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ABSTRACT Large scale pest recognition is one of crucial components in pest management in outdoor 

conditions, which is much more difficult than common object recognition because of the variational 

image acquisition direction, location, pest size and complex image background. To overcome the 

challenges, this study proposes a CNN model by combining spatial attention mechanism and channel 

attention mechanism to realize accurate pest location and recognition in field images. The proposed 

model consists of two major parts. Firstly, the module Spatial Transformer Networks (STN) is 

incorporated into a Convolutional Neural Network (CNN) architecture to provide image cropping out 

and scale-normalization of the appropriate region, which can simplify the subsequent classification 

task. The second one is called Improved Split-Attention Networks that is used to enable feature-map 

attention across feature-map groups. The proposed model is evaluated on three different datasets: Li’s 

dataset (10 species), proposed dataset (58 species) and IP102 dataset (102 species), achieving the 

classification accuracies of 96.78%, 96.50% and 73.29%, respectively. Comparisons with five 

traditional CNN models and three attention-related state-of-the-art deep learning models show that the 

current method outperforms these previous models. Besides, to verify the robustness of this proposed 

model on different image resolutions, six datasets with different image resolutions are constructed and 

all accuracies exceed 92% with the image resolution of 400×267 pixels reaching the optimal 

performance. All results show that the proposed method provides a reliable solution to recognize insect 

pest in field and support precision plant protection in agriculture production. 

INDEX TERMS Insect recognition, Attention mechanism, Deep learning, Image processing 

 

I. INTRODUCTION 

Agricultural insect pests are responsible for causing 

significant damage to crops and reducing their quantity and 

quality. Therefore, it is particularly important to strengthen 

the ability of pest monitoring and early warning, so as to 

carry out effective strategies for pest prevention and control 

[1]. However, one of the prerequisites for these tasks is to 

identify pests accurately and timely. 

Traditionally, insect pest recognition mainly relies on 

few plant protection experts and technicians to complete 

according to the typical appearance characteristics of pests 

in the field, which is a time-consuming and labor-intensive 

task [2]. With the development of computer vision 
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techniques, they have been widely applied in object 

recognition in many fields, including insect pest recognition 

and detection. In general, the image-based insect pest 

recognition methods can be summarized into two categories: 

traditional machine learning methods and deep learning 

methods. The insect recognition methods based on 

traditional machine learning mainly include three sequential 

stages: image preprocessing, feature extraction and feature 

classification. Yao et al. [3] proposed a pest detection 

method by integrating Adaboost and SVM classifier and 

achieved a false detection rate of 9.6%. Inspired by the 

human cognitive neuroscience, Deng et al. [4] firstly used 

saliency model to detect region of interest (RoI) and then 

the invariant features representing the pest appearance were 

extracted and trained using SVM classifier, achieving a 

recognition rate of 85.5%. Unlike the aforementioned 

methods, Xie et al. [5] constructed a dictionary matrix and 

sparse decomposition to realize species classification, 

performing well on the classification of 24 common insect 

species. However, these traditional methods based on 

handcrafted features cannot adequately extract the 

characteristics of insect pest images from complex outdoor 

environment [6]. In addition, it is also difficult to determine 

the optimal solution for feature design and selection in these 

methods[7], which limit the improvement of pest 

recognition accuracy and their plications in field.. 

Compared with the traditional methods, the emerging 

deep learning-based models in recent years, such as 

convolutional neural networks (CNNs) [8], implement self-

learning of features and their relations using data itself, 

which is considered as an end-to-end machine learning 

method [9]. To further extract the high-level image features 

and avoid complex modeling procedures from feature 

extraction to feature classification, some deep learning 

methods had been proposed to improve the accuracy and 

efficiency of pest recognition in the field images. Ding and 

Taylor [10] detected moths by applying a CNN into image 

patches at different locations, and they achieved a precision-

recall rate of 93%. Paddy field pests were located and 

classified by computing a saliency map and applying a deep 

convolutional neural network (DCNN), achieving a mean 

accuracy precision (mAP) of 0.951 [11], which is a 

significant improvement on previous methods. It is well 

known that training a complex CNN from scratch to 

excellent performance level requires a huge set of labeled 

images and consumes a significant amount of 

computational resources, which means that it is not realistic 

to train a dedicated CNN for most image classification tasks 

[12].  

