
A�ne Arithmetic

and its

Applications to Computer Graphics

Jo~ao Luiz Dihl Comba
1

Jorge Stolfi
2

1Computer Graphics Laboratory (LCG-COPPE)
Universidade Federal do Rio de Janeiro

Caixa Postal 68511 - Rio de Janeiro, RJ, Brasil
comba@lcg.ufrj.br

2Computer Science Department (DCC{IMECC)
Universidade Estadual de Campinas

Caixa Postal 6065 { 13081 Campinas, SP, Brasil
stolfi@dcc.unicamp.br

Abstract. We describe a new method for numeric computations, which we call a�ne arithmetic

(AA). This model is similar to standard interval arithmetic, to the extent that it automatically
keeps track of rounding and truncation errors for each computed value. However, by taking into
account correlations between operands and sub-formulas, AA is able to provide much tighter bounds
for the computed quantities, with errors that are approximately quadratic in the uncertainty of the
input variables. We also describe two applications of AA to computer graphics problems, where
this feature is particularly valuable: namely, ray tracing and the construction of octrees for implicit
surfaces.

1 Introduction

Interval arithmetic (IA), also known as interval anal-
ysis, is a technique for numerical computation where
each quantity is represented by an interval of
oating-
point numbers. Those intervals are added, subtracted,
multiplied, etc. in such a way that each computed in-
terval is guaranteed to contain the (unknown) value
of the quantity it represents [3, 4].

Since its introduction in the 60's by R. E. Moore,
IA became widely appreciated for its ability to ma-
nipulate imprecise data, keep track automatically of
truncation and round-o� errors, and probe the be-
havior of functions e�ciently and reliably over whole
sets of arguments at once.

Recently, this last feature of IA caught the at-
tention of computer graphics researchers, who put it
to good use in ray tracing (determining ray-surface
intersections), solid modeling (constructing octrees
for implicit surfaces), and other problems [1, 5, 6, 7].

The main weakness of IA is that it tends to be
too conservative: the intervals it produces are often
much wider than the true range of the corresponding
quantities, often to the point of uselessness. This
problem is particularly severe in long computation
chains, where the intervals computed at one stage are
inputs for the next stage. Unfortunately, such \deep"

computations are not uncommon in the computer
graphics applications mentioned above.

To address this problem, we propose here a new
model for numerical computation, which we call a�ne

arithmetic (AA). Like standard IA, AA keeps track
automatically of the round-o� and truncation errors
a�ecting each computed quantity. In addition, AA
keeps track of correlations between those quantities.
Thanks to this extra information, AA is able to pro-
vide much tighter intervals than IA, especially in long
computation chains.

As one may expect, the AA model is more com-
plex and expensive than ordinary interval arithmetic.
However, we believe that its higher accuracy will be
worth the extra cost in many applications, including
computer graphics.

Section 2 of the paper is a brief review of stan-
dard IA and its \error explosion" problem. Section 3
de�nes a�ne forms, the representation of quantities

in the AA model. Section 4 gives the basic princi-
ple for computing with a�ne forms, and applies it
to a couple of basic operations (addition, multipli-
cation, and square root). Section 5 describes some
technical details of our implementation of AA. Fi-

nally, section 6 discusses some applications of AA in
computer graphics.

Anais do VII Sibgrapi, 1993 1

Affine Arithmetic 2

2 Standard interval arithmetic

In standard IA, each quantity x arising in a compu-
tation is represented by an interval �x = [x:lo .. x:hi]
of real numbers, meaning that the \true" value of x
is known to satisfy x:lo � x � x:hi .

For any operation f(x; y; : : :) from reals to re-
als (such as sum, product, square root, etc.), one
de�nes in IA a corresponding operation on intervals
�f (�x; �y; : : :). This operation returns some interval |
preferably the smallest one | that contains all val-
ues of f(x; y; : : :), where the variables x; y; : : : range
independently over the given intervals �x; �y; : : :

Thus, for example, one de�nes the sum and dif-
ference of two intervals �x; �y as

�x+ �y = [x:lo + y:lo .. x:hi + y:hi]

�x� �y = [x:lo � y:hi .. x:hi � y:lo]

Multiplication and division can be handled by slightly

more complex formulas; and the same holds for square
root and the other basic mathematical functions.

2.1 The error explosion problem

Note that the standard IA operations always assume
that the (unknown) values of the arguments may
vary independently over the given intervals. If this
assumption is not valid | that is, if there are any
mathematical constraints between those quantities
| then not all combinations of values in the given
intervals will be valid. In that case, the result inter-
val returned by the IA operation may be much wider
than the true range of the result quantity.

As an extreme example, when we evaluate the
expression x�xwith standard IA, we get the interval
�x��x = [x:lo�x:hi ; x:hi�x:lo], which is twice as wide
as the original interval �x | instead of [0 .. 0], which
is the true range of the expression. Note that the IA
subtraction routine cannot tell that the two given in-
tervals actually denote the same quantity, since they
could also denote two independent quantities that
just happen to have the same range.

