
Journal of Computer and Communications, 2020, 8, 114-126
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2020.84009 Apr. 30, 2020 114 Journal of Computer and Communications

Learning to Support Derivation of Adaptable
Products in Software Product Lines

Anissa Benlarabi*, Amal Khtira, Bouchra El Asri

IMS Team, ADMIR Laboratory, Rabat IT Center, ENSIAS, Mohammed V University Rabat, Morocco

Abstract
Software product line engineering is a large scale development paradigm
based on mass production. It consists in building a common platform from
which a set of products can be derived. Under the constraints of continuous
evolution and costs optimization, the derivation process must be able to an-
swer customers’ requirements and provide adequate products in a short time
without defects. However, this purpose cannot be achieved if the customer
must wait for the change is implemented in the common platform. In this
paper, we describe our work which proposes a framework to manage deriva-
tion of adaptable products. An adaptable product is obtained by deriving the
most similar product from the common platform and changing it to support
the new requirements. The aim of the framework is to give quick response to
the customers need while the new requirements are being implemented in the
common platform. The framework includes tools for processing natural lan-
guage requirements, computing the similarity between products on the basis
of their requirements, and the product adaptation effort measuring.

Keywords
Software Product Lines, Requirement, Similarity, Product Derivation, Natural
Language Processing, Semantic Models

1. Introduction

The Software Product Line Engineering (SPLE) [1] is an approach that aims at
creating individual software applications based on a core platform, while reduc-
ing the time-to-market and the cost of development. Many SPLE-related issues
have been addressed both by researchers and practitioners, such as variability
management, product derivation, reusability, etc. The focus of our work will be
on products derivation in evolvable software product lines (SPL).

How to cite this paper: Benlarabi, A.,
Khtira, A. and El Asri, B. (2020) Learning to
Support Derivation of Adaptable Products in
Software Product Lines. Journal of Comput-
er and Communications, 8, 114-126.
https://doi.org/10.4236/jcc.2020.84009

Received: February 17, 2020
Accepted: April 27, 2020
Published: April 30, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2020.84009
https://www.scirp.org/
https://doi.org/10.4236/jcc.2020.84009
http://creativecommons.org/licenses/by/4.0/

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 115 Journal of Computer and Communications

The classic derivation of products in software product lines consists in select-
ing features from the core platform and deriving a product using the existing
software components. As a result, products cannot be adaptable to new require-
ments and cannot support new features unless the new requirements will be im-
plemented in the level of the core platform. However, the evolution of the core
platform can be costly and time consuming. Our study aims at finding a solution
to the problem of deriving adaptable products while the implementation of new
requirement is in progress, the objective is to provide a product that meets a
customer’s new requirements the earliest possible without waiting for their im-
plementation at the platform level.

Our approach allows formalizing the representation of the existing require-
ments and also the existing products, the new requirements are expressed in the
same way. Based on these representations, a set of algorithms are proposed to
compare the new requirements with the existing ones in order to identify the
most similar product. Therefore, the decision to adapt the selected product in
response to the new requirements will be taken depending on the similarity level
and the complexity of the adaptation task. An automated tool will be developed
and verified using a case study in the mobile domain.

The remainder of the paper is organized as follows. Section 2 presents the
background and the motivation. In Section 3, we define our approach. In Section
4, we describe the automated tool. Section 5 presents related works and Section 6
concludes the paper and gives the work perspectives.

2. Background and Motivation

In this section, we introduce the background of this study. We start by intro-
ducing the SPL engineering paradigm and the SPL evolution challenges, then we
focus on the challenge of delivering products that respond to new business needs
quickly until they are implemented in the SPL platform.

2.1. Software Product Lines

The software product line engineering consists on building a common platform
for a set of products dedicated for a specific business domain [1]. The main ad-
vantage of the software product line engineering is the improvement of the
productivity by reducing the time to market and the costs [2]. By using software
product lines (SPL) customers will get products adapted to their needs and
wishes at a reasonable price and a short time.

Software product line engineering encompasses two engineering processes.
The first process is the domain engineering in which the common platform is
developed including the requirements, the design, the realization and testing.
The second process is application engineering in which the products of the fam-
ily are derived from the common platform [2].