In this study, motivated by the many successful 

applications of Spatial Transformer Networks (STN) in 

image classification, co-localization, spatial attention[13-15] 

and the simple and modular structure of ResNet variants in 

image classification, object detection and semantic 

segmentation[16-18]. A cascaded architecture based on 

STN and ResNest network is developed for large-scale pest 

recognition, in which region of interest are located and 

multi-channel features are learned from original images 

automatically without any preprocessing rather than hand-

crafted. 

Our purpose is to improve representation performance 

of insect pest images by using attention mechanism: 

focusing on important features and suppressing unnecessary 

ones. Furthermore, it was found that the insect targets in 

images have many poses and even occupy small area in the 

whole image, which makes it difficult to focus on important 

insect features during model learning. To achieve this, we 

sequentially apply STN network to locate the region of pest 

target and a novel Split-Attention block to improve the 

learned feature representations to boost performance across 

image classification. 

The main contributions of this study include:  

 An insect pest dataset containing 58 pest species  

from garden and forest was constructed and could be access 

by the public. 

 We proposed a cascaded yet effective attention  

architecture that can be applied to improve image 

representation power.  

 The effectiveness of our attention architecture  

was validated through extensive comparisons on different 

scale datasets. 

II. RELATED WORK 

An important phenomenon of the human visual system is 

that one does not attempt to process a whole scene at once. 

Instead, human selectively focus on the salient parts in order 

to capture visual information better, which is the attention 

mechanism in the human visual system. Recently, the 

mechanism is also incorporated into CNNs in large-scale 

classification tasks. From the perspective of attention 

domain, the implementation of attention mechanism can be 

divided into three types: spatial domain, channel domain 

and mixed domain. 

A.  ATTENTION MECHANISM IN SPATIAL DOMAIN 

In object classification using digital images, especially, for 

the similar species, discriminative information is always 

reflected in certain regions while the other regions contain 

much redundancy, which makes object recognition an 

extremely difficult computer vision task. For solving this 

problem, many recent studies develop models on the 

attentional regions, rather than the whole scenes [14, 19]. 

The attention mechanism in spatial domain is based on 

the spatial position of feature map without distinguishing 

the influence brought by channels. Although attentional 

regions can be learned using deep neural networks, it is hard 

to train with only class information because they have to 

simultaneously complete two difficult tasks (i.e., region 

localization and recognition). To overcome this difficulty, 
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Jaderberg et al. [20] proposed a Spatial Transformer 

Network (STN) which can be included into a standard 

neural network architecture to provide spatial 

transformation capabilities. This model allows networks to 

not only select regions of an image that are most relevant 

(attention), but also to transform those regions to a 

canonical, expected pose to simplify recognition in the 

following layers. Inspired by the classical non-local means 

method, Wang et al. [21] presented non-local operations 

which compute the response at a position as a weighted sum 

of the features at all positions. Besides categorical labels, 

the study proposed by Chen et al. [22] requires another 

ground truth, the facial landmarks, which is quite unique for 

face detection. In this study, we only use class labels as 

ground truth.  

B.  ATTENTION MECHANISM IN CHANNEL DOMAIN 

The input image will become a tensor after the convolution 

transformation with the number of output channels, which 

is equivalent to the decomposition of the original image, and 

each channel is the component of the original image on 

different convolution kernels. In contrast to the spatial 

domain, the channel domain focuses on the weighting of 

different channels, regardless of the location difference of 

each pixel in the channel. 

Instead of seeking to strengthen the representational 

power of a CNN by enhancing the quality of spatial 

encodings throughout its feature hierarchy, Hu et al. [17] 

proposed a compact module, SE block, to exploit the inter-

channel relationship, which introduces attention mechanism 

from channel dimension. The SE block obtains the weight 

of importance of each feature channel and assigns the 

weight to each feature channel respectively. This design 

makes the neural network focus on some feature channels, 

that is, promoting the feature channels that are important to 

the current task and suppressing others that are of little use 

to the current task. Xie et al. [23] adopted group convolution 

in the ResNet bottle block, which results in a homogeneous, 

multi-branch architecture. Li et al. [24] proposed a dynamic 

selection mechanism in CNNs that allows each neuron to 

adaptively adjust its receptive field size based on multiple 

scales of input information. More close to our work, Zhang 

et al. [25] generalized the channel-wise attention into 

feature-map group representation, which can be 

modularized and accelerated using unified CNN operators. 

