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Abstract: Much research effort has been conducted to introduce intelligence into communication
networks in order to enhance network performance. Communication networks, both wired and
wireless, are ever-expanding as more devices are increasingly connected to the Internet. This survey
introduces machine learning and the motivations behind it for creating cognitive networks. We then
discuss machine learning and statistical techniques to predict future traffic and classify each into
short-term or long-term applications. Furthermore, techniques are sub-categorized into their usability
in Local or Wide Area Networks. This paper aims to consolidate and present an overview of existing
techniques to stimulate further applications in real-world networks.
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1. Introduction

Machine learning can be generally described as computational methods using ex-
perience to improve performance or to make accurate predictions [1]. More specifically,
machine learning techniques use data-driven methods to improve the performance of
a system. One major area of application for machine learning can be found in optical
networks. Optical networks, based on the emergence of fiber in transport networks, pro-
vide higher capacity and reduced costs for new applications such as Video on Demand,
Content Delivery Networks, Internet of Things, and Cloud Computing. They have been
developed continuously to offer more flexible technology, complex algorithms, and new
technologies, such as Elastic Optical Networks (EONs) [2,3] or Space Division Multiplexing
(SDM) [4]. However, recent trends, such as big data, Internet of Things (IoT), and 5G
networks, demand not only high-capacity optical links but effective and programmable
control over the network [5].

To support efficient networking with the rapidly evolving data transfers, big data
features such as Velocity, Volume, Value, Variety, and Veracity should be accommodated
by networks [6]. Large-scale backbone networks require great capacity and this capacity
can be increased by adding additional resources, such as adding more spectrum (either
by changing the technology or simply providing more fiber links). On the other hand,
such an approach is not efficient either in terms of planning or cost-efficiency. Instead, one
should ask the question of how we can use data analytics to make more efficient decisions.
This leads us to the concept of cognitive networks [7]. A cognitive optical network can be
defined as a transport network that uses a cognitive process to perceive current network
conditions. It plans, decides, and acts on these conditions, learns from the historical
data, and forecasts future events. The cognitive processes, which learn or make use of
history to improve performance, apply various data analytics solutions typically utilizing
machine learning techniques. In particular, data analytics (DA), machine learning (ML)
and deep learning (DL), or, in general, Artificial Intelligence (AI) concepts are regarded as
promising methodological areas to enable cognitive network data analysis, thus enabling,
e.g., automatized network self-configuration and fault management.
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The Internet follows an explosive growth trend, with exponential increases in con-
nected users, devices, and data transmission volumes. By 2023, there will be an estimated
5.3 billion Internet users, with each user connecting, on average, 3.6 devices to the network.
The global average bandwidth speed is also expected to increase from 61.2 Mbps in 2020 to
110.4 Mbps in 2023 [8]. At such a large scale and growth rate, it is becoming more and more
difficult to control, manage, monitor, and predict traffic patterns in optical networks using
traditional manual operations. As such, machine learning can be the principal solution to
automate network decisions to improve performance, mainly through traffic prediction.

Machine Learning Tasks for Optical Networks

A very popular aspect of optical network service where machine learning is applied is
the network’s survivability, which describes the network’s ability to provide uninterrupted
data flow [9]. Machine learning can optimize survivability rates in optical networks
by recognizing issues, making self-directed decisions, and predicting traffic flows and
potential failures. These different goals can be classified into standard ML tasks, which are
briefly described below [1]:

• Classification: Process of assigning threat categories;
• Regression: Predicting a value for items;
• Ranking: Ordering based on some criteria.

While the majority of the work focuses on the above-mentioned aspect, another very
important task is traffic prediction. Quite a few existing papers provide ML-based solutions
for traffic prediction in communication networks. This survey will try to classify ML
applications into their use of short-term versus long-term traffic prediction. Furthermore,
short-term and long-term prediction differences will be examined in Local Area Networks
(LAN) versus Wide Area Networks (WAN). In the following sections, this paper will
discuss the motivations for applying ML to networks, followed by a general survey of
techniques used in short-term predictions and long-term traffic predictions in Local and
Wide Area Networks. The relevant papers explored in the survey will be categorized into
the following techniques:

1. Neural Networks;
2. Support Vector Machines;
3. Linear Regression;
4. Principal Component Analysis;
5. Statistical Models;
6. Linear Time Series Models.

Figure 1 shows a high-level overview of the papers discussed in this survey, catego-
rized into techniques that are applied to achieve the traffic prediction.

The remainder of this paper is divided as follows. Section 2 motivates our survey. We
then discuss definitions of short- and long-term traffic prediction, as well as the differences
between the Local Area Network and Wide Area Network, in Section 3. The following
sections discuss concepts of various machine learning techniques and their application
towards traffic prediction. Finally, we summarize the paper in Section 10, followed by
future directions. To the best of our knowledge, this is the first survey that summarizes
recent advancements related to traffic prediction based on Artificial Intelligence.



Telecom 2021, 2 520

Figure 1. Structure of the survey.

