Neue Untersuchungen an Halogeniden des Titans und Hafniums

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Jan Arndt Beekhuizen

aus Leverkusen

Köln 2006

Köln 2006 Die experimentellen Untersuchungen zu der vorliegenden Arbeit wurden in der Zeit von August 2004 bis September 2006 am Institut für Anorganische Chemie der Universität zu Köln unter der Anleitung von Prof. Dr. Gerd Meyer durchgeführt.

Erstgutachter: Prof. Dr. G. Meyer Zweitgutachter: Prof. Dr. U. Ruschewitz

Tag der mündlichen Prüfung: 5.12.2006

Zusammenfassung

Das Ziel dieser Arbeit war es, einen Beitrag zur Strukturchemie der "äußeren" Übergangsmetalle Titan und Hafnium in Halogeniden zu leisten. Der Schwerpunkt lag dabei auf der Darstellung niedervalenter Verbindungen, um die Einflüsse der verbleibenden d-Elektronen auf die magnetischen und optischen Eigenschaften zu untersuchen. Bei Synthesen im System A/Ti/X (A = Cs-Na; X = I-Cl) konnten erstmals die Verbindungen Cs₃Ti₂Br₉, Rb₃Ti₂Br₉ und Rb₃Ti₂Cl₉ dargestellt und die Strukturen anhand von Einkristallen aufgeklärt werden. Alle drei Verbindungen kristallisieren im Cs₃Cr₂Cl₉-Typ. Das charakteristische Strukturmotiv sind voneinander isolierte [Ti₂X₉]-Doppeloktaeder, die entlang [001] zu Strängen angeordnet sind. Aufgrund der vergleichbaren Gestalt eines "idealen" Doppeloktaeders und der [Ti₂X₉]-Einheiten in den A₃Ti₂X₉-Verbindungen (A = Cs-K; X = Br-Cl) ließen sich repulsive Wechselwirkungen zwischen den Ti³⁺-Ionen ableiten. Magnetische Messungen an den A₃Ti₂Cl₉-Verbindungen (A = Cs-K) deuten auf antiferromagnetische Wechselwirkungen zwischen den Ti³⁺-Ionen bei tiefen Temperaturen hin. Die Absorptionsspektren dieser Verbindungen zeigen eine breite Bande, die dem elektronischen Übergang ²T_{2g} \rightarrow ²E_g entspricht.

Die Verbindungen Cs₃TiCl₆, Rb₃TiCl₆ und Rb₃TiBr₆ kristallisieren in der Cs₃BiCl₆-Struktur. Die isolierten [TiX₆]-Oktaeder sind entlang [111] zu Schichten angeordnet. Über gruppentheoretische Betrachtungen lassen sich die A₃TiX₆-Verbindungen (A = Cs-Na; X = Br-Cl) vom kubischen Aristotypen Elpasolith (K₂NaAlF₆) ableiten. Thermoanalytische Untersuchungen bei den A₃TiCl₆-Verbindungen (A = Cs-Na) deuten auf Phasenübergänge bei höheren Temperaturen hin. Bei Absorptionsmessungen konnten im Wellenzahlenbereich von 11200-13500 cm⁻¹ Doppelbanden beobachtet werden, die in erster Linie durch Aufspaltung der energetisch angeregten ²E_g-Niveaus entstehen. Der temperaturabhängige Verlauf des effektiven magnetischen Moments μ_{eff} dieser Verbindungen deutet auf schwache antiferromagnetische Wechselwirkungen bei tieferen Temperaturen (< 50 K) hin.

Bei Untersuchungen im System A/Hf/I (A = Cs-Na) konnte die Verbindung Hf_{0,86}I₃ (= HfI_{3,49}) in Form von Einkristallen erhalten werden. Diese Zusammensetzung stellt die obere Grenze einer nicht-stöchimetrischen Phase HfI_{3+x} (x = 0,2-0,5) dar. In der Struktur kommt es innerhalb der entlang [001] verlaufenden flächenverknüpften $\frac{1}{\infty}$ [HfI_{6/2}]-Oktaederstränge zur Ausbildung von zwei unterschiedlichen Hf-Trimeren mit Hf-Hf-Abständen von 306,7 pm und 318,2 pm.

Abstract

The aim of this research was to extend the structural chemistry of the "outer" transition metals titanium and hafnium in halides. The main emphasis was put on the synthesis of lower valent compounds, in order to examine the influence of the remaining d-electrons on the magnetic and optical properties.

Syntheses in the ternary system A/Ti/X (A = Cs-Na; X = I-Cl) resulted in the formation of crystalline Cs₃Ti₂Br₉, Rb₃Ti₂Br₉ and Rb₃Ti₂Cl₉. The determination of the structures was possible through single crystal x-ray diffractometry. All three compounds crystallize in the Cs₃Cr₂Cl₉-structure type. The characteristic features are isolated [Ti₂X₉] double-octahedra, which arrange chain-like along [001]. Since the geometry of an "ideal" double-octahedron and the A₃Ti₂X₉-compounds (A = Cs-K; X = Br-Cl) are comparable, one may assume repulsive interactions between the Ti³⁺-ions. Magnetic measurements of the A₃Ti₂Cl₉-compounds (A = Cs-K) indicate antiferromagnetic coupling between the Ti atoms at low temperatures. The absorption spectra of these compounds show a broad band, which can be assigned to the electronic transition ${}^{2}T_{2g} \rightarrow {}^{2}E_{g}$.

The compounds Cs_3TiCl_6 , Rb_3TiCl_6 and Rb_3TiBr_6 crystallize in the Cs_3BiCl_6 -structure type. The isolated [TiX₆]-octahedra are arranged as planes perpendicular to (111). Concerning the group-subgroup relations, the A₃TiX₆-compounds (A = Cs-Na; X = Br-Cl) derive from the cubic aristotype elpasolite (K₂NaAlF₆). Thermoanalysis of the A₃TiCl₆-compounds (A = Cs-Na) gives evidence of solid-solid phase transitions at higher temperatures. Spectroscopic measurements resulted in double bands between 11200 cm⁻¹ and 13500 cm⁻¹, which are primarily obtained due to splitting of the excited ²E_g-states. The temperature-dependence of the magnetic moment μ_{eff} is most probably caused by weak antiferromagnetic interactions at lower temperatures (< 50 K).

Syntheses in the system A/Hf/I (A = Cs-Na) yielded single-crystals of Hf_{0.86}I₃ (= HfI_{3.49}). The composition of this compound marks the upper limit of a non-stoichiometric phase HfI_{3+x} (x = 0.2 - 0.5). Columns of face sharing octahedra $_{\infty}^{-1}$ [HfI_{6/2}] run along [001]. Within these chains the formation of two different Hf trimers occurs, with Hf-Hf-distances of 306.7 pm und 318.2 pm, respectively.

Inhaltsverzeichnis

I. Einleitung	1
II. Allgemeiner Teil	4
1. Grundlegende Arbeitstechniken	4
1.1 Die Argon-Handschuhbox	4
1.2 Lichtbogenschweißer	5
1.3 Vakuum-/Inertgasapparatur	6
1.4 Herstellung der Reaktionscontainer	6
2. Röntgenographische Untersuchungen	7
2.1. Pulveraufnahmen	8
2.2 Einkristallverfahren	10
3. Thermische Untersuchungen	13
4. Magnetische Untersuchungen	14
5. Optische Untersuchungen	15
6. Verwendete Chemikalien und Geräte	16
7. Verwendete Computerprogramme	17
III. Spezieller Teil	18
1. Halogenide des Titans	18
1.1 Allgemeines	18
1.2 Arbeitstechniken	20
2. Ternäre Halogenide des Titans	22
2.1 Verbindungen vom Typ $A_2 Ti X_6$	23
2.2 Verbindungen vom Typ ATiX ₃	24
2.3 Verbindungen vom Typ A ₃ Ti ₂ X ₉	26
2.3.1 Allgemeines	26
2.3.2 Strukturen der Enneahalogenodititanate(III)	27
2.3.3 Die Verbindungen $A_3Ti_2Br_9$ (A = Cs-Rb)	35
2.3.3.1 Darstellung	36
2.3.3.2 Strukturbeschreibung	36
2.3.4 Die Verbindungen $A_3Ti_2Cl_9$ (A = K-Cs)	45
2.3.4.1 Darstellung und Strukturbeschreibung von Rb3Ti2Cl9	45
2.3.5 Vergleich der Verbindungen $A_3Ti_2Br_9$ (A = Cs, Rb) und $A_3Ti_2Cl_9$ (A = Cs-K)	49
2.3.6 Darstellung phasenreiner Proben von $A_3Ti_2Cl_9$ (A = Cs-K)	51

