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Abstract

Pitch extraction, also known as fundamental frequency estima-
tion, is a long-term task in audio signal processing. Especially,
due to the presence of accompaniment, vocal pitch extraction
in polyphonic music is more challenging. So far, most of deep
learning approaches use log mel spectrogram as input, which
neglect the phase information. In addition, shallow networks
have been applied on waveform directly, which may not handle
contaminated vocal data well. In this paper, a deep convolu-
tional residual network is proposed. It analyzes and extracts
effective feature from waveform automatically. Residual learn-
ing can reduce model degradation due to the skip connection
and residual mapping. In comparison to reported results, the
proposed approach shows 5% and 4% improvement on overall
accuracy(OA) and raw pitch accuracy(RPA) respectively.
Index Terms: vocal pitch extraction, polyphonic music, convo-
lutional residual network, raw waveform

1. Introduction

Pitch extraction, also referred to fundamental frequency (f0) es-
timation is a task to estimate the lowest frequency partial from
audio signal, which has been a popular research topic for many
years [1]. Extraction of the pitch contour is important in many
tasks, such as speech processing [2], recognition [3], singing
processing [4] and music information retrieval [5]. Pitch extrac-
tion plays a key role in singing signal processing, where pitch
is a core component of melody. Especially, due to the presence
of accompaniment, vocal pitch extraction in polyphonic music
is more challenging.

Many heuristic based pitch extraction algorithms have been
studied, which usually calculate the saliency function of pitch
candidates or separate the singing signal from polyphonic mu-
sic. Salamon [6] proposed to extract melody based on pitch con-
tours tracking and characterization. In [7], source-filter model
is used to do pitch salience estimation. Meanwhile, machine
learning methods based on classification are also applied to this
task. Ellis and Poliner proposed a support vector classifier to
predict pitch label from STFT features [8]. Bittner used random
forest classifier to do extract pitch based on the highly hand-
crafted features [9].

Recently, many deep learning approaches have been pro-
posed to learn the pitch directly from data. Deep Neural Net-
work (DNN) was proposed to perform fO estimation based on
log-spectrograms [10]. Kum [11] proposed to use multi-column
deep neural networks (MCDNN) to predict pitch from spectro-
gram. Bittner [12] described a fully convolutional neural net-
work (CNN) for multi-fO tracking based on harmonic constant-
Q transform (HCQT). Meanwhile, a patch-based CNN was pro-
posed to extract vocal melody from the combined frequency
and periodicity (CFP) representation [13]. Even though, these
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acoustic features, such as log-spectrogram, HCQT and CFP are
designed to capture the characteristic of the waveform, there
always exists phase information neglection problem. Several
papers have been proposed to operate directly on the raw time-
domain waveform using deep learning approaches. In [14],
raw waveform was directly used as input to multi-layered neu-
ral network to perform end-to-end learning. At the same time,
raw waveform was also directly fed into the CLDNN (Convolu-
tional, LSTM, DNN) [15] to do voice activity detection (VAD).
Kim [16] proposed a pitch tracking algorithm in monophonic
audio signal based on the CNN and raw waveform. However,
these networks applied on waveform directly are usually shal-
low, which may not handle the contaminated vocal data well
in polyphonic music. Convolutional neural network with deep
layers has show significant performance in many areas, such
as image recognition and computer vision [17]. However, it is
hard to stack deeper layers due to the gradient vanishing prob-
lem. To address the problem, He [18] proposed a residual neural
network (ResNet) with an identity shortcut connection. ResNet
allows the training of over hundred layers with increasing accu-
racy and can greatly improve the training efficiency and reduce
model degradation due to the skip connection and residual map-
ping.

Following the success and significant performance of
ResNet and raw time-domain waveform, in this paper, we pro-
pose to use a deep convolutional residual network to analyze
and extract effective feature from waveform automatically to
do vocal pitch extraction in polyphonic music.

The rest of the paper is as follows: Section 2 presents the
residual neural network. The proposed approach is described in
Section 3. Section 4 is devoted to providing the experimental
setup and analyzing the results. Section 5 discusses and con-
cludes the paper and Section 6 gives the future work.