2. Motivations

The application of machine learning in optical networks can be linked to the emergence
and increasing popularity of Artificial Intelligence. While AI focuses on making ‘smart’
machines, ML is a branch of AI seeking to make machines smarter through ‘learning’ [10].
In tandem with the growth and power of computing technologies, AI through ML methods
has become a viable solution for optical networks because of successes in large-scale
operations, faster processing speeds, and flexibility through automated decision-making.
Musumeci et al. [11] classify motivations for using ML in optical networks into two broad
categories: increased system complexity and increased data availability.

2.1. System Complexity

Optical networks are becoming more complex in both the physical and network
layer. The physical architecture of the optical network can be reconfigured, and additional
electronic components can be attached at various points to collect and monitor signal
data. An example is optical-time-domain reflectometry (ODTR)-based monitoring. ODTR
equipment measures traces of backscattered light by first injecting short light pulses
into optical fibers. The response measured by the receiver can be used to monitor fiber
performance [12]. Programmable software layered on top of physical hardware further
increases system complexity. The programmability of the network provides the basis for a
Software-Defined Optical Network (SDON) from which ML intelligence can be introduced
to the system [13]. As systems become more complex and larger in scale, it becomes
more challenging for humans to make performance-affecting decisions. This is important
since optical networks often must meet a certain quality of transmission. Automatic and
accurate changes and adjustments to the network would be ideal for achieving this. Thus,
a well-trained machine could be supplemented with an existing human-operated network
to increase its performance.

2.2. Data Availability

Alongside the data generated from physical hardware, monitoring equipment, and
SDONs, there is also the ever-increasing buildup of historical data and expert knowledge.
All of this information, including raw labeled or unlabeled data, can be used to better train
machines in performance optimization and future predictions. For example, long-term
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historical data can be fed to machines as a learning mechanism to filter data noise since it can
compare current changes to historical changes in signal state [14,15]. Another motivation
for using ML may be to reduce the time spent in feature engineering. Determining features
can be a lengthy process requiring expert knowledge from human-led feature engineering.
With deep learning, it may be possible for machines to extract features by themselves,
without human input. Lastly, given the amount of data available to train ML models, it
becomes possible to train machines offline. Doing so would reduce the requirement for
real-time online computation. This would decrease computation and resource costs while
ensuring that the live network service is not compromised [13].

3. Definitions

Traffic prediction techniques can often be applied across various timescales or time-
independently, so criteria are needed to classify techniques into short-term or long-term
categories. For the purpose of this paper, ‘short-term’ refers to the prediction and appli-
cation of techniques in the timeframe of minutes, hours, and days. ‘Long-term’ refers to
the prediction and application of techniques for weeks, months, and years. A specific
technique is classified as short-term or long-term depending on whether it:

1. specifically discusses short-term or long-term prediction purposes;
2. is applied in simulation for the short term or long term;
3. predicts traffic for short-term or long-term increments of time;
4. is time-dependent or -independent.

In the case where the technique is time-independent, as is often the case in predicting
blocking probability, this paper will classify the technique as long-term. It is important to
note that short-term predictions may become long-term predictions if deployed for a longer
duration. Additionally, a technique’s purpose of prediction may be applicable for the
long term, such as blocking probability estimation or power usage reduction. Henceforth,
time-independent techniques are classified as long-term traffic prediction because they
may be applied regardless of time duration.

Moreover, all techniques discussed in this paper apply either to Local Area Networks
(LAN) or Wide Area Networks (WAN). LAN are networks where devices are connected
within small geographical locations, such as a building or a group of buildings, as shown
in Figure 2. Networks are considered WAN when they span larger geographical locations
across large distances, such as a country-wide network or a global network, as shown in
Figure 3.

Figure 2. Local Area Network diagram.
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Figure 3. Wide Area Network diagram.

4. Neural Networks

Neural Networks (NNs) are algorithms used in machine learning to solve problems
via data processing. Input data move through a series of interconnected nodes, where each
node is weighted initially and re-calculated as the information passes through the network.
Some everyday tasks include regression and classification. A general NN consists of an
input, a hidden, and an output layer. The hidden layer may have multiple layers and use
different algorithms in which data are processed [16]. Figure 4 shows the general layout of
a Neural Network with two hidden layers.

Figure 4. General layout of a Neural Network with two hidden layers.

Neural Networks rely on training data to learn and improve their accuracy over time.
However, once these learning algorithms are fine-tuned for accuracy, they are potent tools
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in Computer Science and Artificial Intelligence, allowing us to classify and cluster data at a
high velocity. One of the possible applications of NNs in communication networks is traffic
prediction. In the following subsection, we discuss the relevant papers that use NNs.