2.3.7 Magnetische Messungen	53
2.3.8 Optische Untersuchungen	55
2.3.9 Thermische Untersuchungen an K ₃ Ti ₂ Cl ₉	57
2.3.10 Diskussion der Ergebnisse	58
2.4 Verbindungen vom Typ A ₃ TiX ₆	59
2.4.1 Allgemeines	59
2.4.2 Die Verbindungen A_3 TiCl ₆ (A = Cs-Na)	66
2.4.3 Die Verbindungen A_3 Ti Br_6 (A = K-Cs)	80
2.4.3.1 Darstellung	80
2.4.3.2 Strukturbeschreibung	81
2.4.4 Magnetische Messungen	85
2.4.5 Thermisches Verhalten der A_3 TiCl ₆ -Verbindungen (A = Cs-Na)	88
2.4.6 Optisches Verhalten	91
2.4.7 Diskussion der Ergebnisse	93
2.5 Synthesen im System A/Ti/I	93
3. Halogenide des Hafniums	95
3.1 Allgemeines	95
3.2 Binäre Halogenide des Hafniums	97
3.2.1 Allgemeines	97
3.2.2 Darstellung von HfI ₄	99
3.2.3 Ergebnisse der Untersuchung im System Hf/I	100
3.2.4 Die Verbindung $Hf_{0.86}I_3$	103
3.2.4.1 Einleitung	103
3.2.4.2 Darstellung und Strukturbestimmung	107
3.2.4.3 Strukturbeschreibung	108
3.3 Ternäre Halogenide des Hafniums	113
3.3.1 Allgemeines	113
3.3.2 Ergebnisse der Untersuchungen im System A/Hf/I	113
3.4 Versuche zur Darstellung von Hf-Clustern	116
IV. Zusammenfassung und Ausblick	117
IV. Literatur	126

I. Einleitung

In Zeiten des technologischen Fortschritts, zum Beispiel im Bereich der Informations- und Kommunikationstechnologie, ist man vor allem an der Entwicklung neuer Materialien mit speziellen Eigenschaften interessiert. Die Anforderungen, die dabei an die Materialien gestellt werden, wachsen in zunehmendem Maße, da die Wirtschaftlichkeit bei der Entwicklung neuer Produkte im Vordergrund steht. Es ist heute kaum mehr möglich, ein neues Material auf den Markt zu bringen, wenn die zugrunde liegenden Eigenschaften nicht bekannt sind. Die Steuerung bestimmter Eigenschaften durch gezieltes Design von funktionellen Materialien ist ein zentraler Aspekt wissenschaftlicher Forschung, sowohl in der Industrie, als auch an den Hochschulen. Um funktionelle Materialien, wie Halbleiter, Ionenleiter oder Supraleiter herzustellen, ist das Verständnis der Ursache für das Auftreten bestimmter Eigenschaften unabdingbar. Die Festkörperchemie, als Teilbereich der Materialwissenschaften, befasst sich gerade mit dem Prinzip von "Ursache und Wirkung" auf atomarer Ebene. Die Aufklärung der atomaren Struktur ist dabei notwendig, wenn man die physikalischen Eigenschaften, sowohl mikroskopisch als auch makroskopisch, verstehen und in späteren Anwendungen nutzen möchte. Die zentrale Bedeutung der Festkörperchemie für die Entwicklung neuer Materialien besteht demnach in der Untersuchung der Zusammenhänge zwischen Struktur und Eigenschaften von kristallinen Festkörpern ("Struktur-Eigenschafts-Beziehung").

Die vorliegende Arbeit ist eingegliedert in den Sonderforschungsbereich 608 der DFG (Komplexe Übergangsmetallhalogenide mit Spin- und Ladungsfreiheitsgraden und Unordnung) im Teilbereich A2 (Halogenide der äußeren und inneren Übergangsmetalle). Das Ziel dieser Arbeit ist es, einen Beitrag zur Strukturchemie der "äußeren" Übergangsmetalle Titan und Hafnium mit Halogeniden zu leisten, sowie die erhaltenen Verbindungen bezüglich ihrer physikalischen Eigenschaften zu untersuchen. Das Interesse liegt dabei vor allem auf der Darstellung niedervalenter Verbindungen, um die Einflüsse der verbleibenden d-Elektronen (M^{3+} : d^1 ; M^{2+} : d^2 für M = Ti, Hf) auf die magnetischen oder optischen Eigenschaften zu untersuchen.

Die Chemie der Übergangsmetalle wird geprägt durch das Auftreten unterschiedlich stabiler Oxidationsstufen. Dabei spielen die verbleibenden d-Elektronen am Metall eine entscheidende Rolle für die vielfältigen Strukturmotive (Metall-Metall-Wechselwirkungen) als auch für die physikalischen Eigenschaften (z.B. Magnetismus). Die Elemente der 4. Nebengruppe (Ti, Zr und Hf) besitzen im Grundzustand (s^2d^2) zwei verfügbare d-Elektronen. Bei den komplexen Halogeniden liegt vor allem Titan überwiegend in den Oxidationsstufen +2 (z.B. CsTiCl₃ [1]) und +3 (z.B. Cs₃Ti₂Cl₉ [2]) vor. Es sind aber auch gemischtvalente Verbindungen des Titans bekannt, wie etwa K₄Ti₃Br₁₂ [3], in der Titan sowohl zwei- als auch dreiwertig vorliegt. Eine gewisse Tendenz zur Ausbildung von Clustern findet man schon für Titan, beispielsweise in den Verbindungen Ti₇Cl₁₆ [4], mit [Ti₃]-Clustereinheiten oder $K_4Ti_4OI_{12}$ [5], in der quadratische [Ti_4O]-Cluster vorliegen. Eine weitaus zahlreichere Clusterchemie findet man für Zirkonium [6-9]. Hier spielen die einfachen ternären Verbindungen, wie etwa Cs₃Zr₂I₉ [10], nur eine untergeordnete Rolle im Vergleich zur großen Anzahl bekannter Clusterverbindungen. Man kennt mittlerweile eine Vielzahl unterschiedlicher Zr-Cluster, in denen oktaedrische [Zr₆Z]-Clustereinheiten vorliegen. Diese Cluster werden durch Interstitiale Z stabilisiert, wobei Z ein Haupt- oder Nebengruppenelement sein kann. Der Einbau dieser Interstitiale scheint essentiell für die Stabilität dieser Verbindungen zu sein, da die Elektronen von Z zur Besetzung von bindenden Metall-Metall- und Metall-Z-Orbitalen beitragen. Diese Clustereinheiten sind in eine Matrix aus Halogenid eingebettet und können über diese auf unterschiedlichste Arten verknüpft werden.