2. Deep Residual Network

Deep residual network, also called ResNet is a very deep neural
network with skip connections by passing input from one layer
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Figure 1: Architecture of a residual block [18]
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Figure 2: The architecture of the proposed approach. Running eight convolution layers directly on the raw waveform produces an
output vector representing the vocal pitch classification, which is then used to derive an accurate pitch value.

to one or more later layers proposed in [18]. It consists a series
of residual blocks. The diagram of one building block is shown
in Figure 1, it can be expressed as:

H(z) =z + F(x), (1)
where x is the input, H (z) is the output of the stacked two lay-
ers, F'(-) represents the weight layer, which can be convolution
layer, pooling layer, batch normalization (BN) layer [19] and
so on. x represents the identity skip connection. In traditional
neural network, gradient is basically the product of a series of
matrix. When the layers go deep, gradient goes small till to
vanishing, which leads to a wrong performance. To overcome
the gradient vanishing problem in deep network, the identity
skip connection in the residual network is the ultimate solution,
since in the skip connection, information could be directly prop-
agated from one layer to any other layers in both forward and
backward pass. Therefore, the skip connection can increase the
training efficiency.

ResNet allows deeper network training and can generate
models with better performance. It achieves impressive results
on CIFAR-10, CIFAR-100, and SVHN [20]. ResNet’s power-
ful presentation capabilities are not only reflected in the image
classification direction [18], but also greatly improve the per-
formance of many other computer vision applications, such as
object detection [21] and facial recognition.

3. Architecture

This paper proposes a deep convolutional residual network
which directly analyzes on the raw waveform to do vocal pitch
extraction in polyphonic music. The overall architecture of the
proposed approach is presented in Figure 2.

1024 samples extracted from the raw waveform are used as
input. The network consists of eight convolutional layers and
each of them is followed by a Batch-Normalization (BN) layer.
Residual mapping is added for every two stacked convolutional
layers. To simply interpret the network architecture, the Recti-
fied Linear Unit (ReLU) and Batch Normalization notations are
ignored in Figure 2. Now, the calculation can be expressed as
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the following equations:

= fi(z1) + f2(fr(z1)), (@)
z3 = fa(z2) + fa(fs(z2)), 3
x4 = fs(x3) + fo(f5(x3)), “4)
x5 = fr(za) + fs(fr(z4)), (©)

where x1, 2, x3 and x4 are the input of two stacked layers, x5
is the output of the residual network, fi1, fa...fs are the activa-
tion functions of these convolutional layers.

The vocal pitch extraction in polyphonic music is con-
sidered as a classification task, since the 1-dimensional pitch
feature is too limited in regression task. We linearly quan-
tify the frequency range into 76 states between 87.309Hz and
784.00Hz, which covers four octaves. Besides, we add one state
to indicate the silence and unvoiced singing segments. Finally,
the dimension of output is 77. Moreover, conventional one-hot
output label is smoothed to extend the learning range. In this
way, different weights are added to their corresponding bands.
For example, if 100Hz is quantized to the 10th band, then the
10th band is 0.8, while the 9th and 11th band are both 0.1.

In order to mimic the critical bands of human subjective
listening perception, the frequency range is quantified on mel-
scale. The binary cross entropy between the target vector and
the predicted one is used as the loss function:

s

> (=yilogi — (1 = yi)log(1 — 5i)),

i=1

£(y,9) = ©)
Finally, x5 is reshaped into a 512-dimensional vector and then
mapped into the 77-dimensional output vector using a fully-
connected feed-forward layer. The objective state in the pre-
dicted 77-dimensional vector is the one who has the maximum
weight, and then we convert the intermediate value of the ob-
jective state to its corresponding frequency value.

4. Experiment

4.1. Experimental Setup

In our experiments, the dataset MIREX is used as training and
evaluation data, since it has the ground truth annotation for ev-



Table 1: Details of the parameters used for the proposed archi-
tecture.

name | kernel size/stride | outputsize
input - 1024
convl 256/8 128*512
conv2 32/1 128*512
conv3 32/4 32%256
conv4 8/1 32%256
conv5 8/4 8*128
convb 2/1 8*64
conv?/ 2/1 8*64
conv8 2/1 8*64

fc - 77

ery 20 milliseconds which is extracted from the clean singing
data. MIR-1k [22] is a Chinese pop song dataset that includes
1000 songs with a total length of 133 minutes. The raw au-
dio contains two channels, the left is clean singing signal and
the right is the accompaniment signal. To perform at different
signal-to-noise (SNR), we extract these two channels separately
and then add the accompaniment to the clean singing signal at
0dB and +5dB.