C.  ATTENTION MECHANISM IN MIXED DOMAINS 

The works based on channel domain are short of the 

mechanism of spatial attention which plays an important 

role in deciding ‘where’ to focus in an image recognition 

task. Therefore, some researchers provide interesting 

studies about the combined use of spatial and channel 

attention. Woo et al. [26] exploited both spatial and channel-

wise attention based on an efficient architecture and 

empirically verify that exploiting both is superior to using 

only the channel-wise attention. Building long-range 

dependencies is helpful in most classification tasks using 

computer vision techniques. Like CBAM [26], NLNet [21], 

SENet [17] build interdependencies among the channel 

dimensions introducing spatial attention mechanisms or 

designing advanced attention blocks. Another way to model 

long-range dependency is to exploit convolutional operators 

with large kernel windows. Liu et al. [27] presented SCNet, 

which is able to heterogeneously exploit the convolutional 

filters nested in a convolutional layer and adaptively builds 

long-range spatial and inter-channel dependencies around 

each spatial location. Inspired by the previous methods, in 

this study, we exploit a new attention approach by 

combining spatial transformer module and improved 

ResNest block to construct a create a simplified network for 

recognition of insect pest. 

III. PRINCIPLE OF THE PROPOSED METHOD 

A. INSECT IMAGE DATASET 

In the current study, it involved three insect image datasets. 

In the first dataset, images were captured using NIKON 

D200 cameras at different locations in suburb of Beijing, 

China. A total of 58 types of insects, including 7344 images, 

were collected and this dataset is named as the proposed 

dataset. Figure 1 shows 10 geographical locations and their 

insect sample images of the proposed dataset. All images in 

the proposed dataset and code are available from the 

corresponding author on reasonable request. The other two 

datasets are public image sets. One was reported by Li et al. 

[28], which includes 10 categories and a total of 5629 

images. Some samples in the Li’s dataset are shown in Fig. 

2. The other one (IP102) was from the literature [29], 

including 102 types of field crops pests and a total of 75222 

images. Some insect images in the IP102 dataset are shown 

in Fig.3. As a result, three datasets representing different 

sizes were constructed to evaluate the performance of the 

proposed model. The detail of the three datasets is 

summarized in Table 1. 

TABLE 1. Composition and comparison of the three datasets. 

Dataset names Number of 
species 

Average image 
numbers per 

species 

Total 
images 

Li’s dataset 10 563 5629 
Proposed dataset 58 126 7344 

IP102 dataset  102 737 75222 
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FIGURE 1.  Diagram of image collection locations and samples of pest 

in theproposed dataset. 

 

FIGURE 2.  Ten image samples in the Li’s dataset [30]. 

FIGURE 3.  Ten image samples in the IP102 insect dataset [29]. 

B. DATA PREPROCESSING 

To expand the image quantities to adequately train the 

models, a set of online transformations was used to produce 

extra images from the original datasets in this study. Unlike 

offline augmentation methods which were implemented by 

processing the whole dataset directly before training a 

model, online data augmentation divides the training data 

into multiple batches and input to the model batch by batch, 

co-trained with the target learning task This online method 

is both more efficient, in the sense that it does not require 

expensive offline training when entering a new domain, and 

more adaptive as it adapts to the learner state [31]. Generally, 

it is often applied to augmentation of large-scale datasets, 

which has been supported in many deep learning 

frameworks and can be optimized by using GPU 

calculations. 

Furthermore, to fairly compare the results between 

different methods, the strategies of data preprocessing in 

this study were kept consistent with the previous methods. 

For Li’s and the proposed datasets, they were preprocessed 

using the online augmentation to improve the generalization 

ability of the model, And the large-scale dataset was not 

processed for the data expansion [32].  

 

C. THE PROPOSED MODEL  

The residual network, ResNet, is widely used since its skip 

connections between different layers. This superior design 

can transmit the input signal to the higher layer from any 

lower layer, which solves model degradation problem 

caused by the increase in the number of convolutional layers. 