Relevant Papers

Zang et al. [17] propose a method to predict the next-hour traffic value for cell towers
in a large city by feeding pre-processed time series signals into an Elman Neural Network
(ENN). An ENN, a deep learning technique, differs slightly from the traditional Neural
Network layout of having three main layers: input, hidden, and output. An additional
context layer is attached to the hidden layer, which takes the output of the hidden layer and
stores it for use in future iterations of training [18]. The city’s base stations are first split into
50 groups by K-means clustering. K-means clustering is a set of machine learning algorithms
that group similar data points together, generally with each cluster having one mean center.
The number of groups is fixed, and the user chooses somewhat arbitrarily based on what
they know about the data and what they think is best for the work. This paper uses both
unsupervised (K-clustering) and supervised (ENN) machine learning methods to achieve
its goal. The base station signals are first split into low- and high-frequency components
through wavelength decomposition. Each component is then fed to the ENN and eventually
fused to obtain prediction results [17]. Six days of traffic data were used for training,
while one day was used for the final prediction testing. The paper finds that with the pre-
processing of signal data using wavelength decomposition, the next-hour traffic prediction is
more accurate than simply using ENN without prior wavelength decomposition. However,
one drawback of this methodology is that the prediction performance decreases as the
K-value is set higher. This means that the predictive ability of this method outside of the
paper’s scenario would depend on the user-selected K-value. Nevertheless, this case shows
that a combination of deep learning, data clustering, and signal pre-processing could predict
short-term traffic in a Wide Area Network better than traditional means.

Aibin et al. [19,20] use time series traffic data sets from a network service provider
in a combined Long Short-Term Memory (LSTM) and Recurrent Neural Network (RNN)
training methodology to predict network traffic at 5 min and 1 h time granularities. An
RNN network contains a feedback loop in the hidden layer that ‘remembers’ the results
of a previous time. The issue with RNN is that its ‘memory’ degrades over time, called
vanishing gradients, and thus is not suitable to predict long-term data dependencies [21],
including autocorrelation. LSTM is a variant of RNN, which reduces this issue by having
each neural cell contain additional memory units, saving cell states for long periods or
forgetting information deemed not applicable. In this paper, LSTM is used to predict
autocorrelation better. The data are first fed through the LSTM Neural Network, and the
output is then fed through a traditional DNN network (Deep Neural Network) to obtain
predictive results. One downside to using the LSTM model instead of a simple one is the
longer duration required for training convergence. More training iterations are required
before the model can accurately predict network traffic. To overcome this issue, the authors
propose to use Monte Carlo Tree Search [15]. The key novelty of their approach is the use
of various selection strategies applied to the phase of building a search tree under different
network scenarios, which solves the problem of long convergence time.

Peng et al. [22] use an echo state network (ESN) and autoregressive integrated
moving average (ARIMA) model to forecast mobile communication traffic series. ESNs are
Recurrent Neural Networks where the input is passed through a randomized but fixed-
weighted ‘reservoir’ of neural nodes to produce an output. The target output is then fed
back into the reservoir as input. The idea is that the reservoir, with the target input, would
‘echo’ traces of past input history [23]. On the other hand, the multiplicative seasonal
autoregressive integrated moving average (MSARIMA) is a model used for forecasting
time series by looking at time-lagged value errors. The smooth part of the time series
is input into the ESN for forecasting, while the seasonal part is input into ARIMA for
long-term predictability. The hybrid model is used for predictions 6 to 168 h into the



Telecom 2021, 2 524

future. This study finds that their hybrid model has a 12% improvement in prediction
accuracy over other similar methods, echo state networks, SVM, and Wavelet-MSARIMA.
Hybrid models, which use different ML techniques to better generate short- and long-term
predictions separately before being consolidated, may be a viable solution to predicting
seasonal traffic data. A potential obstacle in using hybrid models can be its requirement for
data pre-processing to produce two inputs to be used in two ML networks separately. This
method may require more time to prepare the data as well as to train both models before
consolidating the output prediction.

Jia et al. [24] use a Backpropagation Neural Network (BPNN) to predict future links
in an elastic optical network (EON) in order to achieve better performance via increasing
bandwidth utilization and decreasing blocking probability. The BPNN is used to predict
the arrival time and holding time of future connections. These values are called ‘future
connections’ in the paper. Meanwhile, ‘assigned connections’ are connections in which
the arrival time and holding time are known since spectral resources are pre-specified
along a particular path. A Minimum Comprehensive Weight Algorithm (MCW) predicts
future arrival and holding time values on candidate paths. On the other hand, a Minimum
Network Competition Algorithm (MNC) is used to calculate the resource competition
for all candidate paths to compare them. The optimal path is the path with the least
competition and with the least blocking probability. The MCW and MNC are routing and
spectrum assignment (RSA) algorithms with holding time awareness, proposed to achieve
lower blocking probability. The study finds that the MCW performs better than other
algorithms in elastic optical network performance.

