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Abstract—Change detection (CD) in synthetic aperture radar
(SAR) images faces two challenging problems limiting the detection
performance: inherent speckle noise in SAR data causes the over-
lapping nature of changed and unchanged classes and, thus, affects
the image understanding for inferring category of each image
pixel; and adequate labeled samples are quite laborious and time-
consuming to collect, which is the major limitation for supervised
methods. In this article, we develop a novel deep learning-based
semisupervised method to address these challenges. The method
first incorporates a pixel-wise log-ratio difference image (DI) and
its saliency map to produce a spatially enhanced (SE) DI using a
reweighting scheme based on the fact that changed pixels exhibit
higher saliency than unchanged pixels. As a result, prominent
changed regions are highlighted, and the class separability is signifi-
cantly increased. We construct pixel-wise and context-wise features
based on the log-ratio DI and SE DI, which respectively provide
image detail cue and spatial context cue, as dual input features to
jointly characterize the change information at each pixel position.
Second, we propose a label-consistent self-ensemble network (LCS-
EnsemNet), which can take advantage of the unlabeled samples to
learn discriminative high-level features for the precise identifica-
tion of changed pixels. By enforcing a label consistency between
dual features and a label consistency across multiple classifiers,
the label-consistent self-ensemble strategy enables the proposed
network to selectively transform unlabeled samples into pseudo-
labeled samples in an unsupervised manner and ensures that the
selected pseudo-labels are reliably and stably predicted. Finally, the
cross-entropy loss is calculated with the limited labeled data and
selected pseudo-labeled samples to optimize the LCS-EnsemNet
in a supervised way. The proposed method is evaluated on three
low/medium-resolution SAR datasets and one high-resolution SAR
dataset, and experimental results have demonstrated its efficiency
and effectiveness.

Index Terms—Change detection (CD), deep neural network
(DNN), label-consistent self-ensemble, semisupervised learning
(SSL), spatially enhanced (SE) difference image (DI), synthetic
aperture radar (SAR).
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I. INTRODUCTION

CHANGE detection (CD) is one of the central problems in
Earth observation as it can analyze images of the same

scene acquired at different times to identify changes that may
have occurred [1]–[3]. It can be utilized in numerous appli-
cations, to name a few, agricultural monitoring [4], disaster
surveillance [5], and urban spatial planning [6]. In recent years,
thanks to the all-weather and all-time imaging capability [7],
[8], synthetic aperture radar (SAR) has played an important role
in remote sensing (RS) image CD task. However, the intrinsic
complexity of SAR data makes it a challenging task to identify
the changed areas accurately.

CD in SAR images mainly comprises two steps: 1) the first
step is the generation of a difference image (DI), which indicates
the degree of changes or dissimilarities in the corresponding
areas of two coregistered SAR images. This step routinely
utilizes local comparative operators to quantify the dissimilarity
between corresponding pixels. Commonly used operators, such
as the subtraction, ratio [9], and log-ratio operators [1]–[3], [10],
[11] primarily compute dissimilarity measurement pixel-by-
pixel without considering nonlocal spatial information, resulting
in extensive false alarms due to the interference of speckle noise
[1], [12], [13]. 2) The second step is the classification of DI
into changed and unchanged classes [3], [8]. In the works of
literature, many approaches have emerged to perform this binary
classification. Supervised classifiers receive less attention due
to the difficulty of gathering ground references. By contrast,
unsupervised algorithms, such as the traditional thresholding
analysis [14], segmentation approaches [10], statistical model-
ing [3], [15], and clustering algorithms [16], as well as recently
developed deep learning-based methods with the preclassifica-
tion and pseudo-labeling frameworks [17]–[19], can generate a
final change map without any labeled samples. However, they
rely on the premise of large interclass separation or assump-
tion of a statistical distribution of classes in discriminating the
changed pixels and unchanged pixels, which cannot be held in
the context of SAR data, for instance, the Gaussian distribution
assumption in Gaussian mixture model based clustering [20].
In addition, the absence of labeled samples makes the unsu-
pervised methods more intractable to achieve superior results.
As a tradeoff between performance and demand of labeled
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training samples, semisupervised learning (SSL) may be a feasi-
ble solution. However, the existing semisupervised SAR image
CD methods [21], [22] still depend on conventional shallow
machine learning algorithms to a large extent, which lack hier-
archical and abstract feature learning ability, thereby limiting the
CD performance.

To sum up, there are two challenging problems in SAR
image CD. 1) The inherent speckle noise [1], [12], [13] in
SAR images causes the strong intensity variation and further
leads to pixels from changed and unchanged classes mutually
overlapping, which inevitably reduces intraclass compactness
and interclass separation. Hence, the large similarity between
some noisy unchanged pixels and real changed pixels, especially
in heterogeneous areas and borders, may bring extensive false
alarms in the results. The widely utilized comparative opera-
tors are almost pixel-wise descriptors, which are sensitive to
speckle noise, making it hard to effectively measure the change
information of bitemporal SAR images. Meanwhile, multiscale
spatial information [23]–[25], especially global spatial informa-
tion and context information, are seldom used to generate the DI
for CD in SAR images. Therefore, spatial-contextual semantic
information should be taken into account to compensate for
the pixel-wise change information from conventional compar-
ative operators to facilitate the suppression of speckle noise
and the reduction of class confusion in inhomogeneous areas
and borders. 2) Sufficient labeled samples are significant for
excellent detection performance, which, however, are extremely
expensive and time-consuming to gather by manual pixel-wise
annotation for SAR data [26]. SSL can reveal underlying label
information and extract discriminative features from massive
unlabeled samples for the improvement of generalization ability
while requiring only a few labeled training samples [27]. How-
ever, the existing semisupervised CD methods in SAR images
still adopt traditional machine learning models, which lack hi-
erarchical and abstract feature learning ability. More advanced
deep SSL approaches should be introduced to achieve CD in
SAR images.

To alleviate the first problem discussed above, i.e., the com-
monly used pixel-wise DI is not effective enough in discriminat-
ing the similar changed and unchanged pixels in the heteroge-
neous areas, borders, and noisy areas, we introduce the saliency
map [28] to generate a spatially enhanced (SE) DI and then
construct dual low-level features from both the pixel-wise DI
and context-wise SE DI. Considering the defect of the traditional
operators mentioned above, we try to exploit spatial context
information in the saliency map to consolidate the change mea-
sure. Therefore, a reweighting scheme is especially designed to
inject the spatial-contextual change information extracted from
the saliency map into the log-ratio DI to construct a context-wise
SE DI, achieving an improved class separability. Thereafter, by
using the log-ratio DI and SE DI as well as the original SAR
images, we carefully design a dual-feature extraction scheme
for constructing dual input features, which respectively em-
phasize the pixel-wise information and spatial context infor-
mation. The utilization of the dual low-level features benefits
the high-level discriminative feature learning and improves the
CD performance.

As for the second problem of the scarcity of labeled train-
ing data abovementioned, deep learning-based semisupervised
classification provides a potential solution by learning an infor-
mative high-level feature representation from unlabeled samples
with the guidance from limited labeled training samples [29]–
[34]. These learned high-level representations are commonly
used to assign pseudo-labels to unlabeled samples, which will
be employed together with the labeled data to train the classifier
further. Hence, it is important to find a suitable pseudo-labeling
strategy to obtain precise pseudo-labels. Recently, a wide variety
of SSL algorithms [35], [36] have been developed based on
the idea of ensemble learning. These algorithms aim at captur-
ing reliable category information (e.g., pseudo-labels and class
probabilities) from unlabeled samples for the training of a deep
network. The core idea behind these algorithms is to aggregate
the intermediate predictions by the deep network temporally
over training epochs to ensure the reliability of the captured
label information. However, directly applying these algorithms
may encounter a performance drop since they are designed for
optical images. In addition, they utilize all the predictions of
unlabeled instances for network training without any selection
procedure, which may lead to incorrect predictions for hard-
to-be-classified samples and then mislead the model learning,
resulting in performance drop accordingly. Considering these
drawbacks, we try to adopt an elaborate strategy to refine the
pseudo-labels predicted by the trained network. Therefore, we
develop a semisupervised label-consistent self-ensemble net-
work (LCS-EnsemNet). During the training process, both label
consistency between dual features and label consistency across
multiple classifiers are imposed on the network predictions of the
same input, aiming to select the trustworthy pseudo-labels for
subsequent model training. The selected reliable pseudo-labels,
along with their corresponding samples, help the model to learn
more discriminative and robust feature representations from
unlabeled samples, thereby improving the CD performance. The
main contributions of this article are as follows.

1) A dual-feature representation construction that considers
both pixel-wise and context-wise change feature extrac-
tion is carefully designed. Since pixel-wise feature and
context-wise feature describe the change information of
each pixel in terms of image details and spatial contexts,
they can be regarded as information from two different
modalities. Fully exploiting the dual features helps the
network to better distinguish between changed and un-
changed pixels, thus improving the detection performance.

2) A two-branch network, referred to as the LCS-EnsemNet,
is presented to exploit unlabeled data to achieve CD in
SAR data, whose two branches are trained respectively to
learn image detail cue from pixel-wise features and spatial
context cue from context-wise features. In this manner,
high-level representations are independently learned from
two different modalities.

3) A two-stage label refinement strategy termed label-
consistent self-ensemble is devised by considering both
label consistency between dual features and label consis-
tency across multiple classifiers, with which only trustwor-
thy pseudo-labels are selected for model learning. During
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TABLE I
NOTATIONS AND DEFINITION

the training process, the label-consistent self-ensemble
strategy selects credible pseudo-labels from the LCS-
EnsemNet and uses them to retrain the model, therefore
improving the feature learning and classification perfor-
mance. In addition, the improved model further updates
the pseudo-labels and this process is repeated in training,
improving the CD performance progressively.

The rest of this article is organized as follows. In Section II,
a few related works, including the CD methods in SAR image
and the deep SSL methods, will be reviewed. Section III gives a
description of the preliminary knowledge. Section IV details
the dual feature extraction and the proposed semisupervised
LCS-EnsemNet. In Section V, LCS-EnsemNet is tested with
experiments on three low/medium-resolution SAR datasets and
one high-resolution SAR dataset, and the experimental results
demonstrate its effectiveness and adaptation to images with
different spatial resolutions. Finally, Section VI concludes this
article.