For a less extreme (and more typical) example,
consider evaluating x(10�x), where x is known to lie
in the interval �x = [4 .. 6]. Applying the IA formulas
blindly, we get

10� �x = [10 .. 10]� [4 .. 6] = [4 .. 6]

�x(10� �x) = [4 .. 6] � [4 .. 6] = [16 .. 36]

On the other hand, a trivial analysis shows that the
true range of x(10�x) is [24 .. 25]. The large discrep-
ancy between the two intervals is due to the inverse
relation between the quantities x and 10�x, which is
not known to the interval multiplication algorithm.

Let �z be the result of evaluating some expres-
sion �f (�x; �y; : : :) according to the rules of IA. Let also
�z� be the \true range" of that expression | that
is, the smallest interval that contains all values of
f(x; y; : : :), when x; y; : : : range over the given inter-
vals �x; �y; : : :We de�ne the relative accuracy � of the
IA computation as the width of �z� divided by that
of �z. Thus, in the x(10� x) example above, we had
� = (25�24)=(36�16) = 0:05, meaning the resulting
interval was 20 times wider than what it should be.

The over-conservatism of IA is particularly bad
in a long computation chain, because the overall � of
the chain tends to be the product of the �s of the in-
dividual stages. In such cases one often observes an
\error explosion": as the evaluation advances down
the chain, the relative accuracy of the computed in-
tervals decreases at an exponential rate. Thus, after
a few such stages the intervals may easily be too wide
to be useful, by many orders of magnitude.

For an example of this phenomenon, consider
the function g(x) =

p
x2 � x+ 1=2=

p
x2 + 1=2. Fig-

ure 1 below shows the graph of g(x) (black curve)
and the result of evaluating g(�x) with standard IA,
for 16 consecutive equal intervals �x in [�2 .. +2].
Figure 2 shows the same data for the second iter-
ate h(x) = g(g(x)) of the same function. Although
the iterates gk converge to a constant function, the
intervals �gk(�x) computed by standard IA diverge.

Figure 1: g(x) =
p
x2 � x+ 1=2=

p
x2 + 1=2.

Figure 2: h(x) = g(g(x)).

(Standard interval arithmetic.)

Anais do VII Sibgrapi, 1993

3 Jo~ao Comba e Jorge Stolfi

When the IA evaluation of �f (�x; �y; : : :) produces
an interval that is too wide for the purpose at hand,
we can often improve matters by partitioning the ar-
gument range �x��y�� � � into two or more sub-ranges,
evaluating f on each of these, and combining the re-
sults into a single interval. However, this technique
is not very e�ective against error explosion, because
the relative accuracy of an IA operation is generally
independent of the width of the input intervals. So,
if the relative accuracy of a computation is too small
to be useful by a factor of 1000, we will probably
have to split the domain into 1000 sub-intervals to
obtain a useful result.

3 A�ne arithmetic

A�ne arithmetic (AA) is a computation model that
attempts to retain the advantages of IA while ame-
liorating this \error explosion" problem. The key
feature of AA is an extended encoding of quantities

from which one can determine, in addition to their
ranges, also certain relationships to other quantities
| such as the ones existing between x and 10�x in
our earlier example.

Speci�cally, in AA, a partially unknown quan-
tity x is represented by an a�ne form x̂, which is a
�rst-degree polynomial

x̂ = x0 + x1"1 + x2"2 + � � �+ xn"n (1)

Here the xi are known real coe�cients (stored as

oating-point numbers), and the "i are symbolic vari-
ables whose values are unknown but assumed to lie
in the interval U = [�1 .. +1].

Each "i stands for an independent source of er-
ror or uncertainty that contributes to the total uncer-
tainty of the quantity x. The source may be external
(due to original uncertainty in some input quantity)
or internal (due to round-o� and truncation errors
committed in the computation of x̂). The corre-
sponding coe�cient xi gives the magnitude of that

contribution.
We call x0 the central value of the a�ne form x̂;

the coe�cients xi are the partial deviations, and the
"i are the noise symbols.

Obviously, a�ne arithmetic is more complex (and
expensive) than ordinary interval arithmetic. How-
ever, we believe that its higher accuracy will be worth
the extra cost in many �elds where IA's \error explo-
sion" may be a problem, such as computer graphics.
See section 6 for speci�c examples.