Evolution of software product lines is a complex task because it has two levels:
the level of the products and the level of the platform, the requirements changes

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 116 Journal of Computer and Communications

must be propagated in the two levels which requires a well understanding of the
change and its impact. Due to the complexity of SPL evolution, much research
was done to deal with SPL evolution issues, we present here some of them:

Modelling Evolution [3] [4] [5]: The objective of modelling evolution is to
give a set of controlled and rigorous tasks to implement the change. Hence, the
evolution is separated into a set of atomic operations independent from each
other performed on a set of evolvable elements.

Traceability of the change [6] [7] [8]: The traceability approaches identify and
trace existing links between the platform assets and also the links between the
platform assets and the assets of the derived products. The goal is to make the
evolution easier by determining how to propagate a change in a set on linked
elements.

Co-evolution of domain and application engineering [9] [10]: this field of re-
search focus on how the domain and the application processes evolve together
and try to find changes that were implemented in one level in order propagate
them to the other level.

Post-evolution verification [4]-[10]: The verification approaches study the risk
of breaking the integrity of a software product line after changing it. They aim at
improving the safety of software product line evolution by providing a toolset
for checking if after refinement the software product line still generates
well-formed products.

Model defects analysis: the approach dealing with model defects in SPL try to
find defects caused by evolution such as inconsistency [5], incompleteness [11],
ambiguity [11], and duplication [12] [13]. They also propose solutions to correct
these defects. The majority of them focus on the feature level.

In our previous work [3], we proposed an approach to study the co-evolution
between the platform and the derived products in order to correct the previous
shortcomings in the evolution impact analysis tasks. In this paper we deal with
evolution otherwise, we try to give quick response to a customer new require-
ments by selecting the most similar product to its needs and studying the cost of
adapting it to support the requirements that are not implemented in the software
product line platform. On the basis of the study, this solution can be adopted in
agreement with the customer while waiting for the SPL change achievement.

2.2. Requirements Similarity Analysis

The concept requirement can be defined as follow:
“A condition or capability needed by a user to solve a problem or achieve an

objective” [IEEE610.12-1990].
Requirements are the basis for every system, defining what the customers

need from the system and also what the system must do in order to satisfy that
need. They are generally expressed in natural language (NL), the language un-
derstood by all the software stakeholders. Requirement engineering [14] includes
four principal activities: elicitation, documentation, validation and negotiation,

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 117 Journal of Computer and Communications

and management [15]. Evolution of software product lines is expressed through
requirements. Hence, the majority of works deal with evolution in the require-
ments or feature levels. In front of new requirements, the SPL analysts can
choose one of the following scenarios to satisfy the customer needs:
• Implement the new needs at the domain level: customer must wait for the

change implementation, then the desired product can be derived
• Study the possibility of adapting the existing products: in this case the most

similar product is selected, we mean by the most similar product the one
which supports the maximum of intended requirements. The product can be
adapted and delivered while the new requirements are added in the domain
level.

The response time is the inconvenience of the first scenario. For this reason
we adopted in this paper the second scenario. In further sections, we describe
our approach for similar product selection and adaptation in evolvable software
product line.

3. Approach Description

The objective of our work is to provide the product that can satisfy customers
even if the customer requirements are not completely supported by the software
product line. The decision of adapting the products or implementing the mod-
ification in the platform is taken by stakeholders depending on the complexity of
the modification. The solution proposed consists of a three-process framework.
The first process consists in transforming the requirements into a formal pres-
entation, the second process consists in selecting the most adequate product by
comparing the new requirements with the existing products requirements, and
the third process involves the measurement of the adaptation complexity. The
overview of the framework is depicted in Figure 1. In what follows, we will ex-
plain in details the framework processes.

3.1. Process 1: Formalization of NL Requirements

The requirements related to a product are documented using natural language
because it is the easiest way for customers to express their needs. This way of
modeling does not enable the comparison of these requirements with the old

Figure 1. Overview of the approach.

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 118 Journal of Computer and Communications

ones because the software product line platform support a great number of re-
quirements. Thus, a formal representation is necessary.