For clarity, this article uses bold letters to denote a matrix, a
bold lowercase letter to denote a vector, and italic letters (both
upper and lowercase) to denote scalar. We illustrate the important
notations and definitions in Table I.

II. RELATED WORK

In this section, we will briefly review the related works on CD
in SAR images and deep SSL.

A. CD in SAR Image

Over recent decades, the CD has become a topic of concern
to researchers in the SAR community [1]. In the literature,
the CD approaches for SAR images can be summarized into
three categories: unsupervised, supervised, and semisupervised
approaches. Here, we quickly review them.

Since collecting labeled samples is labor-intensive and time-
consuming, the unsupervised framework has drawn consider-
able attention. Bruzzone and Prieto [38], Bazi et al. [3], [39],
[40], Bovolo and Bruzzone [2], [41], Inglada and Mercier [42],
Moser and Serpico [14], and Celik [16] implemented pioneering
works for unsupervised CD by introducing the expectation-
maximization algorithm, statistical modeling, automatic thresh-
olding, and clustering algorithms. According to the available
literature, unsupervised SAR image CD has been intensively in-
vestigated from two aspects. On the one hand, some efforts have
been devoted to reducing the deleterious effects of speckle and,
thus, generating a high-quality DI, such as applying undecimated
discrete wavelet transform to perform a multiresolution analysis
of the log-ratio DI [10], [11], fusing several DIs in the wavelet
domain [43], as well as exploiting a nonlocal low-rank model
and the statistical characteristics of multitemporal images to
reconstruct a cleaner DI [23]. Recently, Sun et al. [44] exploited
the structure consistency of the bitemporal images for the DI
generation, thus improving the robustness of the difference in-
formation to the speckle. On the other hand, improvements have
been made by modifying classification algorithms, such as ran-
dom field classifiers [45], kernel clustering [46], and hierarchical
clustering [18], [47]. In recent years, thanks to the powerful
learning abilities of deep networks, deep learning-based CD
methods have attracted great attention, with which a preclas-
sification framework is established [17]–[19], [48], [49]. Under
the framework, Gong et al. [17], Gao et al. [18], [48], [49], Geng
et al. [19], and Li et al. [50] utilized clustering results (i.e., pre-
classification results) of DI as pseudolabel information for model
learning and achieved appealing performance. However, there
are several problems associated with the existing conventional
and deep learning-based methods. Conventional methods face
the following challenges: difficulty in designing hand-crafted
features, inadequate ability to model complex SAR data, and
high sensitivity of the comparative operators to noise. In the deep
learning-based methods, the pseudo-labels are only predicted by
traditional clustering algorithms, and the label accuracy cannot
be ensured. Although the deep learning-based methods have the
better capability in feature learning, yet the incorrect pseudo-
labels may mislead the model learning, resulting in performance
degradation.

More recently, a few works have been proposed to ad-
dress the problem of insufficient labeled training samples by
leveraging transfer learning and self-supervised learning [24],
[51]–[54]. For example, Saha et al. [51] proposed a novel
building CD method that first trains a cycle consistent gener-
ative adversarial networks (CycleGAN) to learn transcoding
between SAR and optical images in an unsupervised fashion,
and subsequently, optical-like features can be extracted from
SAR images. The deep change vector analysis framework [55]
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specialized for the optical image CD is applied to predict the
CD map.

In addition, some supervised methods for CD task have been
proposed. Camps-Valls et al. [56] employed a kernel-based
support vector machine (SVM) for CD in multisource RS data.
To alleviate the problem of lacking labeled training instances, Li
et al. [57] introduced the deformable transformation to limited
training samples to generate diversified patterns for dictionary
learning, similar to data augmentation. Recent works [58]–[60]
employed deep models as classifiers for the final classification.
In [59], a supervised method is presented using a multiscale
capsule network. Wang et al. [60] devised a lightweight network
to reduce the computational complexity and achieved better
results than conventional heavy networks. However, the major
restriction of these supervised methods is still the scarcity of
labeled training samples.

Recently, SSL [29]–[34], [61]–[66] has been introduced to
solve the problem of scarcity of labeled data. Despite the great
success of SSL in the field of RS imagery, few efforts have
been made in the context of SAR image CD [21], [22]. In
[21], Jia et al. proposed a kernel-based semisupervised SVM
for CD. An et al. [22] built two discriminative models based
on Markov random field (MRF), which are trained on labeled
samples and unlabeled samples, respectively. Finally, these two
trained MRF-based models are combined to predict the final
CD map. However, these traditional shallow semisupervised
models cannot capture sufficiently discriminative features from
nonlinearly separable SAR data with complex scenes. To over-
come this drawback, we develop a deep semisupervised network,
referred to as LCS-EnsemNet, to learn informative, credible, and
underlying features from both labeled and unlabeled samples for
better CD performance in SAR images.

B. Deep SSL

SSL targets at leveraging a large volume of unlabeled data
to mitigate the shortfall of labeled training samples, which has
shown excellent capability in extracting the category informa-
tion from unlabeled data and improving the generalization abil-
ity. SSL has been widely utilized in RS imagery analysis [29]–
[34], [61]–[66]. Generally speaking, SSL algorithms include
generative models [67], discriminative models [64], low-density
separation approach [68], graph-based model [61], [69], graph
convolutional network [71], and self-training algorithm [35],
[36], [71], [72]. The self-training algorithm is one of the most
popular methods, where the inferred pseudo-labels on unlabeled
samples by self-labeling strategy are utilized as the real labels to
supervise model training for better performance. Naturally, the
reliability of the pseudolabel is essential for the generalization
ability, whereas high reliability is usually hard to ensure.

In recent works of literature, many researchers have combined
consistency regularization and deep models to extract more
reliable pseudolabel information [35], [36], [72]. Specifically,
Laine and Aila proposed temporal ensembling [35] to accu-
mulate the intermediate predictions of a single network over
different training epochs into more reliable predictions, which
can be exploited for subsequent training. In [35], the network

architecture in different training epochs differs due to dropout
regularization [37]. Thus, the accumulated reliable prediction
is equivalent to the ensemble prediction from many different
individual classifiers. However, considering the inherent speckle
noise and class confusion in SAR CD, the above one-stage
self-labeling strategy may fail to ensure the high reliability of the
pseudo-labels. Accordingly, the wrongly predicted labels may
hinder network learning. In this article, we develop a two-stage
label-consistent self-ensemble strategy to refine the captured
category knowledge and generate more accurate pseudo-labels.

III. PRELIMINARY KNOWLEDGE

This section reviews the preliminary knowledge necessary
to develop the SE DI and the LCS-EnsemNet, including a brief
introduction to saliency information extraction and the temporal
ensembling algorithm.

A. Saliency Information Extraction

In the proposed method, we exploit the context-aware saliency
detection (CASD) [28] method to get the context-wise SE DI.
The saliency information extraction process is reformulated with
more detail as follows and shown in Fig. 1.

First of all, the log-ratio DI is computed by Dlog =
|log(I1/I2)| , where I1 ∈ RH×W and I2 ∈ RH×W represent
the prechange and postchange SAR images, respectively. The
image Dlog ∈ RH×W is used as the input of the CASD method
for saliency information extraction.

1) Dissimilarity Measure: In essence, the saliency value eval-
uates the uniqueness of pixels. For a certain pixel i, its saliency
can be evaluated by comparing it with all the pixels in the image,
which can be formulated as follows:

Si =

H×W∑
j=1

dis(Pi,Pj) (1)

where Si denotes the saliency value at pixel i, H ×W is the
number of pixels in the image, dis(·) represents the dissimilarity
measure of paired pixels, and each pixel is represented by the 7×
7 image patch centered at this pixel, i.e., Pi and Pj respectively
denotes the 7 × 7 image patch centered at pixels i and j, as
shown in Fig. 1(a). For pixels located around the image edges,
mirror padding is performed to allow the dense patch extraction
at pixels near or at the image edges. Specifically, mirror padding
captures image boundaries and then supplements them around
the original image through mirroring, such that the image size is
increased to (H + 6)× (W + 6). To simplify the calculation,
only the Lms most similar pixels rather than all the pixels are
used to compute the saliency value. That is to say, if the most
similar pixels are highly different from the pixel i, then clearly
all the pixels in the image are highly different from it. Therefore,
the saliency calculation is simplified as follows:

Si =

Lms∑
n=1

dis(Pi,Pjn) (2)

where the most similar pixels {jn}Lms
n=1 of pixel i are found

in the image according to the dissimilarity measure. Through
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Fig. 1. Schematic illustration of the saliency detection. (a) Dissimilarity
measure. (b) Multiscale images. (c) Searching images for saliency computation
of each pixel.

searching for the most similar pixels throughout the entire
image, global information is embedded. Then, how to define
the dissimilarity measure is essential for the calculation of the
saliency.

Intuitively, the dissimilarity measure evaluates how much
different two pixels are and can be naturally defined as

da(Pi,Pj) = ‖pi − pj‖2 (3)

where pi and pj denote the vectorized image patches and
da(Pi,Pj) refers to the Euclidean distance between pi and pj ,
as shown in the right part of Fig. 1(a). It is noted that da(Pi,Pj)
represents the amplitude difference between image patches Pi

andPj . With the dissimilarity da(Pi,Pj), theLms most similar
pixels {(jn)}Lms

n=1 can be found in searching images.
In fact, there is a heuristic principle that the conspicuous pixels

tend to be grouped together. Specifically, if pixel i is salient, the
most similar pixels {(jn)}Lms

n=1 will be close to it in position
with a high probability; on the contrary, background nonsalient
pixels tend to distribute all over the image and have similar
pixels both near and far-away in entire image (“background

nonsalient pixels” correspond to the unchanged pixels in the
context of SAR image CD). Considering this point, positional
regularization is introduced and the dissimilarity specialized for
describing saliency can be rewritten as

dis(Pi,Pj) =
da(Pi,Pj)

1 + η · dpo(Pi,Pj)
(4)

where dis(Pi,Pj) refers to the dissimilarity between patches
Pi and Pj , dpo(Pi,Pj) represents the Euclidean distance be-
tween the positions of pixels i and j, and η is a balance factor
controlling the influence of the positional distance. According
to the above heuristic principle, in the saliency computation, the
smaller positional distance between pixel i and its similar pixel
j indicates a higher likelihood that pixel i is salient. Besides, as
analyzed in [28], the variation of the balance factor η has little
influence on the saliency detection results. Hence, η is set to 3,
as suggested in [28].