3.1 Conversions between IA and AA

If x̂ = x0+x1"1+��xn"n is an a�ne form for a quan-
tity x, then the value of the latter is guaranteed to

be in the range of x̂, the interval

[x̂] = [x0 � � .. x0 + �]; � =

nX

i=1

jxij

Note that [x̂] is the smallest interval that contains all
possible values of formula (1), assuming that each "i

ranges independently over the interval [�1 .. +1].
Conversely, suppose we are given an ordinary

interval �x = [x:lo .. x:hi] representing some quantity
x. We can generate from it a valid a�ne form x̂ =
x0 + xk"k for the same quantity, with

x0 =
x:hi + x:lo

2
xk =

x:hi � x:lo

2
(2)

The noise symbol "k symbolizes the uncertainty in
the value of x. Since the interval �x tells us nothing
about possible constraints between the value of x

and that of other variables, "k must be distinct from
all other noise symbols previously used in the same
computation.

The key feature of this model is that the same
noise symbol "i may contribute to the uncertainty
of two or more quantities (inputs, outputs, or inter-
mediate results) arising in the evaluation of an ex-
pression. The sharing of a noise symbol "i by two
a�ne forms x̂; ŷ indicates some partial dependency
between the underlying quantities x; y. The magni-
tude and sign of the dependency is determined by
the corresponding coe�cients xi; yi. (Note that the
signs of xi and yi are not signi�cant in themselves;
only their relative signs are important.)

For example, suppose two quantities x; y are rep-
resented by the a�ne forms

x̂ = 10+ 2"1 + 1"2 � 1"4

ŷ = 20� 3"1 + 1"3 + 4"4

From this data we can tell that x lies in the inter-
val [6 .. 14], and y lies in [12 .. 28]; however, since
they both include the same noise variables "1 and
"4 with non-zero coe�cients, they are not entirely
independent of each other. In fact, the pair (x; y)
is constrained to lie in the region of R2 depicted in
�gure 3 (dark grey), which is substantially smaller
than the rectangle [6 .. 14]� [12 .. 28] (light grey).

Obviously, this dependency information would
be lost if we were to replace x̂ and ŷ by the ordinary
intervals [x̂] and [ŷ], even though the latter encode
precisely the same ranges of values as the former.

In general, if we have m a�ne forms depend-
ing on n noise symbols, then the set S of possible
joint values for the corresponding quantities will be
a center-symmetric convex polytope that is a parallel
projection into Rm of the hypercube Un.

Anais do VII Sibgrapi, 1993

Affine Arithmetic 4

6 14

12

28

Figure 3: Joint range of (x; y)

4 Computing with A�ne Forms

To evaluate a formula in AA, we must replace each of
its elementary operations z f(x; y) on real num-

bers by an equivalent step ẑ f̂ (x̂; ŷ) on a�ne

forms, where f̂ is a procedure that computes an a�ne
form for z = f(x; y) that is consistent with x̂; ŷ.

By de�nition,

x = x0 + x1"1+��xn"n (3)

y = y0 + y1"1+�� yn"n (4)

for some (unknown) values of "1; :: "n 2 Un. There-
fore, the quantity z is a function of the "i, namely

z = f(x; y)

= f(x0 + x1"1+��xn"n; y0 + y1"1+�� yn"n)
= f

�("1; :: "n) (5)

The challenge now is to replace f
�("1; :: "n) by an

a�ne form

z = z0 + z1"1+�� zn"n
that preserves as much information as possible about
the constraints between x, y, and z that are implied
by (3{5), but without implying any other constraints
that cannot be deduced from the given data. The
remainder of this section is devoted to this issue.

4.1 A�ne operations

If f itself is an a�ne function of its arguments x; y,
then the function f

�("1; :: "n) in (5) can be expanded
into an a�ne combination of the noise symbols "i.

In that case, by performing the expansion and col-
lecting similar terms we get a valid a�ne form for
z = f(x; y). In particular,

x̂� ŷ = (x0 � y0) + (x1 � y1)"1+�� (xn � yn)"n

�x̂ = (�x0) + (�x1)"1+�� (�xn)"n
x̂� � = (x0 � �) + x1"1+��xn"n

for any a�ne forms x; y, and any � 2 R. Note that
these formulas are exact, in the sense that the result-
ing a�ne form contains all the information about the
quantity z that can be deduced from the given a�ne
forms x and y.

Note also that, according to those formulas, the
di�erence x̂ � x̂ between an a�ne form and itself is
identically zero. In this case, the fact that the two
operands share the same noise symbols with the same
coe�cients reveals that they are actually the same
quantity, and not just two quantities that happen to
have the same range of possible values. Thanks to
this feature, in AA we also have (x̂ + ŷ) � x̂ = ŷ,
(3x̂)� x̂ = 2x̂, and so on.

