embedding identifies the SU(3) holonomy group with
the first factor of the subgroup SU(3) × E6 × E8 ⊂ E8 × E8. The unbro-
ken subgroup in four dimensions is E6 × E8. With minor modifications, this
construction leads to semirealistic models of particle physics.

We will consider instead the same construction in the SO(32) (or more
precisely Spin(32)/Z2) heterotic string. In this case, the relevant subgroup is
SU(3) × U(1) × SO(26) ⊂ SO(32), and the unbroken subgroup is U(1) ×
SO(26). Generically, this U(1) is anomalous. For example, there is a U(1) ·
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SO(26)2 anomaly with a coefficient that is a multiple of the Euler charac-
teristic of Y . The anomaly leads to the issues examined in this paper. Such
anomalous U(1)’s frequently arise in supersymmetric compactifications of the
heterotic string, including semirealistic ones. The models that we have de-
scribed illustrate the relevant issues in a simple context.

In string theory, the anomaly is canceled by the Green-Schwarz mech-
anism. This depends upon the fact that at one-loop order, Green-Schwarz
interactions such as I = 1

2·4!(2π)5
∫
R4×Y B ∧ trF 4 are generated. Here B is the

usual two-form field of the Neveu-Schwarz sector, F is the SO(32) gauge field
strength, R4 × Y is the ten-dimensional spacetime, and the trace is taken in
the fundamental representation of SO(32). Assuming that

(2.1) p = 1
48π3

∫
Y

trSU(3) F
3

is nonzero (this integral is one-half the Euler characteristic of Y), the in-
teraction I reduces in four dimensions to I4 = (p/(2π)2)

∫
R4 B ∧ F , where

henceforth F is the field strength of the anomalous U(1).
The effect of the interaction I4 is to cause the U(1) photon, which we will

call A, to become massive. To understand this mass generation in a possibly
more familiar way, we can dualize the purely four-dimensional part of B to
a periodic spin-zero field a. The B ∧ F interaction dualizes to ∂μa ·Aμ. This
means that including one- and two-loop effects the kinetic energy of a is not
∂μa∂

μa, but

(2.2) Dμa ·Dμa = (∂μa + pAμ)(∂μa + pAμ).

Accordingly, the field a is not gauge-invariant; a gauge transformation Aμ →
Aμ− ∂μs must be accompanied by a → a+ ps, and the field eia has charge p.

From the standpoint of spacetime supersymmetry, the field a is the imag-
inary part of a chiral multiplet

(2.3) S(xμ|θα) = e−2φ − ia + θακα + . . . ,

where the four-dimensional string coupling constant is gst = eφ; we write
xμ, μ = 0, . . . , 3 and θα, α = 1, 2 for bose and fermi coordinates of chiral
superspace; and κα is a fermi field of spin 1/2. Z = e−S is a charged chiral
multiplet of U(1) charge p. We call φ and κ the dilaton and dilatino. There
is no way to make S or Z vanish in the context of superstring perturbation
theory, so inevitably the U(1) gauge symmetry is spontaneously broken.
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This symmetry-breaking mechanism has the important and unusual prop-
erty that in perturbation theory, though U(1) is spontaneously broken as a
gauge symmetry, it survives as a global symmetry. The reason is that an am-
plitude that violates the global U(1) conservation law would arise from a term
in the effective action that is proportional to a nonzero power of the charged
field eia. Such terms are not generated in perturbation theory, because in
perturbation theory, a decouples at zero momentum. At the nonperturbative
level, the global U(1) symmetry is broken (at least down to a subgroup of
finite order) by spacetime instanton effects. For a recent analysis, see [10].

This mechanism of U(1) gauge symmetry breaking also leads to sponta-
neous breaking of supersymmetry. Indeed, the vector multiplet that contains
the U(1) gauge field A also contains an auxiliary field D. The expectation
value of D receives a contribution from the expectation value of S (or Z) as
well as from the massless charged chiral multiplets �a = ρa + θαψaα + . . .
that arise in the four-dimensional expansion of the ten-dimensional SO(32)
vector multiplet. The potential energy of the theory has a contribution

(2.4) D2

2g2
st
,

where

(2.5) D = p

ReS +
∑
a

ea|ρa|2 = pg2
st +

∑
a

ea|ρa|2.

(Here ea is the U(1) charge of the chiral multiplet �a, which is normalized so
that its kinetic energy is canonical.) As explained in [8], the dependence of
D on S follows entirely from the dilaton Kahler potential K = − log(ReS)
and the fact that a U(1) gauge transformation Aμ → Aμ + ∂μs transforms
S to S − ips. Thus, the expectation value of D is of order g2

st relative to
the classical contribution

∑
a ea|ρa|2, and this effect must arise at one-loop

order. This should come as no surprise, since the contribution of the multiplet
S to D is related by supersymmetry to the Green-Schwarz interaction that
triggers U(1) breaking. Since the expectation value of D is a one-loop effect,
the resulting contribution to the vacuum energy (or dilaton tadpole) D2/2g2

st
will have to arise in two-loop order. How this happens was investigated in the
1980s [3–6] and will be further explored in the rest of this paper.

Models such as we have described are the only known superstring models
in which supersymmetry is spontaneously broken in perturbation theory de-
spite being unbroken at tree level. That makes them an interesting test case
for superstring perturbation theory. Oversimplified treatments of superstring
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perturbation theory tend to predict that the behavior seen in models of this
class is impossible.

2.1.1. Two classes of vacua The statement that supersymmetry breaks
down in perturbation theory in these models refers specifically to the vacua
with ρa = 0. In these vacua, the global U(1) symmetry is conserved in pertur-
bation theory, but supersymmetry is expected to break down. Alternatively,
we could give expectation values of order gst to the ρa, so as to make D vanish
even though S �= 0. Then the global U(1) symmetry is violated perturbatively,
but supersymmetry is maintained. One expects that such a vacuum will lead
to a stable perturbation theory, with the property – unusual among super-
symmetric models – that perturbative stability of the vacuum depends on
a cancellation between effects of different orders in perturbation theory, as
discussed qualitatively in [11].

Tools to analyze superstring perturbation theory in such a situation have
been developed recently [9] (this work was expressed in the language of
picture-changing operators, though we anticipate that it can be straightfor-
wardly expressed in terms of super Riemann surfaces). The analysis in [2]
was limited to more straightforward models (supersymmetric compactifica-
tions above four dimensions and four-dimensional ones without anomalous
U(1)’s) in which effective field theory predicts that supersymmetry is main-
tained in perturbation theory without shifting the values of massless fields.
Even then, superstring perturbation theory involves subtleties that caused
some difficulty in the 1980s. We will gain experience with those subtleties
in the present paper by studying a class of models in which supersymmetry-
breaking effects (requiring a shift in the vacuum to maintain supersymmetry)
do arise in perturbation theory. In these models, the subtleties of superstring
perturbation theory arise in low orders in a particularly visible way.

2.2. A first look at the mass splitting

Following [3, 4], we will now take a first look at the one-loop mass splittings of
charged chiral multiplets. We write xμ, μ = 1, . . . , 4 for coordinates on R

4, and
yi, yi, i, i = 1, . . . , 3 for local holomorphic and antiholomorphic coordinates
on the Calabi-Yau manifold Y . Similarly, we denote the right-moving RNS
worldsheet fermions as ψμ, ψi, and ψi. The SO(32) current algebra of the het-
erotic string is carried by 32 left-moving fermions in the vector representation
of SO(32). Upon making the embedding U(1) × SU(3) × SO(26) ⊂ SO(32),
the left-moving fermions transform as (3,1)1 ⊕ (3,1)−1 ⊕ (1,26)0, where the
exponent is the U(1) charge. We denote these components respectively as λi,
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λi, i = 1, . . . , 3, and λT , T = 1, . . . , 26. Massless charged chiral multiplets arise
in four dimensions from the Kaluza-Klein expansion of the ten-dimensional
gauge field A. The relevant ansatz, suppressing SO(32) indices, is

(2.6) Ai(x; y) =
∑
a

ρa(x)wa i(y) + . . . ,

where a runs over the set of chiral multiplets, wa i(y) is for each a a harmonic
(0, 1)-form on Y (valued in the SO(32) bundle), and ρa(x) is a massless scalar
field in spacetime, part of a chiral supermultiplet �a = ρa + θαχa,α + . . . . We
write �a = ρa + θ

α̇
χa α̇ + . . . for the conjugate antichiral multiplet.

We consider the case that the supermultiplet �a has a nonzero U(1) charge
ea. In this case, a one-loop D-term will generate a ρaρa coupling. If such a term
is generated, it will represent a mass splitting for bosons and fermions in the
�a multiplet, since no corresponding mass term is possible for the fermions. (A
χaχa term is not Lorentz invariant because χa and χa have opposite chirality,
while χaχa or χaχa terms do not conserve the U(1) charge.) Our goal is to
understand that the one-loop superstring amplitude does generate the ρaρa
coupling.

For brevity, we will do this for chiral superfields transforming as 261 under
the unbroken U(1) × SO(26). Such modes arise from the part of the adjoint
representation of SO(32) that transforms under U(1) × SU(3) × SO(26) as
(3,26)1. For these modes, with SO(32) indices included, the ansatz (2.6)
becomes

(2.7) Ai iT (x; y) =
∑
a

ρa T (x)wa, ii(y), T = 1, . . . , 26.

Here for each a, wa ii is a harmonic (1, 1)-form on Y , and now the four-
dimensional wavefunction ρa,T carries the SO(26) index T .

In the RNS description of the heterotic string, we describe the string
worldsheet by even and odd holomorphic local coordinates z|θ and an even
antiholomorphic local coordinate2 z̃. The map of the string to spacetime is
described by superfields Xμ, Yi, Yi which have expansions such as Xμ(z̃;z|θ) =
Xμ(z̃;z) + θψμ(z̃;z). To construct supersymmetric expressions, one uses the

2What we call z̃ is commonly called z, but we prefer to avoid this notation
because identifying z̃ as the complex conjugate of z is not invariant under super-
conformal transformations of the pair z|θ. It is best to simply think of z̃ as a bosonic
coordinate that is close to the complex conjugate of z, and to be more precise only
when necessary. In the derivation below, this will be near z = z̃ = 0.
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superspace derivative Dθ = ∂θ + θ∂z, and, for example, one has

(2.8) DθX
μ = ψμ + θ∂Xμ.

A vertex operator for a Neveu-Schwarz state is a superfield W (z̃;z|θ).
In the case of a mode ρT of momentum k (for brevity we pick a particular
multiplet and suppress the label a), the appropriate superfield is

(2.9) WT,k(z̃;z|θ) = exp(ik · X)ΛTΛiwii(Y)DθY
i.

The vertex operator for the conjugate mode ρT is similar:

(2.10) W̃T,k(z̃;z|θ) = exp(ik · X)ΛTΛiwii(Y)DθY
i.

In these formulas, ΛT = λT + θGT is a superfield that reduces to λT by the
equations of motion; GT is an auxiliary field that vanishes on-shell. Similarly
Λi = λi + θGi and Λi = λi + θGi are superfields that reduce on-shell to λi

and λi.
A genus 1 mass shift will be derived from the two-point function

(2.11)
〈
WT,k(z̃;z|θ)W̃T,−k(z̃′;z′|θ′)

〉
on a super Riemann surface Σ of genus 1. The effect we are looking for is
parity-conserving, so the relevant case is that Σ has an even spin structure.
This means that holomorphically Σ can be described, up to isomorphism, by
even and odd coordinates z|θ with equivalences

z ∼=z + 1
θ ∼= − θ(2.12)

and

z ∼=z + τ

θ ∼=θ.(2.13)

while antiholomorphically there is a single even coordinate z̃ with equivalences

(2.14) z̃ ∼= z̃ + 1 ∼= z̃ + τ .

Here τ is a complex modulus. As shown in [3, 4], this modulus plays no
important role in the analysis, except that one has to integrate over it at the
end. So we can just think of τ as a complex constant.
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A genus 1 super Riemann surface Σ with an even spin structure has no odd
moduli (until we include punctures). So apart from τ , the only parameters
in the problem are the positions z̃;z|θ and z̃′;z′|θ′ at which the two vertex
operators are inserted. Moreover, we can set z′ = z̃′ = 0 using the translation
symmetry of Σ. With an even spin structure, there is no such translation
symmetry for the θ’s. So finally, the genus 1 mass shift will be derived from
the integral

(2.15) ITT ′ =
∫

d2zdθdθ′ 〈WT,k(z̃;z|θ) W̃T ′,−k(0;0|θ′)〉.

(Here d2z is short for −idz̃ ∧ dz.) We can think of this as the integral over
the moduli space of super Riemann surfaces of genus 1 with 2 NS punctures
(except that we also need to integrate over τ at the end). It remains just to
learn how to perform this integral.

The traditional approach in superstring perturbation theory is to first
integrate over the odd moduli, which in the present context are θ and θ′, and
then try to perform the bosonic integral. The integral over the odd variables
can be evaluated using

(2.16)
∫

dθWT,k(z̃;z|θ) = VT,k(z̃;z),
∫

dθ W̃T ′,−k(z̃;z|θ) = ṼT ′,−k(z̃;z),

with

(2.17) VT,k = exp(ik ·X)λTλ
i
(
wii(Y )

(
∂zY

i + ikμψ
μψi

)
+ Djwiiψ

jψi
)

and a similar formula for ṼT ′,−k. (The auxiliary fields have been set to zero
by their equations of motion.) The term proportional to Djwii is a sort of
α′ correction, since the zero-mode wavefunction wii is nearly constant when
Y is much larger than the string scale. Our interest here is really in string-
loop corrections, not α′ corrections. A convenient way to avoid issues that
are not really relevant for our purposes is to consider the special case that Y
is a Calabi-Yau orbifold3 and the chiral multiplet of interest comes from the
untwisted sector, so that wii is a constant matrix and Djwii = 0. This case
was analyzed in the present context in [4] and suffices to illustrate the ideas

3By such an orbifold, we mean the quotient of a torus T = R
6/Λ (here Λ is a

lattice in R
6 of maximal rank) by a finite subgroup of SU(3) ⊂ SO(6), in other

words by a finite group of symmetries of Λ that preserves N = 1 supersymmetry
in four dimensions.



528 Edward Witten

we wish to explore. We explain in section 2.6 why the general case behaves
similarly.

Dropping the Djwii term in VT,k, the integration over the odd moduli via
(2.16) leads to the bosonic integral∫

Σ
d2z

〈
eik·XλTλ

iwii(Y )(∂zY i + ik · ψψi)
∣∣∣
z̃;z

× e−ik·XλT ′λjwjj(Y )
(
∂zY

j − ik · ψψj
)∣∣∣

0;0

〉
.(2.18)

This expression must then be summed over the three even spin structures on
Σ and integrated over τ .

If we drop the terms in the vertex operator that depend explicitly on ψ,
the expression (2.18) vanishes after summing over spin structures (even before
integration over z). This is explained in [3, 4]. If ψi and ψi are treated as free
fields, the claim is true because of the usual GSO cancellation [12] between
spin structures that leads to vanishing of the 1-loop cosmological constant
for superstrings in R

10. If Y is a Calabi-Yau orbifold, then its path integral
is a sum of contributions of different sectors in each of which ψi and ψi are
free fields with SU(3)-valued twists. SU(3)-valued twists do not disturb the
GSO cancellation, so the contribution of each sector to (2.18) vanishes after
summing over spin structures if one drops the terms that depend explicitly on
ψ. In section 2.6, we explain that the same is true if Y is a generic Calabi-Yau
threefold, rather than an orbifold.

The contribution of the terms in (2.18) that do explicitly depend on the
ψ’s is proportional to 〈k · ψ(z̃;z)k · ψ(0;0)〉, which in turn is proportional
to k2. Since k2 vanishes on-shell for the massless scalar fields whose mass
renormalization we are exploring, it seems at first sight that these terms are
not relevant. However, it is shown in [3, 4] that what multiplies k2 is an
integral that diverges as 1/k2 for k2 → 0, because of singular behavior near
z = z̃ = 0. As a result, the k2 factor in the numerator is illusory.

To understand this, we analyze the small z behavior of the integrand
in (2.18) using the operator product expansion. The worldsheet fields ψμ

really are free fields, with leading singularity ψμ(z)ψν(0) ∼ ημν/z. Other
contributions to this OPE are not singular enough to be relevant to what
we are about to say.4 Similarly the SO(26) fermions λT are free fields with

4Only Lorentz-invariant operators appearing in the ψμ(z)ψν(0) OPE can con-
tribute to the integral (2.18). After the identity operator, the lowest dimension
Lorentz-invariant operator in this channel is ψλ∂zψλ, of dimension 2. Its contri-
bution ψμ(z)ψν(0) ∼ · · · − (z/4)ημνψλ∂zψλ is much too soft near z = 0 to be
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leading singularity λT (z̃)λT ′(0) ∼ δTT ′/z̃, and Xμ(z̃;z) are free fields with
leading singularity exp(ik · X(z̃;z)) exp(−ik · X(0;0)) ∼ |z̃z|−k2 . In each of
these cases the less singular terms are not relevant. The remaining operators
whose OPE’s we need to understand are O = wiiλ

iψi and O∗ = wiiλ
iψi.

These are primaries of dimension (1/2, 1/2) for the left-moving conformal and
right-moving superconformal algebras of the sigma-model with target Y . To
be more precise, O and O∗ are respectively chiral and antichiral primaries for
the N = 2 superconformal algebra of this sigma-model. The O · O∗ operator
product expansion is not simple, since a whole tower of Kaluza-Klein modes
on Y can appear. However (assuming that Y is such that compactification on
Y preserves N = 1 supersymmetry and no more), there is just one operator
VD of dimension (1, 1) that contributes to this expansion. Its contribution is
nonsingular:

(2.19) O(z̃;z)O∗(0;0) ∼ · · · + VD(0;0).

This operator is

(2.20) VD = J�Jr,

where

(2.21) J� = giiλ
iλi, Jr = giiψ

iψi,

with gii the Kahler metric of Y . J� is the antiholomorphic current associated
to the anomalous U(1) gauge symmetry whose D-term we are investigating,
and Jr is the holomorphic current that generates the U(1) subalgebra of
the N = 2 superconformal algebra. Because J� and Jr are antiholomorphic
and holomorphic conserved currents, the operator VD has dimension precisely
(1, 1), and the coefficient with which VD appears in the product (2.19) depends
only on the U(1) charges of the operator O (namely 1 and −1).

The contribution of VD to our operator product is thus

(2.22) VT,k(z̃;z)VT ′,−k(0;0) ∼ k2 VD

|z̃z|1+k2

Since

(2.23)
∫

d2z
1

|z̃z|1+k2 ∼ 2π
k2 , k2 → 0,

relevant in what follows. Similar remarks apply for other OPE’s that we consider
momentarily.
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Figure 1: The mass shift of a massless particle ρ can be computed slightly off-
shell by treating ρ as a resonance in a scattering amplitude with four external
particles. This process is affected by the one-loop mass shift of ρ, but now
the ρ particle whose mass is shifted is generically off-shell, giving a sound
framework for the k2/k2 computation.

the explicit factor of k2 in (2.22) disappears, and the integrated two-point
function comes out to be

(2.24) 2π〈VD〉.

This gives the expected supersymmetry-violating one-loop mass shift.
Many other operators apart from VD appear in the VT,k(z̃;z) · VT ′,−k(0;0)

operator product, but VD is the only one whose contribution to the integral
has a pole at k2 = 0. So it is the only operator that contributes to the mass
shift.

It is further shown in [3, 4] that the expectation value 〈VD〉 on a torus
can be computed just in terms of the spectrum of massless charged chiral
multiplets in space-time. This is analogous to what happens in supersymmet-
ric field theory, where likewise the one-loop shift in the expectation value of
the auxiliary field D comes entirely from the contribution of massless chi-
ral multiplets. In fact, the final integration over τ that must be performed
to complete the computation in string theory coincides with an analogous
Schwinger parameter integration in field theory, with just the one usual dif-
ference. In string theory, modular invariance removes the ultraviolet region of
small Im τ , making the effect finite, while the analogous computation in field
theory is ultraviolet-divergent.

One may worry at first whether it is valid to continue away from the mass-
shell k2 = 0 and cancel powers of k2, as assumed in the above calculation.
But actually [3, 4], one can put all this on a firm foundation by considering
a scattering amplitude in which the particle ρ appears as a resonance or
intermediate state. Such an amplitude (fig. 1) is affected by the mass shift of
the ρ particle, but now the particle whose mass is shifted can be slightly off-
shell, giving a clear basis for the calculation sketched above. The mass shift
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δm2 appears in the perturbative computation of the scattering amplitude as
the coefficient of a double pole, because of the usual expansion

(2.25) 1
k2 + δm2 = 1

k2 − 1
k2 δm

2 1
k2 + . . . .

In [3], arguments were given for interpreting the operator VD as the vertex
operator for the auxiliary field D in the vector multiplet associated to the
anomalous U(1) gauge field. There is not a systematic theory of correlation
functions with insertions of vertex operators for auxiliary fields (as opposed
to vertex operators associated to physical states). However, VD does appear in
a number of interesting calculations, including the two-loop vacuum energy,
which we explore in section 3.

2.3. More on the mass splitting

Now we will explain an alternative perspective [5] on the same calculation.
In this approach, we set the momentum k to zero from the beginning. The
vertex operators thus reduce to

(2.26) WT (z̃;z|θ) = ΛTΛiwii(Y)DθY
i

and

(2.27) W̃T (z̃;z|θ) = ΛTΛiwii(Y)DθY
i

and the mass shift is supposed to be computed from

(2.28)
∫

Σ
d2zdθdθ′ 〈WT (z̃;z|θ)W̃T ′(0;0|θ′)〉.

Since we have set k to 0, there will be no k2/k2 terms. So how can we
possibly get a nonzero result?

In view of our previous experience, the answer must somehow come from
the appearance in the WT · W̃T ′ operator product of the operator VD. The
relevant operator product coefficient is

(2.29) WT (z̃;z|θ) · W̃T ′(0;0|θ′) ∼ δTT ′VD(0;0)
z̃

+ . . . .

Thus we must contemplate the integral

(2.30)
∫

d2z dθ dθ′ 1
z̃
.
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Since we obtained it from the operator product expansion, this is the right
form of the integral only near z = z̃ = 0. When z̃ is not small, the integrand
has to be modified to be consistent with the doubly-periodic nature of the
torus. See Appendix D of [2] for more on this, but the details are not important
in what follows. We need some sort of cutoff at large z for the following
analysis, since otherwise the integral (2.30) has a problem at large z analogous
to the problem we will describe at small z, but it does not matter if this
comes from the compactification of the z-plane to a torus or from a sharp
cutoff z̃z ≤ 1. The latter is simpler, so the integral that we will consider is5

(2.31) J =
∫
z̃z≤1

d2z dθ dθ′ 1
z̃
.