2) Multiscale Saliency: As shown in Fig. 1(b), R images
{Dr

log}Rr=1 with different image sizes are obtained by applying
a downsampling operation to Dlog ∈ RH×W sequentially for
multiscale saliency information extraction, where the scale 1
corresponds to the input image itself, i.e., D1

log = Dlog, and
{Dr

log}Rr=2 are the R− 1 downsampled images. Then, with the
defined dissimilarity measure in (4), the saliency maps of images
{Dr

log}Rr=1 (D1
log = Dlog) are computed, respectively.

Specifically, to compute the saliency map ofDr
log, for a certain

pixel i in the image Dr
log, its Lms most similar pixels {jn}Lms

n=1

are found in the searching images {Dr
log,D

r,1
log,D

r,2
log} according

to da(Pi,Pj). The image Dr,1
log with a size of Hr/2×Wr/2

and the image Dr,2
log with a size of Hr/4×Wr/4 are obtained

by downsampling image Dr
log with a size of Hr ×Wr, where

H1 = H andW1 = W , as shown in Fig. 1(c). The saliency value
at the pixel i is computed as

Sr
i = 1− exp

{
− 1

Lms

Lms∑
n=1

dis(Pr
i ,P

r
jn
)

}
(5)

where Sr
i is the saliency value of pixel i in the image Dr

log, Pr
i

represents the patch centered at pixel i in the image Dr
log, and

Pr
jn

represents the most similar patch centered at jn obtained
from the searching images.

To aggregate the multiscale information, the saliency maps
{Sr}Rr=1 are upsampled to the image size of H ×W . Then, the
across-scale saliency map aggregation can be formulated as

S =
1

R

R∑
r=1

Sr (6)

where S is the aggregated saliency map.
3) Context-Weighted Saliency: Spatial context implicitly char-

acterizes the symbiotic relationships between the attention pixel
and its surroundings by considering more positional informa-
tion, which is profitable for describing the saliency information.
The attention pixels can be located by searching for the pixels
whose saliency value exceeds a predefined threshold τs, i.e.,
{j : Sr

j > τs}. Then, for the pixel i, only its closest attention
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Fig. 2. Flowchart of temporal ensembling [35]. “temporal” in this article refers
to the different training epochs of the neural network.

pixel jclosest is used to define the context-related weight term,
and the weighted saliency value for pixel i is as follows:

Si =
1

R

R∑
r=1

Sr
i

(
1− drpo (i, jclosest)

)
(7)

where drpo(i, jclosest) is the Euclidean distance between the
positions of i and jclosest in the image Dr

log. The context
information can be reflected by the position-related weight term
1− drpo(i, jclosest), which means that the closer the point is to
the attention pixel, the more possible the pixel is in the salient
region of interest (ROI).

Thanks to its ability to capture the salient ROI and provide
spatial context cues, saliency detection has been widely applied
in CD, such as to segment the prominent changed regions to
remove noisy background unchanged pixels and confusing pix-
els [19], [72], [73]. In this article, we use the publicly available
code1 and its default settings provided in [28] for salient change
information extraction, which is subsequently utilized in the
context-wise feature extraction.

B. Temporal Ensembling

Temporal ensembling [35] is one of the typical deep learning-
based SSL algorithms. The core idea behind the algorithm is to
accumulate the intermediate predictions of unlabeled samples
over training epochs as category information to optimize the
network. Owing to dropout regularization, the network archi-
tecture varies with the training iterations, which can be viewed
as a series of individual networks. Based on these individual
networks, ensemble predictions from multiple classifiers can be
realized.

The network training is achieved with a labeled training
set {xi,l,yi}Nl

i=1 and an unlabeled training set {xj,u}Nu

j=1, as
illustrated in Fig. 2, where Nl and Nu denote the number of
labeled and unlabeled training samples, respectively. In addition,
xi,l and yi denote the ith labeled sample and its one-hot label
vector, respectively. Stochastic augmentation [35] first imposes
a random disturbance on input samples to improve robustness.
Suppose that zi is the predicted probability vector for the input
samplexi,l. For supervised learning, the cross-entropy (CE) loss

1[Online]. Available: https://cgm.technion.ac.il/Computer-Graphics-
Multimedia/Software/Saliency/Saliency.html

function is introduced as

JCE = − 1

Nl

Nl∑
i=1

yT
i log zi. (8)

The CE loss guarantees that the network has an essential
discrimination ability. It is widely used as classification loss
in the deep learning community to train the network. For un-
supervised learning, specifically, at the training epoch t, the
predicted probability vector z(t)j for the jth unlabeled sample is

first accumulated into an ensemble predictionZ(t)
j . The updating

equation is defined as

Z
(t)
j = λZ

(t−1)
j + (1− λ)z

(t)
j

= (1− λ)

t∑
i=1

λt−iz
(i)
j (9)

where Z
(t)
j is the accumulated ensemble prediction at epoch t

and λ is the momentum term that controls the influence of pre-
ceding predictions on the current ensemble prediction. However,
due to the initialization Z

(0)
j = 0, i.e., Z(1)

j = (1− λ)z
(1)
j , there

is a startup bias that needs to be corrected. Thus, the corrected
ensemble prediction is

z̃
(t)
j = Z

(t)
j

/
(1− λt). (10)

To enable the model to learn from more reliable samples,
the mean square error between z

(t)
j and z̃

(t)
j is utilized as the

unsupervised loss

JMSE = ω(t)
1

Nu

Nu∑
j=1

∥∥∥z(t)j − z̃
(t)
j

∥∥∥2 (11)

where ω(t) is a Gaussian ramp-up function to weigh the loss
JMSE. For a certain unlabeled input xj , the predictions at
different training epochs are equivalent to classification results
from different base classifiers since the dropout regularization
randomly varies the network architecture during training. Sig-
nificantly, through the loss function in (11), accumulated pre-
dictions z̃(t)j , in which category information is more stable and

reliable, are utilized as a target or teacher prediction of z(t)j to
minimize the difference between them, assisting the network
to learn category information from the reliable accumulated
predictions and iteratively improving the generalization ability.

IV. PROPOSED METHODOLOGY

In this section, we propose a novel SAR image CD method,
as depicted in Fig. 3. The proposed method contains two main
modules: 1) the construction of the dual feature representa-
tion; and 2) an SSL module. The first module, illustrated in
Fig. 3 (left), constructs pixel-wise and context-wise features to
jointly describe the change information at each pixel. The dual
features emphasize the image details and the spatial contexts,
respectively. The second module, illustrated in Fig. 3 (middle),
is the presented semisupervised label-consistent self-ensemble

https://cgm.technion.ac.il/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html
https://cgm.technion.ac.il/Computer-Graphics-Multimedia/Software/Saliency/Saliency.html
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Fig. 3. Schematic overview of the proposed semisupervised SAR image CD method.

network, LCS-EnsemNet for short. This network can indepen-
dently learn knowledge from the pixel-wise and context-wise
features and, concurrently, refine the pseudo-labels for model
learning, thus boosting the CD performance. These modules
will be elaborated in the following subsections.

A. Dual Feature Representation Construction

The widely utilized comparative operators for the SAR image
CD task, represented by the log-ratio operator, routinely measure
dissimilarity pixel-by-pixel in the image domain for change
information extraction. Such methods have high sensitivity to
speckle noise, slight variation in viewing angles, and geometrical
deformation. These problems could be mitigated by taking into
account the spatial contextual information. Several previous
works [19], [73], [74] make use of the saliency map for CD
in SAR images by applying hard segmentation or thresholding
to it to locate the conspicuous changed areas. However, directly
segmenting the saliency map into a binary image would discard
the useful spatial context information at each pixel and overlook
many image details as well as tiny yet important changed areas.
In the hyperspectral image CD works of literature [25], [51],
[55], the spatial context of pixels has been exploited by using the
multiscale nature of hierarchical feature representations [25] and
multilayer convolutional neural network (CNN) architectures
[51], [55], enabling effective detection and precise localization.
Bovolo [25] presented a method to model the spatial context of
pixels through multilevel hierarchical segmentation of multitem-
poral images. Recently, Saha et al. [51], [55] attempt to introduce
deep learning techniques into DI generation by concatenating
multiple deep feature maps from CNN to encode spatial context
and then computing DIs in the deep feature domain. Such a
deep-feature-based DI generation scheme can overcome the
defects of the operators that compute DI in the image domain and
achieve superior results when there are sufficient labeled training
samples. However, sufficient labeled training samples are hard
to acquire in practice. In the case of few labeled samples, training
CNN for discriminative features is difficult. Considering the
necessity of effective change features in SAR CD, we propose

to exploit the saliency map to capture the spatial context cue and
to consolidate the difference measure in the image domain with
high efficiency, which is independent of network training.

Inspired by the works [25], [73], [74], a reweighting scheme
is devised to effectively and quicky incorporate the pixel-wise
log-ratio DI and its saliency map to produce an SE DI such that
the spatial context in the saliency map can be encoded into the
generated SE DI. Then, pixel-wise and context-wise features
are extracted on the basis of the log-ratio DI and the SE DI,
respectively, for a joint description of pixels in the bitemporal
SAR images. The dual feature extraction is made up of three
steps (see Fig. 3).

1) Saliency Information Extraction: To capture the spatial-
contextual information, the CASD method is first applied to the
log-ratio DI Dlog, as described in detail in Section III-A. By
combining the multiscale spatial and context information, the
saliency map S is derived, which models the spatial context
information of pixels.