4.2 Non-a�ne operations

In general, when f is not an a�ne operation, the
function f

�("1; :: "n) = f(x̂; ŷ) of (5) cannot be ex-
pressed as an a�ne combination of the "i. In that
case, we must pick some a�ne function

f
a("1; :: "n) = z0 + z1"1 + � � �+ zn"n (6)

that approximates f�("1; :: "n) reasonably well over
its domainUn, and then add to it an extra term zk"k

to represent the error introduced by this approxima-
tion. That is,

ẑ = f
a("1; :: "n) + zk"k

= z0 + z1"1 + � � �+ zn"n + zk"k

Here "k must be a brand new noise symbol (dis-
tinct from all other noise symbols in the same com-
putation) and zk must be an upper bound on the
absolute di�erence between f

a and f
�, for all possi-

ble values of "1; :: "n; that is,

maxf jf�("1; :: "n)� f
a("1; :: "n)j : "1; :: "n 2 U g

Note that the substitution of fa + zk"k for f
� de-

feats in part the goal of AA: from this point on, the
noise symbol "k will be implicitly assumed to be in-
dependent from "1; :: "n, when in fact it is a function
of them. Any subsequent operation that takes ẑ as

input will not be aware of this constraint between "k

and "1; :: "n, and therefore may return an a�ne form
that is less precise than necessary.

Anais do VII Sibgrapi, 1993

5 Jo~ao Comba e Jorge Stolfi

In order to minimize the loss of information,
we should choose the coe�cients z0; z1; :: zn so as to
make the new error term zk"k as small as possible.
In other words, fa should be the �rst-degree poly-
nomial that best approximates f� over Un, in the
Chebyshev sense of minimizing the maximum error.

Below we develop this approach in detail for two
representative operations, namely multiplication and
square root. The techniques illustrated by these ex-
amples can be easily extended to handle most of the
other elementary operations and functions.

4.3 Multiplication

Let's now consider the multiplication of a�ne forms,
that is, z = f(x; y) = x � y. The quantity z is a
quadratic polynomial f�("1; :: "n) on the noise sym-
bols:

z = f
�("1; :: "n)

= x̂ � ŷ

= (x0 +

nX

i=1

xi"i) � (y0 +
nX

i=1

yi"i)

= x0y0 +

nX

i=1

(x0yi + y0xi) "i

+(

nX

i=1

xi"i) � (
nX

i=1

yi"i)

The best a�ne approximation to f�("1; :: "n) consists
of the a�ne terms from the expansion above

A("1; :: "n) = x0y0 +

nX

i=1

(x0yi + y0xi)"i

plus the best a�ne approximation to the last term

Q("1; :: "n) = (

nX

i=1

xi"i) � (
nX

i=1

yi"i)

=

nX

i=1

nX

j=1

xiyj "i"j

Observe that Q is a center-symmetric function, in
the sense that Q(�"1; ::�"n) = �Q("1; :: "n). More-
over, its domain Un is also center-symmetric, that
is, ("1; :: "n) 2 Un () (�"1; ::�"n) 2 Un. From
these properties it follows easily that the best (Cheby-
shev) a�ne approximation to Q over Un is itself a
center-symmetric a�ne function | that is to say, a
constant function.

More precisely, if a and b are the minimum and
maximum values of Q("1; :: "n) over Un, the best
a�ne approximation to the latter is the constant

function (a+b)=2, and its maximumerror is (b�a)=2.
Thus, we should return

ẑ = A("1; :: "n) +
a+ b

2
+

b� a

2
"k (7)

where "k is a \new" noise symbol.
A quick conservative estimate for the range of

Q is the symmetric interval [�uv .. +uv], where

u =

nX

i=1

jxij v =

nX

i=1

jyij

This choice gives (a + b)=2 = 0, (b � a)=2 = uv;
therefore,

ẑ = A("1; :: "n) + uv "k

= x0y0

+(x0y1 + y0x1) "1

+ � � �
+(x0yn + y0xn) "n

+uv "k (8)

This interval may be up to twice as wide as the
exact range of Q; but, in any case, its size is still
quadratic in the interval half-widths u and v. More
precise estimates for the range of Q can be obtained
by somewhat more complex formulas. In fact, the ex-
act range of Q can be computed in O(m logm) time,
where m is the number of nonzero partial deviations
in x̂ and ŷ. Lack of space prevents us from discussing
these alternatives; and, anyway, it is not clear that
their modest advantage in accuracy is worth their
cost and complexity.

To illustrate these formulas, let's evaluate the
expression z = (10+x+r) � (10�x+s) for x 2 [�2 ..

+2], r 2 [�1 .. +1], s 2 [�1 .. +1]. Converting the
ordinary intervals to a�ne forms, we get

x = 0 + 2"1

r = 0 + 1"2

s = 0 + 1"3

10 + x+ r = 10+ 2"1 + 1"2

10� x+ s = 10� 2"1 + 1"3

therefore

z = 100+ 10"2 + 10"3 + (2"1 + 1"2)(�2"1 + 1"3)

The quick estimate for the range of the quadratic
part is

�q = [�(3 � 3) .. +(3 � 3)] = [�9 .. +9]

(The exact range being [�9 .. +1].) Hence, the result
of the computation is

ẑ = 100 + 10"2 + 10"3 + 9"4

Anais do VII Sibgrapi, 1993

Affine Arithmetic 6

Observe that, in this example, in
uence of the
noise symbol "1 in the factors happened to cancel out
(to �rst order).