The idea in [5] is that instead of integrating over θ and θ′ at fixed z̃ and
z, after which we integrate over z̃ and z, we should integrate over θ and θ′

at fixed values of z̃ and ẑ = z − θθ′, after which we integrate over z̃ and ẑ.
A heuristic explanation of why this may be the right thing to do is that ẑ,
rather than z, is invariant under global supersymmetry transformations. In
other words, let z|θ and z′|θ′ be two points on the complex superplane C1|1. A
global supersymmetry transformation δθ = ε, δz = −εθ (and likewise δθ′ = ε,
δz′ = −εθ′) with constant ε leaves fixed not z− z′ but z− z′− θθ′. For z′ = 0,
this reduces to ẑ = z − θθ′, and this is some indication that ẑ may be the
right variable to use.

The first question that comes to mind concerning this proposal may be
why it is necessary to specify what is held fixed when we integrate over θ and
θ′. The reason is that the integral in (2.31) is a supermanifold analog of what
in the bosonic world is a conditionally convergent integral. An example of a
bosonic integral that is only conditionally convergent is

(2.32)
∫
zz≤1

d2z
1
z2 .

This integral is not absolutely convergent, since replacing the integrand by
its absolute value gives a divergent integral. However, if we write z = reiϕ

5 Integration on a supermanifold with boundary is subtle – see section 3.5 of [13]
for an introduction. To ensure that none of these subtleties are relevant in what
follows, we take the relation between z̃ and z to be precisely z̃ = z near |z| = 1, and
we only make changes of variables that are trivial near |z| = 1. With this procedure,
the sharp cutoff at |z| = 1 produces equivalent results to compactification of the
z-plane to a torus.
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and integrate first over ϕ, the integral converges (and in fact vanishes). With
a different procedure, it may diverge or may converge to a different value.

A corresponding bosonic integral with only a simple pole

(2.33)
∫
zz≤1

d2z
1
z

is absolutely convergent. This is ensured by the fact that under a scaling
z → λz, z → λz, the measure d2z/z scales with a positive power of λ, mak-
ing the singularity “soft” near z = 0. An integral – like that in eqn. (2.32) –
that scales as a zero or negative power of λ is at most only conditionally con-
vergent. In a supersymmetric context, the natural scaling of the odd variables
is θ → λ1/2θ, θ′ → λ1/2θ′. The measures dθ and dθ′ thus scale as λ−1/2. With
this scaling, the singularity d2z dθ dθ′/z̃ is scale-invariant, corresponding to a
supersymmetric version of a conditionally convergent integral.

The following is a procedure to calculate the integral by keeping fixed
ẑ = z − θθ′, rather than z, when integrating over the odd variables near
z = 0. We define a new coordinate

(2.34) z� = z − h(z̃;z)θθ′,

where h(z̃;z) is any smooth function that is 1 in a neighborhood of z = 0
and 0 in a neighborhood of z = 1. (The first condition ensures that z� =
ẑ near z = 0. The second condition avoids any subtlety near |z| = 1, as
discussed in footnote 5. Alternatively, as explained in Appendix D of [2] and
in section 2.4.4 below, if we compactify the z-plane to a torus, we need to
introduce a function playing the role of h to respect the double-periodicity of
the torus. The fact that the torus has no boundary then ensures that there
is no boundary term at large z.) Our method of defining the conditionally
convergent integral is to integrate first over θ and θ′ keeping fixed z̃ and z�

rather than z̃ and z.
To complete the explanation of how to do the integral, we also need

to specify the relationship between the antiholomorphic variable z̃ and the
holomorphic variable z. Here instead of the naive relationship z̃ = z, we
take z̃ = z�. With this definition, we will perform our integral by expressing
everything in terms of z̃, z̃, θ and θ′, after which, following the recipe of [5],
we integrate first over the odd variables θ and θ′ and only then over z̃ and z̃.

To explicitly perform the integral, we have to write d2z dθ dθ′ =
−idz̃ dz dθ dθ′ in terms of z̃, z̃, θ, and θ′ only. Eqn. (2.34) is equivalent to

(2.35) z = z� + h(z̃;z�)θθ′ = z̃ + h(z̃;z̃)θθ′,
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where in the second step we set z� = z̃. So

(2.36) dz = dz̃
(

1 + θθ′
∂h(z̃;z̃)

∂z̃

)
+ . . . .

where on the right hand side, we compute the coefficient of dz̃ only. This
enables us to express the integral J in terms of z̃, z̃, θ, θ′; in the measure
dz̃ dz dθ dθ′, we simply substitute for dz using (2.36). The integral then be-
comes

(2.37) J = −i

∫
|z̃|≤1

dz̃ dz̃ dθ dθ′
(

1 + θθ′
∂h(z̃;z̃)

∂z̃

)
1
z̃
.

Now we integrate over θ and θ′ with
∫

dθ dθ′ θθ′ = 1, to get

(2.38) J = −i

∫
|z̃|≤1

dz̃ dz̃ ∂h(z̃;z̃)
∂z̃

1
z̃
.

Integration by parts gives

(2.39) J = i

∫
|z̃|≤1

dz̃ dz̃ h(z̃;z̃) ∂

∂z̃

1
z̃
.

There is no surface term at |z̃| = 1 since h = 0 there. With

(2.40) ∂

∂z̃

1
z̃

= 2πδ2(z̃)

and also
∫

d2z̃δ2(z̃) = 1 and dz̃ dz̃ = −id2z̃, we get

(2.41) J = 2πh(0;0) = 2π,

where we use the condition

(2.42) h(0;0) = 1.

The moral of the story is that if one first integrates over θ and θ′ and then
tries to decide what to do next, it is already too late. A simple statement has
to be made in terms of the full set of variables.

We will explain in section 2.4 how what we have just done is a special
case of a general procedure. But here we make some further remarks on this
calculation. After integration by parts, the result for J seems to come from
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a delta function at z = 0. But the existence of a natural integration by parts
was special to this particular problem. To draw a general lesson, it is better
to look at the formulas (2.37) or (2.38) before integration by parts, and here
we see that there actually is no contribution at all near z = 0 since h is
constant near z = 0. (There should not be a contribution from z = 0, since
the D-auxiliary field vertex operator VD that played the starring role is not
the vertex operator of a physical field.) The question of what values of z
contribute to the integral is not well-defined, since it depends on the choice
of the arbitrary function h, though the value of the integral was independent
of this choice. We will give a more systematic explanation of the meaning of
the choice of the function h in section 2.4.4.

2.3.1. A variant A variant of the above procedure to evaluate the integral
for J is to say that, after setting z̃ = z�, we pick a lower cutoff |z̃| ≥ η for
some small positive η, integrate over all bosonic and fermionic variables, and
then take the limit η → 0. For η > 0, we are evaluating a smooth measure on a
compact supermanifold (with boundary) and there is no need to say anything
about the order of integration. Performing the integral for η > 0 and then
taking η → 0 gives the same result as integrating first over θ and θ′ and then
over z̃ and z̃, since in that latter procedure, there was no contribution near
z̃ = 0. The formulation with the lower cutoff η is useful for the generalization
that we discuss in section 2.4.

2.3.2. Justification One justification [5] of the procedure just described
is that it agrees with the reasoning of [3, 4] that we summarized is section
2.2, and in particular with the unitarity-based reasoning of fig. 1.

Another justification (also described in [5]) is as follows. The 1-loop mass
renormalization of the field ρT arises from the term of order 〈ρT 〉〈ρT 〉 in the
expansion of the 1-loop partition function of the sigma-model with target Y .
Let us analyze how to compute that term.

At zero momentum, the vertex operator of ρT is WT = ΛTΛiwii(Y)DθY
i.

We have written this expression in terms of superfields since we want to
make worldsheet supersymmetry manifest. If we give ρT and its complex
conjugate ρT an expectation value, the effect of this, to first order, is to add
the appropriate terms to the worldsheet action:

(2.43) 〈ρT 〉
∫

d2z dθWT (z̃;z|θ) + 〈ρT 〉
∫

d2z dθ W̃T (z̃;z|θ).

The vertex operators WT and W̃T have terms linear in auxiliary fields (see
the comment following eqn. (2.10)). If we integrate out the auxiliary fields,
we get a four-fermion term in the action that we will schematically denote
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as6 λ2(. . . )ψ2. This is the familiar four-fermion term of the supersymmetric
nonlinear sigma-model – or more exactly, it is the part of that term propor-
tional to |〈ρT 〉|2. So after integrating out the odd coordinate θ and also the
auxiliary fields, the part of the action that depends on 〈ρT 〉 becomes

(2.44) 〈ρT 〉
∫

d2z VT + 〈ρT 〉
∫

d2z ṼT + |〈ρT 〉|2
∫

d2z λ2(. . . )ψ2.

Now to study the genus 1 heterotic string path integral in the presence of
a background field, we have to expand the integrand of the worldsheet path
integral in powers of this field. This integrand is the exponential of minus the
action or

(2.45) exp
(
−〈ρT 〉

∫
d2z VT − 〈ρT 〉

∫
d2z ṼT − |〈ρT 〉|2

∫
d2z λ2(. . . )ψ2

)
,

where we show only the terms that depend on 〈ρT 〉, 〈ρT 〉.
In that order, there is a bilinear expression involving the two-point func-

tion of the vertex operators VT and ṼT :

(2.46)
∫

d2z
〈
VT (z̃;z) ṼT (0;0)

〉
.

(As usual, we factor out the translation symmetry of the torus to set the
insertion point of ṼT to z̃ = z = 0.) This is the “obvious” contribution to
the mass shift. But there is also a “contact” term coming from an insertion
of the four-fermi interaction. As we know by now, the obvious contribution
vanishes, so this contact term must give the full answer.

This gives a straightforward explanation of why the obvious expression
(2.46) needs to be corrected. The alternative explanation in which we start
with the supersymmetric version of (2.46), namely

(2.47)
∫

d2z dθ dθ′ 〈WT (z̃;z|θ)W̃T (0;0|θ′)〉,

and regularize in an appropriate way the resulting conditionally convergent
integral, has two advantages. Technically, it is straightforward to get the right
answer this way; it is clear that only the (1, 1) part of the relevant OPE mat-
ters. (The λ2(. . . )ψ2 term in (2.44) is a linear combination of a (1, 1) operator

6This term arises by expanding the usual four-fermion coupling λ2Fψ2 of the
sigma-model (where F is the Yang-Mills field strength, which becomes the Riemann
tensor if the spin connection is embedded in the gauge group) in powers of ρT and
ρT . We omit an explicit formula as it is not illuminating.
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Figure 2: A process (a) in which two punctures on a Riemann surface Σ –
here of genus 1 – approach each other is equivalent conformally to a process
(b) in which Σ splits into two components Σ� and Σr, connected by a narrow
neck, with one of them a genus 0 surface that contains the two punctures.

and various irrelevant operators that do not contribute.) Also this approach
generalizes to all of the conditionally convergent integrals of superstring per-
turbation theory, as we explain next.

2.4. General lessons

2.4.1. Preliminaries Now we are going to look in yet another way7 at
the phenomenon studied in sections 2.2 and 2.3. This phenomenon involved
the behavior as two points z|θ and z′|θ′ on a genus 1 super Riemann surface
Σ approach each other. However (fig. 2), up to a conformal transformation,
it is equivalent to say that Σ splits into two components, separated by a
narrow neck, of which one is a genus 0 surface that contains the two points
in question, while the other has genus 1.

This is a special case of a more general type of degeneration (fig. 3) in
which a super Riemann surface Σ of any genus g, containing any number of
punctures, splits into a pair of components Σ� and Σr. In general, the punc-
tures are distributed between the two sides in an almost8 arbitrary fashion,
and the genera g� and gr are constrained only by g� + gr = g. This is actually
called a separating degeneration (fig. 4(a)). There is also an analogous non-
separating degeneration in which Σ develops a narrow neck, but the surface
obtained by cutting this neck is still connected (fig. 4(b)).

7Some of the ideas were known in the early literature [7].
8The only restriction is that if g� or gr vanishes, then one requires Σ� or Σr to

contain at least two punctures, in addition to the narrow neck. The moduli space of
Riemann surfaces or super Riemann surfaces can be compactified without allowing
a degeneration in which this is not the case.
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Figure 3: A generalization of fig. 2 in which a surface Σ splits into a pair of
components Σ� and Σr of arbitrary genus, joined via a narrow neck. In the
example shown, Σ� and Σr are both genus 1 surfaces with punctures.

Figure 4: A Riemann surface or super Riemann surface can undergo either a
separating degeneration as in (a) or a nonseparating one as in (b). In each case
the degeneration involves the collapse of a narrow neck, labeled by the arrow.
The singular configurations that arise when the neck collapses are sketched
in fig. 5.

From a conformal point of view, a narrow neck is equivalent to a long tube.
Let us recall how this comes about. We consider a long tube parametrized by a
complex variable z with an equivalence relation z ∼= z+2πi and an inequality
0 ≤ Re z ≤ T , for some large T . This describes propagation of a closed
string of circumference 2π through an imaginary time T . Now introduce new
variables x = e−z, y = e−T+z, and let q = e−T . The inequalities 0 ≤ Re z ≤ T
imply |x|, |y| ≤ 1. x and y are related by

(2.48) xy = q.

One way to describe this gluing is to remove the regions |x| < |q|1/2 and
|y| < |q|1/2 from the unit discs parametrized by x and y and then glue the
boundary circles |x| = |q|1/2 and |y| = |q|1/2 via xy = q. In this description,
for small q, the two unit discs have small open balls removed and are glued
together along a narrow neck at |x|, |y| ∼ |q|1/2.

The advantage of the “long tube” description is that it makes the physical
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Figure 5: Collapse of the narrow necks in fig. 4 leads to these limiting configu-
rations. The singularities depicted here are known as ordinary double points.
The local picture is that two branches meet at a common point. The fact
that the only singularities that occur in the Deligne-Mumford compactifi-
cation are ordinary double point singularities (which have a long distance or
infrared interpretation in spacetime) is the reason that there are no ultraviolet
divergences in superstring perturbation theory.

interpretation clear. The long tube represents the propagation of a closed
string through a large proper time T , so it represents an infrared effect. T
is analogous to a Schwinger parameter in an ordinary Feynman diagram.
Integration over T will produce a pole when the closed string propagating
down the tube is on-shell. (See section 3.2.) Such a pole is analogous to the
pole in a Feynman propagator i/(p2 −m2 + iε) in field theory.

The advantage of the “narrow neck” description is that it makes it clear
how to compactify the moduli space. In terms of the long tube, it is not
clear that there is a meaningful limit for T → ∞, but in the narrow neck
description by eqn. (2.48), there is no problem in taking the limit q → 0. The
limiting equation

(2.49) xy = 0,

with the restriction |x|, |y| ≤ 1, describes two discs, the disc |x| ≤ 1 and the
disc |y| ≤ 1, glued together at the common point x = y = 0.

One of the most fundamental facts about superstring perturbation theory
is the existence of the Deligne-Mumford compactification of the moduli space
M of Riemann surfaces or super Riemann surfaces. (When the context is
sufficiently clear, we use the symbol M to denote either of these spaces; we
also write M̂ for the Deligne-Mumford compactification.) Moduli space or
supermoduli space can be compactified by adding limiting configurations (fig.
5) that correspond to the collapse of a narrow neck. Apart from limiting
configurations of this particular kind, possibly with more than one collapsed
neck, the compactified moduli space parametrizes smooth surfaces only.
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This is actually the fundamental reason that there are no ultraviolet di-
vergences in superstring perturbation theory. The measures that have to be
integrated are always smooth measures on the appropriate moduli spaces. In-
tegration of a smooth measure on a compact space can never pose a problem.
So a difficulty in superstring perturbation theory can only arise from noncom-
pactness of the relevant moduli spaces. The existence of the Deligne-Mumford
compactification is a precise statement that the only pertinent noncompact-
ness is associated to the “narrow neck” or “long tube” limit. Physically, sin-
gularities arising from integration in this region are on-shell or infrared sin-
gularities. Such on-shell and infrared singularities are crucial in the physical
interpretation of the theory, just as they are in ordinary quantum field the-
ory.

2.4.2. Conditionally convergent integrals Although there are no ultra-
violet issues in superstring perturbation theory, one often runs into integrals
that are only conditionally convergent in the infrared region, that is, in the
region in which a narrow neck is collapsing. We have already discussed an
example at length, and a large class of additional examples is described in
section 3.2.2. A general method of treating conditionally convergent integrals
is needed.

Such integrals can always be treated by a simple generalization of the
procedure explained in section 2.3. What one needs to know is that, roughly
speaking (see the last paragraph of this section for a clarification), there is a
distinguished parameter controlling the collapse of a narrow neck in a super
Riemann surface. This parameter is the superanalog of the parameter q in
eqn. (2.48). For the case of a Neveu-Schwarz (NS) degeneration – that is, the
case that the closed string state propagating through the narrow neck is in the
NS sector – the analog of eqn. (2.48) is as follows. A superdisc parametrized
by x|θ can be glued to a superdisc parametrized by y|ψ via

xy = −ε2

xψ = εθ

yθ = −εψ

θψ = 0.(2.50)

This change of coordinates from x|θ to y|ψ is superconformal. (This formula
and its Ramond sector analog, which is presented in eqn. (4.12) below, are
originally due to P. Deligne. For more, see section 6.2 of [14].) The closest
analog of the gluing parameter q of bosonic string theory is qNS = −ε2. (For
a given value of qNS, there are two choices of ε, which correspond to two
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possible ways of gluing together the spin structures on the two superdiscs;
the sum over the two choices leads to the GSO projection on the string state
propagating through the neck.)

As an example of this, consider the case that the degeneration arises from
two points z|θ and z′|θ′ approaching each other on a super Riemann surface Σ.
In this case, the parameter qNS turns out to coincide with the supersymmetric
combination ẑ = z − z′ − θθ′:

(2.51) qNS = ẑ = z − z′ − θθ′.

(This is shown in section 6.3.2 of [14].) The use of this parameter, rather than
of the more naive z − z′, was the key insight in [5], as described in section
2.3 above. With ẑ replaced by qNS, the procedure described there generalizes
almost immediately to treat all of the conditionally convergent integrals of
superstring perturbation theory. We spell this out in section 2.4.3.

The above explanation has been oversimplified in one important respect.
The gluing parameters q or ε are not well-defined as complex numbers, be-
cause their definition depends on local parameters that vanish to first order
at the points at which the gluing occurs. For example, if we glue the point
x = 0 in Σ� to the point y = 0 in Σr and then deform via

(2.52) xy = q,

then obviously the definition of q depends on the choice of the functions x
and y. If we rescale x and y, q is also rescaled. Similarly, in the example of the
last paragraph, a superconformal transformation acting by z|θ → λz|λ1/2θ,
z′|θ′ → λz′|λ1/2θ′ (where λ is nonzero and independent of z|θ and z′|θ′, but
may depend on other moduli), will multiply qNS by λ. But crucially it does not
change the relevant coefficient between the z − z′ and θθ′ terms. The precise
statement here is not that there is a distinguished parameter q or ε but that
compactification of the moduli space or supermoduli space M is achieved by
adding a divisor D, along which q or ε has a simple zero. This condition
determines q or ε only up to multiplication by an invertible function, that is

(2.53) ε → efε

or a similar rescaling of q, and in general there is no way to be more precise.
One may say that (modulo q2 or ε2) q or ε is not a complex number but
a linear function on the fiber of a complex line bundle, namely the normal
bundle N to the divisor D ⊂ M. See section 6.3 of [14] for more.
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2.4.3. Regularization Now we will state what we claim is the appropriate
procedure for regularizing conditionally convergent integrals. For definiteness,
let us consider a degeneration of a heterotic string worldsheet Σ. The pro-
cedure for other superstring theories is similar. From a holomorphic point of
view, we describe a heterotic string worldsheet near the degeneration by local
parameters x|θ and y|ψ, glued together as in (2.50) with a gluing parameter
qNS. Antiholomorphically, we use local parameters x̃ and ỹ, glued by

(2.54) x̃ỹ = q̃.

Roughly speaking, x̃, ỹ, and q̃ are the complex conjugates of x, y, and qNS.
We will be more precise about this in section 2.4.4.

We regularize the conditionally convergent integrals of superstring per-
turbation theory as in section 2.3.1. We pick a small positive η, and restrict
the integral to |q̃qNS|1/2 ≥ η, and then finally take the limit as η → 0. This
generalizes the procedure that we explained in a special case in section 2.3. It
is a satisfactory procedure because it is a conformally- or superconformally-
invariant procedure that makes all conditionally convergent integrals well-
defined and is compatible with any further degenerations and thus with uni-
tarity.

There are two points on which what we have said is incomplete or oversim-
plified. First, we have not explained the relation between q̃ and qNS. Roughly
speaking, one treats q̃ as the complex conjugate of qNS. For a fuller explana-
tion, see section 2.4.4. Second, the fact that q̃ and qNS are linear functions on
the appropriate normal bundles rather than complex numbers means that η is
really a hermitian metric on an appropriate line bundle (or more accurately,
a sesquilinear form) rather than a positive real number. This leads to some
subtleties, which have nothing to do with worldsheet or spacetime supersym-
metry, and appear already in bosonic string theory. See [2], especially sections
7.6 and 7.7.

2.4.4. Gluing holomorphic and antiholomorphic coordinates In the
language of section 5 of [13], what we will describe next is the integration cycle
Γ of superstring perturbation theory. We aim for an informal explanation.

A point on a heterotic string worldsheet has holomorphic coordinates z|θ
and an antiholomorphic coordinate z̃. Naively, z̃ is the complex conjugate of
z, but this is oversimplified since a statement z̃ = z is not invariant under
odd superconformal transformations, which act by

(2.55) δz = −α(z)θ, δθ = α(z), δz̃ = 0.
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So what is the relation between z̃ and z? For many purposes, one does
not need to specify the precise relationship. The classical action, the vertex
operators, and the correlation functions are all real-analytic. So to some extent
one may think of z̃ and z as independent complex variables, as long as one
does not go too far away from z̃ = z.

It is really when one wants to integrate over moduli space that one needs
to specify a relationship between holomorphic and antiholomorphic variables.
For example, in section 2.3, to evaluate a 1-loop mass shift, we needed to
compute an integral

(2.56)
∫

dz̃ dz dθ dθ′ F (z̃;z|θ, θ′),

where z̃;z|θ were the coordinates of one puncture and θ′ was the odd coor-
dinate of another puncture. To evaluate such an integral, one cannot just
vaguely treat z̃ and z as independent complex variables. One needs to spec-
ify a relationship between them. What is a natural relationship? As we have
explained, setting z̃ = z is not really natural, since it is not consistent with
superconformal symmetry. It is natural, however, to assert that z̃ = z modulo
nilpotent terms. In the present example, with only two odd moduli θ and θ′,
the most general nilpotent term is h(z̃;z)θθ′ for some function h(z̃;z), and
therefore it is natural to say that the relationship between z̃ and z should
take the form

(2.57) z̃ = z − h(z̃;z)θθ′

for some h. The procedure of section 2.3 tells us that we will want h(0;0) = 1.
The function h(z̃;z) must also obey

(2.58) h(z̃;z) = −h(z̃ + 1;z + 1) = h(z̃ + τ ;z + τ)

to respect the equivalences (2.12) and (2.13) (note that θ′ is invariant un-
der those equivalences since it is the odd coordinate of a point whose even
coordinates are z̃′ = z′ = 0).