2) Generation of SE DI: Considering that the prominent
changed regions have already been located in S with a high
saliency value, we propose the DI reweighting scheme that is
able to further highlight spatially salient changed pixels while
suppressing background unchanged pixels as well as the speckle
effects in the image. Instead of using the simple hard segmen-
tation in [19], [73], and [74], the proposed reweighting scheme
assigns varying weights to pixels in the DI Dlog. Specifically,
the reweighting scheme produces the SE DI Dse by multiplying
the input DI Dlog with a weighting map W in an element-wise
manner

Dse = W �Dlog (12)

where Dse refers to the SE DI and symbol � denotes the
Hadamard product. The weighting map W is calculated by ap-
plying a nonlinear and monotonically increasing exponentiation
transformation function to the saliency map S

W = αS (α> 1) . (13)

Here, α is a parameter in the exponentiation transformation,
which adjusts the intensity of the weighting map. We instantiate
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Fig. 4. Examples illustrating the reweighting scheme. First row: flowchart for
reweighting on a localized region in Farmland A dataset, with an exponentiation
parameter α equal to 5. The figure includes the log-ratio DI patch, the saliency
matrix, the weighting matrix, and the SE DI patch. Second row: the log-ratio
DI patch, the corresponding SE DI patches with parameter α equal to 2 and 5,
and the ground truth patch, orderly. From the second row, it is clear that the
reweighting scheme can effectively highlight the real changes, implying the
increased class separability compared to the log-ratio DI. Moreover, under a
larger value of parameter α, the highlighting effect is more significant. Refer
Section V-A for more detailed descriptions of the Farmland A dataset.

the reweighting scheme in Fig. 4 by depicting the reweighting
process and the corresponding results on a localized region in
Farmland A dataset.

By leveraging this nonlinear exponentiation transformation,
the reweighted difference values will be influenced by the
saliency of the pixels such that the varying change information
in different pixels can be modeled adaptively according to the
corresponding saliency. The reweighting scheme aims to assign
higher weights to those pixels that are more salient. In other
words, if the saliency of a pixel is high, the reweighting scheme
will assign a higher weight to the pixel and vice versa. Con-
sequently, since the weights are exponentially proportional to
the saliency value, the contrast between changed pixels (with
high saliency values) and unchanged pixels (with low saliency
values) dramatically increases. With respect to α, (12), (13) and
Fig. 4 show that if the value of α is larger, then the intensity
of the entire weighting map will be higher, and the contrast
between the changed and unchanged regions can be improved
further. Finally, the reweighted SE DI is obtained by choosing
the suitable value of the parameter α. To further demonstrate the
effectiveness of the proposed reweighting scheme, more results
are shown in Fig. 5, in which an ROI is enlarged and shown with
a red box for better visualization of the difference.

The reweighting scheme is task-oriented, which manages to
effectively highlight the prominent changed pixels and increase
the interclass separability. As a result, pixel-wise information
in Dlog and spatial-contextual information in S are effectively
incorporated, making the pixels in the SE DI more spatially dis-
tinguishable. Compared to the existing pixel-wise comparative
operators in SAR CD, spatial-contextual information is explored
in an effective manner to quickly suppress the effects of speckle
noise and enhance the contrast between changed and unchanged

Fig. 5. SE DI on four real SAR image pairs. An ROI is enlarged and shown
with a red box for better visualization of the difference. (a1)–(a7) Ottawa images.
(b1)–(b7) Farmland A images. (c1)–(c7) Farmland B images. (d1)–(d7) Foshan
city images. (a1)–(d1) Ground truth maps. (a2)–(d2) Saliency maps produced
by the CASD method. (a3)–(d3) Log-ratio DI. (a4)–(d4) SE DI when α = 2.
(a5)–(d5) SE DI when α = 3. (a6)–(d6) SE DI when α = 4. (a7)–(d7) SE DI
when α = 5. Refer to Section V-A for more detailed descriptions of the four
SAR datasets.

regions, thereby highlighting the changed regions and improving
interclass separability.

3) Construction of Dual Feature Representation: Thanks to
the introduction of the saliency map, the reweighting scheme can
well preserve the prominent changed regions, whereas the image
details are sacrificed to a certain extent, resulting in ambiguity
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on borders. By contrast, the log-ratio operator calculates the
difference values pixel-by-pixel such that the delicate image
details can be well preserved. Accordingly, the information in the
log-ratio DI and SE DI can be regarded as coming from different
modalities, both of which are beneficial to better discriminate
the changed pixels from unchanged backgrounds. As mentioned
in [75], directly concatenating the features from different modal-
ities into a single feature would discard the particularity of each
modality.

In this work, we construct a dual feature representation for
each sample. The dual feature representation is, in fact, a couple
of feature vectors, including the pixel-wise feature vector and
the context-wise feature vector. The pixel-wise feature vector is
formed by the vectorized patches of the original SAR images
and the log-ratio DI Dlog, while the context-wise feature vector
is formed by the vectorized patches of the original SAR images
and the SE DI Dse. Such cascade design makes it easier for
discriminative feature extraction by providing indispensable
change information such as log-ratio DI and SE DI and prevents
information loss by integrating original SAR data. Moreover, the
constructed dual feature vectors will be independently explored
to extract their respective high-level semantic features. Com-
plementary information in these two high-level features will
be fused in decision to enforce the label consistency, refining
pseudo-labels.

B. Proposed SSL Model: LCS-EnsemNet

Since usually only a limited number of labeled samples can
be gathered manually through expert knowledge in real-world
applications, SSL, which manages to make full use of both few
labeled samples and abundant unlabeled samples, is a proper
solution. Inspired by recent developments in deep learning-
based semisupervised approaches [35], [36], [72], a novel net-
work, namely, LCS-EnsemNet, is proposed to reliably predict
pseudo-labels for unlabeled samples and efficiently learn more
discriminative and generalized features from both the labeled
and pseudo-labeled training data. In this manner, network op-
timization and pseudolabel refinement are coupled together to
benefit each other in an iterative way.

In this section, we denote the labeled training set by Ωl =
{(xpw

i,l ,x
cw
i,l ), yi}Nl

i=1, where the subscript i represents the sample
index, the subscript l refers to a labeled sample, and the super-
script pw and cw are short for pixel-wise feature and context-
wise feature, respectively. Similarly, we denote the unlabeled
training set by Ωu = {(xpw

i,u,x
cw
i,u)}Nu

i=1, where the subscript u
refers to an unlabeled sample.

1) Network Architecture:The proposed LCS-EnsemNet, as
depicted in Fig. 6, is composed of two multilayer perceptron
subnetsΦ andΨwith identical structures. The first subnetΦ aims
to learn the image detail knowledge, using the pixel-wise feature
xpw
i,l and xpw

i,u. The second subnet Ψconcentrates on learning
spatial context knowledge, using the context-wise feature xcw

i,l

and xcw
i,u. To be specific, for the subnet in each branch, batch

normalization (BN) layers first standardize the distributions of
network inputs to smooth the optimization landscape of the loss
function and then promote network training [77]. After the BN

Algorithm 1: Training Strategy.

Input: labeled training set Ωl = {(xpw
i,l ,x

cw
i,l ), yi}Nl

i=1;

unlabeled training set Ωu = {(xpw
i,u,x

cw
i,u)}Nu

i=1;
moving window length K; threshold parameter τ1
and τ2, number of training epoch Nepoch.

Initialization: subnet weights θ0Φ and θ0Ψ, memory block.
Supervised learning (only using Ωl):

1. for t = 1, 2, . . . ,K do
2. use data Ωl to train the subnet Φ and Ψ
3. compute loss via (16)
4. update θt−1

Φ and θt−1
Ψ to θtΦ and θtΨ

5. compute predictions {ỹ(t)i }Nu
i=1 for Ωu via (18),

(19)
6. store {ỹ(t)i }Nu

i=1 into the memory block
7. end for

Semisupervised learning:
8. for t = K + 1, . . . , Nepoch do
9. initialize the pseudoset Ω(t)

p .
10. for i = 1, 2, . . . , Nu do
11. extract predictions {ỹ(k)i }t−1

k=t−K from memory
block.

12. compute pseudolabel ŷ(t)i via (20)–(22)

13. add {(xpw
i,u,x

cw
i,u), ŷ

(t)
i } into Ω

(t)
p

14. end for
15. use data Ωl and Ω

(t)
p to train the subnet Φ and Ψ

16. compute loss via (16), (23), (24)
17. update θt−1

Φ and θt−1
Ψ to θtΦ and θtΨ

18. compute prediction set {ỹ(t)i }Nu
i=1 via (18), (19)

19. store {ỹ(t)i }Nu
i=1 into the memory block

20. end for
Output: trained subnet Φ and Ψ.

Fig. 6. Framework of the LCS-EnsemNet for SAR image CD.
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layer, three fully connected (FC) blocks are cascaded to extract
hierarchical features from inputs. For the blocks F1 and F3, the
hidden features are extracted as follows:

hn = σ (Wn · hn−1 + bn) (14)

where Wn and bn denote the weight matrix and bias vector of
the nth FC block, respectively, hn represents the output features
of the nth FC block, and σ is a nonlinear activation function.
The rectified linear unit (ReLU) [77] nonlinear function is used.
Particularly, dropout regularization [37] is embedded in the F2

block to change subnetwork architectures randomly. The hidden
feature extracted by the block F2 is as follows:

h2 = σ (W2 · (d⊗ h1) + b2) (15)

where d is a random binary vector with which hidden units are
dropped stochastically at probability β, and symbol ⊗ refers
to the dropout operation. Thanks to dropout regularization,
network architectures vary with the training epochs, which is
equivalent to using multiple individual feature extraction and
classification networks during the training. Similar to the bag-
ging algorithm [77], predictions of multiple individual networks
in training can be accumulated to realize a more reliable predic-
tion for the pseudolabel.