We adopt Natural Language Processing (NLP) approach to transform a tex-
tual requirement into a tree-model. NLP is a technology of computer science
whose aim is to convert text in natural language into a formal representation
understandable by computers, it includes information extraction and syntax and
semantic processing. However, a complete semantic analysis is still a subject for
research.

The main NLP tasks are:
• Words extraction and text representation: aims at extracting terms (verbs,

nouns, …) from a text and representing them into a vector.
• Part-Of-Speech Tagging (POS): aims at labeling each word with a unique tag

that indicates its syntactic role.
• Chunking: aims at labeling segments of a sentence with syntactic constituents

such as noun or verb phrase (NP or VP).
• Semantic Role Labeling (SRL): aims at giving a semantic role to a syntactic

constituent of a sentence.
In our work we focus on the two first tasks, semantic analysis will be done in

the second process. We formalize NL requirements using NLP techniques as de-
picted in Figure 2.
• Sentence Detector: enables the separation of sentences by putting each sen-

tence in a different line.
• Tokenizer: divides each sentence into tokens (e.g. noun, verb, number).
• Parser: converts the sentence into a tree that represents the syntactic struc-

ture. Each word of the sentence is marked with a POS tagger (Part of-Speech
tagger) that represents the role of this word in the English grammar.

3.2. Process 2: Identification of the Most Similar Product

Finding similar products consists in comparing the new requirements with the
existing ones, the product which contains similar requirement is considered as a
candidate product, the decision of taking the product among the proposed solu-
tions depends on his similarity level and adaptation complexity.

In the literature the similarity between requirements is studied using the vec-
tor space model (VSM) [16]. In VSM, a requirement is represented as a vector of

Figure 2. Process of NL requirement formalization.

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 119 Journal of Computer and Communications

identifiers or terms. This linear representation induces to many semantic analy-
sis problems such as polysemy (same term that have different sense) and syn-
onymy. For example we consider the two following sentences.
• S1: user must be able to collect prospects data by phone or from external da-

tabases.
• S2: the prospecting process starts by gathering information by telephone or

from other information sources.
The two sentences S1 and S2 means the same thing, however if we consider

their linear representations S1 (user, collect, prospects, data, phone, external,
databases) and S2 (prospecting, process, start, gathering, information, telephone,
other, information, sources). The two sentences are not similar. Hence, we
adopted the hierarchical semantic representation of sentences as depicted in
Figure 3.

The semantic hierarchy of terms in two tree models shows more clearly the
similarity between the two sentences. In what follows we present the semantic
tree model and the similarity calculation method using the tree model.

3.2.1. Semantic Tree Model
We define a semantic tree model as a hierarchical classification of a domain
concept. In order to build such model for requirements we must have a taxono-
my of the software product line business domain. A taxonomy is a set of con-
cepts with PartOf or InstanceOf relations between them. In the software product
lines domain, a taxonomy refers to a classification of domain concepts or fea-
tures related with InstanceOf relations. The semantic tree of requirement is con-
structed on the basis of its syntax tree resulted from the requirements NLP
processing and the SPL domain taxonomy. In the rest of this section we define
the SPL domain taxonomy and the semantic tree model.

1) Taxonomy of SPL business domain
A taxonomy Tx is defined as a set of concepts and Instanceof/partOf rela-

tions between them (),Tx Fx Rx= . In software product lines the concepts of
taxonomy includes, features, business concepts, and measures. These elements are

Figure 3. Tree models of the sentences S1 and S2.

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 120 Journal of Computer and Communications

classified with instanceof/partOf relations that allow for hierarchical classifica-
tion of them. The taxonomy is used in requirements NLP processing specifically
in terms extraction. Also, when constructing the semantic tree to locate a con-
cepts among the others and collect their parents.