We do not try to pick a particular h because no preferred function h
obeying h(0;0) = 1 and also consistent with (2.58) presents itself. Instead we
proceed by showing that, as long as some general conditions are imposed,
the precise choice of h does not affect the integral. If the measures that we
are integrating extend as smooth measures over the Deligne-Mumford com-
pactification M̂ of M (so that there is no possible problem in integration by
parts), then the integrals are entirely independent of h. This follows from
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the supermanifold version of Stokes’s theorem. In essence, a change in h by
h → h+ δh can be compensated by a change of coordinates on moduli space

(2.59) z → z + δh(z̃;z)θθ′

(with no change in θ, θ′, or z̃). Integration of a smooth measure on a com-
pact supermanifold is invariant under any change of coordinates, so if the
integration measure extends smoothly over M̂, the integral is completely in-
dependent of h.

We are not in the situation assumed in the last paragraph, because the
measures we want to integrate do not extend smoothly over the compactifi-
cation. For instance, in section 2.3, we wanted to integrate a measure that
behaves near z = z̃ = 0 as

(2.60) J ∼ −idz̃ dz dθ dθ′ 1
z̃
.

Such an integral is only conditionally convergent, and its evaluation depends
on an infrared regulator. To preserve the regularization, which depended on
the function ẑ = z − θθ′ (or more precisely on the divisor in M̂ determined
by vanishing of this function) we must require δh(0;0) = 0. Indeed, we saw in
section 2.3 that the integral depends on h(z̃;z) only via h(0;0).

Why is h(0;0) = 1 the correct condition? Apart from what was explained
in section 2.3, one answer is that this is the only condition that can be
stated just in terms of the natural gluing parameters, and which therefore is
superconformally-invariant and capable of generalization. We recall that holo-
morphically, the natural gluing parameter in this example is qNS = ẑ = z−θθ′,
while antiholomorphically, the natural gluing parameter is q̃ = z̃. So the con-
dition h(0;0) = 1 is equivalent to the statement that the relation between q̃
and qNS near q̃ = qNS = 0 is

(2.61) q̃ = qNS(1 + . . . )

where the ellipses represent nilpotent terms. (It is not possible to specify the
relation between q̃ and q more precisely than this, because of facts noted at
the end of section 2.4.2.)

Now we have all the ingredients to explain the general relation between
holomorphic and antiholomorphic moduli in the context of heterotic string
perturbation theory. (See section 6.5 of [2] for a fuller explanation and gen-
eralization to the other superstring theories.) Let us consider a situation in
which the moduli space of bosonic Riemann surfaces has complex dimension r
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and the moduli space of super Riemann surfaces has dimension r|s. Thus, an-
tiholomorphically, a heterotic string worldsheet has even moduli m̃1, . . . , m̃r,
while holomorphically it has even and odd moduli m1, . . . ,mr|η1 . . . ηs. What
is the relation between holomorphic and antiholomorphic moduli? Naively the
m̃α are the complex conjugates of the mα. But this is too strong a claim be-
cause it is not invariant under general reparametrizations of the supermoduli
space. If one shifts the mα by functions that depend on the η’s, for example

(2.62) mα → mα +
∑
ij

ηiηjf
ij
α (m1, . . . ,mp),

then there is nothing one can do9 to the m̃α’s to preserve a hypothetical
relationship m̃α = mα. So unless one can identify a distinguished set of even
functions that one wants to call the mα – in a way compatible with modular
invariance – one does not want to claim that m̃α = mα.

In general, we do not have a distinguished set of even coordinates on su-
permoduli space. Given one set of local coordinates, another set differing as
in (2.62) is equally natural. Therefore it is not natural to pick particular co-
ordinates and impose m̃α = mα in that coordinate system. But it is certainly
natural to insist that this is true modulo nilpotent terms:

(2.63) m̃α = mα + nilpotent corrections.

The nilpotent corrections generalize h(z̃;z)θθ′ in eqn. (2.57). To define the
cycle Γ over which we will integrate to compute a heterotic string scattering
amplitude, we have to make some choice of the nilpotent terms; as there is
no natural choice in general, the goal has to be to show the choice does not
matter. Now we can repeat everything that we have said in our illustrative
example. If the measures we want to integrate extend smoothly over the com-
pactification M̂ of the supermoduli space, then by the supermanifold version
of Stokes’s theorem, the choice of the nilpotent terms – or in other words the
precise choice of the integration cycle Γ – would not matter. Actually, we
want to integrate measures that are singular along certain divisors D ⊂ M̂

along which Σ degenerates. Because of this, we need to impose a condition
on how the nilpotent terms in (2.63) behave near D. Along D, one of the m̃α

plays a special role, namely the antiholomorphic gluing parameter q̃ that has a
simple zero along D. Similarly, one of the holomorphic moduli plays a special

9We are not allowed to shift the m̃α by a function antiholomorphic in the ηi, since
the complex conjugates of the ηi are not present in the formalism of the heterotic
string.



546 Edward Witten

role near D, namely the holomorphic gluing parameter qNS. While placing no
condition on the other m̃α’s beyond (2.63), we need to be more precise about
how q̃ is related to the holomorphic moduli along D. The condition we need
is that of eqn. (2.61):

(2.64) q̃ = qNS(1 + . . . ),

where again the ellipses represent nilpotent terms. This is the only general
condition that one can formulate in terms of the available data. It suffices
(when combined with a condition |q̃| ≥ η, followed by a limit η → 0) to
regularize all conditionally convergent integrals of superstring perturbation
theory, since the singular behavior of the integration measure near D is always
controlled by the natural gluing parameters q̃ and qNS.

We conclude with one further comment that is useful background for
section 2.5. Let us consider a problem in which the appropriate moduli space
M has only one odd modulus. Then there are no (nonzero) even nilpotent
functions on M, so we cannot make a change of variables as in (2.62), and
there is no way to include nilpotent terms in the relationship (2.63). Hence
none of the characteristic subtleties of superstring perturbation theory can
arise. Superstring calculations in problems with only one odd modulus (or
none at all) can be subtle, but the subtleties always involve issues that could
arise in bosonic string theory.

2.5. A much simpler 1-loop mass splitting

Returning to the SO(32) heterotic string on a Calabi-Yau manifold, we are
now going to compute a 1-loop mass shift for a different set of fields. There
actually are three reasons to do this calculation: it is interesting; we will need
the result in section 3; and it will illustrate our last assertion, namely that
superstring perturbation theory is straightforward when there is only one odd
modulus.

We will consider a genus one Riemann surface Σ with two Ramond punc-
tures – that is, two insertions of Ramond vertex operators. For a review of the
basics of super Riemann surfaces with punctures, see section 4 of [14]. The key
point for us is that while adding a Neveu-Schwarz puncture increases the odd
dimension of supermoduli space by 1 (the extra odd modulus being the odd
coordinate of the puncture), adding a Ramond puncture only increases the di-
mension of supermoduli space by 1/2. So a super Riemann surface of genus 1
with 2 Ramond vertex operators (and none of NS type) has only 1 odd modu-
lus, ensuring that superstring perturbation theory will be straightforward. To
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calculate, we should use Ramond vertex operators with the canonical picture
number10 −1/2.

Now we will explain the term in the effective action that we aim to com-
pute here. We let Wα be the chiral superfield on R

4 that contains the field
strength Fμν of the anomalous U(1) gauge field. Its expansion is

(2.65) Wα(xμ|θβ) = ζα + Fμνσ
μν
αβθ

β + θαD + . . .

where ζα is the fermion field in this multiplet and D is the auxiliary field
whose expectation value breaks supersymmetry. The kinetic energy of this
multiplet at tree level is

(2.66)
∫

d4x d2θ SWαW
α,

where S = e−2φ − ia + θακα + . . . is the chiral superfield containing the
four-dimensional dilaton; it was introduced in eqn. (2.3). In view of the θ

expansions of Wα and S, the interaction (2.66) contains a term καζ
αD, and at

1-loop order we expect to generate a καζ
α mass term that will be proportional

to 〈VD〉. We want to explain here how this comes about. We call κ and ζ the
dilatino and gaugino, respectively.

We will do the calculation directly at zero momentum in spacetime. There
will be none of the subtleties familiar from [3, 4] as well as sections 2.2 and 2.3
above, because we are now considering a problem with only one odd modulus.

Concretely, what we gain from the fact that the worldsheet Σ has only two
Ramond punctures is the following. (Here we are more or less restating in the
present context what was already explained in section 2.4.4.) Topologically, Σ
is a torus with a holomorphic even modulus τ . With two or more odd moduli,

10At tree level, one can compute with vertex operators of any picture number [16],
but in positive genus, the picture-number of the vertex operators must be correlated
with how the supermoduli space is defined. See section 4.3 of [14] and sections 4.1
and 5.1 of [2]. There is a systematic procedure to compute with (unintegrated) NS
and Ramond vertex operators with any negative value of the picture number, but
the minimal procedure is based on the simplest definition of the supermoduli space,
in conjunction with NS vertex operators of picture number −1 (such as we used
in section 2.2) and Ramond vertex operators of picture number −1/2. We will be
able in what follows to effectively convert one of the Ramond vertex operators to
picture number +1/2 using a picture-changing operator, but the justification for
this depends on the fact that in the particular problem we consider, there is only
one odd modulus.
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say η1, η2, it is subtle to explain what one means by τ as opposed to, say,11

τ + η1η2. There consequently is not a natural operation of integrating over
the odd moduli at fixed τ . A meaningful answer in general emerges only after
integrating over all even and odd variables. With only one odd modulus, τ
is uniquely defined and there is a natural notion of integrating first over the
odd modulus and only at the end over τ . (In this final integration, one takes
τ and the antiholomorphic modulus τ̃ to be complex conjugate.)

Similarly, with two or more odd moduli, it is subtle to define what one
means by the positions at which vertex operators are inserted, as z can be
confused with z + η1η2. In either of these cases, a BRST transformation that
changes the position at which a picture-changing operator is inserted can shift
τ to τ + η1η2 or z to z + η1η2. However, with only one odd modulus, such
shifts are not possible, and one can think of the vertex operators as being
inserted at well-defined positions on an underlying bosonic Riemann surface.
Moreover, there is no subtlety in the standard arguments [16] stating that
the position of a picture-changing insertion is irrelevant.

Given this, we can straightforwardly use the familiar formalism of fermion
vertex operators and picture-changing operators. In this formalism, the basic
fermion emission vertex of picture number −1/2 is written as the product of a
spin field of the βγ ghost system – which is written as e−ϕ/2 in the language of
[16] – times a spin field of the matter system. In compactification on R4 ×Y ,
the matter spin fields we will need are products

(2.67) Σα,± = Σα · Σ±, Σα̇,± = Σα̇ · Σ±,

where the two factors are as follows. Σα and Σα̇, α, α̇ = 1, 2, are spin fields
of positive or negative chirality for the sigma-model with target R4. And Σ+
and Σ− are spin fields of the sigma-model with target Y that are associated
to a covariantly constant spinor on Y of positive or negative chirality. Of the
combined spin fields defined in eqn. (2.67), Σα,+ and Σα̇,− are GSO-even and
the others are GSO-odd.

The vertex operator of a zero-momentum gaugino, in the −1/2 picture,
is

(2.68) V ζ
α = J� · e−ϕ/2Σα,+.

11An exception, which was important in section 2.2, is that if the odd moduli
are positions of NS vertex operators, then this particular difficulty does not arise.
That is because an NS vertex operator is inserted at a point in a pre-existing super
Riemann surface, whose moduli can be defined independently of the position of the
NS puncture.
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The holomorphic factor e−ϕ/2Σα,+ was described in the last paragraph, while
the antiholomorphic factor is the antiholomorphic worldsheet current J� =
giiλ

iλi, introduced in eqn. (2.21), which is associated to the anomalous U(1)
gauge symmetry in spacetime. Similarly, the vertex operator of the dilatino
at zero momentum, again in the −1/2 picture, is

(2.69) V κ
α = ∂z̃X

μγμαα̇ε
α̇β̇e−ϕ/2Σβ̇,−,

where γμ are the four-dimensional Dirac matrices.
A consequence of setting the spacetime momentum to zero is that the field

Xμ associated to motion of the string in R
4 appears in the vertex operators

only via the factor ∂z̃Xμ in V κ
α . Since the one-point function of ∂z̃Xμ certainly

vanishes, for instance by Lorentz symmetry, the expectation value of the
product V ζ

αV
κ
β is trivially zero in the absence of additional insertions. But

one more operator must be inserted, namely the picture-changing operator
Y = {Q, ξ} = eϕ(ψμ∂X

μ + . . . ), where the omitted terms are not relevant
since they do not depend on Xμ.

For fixed τ , the integral that we have to evaluate to compute the ζκ mass
term is

(2.70) Jαβ = −i

∫
dz dz

〈
V κ
α (z;z) · eϕψν∂wX

ν(w) · V ζ
β (0;0)

〉
,

where because there is only one odd modulus, there is no need to distinguish
z̃ from z. We have replaced Y by its relevant piece eϕψμ∂X

μ, and the point
w at which it is inserted is completely arbitrary. The Xμ correlator that we
have to evaluate is 〈∂z̃Xμ(z;z)∂wXν(w;w)〉. This can be evaluated in a simple
way because, for the free fields Xμ, the holomorphic and antiholomorphic
operators ∂zXν and ∂z̃X

μ decouple except for the effects of zero-modes. The
result (with α′ = 1/2) is 〈∂z̃Xμ(z;z)∂wXν(w;w)〉 = ημν/2 Im τ , independent
of z and w. Moreover, we are free to make a convenient choice of w, and we
choose to take the limit that w approaches z. To take this limit, we need the
operator product relation

(2.71) eϕψμ(w) · e−ϕ/2γμαα̇ε
α̇β̇Σβ̇,−(z) → W κ

α (z), w → z,

where

(2.72) W κ
α = eϕ/2Σα,−.

All operators appearing in eqn. (2.71) are holomorphic, and in particular W κ
α

is holomorphic and has dimension 0.
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So our integral reduces to

(2.73) Jαβ = − i

2 Im τ

∫
dz dz

〈
W κ

α (z)V ζ
β (0;0)

〉
.

This integral is easily evaluated because the operator W κ
α is holomorphic.

The correlator F (z) =
〈
W κ

α (z)V ζ
β (0;0)

〉
that appears in (2.73) is therefore

a holomorphic function of z, apart from some poles that can be understood
using the operator product expansion.

The function F (z) is not invariant under z → z+1 or z → z+ τ , because
in general moving a Ramond vertex operator around a noncontractible loop
permutes the generalized spin structures12 on a super Riemann surface Σ.
We do have F (z) = F (z + 2) = F (z + 2τ), since moving around the same
loop twice returns us to the original generalized spin structure. We can sum
over the generalized spin structures by simply replacing F (z) with G(z) =
1
2(F (z)+F (z+1)+F (z+τ)+F (z+1+τ)). (The reason for the factor of 1/2
is that in genus g, the sum over spin structures is accompanied by a factor
of 2−g.) The fact that there is a meaningful way to sum over generalized spin
structures before integrating over z and τ is another reflection of the fact that
in this problem, because there is only 1 odd modulus, z and τ are well-defined.

The singularities of F (z) at z = 0 are determined by the operator product
expansion:

(2.74) W κ
α (z) · V ζ

β (0;0) ∼ εαβ
J�(0)
z

+ εαβVD(0;0) + O(z),

where VD = J�Jr, introduced in eqn. (2.20), is the vertex operator of the aux-
iliary field D. So F (z) has a pole at z = 0, and it also has poles at z = 1, τ , and
1+ τ that are governed by the same formula with a different generalized spin
structure. However, the residue of the poles is given by the one-point function
of the operator J�, which does not couple to right-moving RNS fermions. The
insertion of this operator does not disturb the GSO cancellation, and after
summing over spin structures, the contribution to F (z) that is proportional to
the one-point function of J� disappears. After summing over spin structures,
F (z) becomes a constant 〈VD(0;0)〉. So the only integral we really have to do
is the one that computes the volume of the torus: −i

∫
Σ dz̃ dz = 2 Im τ . This

cancels the factor of Im τ in eqn. (2.73), and the final integral over τ is the
same as it was in sections 2.2 and 2.3.

12 In the presence of Ramond punctures, spin structures are replaced by gener-
alized spin structures, defined for instance in section 4.2.4 of [14]. The distinction
is not important for what follows.
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Thus the supersymmetry-violating 1-loop κζ mass term is proportional to
〈VD〉 with a universal coefficient, just like the other supersymmetry-violating
1-loop mass terms that we reviewed in sections 2.2 and 2.3. The analysis,
however, was notably more straightforward: there were no k2/k2 terms, and
no need to regularize a conditionally convergent integral. The reason for this
is that the computation involved a supermoduli space with only one odd
modulus.

At least one aspect of this calculation perhaps requires better explanation.
We have followed [16] and represented the βγ system of the RNS model in
terms of “bosonized” fields ϕ, ξ, and η. This is an extremely powerful method
to describe the operators of the βγ system, including the spin fields, determine
their dimensions and operator product expansions, and compute correlation
functions in genus 0. In positive genus, the description of the βγ system via
ϕ, ξ, and η is tricky, since these fields have zero-modes on a surface of positive
genus whose interpretation and proper treatment is not very transparent. For
an analysis of the ϕξη system in positive genus, see [17]. In the foregoing, we
used the fields ϕ, ξ, and η only to construct certain holomorphic operators and
compute some terms in their operator product expansion. For these purposes
there is no problem. The analysis led to a final answer 〈VD〉 which is most
transparently computed using the original βγ variables. (The role that β and
γ play in the 1-loop evaluation of 〈VD〉 is very simple: their determinant
cancels the determinant of two of the RNS fermions ψμ.) Conceptually, one
might prefer to perform the entire computation in terms of the variables β, γ
whose geometrical meaning is clear; for some direct approaches to the βγ
system on a surface of positive genus, see [18] or section 10 of [2].

2.6. More on the GSO cancellation

At several points in this analysis, starting in the discussion of eqn. (2.18),
we invoked the GSO cancellation to claim that certain terms vanish upon
summing over spin structures. Such claims are straightforward if Y is a Calabi-
Yau orbifold and the vertex operators come from the untwisted sector. Here we
wish to explain why these claims hold in the case that Y is a general Calabi-
Yau manifold. In this section, Σ is always an ordinary Riemann surface of
genus 1.

First let us recall how one sees spacetime supersymmetry in superstring
theory at 1-loop order in light-cone gauge. In the RNS description, the fields
that are sensitive to the spin structure of Σ are ten right-moving worldsheet
fermions ψI , I = 0, . . . , 9 and the commuting ghosts β and γ. In computing
the partition function, the determinant of the βγ system cancels the deter-
minant of two of the ψI , say ψ0 and ψ1. In light-cone gauge, all external
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string states are represented by vertex operators that do not disturb this
cancellation. Given this, the theory is described by eight RNS fermions ψI ,
I = 2, . . . , 9, along with other fields not sensitive to the spin structure. The
ψI transform in the vector representation of SO(8) or Spin(8). We recall that
the group Spin(8) has three representations of dimension eight, namely the
vector representation, which we denote as 8, and the two spinor representa-
tions of definite chirality, which we call 8′ and 8′′. We now use the following
fact about two-dimensional conformal field theory: in genus 1, eight fermions
ψI transforming in the representation 8 and with a sum13 over spin structures
are equivalent to eight fermions Θα transforming in the 8′ and with an odd
spin structure.

The Θα are known as light-cone Green-Schwarz fermions. Since they are
coupled to an odd spin structure on Σ, the Θα are completely periodic,
Θα(z) = Θα(z + 1) = Θα(z + τ). In particular, they have constant zero-
modes. Integration over those zero-modes causes the partition function to
vanish. In terms of the ψI , that is the basic GSO cancellation in the sum over
spin structures.

Now let us pick an SU(3) subgroup of Spin(8) (in our application, this will
be the holonomy group of Y) under which the representation 8 decomposes as
1⊕1⊕3⊕3. It is likewise true that the representation 8′ (or 8′′) decomposes
under the same SU(3) as 1⊕1⊕3⊕3. So two of the Θα, say Θ1 and Θ2, are
SU(3) singlets. Consequently, arbitrary insertions of SU(3) currents do not
disturb the fact that Θ1 and Θ2 have zero-modes. These zero-modes ensure
the vanishing of the partition function, and thus, arbitrary insertions of SU(3)
currents do not disturb the GSO cancellation.

Next, let us replace R
10 by R

4×Y with a general Calabi-Yau manifold Y .
We want to explain why the GSO projection holds for the one-loop partition
function of such a sigma-model. This will make it clear to what extent it
holds for correlation functions. We consider the eight RNS fermions ψI of the
above discussion (after canceling ψ0 and ψ1 against β and γ) to be modes
in a sigma-model with target R

2 × Y . Let T denote the tangent bundle to
R

2 × Y . Its holonomy group is SU(3), since R
2 has trivial holonomy and Y

has holonomy SU(3). The bosonic fields of the sigma-model comprise a map
Φ : Σ → R

2 × Y , and the ψI take values in the pullback Φ∗(T ). The R
2 × Y

partition function in genus 1 actually vanishes for fixed Φ and fixed values of
13This “sum” requires a choice of sign: the path integral measure of the ψI has

a natural sign if the spin structure of Σ is even, but if it is is odd, the measure
has no natural sign and one has to pick one. This choice, which determines the
sign of parity-violating amplitudes in the string theory, determines whether the Θα

transform in the 8′ or 8′′ representation of Spin(8).
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the left-moving fermions λ after integrating over the ψI and summing over
spin structures. As we will see momentarily, that is true because, for fixed Φ
and λ, the ψI are coupled only to SU(3) currents, so the reasoning in the last
paragraph applies. The part of the action that involves the ψI is

(2.75)
∫

Σ
d2z

(1
2ψ

I D

Dz
ψI + 1

4λ
iλiRiijjψ

jψj

)
.

Here Riijj is the Riemann tensor of R2 ×Y . The connection that is hidden in
the kinetic operator D/Dz is the pullback by Φ of the connection on T , so it
has structure group SU(3), meaning that in the kinetic energy, the ψI couple
to Φ only via their SU(3) currents. To analyze the λ2Rψ2 term, note that the
only non-trivial part of the Riemann tensor of R2×Y is the Riemann tensor of
Y . The fact that Y is Kahler implies that in its last two indices the Riemann
tensor of Y is of type (1, 1) and so transforms in general as 3⊗ 3 = 1⊕ 8 of
SU(3). But Ricci-flatness implies that the Riemann tensor of Y is traceless
in its last two indices (in other words gjjRiijj = 0), which precisely means
that the 1 contribution is absent. So the λλRψψ term in the action couples
to a bilinear in ψ transforming as the 8 or adjoint representation of SU(3).
In other words, the ψI only couple via SU(3) currents, ensuring the GSO
cancellation.

Now it is clear what we can do without disturbing the GSO cancella-
tion: we can make arbitrary insertions of operators that only couple to the
ψI through SU(3) currents. This statement is enough to justify all uses we
have made of the GSO cancellation. As an example, consider the discussion
following eqn. (2.74) of the poles in the function F (z). In this case, the op-
erator that is inserted is J�(0), which does not couple directly to the ψI at
all, so it certainly does not affect the GSO cancellation. Similarly, insertions
of the Djwii term in eqn. (2.17) do not disturb the GSO cancellation (in this
case, the relation gjiDjwii = 0 for a harmonic form on a manifold of SU(3)
holonomy ensures that this term couples to ψ only via SU(3) currents).