2) Supervised Learning With Limited Labeled Data: Limited
labeled data are used to supervise network learning for initial and
essential discrimination ability. Given the labeled training set
Ωl = {(xpw

i,l ,x
cw
i,l ), yi}Nl

i=1, where yi = 0 if the current sample
is supposed to be unchanged and yi = 1 if it is supposed to be
changed, the subnetworks Φ and Ψ are trained on {xpw

i,l , yi}Nl
i=1

and {xcw
i,l , yi}Nl

i=1, respectively. The objective function of super-
vised training can be expressed as

Jsup =
1

Nl

∑Nl

i=1
Lbce

(
xpw
i,l , yi; Φ

)

+
1

Nl

∑Nl

i=1
Lbce

(
xcw
i,l , yi; Ψ

)
(16)

where Nl is the number of labeled samples and Lbce denotes the
binary cross-entropy loss, which is defined as

Lbce

(
xpw
i,l , yi

)
= − yi log p

(
y′i = 1|xpw

i,l

)
− (1− yi) log p

(
y′i = 0|xpw

i,l

)
. (17)

Here y′i represents the predicted label, p(y′i = 1|xpw
i ) is the

probability that the sample xpw
i,l is assigned to the changed class,

and p(y′i = 0|xpw
i ) is the probability that the sample xpw

i is
assigned to the unchanged class.

Through updating network parameters using the loss Jsup,
the network gets the initial discrimination capability. However,
training with a limited number of labeled samples has the risk
of overfitting. In the next subsection, we will present how to use
the label-consistent self-ensemble strategy to realize the SSL, to
mitigate overfitting, and to improve generalization ability.

3) SSL With Label-Consistent Self-Ensemble Strategy: Reli-
able pseudo-labels are vital for SSL and the improvement of per-
formance. Existing representative methods, such as the temporal
ensembling [35], the mean teacher [36], and the MixMatch [72],

usually utilize the predictions of all the unlabeled training sam-
ples as targets or teacher predictions to guide network training
without any selection or refinement stage. In this way, incorrectly
inferred predictions of hard-to-be-classified samples will hinder
model learning and result in performance degradation. For this
reason, it is necessary to improve the quality and reliability of
pseudo-labels.

Toward this, we design a two-stage self-labeling strategy
called label-consistent self-ensemble. The strategy aims to dis-
cover reliable category information from unlabeled data and
refine the pseudo-labels by imposing both the label consistency
between dual features and the label consistency across multiple
classifiers. With this proposed strategy, LCS-EnsemNet can
dynamically select a subset of reliable predictions along with
their corresponding samples as pseudo-labeled samples, which
are employed together with labeled training samples to further
train the network in the next training epoch, improving the
performance. The improved network can be used to update the
pseudo-labels. In this way, the network can effectively learn
useful discriminative knowledge and generalize to more diver-
sified changed and unchanged patterns. Meanwhile, the network
optimization and pseudolabel refinement are integrated into one
framework and iteratively facilitate each other in a positive way.
Next, we will introduce the details of the ensemble strategy.

a) Label Consistency Between Dual Features: Due to in-
sufficient training with limited labeled samples, the network
output may contain trustless predictions on unlabeled samples,
especially for the hard-to-be-classified samples. To solve this
problem, label consistency is imposed on the dual features.
The subnets Φ and Ψ, respectively, take the pixel-wise and
context-wise features as input to get their respective predictions.
To make full use of the complementary information from the dual
features, these two predictions are fused to get a single consis-
tent prediction, which explicitly enforces the label consistency
between the pixel-wise and context-wise features. Intuitively,
combining the two predicted class probabilities at the decision
level can improve the reliability of predicted labels to some
extent.

Given the unlabeled set Ωu = {(xpw
i,u,x

cw
i,u)}Nu

i=1, the sub-
nets Φ and Ψ output predicted probabilities pΦt

(y|xpw
i,u)

and pΨt
(y|xcw

i,u), respectively, for the unlabeled sample pair
(xpw

i,u,x
cw
i,u), where Φt and Ψt indicate the architectures of

subnets Φ and Ψ at the epoch t. Using the soft majority vot-
ing, a coarse-level prediction is generated by aggregating the
probability predictions at the class level as follows:

pΦt,Ψt

(
y′|xpw

i,u,x
cw
i,u

)
=

pΦt
(y′i|xpw

i,u)+pΨt

(
y′i|xcw

i,u

)
2

(18)

ỹ
(t)
i = arg max

j∈{0,1}
pΦt,Ψt

(
y′ = j|xpw

i,u,x
cw
i,u

)
(19)

where pΦt
(y′i|xpw

i,u) and pΨt
(y′i|xcw

i,u) denote the predicted class
probabilities by subnetsΦ andΨ, pΦt,Ψt

(y′|xpw
i,u,x

cw
i,u) indicates

the jointly predicted probability of the two subnets, and ỹ
(t)
i is

the finally predicted label for (xpw
i,u,x

cw
i,u) at the training epoch

t, termed coarse-level prediction in this article.
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With the decision fusion, the label consistency between the
dual features is well preserved, ensuring the reliability of the
predictions for unlabeled samples. More importantly, the pixel-
wise and context-wise information is integrated at the class level,
which is beneficial to suppress the effect of speckle while main-
taining the image detail. Note that the coarse-level predictions of
the same input during training are recorded in a memory block
for subsequent refinement, as shown in Fig. 6.

b) Label Consistency Across Multiple Classifiers: Despite
the improved reliability in the first stage, incorrect predictions
may still exist and further refinement is required. Motivated
by the consistency regularization in SSL that encourages con-
sistent predictions when inputs or models are perturbed [78],
we introduce the label consistency across multiple classifiers to
further refine the predictions. Multiple classifiers are obtained
by using dropout regularization in the two subnets Φ and Ψ.
The coarse-level predictions of the two subnets under different
dropout units are ensembled into a consistent prediction, i.e.,
the pseudolabel. In other words, the label consistency across
multiple classifiers is intrinsically similar to the ensemble of
multiple classifiers.

To achieve this, inspired by the temporal ensemble, dropout
regularization is embedded to randomly change the network
architectures, as shown in Fig. 6, which means that the network
structures at consecutive training epochs are equivalent to multi-
ple different classifiers. As mentioned earlier, a memory block is
constructed to record a series of coarse-level predictions of each
input that are generated by the networks at each training epoch.
The recorded predictions are used to achieve the ensemble of
multiple classifiers. To be specific, a moving window is built to
progressively leverage K coarse-level predictions from the recent
K training epochs to generate the pseudolabel, which shares the
same spirit as the moving average in the temporal ensemble
method. That is to say, at the epoch t, only the coarse-level
predictions from recent K training epochs (i.e., training epochs
[t−K, t− 1]) are used since the predictions in early training
epochs may be incorrect due to the insufficient training of the
network.

In the tth epoch, for an unlabeled samples-pair (xpw
i,u,x

cw
i,u), we

will have t− 1 coarse-level labels, i.e., {ỹ(1)i , ỹ
(2)
i , . . . , ỹ

(t−1)
i }.

Like the moving average of accumulated predictions in the tem-
poral ensemble [35], in our method, a pseudolabel is estimated
using the prediction series {ỹ(t−K)

i , ỹ
(t−K+1)
i , . . . , ỹ

(t−1)
i } only

from the recent K epochs. In order to get reliable pseudo-labels,
we devise a majority voting rule to find the samples with
consistent labels in the prediction series and reject those with
inconsistent labels

Vc =
∑t−1

k=t−K
I
(
ỹ
(k)
i = 1

)
(20)

Vu =
∑t−1

k=t−K
I
(
ỹ
(k)
i = 0

)
(21)

ŷ
(t)
i =

⎧⎨
⎩

1,
0,
reject,

Vc ≥ τ1
Vu ≥ τ2

otherwise
(22)

where ŷ(t)i is the refined pseudolabel for the ith unlabeled sample
pair at epoch t. I(·) is an indicator function. Particularly, it equals
1 if the input is true; otherwise, it equals 0. Besides, Vc and
Vu represent the number of votes for changed and unchanged
classes, respectively. τ1 and τ2 refer to the thresholds for Vc and
Vu, respectively. It is noticed that Vc and Vu satisfy Vc + Vu =
K.

Naturally, the thresholds τ1 and τ2 need to be set to a value
larger than K/2. Thus, Vc ≥ τ1 or Vu ≥ τ2 indicates that the
recorded coarse-level predictions within the prediction series
{ỹ(t−K)

i , ỹ
(t−K+1)
i , . . . , ỹ

(t−1)
i } are remarkably consistent. In

other words, the K classifiers agree on their predictions of the
current unlabeled sample pair. Thus, the corresponding label
is given to the sample pair. In another case, when Vc < τ1
and Vu < τ2, the coarse-level predictions within the prediction
series are inconsistent, indicating that the predictions are highly
uncertain and should be discarded to prevent incorrect predic-
tion. Finally, assisted with the two-stage refinement strategy,

the pseudo-labeled training set Ω(t)
p = {(x̂pw

i,p , x̂
cw
i,p), ŷi}N

(t)
p

i=1 at
epoch t is built, where (x̂pw

i,p , x̂
cw
i,p) is the ith selected pseudo-

labeled sample pair, ŷi is the corresponding pseudolabel, and
N

(t)
p is the number of pseudo-labeled sample pairs.

The reliable pseudo-labeled set Ω(t)
p = {(x̂pw

i,p , x̂
cw
i,p), ŷi}N

(t)
p

i=1

can be used for model learning, likewise labeled training set.
The objective function for the pseudo-labeled sample set can be
formulated as

J
(t)
semi =

1

N
(t)
p

∑N
(t)
p

i=1
Lbce

(
x̂pw
i,p , ŷi; Φt

)

+
1

N
(t)
p

∑N
(t)
p

i=1
Lbce

(
x̂cw
i,p, ŷi.; Ψt

)
(23)

Then the LCS-EnsemNet is optimized using the following
total loss:

J (t) = Jsup+J
(t)
semi. (24)

It should be noted that J (t) varies with the training epochs
because the pseudotraining set is changeable during the training
procedure. The training strategy is described in detail in Algo-
rithm 1, where θtΦ and θtΨ represent all the weights and bias of
the subnets Φ and Ψ at the epoch t.