The true range of z is [71 .. 121]. The range of
z implied by this a�ne form above is

[100� 29 .. 100 + 29] = [71 .. 129] (� = 0:86)

By comparison, standard IA would return

[7 .. 13] � [7 .. 13] = [49 .. 169] (� = 0:42)

4.4 Round-o� errors

The discussion so far assumed that the coe�cients
zi of the a�ne approximation f

a("1; :: "n) can be
computed exactly. In a practical implementation,
however, they will be computed with
oating-point
arithmetic, and thus a�ected by round-o� errors. As
a matter of fact, such errors will occur even when f

is an a�ne operation like sum or di�erence.
In standard IA, these errors can be handled by

simply making sure that the lower endpoint of the re-
sult interval is always rounded down, and the higher
endpoint is always rounded up. In a�ne arithmetic,
however, any kind of rounding is wrong. When com-
puting an a�ne form ẑ, if we round o� a partial de-
viation zi, in either direction, then ẑ will no longer
correctly describe the quantity z, because it will im-
ply slightly di�erent (hence incorrect) relationships
with other quantities. To preserve the validity of the
a�ne form, we must determine an upper bound �i

to the round-o� error committed in the computation
of each zi, and then we must add all these �i to the
linearization error zk (rounding upwards).

4.5 Square root

Let's now consider the AA evaluation of z =
p
x. As

before, we need to approximate the function

f
�("1; :: "n) =

p
x0 + x1"1+��xn"n (9)

over the hypercube Un by some a�ne function

f
a("1; :: "n) = z0 + z1"1+�� zn"n

and then add to the latter an extra term zk"k, to
account for the di�erence jf� � f

aj, where "k is a
brand-new noise symbol.

Note that the function f
�("1; :: "n) is constant

over any hyperplane of Un that is orthogonal to the
vector (x1; ::xn). It is not hard to show that the best

(Chebyshev) a�ne approximation to f
� must also

have this property. That is, we need only consider
approximations fa("1; :: "n) of the form

f
a("1; :: "n) = �x̂+ �

= �(x0 + x1"1+��xn"n) + � (10)

It is also easy to show that the values of � and � that
minimize the maximum error of fa�f� are precisely
the coe�cients of the optimum (Chebyshev) �rst-
degree approximation �x + � to

p
x in the interval

[x̂]. Thus, the problem of approximating the original
n-variable function reduces to that of approximating
a single-variable function.

If [a .. b] is the interval [x̂], then the optimum
Chebyshev coe�cients � and � are

� =
1p

b+
p
a

� =

p
a+
p
b

8
+

1

2

p
a

p
b

p
a+
p
b

and the maximum approximation error is

� =
1

8

(
p
b�pa)2p
a+
p
b

This maximum error occurs at the endpoints of the
interval, where the curve lies below the approximat-
ing line, and at the point c = (

p
a +
p
b)2=4, where

the curve lies above the line.
Once �, � and � are known, we can return

z0 = �x0 + � (11)

zi = �xi (i = 1; ::n) (12)

zk = � (13)

This analysis assumes that we can compute �,
�, and � exactly. In practice, the computation of
� must carried out in
oating point, and so we will
get only an approximation ~� to the optimum slope
�. We must then choose the intercept � so as to
minimize the maximum of j~�x+ � �pxj, instead
of j�x+ � �pxj. Again, we will only be able to
compute an approximation ~� to this optimum �.

The approximation error � is then the maximum of���~�x+ ~� �px
���; again, we will only be able to com-

pute an upper bound ~� to it.
Formulas (11{13) must then be changed to use

~�, ~�, and ~� instead of �, �, and �. Naturally, the
computation of z0; z1; :: zn by these formulas will be
a�ected by round-o� error; we must therefore deter-
mine upper bounds ~�0; ~�1; :: ~�n for these errors, and
add them to the linearization error ~�, always round-
ing up, to obtain the error term zk.

On machines that support program-directed roun-
ding, such as mandated by the IEEE
oating-point

standard [9], all these computations can be performed
at reasonable cost: two square roots, plus a few

oating-point operations for each xi.

Anais do VII Sibgrapi, 1993

7 Jo~ao Comba e Jorge Stolfi

4.6 Accuracy of AA

Numerical experiments seems to con�rm our claim
that AA is in general substantially more precise than
standard IA, and less prone to error explosion. For
instance, consider �gures 4 and 5 below. They show
the same functions of �gures 4 and 5, evaluated with
AA instead of IA, over the same intervals.

Figure 4: g(x) =
p
x2 � x+ 1=2=

p
x2 + 1=2.

Figure 5: h(x) = g(g(x)).

(A�ne arithmetic.)