2) Semantic tree model
A semantic tree model is a graph composed of multiple nodes, each node

represents a concept in its leaf and has one or more parents and one or more
children. The edges of the tree depicts the relations between concepts. We con-
sider the following representation of the Tree (), , ,T N C E L=
• N is the set of Nodes composing the tree { }1 2, , , kN n n n= 
• C is the set concepts used in the leafs of nodes.
• E is a set of edges { }1, , nE e e=  , in which (),i je n n= is an ordered set

representing an edge from node ni to node nj.
• L is the set of values used in the edges to describe relation between nodes

{ }1, , nL l l=  in which i il e→
We define the following functions for the semantic tree:

• ()P n : Parent function returns the node parent of the node n.
• ()L n : Leaf function returns the concept presented in the leaf of node n.
• ()Dfr n : Distance from root function returns the distance between the node

n and the root of the tree.

3.2.2. Similarity Measuring
At this level we consider our requirements formalized into a set of tree models.
In this section we use the notation presented in the previous section in the different
computations. The similarity between two semantic trees is defined as follows:

() ()()1

11, 2 max , 1n
i jiS T T S n n j m

n =
= ∈∑  (1)

(),i jS n n is the similarity between a node ni in the tree T1 and a node nj in
the tree T2, n and m are respectively the cardinalities of N1 and N2. Each ni is
compared with all the nodes nj of N2, then the most similar nj is selected by the
maximum function.

We compute the similarity between two nodes ni and nj as follows:

()

() () ()()
() ()() ()1, 1,

, ,

, ,
,

v i j p i j

d i j l i i j j
i j

v p d l

w Sc c c w Sp P n P n

w Sd Dfr n Dfr n w Sl l l
S n n

w w w w
− −

∗ + ∗

+ ∗ + ∗
=

+ + +
 (2)

We consider the following attributes of a node ni in the tree T1:
ci: The concept of the leaf of the node ni
()iP n : The concept parent of the concept ci
()iDfr n : The distance of ni from the root

1,i il − : The concept of the edge relating the node ni to the node parent.
Similarity of each attribute is calculated separately and multiplied by a partic-

ular weight, we propose in Table 1 the attributes weight values ordered by their
influences on the nodes similarity.

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 121 Journal of Computer and Communications

Table 1. Weights of attributes.

Symbol Attribute Weight

wl Concept of edge 0.1

wd Distance from root 0.2

wp Parent concept 0.3

wv Concept of leaf 0.4

Similarity function of each attribute is calculated as follows:
Similarity between concepts

()
1 if

, 0 if and they are not synonyms
if and are synonyms

i j

i j i j

i j

c c
Sc c c c c

c cα

 =
= ≠



Synonyms of ci are retrieved from WordNet which gives a list of synonyms
ordered by use frequency, the function ()icρ gives the number of synonyms
found for a concept ()ic . Assuming that jc is a synonym of ci the function
()jcσ gives the order of jc among the list of synonyms. The similarity be-

tween the two synonyms is:

() ()() ()i j ic c cα ρ σ ρ= −

For example: we compute the similarity between the two concepts prospect
and candidate. Prospect has 11 synonyms where candidate is the second one.

() 11 2prospect, candidate 0.8
11

Sc −
= =

Similarity between Dfr of the two concepts

() ()() () ()
() ()

1 if
,

0 if

i j
i j

i j

Dfr n Dfr n
Sd Dfr n Dfr n

Dfr n Dfr n

 == 
≠

Similarity between the parent concepts

() ()() ()1 1, ,i j i jSp P n P n Sc n n− −=

Similarity between the edges concepts

() ()1, 1, 1, 1,, ,i i j j i i j jSl l l Sc l l− − − −=

3.3. Process 3: Adaptation Cost Measuring

In this step we measure the cost of the similar product adaptation. The adapta-
tion is the fact of implementing the requirement of intended product for which
we did not found a similar requirement in the selected product. The cost can be
calculated using the three following techniques:
• Expert opinion: the technical experts of the SPL system can estimate the cost

of adaptation on the basis of their experience in SPL realization and evolution.
• Analogy: the cost of adaptation effort can be measured by comparing the im-

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 122 Journal of Computer and Communications

plemented operations with the operations to be implemented.
• Cost estimation models: such models estimate the cost on the basis of many

factors, Constructive Cost Model COCOMO II [17] the most widely used
model.

In our approach we propose to combine the three methods, we use the
COCOMO II model to estimate the adaptation effort then we validate it with
experts by analogy with other development projects.