Aufgrund des Einbaus von 4f¹⁴-Elektronen beim Übergang von Zirkonium zum Hafnium ähneln sich beide Elemente in ihren Atom- und Ionenradien stark ("Lanthanoiden-Kontraktion") [11]. Hafnium besitzt dennoch die zweifache Masse von Zirkonium, was sich dementsprechend auch in der doppelt so großen Dichte von Hf gegenüber Zr widerspiegelt. In der Oxidationsstufe +4 ähneln sich die beiden Elemente auch in ihrem chemischen Verhalten, was der Grund dafür war, dass Hafnium erst 134 Jahre nach Zirkonium entdeckt wurde [11]. Bei den reduzierten Halogeniden des Zirkoniums und Hafniums findet man zum Teil auch Gemeinsamkeiten. Die binären Halogenide HfI₃ [12] und ZrI₃ [13] etwa gehören zu einer Klasse von Metalltrihalogeniden, die mit Til₃-Struktur [14] kristallisieren. Das dem Titan benachbarte Scandium bildet in ScI₃ [14] die BiI₃-Struktur [15] aus, in der eine Vielzahl anderer Metalltrihalogenide kristallisieren. Der Unterschied zwischen beiden Strukturtypen liegt in der unterschiedlichen Besetzung der Oktaederlücken in der nur von Halogenid aufgestellten hexagonal-dichtesten Kugelpackung. Die Anzahl bekannter Hafniumhalogenide, vor allem in niedrigen Oxidationsstufen, ist jedoch sehr überschaubar. Die Strukturen der Halogenide Hafniums sind teilweise binären des nur bekannt und mittels Röntgenstrukturanalyse aufgeklärt worden. Einfache komplexe Halogenide des Hafniums sind etwa die Verbindungen vom Typ A_2HfX_6 [126] (A = Alkalimetall, X = Halogen), in denen Hafnium in der Oxidationsstufe +4 vorliegt. Daneben existieren in der Literatur keine Angaben zu reduzierten, ternären Hafniumhalogeniden. Die Clusterchemie, in Analogie zu Zirkonium, ist bei Hafnium nur geringfügig ausgeprägt. In der Literatur findet man lediglich von *Corbett et. al.* [127] einige Versuche zur Darstellung von Hafniumclustern. Die Kenntnisse sind, im Vergleich zur ausgeprägten und gut charakterisierten Clusterchemie des Zirkoniums, nur sehr spärlich. Dies ist insofern verwunderlich, als sich Hafnium und Zirkonium, durch die bereits erwähnte Ähnlichkeit, in ihrem chemischen Verhalten eigentlich ähneln sollten. Deshalb war es ein Ziel dieser Arbeit, mit Hilfe des Systems A/Hf/Z/X (A = Cs-Na; Z = Interstitial; X = I-Cl) Clusterphasen zu erhalten und nachzuweisen. Weiter waren Versuche zur Darstellung von binären und ternären Halogeniden des Hafniums durchzuführen. Hierbei sollten vor allem die strukturellen Verhältnisse mittels röntgenographischen Untersuchungen geklärt werden und wenn möglich eine weitere Charakterisierung durch Messung der physikalischen Eigenschaften vorgenommen werden.

Außerdem soll im Rahmen dieser Arbeit die Lücke strukturell noch nicht aufgeklärter, ternärer Titanhalogenide im System A/Ti/X (A = Cs-Na; X = I-Cl) geschlossen werden. Dabei ist der Schwerpunkt auf reduzierte Titanverbindungen gelegt worden, um eine Charakterisierung dieser Verbindungen durch Messung der physikalischen und optischen Eigenschaften zu ermöglichen. Alle hier durchgeführten Synthesen wurden auf durchgeführt, festkörperchemischem Weg wobei aufgrund der Luftund Feuchtigkeitsempfindlichkeit der Substanzen in geschlossenen Systemen und unter Schutzgas gearbeitet wurde.

II. Allgemeiner Teil

1. Grundlegende Arbeitstechniken

1.1 Die Argon-Handschuhbox

Arbeiten mit luft- und feuchtigkeitsempfindlichen Substanzen wurden in einer Handschuhbox durchgeführt, in der eine Argonatmosphäre herrscht (Abbildung 1).

Abb. 1: Argon-Handschuhbox

Die Handschuhbox besteht im Wesentlichen aus einem gasdichten Metallgehäuse und einer aus Plexiglas bestehenden Frontscheibe. In diese Scheibe sind über zwei Öffnungen Handschuhe eingebracht, die das Arbeiten innerhalb der Box ermöglichen.

Das Ein- und Ausbringen von Substanzen und Werkzeugen wird über ein Schleusensystem ermöglicht. Die einzubringenden Materialien werden dazu in der Schleuse, die mit einer Vakuumpumpe verbunden ist, eine gewisse Zeit evakuiert und anschließend mit Argon umspült, so dass sie weitgehend frei von Luft und Feuchtigkeit sind. Die Fuß-Pedale dienen zum Einstellen des Argondrucks in der Box, der etwa 2 bar beträgt, wenn nicht an der Box gearbeitet wird. Dies verringert die Wahrscheinlichkeit, dass eventuell vorhandene, undichte Stellen an den Handschuhen oder den Schleusen zum Einströmen von Luft oder Feuchtigkeit führt. Zudem sorgt ein permanentes Umwälzen der Argon-Atmosphäre über ein Filtersystem dafür, dass Sauerstoff- und Wassergehalt auf sehr geringem Niveau gehalten werden können (1-2 ppm). Eine in der Box befindliche Analysenwaage ermöglicht das genaue Einwiegen von feuchtigkeits- und luftempfindlichen Substanzen in dafür vorgesehene Reaktionscontainer. Zusätzlich befindet sich ein Polarisationsmikroskop in der Box, mit dessen Hilfe sich die Produkte genauer untersuchen lassen. Sind geeignete Einkristalle vorhanden, so werden diese unter dem Mikroskop mithilfe feiner Glasfäden in Markröhrchen entsprechender Größe (0, 1 - 0, 5 mm Durchmesser) eingebracht.

1.2 Lichtbogenschweißer

Die vorbereiteten Tantal- bzw. Niobampullen werden mithilfe eines Lichtbogens verschlossen. Die Schweißapparatur (Abbildung 2) besteht aus einem Stahlzylinder, in den zwei Elektroden angebracht sind.

Abb. 2: Lichtbogenschweißer [87]

An der waagerecht liegenden Elektrode ist eine Schraubvorrichtung aufmontiert, mit welcher die Ampullen fixiert und in den Zylinderraum eingebracht werden. Die Kammer wird für einige Zeit evakuiert und anschließend auf eine Heliumatmosphäre von 750 mbar gebracht.

Die zweite Elektrode ist senkrecht in die Kammer eingelassen und dient als bewegliche Schweißnadel. Legt man einen Strom von etwa 7 A an die Elektroden an, so zündet ein Lichtbogen, mit dessen Hilfe sich die Ampullen mühelos verschließen lassen.

1.3 Vakuum-/Inertgasapparatur

Die fertigen Ampullen werden zum Schutz vor weiterer Oxidation in Kieselglasampullen eingebracht. Dazu dient eine Apparatur aus Glasrohren, die über Schliffhähne verbunden sind, und an die eine Vakuumpumpe, sowie eine Argonvorratsflasche angeschlossen ist. Die Kieselglasampullen werden über einen "Quick-Fit"-Ansatz mit der Vakuumapparatur verbunden. Dieser besteht aus einem T-förmigen Glasrohr, welches am unteren Ende eine Schraubvorrichtung besitzt und oben mit einer Verschlusskappe versehen ist. Seitlich an das Glasrohr ist ein Schliffansatz angebracht, über den die Verbindung zur Vakuumapparatur hergestellt wird. Über eine Schraubkappe mit Gummidichtung kann das verjüngte Kieselglasrohr luftdicht an die Vakuumapparatur "gefittet" werden. Mithilfe eines Knallgasbrenners lässt sich dann das evakuierte Kieselglasrohr an der verjüngten Stelle abschmelzen. Die Ampullen lassen sich auch mit Argon fluten, welches zuvor über Silicagel, Molekularsieb, Kaliumhydroxid, Phosphorpentoxid und heißem Titanschwamm getrocknet wurde.