By taking advantage of label consistency in estimating and
selecting the pseudo-labels, more reliable category information
in unlabeled data can be captured, and concurrently, the reliable
pseudosamples are utilized to learn more generalized features
and more accurate decision boundary. Compared to the existing
semisupervised algorithms, the two-stage strategy imposes both
the label consistency between dual features and the label con-
sistency across multiple classifiers on the network predictions
such that pseudo-labels can be reliably refined and selected and
then provided to the next training epoch of the model to improve
the detection performance. On the other hand, the sample pairs
with inconsistent recorded predictions are regarded as uncertain
ones and discarded to prevent the network from learning with
wrongly predicted labels and avoid performance drop.
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Fig. 7. Inference of the pixel category in the testing phase. The cross-entropy loss and the memory block are removed. The category of each testing sample pair
is inferred by the trained network with decision fusion.

C. Generation of the Final Change Map

As shown in Fig. 7, to generate the final change map, the
testing set Ωtest = {(xpw

i,test,x
cw
i,test)}H×W

i=1 is constructed in the
same way as the training set construction, where the sample pair
of all the pixels in the image is included. With the trained LCS-
EnsemNet, the inferred label ỹi for each sample pair is obtained
by fusing the predicted probabilities from the two subnets, i.e.,

pΦ,Ψ(y|xpw
i,test,x

cw
i,test) =

pΦ(y|xpw
i,test)+pΨ(y|xcw

i,test)

2
(25)

ỹi = arg max
j∈{0,1}

pΦ,Ψ(y = j|xpw
i,test,x

cw
i,test). (26)

The inferred label ỹi at each pixel position forms the final
change map.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
semisupervised method through extensive experiments on four
real SAR datasets. The datasets, evaluation criteria, parameter
analysis, and experimental results are described in detail. All
the experiments are conducted on a workstation with an Intel(R)
Core(TM) i7-8750 H CPU (6 cores, 2.2 GHz, 32 GB RAM) and
an Nvidia Quadro P2000 graphical processing unit (GPU) (4 GB
RAM). The proposed model is performed using the Chainer-
GPU (ver. 7.2.0) deep learning platform [79] and MATLAB
2016a in Windows 10 environment. The corresponding code of
the proposed method will be made available at https://github.
com/CATJianWang/LCS-EnsemNet.

A. Dataset Description

The performance of the proposed method is evaluated on four
real SAR image datasets, which were acquired by Radarsat-1,
Radarsat-2, and TerraSAR-X sensors. They are described in the
following.

1) Ottawa Dataset: The dataset contains a pair of real SAR
images of spatial size 290 × 350. They have 10m spa-
tial resolution. The image pairs were acquired in July
and August 1997, respectively, by the Radarsat-1 sensor.
Fig. 8(a) and (b) shows the bitemporal SAR images and

Fig. 8. Ottawa dataset. (a) Image acquired in July 1997. (b) Image acquired
in August 1997. (c) Ground truth.

Fig. 9. Farmland A dataset. (a) Image acquired in June 2008. (b) Image
acquired in June 2009. (c) Ground truth.

Fig. 8(c) shows the ground truth map. The dataset reflects
the flooded areas over Ottawa, Canada.

2) Farmland A dataset: This dataset was acquired in June
2008 and June 2009 by the Radarsat-2 sensor over a
farmland area at the Yellow River Estuary in China. The
bitemporal SAR images have 8m spatial resolution and the
size of the bitemporal SAR images is 287 × 259 pixels.
The SAR images and the ground truth map are shown in
Fig. 9. This dataset mainly contains farmland changes near
the Yellow River Estuary.

3) Farmland B dataset: The dataset contains a pair of SAR
images acquired in June 2008 and June 2009. They have
8m resolution and a size of 291 × 306 pixels. SAR images
and the ground truth map are shown in Fig. 10. Similar to
the Farmland A dataset, the dataset reflects land cover
changes near the Yellow River Estuary in China.

https://github.com/CATJianWang
https://github.com/CATJianWang
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Fig. 10. Farmland B dataset. (a) Image acquired in June 2008. (b) Image
acquired in June 2009. (c) Ground truth.

Fig. 11. Foshan City dataset. (a) Image acquired in May 2008. (b) Image
acquired in December 2008. (c) Ground truth.

TABLE II
DATASETS DESCRIPTION

4) Foshan City dataset: This dataset consists of two SAR im-
ages. They were acquired over Foshan City (Guangdong
Province, China) in May 2008 and December 2008 by the
TerraSAR-X sensor. The size of the SAR images is 1536×
1536 pixels and the spatial resolution is 3m. As shown in
Fig. 11, they present the landfills of farmland and farmland
changes.

Note that in the Farmland A and Farmland B datasets, the
images acquired in 2008 are four-look, but the ones obtained in
2009 are single-look, indicating the discrepancy of the impact of
speckle noise on the bitemporal images. Naturally, the discrep-
ancy increases the difficulty in the CD task. The descriptions for
all the datasets are given in Table II.

In our experiments, sample pairs are constructed in the way
described in Fig. 7 to represent each pixel position in SAR
datasets and then utilized for training and testing. For each
dataset, 10 000 sample pairs (5000 sample pairs for each class)
are selected randomly for training. The proportion of labeled
sample pairs is set to 0.3% to verify the performance of the
proposed method in the case of a few labeled data (performance
variation with different proportions of labeled and unlabeled
sample pairs is presented in Sections V-D and V-E). For testing,

TABLE III
SUBNETWORK ARCHITECTURE

the final change map is formed by the inferred category of each
pixel in the image.

B. Experimental Setup

1) Evaluation Criteria: To quantitatively evaluate the pro-
posed method and compare the performance of different ap-
proaches, false positives (FP), false negatives (FN), percentage
of correct classification (PCC), overall error (OE), and Kappa
coefficient (κ) [80] are employed as the evaluation criteria. The
PCC, OE, and κ are calculated as follows:

PCC = (TP + TN)/(TP + FP + TN + FN) (27)

OE = 1− PCC (28)

κ = (PCC − PRE)/(1− PRE) (29)

PRE=
(TP+FP)×(TP+FN)+(TN+FN)×(TN+FP)

(TP+FP+TN+FN)2
. (30)

Here, TP is the number of pixels that belong to the changed
class in the ground truth and are also correctly detected as the
changed class, while TN is the number of pixels that belong to
the unchanged class in the ground truth and are also correctly
detected as the unchanged class.

2) Network Architecture: The architectures of the two subnet-
works in the LCS-EnsemNet are made to be identical, as dis-
played in Table III. Due to the small size of the input samples, the
network is composed of only three FC blocks, each comprising
an FC layer as well as a rectified linear unit (ReLU) activation
function [77], [81] (for the first two blocks) or a softmax function
[77] (for the last block). Especially, the dropout regularization
is embedded in the second FC block, enabling the network to
have different architectures at each training epoch.

C. Parameter Analysis

In the proposed method, there are five essential parameters
that need to be fixed, including the image patch size h, the
weighting parameter α, the length of sliding window K, and
the refinement thresholds τ1 and τ2. Extensive experiments are
conducted to determine the value of these parameters.

Patch Size: As described in Section IV, each pixel-wise or
context-wise feature vector is formed by three vectorized image
patches of the same size. Thus, the determination of the feature
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Fig. 12. PCC and Kappa coefficient (κ) vary with different patch size h.

TABLE IV
ENL ON DIFFERENT DATASETS

vector size can be implemented by investigating the effect of
patch size h on detection results. Here, we set the patch size h as
3, 5, 7, 9 in the feature construction and analyze the performance
on the four SAR datasets. We evaluate the performance of the
proposed method under different patch sizes in terms of the
Kappa coefficient κ and PCC. The corresponding results are
shown in Fig. 12. The results are compliant with the intuitive
understanding that detection performance is sensitive to the
variation of patch size. When the level of speckle is strong, a
large patch size would weaken the speckle but remove image
details. By contrast, a small patch size will well preserve image
details but cause false alarms in results. To analyze the effect of
speckle noise level on the patch size, the level of speckle noise
in SAR images is measured by the equivalent number of looks
(ENL) [13]. ENL value is given by

ENL =
μ2

var
(31)

where μ denotes the mean value and var denotes the variance in
the homogeneous region in the image. The ENL values of paired
images in the four SAR datasets are listed in Table IV. According
to the ENL values in Table IV, it can be seen that the images in
Farmland A, Farmland B, and Foshan City dataset have stronger
speckle noise. And it is also noticed in Fig. 12 that a larger

TABLE V
PARAMETER SETTING IN EXPERIMENTS

Fig. 13. Relation of the (a) PCC and (b) Kappa coefficient (κ) with the
parameter α.

patch size yields better performance for these three datasets. This
implies that a comparatively larger patch size should be used for
the dataset with stronger speckle noise. Furthermore, according
to the results shown in Fig. 12, the patch size is also associated
with spatial resolution. In high-resolution SAR images, there
are many inhomogeneous regions, and the inhomogeneity may
cause false detections and should be suppressed. In this case,
a larger patch size should be selected. To sum up, the results
in Fig. 12 illustrate that small patch size is appropriate for the
low/medium-resolution images with a lower level of speckle
noise, whereas a large patch size is necessary for large-scale
high-resolution SAR images with stronger speckle noise. Ac-
cordingly, the suitable values of patch size for different datasets
are listed in Table V.

Parameter α: The parameter α in (13) is important for the
quality of SE DI. To select the value of parameter α, the results
of the proposed method on four real datasets are analyzed.
Fig. 13 shows the impact of α on detection performance. By
combining with the ENL values given in Table IV, it is noticed
that the selection of parameter α has a close relationship with
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Fig. 14. Performance by varying (a) window length K and (b) threshold
parameter τ2.

the level of speckle noise in bitemporal images. According to
the results in Figs. 5 and 13, for the Farmland A, Farmland
B, and Foshan City datasets corrupted by strong speckle noise,
a large value of α can lead to the strong contrast between
changed and unchanged classes, increase interclass separability,
and weaken the speckle noise effect significantly; for the Ottawa
dataset with weak speckle noise, a small value of α can mitigate
the information loss induced by the saliency-based reweighting
scheme. Consequently, the value of α should be determined
according to the speckle noise level in images. For data suffering
from strong noise, such as Farmland A, Farmland B, and Foshan
City, α is set to 5 to enforce the effect of noise suppression;
otherwise, an intermediate value of 3 is preferred. The suitable
value of α is listed in Table V.