Morales et al. [25] use an Artificial Neural Network model to adaptively configure
virtual network topologies (VNT) to scale to increased traffic demands automatically.
Their methodology, which they call the VNT reconfiguration based on traffic prediction
(VENTURE), will analyze real-time-monitored traffic data to predict hour-by-hour traffic.
More specifically, the model predicts the maximum bitrate for every origin–destination
pair and modifies the VNT to be capable of handling this maximum bitrate. ANN fitting,
in this case, is an interactive procedure to find the lowest Akaike information criterion
(AIC), where a lower AIC value means higher optimization between the accuracy and
number of inputs. Three separate algorithms are then used to determine the pathway for
data flows in the VNT. First, flows are allocated for already existing virtual links. Secondly,
new virtual links are created and fully capacitated. Lastly, any residual bitrate is served on
newly created uncapacitated virtual links. These three algorithms are iterated every hour to
recompute and reconfigure the VNT to account for next-hour traffic. Morales et al. find that
VENTURE is able to achieve transponder savings between 8% and 42% when compared
with traditional threshold-based VNT reconfiguration. By predicting the maximum bitrate
hour-by-hour, VENTURE can effectively reduce energy consumption, as it automatically
de-activates and re-activates transponders during low- and high-traffic hours.

Menezes Jr et al. [26] explore the use of a nonlinear autoregressive exogenous model
(NARX) to predict long-term chaotic laser and variable bitrate (VBR) video traffic time
series data sets. More specifically, they seek to determine the viability of using NARX for
long-term data prediction. NARX differs from an RNN in that the output of the NARX is
fed back into its input, while an RNN only has feedback loops within the hidden layer [27].
A NARX network has an exogenous input regressor, which, in this particular approach,
contains sample values of the actual time series. Another feedback loop to the input layer
is supplied with an output regressor, which contains estimated data points from the Neural
Network. These combine to supply long-term information and short-term information,
respectively [26], to the system in order to predict future values accurately. The authors find
that NARX Neural Networks can be used for long-term prediction and improve prediction
performance compared to alternative Neural Network solutions, namely Elmann and Time
Delay Neural Network (TDNN) models. This is because the output regressor in NARX
networks seems to have the impact of reducing the likelihood of data overfitting [26].
Overfitting is a negative effect of machine learning where accurate training results are
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produced with a local set of training data, but performance may be inaccurate given actual
scenarios and data [28]. This means that the ML model only works well with the training
data but cannot accurately reflect relationships or patterns in a production environment.
The authors thus propose further studies of NARX usage for long-term prediction with
other data sets such as electrical load forecasting or financial time series analysis.

Xiong et al. [29] propose a power-aware lightpath management (PALM) algorithm to
reduce the power consumption of tearing down and re-establishing lightpaths. According
to Bolla, R., Bruschi, R., and Lago, P., the creation of lightpaths in elastic optical networks
(EONs) may account for 15% of all power consumption [30]. A traffic prediction module
is attached to the EON, consisting of a Backpropagation Neural Network (BPNN) sup-
plemented by a particle swarm optimization (PSO) algorithm to determine initial input
weights. The PSO algorithm works by first initializing a random population of weights for
each input. Each particle has a velocity value attached to it and remembers its previous best
velocity. With each iteration, the velocity value is updated to move towards a better value
given its previous best [31]. This process is iterated until the authors determine an optimal
velocity value as input for the BPNN. The PALM algorithm depends on the prediction
output from the PSO-BPNN to determine whether to keep a lightpath open or to re-route a
traffic request to a particular idle lightpath. Simulated results show that the PSO-BPNN at
an 80% utilization threshold for the lightpath has a 31–36% improvement in reduced power
consumption compared to the energy-efficient manycast (EEM) algorithm over a month.
PALM is successful in significantly reducing power consumption in EONs; however, it
comes at the price of an approximately 5% increase in bandwidth blocking ratio [29].

Leung et al. [32] test two algorithms using the extreme machine learning (EML)
framework to estimate blocking probability in optical burst switching (OBS) networks.
Packet loss may occur in burst switched networks when an intermediate node drops
packets because it is not reserved for a particular bandwidth. EML is a type of single-
hidden-layer Neural Network where the input weights of the hidden nodes are randomized.
The two algorithms are designated I-ELM and Log-I-ELM, where the Log-I-ELM algorithm
is trained to map the network conditions to the blocking probability. Both algorithms
train by adding new, randomly weighted, hidden nodes with each iteration. The number
of hidden nodes where the mean square error is lowest is used to predict the blocking
probability over different traffic loads. The results indicate that the Log-I-ELM algorithm is
the most accurate in estimating blocking probability in a network.

Vinchoff et al. [33] propose a Graph Convolution Network (GCN) and Generative
Adversarial Network (GAN) to predict traffic spikes for both the short term and long term.
The GCN captures the topological state of the network, while the GAN is used to predict
future traffic bursts. An additional Simple Feedforward Neural Network (SFNN) is used
to predict the most probable future network state. One-week-long network snapshots were
used in the GCN-GAN model to tackle short-term prediction, while three-month-long
snapshots were used for long-term prediction. The model was validated with real traffic
data from the Telus Fiber Network. The results showed that the GCN-GAN model was
more effective in predicting burst traffic when compared with the LSTM model in terms of
both lower mean squared error values and lower overestimation of traffic volume.

5. Support Vector Machines

A Support Vector Machine (SVM) algorithm is used to classify unlabeled data points
into two labeled categories. It learns to separate a cluster of data points into distinct binary
groups [34]. Figure 5 shows a cluster of data points classified into class 1 (green) and class
2 (blue). In brief, SVM performs complex data transformations depending on the selected
kernel function, and, based on these transformations, it tries to maximize the separation
boundaries between data points depending on the labels or classes that we have defined.
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Figure 5. Example scatterplot showing SVM classification of data points into two classes.