The above discussion is oversimplified in one important respect. In string
theory, the statement that Y has SU(3) holonomy is only valid in the large
volume limit; in sigma-model perturbation theory, there are α′ corrections to
the metric14 of Y . The exact statement is not that Y has SU(3) holonomy,
but that the sigma-model of R2 ×Y has a pair of holomorphic spin fields Σ̂±

14For heterotic string models with the spin connection embedded in the gauge
group in the usual way, the leading correction to the metric is of order α′3 (this
correction reflects the four-loop beta function computed in [19]) and the leading
correction to the Riemannian connection is of order α′4. This is actually too high
an order to be relevant to our analysis of the one-loop D-term, since that effect is
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of dimension 1/2. The triality transformation to light-cone Green-Schwarz
fermions maps the spin fields Σ̂± to two of the Green-Schwarz fermions, which
in the above notation are Θ1 ± iΘ2. The fact that Σ̂± are holomorphic means
that Θ1 and Θ2 are free fields; their zero-modes give the GSO cancellation.
The reasoning of the last paragraph can be restated more accurately in this
language. The operator J�, being antiholomorphic, certainly does not disturb
holomorphy of Σ̂±. And the vertex operator VT,k of eqn. (2.17) is the vertex
operator of a massless chiral superfield. At k = 0, to first order, turning
on this field does not disturb spacetime supersymmetry. Hence this operator,
including the Djwii term as well as α′ corrections, commutes with the Σ̂± and
its insertion does not disturb holomorphy of Σ̂± or the GSO cancellation.

3. The two-loop vacuum energy

3.1. Overview

If supersymmetry is spontaneously broken at 1-loop order, then at 2-loop
order, we expect to generate a non-trivial vacuum energy. To understand how
this comes about, we first review the basic framework for computing the genus
2 vacuum amplitude in the RNS description.

A super Riemann surface Σ of genus 2 without punctures has a moduli
space of dimension 3g − 3|2g − 2 = 3|2, with three even moduli and two
odd ones. The genus 2 vacuum amplitude will come from an integral over
this moduli space. As we explained for instance in discussing eqn. (2.62), two
odd moduli is enough to produce the characteristic subtleties of superstring
perturbation theory. Experience has shown that it is indeed tricky to correctly
compute the vacuum amplitude in genus 2. However, the subtleties have been
neatly resolved by D’Hoker and Phong in work surveyed in [15]. This work
involved very intricate calculations, but the underlying idea was actually very
simple.15

First of all, let Σ0 be an ordinary Riemann surface of genus g. Σ0 has
a period matrix, whose definition we will recall in section 3.3. It is a g × g
symmetric complex matrix Ωij , i, j = 1, . . . , g, with a positive-definite imagi-

of order α′3 (it involves a topological invariant
∫
Y trSU(3)F

3, which is of order α′3

relative to the volume of Y in string units). The argument given in the text applies
more broadly to any heterotic string compactification with N = 1 supersymmetry
in four dimensions.

15As reviewed in [15], D’Hoker and Phong also computed certain genus 2 scatter-
ing amplitudes – parity-conserving amplitudes with all external states being bosons
from the NS sector. This was a much more difficult computation than the compu-
tation of the genus 2 vacuum energy.
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Figure 6: Splitting of a genus 2 super Riemann surface to a union of two
surfaces of genus 1, joined at a point.

nary part; it is uniquely determined up to the action of the symplectic group
Sp(2g;Z). A g × g symmetric matrix has g(g + 1)/2 independent matrix el-
ements. A Riemann surface of genus g has 3g − 3 complex moduli. These
numbers coincide if g = 2 or 3, and this suggests that in those two special
cases it may be possible to use the matrix elements of Ω (modulo the action
of Sp(2g;Z)) as moduli for Σ0. This is actually true in genus 2, and some-
thing very similar is true for g = 3. (For g > 3, the matrix elements of Ω are
not independent but obey the Schottky relations, so they cannot be used to
parametrize the moduli space of Σ0 in such a simple way.)

A super Riemann surface Σ of genus g with an even spin structure has
a super period matrix Ω̂ij which is a purely bosonic g × g complex matrix,
again with positive-definite imaginary part.16 The basic idea in [15] is to use
the matrix elements of Ω̂ as bosonic moduli of Σ that are kept fixed while
integrating over the fermionic moduli.

This gives a clear framework for computing the genus 2 vacuum ampli-
tude, though implementing this framework requires some hard work. However,
given what we have learned in section 2, there is a basic question to ask. A
super Riemann surface of genus 2 can split into a union of two surfaces of
genus 1, joined at a point (fig. 6). When this occurs, we are not free to spec-
ify arbitrarily what bosonic variable is kept fixed while integrating over odd

16 Actually, Ω̂ is only generically defined; it has poles with nilpotent residue along
the locus where the reduced space Σ0 of Σ is such that H0(Σ0,K

1/2) �= 0, where
K1/2 is the spin bundle of Σ0. (See footnote 24 in section 3.3.2.) This phenomenon
never occurs in genus 2 (or less), and this is one of the simplifications behind the
calculations surveyed in [15]. The procedure used there can possibly be adapted to
g = 3, but one would have to deal with the fact that for g ≥ 3, the super period
matrix does have poles, and the projection from supermoduli space to the bosonic
moduli space introduces further poles. For details, see [20].
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moduli. There is a distinguished parameter ε that has a simple zero on the
compactification divisor D, and this is what should be held fixed when we
integrate over the odd moduli. Is ε a function of the Ω̂ij or does it differ from
such a function by a bilinear in the odd moduli?

It turns out that the answer to this question is that ε cannot be expressed
just in terms of the Ω̂ij , and therefore in general the procedure described in
[15] does require a correction that is supported on the divisor D. However,
the correction vanishes in supersymmetric models above four dimensions or
with N ≥ 2 supersymmetry in four dimensions. It is nonvanishing if there
is an operator VD that is in the bottom component of a supermultiplet, has
dimension (1, 1), and has a nonzero expectation value 〈VD〉 on a super Rie-
mann surface of genus 1 with even spin structure. In four-dimensional N = 1
models that have an anomalous U(1) gauge symmetry at tree level, such an
operator VD exists, and in this case, the correction term shifts the 2-loop
vacuum energy by a universal multiple of 〈VD〉2 (where 〈VD〉 is computed at
1-loop order). It turns out that the bulk contribution to the 2-loop vacuum
energy, computed using the procedure of [15], vanishes in all compactifications
to four dimensions that have spacetime supersymmetry at tree level. This has
been shown in some explicit orbifold computations in [21] and proved more
generally in [22]. Because of this bulk vanishing, the correction that we will
find at infinity gives the full answer.

In section 3.2, we explain how this correction arises when there is an oper-
ator with the properties of VD. (Potential corrections associated to operators
of dimension less than (1, 1) are discussed in section 3.2.5.) In that analysis,
we make use of the detailed relationship between ε and Ω̂, which is explained
in section 3.3.

3.2. The correction at infinity

3.2.1. Separating degeneration for bosonic strings First let us recall
the behavior of the worldsheet path integral near a separating degeneration
where a Riemann surface Σ of genus g splits into a union of surfaces Σ� and
Σr of genera g� and gr, joined at a point p. (See for example section 6.4.4 of
[2] for more detail.) We practice first with bosonic strings, and for simplicity
we begin by considering holomorphic degrees of freedom only. It is more or
less equivalent to begin with bosonic open strings.

We use local coordinates x and y on Σ� and Σr, and we write the gluing
formula as

(3.1) (x− a)(y − b) = q.
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Thus for q = 0, the point x = a on Σ� is glued to the point y = b on Σr. In
general, both Σ� and Σr have other moduli, but they do not play an important
role in what follows. We want to analyze the measure for integrating over a, b,
and q near q = 0. This measure is a sum of contributions from various string
states that propagate through the narrow neck between Σ� and Σr. Each such
contribution can be evaluated by inserting some vertex operator V on Σ� and
a conjugate17 vertex operator V̂ on Σr. (Here and at some later points in this
paper, we use the integrated forms of the vertex operators, though it is more
precise to develop analogous formulas using the unintegrated version.) The
contribution of the string state in question to the path integral measure is
given by the expression

(3.2) da V (a) · dq F (q) · db V̂ (b),

where F (q) is some function that we have to determine. Here da V (a) and
db V̂ (b) are the amplitudes for the indicated states to couple to Σ� and Σr,
respectively, and dq F (q) is the amplitude for the relevant state to propagate
through the narrow neck. To compute the contribution of the chosen state
propagating between Σ� and Σr to the world sheet path integral, one has
to insert the expression (3.2) in the worldsheet path integral on Σ� and Σr,
calculate the path integral including any other vertex operators that may
be present in addition to the ones associated to the degeneration, and then
integrate over a, b, q, and the other moduli of Σ� and Σr.

The function F (q) can be determined by requiring that the expression
(3.2) is invariant under a scaling of the coordinates. We can work in a basis
of operators such that V and its conjugate V̂ are eigenstates of L0. Under the
scaling x → λx, a → λa, along with y → λ̂y, b → λ̂b (with arbitrary nonzero
parameters λ, λ̂), we see from eqn. (3.1) that q scales as q → λλ̂q. On the
other hand, the vertex operators V and V̂ scale as λ−L0 and λ̂−L0 . Invariance
of (3.2) implies that F (q) is a constant times qL0−2. If the operators V and V̂
are normalized to have a canonical two-point function on a two-sphere, then
the coefficient of qL0−2 is precisely g2

st (gst is the string coupling constant).
Omitting this universal factor, the contribution of a string state of given L0
to the measure comes from insertion of

(3.3) da V (a) · dq qL0−2 · db V̂ (b).

3.2.2. The pole and the tadpole As a function of L0, the integral∫ Λ
0 dq qL0−2 ∼ 1/(L0 − 1) has a pole at L0 = 1. (Here Λ is an irrelevant

17The only sense in which V̂ is “conjugate” to V is that the two-point function
〈V V̂ 〉 is nonzero in genus 0; no complex conjugation is implied.
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Figure 7: A separating degeneration that can lead to trouble. A Riemann
surface Σ splits into two components Σ� and Σr with all vertex operators on
one side, here Σr. The string state propagating between the two branches
carries zero momentum in spacetime. Unless the “tadpole” – the amplitude
for a zero-momentum massless scalar to disappear into the vacuum – vanishes,
the contribution of such a process is divergent.

upper cutoff; the pole comes from the contribution near q = 0.) In a typi-
cal situation (fig. 3) with vertex operators on both Σ� and Σr, one has (for
open strings) L0 = (α′/2)P 2 + N , where P is the momentum flowing be-
tween Σ� and Σr, and N is constructed from oscillator modes of the string.
The pole occurs when the string state flowing between Σ� and Σr is on-shell,
and plays the same role as the pole 1/(P 2 +m2) of the Feynman propagator
in field theory. Thus this pole is essential to the physical interpretation of
string theory. Similar poles arise in closed string theory (where dq qL0−2 is
replaced by d2q qL̃0−2qL0−2) and in superstring theory, where an analogous
pole is exhibited at the end of section 3.2.3.

One of the greatest delicacies in string perturbation theory involves the
“tadpoles” of massless spin-zero particles. The tadpole problem arises if all
external vertex operators are inserted on Σ� (or Σr), as in fig. 7, in which
case the string state flowing between the two sides always has P = 0. As a
result, if this state is a massless spin-zero particle, it is automatically on-shell;
the q integral behaves as dq/q and is logarithmically divergent at q = 0. One
has the same logarithmic divergence in closed-string theory or in superstring
theory, for similar reasons. From a field theory point of view, we are sitting
on the pole of the propagator 1/(P 2 + m2) at P = m = 0.

After we integrate over the moduli of Σr, the coefficient of the logarithmic
divergence is proportional to the “tadpole” – the amplitude for the massless
scalar in question to be absorbed in the vacuum (or more precisely the genus
gr contribution to this tadpole). In many supersymmetric compactifications,
one can use spacetime supersymmetry to show that the integrated tadpoles
vanish (in other words, for all values of gr ≥ 1, the one-point function for a
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massless scalar vertex operator inserted on a surface Σr of genus gr vanishes
after integration over the moduli of Σr). In section 4, we explain how this is
proved and also how the proof can fail when a potential Goldstone fermion
is present.

But even when the integrated tadpoles vanish for all massless particles,
the integrals defining g-loop scattering amplitudes with g > 0 are at best only
conditionally convergent, because in the region in which Σ degenerates in the
fashion indicated in fig. 7, one gets one answer (the contribution of any given
massless scalar is divergent) by integrating first over q, and a different answer
(the contribution of the massless scalar is 0) by integrating first over the
moduli of Σr. In some low order cases, one can find a suitable regularization
of the conditionally convergent integrals by hand, but in general one requires
the procedure described in section 2.4.3. For analysis of the tadpole problem
using that procedure, see section 7.6 of [2].

In field theory, to make sense of perturbation theory in a similar situation,
one requires either vanishing of the tadpole or else a shift in the vacuum to
cancel it. The techniques to analyze superstring perturbation theory when a
shift in the vacuum is required have been developed in [9].

3.2.3. The analog for super Riemann surfaces Now we will explain
the analog of equation (3.3) for super Riemann surfaces. We will only consider
the case that the string state propagating between Σ� and Σr is in the NS
sector. (See section 4.3.1 for Ramond sector gluing.) Again we start with a
holomorphic sector or with open strings.

We use local superconformal coordinates x|θ on Σ� and y|ψ on Σr. We
need a slight generalization of eqn. (2.50) so that at ε = 0, the point x|θ = a|α
in Σ� is glued to y|ψ = b|β in Σr. The resulting formula

(x− a− αθ)(y − b− βψ) = −ε2

(y − b− βψ)(θ − α) = ε(ψ − β)
(x− a− αθ)(ψ − β) = −ε(θ − α)

(θ − α)(ψ − β) = 0(3.4)

can be obtained from eqn. (2.50) by global supersymmetry transformations
of x|θ and y|ψ. But all we really need to know is the scaling behavior:

(x, a, α) →(λx, λa, λ1/2α)
(y, b, β) →(λ̂y, λ̂b, λ̂1/2β)

ε →(λλ̂)1/2ε.(3.5)
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In particular, given the scaling of ε, we can see what must be the analog of
eqn. (3.3):

(3.6) da dαV(a|α) · dε ε2L0−2 · db dβ V̂(b|β).

Here V and V̂ are conjugate superfields with given L0.
A physical state from the NS sector is represented by a superconformal

primary field V of L0 = 1/2. The integral
∫ Λ
0 dε ε2L0−2 ∼ 1/(2L0−1) has a pole

at L0 = 1/2, quite analogous to the pole discussed in section 3.2.2 above. The
residue of the pole comes from the insertion of the integrated vertex operator∫

da dαV(a|α) on Σ� and of its conjugate on Σr. In particular, integration
over α and β projects onto the top components of the vertex operators and
in that sense the pole is associated to propagation of the top component.

3.2.4. The boundary correction We are, however, interested not in the
pole associated to a physical state, but in a subtlety associated to the exis-
tence of the operator VD that is associated to spontaneous supersymmetry-
breaking. This field is a conformal primary of dimension (1, 1), but not a
superconformal primary. It is the bottom component of a supermultiplet, not
the top component. Its contribution to the measure near ε = 0 is obtained
by setting L0 = 1 in (3.6):

(3.7) da dαVD(a) · dε · db dβ VD(b).

We stress that as VD is the bottom component of a supermultiplet, it
depends only on the bosonic coordinates a and b and not on the fermionic
coordinates α and β. For two reasons, the contribution of VD looks completely
harmless: the differential form written in (3.6) has no singularity at all at
ε = 0, and anyway, this expression looks like it will vanish after integration
over α and β, since the integrand has no dependence on those odd variables.

Both of these arguments have fallacies that echo what was explained in
section 2.3. To explain this, we need a formula more complete than (3.7) that
includes the antiholomorphic degrees of freedom. In the case of the heterotic
string, the antiholomorphic variables are governed by the bosonic string for-
mula (3.3). Hence a more complete analog of (3.7) is

(3.8) d2a dαVD(ã; a) · dq̃
q̃

dε · d2b dβ VD(b̃; b).

We are in the same situation as in section 2.3. The integral

(3.9) dα · dq̃
q̃

dε · dβ
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is scale-invariant, that is, it is invariant both under holomorphic scaling
α → λ1/2α, β → λ̂1/2, ε → λ1/2λ̂1/2ε, and antiholomorphic scaling q̃ → λ̃q̃.
(The remaining factors d2a VD(ã; a) and d2b VD(b̃; b) in (3.8) are also scale-
invariant.) Thus, we are in a situation very close to that of section 2.3. The
integral in (3.9) is only conditionally convergent. It vanishes if we integrate
first over α and β keeping fixed the bosonic variables, but not if we integrate
over α and β keeping fixed some other combination such as ε + αβ.

The procedure of [15] for computing the 2-loop vacuum amplitude ampli-
tude amounts to integrating over the odd variables while holding fixed not q̃
and ε but q̃ and ε∗ = ε+αβ. (The reason for this is that, as we will see in eqn.
(3.54), it is not qNS = −ε2 but q∗NS = −(ε∗)2 that is a matrix element of the
super period matrix Ω̂.) Likewise, the general procedure explained in section
2.4.4 tells us to set q̃ = qNS(1 + . . . ) near q̃ = qNS = 0 (the ellipses represent
arbitrary nilpotent terms), but the procedure of [15] is slightly different. In
that formulation, antiholomorphic moduli are taken to be complex conjugates
of the matrix elements of Ω̂, so in particular the relation between q̃ and q∗NS
is q̃ = q∗NS.

To compare the two approaches, we define

(3.10) ε� = ε + h(q̃;qNS)αβ,

where h(q̃;qNS), which plays essentially the same role18 as the function h(z̃;z)
of eqn. (2.57), is any function that equals 0 for q̃qNS < η2 (for some small
positive η) and 1 for, say, q̃qNS > 2η2. The first condition ensures that ε�

agrees with ε near q̃ = qNS = 0, and the second condition ensures that except
very near q̃ = qNS = 0, ε� coincides with ε∗, the variable effectively used in
[15].

Our integration procedure then is to set q̃ equal to q�NS = −(ε�)2 and to
integrate over α and β holding q̃ and q̃ fixed. This procedure is correct near
q̃ = qNS = 0. Away from q̃ = qNS = 0, it does not matter exactly what we do.
The procedure of setting q̃ equal to q�NS has been chosen to agree away from
q̃ = qNS = 0 with the procedure used in [15].

To actually calculate the integral, we proceed as in section 2.3. Eqn. (3.10)
is equivalent to ε = ε� − αβh(q̃;−(ε�)2). (This is because the differences

18In the comparison between the two problems, ε corresponds to ẑ and ε� to z.
The function h in (3.10) really corresponds to 1 − h in (2.57), because we started
the present analysis with the gluing parameter ε, while in section 2.3, we began the
analysis with the bosonic variable z rather than the gluing parameter ẑ.
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between ε, ε�, and ε∗ are of order αβ, and vanish when multiplied by αβ.) So

(3.11) dε = dε�
(

1 + 2αβε� ∂

∂q�NS
h(q̃;q�NS)

)
+ . . . ,

where we only indicate the terms proportional to dε� on the right hand side.
Equivalently,

(3.12) dε = dε� − αβdq�NS
∂

∂q�NS
(h(q̃;q�NS) − 1) + . . . .

We set 2dε� · ε� = −dq�NS, and we used the fact that h and h − 1 have the
same derivative. We use this expression to substitute for dε in favor of dε�
or equivalently dq�NS in the integral (3.9). Setting also q�NS = q̃, the term in
(3.11) that will survive when we integrate over α and β at fixed q̃ and q̃ is
the term proportional to αβdq�NS. The contribution of this term in (3.9) is

(3.13) dq̃dq̃dαdβ αβ

q̃

∂

∂q̃
(h(q̃; q̃) − 1).

To evaluate this, we simply integrate by parts. There is no surface term at
large q̃ (where the approximations used in arriving at (3.13) would not be
valid) since h− 1 = 0 at large q̃. There is a contribution at q̃ = 0 that comes
from

(3.14) ∂

∂q̃

1
q̃

= 2πδ2(q̃).

With the help of this formula, and the fact that h(0;0) = 0, the integral over
q̃, q̃, α, and β just gives 2π.

We still have to integrate the remaining factors d2aVD(ã; a) d2bVD(b̃; b)
in (3.8), and integrate over the bosonic moduli (the τ parameters) of Σ� and
Σr. Since Σ� and Σr each have genus 1, these integrals19 give two factors of
the 1-loop expectation value 〈VD〉. Restoring also the factor of g2

st that was
suppressed in eqn. (3.3), the contribution of this calculation to the two-loop
vacuum energy is 2πg2

st〈VD〉2.
19As Σ� and Σr have genus 1, the d2a and d2b integrals can be factored out

using the translation symmetries of Σ� and Σr. To this end, one might prefer to
make the whole derivation starting with a variant of eqn. (3.2) expressed in terms
of unintegrated vertex operators. See for instance section 6.4.4 of [2].
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This correction at infinity to the D’Hoker-Phong procedure [15] is the full
answer since, as shown in [21, 22], in a general heterotic string compactifica-
tion to four dimensions that has spacetime supersymmetry at tree level, the
D’Hoker-Phong procedure gives 0 for the bulk contribution to the two-loop
vacuum energy.

3.2.5. Other boundary corrections? In this derivation, starting in eqn.
(3.8), we have made a simplified approximation to the measure on supermod-
uli space that comes from the worldsheet path integral, considering only the
contribution of the vertex operator VD. The full measure is of course far more
complicated. We have chosen an integration procedure that agrees with that
of [15] except very near q̃ = qNS = 0, but gives a correction there for the
contribution of VD. Does this procedure lead to any other corrections?

Consider the propagation between Σ� and Σr of an arbitrary NS sector
state represented by a superfield O(z̃;z|θ). Let Ô(z̃;z|θ) be the conjugate
superfield. Suppose that the bottom component of O has holomorphic and
antiholomorphic conformal dimensions (L0, L̃0). Then the analog of (3.8) for
the contribution of this superfield is

(3.15) d2a dαO(ã;a|α)dq̃ q̃L̃0−2 dε ε2L0−2Ô(b̃;b|β) d2b dβ,

with an insertion of O on one side and of Ô on the other.
A preliminary comment is that only the contribution of the bottom com-

ponents of the superfields can lead to the sort of subtlety discussed in this
paper. (For example, VD is such a bottom component.) Indeed, if O(ã;a|α) =
O0(ã;a) + αO1(ã;a), Ô(b̃;b|β) = Ô0(b̃;b) + βÔ1(b̃;b), then contributions in-
volving O1 or Ô1 are unaffected by a change of variables in which a multiple
of αβ is added to ε, simply because α2 = β2 = 0. Also, the only potentially
dangerous case is L0 = L̃0, since otherwise, after setting q̃ = qNS near q̃ = 0, a
possible surface term vanishes upon integration over Arg q̃. For L0 = L̃0 �= 1,
a possible boundary contribution is multiplied by (qNSq̃)L0−1 relative to what
we had in studying VD, where qNS, q̃ → 0 at the boundary. For L0 = 1, the
boundary correction is nonzero and interesting, as we have seen. For L0 < 1,
it would be divergent (and in general this will lead to spurious infrared diver-
gences if one uses the wrong integration procedure at infinity). For L0 > 1,
the boundary correction vanishes. Finally, obviously the splitting of a genus 2
surface to a pair of genus 1 surfaces with insertions of O0 and Ô0 on the two
branches can only lead to a boundary term if O0 and Ô0 have nonvanishing
1-point functions20 in genus 1.