1.4 Herstellung der Reaktionscontainer

Als Reaktionscontainer dienten in dieser Arbeit überwiegend Tantal- oder Niobampullen, die aus etwa 50 cm langen Metallrohren (Wandstärke: 0,4 mm, Durchmesser: 8 mm) gefertigt wurden. Dazu werden sie mit einem Metallschneider in etwa 4 bis 4,5 cm lange Stücke geschnitten und in einer Mischung aus 50 % konz. Schwefelsäure, 25 % konz. Salpetersäure und 25 % Flusssäure (40 %) gereinigt, wobei in erster Linie die Oxidschicht entfernt wird. Nach sorgfältigem Ausspülen mit Wasser werden die getrockneten Ampullen mit einem Schraubstock auf einer Breite von etwa 4 mm einseitig zusammengedrückt und daraufhin im Lichtbogenschweißer verschlossen. Nun werden die Ampullen ein zweites Mal gereinigt und über Nacht in die Argon-Handschuhbox eingeschleust.

In der Box werden die Ampullen mit gewünschten Mengen an Ausgangssubstanzen befüllt und mit einer Kneifzange grob verschlossen. Es hat sich gezeigt, dass ein Abknicken von etwa 30° des zusammengedrückten Endes der Ampulle zu einem besseren Verschluss führt. Die fertigen Ampullen können nun in der Lichtbogenschweißanlage verschlossen werden. Zum Schutz vor weiterer Oxidation werden die Ampullen in Kieselglasrohre eingebracht. Dazu bringt man die Ampullen in einseitig zugeschmolzene Kieselglasrohre geeigneter Größe und verjüngt diese so, dass etwa 7- 8 cm große Kieselglasampullen entstehen. Über einen "Quickfit"-Ansatz werden die verjüngten Ampullen an die Vakuumapparatur gefittet und mit einem Knallgasbrenner abgeschmolzen.

2. Röntgenographische Untersuchungen

Die Wellenlänge der Röntgenstrahlung liegt in der Größenordnung von Atomabständen in einem Kristall und kann daher zur Strukturaufklärung benutzt werden. Betrachtet man, unter Berücksichtigung elastischer Streuung, die Beugung von Röntgenstrahlen an einem Kristallgitter, so tritt nur dann Interferenz auf, wenn bestimmte Bedingungen erfüllt sind [88-89]. Am einfachsten denkt man sich den Kristall aus Ebenen zusammengesetzt, in denen die Atome angeordnet sind. Diese sogenannten Netzebenen haben einen konstanten Abstand d zueinander, wenn sie parallel liegen. Um das Prinzip der Interferenz anzuwenden und somit eine Reflexionsbedingung abzuleiten, betrachtet man eine Netzebenschar mit dem Abstand d_{hkl}. Zur konstruktiven Interferenz kommt es, wenn zwei benachbarte Netzebenen die Röntgenstrahlen reflektieren und diese dann in gleicher Phase schwingen. Der Gangunterschied zwischen den beiden reflektierten Wellen ist also ein ganzzahliges Vielfaches n der Wellenlänge (Abbildung 3). Dies ist dann der Fall, wenn die Braggsche Reflexionsbedingung (Gleichung 1) erfüllt ist:

$$n\lambda = 2 d \sin \theta \tag{1}$$

Die Zahl n ist eine ganze Zahl und wird auch als Ordnung der Interferenz bezeichnet. Mit d ist der Abstand der reflektierenden Netzebenen gemeint und \mathcal{G} stellt den Beugungswinkel, auch Glanzwinkel genannt, dar.

Abb. 3: Braggsche Reflexionsbedingung. Reflexion an parallelen Netzebenen im Abstand d.

Man kann sich leicht vorstellen, dass es schnell unübersichtlich wird, wenn man eine Mehrzahl von Netzebenen gleichzeitig darstellen will. Deshalb ist es einfacher, mit den eindimensionalen Flächennormalen zu arbeiten. Jede Netzebenenschar kann man so durch einen Vektor beschreiben, der die Richtung ihrer Flächennormalen und die Länge des Netzebenenabstands besitzt. Wenn man die Längen der Normalen reziprok zu den Netzebenenabständen wählt, so spannen die Endpunkte der Normalen wiederum ein Gitter auf, welches reziprokes Gitter genannt wird. Die reziproken Achsen stehen dabei senkrecht auf realen Ebenen und umgekehrt.

Bei der Messung von gebeugten Röntgenstrahlen ist eine genaue Intensitätsbestimmung erforderlich, um eine Aussage über die Art der im Kristall vorhandenen Atome und deren räumliche Anordnung zu treffen. Die bei der Ableitung der Reflexionsbedingungen als punktförmig angenommenen Atome müssen jedoch angepasst werden werden, da die Streuung der Röntgenstrahlung an der Elektronenhülle erfolgt und diese eine gewisse räumliche Ausdehnung besitzt. Außerdem stellen die Atome keine ruhenden Punkte dar, da sie um ihre Gleichgewichtslage schwingen. Die wesentlichen Faktoren, die bei der Intensitätsbestimmung berücksichtigt werden müssen, stellen dabei die Atomformfaktoren, Strukturfaktoren und Auslenkungsparameter dar.

2.1. Pulveraufnahmen

Bei feinkristallinen Pulvern liegen genügend Teilchen in jeder Lage vor, um die Ausbildung von Interferenzen zu ermöglichen, und somit Reflexe zu erzeugen. Alle Netzebenen, die die Braggsche Beziehung erfüllen, beugen die auftreffenden Röntgenstrahlen. Es gibt eine Reihe Die Probe muss gründlich in einem Mörser zerrieben werden, um eine statistische Verteilung der feinen Kristallite zu gewährleisten. Man kann sie dann entweder auf einen Flächenträger aufbringen oder in eine Glaskapillare (\emptyset 0,3 mm) füllen. Da sämtliche Produkte in dieser Arbeit Luft- und feuchtigkeitsempfindlich sind, wurde ausschließlich mit Glaskapillaren gearbeitet, die bereits in der Glove-Box mithilfe eines Schweißdrahtes verschlossen werden konnten. Die Probe wird mit monochromatischer Röntgenstrahlung untersucht und die entstehenden Beugungskegel mit einem Zählrohr detektiert. Durch langsame Rotation der Probe können verschiedene Winkel zum einfallenden Röntgenstrahl eingestellt werden. In Abbildung 4 ist ein Pulverdiffraktometer zu sehen. In den eindimensionalen Pulverdiffraktogrammen erhält man die Reflexintensitäten aufgetragen gegen 2ϑ , woraus man eine Vielzahl von Informationen erhält. Zum einen lässt sich prüfen, ob eine Verbindung phasenrein vorliegt. Dazu vergleicht man das gemessene Pulverdiffraktogramm mit dem aus Einkristalldaten berechneten Diffraktogramm oder mit simulierten Pulverdiffraktogrammen aus Datenbanken. Auch lassen sich mithilfe eines Pulverdiffraktogramms einer phasenrein vorliegenden Verbindung die aus Einkristalldaten ermittelten Zellkonstanten verfeinern. Unter günstigen Voraussetzungen lassen sich aus Pulverdaten mit der Rietveld-Methode sogar Kristallstrukturen direkt bestimmen. Bei temperaturabhängigen Pulveraufnahmen lassen sich darüber hinaus Aussagen über etwaige Phasenübergänge oder Zersetzungen treffen. Dafür wird ein Graphit-Ofen als Aufsatz verwendet, mit dem die Probe gleichmäßig erhitzt werden kann. Für temperaturabhängige Pulveraufnahmen sind zudem Kieselglas-Kapillaren notwendig.