As we can see in Figure 5, SVM tries to find a line that maximizes the separation
between a two-class data set of two-dimensional space points. To generalize, the objective
is to find a hyperplane that maximizes the separation of the data points to their potential
classes in an n-dimensional space. The data points with the minimum distance to the
hyperplane (closest points) are called Support Vectors. The computations of data points’
separation depend on a kernel function. There are different kernel functions: Linear,
Polynomial, Gaussian, Radial Basis Function (RBF), and Sigmoid.

Relevant Papers

Mata et al. [35] propose a reasoning module based on Support Vector Machines (SVMs)
that have been trained with previous data in offline simulations to predict the quality
of transmission (QoT) of a particular lightpath in wavelength-routed optical networks
(WRONs). An SVM is an algorithm used to classify unlabeled data into labeled binary
categories. Pre-existing data sets are provided to the SVM to learn a function that can
accurately classify lightpaths into low- or high-quality categories based on the physical
and performance attributes of the lightpath cumulated in a Q-factor variable. In doing
so, the authors can quickly predict high-quality or low-quality transmission in a WRON
before it is deployed. They found that the SVM approach requires the least computing
time compared with alternative Q-Tool and Case-Based Reasoning (CBR) methods while
maintaining the highest percentage of successful inaccurate classifications.

Stepanov et al. [36] use SVM in the edge networking paradigm, aiming to predict
and optimize the network load conventionally caused by human-based traffic, which
is growing each year rapidly. In their work, they propose a method to predict the LTE
network edge traffic. The analysis is based on the public cellular traffic data set, and it
presents a comparison of the quality metrics. In conclusion, the proposed Support Vector
Machines method allows much faster training than the Bagging and Random Forest and
operates well with a mixture of numerical and categorical features.

In [37], the authors use SVM to forecast traffic in Wireless LANs (WLANs). The
main focus is a study of the issues of one-step-ahead prediction and multi-step-ahead
prediction without any assumption on the statistical property of actual WLAN traffic. They
evaluate the performance of different prediction models using four real WLAN traffic
traces. The simulation results show that, among these methods, SVM outperforms other
prediction models in WLAN traffic forecasting for both one-step-ahead and multi-step-
ahead prediction.
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Finally, Chen et al. [38] study a new hybrid network traffic prediction method (EPSVM)
primarily based on Empirical Mode Decomposition (EMD), Particle Swarm Optimization
(PSO), and Support Vector Machines (SVM). The EPSVM first utilizes EMD to eliminate
the impact of noise signals. Then, SVM is applied to model training and fitting, and PSO
optimizes the SVM parameters. The effectiveness of the presented method is examined
by evaluating it with different methods, including basic SVM (BSVM), Empirical Mode
Decomposition processed by SVM (ESVM), and SVM optimized by Particle Swarm Opti-
mization (PSVM). The authors’ case studies demonstrated that the hybrid SVM performed
better than the other three network traffic prediction models.

6. Linear Regression

Linear regression is a common technique used in statistical analysis to find and
estimate a relationship over two or more sets of variables, regardless of how these are
distributed. The variables for regression analysis have to comprise the same number of
observations but can otherwise have any size or content. In other words, we are not
limited to conducting regression analysis over scalars, but we can use ordinal or categorical
variables as well. Figure 6 shows a scatterplot with a best fit linear trend line.

Figure 6. Example scatterplot with a linear trendline.

Of these variables, one of them is called dependent. We imagine that all other variables
take the name of ’independent variables’ and that a causal relationship exists between the
independent and the dependent variables. Alternatively, at the very least, we suspect this
relationship to exist, and we want to test our suspicions. Similarly, we can efficiently train
linear regression models on normalized and standardized data sets. Then, we use this
model to predict the outcomes for the test set and measure their performance.

Relevant Papers

While the most common case for using regression models in communication networks
is failure detection or network health prediction analysis [39], a few papers discuss the
application of linear regression towards traffic prediction.

Lechowicz in [40] proposed a machine learning regression model to obtain the
best weights combination that minimizes the network fragmentation. He developed a
fragmentation-aware algorithm showing that the proposed metric and assigned fiber
weights decrease network fragmentation. Consequently, the proposed solution allows
for bandwidth blocking probability reduction in the short term compared to the refer-
ence methods.
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Ref. [41] describes how linear regression support can be used and shared in optical
networks and the assessment of transmission quality (QoT), data traffic patterns, and
crosstalk detection to help to route and distribute resources.

Finally, Huang et al. [42] propose a solution to reduce power excursions in dynamic
optical networks that are equipped with an Erbium-Doped Fiber Amplifier (EDFA). An
EDFA system automatically maintains power levels in network amplifiers but faces the
issue of undesired power excursions. Power excursions occur when an increase in overall
power results in a high-gain channel stealing power from a low-gain channel. A linear
regression model is trained on 400 existing training data points until mean square error
(MSE) convergence. After convergence, the model recommends channel slots to add or
drop, considering their estimated standard error values. The model’s accuracy is verified
with known power standard deviations measured over a week. This approach is expected
to be applicable for more extended periods with different EDFA network designs.