20With an integration procedure that preserves all the conformal symmetry, the
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The existence of potentially troublesome operators is model-dependent.
Let us discuss the one such operator that always exists; this is the iden-
tity operator, with L0 = L̃0 = 0. (In many simple models, such as toroidal
compactifications, it is the only operator that satisfies the criteria.) The cor-
responding contribution to the measure is

(3.16) d2a dα dq̃
q̃2

dε
ε2 d2b dβ.

The integral over q̃ and ε looks divergent. This apparent divergence is
the contribution of the NS sector tachyon, whose vertex operator at zero
momentum is the identity operator. The NS sector tachyon is not a physical
state of superstring theory, so we do not expect a tachyon divergence in the
integration over moduli. It is tempting to argue that the tachyon divergence
is eliminated because, as the expression (3.16) does not depend on α and β,
the Berezin integral over those parameters, keeping fixed q̃ and with q̃ set
to −ε2, vanishes. (The expression explicitly written in eqn. (3.16) should be
multiplied by other factors that depend only on the moduli of Σ� and Σr and
not on α and β; this does not affect the suggestion that was just made.) The
trouble with this argument is that in general, because of the dependence of
the gluing operation (3.4) on choices of local parameters x|θ and y|ψ, ε is
really only defined modulo

(3.17) ε → ε′ = εew,

where w is a function of the other moduli (in general including α and β) that
is holomorphic at ε = 0. Any function ε′ = εew has a simple zero along the
divisor at infinity and (if w is constrained by GSO symmetry as in footnote
21 below) is as natural as any other such function. Integration over α and β
keeping fixed q̃ and with q̃ set to −(ε′)2 does not necessarily eliminate the
tachyon contribution.

What really does eliminate the tachyon contribution is the GSO projec-
tion21 [12], which roughly is the sum over the two possible signs of ε for given
qNS = −ε2.
only operators whose 1-point functions can be defined and can play a role are
conformal vertex operators (see section 4.3.2). With a more general integration
procedure, more general 1-point functions can enter.

21 The function w in eqn. (3.17) can be somewhat constrained by GSO symmetry;
at ε = 0, one can require w to be invariant under a sign change of all odd moduli of
Σ�, or all odd moduli of Σr. In general (if Σ� and Σr have additional odd moduli),
this condition allows w to depend nontrivially on α and β and hence does not
affect the discussion surrounding eqn. (3.17). However, for the genus 2 vacuum
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However, let us see what happens if we follow a similar procedure, but
after replacing ε with ε∗ = ε + αβ (which notably is not of the form εew, so
it is not a good parameter defining the divisor at infinity). In terms of ε∗,
(3.16) becomes

(3.18) d2a dαdq̃
q̃2

dε∗

(ε∗ − αβ)2 d2b dβ.

After integrating over α and β and setting q = −(ε∗)2 = q̃, we get

(3.19) d2a
dq̃ · dq
q̃2q2 d2b.

Comparing to the bosonic string formula (3.3), we see that this is the con-
tribution one would expect from the identity operator (of L0 = L̃0 = 0) in
bosonic string theory. It is not a natural behavior in superstring theory. This
singular behavior was found22 in the work reviewed in [15]. This caused no
difficulty because the unwanted term (3.19), with a natural regularization,
canceled upon summing over spin structures on Σ� and Σr.

At least near the large volume limit of the sigma-model, similar reasoning
applies for all bosonic operators of L0 < 1. Such operators are constructed
from the bosonic fields of the sigma-model only, since a fermion bilinear would
contribute 1 to L0. Insertion on a genus 1 surface of an operator constructed
from bosonic fields only does not disturb the GSO cancellation.

3.3. Details concerning the super period matrix

Let us first recall the definition of the period matrix of an ordinary Riemann
surface Σ0 of genus g. Σ0 has a g-dimensional space of holomorphic 1-forms
ω1, . . . , ωg. We pick a symplectic basis of 1-cycles Ai, Bj , i, j = 1, . . . , g, and
normalize the ωi so that

(3.20)
∮
Ai

ωj = δij .

amplitude, with α and β being the only odd moduli, GSO symmetry implies that
w is independent of α and β at ε = 0 and hence does not play any important role.
So in that particular case, there is a natural sense in which integration over α and
β kills the tachyon contribution at a separating degeneration without reference to
the GSO projection. (For a corresponding study of a nonseparating degeneration,
see section 5.3 of [20].)

22See eqn. (10.4) in that paper. In that equation, d3τ corresponds to, in our
notation of section 3.3.1, dτ��dτrrdτ�r; and τ = τ�r = q. So d3τ/τ2 ∼ dq/q2 (times
dτ��dτrr), which is the behavior claimed in (3.19).
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Then the period matrix is defined by

(3.21) Ωij =
∮
Bi

ωj .

Since the ωi, being holomorphic, are closed, the condition (3.20) and the
definition (3.21) of Ωij depend only on the homology classes of the cycles Ai

and Bj .
Almost the same definition makes sense on a super Riemann surface Σ,

with some qualifications (see [23, 24], and section 8 of [14]). First of all, the
closest analog of the theory of the ordinary period matrix arises if the spin
structure of Σ is even. In this case, generically there is a g-dimensional space
of closed23 holomorphic one-forms ω̂i, i = 1, . . . , g on Σ. (This fails when the
reduced space Σ0 of Σ has H0(Σ0, K

1/2) �= 0; then the super period matrix
acquires a pole with nilpotent residue, as explained in footnote 24.) We pick a
symplectic basis of cycles Ai and Bj in Σ of dimension 1|0 (one can take any
cycles of dimension 1|0 that can be deformed to ordinary A- and B-cycles in
the reduced space Σ0 of Σ) and after normalizing the ω̂i so that

(3.22)
∮
Ai

ω̂j = δij ,

we define the super period matrix by

(3.23) Ω̂ij =
∮
Bi

ω̂j .

It can be shown to be symmetric, just like the classical period matrix defined
in (3.21).

Now we consider the case of a Riemann surface or super Riemann surface
of genus 2 that is splitting into a union of two components Σ� and Σr of genus
1, meeting at a point (fig. 6). We want to show that for ordinary Riemann
surfaces, the gluing parameter q can be expressed as a matrix element of
the period matrix, while for a super Riemann surface, the gluing parameter
ε cannot be expressed in terms of the super period matrix. This is the key
point that led to the boundary correction in section 3.2.4.

23On a super Riemann surface, as opposed to an ordinary one, a holomorphic
1-form is not always closed. For brevity, we omit an alternative description of the
super period matrix, explained in the references, in terms of holomorphic sections
of the Berezinian of Σ.
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3.3.1. Period matrix and gluing parameter of an ordinary Riemann
surface For an ordinary Riemann surface Σ0 of genus 2 that has split into
two genus 1 components Σ0,� and Σ0,r joined at a point, we can be very
explicit about the period matrix. Let τ� and τr be the modular parameters of
Σ0,� and Σ0,r. We describe Σ0,� as the quotient of the complex z�-plane by

(3.24) z� ∼= z� + 1 ∼= z� + τ�

and similarly Σ0.r as the quotient of the complex zr-plane by

(3.25) zr ∼= zr + 1 ∼= zr + τr.

We let A� and B� be standard A- and B-cycles in Σ0,�: A� is the image in Σ0,�
of a straight line from z� = 0 to z� = 1, and B� is the image of a straight line
from z� = 0 to z� = τ�. We define Ar and Br in a completely analogous way
as standard A- and B-cycles in Σ0,r.

Suppose that Σ0 is built by gluing the point z� = a in Σ0,� to the point
zr = b in Σ0,r. (We pick a and b to not lie on any of the chosen A- or B-
cycles or alternatively we deform the cycles to avoid a and b. By translation
symmetry, the choices of a and b do not matter.) On Σ0, we can take a basis
of holomorphic differentials ω� = dz� and ωr = dzr. Thus ω� = 0 on Σ0,r
(since z� is constant there) and likewise ωr = 0 on Σ0,�. The periods of ω� are∮

A�
ω� = 1,

∮
B�

ω� = τ�∮
Ar

ω� =
∫
Br

ω� = 0.(3.26)

Similarly, ∮
Ar

ωr = 1,
∮
Br

ωr = τr∮
A�

ωr =
∫
B�

ωr = 0.(3.27)

These formulas show that the period matrix of Σ0 in the basis
(
A�

Ar

)
is

(3.28) Ω =
(
τ� 0
0 τr

)
.

In other words, Ω�� = τ�, Ωrr = τr, and Ω�r = Ωr� = 0.
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Now let us perturb Σ0 slightly so that Σ0,� and Σ0,r are joined through a
very narrow neck. Near z� = a, zr = b, we glue the two branches by

(3.29) (z� − a)(zr − b) = q.

When modifying Σ0 in this way, we want to modify ω� and ωr so that they
continue to have canonical A-periods:∮

A�
ω� =

∮
Ar

ωr = 1∮
Ar

ω� =
∮
A�

ωr = 0.(3.30)

Their B-periods will then give the deformed period matrix. We are primarily
interested in the off-diagonal component of the deformed period matrix, which
will be non-zero because for q �= 0, ω� is non-zero on Σ0,r. From (3.29), we
have

(3.31) dz� = d(z� − a) = q d 1
zr − b

= − q dzr
(zr − b)2 .

This implies that a form that at q = 0 is simply ω� = dz� and vanishes
on Σ0,r will, in linear order in q, become non-zero on Σ0,r with the double
pole indicated in (3.31) near zr = b. The most general 1-form on Σ0,r that is
holomorphic except for such a double pole is

(3.32) ω
(1)
� = q · dzr

(
−P (zr − b; 1, τr) + w

)
where P is the Weierstrass P -function and w is a constant. P (zr− b; 1, τ) is a
doubly-periodic function that is holomorphic away from zr = b and behaves
for zr → b as

(3.33) P (zr − b; 1, τ) ∼ 1
(zr − b)2 + O((zr − b)2).

These conditions characterize it uniquely. To compute the correction to the
period matrix, we are supposed to adjust the constant w so that

(3.34)
∫
Ar

ω
(1)
� = 0,

and then (up to further corrections of higher order in q) the off-diagonal
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matrix element of the period matrix is

(3.35) Ωlr =
∫
Br

ω
(1)
� = q

∫
Br

dz�(−P (zr − b; 1, τ) + w).

This formula shows that to first order in q, the off-diagonal matrix el-
ement of the period matrix is a multiple of q. We will now determine the
precise coefficient in this relation. We do the following computations on the
unperturbed surface Σ0,r defined in eqn. (3.25); we have already an explicit
factor of q in ω

(1)
� , and we can set q to zero elsewhere.

It is not quite true that the form ω
(1)
� is closed. The familiar relation

(3.36) ∂

∂zr

1
zr − b

= 2πδ2(zr − b)

implies by differentiating with respect to zr that

(3.37) ∂

∂zr

1
(zr − b)2 = −2π∂zrδ2(zr − b)

and hence, because of the double pole in ω
(1)
� , that

(3.38) dω(1)
� = dzr ∧ dzr2πq∂zrδ2(zr − b) = −d(dzr · 2πqδ2(zr − b)).

An “improved” version of ω(1)
� which can equally well be used in (3.35) and

which is closed is

(3.39) ω
(1∗)
� = ω

(1)
� + dzr · 2πqδ2(zr − b).

Since Br does not pass through b, the extra term that we have added does
not contribute in (3.35).

Now if s and t are any two closed one-forms on the two-torus Σ0,r, we
have the topological formula

(3.40)
∫

Σ0,r

s ∧ t =
∮
Ar

s

∮
Br

t−
∮
Br

s

∮
Ar

t.

We apply this formula with s = dzr, t = ω
(1∗)
� . The left hand side receives a

contribution only from the delta function term in ω
(1∗)
� , and so equals 2πq.

Since the Ar period of s is 1 and the Ar period of t is 0, the right hand side
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of (3.40) is equal to the Br period of t, which by definition is Ω�r. So we get
the precise relation between the gluing parameter Ω�r and q:

(3.41) Ω�r = 2πq.

3.3.2. Period matrix and gluing parameter of a super Riemann sur-
face Starting with an ordinary Riemann surface Σ0 with a choice of spin
structure, one can build a super Riemann surface Σ in a natural way. If Σ0 is
covered by open sets Uα with local coordinates zα, such that zα = uαβ(zβ) in
intersections Uα ∩Uβ , then Σ is covered by the same open sets Uα with local
superconformal coordinates zα|θα, and gluing rules

zα = uαβ(zβ)

θα =
(
∂uαβ
∂zβ

)1/2

θβ.(3.42)

(The role of the spin structure on Σ0 is to determine the signs of the square
roots.) From this, it is clear that there is a holomorphic embedding i : Σ0 → Σ
that maps zα to zα|0, and a holomorphic projection π : Σ → Σ0 that maps
zα|θα to zα. Moreover, π ◦ i = 1. The super Riemann surface Σ is said to be
“split” and Σ0 is called its reduced space. From a supergravity point of view,
the gravitino field vanishes in a split super Riemann surface; its odd moduli
are zero.

To develop the theory of super period matrices, we assume that the spin
structure of Σ0 is even and that Σ0 is sufficiently generic that H0(Σ0, K

1/2) =
0. These conditions ensure that the space of closed holomorphic 1-forms on
Σ has dimension g|0.

Given this, the super period matrix Ω̂ of a split super Riemann surface Σ
equals the ordinary period matrix Ω of Σ0. Indeed, if ω1, . . . , ωg are a basis of
holomorphic 1-forms on Σ0, then their pullbacks to Σ (via the projection π)
give a basis of closed holomorphic 1-forms ω̂1, . . . , ω̂g on Σ. A- and B-cycles
on Σ0 can be embedded in Σ via the embedding i. Then the periods of the
ω̂i coincide with the periods of the ωi, so the definition (3.23) of the super
period matrix reduces to the definition (3.21) of the ordinary period matrix.

Once one turns on the odd moduli of Σ, the ω̂i need to be modified and
it is no longer true that Ω̂ coincides with Ω. The difference was computed
in [24]; see also section 8.3 of [14]. For us, it will suffice to consider the case
of two odd moduli (though the general case is not much more complicated).
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From a supergravity point of view, having two odd moduli means that we
take the gravitino field to be

(3.43) χθ
z̃

=
2∑

s=1
ηsf

θ
s z̃
,

where ηs, s = 1, 2 are the odd moduli, and the gravitino wavefunctions f θ
s z̃

,
s = 1, 2, are (0, 1)-forms on Σ0 valued in T 1/2 (the inverse of the line bundle
K1/2 → Σ0 that defines the spin structure). The difference between Ω̂ and Ω
is then given by an integral over a product Σ0×Σ′

0 of two copies of Σ0, which
we parametrize respectively by z̃, z and by z̃′, z′:
(3.44)

Ω̂ij − Ωij = − 1
2π

2∑
s,t=1

ηsηt

∫
Σ0×Σ′

0

ωj(z)f θ
s z̃

(z̃;z)dz̃ S(z, z′)f θ
t z̃′

dz̃′ ωi(z′).

(In this section, the difference between z̃ and z is generally not important, be-
cause all integrals will be taken on ordinary Riemann surfaces.) Here S(z, z′)
is the Dirac propagator24 on Σ0 (for the chosen spin structure); it obeys
S(z, z′) = −S(z′, z), and for fixed z′, it satisfies the Dirac equation on Σ0
with a simple pole of residue 1 at z = z′:

(3.45) S(z, z′) ∼ 1
z − z′

√
dz

√
dz′, z → z′.

The integral in (3.44) is well-defined because ωi and ωj are (1, 0)-forms, the
f ’s are (0, 1)-forms valued in T 1/2, and as a function of either z or z′, S is
valued in K1/2, which is the dual of T 1/2.

We want to apply this to the case that Σ0 is a surface of genus 2 built
by gluing together two genus 1 surfaces Σ0,� and Σ0,r, each with an even
spin structure. In this case, the genus 2 super Riemann surface Σ is likewise
built by gluing together genus 1 super Riemann surfaces Σ� and Σr. Σ� is
parametrized by superconformal coordinates z�|θ� with equivalences

(3.46) z�|θ� ∼= z� + 1| ± θ� ∼= z� + τ�| ± θ�

(where the signs depend on the spin structure and are not both positive, since
the spin structure is even), and Σr is parametrized by zr|θr with analogous

24 This propagator only exists if the Dirac equation has no zero-modes or in
other words if H0(Σ0,K

1/2) = 0. As one varies Σ0 in its moduli space Mg, there
is a divisor in Mg along which H0(Σ0,K

1/2) �= 0. Along this divisor, S(z, z′) has
a pole and hence Ω̂ij has a pole, with nilpotent residue.
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equivalences. Σ is built by gluing a marked point z�|θ� = a|α in Σ� to a marked
point zr|θr = b|β in Σr. Σ� with its marked point has one odd modulus, namely
η� = α, and likewise Σr with its marked point has one odd modulus, namely
ηr = β. The odd modulus of Σ� is associated to a gravitino wavefunction
f θ�
� z̃�

that is supported on Σ�, and the odd modulus of Σr is associated to a
gravitino wavefunction f θr

r, z̃r
that is supported on Σr. These wavefunctions

have special properties: the odd moduli in question are trivial if one forgets
about the marked points in Σ� and Σr, and this means that f θ�

� z̃�
and f θr

r z̃r
can

be gauged away, but not by gauge parameters that vanish at z� = a or zr = b.
Rather

f θ�
�,z̃�

= ∂

∂z̃�
w�, w�(ã;a) = 1

f θr
r,z̃r

= ∂

∂z̃r
wr, wr(b̃;b) = 1.(3.47)

However, we will postpone using this fact.
We want to use eqn. (3.44) to compute the off-diagonal matrix element

Ω̂�r. If Σ is obtained by gluing together Σ� and Σr, then we can take ω� = dz�,
ωr = dzr, as in section 3.3.1. In this case, since ω� is supported on Σ� and ωr

on Σr, the integral in (3.44) over Σ0×Σ′
0 becomes an integral over Σ0,�×Σ0,r:

(3.48)
Ω̂�r − Ω�r = −αβ

π

∫
Σ0,�×Σ0,r

ω�f
θ�
� z̃�

(z̃�; z�) dz̃� S(z�, zr)f θr
r z̃r

(z̃r;zr) dz̃r ωr.

This vanishes as long as Σ is made by simply gluing together Σ� and Σr at a
point, because in this case the Dirac propagator S(z, z′) vanishes for z ∈ Σ�,
z′ ∈ Σr.

To get a nonzero result, we have to deform away from the case that Σ�

and Σr are simply glued together at a point, and let the gluing parameter ε
become nonzero. At ε = 0, Σ0,� has a Dirac propagator S�(z�, z′�) and Σ0,r has
a Dirac propagator Sr(zr, z′r). We claim that the small ε behavior of the full
Dirac propagator S(z, z′) for z ∈ Σ�, z′ ∈ Σr is

(3.49) S(z, z′) = εS�(z, a)Sr(b, z′) + O(ε3).

This formula arises as follows.25 We interpret S(z, z′) = 〈ψ(z)ψ(z′)〉 as a two-
25As will be clear from the derivation, the formula is the first term in an ex-

pansion in powers of ε2/(z� − a)(zr − b). The correction to the leading term is of
order ε3, since the operator associated to the next-to-leading contribution is the
descendant ∂ψ, of dimension 3/2.
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point function in the conformal field theory of a free fermion ψ. In conformal
field theory, propagation from Σ� to Σr through the narrow neck joining
them can be expressed as a sum of contributions obtained by inserting an
operator O at the point a ∈ Σ� and a conjugate operator Ô at the point b ∈
Σr, and multiplying by an ε-dependent factor that accounts for propagation
through the neck. The insertion is thus O(a) · F (ε) · Ô(b) for some F (ε);
this is analogous to eqn. (3.2), with the difference that we now considering a
correlation function rather than a measure on moduli space. Scale-invariance
determines that if O and Ô have a given value of L0, then F (ε) is a multiple
of ε2L0 . The multiple is 1 if the genus zero two-point function 〈O(z)Ô(z′)〉 is
canonical. For small ε, the dominant contribution comes from the operators
of lowest dimension that contribute. In the case of free fermion conformal
field theory, this means that the dominant contribution to 〈ψ(z)ψ(z′)〉, with
z ∈ Σ�, z′ ∈ Σr, comes from O = Ô = ψ. This operator has L0 = 1/2,
so ε2L0 = ε, accounting for the factor of ε in (3.49); and ψ has a canonical
two-point function, so the coefficient of ε is 1. The upshot of all this is that
the correlation function 〈ψ(z)ψ(z′)〉 is, to first order in ε, equal to ε times
the correlation function 〈ψ(z)ψ(z′)ψ(a)ψ(b)〉 computed at ε = 0. That last
correlation function is the product of the relevant matrix elements of S� and
Sr, and this leads to eqn. (3.49).

Now we insert (3.47) and (3.49) in the formula (3.48) for Ω̂�r − Ω�r. We
also set ω� = dz�, ωr = dzr. We get
(3.50)

Ω̂�r − Ω�r = −αβε

π

∫
Σ�

dz� dz̃�
∂

∂z̃�
w� · S(z�, a) ·

∫
Σr

dzr dz̃r
∂

∂z̃r
w� · S(zr, b).

Upon integrating by parts in both integrals, using

(3.51) ∂

∂z̃�
S(z�, a) = 2πδ2(z� − a), ∂

∂z̃r
S(zr, a) = 2πδ2(zr − a),

along with w�(ã;a) = wr(b̃;b) = 1, we get finally

(3.52) Ω̂�r − Ω�r = −4πεαβ.

To turn this into a formula for Ω̂�r, we also need to compute Ω�r. This was
evaluated, modulo higher order corrections, in eqn. (3.41), where we should
now interpret q as qNS = −ε2. Combining these results, we get a formula for
Ω̂�r:

(3.53) Ω̂�r = −2π(ε2 + 2εαβ) = −2π(ε + αβ)2.
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So it is not ε that can be expressed in terms of the super period matrix, but
ε + αβ:

(3.54) ε + αβ =
(
− Ω̂�r

2π

)1/2

.

This is the reason for the correction at infinity that was analyzed in section
3.2.4. The procedure of [15] involves holding Ω�r fixed when integrating over
the odd variables, and therefore it involves holding ε + αβ fixed; but near
ε = 0, it is important to hold ε fixed instead.