4. Tool Support for Adaptable Product Derivation

In order to implement the proposed approach we propose a tool called APD-tool
(adaptable product derivation tool). In this section we describe the tool features
and its architecture.

4.1. APD-Tool Features

The proposed tool support the process illustrated in the approach description,
the following functionalities support and implement the three processes:
• The import of textual description of the intended product composed of its

NL requirements as a set of sentences.
• The processing of the textual description of the intended product in order to

generate a graph of semantic Tree models from the NL requirements.
• The processing of existing products NL requirements to generate a graph of

semantic tree models for each product.
• The measuring of similarity between the intended product and the existing

ones.
• The selection of the most similar products.
• The estimation of adaptation effort costs for each similar products.

4.2. ADP-Tool Implementation

In order to implement the features described earlier, we designed the ADP-tool
as depicted in Figure 4.

Figure 4. ADP-tool architecture.

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 123 Journal of Computer and Communications

The tool includes an interface developed with EclipseIDE which is a java Inte-
grated Development Environment (IDE). The interface facilitates the selection of
NL requirements files for users, and also show the resulted similar products with
the requirement that must be implemented to adapt them to the customer need.

The syntax processing of the textual NL requirements is performed with the
openNLP tool [18], which is a machine learning based toolkit for the processing
of natural language text. It supports the most common NLP tasks, such as toke-
nization, sentence segmentation, part-of-speech tagging, named entity extrac-
tion, chunking, parsing, and co-reference resolution. It also includes an evalua-
tion tool that measures the precision of entity recognition and provides informa-
tion about the accuracy of the used model.

The syntax trees graph generated using the OpenNLP tool are processed then
by an algorithm in order to create the semantic graph from the intended product
and the existing derived products. We suppose that each NL requirement is ex-
pressed in an independent sentence. This algorithm creates a tree for each NL
requirement sentence using their syntax graph and the taxonomy of the SPL
domain.

The similar products are selected using the algorithm of similar product deri-
vation, which performs the computation of the trees similarity as presented in
Section 3.2.2. Each NL requirement Tree is compared with all the requirements
trees of a candidate product, then the most similar requirement is selected. The
similarity between the two graphs is the average of their trees similarities.

When the similar products are selected, their adaptation to include the not
implemented requirements is then studied. The adaptation cost effort is calcu-
lated using COCOMO II model. We can use an online tool which allows for ap-
plying the model and calculate the cost.

5. Related Works

In the literature many works were proposed to deal with requirements similarity,
however there is no approaches dealing with requirement similarity analysis in
the SPL field.

The authors in [19] propose an approach to identify a hierarchy of a set of
software products. The hierarchy provides a classification scheme associated
with a set of attributes, a non-classified item is included in a specific location
based probabilistic matching among the attributes of products in the hierarchies,
and the known attributes of the item. Such hierarchy helps identifying the simi-
larity level between products of a specific domain.

A new configuration approach for software product lines based on the user
preferences [20]. Instead of selecting features from the domain features to satisfy
the user need, a new constraint is added in the configuration process which is
user preferences. To allow more fine-grained user customization at runtime, us-
er profiles are introduced which represent the desires of users. In particular, this
means the desire to select or deselect features under certain circumstances.

https://doi.org/10.4236/jcc.2020.84009

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 124 Journal of Computer and Communications

Another approach was presented in [21], which speedy reaction to new con-
text conditions and better support for evolution of Wireless Sensor and Actuator
Networks, WSANs. They focus on those WSAN features that are susceptible to
being managed by a dynamic software product lines (DSPL) approach. They
propose a tool to reconfigure the products DSPL of WSAN at runtime. The re-
configuration involves changes at execution time in specific parts of code to give
a flexible solution.

A concept similar to our work is the context variability [22], it consists in
combining domain features with contextual information for product line deriva-
tion. According to contextual information the products to derive is determined,
and additional contextual changes are incorporated at execution time.

Finally, works that deal with reconfiguration of products in a SPL at deriva-
tion time focus on contextual variability especially the environmental changes
and the resources constraints. In our work we focus on functional requirements
evolution because of their priority and the frequency of their changes.