However, the ResNet network lacks cross-channel 

interaction, so that there are many improvements on it. SE-

Net [33] uses a cross-channel attention mechanism on the 

residual block, which makes the focus of traditional CNN 

from the global information to the local feature. ResNext 

[34] uses the idea of grouping convolution to put different 

channels into different groups, so that each group focuses 

on different features, and then the results from the groups 

were merged. Compared with ResNet, the ResNext 

achieves a trade-off between global and local features. The 

latest ResNest [35] network is also one of ResNet’s variants, 

which combines the characteristics of SENet and ResNext, 

and achieves state-of-the-art performance in classification, 

detection, and segmentation tasks simultaneously. 

The channel attention mechanism in ResNest network 

helps it to assign corresponding weights to the feature maps   

obtained by different convolution kernels, so as to it can 

focus on the features of interest. However, the complex 

background of field pests may still mislead the model to pay 

attention to features that are not related to pest itself. 

Therefore, the spatial transformer network(STN)[36] which 

allows the model to learn the importance of different spaces 

was introduced into the proposed method to locate the 

object in the image. As shown in Fig. 4, a pest recognition 

model was proposed in this study by combining channel and 

spatial attention mechanism. 

In the proposed model, the input image firstly was 

processed through an STN network based on affine 

transformation described in Equation (1) to locate the 

region of interest (RoI), which realized a spatial 

transformation capabilities and attention mechanism. As 

shown in Fig. 4, three convolutional layers and two fully 

connected layers are used as the localization network in 

STN to obtain the affine transformation matrix 𝐴𝜃 . The 

generator calculates the coordinate value of each position in 

the output map,𝑇𝜃(𝐺), and the sampler perform sampling in 

the original image according to the coordinate information 

in 𝑇𝜃(𝐺). A RoI image is obtained after copying the pixels 

of the original image to the output image. The number of 

channels between input and output image is the same in the 

spatial attention network, but the RoI image will focus on 

key areas. The image transformed by the spatial attention 

mechanism is then input the improved ResNest network 

which integrates the cross-channel attention mechanism 

through multiple Split-Attention Block modules. Finally, 
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the fully connected layer achieves accurate recognition of 

multiple types of pests.  

[
𝑥′

𝑦′

1

] = 𝐴𝜃 [
𝑥
𝑦
1

] = [

𝑎1 𝑎2 𝑡𝑥

𝑎3 𝑎4 𝑡𝑦

0 0  1

] [
𝑥
𝑦
1

]          (1) 

Here, 𝐴𝜃  is an affine transformation matrix, 𝑡𝒙 , 𝑡𝒚 
represent the amount of image translation, and the 
parameter 𝑎𝒊  (i=1,2,3,4) reflects the changes in image 
rotation, scaling, etc. 

Then, the output of spatial attention operation is 

processed by the improved ResNest50 network. In this 

study, this channel attention network is composed of 16 

split-attention modules, as shown in the orange box in Fig. 

4. The insect pest image firstly is processed through a 7×7 

convolutional layer, and then the channel attention module 

performs feature extraction on insect images. Unlike 

ResNest, it does not need to pool the information of all 

channels in the feature map at once. Instead, the feature map 

is divided into multiple Cardinals by channel, then 

concatenating multiple groups in Cardinal at the channel 

level, and performing global average pooling on the feature 

map after concatenation. In fact, through grouping 

convolution, the association between different feature maps 

is reduced, the differences between feature maps are more 

apparent, and ultimately the complementary feature maps 

are obtained. 

As shown in Fig.5, each Split-Attention Block module 

consists of a set of group convolution. The input feature 

maps are divided into K cardinals, and each cardinal is 

divided into R groups, so there is a total of 𝐺 = 𝑘 ⋅ 𝑅 

feature map groups. In the improved ResNest network, the 

self-calibrated convolution [27] was introduced to replace 

the second convolution layer in each group. Unlike the 

common convolutions that extract spatial and channel-wise 

information using small kernels (e.g., 3 ×  3), the self-

calibrated convolution adaptively builds long-range spatial 

and inter-channel dependencies around each spatial location 

through a novel self-calibration operation, which can help 

CNNs generate more discriminative representations by 

explicitly incorporating richer information. 

After applying the corresponding transformation into 

each group {𝑓1, 𝑓2, …，𝑓𝐺}, The intermediate result is：𝑈𝑖 =

𝑓𝑖(𝑥), ⅈ ∈ {1,2 …，𝐺}. After fusing the intermediate result 𝑈𝑖, 

global information is obtained through global average 

pooling, and different groups are given with different 

weights through the Dense layer (Fig.6). The importance of 

each channel is automatically obtained by model learning. 