Abb.4: Pulverdiffraktometer [87]

2.2 Einkristallverfahren

Um die Struktur einer Verbindung genau und vollständig aufzuklären verwendet man am besten Einkristallmethoden. Dazu muss aus dem jeweiligen Ansatz ein geeigneter Kristall ausgewählt und unter dem Mikroskop mit einem Glasfaden in ein Markröhrchen entsprechender Größe gebracht werden. Die Größe des Röhrchens sollte so gewählt sein, dass sich der Kristall nicht mehr bewegen kann, um nicht während der Messung zu verrutschen. Bei luft- oder feuchtigkeitsempfindlichen Kristallen empfiehlt es sich, das Markröhrchen in der Handschuhbox zuzuschmelzen, was mit einem elektrischen Glühdraht gelingt. Zur Prüfung der Kristallqualität wird mithilfe einer Laue-Aufnahme ein Beugungsbild auf einer Bildplatte (Image Plate) erzeugt, welche mit Eu²⁺-dotiertem BaBrF beschichtet ist. Die auftreffenden Röntgenquanten erzeugen Farbzentren, die durch strahlungsinduzierte Oxidation von Eu²⁺ zu Eu³⁺ entstehen (Elektronen-Loch-Paare). Diese werden von einem Neodym-YAG-Laser ausgelesen, und man erhält ein Beugungsmuster des Kristalls, welches Aussagen über die Güte des Kristalls zulässt. Ein für gut empfundener Kristall kann daraufhin mit einem Image Plate Diffraction System (IPDS) untersucht werden (Abbildung 5). Dafür wird der Einkristall auf eine drehbare Achse montiert, die senkrecht zum einfallenden Röntgenstrahl liegt. Die Information der gebeugten Röntgenstrahlen wird hier ebenfalls auf einer Image Plate gespeichert und ausgelesen. Diese kann durch einfache Bestrahlung mit weißem Licht wieder gelöscht werden, und eine zweite Aufnahme kann durchgeführt werden, wobei Kristall einem bestimmten Winkel weitergedreht der in wird. Zur Zellkonstantenbestimmung reicht die Aufnahme von wenigen Bildern meist aus, so dass hier schnell geprüft werden kann, ob es sich um eine bereits bekannte Verbindung handelt

Abb.5: Image Plate Diffraction System [87]

Die Grundlage zur Aufklärung der Struktur stellt die von *Laue* und *Bragg* gefundene Beziehung zwischen den ermittelten Intensitäten I_0 der Reflexe im Beugungsmuster und der Anordnung der Atome im Kristall [88].

$$I_o(hkl) = |F_{hkl}|^2$$
 mit $F_{hkl} =$ Strukturfaktor, hkl = Miller'sche Indizes (2)

Zur Bestimmung der Kristallstruktur ist es notwendig, die Lagen aller Atome in der asymmetrischen Einheit der Elementarzelle zu ermitteln. Aus den gemessenen Reflexintensitäten muss die Elektronendichteverteilung im Kristall und somit die Anordnung der Atome bestimmt werden. Der kohärente Röntgenstrahl wird durch die dreidimensional periodische Elektronendichtefunktion in Einzelwellen F_0 (hkl) zerlegt, was mathematisch gesehen einer Fouriertransformation entspricht. Das erhaltene Beugungsbild ist somit als Fourier-transformierte des Kristalls zusehen. Wenn man alle Einzelwellen kennt, so lässt sich durch Fouriersynthese die Elektronendichtefunktion ermitteln. Man muss also die Strukturfaktoren F_0 mit ihren Phasen kennen. Gleichung 3 gibt die Elektronendichte für jeden Punkt XYZ in der Elementarzelle an.

$$\rho_{XYZ} = \frac{1}{V} \sum_{hkl} F_{hkl} \cdot e^{-i2\pi(hX + kY + lZ)}$$
(3)

Daraus ergibt sich:

$$\rho_{XYZ} = \frac{1}{V} \sum_{hkl} F_{hkl} \cdot \{ \cos[2\pi (hX + kY + lZ)] + i \sin[2\pi (hX + kY + lZ)] \}$$
(4)

Das Problem bei der Bestimmung der Struktur ist jedoch, dass man aus den Messungen nur die Intensitäten der Reflexe bestimmt. Da die Reflexintensitäten dem Quadrat des Strukturfaktors proportional sind, ist nur die Amplitude der Streuwelle bekannt, nicht jedoch ihre Phase. Die Phaseninformation und somit die Lageinformation der Atome ist verloren gegangen.

$$I_o(hkl) = \left|F_{hkl}\right|^2 \cdot e^{i\varphi} \tag{5}$$

Eine Möglichkeit zur Lösung des Phasenproblems stellen die sogenannten "Direkten Methoden" dar. Sie nutzen Zusammenhänge zwischen den Intensitäten innerhalb von Reflexgruppen und den Phasen aus. Von grundlegender Bedeutung ist die von Sayre aufgestellte Gleichung:

$$F_{hkl} = k \sum_{h'kl'} F_{h'kl'} \cdot F_{h-h',k-k',l-l'}$$
(6)

Aus dieser Gleichung kann man ablesen, dass sich der Strukturfaktor eines Reflexes hkl aus der Summe der Strukturfaktoren aller Reflexpaare berechnen lässt, wenn deren Indices sich zu denen des gesuchten Reflexes addieren. Über statistische Zusammenhänge lassen sich so Beziehungen zwischen den Strukturfaktoren und den Millerschen Indices finden. Die Atomlagen werden auch hier über eine Fouriersynthese der Strukturfaktoren ermittelt.

Die erhaltenen Atomlagen stellen ein Strukturmodell auf, welches hinsichtlich der Übereinstimmung zwischen aus diesem Modell berechneten Strukturfaktoren und den tatsächlich beobachteten Intensitäten überprüft werden muss. Ein Zuverlässigkeitsfaktor, auch R-Wert (R = residual) genannt, gibt Auskunft über das Maß der Übereinstimmung:

$$R = \frac{\sum_{hkl} \|F_0\| - |F_c\|}{\sum_{hkl} |F_0|}$$
(7)

(F₀ beobachteter Strukturfaktor, F_c berechneter Strukturfakor)

Der "Goodness of Fit"-Wert (S) gibt die Güte der Übereinstimmung des beobachteten und berechneten Strukturmodells unter Berücksichtigung der Strukturfaktoren an. Dieser Wert sollte im Bereich von eins liegen.

$$S = \frac{\sum [w(F_0^2 - F_c^2)^2]}{m - n} \quad \text{mit } m = \text{Zahl der Reflexe, } n = \text{Zahl der Parameter}$$
(8)

Eine wichtige Angabe ist die des äquivalenten Auslenkungsparameters (U_{eq}) , der die thermische Schwingung der Atome berücksichtigt.

$$U_{eq} = 1/3 \left[U_{22} + 1/\sin^2\beta \left(U_{11} + U_{33} + 2U_{12}\cos\beta \right) \right]$$
(9)

3. Thermische Untersuchungen

Um Substanzen auf ihr thermisches Verhalten hin zu untersuchen, lassen sich verschiedene thermoanalytische Verfahren durchführen, bei denen die Substanzen einem gezielten Temperaturprogramm unterworfen und die Veränderungen in Abhängigkeit von der Temperatur oder Zeit erfasst werden. Dadurch können verschiedene physikalische Größen wie Schmelz-, Siede- oder Zersetzungspunkte abgeleitet werden. Hat man es mit einem Einkomponentensystem zu tun, so können auch Fest-fest-Phasenübergänge ermittelt werden, die je nach Art des Übergangs exotherm oder endotherm verlaufen können. Das erhaltene Signal unterscheidet sich dabei durch das Vorzeichen. Das Prinzip bei der Differenzthermoanalyse (DTA) beruht auf einem Vergleich der zu ermittelnden Substanz mit einer Referenz, die über den gesamten Temperaturverlauf konstant bleiben muss. Beide werden in einem Ofen dem gleichen Temperaturprogramm unterworfen, und die Differenz der Temperaturen zwischen ihnen wird ermittelt. Bei Phasenübergängen erster Ordnung ändert sich die Temperatur der Substanz über diesen Zeitraum nicht und es entsteht eine Temperaturdifferenz, die sich in einem Signal in der Temperaturkurve widerspiegelt. Oft findet man die DTA direkt gekoppelt mit der Thermogravimetrie (TG). Mithilfe der DTA/TG lässt sich der Massenverlust einer Substanz bestimmen. Damit lassen sich vor allem bei Substanzen, die über mehrere Stufen abgebaut werden könnnen, wichtige Aussagen treffen. Zusätzlich zur DTA/TG lässt sich auch noch ein Massenspektrometer anschließen, mit welchem die exakte Zusammensetzung der abgespaltenen Gruppe ermittelt werden kann.