4. The supersymmetric Ward identity

4.1. Review of bosonic symmetries

Our final goal is to clarify at a fundamental level how it is possible for loop
corrections in a given vacuum to spontaneously break supersymmetry even
if supersymmetry is unbroken at tree level in that vacuum. (As usual, we do
not consider the effects of shifting the vacuum to try to restore supersym-
metry.) It is essential to understand first why this is actually not possible
for bosonic symmetries of oriented closed-string theories.26 Let us consider
two rather different examples: momentum conservation and the anomalous
U(1) of the SO(32) heterotic string on a Calabi-Yau manifold. Like all con-
tinuous bosonic symmetries of closed-string theories, these are associated to
conserved currents on the string worldsheet. In bosonic string theory, mo-
mentum conservation is associated to the worldsheet current JI

μ = ∂XI/∂σμ

(where the σμ, μ = 1, 2 are worldsheet coordinates and XI is a free field
on the worldsheet representing motion of the string in the xI direction in
spacetime). In superstring theory, there is an analogous formula; the relevant
conserved current is now part of a superfield on the worldsheet, but this does
not modify what follows in an essential way. For the anomalous U(1), the
conserved current is the antiholomorphic current J� = giiλiλi that is familiar
from section 2.

Once we have a conserved current Jμ, or equivalently a closed operator-
valued one-form J = εμνJ

μdσν , we can derive a Ward identity. Suppose that
we are given vertex operators V1, . . . ,Vn that have definite charges q1, . . . , qn

26A rough analog of supersymmetry breaking by loops does exist in open and/or
unoriented string theories: bosonic symmetries that hold at the closed-string tree
level can be broken by open-string boundary conditions and/or orientifold projec-
tions.
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Figure 8: To derive a Ward identity from a conserved current in closed string
theory, we omit a small open ball around each vertex operator in the string
worldsheet Σ to make a two-manifold Σ′ with boundary, over which we then
integrate the divergence of the current. The open balls are bounded by circles
γ1, . . . , γn – sketched here for n = 4.

in the sense that

(4.1)
∮
γi

J · Vi = qiVi,

where γi is a small closed circle that wraps counterclockwise once around Vi.
Now consider the correlation function 〈V1V2 . . .Vn〉 on a string worldsheet Σ.
Here we make ghost insertions27 as necessary so that this correlation function
is not trivially zero, but we do not integrate over any moduli. To prove a Ward
identity, we proceed in the standard fashion. We let Σ′ be the complement
in Σ of the interiors of the γi (fig. 8). By integrating the conservation law
0 = dJ over Σ′ and then integrating by parts to pick up surface terms, which
we evaluate using (4.1), we deduce the Ward identity:

(4.2) 0 =
∫

Σ′
〈dJ · V1 . . .Vn〉 =

n∑
i=1

qi ·
〈
V1 . . .Vn

〉
.

Thus, the correlation function 〈V1 . . .Vn〉 vanishes unless
∑

i qi = 0.
This is our Ward identity, and since it holds without any integration over

moduli, there is no room for any subtlety. The contribution to a scattering
amplitude with

∑
i qi �= 0 vanishes before any integration over moduli, so it

certainly vanishes after any such integration.
27When we say that a worldsheet current is “conserved,” we mean in particular

that it is anomaly-free, and hence truly is conserved even on a curved worldsheet.
We also assume that it remains conserved in the presence of the ghost insertions
that are needed in defining superstring scattering amplitudes. In particular, the
ghost number current does not qualify: it has an anomaly on a curved worldsheet,
and does not commute with the usual ghost insertions.
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We expressed the computation in eqn. (4.2) in terms of a string world-
sheet with bosonic coordinates only, but including fermionic coordinates on
the worldsheet changes nothing essential: a conserved current leads to a con-
servation law on a fixed worldsheet and this conservation law remains valid
after integration over moduli. In practice, this means that in closed oriented
superstring theory, all bosonic symmetries that hold at tree level are also valid
in perturbation theory.

This is so even for the anomalous U(1) symmetries that can arise in het-
erotic string compactification to four dimensions. An anomalous U(1) gauge
boson gets mass at 1-loop order via a Higgs mechanism, but the associated
global conservation law – which is what we proved using the Ward identity –
remains valid in perturbation theory. This was explained in section 2.1: the
scalar field a that is important in the Higgs mechanism decouples in pertur-
bation theory.

4.2. How supersymmetry is different

Spacetime supersymmetry is not associated to a conserved current in this
sense. The supersymmetry generator is the fermion vertex operator of [16, 25],
taken at zero spacetime momentum. Because it is a Ramond vertex operator,
it is not really a conserved worldsheet current in the traditional sense assumed
in section 4.1.

For heterotic strings in R
10, the fermion vertex operator is customarily

written

(4.3) SA = e−ϕ/2ΣA,

where ΣA is the spin operator of the matter system, which transforms as a
positive chirality spinor of SO(1, 9). We will take the basic object to be not
SA but its unintegrated counterpart

(4.4) SA = cSA,

which we call the spacetime supersymmetry generator. Importantly, SA has
a factor of c and no corresponding c̃, so its ghost number is less by 1 than
that of the vertex operator for a physical state of the heterotic string. The
reason for emphasizing SA rather than SA will hopefully become clear. We
sometimes omit the A index and write just S for a generic linear combination
of the SA.

The operator SA is holomorphic, in the sense that it varies holomorphi-
cally with the moduli of the superstring worldsheet Σ, and is on-shell, in the
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sense that it obeys the holomorphic part of the physical state conditions (its
antiholomorphic part is the identity operator, which is not an on-shell vertex
operator). A Neveu-Schwarz vertex operator with those properties would be
associated to a conserved worldsheet current that could be used to generate
a Ward identity along the standard lines that were reviewed in section 4.1.
But the fermion vertex operator is a Ramond sector vertex operator, and the
usual framework for deriving a Ward identity on a fixed worldsheet, with-
out integrating over moduli, does not make sense for Ramond sector vertex
operators.

This is because a Ramond vertex operator is inserted at a singularity
in the superconformal structure of Σ. (The usual explanation of this is the
assertion that fermi fields have square root branch points near a Ramond
vertex operator insertion. One can eliminate the branch points in favor of
a more subtle singularity in the superconformal structure; see for example
section 4 of [14] or section 4.3.1 below.) It does not make sense to move this
singularity while keeping the other moduli of Σ fixed; there is no notion of two
super Riemann surfaces being the same except for the location of a Ramond
singularity. So the usual procedure of deriving a Ward identity by integration
over Σ does not apply for spacetime supersymmetry. This is true even for
superstring theory in R

10.
At string tree level, it is possible to put the discussion of spacetime su-

persymmetry in the framework of a “conserved worldsheet current.” To do
this, one absorbs the odd moduli in the definitions of the vertex operators by
using vertex operators of appropriate picture numbers. Once the odd moduli
are hidden in this way, one can treat SA rather like conventional conserved
currents. In loops, this procedure leads to what technically have been called
“spurious singularities.” Trying to express loop amplitudes in a framework
that really does not quite apply made the literature of the 1980s cumbersome
in places.

4.2.1. Closed form on supermoduli space If we cannot interpret the
supersymmetry generator SA as a conserved current on the worldsheet, how
can we use it to derive a Ward identity and why is spacetime supersymmetry
ever valid? What follows is only an overview; much more can be found in [2].
Some of the necessary ideas were developed in the 1990s in work that has
unfortunately remained little-known [26].

To derive the Ward identity for an n-particle scattering amplitude in the
case of a bosonic symmetry, we started with an n+1-point correlation function

(4.5) 〈Jμ V1 . . .Vn〉.
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The analog for supersymmetry is the correlation function

(4.6) FSAV1...Vn = 〈SAV1 . . .Vn〉.

But what kind of object is FSAV1...Vn? In the case of a bosonic conserved
current Jμ, to derive the Ward identity, we varied the insertion point of Jμ

but kept fixed Σ and the insertion points of all other vertex operators. We
cannot do this for the Ramond vertex operator SA, since there is no natural
operation of varying the position of a Ramond vertex operator in a super
Riemann surface Σ without varying all of the moduli of Σ. The only natural
operation is to vary all of the moduli of Σ, and to interpret FSAV1...Vn as an
object of some kind on Mg,n+1, the moduli space of super Riemann surfaces
of genus g with n+1 punctures (here our notation is oversimplified: we should
specify the separate numbers of NS and Ramond punctures, but to keep the
notation simple we only indicate the total number of punctures).

What sort of object on Mg,n+1 is FSAV1...Vn? It is not a measure that can
be integrated over Mg,n+1 to get a scattering amplitude – since SA is not
the vertex operator of a physical state. Indeed, the ghost number of SA is
less by 1 than the ghost number of a physical state vertex operator; as a
result, FSAV1...Vn is a form of codimension 1 on Mg,n+1. It is a closed form,
obeying dFSAV1...Vn = 0, if the vertex operators V1 . . .Vn are all annihilated
by the BRST operator QB. (In a dual language, one would call this corre-
lation function a conserved current on Mg,n+1 rather than a closed form.)
For background on forms and exterior derivatives on a supermanifold and the
supermanifold version of Stokes’s theorem, see for example [13]. For other
statements made in this paragraph, see [2], starting with section 3.

The upshot is that we can derive a conservation law, not by integrating
the equation ∂μJ

μ = 0 over Σ but by integrating the equation dFSAV1...Vn = 0
over Mg,n+1. Upon using the supermanifold version of Stokes’s theorem, we
get

(4.7) 0 =
∫
Mg,n+1

dFSAV1...Vn =
∫
∂Mg,n+1

FSA V1...Vn .

Here ∂Mg,n+1, the “boundary” of Mg,n+1, is a union of components associated
to the different ways that a narrow neck in Σ may collapse. As we will see,
the relation (4.7) is the Ward identity of spacetime supersymmetry, including
a possible Goldstone fermion contribution.

4.2.2. A bosonic string analog Before analyzing the Ward identity in
detail, we pause to explain that some of the key points we have made actually



Superstring perturbation theory via super Riemann surfaces 579

have bosonic string analogs. For brevity, we consider only open strings or a
chiral sector of closed strings.

A conformal vertex operator representing a physical state of the bosonic
string has the form V = cV , where c is the usual ghost field and V is a
dimension 1 primary constructed from matter fields only. If V is BRST-trivial,
meaning that V = {QB,W} for some W, then the string state corresponding
to V is called a null state and should decouple from scattering amplitudes.

The decoupling of massless null states can be proved in a particularly
elementary way. If V is massless and null, then V = L−1W for some W .
Equivalently, V = ∂W , so the integrated insertion of V vanishes:

∫
V =∫

∂W = 0. (Here one has to verify that there are no anomalies coming from
boundary terms in this integral, but this is not a serious problem.)

For massive null states, there is no equally elementary argument. If V =
cV is massive and null, then V = {QB,W} for some W and furthermore
[27] one has V = L−1W1 + (L−2 + (3/2)L2

−1)W2 for some W1 and W2. But
(because of the W2 term) this does not make V a total derivative on the
string worldsheet and there is no reason for the integral

∫
V to vanish on a

fixed string worldsheet. Hence the only simplicity comes in the full integral
over moduli space: the relation V = {QB,W} implies that the form on Mg,n

that must be integrated to compute a scattering amplitude with an insertion
of V is exact.

In other words, the decoupling of a massive null state in bosonic string
theory must be proved by integration by parts on Mg,n+1, not on the string
worldsheet. The identity that proves decoupling of a null state has the same
form as (4.7) except that the left hand side is a scattering amplitude with a
null state included, rather than 0. If V = {QB,W}, then

(4.8) FVV1...Vn + dFWV1...Vn = 0

so

(4.9) −
∫
Mg,n+1

FVV1...Vn =
∫
Mg,n+1

dFWV1...Vn =
∫
∂Mg,n+1

FWV1...Vn .

For a null state of generic momentum, it is not hard to show that the surface
terms on the right hand side of eqn. (4.9) vanish, establishing the decoupling
of the null state V .

What we learn here is that the essential subtlety of spacetime supersym-
metry in superstring theory has a close analog in the procedure to prove
decoupling of massive null states of the bosonic string (or of superstring the-
ory). The analogy becomes even closer if we analyze the decoupling of a
longitudinal gravitino state at nonzero (but on-shell) momentum. Eqn. (4.9)
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applies without change for the case that V = {QB, e
ik·XμASA} is the vertex

operator of a longitudinal gravitino of lightlike momentum k (here μA is a
c-number spinor that obeys the Dirac equation k · Γμ = 0). What is special
about spacetime supersymmetry is merely that in the case of the gravitino,
V = 0 at k = 0 (since {QB,SA} = 0). As a result, in the case of the gravitino,
upon setting k = 0, we get an identity (4.7) with the same form as (4.9)
except that the left hand side vanishes, leading to a conservation law (rather
than the decoupling of a null state). There is no conservation law associated
to decoupling of massive null states in bosonic string theory or superstring
theory, since there is no value of the momentum at which the vertex operator
of a massive null state vanishes. This is usually described by saying that gauge
invariances of massless null states (including the gravitino if it is massless)
lead to conservation laws in spacetime, while the gauge invariances of massive
string states are spontaneously broken.

4.2.3. Contributions to the Ward identity Now we return to the anal-
ysis of the Ward identity (4.7). In general, ∂Mg,n+1 has many components –
associated to various separating and nonseparating degenerations. But many
of these boundary components do not contribute to the Ward identity. The
only ones that do contribute are those in which, for kinematic reasons, the
spacetime momentum flowing through a narrow neck in the string worldsheet
is forced to be on-shell. For example, a nonseparating degeneration does not
contribute to the Ward identity since in this case the momentum flowing
through the neck is one of the integration variables in the path integral and
is generically not on-shell. Likewise a separating degeneration with multiple
vertex operators on both sides does not contribute.

One type of boundary component that always contributes is sketched in
fig. 9. The string worldsheet Σ, of genus g, degenerates to a union of two
components Σ� and Σr, of genera g� and gr, where Σ� contains precisely two
vertex operators: the supersymmetry generator SA and one of the others, say
Vi. Σr contains the other vertex operators V1 . . . V̂i . . .Vn. Since SA carries
zero momentum in spacetime, the momentum flowing through the neck is
equal to the momentum carried by Vi and in particular is on-shell for some
string states. The contribution of this type of degeneration is as follows. Σ�

with the two vertex operators SA and Vi that it contains, and the instruction
to extract a boundary contribution, can be replaced with a physical state
vertex operator Oi,A that should be inserted on Σr. The contribution of this
boundary component to the Ward identity is then given by a path integral on
Σr; this path integral is the genus gr contribution to a scattering amplitude
〈V1 . . .Vi−1Oi,AVi+1 . . .Vn〉.
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Figure 9: The Ward identity always receives contributions from separating
degenerations of this kind in which one component Σ� contains a supersym-
metry generator S and precisely one more vertex operator. If these are the
only contributions, then the Ward identity expresses the invariance of the
S-matrix under spacetime supersymmetry. In the example sketched, Σ� has
genus 0. This leads to the familiar tree-level expressions for the supercharges.

The operator Oi,A, since it is produced by a path integral on Σ� with
insertions of SA and Vi, is linear in SA and also linear in Vi. So we can define
a linear transformation Q

(g�)
A of the space of physical vertex operators such

that Oi,A = {Q(g�)
A ,Vi}. This Q

(g�)
A is the spacetime supersymmetry charge,

or more precisely it is the genus g� contribution to it. The full spacetime
supersymmetry charge is QA =

∑∞
�=0 g

2g�
st Q

(g�)
A , with gst the string coupling.

The g� = 0 contribution to QA coincides with the spacetime supersymmetry
charge as traditionally defined [16, 25]. This is so because a degeneration with
g� = 0 simply results from a collision between two operators, and its effects,
in the present context, are captured by the leading behavior in the SA · Vi

operator product. The operators Q
(g�)
A , g� > 0, represent loop corrections to

the supersymmetry charges; these have not been investigated, but probably
are entirely determined by the loop corrections to particle masses and possible
loop corrections to central charges in the supersymmetry algebra.

If the boundary contributions just analyzed are the only ones, then the
Ward identity, after summing over the choice of the vertex operator Vi that
is contained in Σ� along with the supersymmetry generator, takes a familiar
form:

(4.10) 0 =
∑
i

〈V1 . . .Vi−1{QA,Vi}Vi+1 . . .Vn〉.

This is the standard form of the identity expressing invariance of the S-matrix
under a conserved charge. It says that the QA generate symmetries of the S-
matrix. These are the spacetime supersymmetries.
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Figure 10: One other degeneration may contribute to the Ward identity. This
is the Goldstone fermion contribution. It represents spontaneous breaking of
spacetime supersymmetry. This contribution can exist only when the genus
of Σ� is positive.

However, as one might surmise based on experience in field theory, there
is also a possible boundary contribution to the Ward identity associated to
spontaneous symmetry breaking. This arises (fig. 10) when one component,
say Σ�, contains the supersymmetry generator SA and no other vertex oper-
ators. Since SA carries zero momentum, the momentum flowing between Σ�

and Σr is zero, which can be the momentum of an on-shell string state – a
massless fermion. The contribution of this kind of boundary component to
the S-matrix can be evaluated by inserting on Σr a physical state vertex op-
erator O(SA) that reproduces the effect of the path integral on Σ�. Thus the
boundary contribution to the Ward identity is the genus gr contribution to an
n+1-particle scattering amplitude 〈O(SA)V1 . . .Vn〉. Comparing to field the-
ory, the interpretation is clear: when not zero, O(SA) is the vertex operator
of a Goldstone fermion.

When O(SA) is nonzero, we no longer get a Ward identity (4.10) for un-
broken supersymmetry; there is an additional Goldstone fermion contribution,
just as occurs in a field theory model with spontaneously broken supersymme-
try. The existence in perturbative string theory of a massless dilaton means
that once a Goldstone fermion is generated, one expects to find an instability
in higher order, and one does not expect the S-matrix to exist to all orders.
Conversely, when supersymmetry is valid to all orders, part of the proof of this
involves an inductive argument to show the vanishing of massless tadpoles.

4.2.4. The dilaton tadpole and the mass splitting To provide a con-
text for the discussion of Goldstone fermion contributions, let us return to
the heterotic string on a Calabi-Yau, and consider in this light the two
supersymmetry-breaking effects that we studied in sections 2 and 3 – the
1-loop mass splittings and the 2-loop vacuum energy. In this case, only the
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Figure 11: For the case of only two vertex operators, namely a supersymmetry
generator S and the vertex operator Vκ for the dilatino, there are only two
possible contributions to the Ward identity: a Goldstone fermion contribution
(a), and a second contribution (b) that is proportional to the dilaton tadpole.
The dilaton tadpole vanishes if and only if there is no Goldstone fermion
contribution.

four-dimensional Lorentz group SO(1, 3) (and not its ten-dimensional cousin
SO(1, 9)) acts on the unbroken supersymmetries. We write Sα and Sα̇, α, α̇ =
1, 2 for supersymmetry generators of positive and negative chirality, and Qα,
Qα̇ for the corresponding supercharges.

The usual way to use supersymmetry to analyze the vacuum energy is
to observe that the g-loop vacuum energy is essentially equivalent to the
g-loop tadpole of the dilaton vertex operator Vφ. To analyze this tadpole
using supersymmtry, one considers a Ward identity involving the dilatino
(the massless fermion κ that is in the same supersymmetry multiplet with
the dilaton). Let Vκ,β be the dilatino vertex operator or more precisely a
particular spinor component of this operator, and let Sα be a supersymmetry
generator such that εαβVφ = {Qα,Vκ,β}. Consider the supersymmetric Ward
identity (4.7) derived from a two-point function FSαVκ,β

= 〈SαVκ,β〉. There are
only two possible boundary contributions (fig. 11). One contribution, shown
on the left of the figure, is the Goldstone fermion contribution; the other
contribution, shown on the right, is the tadpole of Vφ. The dilaton tadpole
vanishes if and only if there is no Goldstone fermion contribution.

It will probably come as no surprise to the reader who has gotten this far
that heterotic string compactifications with an anomalous U(1) do develop a
Goldstone fermion at 1-loop level. Demonstrating this explicitly will be the
goal of section 4.3. The Goldstone fermion is the gaugino ζα, the fermion that
is in the vector multiplet that contains the anomalous U(1) gauge field. So
in fig. 11(a), we can replace Σ� by an insertion on Σr of the gaugino vertex
operator O(Sα) = Vζα . The resulting path integral on Σr is then the two-
point function 〈Vζ,αVκ,β〉; in other words, it is the 1-loop contribution to the
ζκ mass term. In section 2.5, we showed that this quantity is nonzero, and
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Figure 12: The Ward identity governing the 1-loop mass splittings studied in
section 2 has these three contributions. The 1-loop fermion and boson mass
splittings appear in (b) and (c), respectively, while the Goldstone fermion
contribution to the Ward identity appears in (a).

therefore the vanishing of the sum of the boundary contributions in fig. 11
implies that there must be a 2-loop dilaton tadpole.

We can proceed in the same way to analyze the 1-loop mass shift in a
charged chiral multiplet. In this case, suppressing some indices, we consider
a Ward identity derived from a correlation function

(4.11) FS VρVψ
= 〈S Vρ Vψ〉

of three vertex operators (fig. 12), namely a supersymmetry generator S,
the vertex operator Vρ for a boson ρ in a chiral multiplet, and the vertex
operator Vψ for a fermion ψ in the conjugate antichiral multiplet. The Ward
identity (4.7) now has three terms (fig. 12). One term is the Goldstone fermion
contribution and the other two involve the 1-loop bose and fermi mass shifts.
The bose and fermi mass shifts fail to be equal if and only if the Goldstone
fermion contribution is nonvanishing.

4.3. The Goldstone fermion

It is rather tricky to show explicitly that in heterotic string compactifications
with an anomalous U(1) gauge symmetry, the gaugino becomes a Goldstone
fermion at the 1-loop level. This amounts, roughly speaking, to evaluating a
two-point function in genus 1, but not quite a standard one.

To understand exactly what we have to calculate, let us start with a
concrete example such as that of fig. 12 and take a close look at the
supersymmetry-violating contribution of fig. 12(a). This contribution is asso-
ciated to the splitting of a super Riemann surface Σ into two components Σ�
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and Σr, joined at a Ramond degeneration. In other words, the string state
propagating between Σ� and Σr is a state in the Ramond sector (namely the
Goldstone fermion). By contrast, previous degenerations considered in this
paper have always been NS (or bosonic string) degenerations.

In the analysis of the Goldstone fermion contribution to the Ward identity,
we are supposed to keep Σr fixed. The idea of spontaneous supersymmetry
breaking is that no matter what Σr may be, the contribution of the degen-
eration of fig. 12(a) to the Ward identity is an ordinary scattering amplitude
evaluated on Σr with Σ� replaced by the vertex operator of the Goldstone
fermion. Since this statement is supposed to hold for any Σr, we can consider
Σr to be fixed and arbitrary in the analysis.

A minor simplification in the example of fig. 12 is that, as Σr is a super
Riemann surface of genus 0 with 1 NS puncture and 2 Ramond punctures, it
has no even or odd moduli and its moduli space Mr is a point. That makes
it particularly straightforward to keep Σr fixed in this example.

4.3.1. Where to integrate Near a separating Ramond degeneration, the
(holomorphic) moduli of Σ can be factored as follows:

• One factor is the moduli space M� associated to Σ�. Here Σ� is a super
Riemann surface of genus g� (for us, g� = 1) with 2 Ramond punctures.

• A second factor is the moduli space Mr associated to Σr. This depends
on the specific process considered, but will play no important role since
Σr is held fixed in the whole analysis.