According to this importance, the useful features are 

enhanced and the other ones are suppressed. 

 By combining the spatial attention mechanism 

network STN with an improved ResNest50 backbone 

network, the impact of complex background on 

classification is reduced, and the ability of feature 

representation for large-scale insect dataset images is 

strengthened, thereby improving the recognition 

performance on the insect datasets.  

 

 

FIGURE 4.  The framework structure of the proposed model. 

IV. RESULTS 

In this section, the performance of different models on the 

three datasets was evaluated and compared. The experiment 

was implemented on the PyTorch deep learning framework 

(https://pytorch.org/) and windows10 operating system with 

https://pytorch.org/
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RTX2080Ti 11GB GPU hardware platform 

(https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-

2080-ti/). The cross-entropy loss function (loss) and the 

average accuracy (acc) was used to train and evaluate the 

models, respectively. They are calculated as followed: 

𝑙𝑜𝑠𝑠 = − ∑ 𝑦𝑖 𝑙𝑜𝑔(𝑃𝑖)𝑖           (2) 

𝑎𝑐𝑐 =
𝑁𝑢𝑚𝑏ⅇ𝑟  𝑜𝑓 𝑖𝑛𝑠ⅇ𝑐𝑡𝑠 𝑝𝑟ⅇ𝑑𝑖𝑐𝑡ⅇ𝑑 𝑐𝑜𝑟𝑟ⅇ𝑐𝑡𝑙𝑦

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑖𝑛𝑠ⅇ𝑐𝑡 𝑠𝑎𝑚𝑝𝑙ⅇ𝑠
      (3) 

where 𝑦𝑖   is the category label, 𝑃𝑖   is the probability that 

the predicted category of the network output is ⅈ. 

A. MODEL FINE-TUNING 

The model hyperparameters are closely related to the model 

performance. In current study, the model hyperparameters 

were tuned by setting different gradient in multiple 

experiments. In terms of model learning rate, three 

gradients of 0.01, 0.001, and 0.0001 were constructed, and 

the training optimizer was chosen between Stochastic 

Gradient Descent(SGD) plus momentum and Adam [37]. In 

the recognition experiment of the proposed dataset, the 

feature extraction layer of the pre-trained model was fine-

tuned, and the fully connected layer of the original model 

was replaced with 58 neurons. To avoid overfitting, dropout 

[38] was employed into models and set to 0.3. The input 

image size was fixed to 224×224 pixels, and the data set was 

randomly divided into training dataset and test dataset at a 

ratio of 7:3. The fine-tuned results of the five models: 

AlexNet, VGG19, GoogleNet, ResNet50, and ResNest50 

are shown in Fig. 7. 

 

FIGURE 5.  The composition of the Split-Attention Block module. 

 

FIGURE 6.  The detailed structure of each Cardinal group [25]. 

 

FIGURE 7.  Performance comparison of models on different parameter 

combinations. 

 

FIGURE 8.  Comparison of the recognition performance of multiple 

models on self-built data sets. 

 

By comparing the fine-tuned results with different 

optimizers and learning rate, it was found that all models 

achieved the best recognition accuracy when the Adam was 

used and initial learning rate was set to 0.0001. Among them, 

ResNest50 reached the highest accuracy rate of 96.86%. 

https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
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Therefore, we applied these optimal parameters into the 

proposed model, and then it was trained on the three 

datasets to obtain the best recognition model, respectively. 

B. MODEL PERFORMANCE  

Firstly, the recognition results of the proposed model are 

compared with five CNN models on the proposed dataset. 

As shown in Fig.8, the proposed method achieves the 

highest accuracy rate of 96.51%, which is an improvement 

of 0.64% compared to the original ResNest50 model. The 

lowest recognition accuracy rate is obtained by AlexNet, 

which only reached 88.26%. The accuracies of other three 

models, VGG19,  

 

FIGURE 9.  The insect target is focused and corrected after STN. 

 

FIGURE 10.  The results of the proposed model for different resolution 

image data recognition experiments. 

GoogleNet and ResNet50 are similar around 95%. 