900 songs randomly-selected from the dataset are used as
the training and validation data, the remaining 100 songs are
used as the testing data. Both the training and testing data are
a mix of the clean singing signal and accompaniment at 0dB
and +5dB. To reduce the training complexity, the raw audio is
downsampled to 8kHz.

In our proposed approach, the input is 1024 samples, so
each frame of the input contains 128 milliseconds audio clips.
There are eight convolutional layers and a BN layer behind
each convolutional layer in the network. The output is the 77-
dimensional quantized vector on mel-scale. The number of
units, the filter size and the stride in each convolutional layer
are listed in the Table 1. The deep convolutional residual net-
work (CRN) model is optimized by ADAM [23] optimizer with
a learning rate of 0.0001.

In order to verify the performance of our proposed approach
(CRN-Raw), we compare it with two recently developed deep
learning based approaches DSM-HCQT and DNN-Raw. We
implement these three approaches for comparison:

* DSM-HCQT: deep salience map approach in which the
input HCQT is a 3 dimensional array of 360*50%6 in-
dexed by harmonic, frequency and time. The network
contains five convolutional layers. The threshold param-
eter is 0.1, which achieves the best performance. More
detail referred to [12].

* DNN-Raw: the input is raw waveform samples of 480
dimension, and the network has 3 fully-connected feed-
forward layers with 4096 units per layer [14].

* CRN-Raw: the proposed approach which uses the deep
convolutional residual network to directly operate on raw
waveform.

4.2. Evaluation Metrics

A brief introduction of the evaluation metrics [24] used in this
paper is shown below:

¢ Voicing Recall Rate (VR): the proportion of frames
labeled as voiced in ground truth to that estimated as
voiced frames by the approach
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Table 2: Vocal pitch extraction results of different approaches
at 0dB

Method OA | RPA RCA | VR VFA
DSM-HCQT | 733 | 742 782 | 89.1 323
DNN-Raw 745 | 722 823 | 87.0 18.6
CRN-Raw 784 | 786 870 | 91.7 12.0

Table 3: Vocal pitch extraction results of different approaches
at +5dB

Method OA | RPA RCA | VR VFA
DSM-HCQT | 783 | 80.5 83.6 | 92.1 26.6
DNN-Raw 785 | 772 869 | 893 175
CRN-Raw 822 | 81.7 909 | 933 4.6

Voicing False Alarm Rate (VFA): the proportion of
frames labeled as unvoiced in the ground truth to that
are estimated as voiced by the approach.

Raw Pitch Accuracy (RPA): the proportion of voiced
frames where the estimated pitch is within :ti tone (50
cents) of the ground truth pitch.

« Raw Chroma Accuracy (RCA): the proportion of
voiced frames in which the estimated pitch and the
ground truth pitch are mapped into a single octave. It
gives a measure of the pitch accuracy ignoring the oc-
tave errors.

e Overall Accuracy (OA): the proportion of frames es-
timated correctly by the approach considering the pitch
extraction accuracy and the voice activity detection. For
voiced frames, it is correctly estimated within the :I:i
tone range of the ground truth pitch and for unvoiced
frames, it is correctly estimated as the ground truth.

4.3. Results

The proposed approach (CRN-Raw) is compared with two re-
cently developed deep learning based approaches DSM-HCQT
and DNN-Raw.

Table 2 and Table 3 show the evaluation results of these
three methods on signals at 0dB and +5dB SNR respectively.
Both at 0dB and +5dB, our proposed approach achieves the best
performance, which confirms its effectiveness in vocal pitch ex-
traction from polyphonic music. Here we just take the results
of Table 2 as an example to compare these three approaches in-
dividually.  Firstly, we would like to see the performance of
deep residual network in vocal pitch extraction. In Table 2, the
CRN-Raw achieves a 5% higher score than DNN-Raw in VR,
and a 6.6% lower score in VFA. It shows that the CRN has an
advantage over DNN in the voice activity detection(VAD) task.
At the same time, the scores of CRN-Raw are higher than those
of DNN-Raw both in RPA and PCA, which confirms that CRN
can improve the accuracy of model training to predict the pitch
state. Moreover, it also shows smoothed one-hot label can in-
crease RPA and RCA. The above results indicate CRN has a
advantage in voiced/unvoiced classification and pitch state esti-
mation, which contributes a higher score in OA. On the whole,
these results confirm the effectiveness of deep residual network
in vocal pitch extraction task.