• Finally, there are moduli associated to the gluing. There is a bosonic
gluing parameter qR associated to a Ramond degeneration; it is quite
analogous to the bosonic and NS sector gluing parameters q and qNS
that are familiar from section 2.4. But there is also a fermionic gluing
parameter α that is special to the Ramond sector. Its existence is related
to the fact that, in the Ramond sector, the worldsheet supercurrent has
a zero-mode G0.

To understand technically why there is a fermionic gluing parameter (see
[14], especially sections 4 and 6.2, for much more), we must recall that a
Ramond vertex operator is associated to a singularity of the superconformal
structure of Σ. In general, a super Riemann surface is a 1|1 complex super-
manifold that is endowed with a superconformal structure. Such a structure
is a rank 0|1 subbundle D of the tangent bundle TΣ of Σ that is generated,
in local superconformal coordinates x|θ, by Dθ = ∂θ + θ∂x. The key property
of this operator is that Dθ and D2

θ = ∂x are everywhere linearly independent
and generate the full tangent bundle TΣ. A Ramond vertex operator is in-
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serted on a divisor (that is, a submanifold of Σ of dimension 0|1) on which
this linear independence fails. The local structure is that D is generated in
suitable coordinates by D∗

θ = ∂θ + θx∂x, obeying (D∗
θ)2 = x∂x; thus, the lin-

ear independence of D∗
θ and its square fails on the divisor F given by x = 0,

which is where a Ramond vertex operator is inserted. We call F a Ramond
divisor.

Now let us describe the gluing of two super Riemann surfaces Σ� and
Σr along Ramond divisors. We suppose that in local coordinates x|θ, Σ� has
superconformal structure defined by D∗

θ = ∂θ + θx∂x, with a Ramond divisor
F� at x = 0; and similarly that in local coordinates y|ψ, Σr has superconformal
structure defined by D∗

ψ = ∂ψ + ψy∂y, with a Ramond divisor FR at y = 0.
Then – ignoring for the moment the fermionic gluing parameter – Σ� and Σr

can be glued by

xy = qR

θ = ±
√
−1ψ.(4.12)

Here qR is the analog of the familiar bosonic and NS gluing parameters q
and qNS. The constant of proportionality between θ and ψ must be ±

√
−1

so that the gluing map is superconformal, or in other words so that D∗
ψ is

proportional to D∗
θ and generates the same line bundle D. The sum over the

sign in the gluing map leads to the GSO projection.
The fermionic gluing parameter can be included by generalizing (4.12)

by first making a superconformal transformation of the local superconformal
coordinates x|θ of Σ� (or a similar transformation of the local superconfor-
mal coordinates of Σr) whose restriction to F� (or Fr) is non-trivial. Such a
transformation is θ → θ − α, x → x + αθx, with α an odd parameter. All
that matters here is how this transformation acts on F�. In particular, for
α �= 0, the gluing of the two Ramond divisors F� and Fr after the change of
coordinates takes the form

(4.13) θ − α = ±
√
−1ψ.

At qR = 0, keeping fixed Σ� and Σr and thus the definitions of θ and ψ, the
fermionic gluing parameter α is the choice of a point θ = α on F� that must
be glued to the point ψ = 0 on Σr. (This interpretation of α is only precise
at qR = 0.) For purposes of analyzing the Goldstone fermion contribution to
the Ward identity, it is useful to include α as an extra modulus of Σ�. To
do this, we define a supermanifold M′

� that is fibered over M� with fiber F�.
The calculation that we will eventually perform is best understood in terms
of integration over M′

� rather than over M�. This will gradually become clear.
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To evaluate the boundary contribution in fig. 12(a), in addition to inte-
grating over M′

�, we also have to treat properly the bosonic gluing parameter
qR. Roughly speaking, this will mean setting |qR| = η, with η a small positive
constant, and integrating over Arg qR. The integral over Arg qR just gives a
factor of 2π; however, the operation that naively consists of setting |qR| = η
is subtle and will be analyzed in section 4.3.7.

Returning to the fermionic gluing parameter, it may be most familiar
in the following guise. The bosonic string propagator is28 b0/L0, and the
superstring propagator in the NS sector is given by the same formula. The
factor of 1/L0, which comes by integration over the bosonic gluing parameter,
is the analog of the usual bosonic propagator 1/(P 2 + M2) of field theory,
where P is the momentum and M is the mass operator. In the Ramond sector,
the propagator is instead

(4.14) b0δ(β0)
G0

L0
,

where here the field theory limit of G0/L0 = 1/G0 is the usual Dirac propa-
gator 1/(Γ · P + iM). The factor G0 in the numerator in (4.14) comes from
integration over the fermionic gluing parameter α. In our problem, the inte-
gration over α cannot be treated as simply as that. The reason is that, rather
than a pole associated to an on-shell state propagating between Σ� and Σr,
we are trying to evaluate a boundary contribution to a Ward identity, which
is a more subtle matter.

4.3.2. Conformal vertex operators To proceed, we require a fact about
string perturbation theory that is not new though perhaps also not well-
appreciated.29 Most of the following does not depend on worldsheet or space-
time supersymmetry, and for brevity, we mostly use the language of bosonic
string theory.

To compute scattering amplitudes in a conformally-invariant fashion, it
does not suffice to represent external states by vertex operators that are
conformal primaries of the appropriate dimension, annihilated by the BRST
operator QB. The vertex operators must obey an additional condition, which

28See for example section 6 of [2] for the following formulas. For brevity, we write
these propagators for open strings or a chiral sector of closed strings. The symbols
b0, β0, L0, and G0 are the usual zero-modes of antighosts and Virasoro or super
Virasoro generators.

29For original references, see [28], eqn. (5.18), and [29]. For a recent treatment,
see [2], starting with section 2.4.1.
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for unintegrated vertex operators of bosonic string theory30 is that they must
be annihilated by bn, n ≥ 0. In superstring theory, unintegrated vertex oper-
ators must also be annihilated by βn, n ≥ 0. It is convenient to refer to vertex
operators that are conformal or superconformal primaries of dimension 0 and
obey these conditions as conformal or superconformal vertex operators.

To explain briefly how this condition comes about, recall that in using the
worldsheet path integral to construct a measure on the moduli space of Rie-
mann surfaces (which is then integrated to compute a scattering amplitude),
one makes antighost insertions, that is insertions of

(4.15) wh =
∫

Σ
d2z hz

z̃
bzz,

where hz
z̃

is a c-number wavefunction – often called a Beltrami differential –
that represents a deformation of the complex structure of Σ. For diffeomor-
phism invariance and conformal invariance of the formalism, one needs to
know that wh is unchanged if h is changed in a manner induced by a diffeo-
morphism. The change in h under an infinitesimal diffeomorphism generated
by a vector field vz∂z is

(4.16) hz
z̃
→ hz

z̃
+ ∂z̃v

z,

and the corresponding change in wh is

(4.17) δvwh =
∫

Σ
d2z∂z̃v

zbzz = −
∫

Σ
d2zvz∂z̃bzz,

where in the last step we integrate by parts. We would like to claim that this
last expression vanishes using the antighost equation of motion ∂z̃bzz = 0,
but there is a potential for delta function contributions at positions of vertex
operators.

In fact, if an unintegrated vertex operator V is inserted at a point p ∈ Σ,
we want to constrain the gauge parameter v by

(4.18) vz(p) = 0,

since in working with unintegrated vertex operators, we do not regard diffeo-
morphisms that change p as symmetries. But we do not want to impose any

30Using unintegrated vertex operators in the following discussion enables us to
treat bosonic strings and the NS and Ramond sectors of superstrings in the same
way.
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further conditions on vz. Given this, the condition that δvwh does not receive
a delta function contribution at p is that the b · V operator product has at
most a simple pole at p, or in other words that bnV = 0, n ≥ 0.

As an example of a consequence of this fact, we consider physical states of
the bosonic string. (For brevity we consider open strings or a chiral sector of
closed strings.) Every physical state of the bosonic string can be represented
by a vertex operator V = cV , where V is a matter primary of dimension 1.
These are conformal vertex operators, and if we use them, we can compute
scattering amplitudes in a completely conformally-invariant fashion. The op-
erator V ′ = c∂cV is also a QB-invariant primary of dimension 0, just like V ,
but it is not a conformal vertex operator as it is not annihilated by b0. For
δvwh to vanish in the presence of an insertion of V ′, we would require

(4.19) vz(p) = ∂zv
z(p) = 0.

In other words, the diffeomorphism generated by vz would have to act triv-
ially not only at the point p but also on the tangent space to that point in
Σ. Equivalently, to compute an amplitude with an insertion of V ′ at p, we
would have to be given (up to a constant independent of all moduli31) a local
parameter z vanishing at p, modulo terms of order z2. A local parameter z
that is defined modulo z2 is what we will call a first-order local parameter.

We do not usually carefully consider the consequences of inserting an op-
erator such as V ′ in a scattering amplitude, because there is a more trivial
reason that this will not work. We will express the following reasoning for
bosonic closed strings. A physical state of bosonic closed strings at non-zero
spacetime momentum can be represented by the conformal vertex operator
V = c̃cV , where V is a matter primary of dimension (1, 1). V has ghost num-
ber 2 (holomorphic and antiholomorphic ghost numbers (1, 1)). A correlation
function 〈V1 . . .Vn〉, with all Vi having ghost number 2, and with the appro-
priate antighost insertions so that the correlation function is not trivially zero,
leads to a form of top degree on moduli space, which can be integrated to get
a number. If one of the vertex operators has ghost number greater than 2, for
example V ′ = c̃c(∂c+ ∂̃c̃)V , then to get a top-form on moduli space, we must
compensate by taking one vertex operator to have ghost number less than 2.
In a scattering amplitude, we cannot do this, since at nonzero momentum,
the bosonic string has no physical states of ghost number less than 2.

However, when we calculate not a scattering amplitude but a boundary
contribution to a Ward identity, one of the vertex operators that we insert is

31 This constant comes in because eqn. (4.19) ensures that we know how to keep
a local parameter fixed when we change the moduli, but does not determine an
overall normalization of the local parameter.
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Figure 13: This separating degeneration contributes a pole to the indicated
scattering amplitude when the string state flowing between Σ� and Σr is on-
shell.

a symmetry generator at zero momentum – for example, the supercurrent S.
The ghost number of such a symmetry generator is less by 1 than that of the
usual physical state vertex operators. So if – as the reasoning in section 4.3.1
suggests – we are going to get a number by integrating over M′

� a correlation
function with an insertion of S, one operator in this correlation function
will necessarily have a ghost number greater than the standard value. This
operator will be a superstring analog of V ′ = c̃c(∂c + ∂̃c̃)V – a QB-invariant
superconformal primary of dimension 0, but not a superconformal vertex
operator. So we will have to understand what role such an operator can play
in a superconformally-invariant formalism.

4.3.3. The boundary formula In this section, we continue to use the
language of the bosonic string. Before explaining the general formula for the
boundary contribution in a Ward identity, let us first recall a simpler problem
of understanding the pole that arises in a scattering amplitude when an on-
shell string state flows between the two branches Σ� and Σr of a separating
degeneration (fig. 13). General considerations of conformal field theory tell
us that the effect of a string state propagating between Σ� and Σr can be
expressed via the insertion of a vertex operator O on Σ� and a conjugate vertex
operator Ô on Σr. In conformal field theory on a fixed string worldsheet, O
and Ô would be conjugate in the sense of having a nonzero two-point function
on a two-sphere S2; a possible example would be O = c̃c∂cV , Ô = c̃∂̃c̃cV̂ ,
where V and V̂ are conjugate operators in the matter system. However, to
extract the pole in a string scattering amplitude, we have to integrate over the
gluing parameters32 q̃, q (the form which is integrated over these parameters

32The considerations in this section apply for a variety of string theories, so we
use generic names q̃, q for gluing parameters. When we specialize to our problem
involving the heterotic string on a Calabi-Yau manifold, the gluing parameters will
be q̃ and qR.
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Figure 14: A typical situation in which one wishes to extract a
supersymmetry-violating boundary contribution.

is written below in eqn. (4.21)). This integration is associated with antighost
insertions b0 and b̃0 in the narrow neck between Σ� and Σr. These insertions,
which are constructed as in eqn. (4.15), reduce the total ghost number of O
and Ô by 2 and ensure that they are annihilated by b0 and b̃0. As a result,
it is possible for both of these operators to be conformal vertex operators:
O = c̃cV and Ô = c̃cV̂ .

Not only is this possible, but the residue of a pole in a scattering am-
plitude can be computed entirely from contributions of this kind. Indeed, if
we use conformal vertex operators to compute a scattering amplitude, then
the amplitude is determined by integrating a completely natural measure
on moduli space. The residue of any pole must be equally natural, and this
means that it must be given by insertions of conformal vertex operators O,
Ô on the two branches. (Moreover, the residue of the pole can be computed
entirely from a subset of conformal vertex operators that give a basis for the
BRST cohomology; the contributions of other operators to the residue cancel
in pairs.)

Now let us see how this changes if instead of a pole in a scattering ampli-
tude, we are trying to compute a boundary contribution to a Ward identity
(fig. 14). In this case, the path integral on Σr is an ordinary scattering ampli-
tude with insertion of Ô, so in a conformally invariant formalism, Ô will again
be a conformal vertex operator. But the path integral on Σ� is something less
familiar, since one of the operator insertions is a supersymmetry generator S
rather than the vertex operator of a physical state. It turns out that O will
not be a conformal vertex operator.

In fact, to compute the boundary contribution, we want to integrate over
the argument of the gluing parameter q, but not over its modulus. The effect
of this is that we still have in the narrow neck an insertion of b0 − b̃0, so we
can assume that the vertex operators O and Ô are annihilated by b0− b̃0. But
we no longer have an insertion of b0 + b̃0, so we cannot assume that O and
Ô are annihilated by b0 + b̃0. On the contrary, if one of them is annihilated
by b0 + b̃0, then the other is proportional to ∂c + ∂̃c̃ and is definitely not
annihilated by b0 + b̃0.
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As already explained, the boundary contribution that we want comes
entirely from the case that the operator inserted on Σr is a conformal vertex
operator Ô = c̃cV̂ (or the superstring analog of this). The operator inserted
on Σ� is then not the conjugate conformal vertex operator O = c̃cV , but is
O′ = −(∂c + ∂̃c̃)O. It therefore seems that the boundary contribution we
want will come from the insertion

(4.20) − (∂c + ∂̃c̃)O · Ô

on the two sides. Thus in fig. 14, the path integral on Σr will be an ordinary
scattering amplitude with insertion of Ô, and the one on Σ� will involve a
two-point function 〈S · O′〉Σ�

. The ghost numbers are such that with the
usual antighost insertions, this correlation function could give a top-form on
moduli space (as explained at the end of section 4.3.2, S has ghost number 1
less than the usual value, and O′ has ghost number 1 greater). But there is
a fundamental problem: the operator O′ is not a conformal vertex operator,
and therefore the two-point function 〈S · O′〉Σ�

cannot be the full answer to
any question in a conformally-invariant formalism.

The remedy for this was explained in section 7.7 of [2]. We must study the
behavior near q = q̃ = 0 of form FSV1...Vn that appears in the supersymmetric
Ward identity (4.7). The most singular contribution to this form near q =
q̃ = 0 is associated to an insertion of

(4.21) O · −idq̃ dq
q̃q

· Ô.

(What we call −idq̃ dq is usually written d2q.) If we were computing a scat-
tering amplitude, we would have to integrate over q and q̃, and since we have
taken O and Ô to be on-shell conformal vertex operators, the integration
would diverge logarithmically near q = q̃ = 0. This would be the usual sin-
gularity associated to an on-shell physical state. Actually, we are computing
a boundary contribution in a Ward identity. This means that we want to
integrate over Arg q, but not over |q|. We can factor

(4.22) −idq̃ dq
q̃q

= 1
2i

(dq
q

− dq̃
q̃

) d(q̃q)
q̃q

.

We integrate over Arg q with the aid of the 1-form (1/2i)(dq/q − dq̃/q̃); this
gives a factor of 2π. We suppress this factor in what follows (the same fac-
tor coming from integration over Arg q has been omitted in (4.20)). After
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integrating out Arg q, we are left with a singular contribution

(4.23) O · d(q̃q)
q̃q

· Ô.

To evaluate the contribution of a given degeneration in the fundamental su-
persymmetric Ward identity (4.7), we are not interested in integrating over
the modulus q̃q of q, but rather, roughly speaking, in setting it to a constant
to define the relevant component of ∂Mg,n+1. Naively speaking, since q̃q is
supposed to be “constant” along ∂Mg,n+1, d(q̃q) vanishes when restricted
to ∂Mg,n+1, and therefore the term (4.23) does not contribute. The trou-
ble with this reasoning is that there is not a conformally-invariant notion of
setting q̃q to a constant. What it really means to set q̃q to a “constant” is
that we define it to be a function of the other moduli, after which d(q̃q)/q̃q
becomes a 1-form on the moduli space33 M′

� that parametrizes Σ�. There is
no conformally-invariant way to get rid of this term; rather, the conformally-
invariant extension of the naive formula (4.20) is obtained by including it:

(4.24)
(
−O′ + d(q̃q)

q̃q
O
)
· Ô =

(
−∂c− ∂̃c̃ + d(q̃q)

q̃q

)
O · Ô.

Here is a partial explanation of the conformal invariance of this combined
formula. Let us recall from eqn. (2.52) that to define what we mean by q, we
need a first-order holomorphic local parameter at the point p ∈ Σ� at which
the gluing occurs (we also need such a parameter on Σr, but the dependence
on this is irrelevant for the same reason as in footnote 33). To define the
product q̃q, we need a product of holomorphic and antiholomorphic first-order
local parameters, and to define the 1-form d(q̃q)/q̃q, we need such a product
up to a multiplicative constant independent of all moduli. This is precisely the
same data needed to define the insertion of (∂c+∂̃c̃)O. Indeed, as the operator
O′ = (∂c+ ∂̃c̃)O is annihilated by b0 − b̃0, and by bn, b̃n, n > 0, the analog of
eqn. (4.19) for insertion of O′ at p is vz(p) = vz̃(p) = ∂zv

z(p) + ∂z̃v
z̃(p) = 0.

These conditions mean that v leaves fixed the product of holomorphic and
antiholomorphic first-order local parameters at p; and accordingly, up to a
constant independent of all moduli, there is a well-defined product of local
parameters at p. So the O′ and d(q̃q)/q̃q ·O terms in (4.24) violate conformal

33 We can keep Σr fixed in the discussion, so we do not have to think of d(q̃q)/q̃q
as a 1-form on Mr. More fundamentally, the insertion on Σr of the operator Ô that
appears in eqn. (4.23) already leads to a top-form on Mr, so the part of d(q̃q)/q̃q
that is a 1-form on Mr does not contribute.
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symmetry in the same way. Hopefully, this makes it plausible that their sum
is conformally-invariant.

We can understand a little more as follows. Split O′ = (∂c + ∂̃c̃)O as
the sum of two contributions ∂cO and ∂̃c̃O. The former insertion requires a
holomorphic first-order local parameter and the latter one requires an anti-
holomorphic one. Similarly, split d(q̃q)/q̃q as the sum of dq/q and dq̃/q̃, where
again the first term depends on a holomorphic first-order parameter and the
second on an antiholomorphic one. Let us just look at the terms in (4.24)
that depend on the holomorphic local parameter, namely

(4.25)
(
−∂c + dq

q

)
O′.

As explained at the end of section 2.4.2, q is not a complex-valued function but
a linear function on a holomorphic line bundle over M′

� – the normal bundle
N. Thus q is a section of the dual N∨ of the normal bundle (also called the
conormal bundle). In differential geometry in general, if one is given a section
q of a line bundle N∨, then to define a 1-form dq/q, one needs a connection
on N∨. In the present context, we do not have such a connection (until we
pick local parameters), so dq/q cannot be defined in a conformally-invariant
way.

However, using the complex structure of34 M′
�, we can decompose the

exterior derivative on M′
� as a sum of pieces of type (1, 0) and (0, 1): d =

∂ + ∂̃. Though it does not have a connection, N∨ does have a holomorphic
structure that is perfectly natural and conformally-invariant. This means that
∂̃q/q, which is the (0, 1) part of dq/q, is well-defined, independent of any
local parameters. It will turn out that the Goldstone fermion contribution
to the Ward identity comes entirely from this. The (1, 0) part of dq/q is not
conformally-invariant by itself, though the combination (−∂c+ ∂q/q)O′ that
appears in (4.25) is conformally-invariant.

4.3.4. The vertex operators Let us now specialize to the heterotic string
with an anomalous U(1) gauge symmetry. What vertex operators O and Ô
shall we use? We want to test the hypothesis that the gaugino ζ becomes a
Goldstone fermion at 1-loop order. So Ô will be a gaugino vertex operator at

34A priori, this computation should really be done not on M′
�, but on the corre-

sponding heterotic string integration cycle Γ ′
� , constructed along lines described in

section 2.4.4. In the present example, as explained in section 4.3.7, M′
� is naturally

split and there is no need to make this distinction.
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zero spacetime momentum. For a gaugino with positive chirality in R
4, the

vertex operator at zero momentum was described in eqn. (2.68):

(4.26) V ζ
β = J� · e−ϕ/2Σβ,+.

This is the integrated vertex operator without the usual c̃c factor. The con-
jugate operator in the conformal field theory of the matter fields and the βγ
ghosts (but without the bc ghosts) is

(4.27) W ζ
β = J� · e−3ϕ/2Σβ,−.

These operators are conjugate in the sense that in genus 0, they obey
〈W ζ

βV
ζ
γ 〉 ∼ εβγ , where εβγ is the Lorentz-invariant antisymmetric tensor. In

conventional language, the vertex operator W ζ
β is a zero momentum gaug-

ino vertex operator at picture number −3/2 (with negative chirality; see the
explanation of picture-changing in section 4.3.5).

Let us now include the Virasoro ghosts and put these operators in the
framework of section 4.3.3. To compute the matrix element of a supercurrent
Sα to create a gaugino of positive chirality with spinor index β, we must take
Ô = c̃cV ζ

β , and then in eqn. (4.24), we must take O = c̃cW ζ;β = εβγ c̃cW ζ
γ .

Accordingly, we finally get a formula for the matrix element for Sα to create
the gaugino of polarization β from the vacuum:

(4.28) Iβ
α =

∫
M′

�

〈
Sα ·

(
−(∂c + ∂̃c̃) + d(q̃qR)

q̃qR

)
c̃cW ζ;β

〉
.

(By Lorentz invariance, Iβ
α is a multiple of δβα.) In writing this formula, since

we are now considering specifically the case of a Ramond sector degeneration
of the heterotic string, we denote the holomorphic gluing parameter as qR
rather than q. We aim to convert this formula to something more concrete.

4.3.5. The role of the fermionic gluing parameter We come next to a
crucial part of this problem. M�′ is fibered over M� with a fiber of dimension
0|1 that is parametrized by the fermionic gluing parameter α. One approach
to integrating over M�′ is to first integrate over α, so as to reduce to an
integral over M�. By thinking about what will happen if we do this, we can
learn something essential.