Insects in field images are often accompanied with 

complex background, so the recognition network is easy to 

be misled by the background when it extracted image 

features. In addition, the insect postures and sizes in the 

images are different because of the various distances and 

angles when they are photographed in the field, which 

increases the recognition difficulty. In this study, a STN 

structure was trained to locate and correct the insect target. 

Fig.9 shows the results of the STN procedure. As illustrated 

in this figure, there are complex background in the original 

input images, and the insects have different posture and size 

(the first column in Fig.9). After processed by the STN 

module, the insect targets are highlighted and adjusted 

while the image size keeping unchangeable (the third 

column in Fig.9). In this way, a spatial localization and 

attention mechanism is integrated into the proposed model, 

which reduces the probability of being misled by the 

background, thus improving the recognition accuracy.  

C. MODEL ROBUSTNESS 

1) THE INFLUENCE OF IMAGE RESOLUTION ON 

MODEL PERFORMANCE 

Field images from different sources often have different 

image resolutions, so analyzing the model performance on 

images of different resolutions helps to select the best image 

resolution in practical tasks. In the current study, 466 

images from 10 insect categories in the proposed dataset 

were randomly selected, and the highest resolution 

7360×4912 pixels in this dataset is used as a benchmark to 

design six different gradients: 7360×4912, 2453×1637, 

818×545, 600×401, 400×267, 273×182 pixels. 

Subsequently, six image datasets with different image 

resolution are constructed to evaluate the model 

performance. 

The results of recognition accuracy and time are 

illustrated in Fig.10. It is found that that the recognition 

accuracies of all datasets with different image resolutions 

were over 92%, which indicated the proposed method had a 

good robustness on image resolution. In addition, the 

recognition time witness a downward trend as the image 

resolution decreased. However, the model recognition 

accuracy has not the similar results with the recognition 

time. In particular, the recognition accuracy reached the 

highest value of 95.06% when the resolution was 400×267 

pixels, and the lowest accuracy of 92.27% is achieved on 

the image dataset of 273×182 pixels in resolution.  

2) MODEL PERFORMANCE ON DIFFERENT DATASETS 

To evaluate the model performance on different-scale pest 

datasets, the IP102 and Li’s datasets described in section 2 

were also tested by the proposed method.  

In the test of the two datasets, all preprocessing 

methods are consistent with the ones described in original 

publications. For instance, the parameters of all pre-trained 

models were fine-tuned without data augmentation for 

IP102 dataset. However, the parameters of all pre-trained 

models were frozen on Li’s dataset, and online data 

enhancement including randomly flipping and cropping the 

image was implemented to train the model. The recognition 

results of six models on the IP102 and Li’s datasets are 

shown in Fig. 11 and Fig.12, respectively. It can be found 

that the proposed model achieved the highest recognition 
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accuracy of 73.29% on the IP102 dataset, which is 1.32% 

higher than the second highest model, ResNest50. However, 

the results of VGG16, GoogleNet and ResNet50 model are 

pretty close and approximately 69%, and the lowest 

recognition accuracy of 58.81% is reached by the AlexNet 

model. Likewise, as shown in Fig.12, the highest 

recognition accuracy of 96.78% is obtained by the proposed 

model in the test of Li’s dataset, while the recognition 

results of VGG16, ResNet50 and ResNest50 are similar 

(about 95%). The lowest accuracy of 91.02%, however, is 

obtained by the GoogleNet model, which is approximate to 

the result of AlexNet model. 

The comparison between Fig.11 and Fig.12 shows  

 

FIGURE 11.  Classification performance of different models on the 

IP102 dataset. 

 

FIGURE 12.  Classification performance of different models on the Li’s 

dataset. 

that the recognition accuracy of all models on the Li’s 

dataset exceeded 90%, however, for the IP102 dataset, the 

recognition accuracy of these models is less than 75%. To 

further illustrated the recognition performance of the 

proposed method visually, the classification confusion 

matrixes on the three datasets are plotted in Fig.13. The 

diagonal elements of the confusion matrix represent the true 

positives, and the rest of elements in rows mean the false 

positives of classification. Overall diagonal elements in this 

figure showed the maximum values as expected. However, 

compared with the proposed and Li’s dataset, more small 

numbers were found at non-diagonal elements on the IP102 

dataset, which also showed that the recognition 

performances of the proposed method on Li’s and proposed 

datasets are better than that on IP102 dataset. Figure 14 

shows some similar insect images of different species from 

the IP102 dataset. The two images in the same column 

represents two different insect species, but there are similar 

appearance features, which is one of main reasons to cause 

the relative low recognition accuracy on IP102 dataset. 