Compared with DSM-HCQT in Table 2, we can see that
CRN-Raw achieves a 3% higher score in VR and a 20% lower
score in VFA. As for RPA, RCA and OA, CRN-Raw also ob-
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Figure 3: The trajectory of pitch quantized states for estimated
and ground truth
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Figure 4: The three waveforms show the effect of accompani-
ment on the overall amplitude at different SNRs.

tains the higher scores. These results show that the raw time-
domain waveform is significantly better than HCQT. In other
words, even the HCQT feature is designed to capture the charac-
teristic of the waveform, the phase information neglection prob-
lem is still serious, which would reduce the estimation accuracy
to some extent.

In addition, we note that the CRN-Raw achieves a better
performance at +5dB from Table 2 and Table 3. Compared with
the other two algorithm test results, the proposed method im-
proves the test result on the OdB test set more than the +5dB
test set, which also indicates that the method has stronger anti-
accompaniment interference ability.

The pitch quantized state trajectories of the CRN-Raw pre-
dicted output and the ground truth are shown in Figure 3.
Compared to the +5dB, there exist more classification errors
at 0dB,which results in a lower VR and a higher VFA score.
The contour of predicted quantized pitch states is quite near
to the ground truth state contour, which contributes to a high
RCA value both in Table 2 and Table 3. Moreover, even if the
pitch state is predicted to the adjacent state of its correspond-
ing ground truth state, human might not perceive the difference
in subjective listening. The values of objective evaluation met-
rics in Table 2 and Table 3 show that it is more difficult to ex-
tract vocal pitch at a lower SNR. Waveforms of polyphonic mu-
sic at different SNRs are shown in Figure 4. We can see that
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the waveform at OdB is more complicated than that at +5dB,
since the amplitude at OdB varies widely and the accompani-
ment brings more distortion to the clean singing signal. In con-
clusion, the results show that the energy of accompaniment has
a great influence on the vocal pitch extraction task where the
energy is greater. However, the waveforms under different SNR
conditions are still similar in contour to the clean singing signal
waveform. Therefore, the pitch information can be extracted by
modeling directly on the raw waveform.

5. Discussion and Conclusions

In this paper, a deep convolutional residual network is proposed
to directly analyze on raw time-domain waveform to do vo-
cal pitch extraction in polyphonic music. The objective eval-
uation metrics show that our proposed approach achieves the
best performance compared to another two recently developed
deep learning based approaches DNN-Raw and DSM-HCQT,
which confirms the significant capability of residual network
in improving the accuracy and the importance of waveform in
convolutional network.

As we all know, vocal pitch is a core component of melody,
which is extremely important in singing voice synthesis. Much
effort has been contributed to estimate pitch in monophonic mu-
sic. However, it is hard and expensive to collect these mono-
phonic music in real application. Many singers have published
much polyphonic music. Collecting such polyphonic music is
quite easy to some extent. Therefore, it is necessary to investi-
gate how to improve the performance of extracting vocal pitch
from polyphonic music.

Due to the presence of accompaniment, vocal pitch ex-
traction from polyphonic music is very challenging since the
prosody tendency of accompaniment is similar to that of the
monophonic music. In addition, the pitch range of singing sig-
nals usually has eight octaves, which is greatly larger than that
of speech signal. Therefore, we propose to use deep convolu-
tional residual network to learn the inner relationship between
the temporal variation. Furthermore, the residual network al-
lows deeper layers without gradient-vanishing problem and can
also improve the training efficiency and increase the estimation
accuracy due to its identity skip connection and residual map-
ping. Meanwhile, the raw time-domain waveform is directly
used as input of the network, to avoid the information neglec-
tion problem in feature transition. The experiments show that
the first layer of a convolutional network can directly learn char-
acteristic from the raw waveform precisely. What’s more, we
find that a large convolution kernel in the first layer can con-
tribute to the learning from raw waveform. This deep learning
method of direct modeling on the raw waveform can also be
applied to other pitch extraction related tasks, which may have
unexpected effects.

6. Future Work

In our experiments, we found that different music instruments
may show quite different impact to vocal pitch extraction task.
For example, in the case of guitar or piano, even if with a higher
SNR, the result is still poor. Consequently, the performance of
the proposed approach can be further improved on robustness to
different kinds of instruments. It may bring significant improve-
ment to increase the proportion of these types of data in training
data, or customize specific. Besides, we will apply smoothing
or dynamic programming algorithms to decrease the isolated
pitch state errors.
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