Parameters in the Label-Consistent Self-Ensemble Strategy:
The selection of the window length K and thresholds τ1 and
τ2 in the label-consistent self-ensemble strategy is important
in SSL, directly impacting the reliability of pseudo-labels. For
the changed class, the corresponding threshold τ1 should be set
to a large value to ensure the reliability and accuracy of the
pseudo-labels of the changed class, preventing the false alarms
caused by wrong predictions. Accordingly, the threshold τ1 is set
to be the same value as the window length K in our experiments.
Extensive experiments are conducted to investigate the effect of
the sliding window length K and the threshold τ2 on the proposed
network.

We varied the sliding window length K by fixing τ2 = K.
The results in Fig. 14(a) indicate that the length of the sliding
window affects the network learning and detection performance.

Fig. 15. Examples of CD results for Farmland A dataset with varied K and
τ2. (Top row) Results by varying K. (a) K = 5. (b) K = 10. (c) K = 15. (d)
K = 20. (e) K = 25. (Bottom row) Results by varying τ2. (f) τ2 = 6. (g)
τ2 = 7. (h) τ2 = 8. (i) τ2 = 9. (j) τ2 = 10.

A window length K of 10 provides the best performance for
most datasets. A long window would contain more predictions
by the early trained network, which may be incorrect and result
in performance degradation. A short window would contain less
recorded label information for pseudolabel refinement, which
also has negative effect on network training mainly due to the
reduced number of ensemble classifiers [see Figs. 14(a) and
15(a)–(e)]. Therefore, an intermediate value of 10 is selected
for the window length K.

We varied the threshold τ2 by fixing K = 10. According to
the results in Fig. 14(b), the selection of τ2 is associated with the
scene complexity and speckle noise of the original SAR data.
For the Farmland A and Foshan City datasets with a complicated
scene and a strong level of speckle, the threshold τ2 should have a
large value of 9 to prevent the incorrect predictions from hard-to-
be-classified background unchanged sample pairs that are easily
classified into changed class. Due to the weak speckle noise
in the Ottawa dataset and the simple scene in the Farmland B
dataset, the hard-to-be-classified sample pairs appear relatively
less. Therefore, a slack value of 7 is more appropriate for τ2
in the Ottawa and Farmland B datasets to add more unchanged
sample pairs into the pseudo-labeled set [see Figs. 14(b) and
15(f)–(j)].

D. Experiments With Different Proportions of Labeled
Samples

To quantify the performance gain of the LCS-EnsemNet com-
pared to the related models, including the subnetworkΦ (trained
with labeled pixel-wise features solely), subnetwork Ψ (trained
with labeled context-wise features solely), and network Φ+Ψ
(only with fusion on the outputs of supervised models Φ and
Ψ), the CD results with different proportions of labeled training
samples are obtained. In experiments, we vary the proportion of
labeled training samples to investigate the effect of labeled and
unlabeled samples on the detection performance. The related
models Φ, Ψ and Φ+Ψ are trained on labeled features in a
supervised way.

As given in Tables VI–IX, the proposed LCS-EnsemNet
yields better detection results than supervised models, which
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TABLE VI
CHANGE DETECTION ACCURACY (PCC) (%) COMPARISON ON OTTAWA

DATASET UNDER DIFFERENT PROPORTIONS OF LABELED SAMPLES

TABLE VII
CHANGE DETECTION ACCURACY (PCC) (%) COMPARISON ON FARMLAND A

DATASET UNDER DIFFERENT PROPORTIONS OF LABELED SAMPLES

TABLE VIII
CHANGE DETECTION ACCURACY (PCC) (%) COMPARISON ON FARMLAND B

DATASET UNDER DIFFERENT PROPORTIONS OF LABELED SAMPLES

TABLE IX
CHANGE DETECTION ACCURACY (PCC) (%) COMPARISON ON FOSHAN CITY

DATASET UNDER DIFFERENT PROPORTIONS OF LABELED SAMPLES

validate the improvement of the label-consistent self-ensemble
strategy and the capability of the proposed network in discov-
ering category information from unlabeled data. According to
the results, the LCS-EnsemNet can achieve high accuracy at the
labeled data proportion of 0.3% and outperform the supervised
models. The improvement of the proposed network is more
significant when the proportion or number of labeled samples
is smaller. The results are better with the increase of labeled
samples, which also indicate that labeled data have a significant
impact on the performance in the semisupervised model.

E. Sensitivity Analysis on Unlabeled Training Set Size

SSL is known for its capability of exploring discriminative
information from unlabeled samples. In this section, to analyze
the influence of unlabeled samples on the proposed method,
15 labeled samples per class and different numbers of unlabeled
samples are randomly selected as the training set. The CD results
are presented in the form of PCCs and Kappa statistics κ in
Table X.

From Table X, we observe that the PCC andκ increase rapidly
along with the number increase of unlabeled samples on the
considered datasets, which indicates that the proposed method
can effectively discover meaningful information from unlabeled
samples for the network training. Furthermore, the PCC and κ
become stable when the unlabeled training set size reaches a
certain extent, which implies that the discriminative information
and the diversity of underlying sample patterns in unlabeled
samples are close to saturation.

F. Quality Assessment of the SE DI

The quality of DI is crucial for detection performance in CD
task. In this section, we assess the quality of the SE DI and
compare its performance with other comparison operators in the
forms of the receiver operating characteristic (ROC) curves and
the area under the curve (AUC). Moreover, the ROC and AUC
can also be utilized as indicators in analyzing the parameter
value selection of α.

The SE DI obtained using the proposed reweighting scheme
is compared to the log-ratio operator (LR), mean-ratio oper-
ator (MR), neighborhood-ratio (NR) method [82], and INLPG
method [44], respectively. For the NR method, the neighborhood
size is set to 3× 3. For the INLPG, parameters follow the default
values in the original paper [44]. The DIs produced by different
methods are shown in Fig. 16 using the “jet” color map in
MATLAB. The corresponding ROC curves of the SE DI and
other DIs produced by different methods are shown in Fig. 17
and the corresponding AUC values are listed in Table XI.

The ROC curves show that the SE DIs are more stable and
almost on the top of the other curves on the Ottawa, Farmland
B, and Foshan City datasets, indicating that the SE DIs have
better quality than other DIs. In Table XI, it is obvious that the
SE DIs provide larger AUC values than other DIs. Particularly,
the AUC values of SE DIs with different values of parameter
α are entirely consistent with the results in Fig. 13. That is to
say, the SE DI with the selected values of parameter α has a
better quality than other SE DIs. Therefore, the AUC value can
be utilized as an indicator in the analysis of the parameter value
selection for parameter α.

G. Comparison With Counterpart Methods

To verify the effectiveness of the proposed method, we com-
pare it to other counterparts on four real SAR datasets, which are
typical SSL models and widely utilized SAR image CD methods.
In this group of experiments, the proportion of labeled samples
is set to 0.3%, as described earlier.
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TABLE X
PCCS (%) AND KAPPA STATISTICS κ(%) ACHIEVED AFTER APPLYING THE PROPOSED METHOD TO THE OTTAWA, FARMLAND A, FARMLAND B, AND FOSHAN CITY

DATASETS USING 30 LABELED SAMPLES (15 SAMPLES PER CLASS) AND VARIED NUMBERS OF UNLABELED SAMPLES

Fig. 16. DIs produced by different comparison methods. DIs on Ottawa (the first row), Farmland A (the second row), Farmland B (the third row), and Foshan
City (the fourth row). (a) DIs by LR. (b) DIs by MR. (c) DIs by NR. (d) DIs by INLPG. (e) SE DIs (α = 2). (f) SE DIs (α = 3). (g) SE DIs (α = 4). (h) SE DIs
(α = 5).

1) Pseudo-Label [83], which is a classical deep learning-
based semisupervised model. In experiments, Pseudo-
Label + PF (PLPF) represents the model trained with
the pixel-wise features solely, and Pseudo-Label + CF
(PLCF) represents the model trained with the context-wise
features solely.

2) Temporal Ensembling [35], which is the baseline of the de-
veloped LCS-EnsemNet. Likewise, Temporal Ensembling
+ PF (TEPF) and Temporal Ensembling + CF (TECF)
represent the model trained with pixel-wise features and
context-wise features, respectively.

3) PCA-kmeans [16], which is a simple but effective SAR
image CD method.

4) PCANet [18], a deep-learning method, has achieved stable
and excellent results in the CD of SAR images.

5) CWNN [48], a preclassification-based unsupervised CD
method in SAR images using the convolutional wavelet
neural network (CWNN).

TABLE XI
AUC COMPARISON OF DIFFERENT DI GENERATION METHODS

6) DDNet [49], which uses features from spatial domain
and frequency domain as the input of a two-branch CNN
network. The method also uses the preclassification step
for the pseudo-labeled samples selection.

7) SGDNNs [19], which segments the saliency map of the
log-ratio DI as a label prior to guide the pseudo-labeled
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Fig. 17. ROC curves on (a) Ottawa, (b) Farmland A, (c) Farmland B, and
(d) Foshan City datasets. PF represents the probability of false alarm and PD
represents the probability of detection.

samples acquisition. A DNN is pretrained in an unsuper-
vised way and fine-tuned on the pseudo-labeled samples.

8) INLPG-CWNN [44], which replaces the DIs in the CWNN
method with the DIs generated by the INLPG method.

The visual and quantitative results of the reference methods
on four real SAR datasets are shown in Figs. 18 –21 and Tables
XII–XV.