(a) Li’s dataset                        (b) Proposed dataset                           (c) IP102 dataset 

FIGURE 13.  The normalized classification confusion matrix of classification on the three datasets: (a) Li’s dataset, (b) Proposed dataset, (c) IP102 

dataset. 
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(a) army worm          (b) wireworm      (c) rice water weevil     (d) rice leaf caterpillar 

         

(e) english grain-aphid (f) white margined moth (g) Sternochetus frigidus (h) rice leaf roller 

FIGURE 14.  Samples of different insect species with similar features. 

V. DISCUSSION 

A. MODEL ARCHITECTURE 

By comparing the results with other models on IP102, 

proposed and Li’s datasets, the excellent performance of the 

proposed method was proved. Spatial attention mechanism 

helps the model more accurately locate the insect target in 

the image with complex backgrounds, and the channel 

attention mechanism contributes the extraction of 

discriminant features in the proposed model. Fig.15 shows 

the visualization results of the key areas that the model 

focuses on during species recognition and prediction. it is 

found that most insect areas in most images can be 

accurately located, which helps to improve the recognition 

performance of the proposed model. However, some images 

in the IP102 dataset are not well positioned, such as the 

image in row 2, column 4. The target in the image is a piece 

of insect egg, which was not located accurately by the 

model. The image quality of most images in the IP102 

dataset is relatively worse, including advertising words, 

blurry target and so on. All these factors bring challenges to 

the recognition model on the IP102 dataset. However, the 

proposed method still achieved a new benchmark of 73.29% 

on this dataset.  

 
FIGURE 15.  The key areas that the model focuses on during image 

processing. 

 

FIGURE 16.  Location results of the models with and without STN 

network on the IP102 dataset. 

The proposed method improves the recognition 

performance by incorporating a spatial attention mechanism 

into the improved ResNest50 network. The visualization 

results of the attention regions (Fig.16) in the recognition 

procedure on the IP102 dataset shows that the model can 

focus on the target more effectively under the spatial 

attention mechanism, and the classification feature is more 

dependent on the insect itself rather than the surrounding 

background. 

B. THE EFFECT OF IMAGE RESOLUTION ON MODEL 

PERFORMANCE 

The experimental results in Fig.10 shows that the 

classification performance of the proposed model reaches 

the highest value when the image resolution is 400×267 

pixels. This result is not consistent with our intuition—the 

higher the image resolution is, the easier the insect in the 

field image is recognized. Actually, the result in current 

study shows the higher image resolution does not mean the 

better classification performance. Instead, it spends more 

time in the image processing. The possible reason is that the 

image needs to be scaled to 224×224 pixels before being 

input to the model. The higher the image resolution, more 

serious the image is distorted and more information will be 

lost when it is compressed to a fixed resolution, which 

causes inaccurate features extraction. On the other hand, the 

insect target in an image with pretty low resolution is blurry, 

which causes fine-grained features are hard to be extracted 

by the model, so the classification performance on the low-

resolution (273 × 182) image dataset is also not good. 

C. COMPARISON WITH PREVIOUS STUDIES 
Fig.11 and Fig.12 show the performance of different models 

on two public datasets (the IP102 and Li’s datasets). For the 

IP102 dataset, Wu et al. [32] extracted manual features and 

deep features and fine-tuned ResNet50 to reach the highest 
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accuracy rate of 49.7%, while the proposed method 

achieved a 4.35% improvement compared to the previous 

result. Li et al. [30] fine-tuned GoogleNet model to classify 

10 types of pests, achieved 93% accuracy in the Li’s dataset, 

which is lower than the result (96.78%) of the proposed 

method. Three pre-trained CNN models were used to 

integrate into a model, and achieved 67.13% classification 

accuracy on the IP102 dataset [39], while the proposed 

model achieved 73.29%. Nanni et al. [40] proposed a 

classifier by the fusion between saliency methods and 

convolutional neural networks and the classification 

accuracy on the IP102 dataset is 61.93%, which is 11.36% 

lower than that of the proposed model. Therefore, all 

comparisons show the proposed method reaches the state-

of-the-art accuracy on the three different-scale datasets and 

provides a novel approach for the recognition of insect 

images under complex background in field. 