Mithilfe der **D**ifferential Scanning Calorimetry (DSC) lassen sich thermodynamische Größen quantitativ erfassen. Der Unterschied zur DTA besteht darin, dass keine Referenz mehr benötigt wird, da der Wärmestrom gemessen wird, der erforderlich ist, um eine bestimmte Heizrate aufrecht zu erhalten. Durch Integration lassen sich Enthalpieänderungen direkt berechnen. Im Rahmen dieser Arbeit wurden DSC-Messungen durchgeführt, um mögliche strukturelle Veränderungen in Form von Phasenübergängen zu untersuchen. Dazu wurden die phasenreinen Substanzen fein gemörsert und in der Ar-Box etwa 10 mg in kleine Al-Tiegel eingewogen, die mit einer Presse verschlossen wurden. Die Messungen erfolgten unter Ar-Strom, um eine Oxidation und Zersetzung der Proben zu vermeiden.

4. Magnetische Untersuchungen

Die im Rahmen dieser Arbeit dargestellten Verbindungen konnten zum Teil phasenrein erhalten werden, was eine Vorraussetzung für die Untersuchung des magnetischen Verhaltens einer Substanz ist. Mithilfe eines SQUID (Superconducting Quantum Interference Device)-Magnetometers lässt sich die magnetische Suszeptibilität χ einer Substanz bestimmen. Daraus lassen sich dann weitere Größen, wie das effektive magnetische Moment μ_{eff} berechnen.

Ein supraleitender Magnet erzeugt im SQUID ein sehr gleichmäßiges Magnetfeld. Die ebenfalls supraleitenden Detektionsspulen koppeln mit dem magnetischen Moment der Probe, sodass ein Strom induziert wird, der in diesen Spulen sehr genau gemessen werden kann. Die in ein homogenes magnetisches Feld der Stärke H eingebrachte Substanz erfährt eine Magnetisierung M. Der dimensionslose Proportionalitätsfaktor zwischen diesen Größen M und H ist die magnetische Suszeptibilität χ .

$$M = \chi \cdot H \tag{10}$$

Meistens gibt man jedoch die molare magnetische Suszeptibilität, χ_m an.

$$\chi_m = \chi \cdot V_m \tag{11}$$

Das Vorzeichen der magnetischen Suszeptibilität lässt bereits erkennen, ob eine Substanz diamagnetisch (negatives Vorzeichen) oder paramagnetisch ist (positives Vorzeichen). Da alle Substanzen aufgrund abgeschlossener Schalen einen diamagnetischen Anteil besitzen, muss auf diesen bei paramagnetischen Stoffen korrigiert werden. Aus der molaren magnetischen Suszeptibilität lässt sich bei paramagnetischen Stoffen das effektive magnetische Moment μ_{eff} bestimmen, aus dem man Rückschlüsse auf die Wechselwirkung zwischen zwei Metallzentren mit ungepaarten Elektronen ziehen kann.

$$\mu_{eff} = \sqrt{\frac{3RT \cdot \chi_m}{N_A^2}} \tag{12}$$

5. Optische Untersuchungen

Die im Rahmen dieser Arbeit durchgeführte UV/VIS-Spektroskopie stellt eine Möglichkeit dar, die elektronischen Zustände der Übergangsmetalle zu bestimmen. Dazu wird Licht der Wellenlänge λ von 180 bis 800 nm (55.000 bis 12.500 cm⁻¹ Wellenzahlen ($\tilde{\nu}$)) durch die Probe geleitet und die auftretende Absorption der elektromagnetischen Welle gemessen. Die Energiedifferenzen zwischen den elektronischen Zuständen liegen im UV/VIS-Bereich des elektromagnetischen Spektrums, sodass aufgrund der Lage der Absorptionsbanden im UV-VIS-Spektrum auf die Energie des elektronischen Übergangs geschlossen werden kann.

$$\Delta E = h \cdot c \cdot \widetilde{\nu} \tag{13}$$

Die Lage der Energieniveaus der Orbitale wird durch das umgebende Ligandenfeld bestimmt. Im Falle eines oktaedrischen Ligandenfelds (Oh-Symmetrie), welches im Rahmen dieser Arbeit bei allen Verbindungen näherungsweise vorliegt, findet eine Aufspaltung der im Grundzustand der Atome entarteten fünf d-Orbitale in drei energetisch tiefer liegende t_{2g}-Orbitale und zwei energetisch höher liegende eg-Orbitale statt. Die Stärke der Aufspaltung und somit die Energie des d-d-Übergangs hängt in erster Linie vom Ligandenfeld ab. Die möglichen Übergänge zwischen den Energieniveaus werden jedoch durch verschiedene Auswahlregeln eingeschränkt. Die im Rahmen dieser Arbeit untersuchten Verbindungen stellen d¹-Systeme dar, für die es im Prinzip nur einen möglichen d-d-Übergang gibt. Durch Verzerrung der Oktaeder-Symmetrie können jedoch die energetisch tieferliegenden Niveaus eine zusätzliche Aufspaltung erfahren, wodurch weitere Übergänge ermöglicht werden. Eine mögliche Verzerrung der Oktaedersymmetrie wird durch den Jahn-Teller-Effekt hervorgerufen, der eine Aufspaltung der ²T_{2g}-Zustände zur Folge hat, welche sich im UV-Vis-Spektrum zumeist in einer Schulter bemerkbar machen, da die Energiedifferenzen durch die Jahn-Teller-Verzerrung meist nicht sehr groß sind. Die d-d-Übergänge sind paritätsverboten, und man erhält meist breite Banden von schwacher bis mittlerer Intensität im UV-VIS-Spektrum.

6. Verwendete Chemikalien und Geräte

Tab.1: Verwendete Chemikalien	
Titan-Blech, 99,9 %	Fluka AG, Buchs/CH
Titan(III)-chlorid, TiCl ₃ , 98 %	Aldrich
Titan(IV)-bromid, TiBr ₄ , 98 %	Aldrich
Titan(IV)-iodid, TiI ₄ , sublimiert	
Hafnium(IV)-chlorid, HfCl ₄ , 98 %	Aldrich
Hafnium(IV)-bromid, HfBr4, 99,99 %	Aldrich
Natriumchlorid, NaCl, 99 %	Merck
Kaliumchlorid, KCl, 99,9%	Merck
Rubidiumchlorid, RbCl, 99,9	Merck
Cäsiumchlorid, CsCl, 99 %	Aldrich
Natriumbromid, NaBr 99%	Merck
Kaliumbromid, KBr, 99 %	Merck
Rubidiumbromid, RbBr, 99, 9%	Merck
Cäsiumbromid, CsBr, 99%	Merck
Cäsiumiodid, CsI, 99 %	Aldrich
Tantalrohr	Plansee, Reuthe
Niobrohr	Plansee, Reuthe
Helium,Reinheit 4.6	Linde AG, Hannover
Argon, Reinheit 4.8	Linde AG, Hannover
Natrium, 99 %	Aldrich
Kalium	Aldrich
Rubidium	Alfa-Aesar
Cäsium	Aldrich
Hf-Folie, Hf-Pulver (2-3 % Zr nominal)	Alfa-Aesar
Iod, I ₂ (sublimiert)	Merck
Aluminium, 99,5 %	Aldrich
Barium, 99 %, destilliert	Aldrich
Strontium, 99 %, destilliert	Aldrich
Calcium, 99 %	Merck

Tab. 2.: Verwendete Geräte	
Argon-Glove-Box	Braun, Garching, D
Lichtbogenschweißgerät	Eigenbau/Universität Gießen
Image-Plate-Diffraction-System, IPDS I	Stoe & Cie, Darmstadt, D
Image-Plate-Diffraction-System, IPDS II	Stoe & Cie, Darmstadt, D
Pulverdiffraktometer, $\theta/2\theta$ STADI P	Stoe & Cie, Darmstadt, D
DSC, 204 F1	Fa. Netzsch, Selb, D
UV/IR, CARY 05E	Fa. Varian, Palo Alto, CA., USA
SQUID	Fa. Cryogenic

7. Verwendete Computerprogramme

STOE WIN X-POW [90]

Programm zur Auswertung und graphischen Darstellung von Pulverdaten.