The main reason why AA is usually more ac-
curate than IA is the cancellation phenomenon de-
scribed in section 4.3, which tends to make the range
of computed quantities smaller than the correspond-
ing intervals computed by standard IA. Indeed, ex-
cept for round-o� errors, any computation chain that
involves only a�ne operations will be evaluated by
AA with relative accuracy � = 1| that is, the range
of the computed a�ne form will be the true range of
the corresponding quantity.

Even in the case of a non-linear operation, the
loss of information (measured by the magnitude of
the error term zk"k) is often smaller for AA than
for IA. Moreover, in a multi-step computation, the
a�ne form of each computed quantity keeps track
of how much of its uncertainty is attributable to the
linearization error committed at each of the previous
operations. Thus, these linearization errors them-
selves may cancel out in later operations, instead of

always adding up (as they usually do in ordinary in-
terval arithmetic). This same observation applies to
the
oating-point round-o� errors committed in each
step.

For example, let x̂ = x0+x1"1 and ŷ = y0+y2"2,
and consider the following AA computation:

û x̂=ŷ; v̂
p
û; ẑ û� v̂

The �rst step will compute an a�ne form û = u0 +
u1"1 + u2"2 + u3"3, where the term u3"3 represents
the linearization and round-o� errors of the divi-
sion. Similarly, the second step will compute v̂ =
v0+ v1"1+ v2"2+ v3"3+ v4"4, where v4"4 represents
the linearization and round-o� errors of the square
root. Note the term v3"3, which records the uncer-
tainty in v that was inherited from the previous di-
vision step. In the last step, this term will be sub-

tracted from u3"3, meaning that the error committed
in the division does not a�ect ẑ as much as it a�ects

û. Needless to say, in standard IA the errors corre-
sponding to v3 and u3 would be added, instead of
subtracted.

Yet another reason for AA to be more accurate
than IA is that the magnitude of the linearization
error zk in each operation will in general depend
quadratically on the input deviations xi, yi. There-
fore, as the ranges of the operands get smaller, the
error term zk"k will become less important | not
only in absolute terms, but also relative to the other
terms. That is, in AA the relative accuracy of each
operation (see section 2.1) will be inversely propor-
tional to the width of the input intervals. Thus, in
a long computation chain, halving the input inter-
vals will not just halve the output ones, but will also
make all steps of the chain more accurate, and there-
fore improve the accuracy of the result by a factor
that is roughly exponential in the length of the chain.

5 Implementation issues

To test the practicality and usefulness of AA, we have
implemented the basic operations (+, �, �, �, p)
in C for the Sun SPARCstation. We will now de-
scribe some implementation choices that we made,
but which are not part of the AA model proper.

5.1 Representation of a�ne forms

In our prototype implementationof AA, we represent
an a�ne form x̂ depending on m noise symbols by
an array of 2m + 2 consecutive 32-bit words. The
�rst two words contain the central value x0 and the

numberm; then come them terms, each consisting of
a partial deviation xi, and the corresponding index i

| an integer value that uniquely identi�es the noise

Anais do VII Sibgrapi, 1993

Affine Arithmetic 8

symbol "i. All real quantities are encoded as IEEE
32-bit
oating-point numbers.

The noise symbol indices need to be stored be-
cause the a�ne forms are quite sparse: although a
long-running programmay create billions of indepen-
dent noise symbols, each a�ne form will typically
depend only on a small subset of them. Therefore,
it is imperative that we store for each a�ne form x̂

only the terms xi"i that are not zero.
Thus, in general, each a�ne form that occurs in

a computation will have a di�erent number of terms,
with a di�erent set of noise symbol indices. Two
a�ne forms are dependent only when they include
terms with the same index i.

Algorithms that operate on two or more a�ne
forms, such as the addition and multiplication rou-
tines described above, typically need to match corre-
sponding terms from the given operands, while com-
puting the terms of the result. In order to speed up

this matching, we make sure that the terms of every
a�ne form are always sorted in increasing order of
their noise symbol indices.

5.2 Memory and index management

Storage for the a�ne forms themselves is normally
allocated from a separate storage pool SA, which is
managed like a stack. In general, a routine that per-
forms AA computations should reset the SA top-of-
stack pointer, right before exiting, to the value it had
on entry. This action implicitly discards all a�ne
forms computed during the routine's execution, and
recycles their storage. Of course, if the routine is
supposed to return any of these a�ne forms, then
it must copy them to the new top-of-stack position,
and adjust the pointer accordingly.

As explained above, new noise symbols are con-

stantly being invented while the program runs. Prac-
tically every time we compute a new a�ne form, we
need to introduce a brand new noise symbol, to rep-
resent the linearization and round-o� errors commit-
ted in that operation. The noise symbols do not con-
sume any storage by themselves, but each requires a
distinct index. For this purpose, we use a global
counter that keeps track of the highest index in use
at any moment.