6. Conclusion

In this paper, we introduced our framework for adaptable products derivation,
which studies the similarity between an intended product and the existing prod-
ucts in software product lines based on their requirements expressed in natural
language. Our goal is to optimize the response time to customers business needs,
instead of adopting classical approach which consists in waiting the implemen-
tation of the new requirements in the common platform and then building the
relevant product, our solution allows for a new approach by selecting the most
similar product from the existing ones and computing the cost of its adaptation.
The stakeholders can select one approach, depending on the adaptation effort
cost. So far, we have proposed a tool that automates the three processes of our
framework that are: 1) transforming the natural language requirements into a
semantic trees, 2) selecting the most similar product by calculating the similarity
function between the intended product and the existing ones, 3) measuring the
cost of adapting the selected product. In our future work, we intend to imple-
ment the automated tool and validate the results through two cases studies, one
in the mobile field and the other in the customer relationship management field.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this
paper.

References
[1] Pohl, K., Böckle, G. and van Der Linden, F.J. (2005) Software Product Line Engi-

neering: Foundations, Principles and Techniques. Springer Science & Business Me-
dia, New York. https://doi.org/10.1007/3-540-28901-1

[2] Northrop, L. (2002) Software Product Lines: Practices and Patterns. Addison-Wesley,
New York.

https://doi.org/10.4236/jcc.2020.84009
https://doi.org/10.1007/3-540-28901-1

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 125 Journal of Computer and Communications

[3] Benlarabi, A., Khtira, A. and El Asri, B. (2015) A Co-Evolution Analysis for Software
Product Lines: An Approach Based on Evolutionary Trees. International Journal of
Applied Evolutionary Computation, 6, 9-32.
https://doi.org/10.4018/IJAEC.2015070102

[4] Ferreira, F., Borba, P., Soares, G. and Gheyi, R. (2012) Making Software Product
Line Evolution Safer. 2012 Sixth Brazilian Symposium on Software Components,
Architectures and Reuse, Natal, Brazil, 23-28 September 2012, 21-30.
https://doi.org/10.1109/SBCARS.2012.18

[5] Nuseibeh, B. (1996) To Be and Not to Be: On Managing Inconsistency in Software
Development. Proceedings of the 8th International Workshop on Software Specifi-
cation and Design, Schloss Velen, Germany, 22-23 March 1996, 164-169.
https://doi.org/10.1109/IWSSD.1996.501161

[6] Goknil, A., Kurtev, I., van den Berg, K. and Veldhuis, J.W. (2011) Semantics of
Trace Relations in Requirements Models for Consistency Checking and Inferencing.
Software & Systems Modeling, 10, 31-54.
https://doi.org/10.1007/s10270-009-0142-3

[7] Anquetil, N., Kulesza, U., Mitschke, R., Moreira, A., Royer, J.C., Rummler, A. and
Sousa, A. (2010) A Model-Driven Traceability Framework for Software Product
Lines. Software & Systems Modeling, 9, 427-451.
https://doi.org/10.1007/s10270-009-0120-9

[8] Passos, L., Czarnecki, K., Apel, S., Wąsowski, A., Kästner, C. and Guo, J. (2013)
Feature-Oriented Software Evolution. In: Proceedings of the Seventh International
Workshop on Variability Modelling of Software-Intensive Systems, ACM, New York,
17. https://doi.org/10.1145/2430502.2430526

[9] Benlarabi, A., El Asri, B. and Khtira, A. (2014) A Co-Evolution Model for Software
Product Lines: An Approach Based on Evolutionary Trees. 2014 Second World Con-
ference on Complex Systems (WCCS), Agadir, Morocco, 10-12 November 2014,
140-145. https://doi.org/10.1109/ICoCS.2014.7060991

[10] Apel, S., Rhein, A.V., Wendler, P., Größlinger, A. and Beyer, D. (2013) Strategies
for Product-Line Verification: Case Studies and Experiments. In: Proceedings of the
2013 International Conference on Software Engineering, IEEE Press, New York,
482-491. https://doi.org/10.1109/ICSE.2013.6606594

[11] Lami, G., Gnesi, S., Fabbrini, F., Fusani, M. and Trentanni, G. (2004) An Automatic
Tool for the Analysis of Natural Language Requirements. Informe técnico, CNR
Information Science and Technology Institute, Pisa, Italia, Setiembre.