7. Principal Component Analysis

Principal component analysis (PCA) is a data manipulation or reduction technique
that reduces the dimensions of a data set while minimizing the amount of information
lost, as presented in Figure 7. To do this, the initial variables are transformed into a new
set of variables called principal components. PCA also works around the fact that the
principal components are ordered. As a result, the beginning components keep most of the
information [43].

Figure 7. Scatterplot showing an example of PCA analysis generating two principal components.

The principle of simplicity is aesthetically desirable, but it can also have advantages
in data analysis. Focusing on critical parameters, such as those provided by PCA, within
almost any data analysis technique will improve its efficiency and the quality of the result.
Including parameters that do not contribute to the model’s behavior makes the computation
less efficient, and other parameters contribute noise to the problem.

Relevant Papers

As explained by R. Filho et al. [44], PCA can be applied to the initial data to filter out
outliers. This is especially useful during the pre-processing stage, before the data are passed
into a machine learning algorithm. Using a network with 529 variables, the authors found
that using PCA, 11 principal components were enough to be an accurate representation of
the traffic data as they were able to account for 91.1% of the total variability.
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Araujo et al. [45] use an Artificial Neural Network (ANN) with eight input parameters
to estimate performance in wavelength-routed optical networks (WRONs). This approach
differs from other Neural Network methodologies by including a physical layer input
parameter in the Neural Network. The purpose of the methodology is to present a fast
and easy means to estimate blocking probability in WRONs given physical impairments.
Independent variables related to the physical layer and topological properties of the WRON
were determined by a principal component analysis (PCA). The PCA was performed to
generalize and identify variables that would make the model easier to train and use across
different networks. The best set of parameters was then used to train the ANN, and the
results were compared to network results simulated by a discrete event simulator called
SIMPTON. SIMPTON was used to simulate networks with different traffic loads of 100 and
200 Erlangs. The results found that the ANN was an effective method to estimate blocking
probability in cases where inadequate training and execution time is desired. There are
two downsides to this approach. The first is that the same input criteria need to be used to
estimate the blocking probability of the network accurately. Secondly, the error increases
for networks with lower traffic loads.

The authors of [46] performed a comparative experimental analysis with a PCA-based
method on a real-life data set and achieved better decomposition performance. In the
real-life data set, results showed that, through robust PCA, most of the significant volume
anomalies were short-lived and well-isolated in the residual traffic matrix while PCA failed.
In traffic flow prediction experiments based on decomposition, the result based on robust
PCA outperformed the PCA and simple average. This provides adequate evidence that
robust PCA is more appropriate for traffic flow matrix analysis. The authors concluded
that a robust PCA shows promising abilities in improving the accuracy and reliability of
traffic flow analysis.

Djukic et al. [47] perform prediction of the time evolution of origin–destination (O–D)
matrices using the PCA method. PCA shows that the dimensionality of the time series of
O–D demand can be reduced significantly. The authors also discover that the results from
the PCA method can be used to reveal the structure in the underlying temporal variability
patterns in dynamic O–D matrices.

PCA has also been successfully applied to IP networks, as presented in [48]. The pro-
posed system uses seven traffic flow attributes: bits, packets, and number of flows, to
detect problems, and source and destination IP addresses and ports, to provide the net-
work administrator with the necessary information to solve them. The authors applied a
hybrid PCA method for network traffic data, and the results showed good traffic prediction
and encouraging false alarm generation and detection accuracy on the detection schema
using thresholds.

Finally, the authors of [49] propose a method based on principal component analysis
and Support Vector Regression (PCA-SVR) for the short-term simultaneous prediction of
network traffic flow that is multidimensional compared with a traditional single point.
Data from a typical traffic network of Beijing City, China, are used for the analysis. Other
models, such as ANN and ARIMA, are also developed as a comparison of the performance
of both these techniques is carried out to show the effectiveness of the novel method.

8. Statistical Models

This section of the paper contains additional statistical means and optimization models
to aid in traffic prediction.

8.1. Hidden Markov Model

The authors Chitra, K. and Senkumar M. R. [50] use a three-phased approach to
improve the Quality of Service (QoS) in optical WDM networks. The proposed Load
Balancing Technique to improve QoS for Lightpath Establishment (LBIQLE) evaluates a
network based on throughput, blocking probability, and delay metrics. A Hidden Markov
Model (HMM) was first used to predict the next future traffic load. An HMM has two
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layers, a hidden layer and an observable layer. To determine the most likely future state of
the system, a sequence of probabilities in the hidden layer is calculated and output to the
observable layer. This series of probabilities is known as the Markov chain, which assumes
that the next state is only dependent on the current state of the system and not any prior
past states [51]. Phase 2 of LBIQLE utilizes wavelength order to reduce crosstalk. Finally,
in phase 3, a proprietary algorithm is used to modify the virtual topology to best meet
the predicted traffic demand in phase 1 from the HMM. Simulated results using LBIQLE
are compared with a GRASP approach and found to have higher network utilization
rates. LBIQLE also reduces the blocking probability and delay while increasing the traffic
throughput.