SHELXS-97 [91]

Programm zur Strukturlösung unter Verwendung von direkten oder Pattersonmethoden.

SHELXL-97 [92]

Programm zur Strukturverfeinerung mithilfe von Differenz- Fourier- Synthesen, least squares Berechnungen und Wichtungsfunktion.

STOE X- SHAPE [93]

Programm zur Optimierung der Einkristallgestalt und zur Durchführung einer Absorptionskorrektur

STOE X- RED [94] Programm zur Datenreduktion und Absorptionskorrektur

Diamond 3.1 [95] Programm zur visuellen Darstellung der Kristallstruktur

III. Spezieller Teil

1. Halogenide des Titans

1.1 Allgemeines

Die binären Halogenide mit Titan in den Oxidationsstufen +II, +III und +IV sind allesamt strukturell aufgeklärt und charakterisiert worden. Man findet in den Titan(II)-halogeniden [18-24] das Auftreten zweier unterschiedlicher Modifikationen in Abhängigkeit von der Temperatur [25]. Bei ausreichend hohen Temperaturen kristallisieren die Verbindungen TiX₂ (X = Cl-I) allesamt im CdI₂-Typ [26]. In dieser Struktur bilden die Halogenatome eine hexagonal-dichteste Kugelpackung aus, wobei die Ti²⁺-Ionen die Hälfte der Oktaederlücken besetzen. Bei hinreichend tiefen Temperaturen, zum Teil bereits bei Raumtemperatur (TiI₂), durchlaufen diese Verbindungen eine reversible Phasenumwandlung, um durch Ausbildung von Ti-Ti-Bindungen in einen anderen Strukturtyp überzugehen. Durch Messungen der magnetischen Suszeptibilität konnte eine deutliche Verringerung des magnetischen Moments beobachtet werden, was die Bildung von diskreten Ti-Ti-Bindungen bestätigt [25]. Die Bildung der dabei entstehenden [Ti₃]X₁₃-Clustereinheiten lässt sich als zweidimensionale Peierlsverzerrung auffassen. Dieselben Clustereinheiten trifft man auch in den Verbindungen Ti_7X_{16} (X = Cl, Br) [4] an. Die Hochtemperaturphasen der Titan(II)-halogenide sind leicht durch Abschrecken in Eiswasser, nach kurzem Tempern bei hohen Temperaturen (> 700 °C), in reiner Form zugänglich.

Anders sieht es bei den Titan(III)-halogeniden aus. Diese lassen sich nicht so einfach in reiner Form darstellen, da alle Titan(III)-halogenide der Form TiX₃ (X = Cl-I) bereits bei relativ niedrigen Temperaturen (> 250 °C) in TiX₂ und TiX₄ disproportionieren [27]. Dennoch gelang die Darstellung reiner Pulverproben, um daraus die Strukturen der Trihalogenide zu verfeinern [28, 29]. Die Struktur der Titan(III)-halogenide lässt sich aus einer hexagonaldichtesten Kugelpackung von X⁻ ableiten, in der Titan 1/3 der Oktaederlücken besetzt, sodass es zur Ausbildung von flächenverbrückten [TiX_{6/2}]-Oktaedersträngen kommt. Wie bei den Titan(II)-halogeniden existieren auch von den dreiwertigen Halogeniden des Titans zwei unterschiedliche Modifikationen. Anhand von Einkristalluntersuchungen an TiI₃ [25] konnte eine Phasenumwandlung zweiter Ordnung bei Raumtemperatur gefunden werden. Die Tieftemperaturmodifikation von TiI₃ kristallisiert demnach isotyp zu ZrI₃ [119], in welcher Metall-Metall-Einfachbindungen vorliegen. Das Aufeinanderrücken der Ti-Atome innerhalb der hexagonalen [TiI_{6/2}]-Stränge lässt sich als eindimensionale Peierlsverzerrung auffassen. Als Hochtemperaturform wird TiI₃ als ein eigener Strukturtyp beschrieben, in dem die Ti-Ti-Abstände äquidistant sind und der bereits von *v. Schnering* [31] beschrieben wurde. Im Fall von TiBr₃ und TiCl₃ konnten zwei unterschiedliche Modifikationen gefunden werden, die nicht durch eine reversible Phasenumwandlung ineinander überführbar sind. Für α -TiBr₃ [32] und α -TiCl₃ [33] konnte anhand von Einkristalluntersuchungen die BiI₃-Struktur [15] nachgewiesen werden. Bei Temperaturen um 180 K für α -TiBr₃ bzw. 220 K für α -TiCl₃ wird eine Phasenumwandlung in eine niedersymmetrische Variante beobachtet [24, 34]. Die Struktur von β -TiBr₃ konnte erst durch *Gloger* [25] anhand von Einkristallen bestimmt werden. Demnach kristallisiert β -TiBr₃ isotyp zur Tieftemperaturform von TiI₃ mit ZrI₃-Struktur [119]. Eine Phasenumwandlung analog zu TiI₃ ist auch für β -TiBr₃ zu erwarten [25]. Die Struktur von β -TiCl₃ konnte von *Natta et. al.* [35] isotyp zur Hochtemperaturform von TiI₃ indiziert werden.

Auch bei den ternären Halogeniden des Titans sind bereits eine Reihe von Untersuchungen in dem System A/Ti/X (A = Cs-Na, X = I-Cl) durchgeführt worden, wobei eine große Anzahl verschiedener Strukturen erhalten wurde. Eine ausführliche Diskussion stabiler Verbindungsklassen, die auch im Rahmen dieser Arbeit gefunden wurden, findet in Kapitel 1.3 statt. Die Verbindungen Na₂Ti₃Cl₈ [36], Na₅Ti₃Cl₁₂ [37] und Na₂TiCl₄ [38] im System Na/Ti/Cl sollen an dieser Stelle nur erwähnt werden, da vergleichbare Verbindungen mit den schwereren Alkalimetallen nicht erhalten werden konnten. Eine ausführliche Diskussion dieser Verbindungen findet man bei Hinz [37]. Mit K₄Ti₃Br₁₂ [3] konnte eine Verbindung erhalten werden, in der Titan gemischtvalent in den Oxidationsstufen +2 und +3 in Form einer linearen [Ti3+-Ti2+-Ti3+]-Einheit vorliegt, die gemäß [Ti3Br12] aus drei flächenverknüpften [TiBr₆]-Oktaedern aufgebaut ist. Diese Verbindung stellt somit den Übergang von dimeren [Ti₂X₉]-Einheiten (flächenverbrückte Doppeloktaeder) der A₃Ti₂X₉-Verbindungen (Kapitel 1.3.3) zu linearen Ketten von flächenverbrückten Oktaedern der Form $\frac{1}{\infty}$ [TiX_{6/2}], wie sie in den ATiX₃-Verbindungen zu finden sind, dar (Kapitel 2.2). Isolierte [TiX₆]-Oktaeder findet man zum Beispiel in den Verbindungen der Zusammensetzung A2TiX6 und A3TiX6, mit Titan in den Oxidationsstufen +4 bzw. +3 (Kapitel 2.1 und 2.4). Die bereits bei den binären Halogeniden ausgeprägte Tendenz zur Ausbildung diskreter Ti-Ti-Bindungen findet man auch in den Verbindungen KTi₄Cl₁₁ [39] und CsTi₂Cl₇ [40]. In [Ti₆C]Cl₁₄ [41] liegt ein [Ti₆]- Oktaeder als zentrale Clustereinheit vor, das durch Kohlenstoff zentriert ist. Diese Anordnung erinnert an die ausgeprägte Clusterchemie des schwereren Homologen Zirkonium.