[12] Thomas, D. and Hunt, A. (2000) The Pragmatic Programmer.

[13] Khtira, A., Benlarabi, A. and El Asri, B. (2015) A Tool Support for Automatic De-
tection of Duplicate Features during Software Product Lines Evolution. Interna-
tional Journal of Computer Science Issues, 12, No. 4.

[14] Hull, E., Jackson, K. and Dick, J. (2010) Requirements Engineering. Springer Science
& Business Media, New York.

[15] Pohl, K. (2016) Requirements Engineering Fundamentals: A Study Guide for the
Certified Professional for Requirements Engineering Exam-Foundation Level-IREB
Compliant. Rocky Nook, Inc., New York.

[16] Turney, P.D. and Pantel, P. (2010) From Frequency to Meaning: Vector Space
Models of Semantics. Journal of Artificial Intelligence Research, 37, 141-188.
https://doi.org/10.1613/jair.2934

[17] Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E. and Steece,
B. (2000) Cost Estimation with COCOMO II. Prentice-Hall, Upper Saddle River,

https://doi.org/10.4236/jcc.2020.84009
https://doi.org/10.4018/IJAEC.2015070102
https://doi.org/10.1109/SBCARS.2012.18
https://doi.org/10.1109/IWSSD.1996.501161
https://doi.org/10.1007/s10270-009-0142-3
https://doi.org/10.1007/s10270-009-0120-9
https://doi.org/10.1145/2430502.2430526
https://doi.org/10.1109/ICoCS.2014.7060991
https://doi.org/10.1109/ICSE.2013.6606594
https://doi.org/10.1613/jair.2934

A. Benlarabi et al.

DOI: 10.4236/jcc.2020.84009 126 Journal of Computer and Communications

NJ.

[18] The Apache Software Foundation (2015) OpenNLP. https://opennlp.apache.org

[19] Hunt, H.D., West, J.R., Gibbs Jr., M.A., Griglione, B.M., Hudson, G.D.N., Basilico,
A., Yusko, J.A., et al. (2016) U.S. Patent No. 9,262,503. U.S. Patent and Trademark
Office, Washington DC.

[20] Nieke, M., Mauro, J., Seidl, C. and Yu, I.C. (2016) User Profiles for Context-Aware
Reconfiguration in Software Product Lines. In: International Symposium on Leve-
raging Applications of Formal Methods, Springer, Cham, 563-578.
https://doi.org/10.1007/978-3-319-47169-3_44

[21] García Hernando, A.B., Ortiz Ortiz, Ó., Capilla Sevilla, R., Bosch, J. and Hinchey,
M. (2012) Runtime Variability for Dynamic Reconfiguration in Wireless Sensor
Network Product Lines.

[22] Sboui, T., Ayed, M.B. and Alimi, A.M. (2017) Addressing Context-Awareness in
User Interface Software Product Lines (UI-SPL) Approaches. In: Human Centered
Software Product Lines, Springer, Cham, 131-152.
https://doi.org/10.1007/978-3-319-60947-8_5

https://doi.org/10.4236/jcc.2020.84009
https://opennlp.apache.org/
https://doi.org/10.1007/978-3-319-47169-3_44
https://doi.org/10.1007/978-3-319-60947-8_5

	Learning to Support Derivation of Adaptable Products in Software Product Lines
	Abstract
	Keywords
	1. Introduction
	2. Background and Motivation
	2.1. Software Product Lines
	2.2. Requirements Similarity Analysis

	3. Approach Description
	3.1. Process 1: Formalization of NL Requirements
	3.2. Process 2: Identification of the Most Similar Product
	3.2.1. Semantic Tree Model
	3.2.2. Similarity Measuring

	3.3. Process 3: Adaptation Cost Measuring

	4. Tool Support for Adaptable Product Derivation
	4.1. APD-Tool Features
	4.2. ADP-Tool Implementation

	5. Related Works
	6. Conclusion
	Conflicts of Interest
	References