Moreover, the authors of [52] propose Monte Carlo Tree Search as a solution to the
Markov Model to enable traffic prediction in inter-data center optimization problems that
use Cross-Stratum Optimization architecture for provider-centric use cases.

8.2. Bayesian Estimation

In passive optical networks (PONs), an optical line terminal (OLT) sends packets of
data to optical network units (ONUs) located at the user end. Dias, M., Karunaratne, B., and
Wong, E. [53] use Bayesian Estimation to predict the interarrival time of packets from the
OLT to the ONU. Calculations are performed at the OLT, such as the necessary sleep/doze
time, and the predicted traffic accumulated during sleep is calculated. The command is
then sent from the OLT to the ONU, telling it when to sleep and wake up to receive the
next packet. The ONU estimates the average interarrival time of packets using Bayesian
estimation and returns its estimation to the OLT for calculations. Bayesian estimation is
a probability-based statistical method, used in this paper to find the most likely average
number of interarrival packets. The process is iterated to update the likelihood of the
average number of packets with each additional measurement. Using this method, the
authors are able to achieve 63% energy savings, with a 13% reduction in the average delay
that is expected from the ONU sleeping and waking.

Zhong et al. [54] propose wavelength splitting optimization algorithms to maximize
traffic throughput during periods of traffic spikes in elastic optical networks. Instead of
turning equipment on and off to handle high traffic volumes, traffic is split into different
lightpaths when a threshold is reached. Traffic is processed through four algorithms to
determine the number of splitpoints, which lightpaths to split, resource allocation after
a split, and incremental traffic routing. The authors found that wavelength splitting
optimization could increase the overall traffic throughput in a network, assuming that
the network traffic could be split to begin with. One downside of traffic splitting is that it
interrupts network traffic for a short amount of time to tear down and create new lightpaths.
However, the proposed optimization technique is a viable solution for short-term traffic
spikes lasting from hours to days as it only requires a few minutes of calculation and
network reconfiguration.

9. Linear Time Series

The use of linear predictive models is successfully demonstrated in several papers for
short-term traffic prediction. These include Auto-Regressive (AR), Moving Average (MA),
Autoregressive Moving Average (ARMA), and Autoregressive Integrated Moving Average
(ARIMA). Autoregressive models are created on the idea that we can try to predict future
values based on past values of this same variable. Alternatively, it could be said that the
current value can be described as a linear function of past values [55]. The ’auto’ portion of
autoregressive indicates that we are examining the relationship of the variable against itself.
For Moving Average models, past forecast errors are used for regression rather than past
values. ARIMA combines these two models but includes an integrated component where
differences between periods must be modeled, rather than data from the period itself [56].
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Relevant Papers

Hoong et al. [57] utilized the ARMA time series model to forecast network traffic and
examine the impact of data transferring in low and high forecasted traffic scenarios. The
authors experimented with the ARMA model using captured network packets representing
the network condition in this study. These data were transformed with log return before
using the ARMA model to create a network traffic pattern for forecasting. Using both a
10 MB file and a 1 GB file, they initiate the transferring of files when the forecasted traffic is
low and high to test their forecasting accuracy and observe the file transfer throughput. In
their conclusions, the authors note that initiating data transfer when the next step in the
traffic forecast is low would lead to more efficient throughput, and they suggest dividing
larger files into smaller sizes. They suggest that using ARMA model traffic prediction
could allow for more effective file transfers.

Similarly, Tan et al. [58] proposed using the ARMA model for traffic prediction
in hopes of allowing application developers to find out the best periods for their users
to download software patches. Given that downloading software patches can impact
bandwidth during activities such as streaming videos or gaming, it would be ideal to use
network traffic forecasting to avoid downloading patches or updates during these times.
Using captured TCP data, the authors used the ARMA model on the log return values of
the collected data and compared the forecasted pattern to the actual traffic data, varying
two parameters: the sampling size of the Moving Average and the step size of the sample
data. Their study finds that the ARMA model could forecast short-term traffic regardless of
historical data size and suggests that this method could be suitable for forecasting software
patch download periods.

Sadek et al. [59] proposed using a k-factor Gegenbauer ARMA (GARMA) model for
predicting high-speed network traffic and compared it to the traditional autoregressive
model. This study captured traffic data for MPEG, JPEG, video, Ethernet, and the Internet.
Using the mean absolute error (MAE) and the signal to error ratio (SER), they measured
the accuracy of their prediction model. The authors found that the k-factor GARMA model
outperformed the autoregressive (AR) model. They suggest that this prediction model
could be used to plan congestion control, such as dynamically allocating bandwidth.

Moayedi et al. [60] described the use of an ARIMA model for predicting traffic
and detecting anomalies. Using a uniform random number distribution, they simulated
15 min of data from a network interface card. Using the ARIMA model to simulate traffic,
anomalies were detected in the autocorrelation and partial autocorrelation plots.