To avoid running out of indices after 232 AA op-
erations, it is advisable to manage the \index space"
too as a stack: when exiting from a procedure, one
should reset the noise symbol counter to the value
it had upon entry. This action implicitly \discards"
all the noise symbols created during the procedure,
and allows their indices to be \recycled". If the pro-
cedure returns an a�ne form as its result, then any
new noise symbols that occur in the latter must be

renumbered while the result is copied to its proper
location.

5.3 Space and time cost

Consider the AA evaluation of an expression (or a
sequence of chained expressions) with m operations,
where the input values are a�ne forms that depend
on a certain set of n noise symbols "1; :: "n. Each
operation will contribute one more noise symbol to
this set, representing the linearization and round-o�
errors of that step. Therefore, each computed value
will depend at most on n +m noise symbols. Since
the cost of any basic AA operation is proportional
to the size of the operands, the whole expression can
be evaluated in O(m(n +m)) time and space.

Many applications of AA, such as those described
in section 6, can be coded as procedures that take or-
dinary intervals as parameters, convert them to a�ne

forms, and evaluate a chain of expressions on those
values. In such cases, the compiler could predict stat-
ically the set of noise symbols a�ecting each com-
puted a�ne form. The compiler could then allocate
the a�ne forms statically, on the ordinary procedure-
call stack. Moreover, the noise symbol indices would
then be super
uous, and the AA arithmetic opera-
tions could be partly expanded in-line.

5.4 Shared sub-expressions

In actual programs, it is common for the same sub-
formula to appear as an operand of two or more
operations. With ordinary
oating-point, or with
standard IA, evaluating such shared sub-expressions
more than once is merely a waste of time. With AA,
however, multiple evaluations may also make the re-
sults less accurate. The reason is that each evalua-
tion of a shared sub-formula represents the lineariza-
tion errors of the latter by a di�erent set of noise
symbols, preventing those errors from canceling out
in later steps. Therefore, when coding expressions
like (x2+ 1)=(x2� 1) for AA evaluation, it is doubly
important to identify common sub-expressions like
x
2, and compute each of them only once.

6 Applications

We will now describe two applications of AA to com-
puter graphics, which in fact motivated us to develop
the whole model. However, it is our belief that a�ne
arithmetic is a general-purpose technique which, like
standard IA, will turn out to be useful in all sorts of
numerical applications.

Anais do VII Sibgrapi, 1993

9 Jo~ao Comba e Jorge Stolfi

Figure 6: Interval arithmetic:
847 evaluations, 180 empty cells retained.

Figure 7: A�ne arithmetic:
451 evaluations, 4 empty cells retained.

6.1 Computing octrees and quad-trees

Interval arithmetic has been used as a tool for the
construction of octrees for implicit surfaces [1, 6].
The basic principle is that we can test if the surface
F (x; y; z) = 0 enters a given axis-aligned box

B = [x:lo .. x:hi]� [y:lo .. y:hi]� [z:lo .. z:hi]

of R3 by evaluating the expression �u �F (�x; �y; �z),
with standard IA, on the intervals �x = [x:lo .. x:hi],
�y = [y:lo .. y:hi], �z = [z:lo .. z:hi]. If the resulting
interval �u does not include 0 | that is, if u:lo > 0
or u:hi < 0 | then we know that the surface does
not extend into the box.

Of course, if the interval �u does contain 0, we
cannot tell whether the surface does extend into the
box B; the computation may just have been too in-
accurate. In that case, we must bisect B and repeat
the test on each half-box. Typically we truncate the
recursion when B gets too small, at which point we
just add it to the octree.

We can improve the performance of this algo-
rithm by using a�ne arithmetic to evaluate �u =
�F (�x; �y; �z), instead of standard IA. This change gen-
erally reduces the width of the computed intervals
�u. As a consequence, the algorithm will be able to
discard empty regions of space earlier in the recur-
sion; in particular, it will be able to discard more
cells before giving up on the recursion, thus reducing
the size of the �nal octree.

Figures 6 and 7 illustrate a two-dimensional ana-
log of this process [7], the construction of a quadtree
for the curve F (x; y) = 0, where F (x; y) = x

2+ y
2 +

xy � (xy)2=2� 1=4, in the square [�2 .. +2]� [�2 ..

+2]. In both cases the minimum cell size (at the
bottom of the octree) was (1=8) � (1=8); the curve
actually enters only 66 of these cells.

Octrees built as described above are often used
to speed up the ray-tracing of complex surfaces and
solids [2, 8]. In this application, each empty node of
the octree that is wrongfully retained (because of �u

beeing too wide) may lead to thousands of spurious
ray-surface intersection tests. So, even though evalu-
ating F (�x; �y; �z) with AA is more expensive than with
IA, the bene�ts are usually worth the cost.