TABLE XII
EXPERIMENTAL RESULTS ON OTTAWA DATASET

TABLE XIII
EXPERIMENTAL RESULTS ON FARMLAND A DATASET

TABLE XIV
EXPERIMENTAL RESULTS ON FARMLAND B DATASET

TABLE XV
EXPERIMENTAL RESULTS ON FOSHAN CITY DATASET
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Fig. 18. Ground truth and change map by different methods for the Ottawa
dataset. (a) PCA-kmeans. (b) PCANet. (c) PLPF. (d) PLCF. (e) TEPF. (f) TECF.
(g) CWNN. (h) DDNet. (i) SGDNNs. (j) INLPG-CWNN. (k) Proposed method.
(l) Ground truth.

Fig. 19. Ground truth and change map by different methods for the Farmland
A dataset. (a) PCA-kmeans. (b) PCANet. (c) PLPF. (d) PLCF. (e) TEPF. (f)
TECF. (g) CWNN. (h) DDNet. (i) SGDNNs. (j) INLPG-CWNN. (k) Proposed
method. (l) Ground truth.

The results of the Ottawa dataset are shown in Fig. 18 and
Table XII. For the Ottawa dataset, there are many changed
areas, notably minor isolated changed areas. Thus, the primary
challenge is to detect these minor regions with high accuracy. It
can be seen from the results that the proposed method acquires
the PCC of 98.57% and the Kappa value of 94.69%, which is

Fig. 20. Ground truth and change map by different methods for the Farmland
B dataset. (a) PCA-kmeans. (b) PCANet. (c) PLPF. (d) PLCF. (e) TEPF. (f)
TECF. (g) CWNN. (h) DDNet. (i) SGDNNs. (j) INLPG-CWNN. (k) Proposed
method. (l) Ground truth.

Fig. 21. Ground truth and change map by different methods for the Foshan
City dataset. (a) PCA-kmeans. (b) PCANet. (c) PLPF. (d) PLCF. (e) TEPF. (f)
TECF. (g) CWNN. (h) DDNet. (i) SGDNNs. (j) INLPG-CWNN. (k) Proposed
method. (l) Ground truth.

quite competitive to the best results by SGDNNs on this dataset.
The ROI within a red box in Fig. 18 shows that the result by the
proposed method is more compact with less missed detections,
which achieves a relative balance between detail preservation
and speckle suppression. PCA-kmeans obtains inferior visual
and quantitative results on account of the inconsistency of the
hand-crafted features with SAR images and the poor perfor-
mance of traditional k-means clustering. Although PCANet,
PLPF, and PLCF use the pseudo-labels for model learning, PLPF
and PLCF acquire the worst results, whereas PCANet yields
better results due to the refinement process of the pseudo-labels.
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Because of the weak level of speckle noise in this dataset, by
incorporating all the accumulated predictions of unlabeled sam-
ples for network training, TEPF and TECF achieve an appealing
result. The recently proposed SGDNNs achieve the best results,
including the smallest FP and highest Kappa value. From the
results in Table XII and Fig. 18, although the FP and OE of the
results by the proposed method are a little higher than SGDNNs,
it yields a similar visual effect.

The results on the Farmland A dataset are shown in Fig. 19
and Table XIII. This dataset is suffered from a strong level of
speckle noise, and the interclass separability of the changed and
unchanged classes is small. As shown in Fig. 19 and Table XIII,
the results of the counterpart methods are affected severely by
the speckle noise. Particularly, changed ROI within the yellow
box in Fig. 19 validates that the result by the proposed method
is complete and more accurate. In Fig. 19, the result in the red
box predicted by our method has few false detections. Due to
the interference of strong noise in data and weak representation
ability of traditional clustering algorithm, FP and FN of the
results by PCA-kmeans are the highest. Since the number of
hard-to-be-classified samples is increased in the heterogeneous
and noisy regions, both the FN and FP results by the PLPF,
PLCF, TEPF, and TECF are large, such as the false alarms
within the red box in Fig. 19(e) and (f). The deep learning-based
methods, such as the PCANet, CWNN, DDNet, INLPG-CWNN,
and the proposed method, achieve better results than other coun-
terpart methods, mainly due to the powerful feature abstraction
ability of deep networks. The CWNN provides the best PCC
(96.60%) and Kappa value (88.23%). For our method, the accu-
mulated label information selected by the proposed two-stage
label-consistent self-ensemble strategy improves the reliability
and stability, reducing the negative effect of speckle noise and
improving the generalization ability. In addition, the introduced
spatial context information also helps to remove the confusing
pixels in heterogeneous and noisy areas. Therefore, the pro-
posed method achieves comparable results with the CWNN and
DDNet, including the PCC (96.21%) and Kappa value (86.85%),
demonstrating its robustness to speckle noise and verifying its
effectiveness under complex scenes and a strong level of speckle
noise. Even though the result of the proposed method missed the
linear changed regions, the OE is low and the prominent changed
regions are visually complete with less false alarms.

The results of Farmland B are shown in Fig. 20 and Table XIV.
The proposed method obtains better results than other counter-
part methods. As shown in Fig. 20 and Table XIV, the best
results are achieved by the proposed method at the largest PCC
(99.02%) and Kappa value (90.90%). Although PCA-kmeans
obtains a similar FN result with the proposed method, its FP
is much higher, such as the false alarms within the red box in
Fig. 20(a). PCANet obtains better results than other conventional
reference methods due to its robustness and learning ability
of the deep network. Due to the heterogeneous regions and
noisy regions in this data, more hard-to-be-classified samples
exist, resulting in the performance degradation of the PLPF,
PLCF, TEPF, and TECF. For the SSL methods relying on the
pseudolabel information without any selection stage, incorrect
predictions from hard-to-be-classified samples lead to high FP

TABLE XVI
COMPUTATIONAL TIME (SECONDS) OF DIFFERENT COMPARISON METHODS

values, such as the regions within the red box in Fig. 20(c),
(e), and (f). The recently proposed CWNN method provides
better results than other compared methods. Nevertheless, the
deep learning-based methods, such as the DDNet, SGDNNs,
and the INLPG-CWNN methods, achieve worse results than our
method because the wrongly predicted pseudo-labeled samples
by conventional clustering algorithms mislead the model learn-
ing, despite the excellent learning ability of the deep networks. In
our method, using the two-stage selection strategy, the reliability
of the selected accumulated pseudo-labels is improved and
the hard-to-be-classified sample pairs are removed. The result
within the yellow box in Fig. 20(k) is more accurate than other
methods. Through the experiments, we can see that the proposed
method achieves the leading performance since the designed
two-stage selection strategy prevents the hard-to-be-classified
sample pair from harming the model learning and improves the
reliability of pseudo-labels.

The results of Foshan City are shown in Fig. 21 and Table XV.
The data consist of two high-resolution SAR images, which have
extensive inhomogeneous regions and also contain a strong level
of speckle noise. In Fig. 21 (two changed ROIs are marked by
red and yellow boxes, respectively), we can see that changed
regions are detected by the proposed method with more image
detail and less false alarms. In Table XV, the proposed method
is shown to provide higher PCC and Kappa values than other
methods when applied to the high-resolution SAR images. Due
to the inhomogeneous signature in the high-resolution SAR
images, a large number of pixels are wrongly classified into the
changed category, which causes extensive false alarms in the
CD maps. Especially for the preclassification-based methods,
the extensive hard samples cause the performance degradation
because the incorrectly pseudo-labeled samples would have an
adverse impact on the model learning. However, thanks to the
two-stage refinement strategy in the proposed method, a large
number of hard samples are prevented from network training,
avoiding significant performance degradation. The experimental
results demonstrate the effectiveness of the proposed network in
the task of processing large-scale high-resolution SAR images.

H. Running Time Analysis

In this section, we compare the running time of the SE DI
generation with other comparison methods, as given in Ta-
ble XVI. From Table XVI, we can see that the running time of the
conventional DI generation methods, such as the LR, MR, and
NR, is less than the methods considering the global information,
such as INLPG and the proposed method. Due to the global
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TABLE XVII
INFERENCE TIME (SECONDS) ON DIFFERENT DATASETS

information exploitation in saliency map calculation, the SE
DI generation has slightly more computational time than other
methods. Nonetheless, the performance of the SE DI is generally
better than the DIs of other methods. Thus, the proposed SE DI
generation can achieve a relatively preferable balance between
the performance and the time complexity. Additionally, we also
list the inference time of the well-trained LCS-EnsemNet on the
constructed features of each pixel in the image for the four real
datasets in Table XVII. From Table XVII, it is noticed that the
proposed network can infer the category of all the image pixels
in a short time for the small-scale SAR images. However, for the
large-scale high-resolution SAR images such as Foshan City, the
inference time is a little higher due to the large number of pixels
in the entire image.

VI. CONCLUSION

In this article, a novel semisupervised SAR image CD method
is proposed to reveal and refine the underlying category infor-
mation from abundant unlabeled data to enhance the detection
performance and generalization ability.

The proposed method includes the construction of feature
representation and the semisupervised LCS-EnsemNet with
the label-consistent self-ensemble strategy. First, an SE DI is
generated by incorporating the spatial-contextual information
in the CASD map and the pixel-wise log-ratio DI, resulting
in improved separability of changed and unchanged regions.
Based on the log-ratio DI and SE DI, a couple of feature vectors
are constructed to represent the same pixel position in SAR
images, expressing pixel-wise feature and context-wise feature,
respectively. They are utilized as the input of the customized
two-branch LCS-EnsemNet. Second, the LCS-EnsemNet with
the label-consistent self-ensemble strategy is devised especially
for the SAR image CD to alleviate the problems arising from the
lack of sufficient labeled samples. The devised label-consistent
self-ensemble strategy is the core of the network training, im-
proving the reliability and accuracy of pseudo-labels through the
two-stage ensemble. The selected pseudo-labeled samples are
helpful to improve the generalization ability. The experiments on
real SAR datasets demonstrate that the proposed method outper-
forms the reference methods, which validate the effectiveness of
the proposed semisupervised SAR image CD method. As future
work, an SE DI selection scheme will be explored by evaluating
the quality of SE DI under different parameter values of α and
using the image texture information to automatically select the
best SE DI for subsequent CD task.
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