Integration over α kills what one might call the obvious part of (4.28) –
the part that involves the insertion of the operator O = (∂c + ∂̃c̃)c̃cW ζ . The
main reason is that this operator describes a gaugino at zero momentum in
spacetime.
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If we were evaluating the gaugino contribution to a pole in a scatter-
ing amplitude rather than a boundary contribution in a Ward identity, the
gaugino would carry a nonzero (but almost lightlike) spacetime momentum
k. In this case, as remarked in relation to eqn. (4.14), integration over the
fermionic gluing parameter converts a boson propagator 1/L0 into a Dirac-like
propagator G0/L0. For massless fermions, G0 can be replaced by the Dirac
operator Γ · k. This vanishes for an on-shell gaugino, but the propagator also
has a factor 1/L0 that comes from integration over the magnitude |q| of the
bosonic gluing parameter q. Since G0/L0 = 1/G0 ∼ 1/Γ · k, the net effect of
this is that an on-shell gaugino propagating between Σ� and Σr produces a
Dirac-like pole.

In computing a boundary contribution to a Ward identity, there is no
integral over |q|, so there is no factor 1/L0. Any term with a factor of G0 in the
numerator will vanish, since G0 ∼ Γ · k vanishes for massless states at k = 0.
(Essentially this observation has been made in the study of supersymmetric
Ward identities in the early literature; see eqn. (6.42) of [30].)

Another perspective on what we have just explained is as follows. As
described in [14], section 4.3, a Ramond vertex operator of picture num-
ber −3/2 is inserted at a point f on a Ramond divisor F , while a Ramond
vertex operator of picture number −1/2 is associated to the whole divisor.
The picture-changing operation from picture number −3/2 to picture number
−1/2 is integration over the point f ∈ F . In our context, we are gluing Σ�

to Σr by gluing a Ramond divisor F� ⊂ Σ� to a Ramond divisor Fr ⊂ Σr.
The fermionic gluing parameter is precisely the choice of a point in F� that is
glued to a given point in Fr, and integration over this gluing parameter is the
picture-changing operation. This integration actually produces in eqn. (4.14)
not just the factor G0 that we discussed above but the combination δ(β0)G0.
This combination is the picture-changing operation that at momentum k
maps a picture number −3/2 gaugino vertex operator W ζ;β to (Γ · k)ββ̇V ζ

β̇
,

where

(4.29) Vζ

β̇
= J�e

−ϕ/2Σβ̇,− exp(ik ·X)

is a gaugino vertex operator of picture number −1/2 and negative chirality.
In our problem, the momentum k vanishes, so Γ · k = 0 and picture-changing
simply annihilates W ζ;β . Hence integration over the fermionic gluing param-
eter annihilates the operator O = (∂c + ∂̃c̃)c̃cW ζ .

In view of what will be explained shortly, one should wonder if O has
a hidden dependence on the fermionic gluing parameter because it is not
a conformal vertex operator and depends on choices of local parameters at
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its insertion point. What prevents this is as follows. One contribution in O,
namely ∂c · c̃cW ζ , can be dropped for the trivial reason that its holomorphic
and antiholomorphic ghost numbers imply the vanishing of its contribution
in (4.28). (With S = cS, this contribution has ghost quantum numbers c3c̃,
while a nonzero contribution would come from c2c̃2.) The other contribution,
namely ∂̃c̃ · c̃cW ζ , depends on an antiholomorphic local parameter at p, not
a holomorphic one. Roughly speaking, this operator has no hidden depen-
dence on the fermionic gluing parameter because the antiholomorphic local
parameter can be defined to never depend on the fermionic moduli, which are
holomorphic. More accurately, this is true if we follow the procedure explained
in section 4.3.7 (see especially footnote 35), in which a natural projection of
M′

� is used in evaluating the boundary contribution to the Ward identity.
So we can drop the more obvious term in (4.28), and we are left with the

slightly exotic-looking term involving d(q̃qR)/q̃qR:

(4.30) Iβ
α = −

∫
M′

�

d(q̃qR)
q̃qR

〈
Sα · c̃cW ζ;β

〉
.

Just as before, integration over the fermionic gluing parameter will annihilate
the operator c̃cW ζ;β , so to get a nonzero result, the fermionic gluing param-
eter will have to somehow be hidden in the expression d(q̃qR)/q̃qR. We can
actually be slightly more precise. With Sα = cSα, the ghost quantum numbers
in

〈
Sα · c̃cW ζ;β〉 are c2c̃; this is missing one c̃ factor relative to a correlation

function that would give a top-form on moduli space. Hence it produces a
form of codimension (0, 1). This means that only the part of d(q̃qR)/q̃qR that
is of type (0, 1) is relevant. We can thus replace (4.30) with

(4.31) Iβ
α = −

∫
M′

�

∂̃(q̃qR)
q̃qR

〈
Sα · c̃cW ζ;β

〉
,

and we will have to find the fermionic gluing parameter in the (0, 1)-form
∂̃(q̃qR)/q̃qR.

We further have

(4.32) ∂̃(q̃qR)
q̃qR

= ∂̃qR
qR

+ ∂̃q̃

q̃
.

As we have explained at the end of section 4.3.3, ∂̃qR/qR is completely well-
defined and conformally-invariant, for any section qR of the holomorphic
conormal bundle N∨, simply because N∨ is a holomorphic line bundle. By
contrast, q̃ is a section of the antiholomorphic conormal bundle Ñ∨, so ∂̃q̃/q̃
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cannot be defined in a conformally-invariant way. But if we follow the pro-
cedure explained in section 4.3.7, using a hermitian metric that does not
depend on the odd moduli to define a connection on Ñ∨, then this term does
not contibute. So with this sort of procedure (which is also the procedure that
ensures vanishing of the ∂̃c̃ · c̃cW ζ contribution to I), (4.31) really only re-
ceives a contribution ∂qR/qR. Still, it is most convenient to leave the formula
for I in the form given in (4.31), without dropping the ∂̃q̃/q̃ term. This will
slightly shorten the explanation in section 4.3.7.

We will see next what feature of supergeometry can force q̃qR to have
an unavoidable dependence on the fermionic gluing parameter. The non-zero
value of the integral I comes entirely from this, since as we have seen, inte-
gration over the fermionic gluing parameter annihilates everything else.

4.3.6. The holomorphic projection We defined M′
� as a fiber bundle,

with fibers of dimension 0|1 parametrized by the fermionic gluing parameter,
over M�. In particular, there is a natural projection M′

� → M�. In turn,
in our main example, M� is the moduli space of genus 1 super Riemann
surfaces with no NS punctures and 2 Ramond punctures, which we might call
M1,0,2. The dimension of M� is 2|1. (We always intend the Deligne-Mumford
compactifications of these moduli spaces, though we do not indicate this in
the notation.)

Now we require a slight extension of what was explained in section 2.4.4.
A complex supermanifold M , say of dimension p|q, has a reduced space Mred
of dimension p|0, obtained by reducing modulo the odd variables. If M has lo-
cal coordinates z1, . . . , zp|θ1 . . . θq, then Mred has local coordinates z1, . . . , zp.
There is always a natural embedding i : Mred → M , which in local coordi-
nates maps z1, . . . , zp to z1, . . . , zp|0, . . . , 0. M is said to be holomorphically
projected if there is also a holomorphic projection π : M → Mred, obeying
πi = 1; the last condition means that π = 1 when restricted to Mred. For
example, if the odd dimension of M is 1, there is always a unique projection
M → Mred. In local coordinates, this map takes z1, . . . , zp|θ to z1, . . . , zp.
With two or more odd coordinates, a holomorphic projection is not unique
locally (for example, in dimension 1|2, z|θ1, θ2 could be mapped to z or to
z + θ1θ2), and may not exist globally. An example important for superstring
perturbation theory is that in general the moduli space of super Riemann
surfaces is not holomorphically projected [31]. Holomorphic projections from
supermoduli space to ordinary moduli space, when they exist, are a powerful
tool in superstring perturbation theory, exploited notably in [15].

Returning to M�, since its odd dimension is 1, it has a unique projection
to its reduced space M�,red. Composing the natural projection M′

� → M� with
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the unique projection M� → M�,red, we get a natural projection π : M′
� →

M�,red. Actually, M′
� and M� have the same reduced space (since the fibers

of M′
� → M� are purely odd), so π is a holomorphic projection of M′

� to its
reduced space M′

�,red.
Thus, the subtleties that were discussed in section 2.4.4 have no analog

for M′
�, even though its odd dimension is 2, which in general is enough to

produce such subtleties. Local holomorphic coordinates mα on M�,red can
be pulled back in a natural way to bosonic local coordinates π∗(mα) on M′

�.
Integration over M′

� can be performed in a natural fashion by first integrating
over the fibers of π : M′

� → M�,red.
The heterotic string on Σ� has antiholomorphic as well as holomorphic

moduli. The antiholomorphic moduli space that is “seen” by the antiholo-
morphic variables of the heterotic string is simply the complex conjugate of
M�,red. So once one takes the holomorphic even moduli mα of Σ� to be pull-
backs from M�,red, one can take the antiholomorphic moduli m̃α of Σ� to be
simply their complex conjugates

(4.33) m̃α = mα,

without the nilpotent terms of eqn. (2.63). Those terms are inescapable in the
absence of a holomorphic projection, but with such a projection, there is no
need for them. Accordingly, there is no need to distinguish between M′

� and
a corresponding heterotic string integration cycle Γ ′

�, and the integral (4.31)
for the Goldstone fermion contribution to the Ward identity really is properly
understood as an integral over M′

�.
The reduced space M′

�,red parametrizes an ordinary Riemann surface Σ0
of genus 1 with some additional data (two punctures and a generalized spin
structure). Forgetting the additional data, we get a holomorphic map from
M′

�,red to M1, the moduli space of ordinary Riemann surfaces of genus 1.
Composing this with π : M′

� → M′
�,red, we get a holomorphic fibration of

M′
�,red over M1. Let M′

�,τ be the fiber of this map lying over the point in M1
that corresponds to an elliptic curve with modular parameter τ :

(4.34)
M′

�,τ → M′
�

↓
M1.

We can integrate over M′
� by integrating first over M′

�,τ and then over τ . This
is analogous to the procedure followed in section 2, and just as there, the
interesting phenomena occur in the integral over M′

�,τ , at fixed τ .
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4.3.7. The cohomological formula In proceeding, it helps slightly to
consider the basic case (fig. 14) of the supersymmetric Ward identity that
governs a 1-loop supersymmetry-violating mass shift. In this case, Σ is a super
Riemann surface of genus 1 with 1 NS puncture and 2 Ramond punctures. Σ
is parametrized by a moduli space M1,1,2 of dimension 3|2. M′

� is a divisor “at
infinity” in M1,1,2 describing the splitting of Σ to components Σ� and Σr of
genera 1 and 0, respectively. Mr is a point and plays no role. In the case of a
more general supersymmetric Ward identity, the discussion would proceed in
the same way except that everything would be fibered over Mr, which would
play no essential role.

To understand the (0, 1)-form λ = (q̃qR)−1∂̃(q̃qR) that appears in (4.31),
we need to understand the holomorphic and antiholomorphic normal bundles
N and Ñ to M′

� in M1,1,2.
First of all, let N0 be the restriction of N to M′

�,red ⊂ M′
�. Using the

holomorphic projection π : M′
� → M′

�,red, we can pull back N0 → M′
�,red to

π∗(N0) → M′
�. N is not necessarily equivalent to π∗(N0). All that we know a

priori is that they coincide when restricted to M′
�,red, so if we define another

line bundle N1 → M′
� by

(4.35) N = π∗(N0) ⊗N1,

then N1 is canonically trivial when restricted to M′
�,red. Since the odd di-

rections in a supermanifold are infinitesimal, a line bundle over any complex
supermanifold M that is trivial when restricted to Mred is always topologically
trivial, but it may be holomorphically non-trivial. In the present example, it
turns out that N1 is holomorphically non-trivial.

Once we restrict to M′
�,red, we can consistently replace a super Riemann

surface by its reduced space, and the Ramond sector gluing law (4.12) re-
duces to the bosonic gluing law xy = qR. M′

�,red is a divisor in M1,1,2,red
(that is, in the reduced space of M1,1,2) and N0 is its normal bundle. If we
reverse the complex structures of all objects mentioned in the last sentence,
M1,1,2,red becomes the moduli space appropriate for antiholomorphic degrees
of freedom of the heterotic string; it contains the divisor M′

�,red with normal
bundle N0, both with their complex structures reversed. So the antiholomor-
phic normal bundle Ñ to the divisor M′

� ⊂ M1,1,2 is just π∗(N0) with its
complex structure reversed. We write this as π∗(N0). We combine this result
with (4.35):

(4.36) Ñ⊗N = π∗(N0 ⊗N0) ⊗N1.
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Taking the duals gives an equivalent formula for the tensor product of
conormal bundles:

(4.37) Ñ∨ ⊗N∨ = π∗(N∨
0 ⊗N∨

0 ) ⊗N∨
1 .

For any line bundle L, the tensor product L ⊗ L is always trivial: it can be
trivialized by the choice of a hermitian metric on L. (We call a section of
L ⊗ L positive if it is associated to a hermitian metric on L.) And we know
already that N1, and hence its dual N∨

1 , is topologically trivial. So Ñ∨ ⊗N∨

is topologically trivial. Therefore, it is possible to pick a smooth trivialization
of this line bundle – a section of it that is everywhere nonzero. Such a section
is what we mean by q̃qR in the formula (4.31). Locally but not globally, one
can assume that the everywhere nonzero section of Ñ∨⊗N∨ that we call q̃qR
is the product of a section q̃ of Ñ∨ and a section qR of N∨. (As explained
in section 4.3.3, our main formulas require only a trivialization of Ñ∨ ⊗N∨

and not separate trivializations of the two factors because the operator O′ is
annihilated by b0 − b̃0.)

We can take q̃qR = TU , where T is a trivialization of π∗(N∨
0 ⊗N∨

0 ) and
U is a trivialization of N1. Moreover, since π∗(N∨

0 ⊗N∨
0 ) is a pullback from

M′
�,red, we can assume that T is also such a pullback. (More specifically, we can

assume that T is positive, and require that U = 1 when restricted to M′
�,red.)

Then T is independent of the fermionic gluing parameter, and so does not
contribute in the formula (4.31) for the Goldstone fermion contribution to
the Ward identity.35

So (4.31) can be expressed entirely in terms of the trivialization U of the

35 We cannot simply argue – as we do below for U – that the choice of T does
not affect the integral we are trying to evaluate; the argument does not work since
T trivializes a line bundle that does not have a natural holomorphic structure.
However, defining T as a pullback from M′

�,red ensures that q̃qR is the product of
such a pullback with a section of a holomorphic line bundle (namely N∨

1 ). This
makes it possible to drop the term (∂c + ∂̃c̃)O′ in the main formula (4.28), as we
did in section 4.3.5, by ensuring that that operator has no hidden dependence on
the fermionic gluing parameter via its dependence on local parameters; a pullback
from M′

�,red does not depend on the fermionic gluing parameter, and a section of a
holomorphic line bundle affects only ∂cO′, which has the wrong holomorphic and
antiholomorphic ghost numbers to be relevant. In other words, taking T to be a
pullback from M′

�,red causes the contribution of T and that of (∂c+ ∂̃c̃)O′ to vanish
separately and justifies our claims in section 4.3.5.
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holomorphic line bundle N∨
1 :

(4.38) Iβ
α = −

∫
M′

�

∂̃N∨
1
U

U

〈
Sα · c̃cW ζ;β

〉
.

Here ∂̃N∨
1

is the ∂̃ operator on the line bundle N∨
1 ; we usually omit this

subscript (as the line bundle is generally clear from the context) but here we
include it for emphasis.

The reason that this is an advance is that a trivialization of a holomorphic
line bundle has a cohomological meaning. Over any complex manifold or
supermanifold M , a holomorphic line bundle L that is topologically trivial
is associated to a natural class Λ(L) ∈ H1(M,O), where O is the sheaf of
holomorphic functions on M . Indeed, if L is topologically trivial, let U be a
smooth trivialization of L, and consider the (0, 1)-form λ = U−1∂̃LU , where
∂̃L is the ∂̃ operator of L. The class Λ(L) associated to L is simply the
cohomology class of λ in H1(M,O). To show that this class does not depend
on the choice of U , one simply observes that any other trivialization would be
efU , for some function f . But (efU)−1∂̃L(efU) = λ + ∂̃Of , where now ∂̃O is
the ∂̃-operator on functions (sections of O). By the definition of ∂̃-cohomology,
the class of a (0, 1)-form λ in H1(M,O) is invariant under λ → λ + ∂̃Of for
any function f . A standard argument shows that the correspondence between
L and Λ(L) is a 1-1 correspondence between topologically trivial line bundles
and classes in H1(M,O).

So we can rewrite our basic formula (4.38):

(4.39) Iβ
α = −

∫
M′

�

Λ(N∨
1 )

〈
Sα · c̃cW ζ;β

〉
.

To understand this better, we should give a cohomological interpretation to
the correlation function FS·̃ccW =

〈
Sα · c̃cW ζ;β〉. From a holomorphic point

of view, FS·̃ccW is a top-form. On a complex supermanifold M , a top-form
in the holomorphic sense is a section of Ber(M), the Berezinian of M in the
holomorphic sense. From an antiholomorphic point of view, M′

� has dimension
2|0 and FS·̃ccW is a form of codimension 1, and hence a (0, 1)-form. Combin-
ing these facts, FS·̃ccW is an element of H1(M′

�,Ber(M′
�)). The cup product

of Λ(N∨
1 ) ∈ H1(M′

�,O) and FS·̃ccW gives a class in H2(M′
�,Ber(M′

�)). Such
a class is a top-form both holomorphically and antiholomorphically; equiva-
lently, it is a section of Ber(M′

�), which is the Berezinian of M′
� in the smooth

sense, with M′
� viewed as a smooth supermanifold of dimension 4|2. So the

product Λ(N∨
1 )FS·̃ccW can be integrated, and this integral is what appears on

the right hand side of eqn. (4.39).
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4.3.8. Overview of the remaining steps The formula (4.39) expresses
as the product of two factors the measure that must be integrated over M′

�

to determine if supersymmetry is spontaneously broken by 1-loop effects.
The first factor Λ(N∨

1 ) is universal, independent of the specific string theory
compactification. It purely reflects properties of the moduli space of super
Riemann surfaces. The information involving the choice of a specific com-
pactification is entirely contained in the correlation function

〈
Sα · c̃cW ζ;β〉

that comprises the second factor in eqn. (4.39).
If the universal factor Λ(N∨

1 ) were zero, 1-loop effects would never trigger
the spontaneous breaking of supersymmetry, irrespective of the details of a
specific model. Actually, this cohomology class does not vanish, but to show
this one must go in somewhat greater depth with super Riemann surfaces
than has been necessary in this paper. We defer this to elsewhere [32], and
here we merely explore the consequences of a nonzero Λ(N∨

1 ).
A simple observation is that Λ(N∨

1 ) vanishes if restricted to M′
�,red. This is

because the line bundle N1 is trivial when restricted to M′′
�,red. Concretely, we

can choose U so that U = 1 on M′
�,red, in which case the form λ = ∂̃N∨

1
U/U

is identically zero when restricted to M′
�,red. (More generally, for any U , the

cohomology class of this form is zero when restricted to M′
�,red.) We recall now

that M′
�,red has precisely two odd moduli – the fermionic gluing parameter α,

and one more odd modulus, which we will call η. With our choice of U , since
λ vanishes when α and η are zero (and since it is a (0, 1)-form that is valued
in even functions), λ is proportional to αη = δ(α)δ(η).

Now we return to eqn. (4.38). The delta functions in λ mean that we can
set α = η = 0 when we study the correlation function FS·̃ccW =

〈
Sα · c̃cW ζ;β〉.

Hence we do not have to worry about changes of variables such as m → m+αη
where m is an even modulus. Accordingly, most of the subtleties of superstring
perturbation theory become irrelevant. M′

�,red has 2 odd moduli, which is
enough to bring into play the subtleties of super Riemann surface theory; but
they are all contained in the cohomology class Λ(N∨

1 ).
In particular, we can use the picture-changing approach of [16], with an

important modification coming from the fact that Λ(N∨
1 ) is proportional to

δ(α)δ(η). As explained in [17], the picture-changing operator Y(p) reflects
the effect of integrating over an odd modulus μ that represents the coefficient
of a delta-function term in the gravitino field χθ

z̃
= μδ2(z − p) + . . . . (In

our application, the two odd moduli α and η can both be represented in
terms of such delta function gravitinos.) The picture-changing operator is
Y = δ(β)Szθ, where Szθ is the worldsheet supercurrent and δ(β) is usually
written as eϕ in the bosonized description of the βγ system. In the approach
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described in section 3.6 of [2], the factors of Szθ and δ(β) come, respectively,
from integration over μ and dμ:

(4.40)
∫

D(μ, dμ) exp (dμβ(p) + μSzθ(p)) = δ(β(p))Szθ(p).

However, in our application, this integral multiplies the factor Λ(N∨
1 ) that is

explicitly proportional to δ(μ) (where μ is a linear combination of α and η),
so we do not want to integrate over μ with the help of the term μSzθ(p) in
the exponent; on the contrary, we can drop this term, because of the delta
function δ(μ). The integral over dμ still gives a factor of δ(β).

The upshot is that we can use the picture-changing formalism, but we
must use partial picture-changing operators δ(β) rather than the full picture-
changing operator Y(p) = δ(β)Szθ. Accordingly, the correlation function that
we have to evaluate is

(4.41)
〈
cSα(z)δ(β(p))δ(β(p′))c̃cW ζ;β(0)

〉
,

with two arbitrary points p and p′. We have made the c ghosts explicit by
replacing Sα with cSα, but we do not indicate explicitly the corresponding
antighost insertions (2 insertions of b and 1 of b̃, since the correlation function
is supposed to be a (2, 1)-form on M′

�,red from a bosonic point of view). This
correlation function is independent of p and p′ and of the choices of b and
b̃ insertions if properly understood as a (0, 1)-form valued in Ber(M′

�) (in
particular, its dependence on p and p′ comes entirely from the dependence
on p and p′ of the cohomology classes of the gravitino deformations δ2(z− p)
and δ2(z− p′); the usual complications of the picture-changing formalism are
absent, because we compute the correlation function at α = η = 0). Rather
as in section 2.5, we can take p, p′ → 0 and replace W ζ;β with W

′ζ;β =
eϕ/2J�ε

βγΣγ,−. After also evaluating the bc and b̃c̃ correlation functions, and
recalling that Sα = e−ϕ/2Σα,+, we reduce to a two-point function

(4.42)
〈
e−ϕ/2Σα,+(z) · eϕ/2J�εβγΣγ,−(0)

〉
.

This two-point function is very similar to the one that we encountered in
eqn. (2.73). It is completely determined by the operator product expansion,
because the operator e−ϕ/2Σα,+(z) varies holomorphically with z. The salient
fact is the appearance in the OPE of the vertex operator VD of the D auxiliary
field:

(4.43) e−ϕ/2Σα,+(z) · eϕ/2J�εβγΣγ,−(0) ∼ δβαVD(0).
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As a result, the correlation function under study and hence also the matrix
element for the supercurrent to create the gaugino from the vacuum is pro-
portional to 〈VD〉, with a universal coefficient.
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