6.2 Ray tracing

Interval analysis has also been used for reliable ray-
tracing of surfaces; speci�cally, to determine all in-
tersections between an implicit surface F (x; y; z) = 0
and a line segment pq (the \ray") [6].

This problem is equivalent to that of �nding the
roots of the univariate function

f(t) = F ((1�t)px+tqx; (1�t)py+tqy; (1�t)pz+tqz)

for t 2 [0 .. 1]. A robust and reasonably e�cient al-
gorithm for the latter combines interval analysis with
Newton's root-�nding method. We evaluate �u = �f (�t)
using IA, for the whole interval �t = [0 .. 1]. If the re-
sulting interval �u is strictly positive or strictly nega-
tive, we know that the ray does not intersect the sur-

face. Otherwise, we evaluate the derivative �v = f 0(�t),
in that interval, also using IA. From the intervals �u
and �v, we can compute a sub-interval �t� of �t that

Anais do VII Sibgrapi, 1993

Affine Arithmetic 10

must contain all the roots contained in �t. If �t� is less
than half as wide as �t, we repeat the search in �t�,
recursively. Otherwise we split �t� in two equal parts,
and repeat the search recursively in each half. The
recursion stops when the interval �t is small enough
for the application.

The order of convergence of this algorithm is
somewhere between linear and quadratic, depending
on the accuracy of the computed intervals �u and �v.
However, evaluating �f(�t) in the IA model is equiv-
alent to evaluating �F (�x; �y; �z) on the intervals �x =
[px .. qx], �y = [py .. qy], �z = [pz .. qz] | that is, eval-
uating F on the axis-aligned bounding box of the
segment pq, instead of only along the segment itself.
Once again, the problem arises because the IA rou-
tines have no way of knowing that the arguments x,
y, and z of F (x; y; z) are highly correlated.

Obviously, the bounding box of the segment pq
may intersect the surface even when the segment it-

self does not. Even assuming that �F (�x; �y; �z) will be
computed accurately (which, as we saw, is unlikely to
happen with standard IA), this fact alone will surely
lead to slow convergence, and to many evaluations
of �f on ray segments that eventually turn out not to
contain any roots.

Here again, replacing standard IA by a�ne arith-
metic will generally improve the performance of this
algorithm. Even without any algebraic manipula-
tion, AA will automatically notice that the a�ne
forms x̂, ŷ, and ẑ are strongly correlated, and will
use this fact to produce tighter bounds for f(t).

Moreover, as the interval [t̂] decreases, the devia-
tion of the computed a�ne form û should be increas-
ingly dominated by the single error term uj"j whose
noise symbol "j is that of the input interval t̂. (Re-
call that if f is moderately well behaved, the other
partial deviations of û should decrease quadratically
with the size of [t̂].) But in that case the coe�cient
uj is a good estimate of the derivative of f in the in-
terval, and we can use it to guess the position of the
root for the next iteration. In other words, AA al-
lows us to carry out Newton's root-�nding algorithm
without explicitly computing the derivative of f .

Acknowledgements

The second author is currently supported in part by
a research grant from the Brazilian federal govern-
ment (CNPq). Some of this research was performed
at the DEC Systems Research Center (SRC) in Palo
Alto, whose director Dr. Robert W. Taylor we wish
to thank for his friendly encouragement and generos-
ity. Lyle Ramshaw of DEC SRC contributed many
helpful comments and suggestions.

References

[1] T. Du�, Interval arithmetic and recursive sub-

division for implicit functions and constructive

solid geometry. Proceedings of SIGGRAPH'92,
in ACM Computer Graphics 26, 2 (July 1992),
131{138.

[2] A. Glassner, Space subdivision for fast ray trac-

ing. IEEE Computer Graphics & Applications,
Oct. 1984.

[3] R. E. Moore, Interval Analysis. Prentice-Hall,
Englewood Cli�s, NJ (1966).

[4] R. E. Moore, Methods and Applications of In-

terval Analysis. SIAM, Philadelphia (1979).

[5] S. P. Mudur and P. A. Koparkar, Interval meth-

ods for processing geometric objects. IEEE Com-
puter Graphics and Applications 4, 2 (Feb.

1984), 7{17.

[6] J. M. Snyder, Interval analysis for computer

graphics. Proceedings of SIGGRAPH'92, in
ACM Computer Graphics 26, 2 (July 1992),
121{130.

[7] K. G. Su�ern and E. D. Fackerell, Interval meth-

ods in computer graphics. Computers & Graph-
ics 15, 3 (1991), 331{340.

[8] G. Wyvill, T. .L .Kunii, and Y. Shirai, Space di-

vision for ray tracing in CSG. IEEE Computer
Graphics & Applications, April 1986.

[9] IEEE Standard for Binary Floating-Point

Arithmetic. ANSI/IEEE Standard 754-1985,
IEEE, New York (1985).

Anais do VII Sibgrapi, 1993