On the other hand, although the proposed model 

achieves a new benchmark of 73.29% on the IP102 dataset, 

it is much lower than that on Li’s dataset. The reasons may 

include two aspects: one is the fine-grained differences 

between many similar insect species and low image quality 

in the IP102 dataset, as shown in Fig.14, and the other one 

is the long-tail effect of the dataset, which means insect 

categories with huge sample sizes have received more 

attention from the model in the IP102 dataset, while rare 

categories are often under-focused. So, the two aspects are 

the difficulties needed to be conquered to further improve 

the model performance in the future. 

D. COMPARISON WITH ATTENTION-RELATED 

MODELS AND ABLATION EXPERIMENTS 

In order to further demonstrate the performance of the 

proposed model in this study, it was also compared with the 

other attention mechanism model on the IP102 dataset. 

Furthermore, the ablation experiment was conducted to 

prove the effectiveness of the spatial attention mechanism. 

Table 2 lists the recognition performance of different 

models on IP102 insect data sets, as well as the calculation 

consumption and the inference time on the test dataset. It is 

found that the proposed method has better performance than 

SE-Net with channel attention mechanism and SA-Net and 

CBAM with both spatial and channel attention mechanisms. 
However, the proposed method needs the highest floating-

point operations (FLOPs) in image recognition, which 

means it has the highest model complexity. The testing time 

of the four attention-related models on the test dataset is 

approximate. 

TABLE 2. Comparison different advanced methods’ performance on the 
IP102 dataset, including some models with attention mechanism and 
ablation experiments on spatial attention mechanism. 

MODELS ACCURACY FLOPS TEST 

TIME 
 

ALEXNET [41] 58.81% 657.85M 2M 6S  
GOOGLENET [42] 69.59% 2.85G 2M 33S  

RESNET50 [43] 
VGG19 [44] 
SE-NET [17] 
DENSENET121[45] 
RESNEXT [46] 
RESNEST50 [25] 
SA-NET [47]   
CBAM [26]           

68.84% 
68.80% 
69.72% 
67.39% 
71.59% 
71.97% 
70.78% 
69.75% 

4.12G 
19.58G 
4.12G 
2.88G 
4.26G 
5.41G 
4.12G 
4.12G 

2M 31S 
2M 56S 
2M 17S 
3M 31S 
2M 39S 
2M 42S 
2M 46S 
2M 48S 

 

STN-ALEXNET 
STN-GOOGLENET 
STN-RESNET50 
STN-VGG19 
STN-SE-RESNET50 
STN-RESNEXT 

59.07% 
69.61% 
69.23% 
68.62% 
69.84% 
72.12% 

697.04M 
2.89G 
4.16G 
19.62G 
4.16G 
4.3G  

2M 6S 
2M 27S 
2M 33S 
2M 56S 
2M 17S 
2M 11S 

STN-DENSENET121 
THE PROPOSED 

MODEL 

70.25% 
73.29% 

2.92G 
5.45G 

3M 48S 
2M 45S  

In the ablation experiments, it is found that the STN 

module can improve the performance of these models listed 

in table 2 by different extents. For example, the best result 

is STN-DenseNet121, which has an improvement of 2.86% 

compared to the original model. The experiments show the 

STN module can provide a spatial attention mechanism to 

reduce the impact of image complex backgrounds. However, 

the metric, FLOPS, indicates that the models with STN will 

increase the computational load. 

V. Conclusion 

This study proposed a pest recognition framework by 

integrating spatial and channel attention mechanism based 

on STN and ResNest50 networks. A medium-scale dataset 

collected manually and other two public datasets (Li’s and 

IP102) were constructed to  

evaluate the proposed model. The experimental results  

showed the proposed method outperformed other five  

classic models and three attention-related state-of-the-art  

methods, and reached a new benchmark of 73.29% on the  

IP102 dataset. Moreover, an optimal  

image resolution of 400×267 pixels was determined after  

multiple experiments using six datasets of different image  

resolutions. The results show the proposed model has great  

potential in pest recognition in agricultural field. In the  

future, more attention should be paid to solve the fine- 

grained insect identification and the effects from long tail  

distribution of insect datasets. 
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