10. Summary

In this section, we summarize all the discussed papers into two tables. Table 1 shows
a list of the literature that has been classified for their use in short-term network traffic
prediction. Table 2 shows a list of the literature that has been classified for their use in
long-term network traffic prediction. Finally, each table consists of a further classification
of all techniques into Local and Wide Area Network type, the metric that they use for
evaluating their work, and the application (e.g., cellular networks, optical networks, and
so on).



Telecom 2021, 2 532

Table 1. List of papers on short-term communication traffic prediction.

Technique Reference Type Local/Wide Metric Application

NN

17 NN Wide Traffic Volume Cellular traffic
19 LSTM Wide Blocking Probability Optical networks
20 GCN-GAN Wide Traffic Volume Elastic optical networks
21 RNN Wide Traffic Volume Communication networks
24 BPNN Wide Blocking Probability Elastic optical networks
25 LSTM Wide Traffic Volume Big data oriented networks
30 NN Wide Traffic Volume Universal
32 ELM Wide Traffic Volume Bufferless OBS/OPS networks

SVM
36 SVM Wide Traffic Volume LTE networks
37 SVM Local Traffic Volume Wireless Local Area Networks
38 Hybrid SVM Wide Traffic Volume Metro network

PCA

44 PCA Wide Traffic Volume IP network backbone
45 PCA Wide Blocking Probability Optical networks
47 PCA Local Traffic Volume Bluetooth networks
49 PCA Wide Traffic Volume Metro networks

Statistical Model
52 Markov Decision Process Wide Blocking Probability Optical networks
53 Bayesian Estimation Local Traffic Volume ONU
54 Statistical analysis Wide Traffic Volume Elastic optical networks

Linear Time Series 57 ARMA Local Traffic Volume TCP traffic
58 GARMA Local Traffic Volume MPEG, JPEG, Ethernet, Internet

Table 2. List of papers on long-term communication traffic prediction.

Technique Reference Type Local/Wide Metric Application

NN

14 ANN Wide Blocking Probability Optical networks
19 LSTM Wide Blocking Probability Optical networks
20 GCN-GAN Wide Traffic Volume Traffic prediction
26 NARX Local Traffic Volume Traffic prediction
33 GCN-GAN Wide Traffic Volume Traffic prediction

SVM 35 SVM Wide QoT prediction Optical transport networks

Linear Regression 40 Linear Regression Wide Fragmentation prediction Spectrally–Spatially Flexible Optical Networks

Statistical Models 50 Hidden Markov Model Wide Traffic Volume Wavelength Division Multiplexing networks

Linear Time Series 57 ESN Wide Traffic Volume Wireless traffic load
60 ARIMA Wide Traffic Volume Communication networks

11. Conclusions and Future Opportunities

Communication networks, wired and wireless, continue to grow in size, complexity,
and intelligence. Network intelligence is introduced for the network to handle high-volume
situations better and to ensure the quality of service. This paper has surveyed multiple
papers relevant to network traffic prediction and classified them according to their use
and applicability to the short term or the long term. These methodologies have also been
evaluated for their use in Local versus Wide Area Networks.

Our findings suggest that Neural Network techniques are the most common tools
used in network traffic volume prediction, followed by linear time series modeling. Back-
propagation Neural Networks and Recurrent Neural Networks seem to be able to more
accurately predict future network states, perhaps due to their feedback mechanisms, allow-
ing them to serve as memory. At the same time, some authors propose solutions mainly
used in image processing (such as the GCN-GAN method) and adapt them to the problems
related to traffic prediction. On the other hand, linear time series are mainly used in LAN
for short-term traffic prediction.

Network traffic volume and blocking probability were the most desired metrics to
predict in communication networks. Some papers used traffic prediction to trigger network
reconfigurations adaptively. Other uses for traffic prediction include determining ideal
periods for software patch downloading and file transfers.

As more research is conducted, software-defined networking is pushing high-performing,
automated, and intelligent networks into the realm of reality. Machine learning and
statistical modules may be loaded onto physical devices attached to the communication
network for monitoring, prediction, and configuration. The increasing availability of high-
quality historical data may also facilitate these models’ faster and more accurate ’learning’.
What remains is to determine which methods are most viable in which network scenarios.
Various factors in each technique should be considered, such as processing requirement,
calculation time, power consumption, and network topology.
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An attractive future opportunity is the application of epsilon greedy Q-learning
in transport optical networks. The aim is to have a balance between exploration and
exploitation. The optimization of Q-learning will allow us not to select local optima but
instead focus on finding the global one. The strategies that can be explored are the decayed-
epsilon greedy approach, since, usually, the exploration diminishes over time, and regret
minimization to speed up the convergence rate of traffic prediction in large networks.

Future network solutions should manage the ever-increasing data transfer demand
without adding complexity, while minimizing the network operators’ and users’ time on
network operations and management. These solutions should also be easily maintainable,
and their capabilities should be continuously updated by relying as little as possible on
human intervention.
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