1.2 Arbeitstechniken

Bei den hier beschriebenen Synthesen handelt es sich um Festkörperreaktionen, die entweder in geschlossenen Metall- oder Kieselglasampullen durchgeführt wurden. Die Beschaffenheit der Metallampullen muss so gewählt werden, dass sie zum einen den hohen Reaktionstemperaturen gewachsen sind und zum anderen nicht mit den eingesetzten, oft aggressiven Edukten reagieren. Die eingesetzten Metallhalogenide sind allgemein sehr reaktionsfreudig, und so hat es sich gezeigt, dass zur Durchführung der hier beschriebenen Synthesen vor allem Tantal- oder Niobampullen geeignet sind [42] (siehe II.1.1.4).

Wenn bei Umsetzungen keine Reduktionen oder Oxidationen nötig sind, man also eine Reaktion aus zwei binären Verbindungen durchführen möchte, eignen sich als Reaktionscontainer auch Kieselglasampullen. Bei diesen muss jedoch beachtet werden, dass sie einen nicht unerheblichen Anteil Sauerstoff mit in die Reaktion einbringen können. Um dies zu vermeiden, können die verjüngten Kieselglasampullen vorher unter Vakuum ausgeheizt werden. Oft entstehen aber bei hohen Reaktionstemperaturen, gerade bei den Titanhalogeniden, mit Ausnahme von TiI₄, die Oxidhalogenide TiOCl [43] und TiOBr [44]. Trotzdem können die ternären Chlorotitanate A₃TiCl₆ und A₃Ti₂Cl₉ problemlos in Kieselglasampullen dargestellt werden (Kapitel 2.3 und 2.4).

Im Prinzip lassen sich die hier beschriebenen Reaktionen auf drei verschiedene Syntheserouten zurückführen:

Umsetzung der Titanhalogenide TiBr₄, TiI₄ und TiCl₃

(1) mit binären Alkalimetallhalogeniden (AX) z.B. $TiCl_3 +$ 3 RbCl **Rb**₃TiCl₆ (2) mit Ti und den Alkalimetallhalogeniden (Synproportionierung) z.B. $3 \operatorname{TiBr}_4 + 12 \operatorname{RbBr}$ Ti \longrightarrow 4 Rb₃TiBr₆ +(3) mit den elementaren Alkalimetallen (Metallothermische Reduktion) z.B. TiBr₄ + 2 RbBr +Rb **Rb**₃TiBr₆

Welcher Weg für die gezielte Darstellung einer Verbindung der geeignete ist, lässt sich vorher nicht immer genau sagen, sodass zum Vergleich meist alle drei Wege beschritten wurden. Der erste Weg ist aufgrund der schwierigen Darstellung phasenreiner Proben von TiBr₃ und TiI₃, für Umsetzungen mit käuflich erhältlichem TiCl₃ (siehe Kapitel 1) am besten geeignet.

Die präparierten Reaktionsansätze können in einem Röhrenofen (Eigenbau, Universität zu Köln), welcher mit einem Temperaturregler (Fa. Eurotherm) verbunden ist, einem gezielten Temperaturprogramm unterworfen werden. Durch Variation der Auf- und Abkühlraten, Reaktionstemperaturen und Temperzeiten lassen sich sehr unterschiedliche Temperaturverläufe einstellen, und es kann so gezielt Einfluss auf den Reaktionsverlauf einer Synthese genommen werden. Um eine Verbindung gezielt phasenrein darzustellen, kann die Reaktion bei einer bestimmten Temperatur direkt durch Abschrecken der Ampulle in einem Wasserbad unterbrochen werden. Die Phase, die bei der jeweiligen Temperatur am stabilsten ist, kann somit eingefroren werden ("Quenching"). Diese Methode wurde in dieser Arbeit bei der Darstellung phasenreiner Proben der Verbindungen vom Typ A₃TiCl₆ und A₃Ti₂Cl₉ angewandt.

Um Einkristalle von Hochtemperaturphasen zu erhalten, kann man die Reaktion ebenfalls durch Abschrecken bei diesen Temperaturen unterbrechen, um dann bei niedrigeren Temperaturen einen Temperprozess folgen zu lassen. So lassen sich nach längerer Temperzeit geeignete Einkristalle züchten. Oft genügt es jedoch auch, durch rasches Abkühlen (99 °C/h) Einkristalle zu erhalten, wie es im Falle der Verbindungen $A_3Ti_2Br_9$ (A = Cs-Rb) in dieser Arbeit der Fall war. Um den Stabilitätsbereich einer Verbindung (Phase) zu ermitteln, können Phasendiagramme des betrachteten Systems erstellt werden.

2. Ternäre Halogenide des Titans

Im Bereich der komplexen Übergangsmetallhalogenide findet man eine Vielzahl von Verbindungen, in welchen das Übergangsmetall oktaedrisch von Halogeniden umgeben ist. Dies resultiert aus den meist hexagonalen Kugelpackungen, die von den Halogeniden (im Falle ternärer Verbindungen auch unter Einbeziehung der Alkalimetalle) ausgebildet werden. Durch die unterschiedlichen Möglichkeiten bei der Besetzung von Oktaederlücken, die ausschließlich von Halogenid aufgespannt werden, eröffnet sich ein breites Spektrum an möglichen Strukturmotiven. Oktaederverknüpfung über Ecken, Kanten oder Flächen ermöglicht zudem die Bildung von diskreten Metall-Metall-Wechselwirkungen zwischen den $[MX_6]$ -Oktaedern. In Kapitel 1.1 wurden bereits die wichtigsten komplexen Halogenide des Titans erwähnt, auf die nun in den folgenden Kapiteln explizit eingegangen wird. Der Schwerpunkt liegt dabei auf den in dieser Arbeit neu dargestellten Vertretern von Verbindungen des Typs A₃TiX₆ und A₃Ti₂X₉.

Im weiteren Verlauf dieser Arbeit werden nur ternäre Verbindungen des Titans mit Alkalimetallen (A = Na-Cs) und Halogenen (X = Cl-I) betrachtet, obgleich der Begriff "ternäre Halogenide" auch solche mit anderen Kationen einschließt. In dieser Arbeit wurde auch versucht, anstatt der einwertigen Alkalimetalle, die zweiwertigen Erdalkalimetalle (Ea) einzusetzen. Wie bereits früher von Gloger [25] beschrieben, konnten auch in dieser Arbeit keine ternären Phasen, etwa der Zusammensetzung EaTiX₆, erhalten werden. Stattdessen bildeten sich nur die reduzierten, binären Titanhalogenide TiX3 und TiX2 meist neben den Erdalkalimetallhalogeniden. Die metallothermische Reduktion mit elementaren Erdalkalimellen bei hohen Temperaturen führte nur zu den binären Phasen. Der Grund dafür ist wohl in der höheren Stabilität der binären Phasen zu suchen, die sich im Fall der zweiwertigen Erdalkalimetalle in höheren Gitterenthalpien widerspiegelt, im Vergleich zu den einwertigen Alkalimetallhalogeniden. Nebenprodukte bei hohen Reaktionstemperaturen waren häufig die Oxidhalogenide Ea₄OX₆ [45-46] der Erdalkalimetalle, welche in Form von Einkristallen erhalten wurden. Der Sauerstoff ist dabei wahrscheinlich über Verunreinigungen der Edukte oder der Ampullenwand des Tantal-Containers in die Ansätze gelangt. Dass die unerwünschte Kontaminierung mit Sauerstoff auch zu neuen interessanten Verbindungen führen kann, soll hier nur am Beispiel von K₄Ti₄OI₁₂ [5] erwähnt werden.

2.1 Verbindungen vom Typ A₂TiX₆

Mit Titan in der Oxidationsstufe +4 kennt man die Verbindungen der Zusammensetzung A₂TiX₆. Das charakteristische Strukturmotiv stellen voneinander isolierte $[TiX_6]^{2^-}$ -Oktaeder dar. Die Darstellung erfolgt durch Umsetzung der binären Komponenten (TiX₄ + 2AX) bei verhältnismäßig niedrigen Temperaturen. Die Verbindungen kristallisieren weitgehend kubisch in der Raumgruppe $Fm\bar{3}m$ in der sogenannten K₂PtCl₆-Struktur [47]. Die Halogenide bilden zusammen mit den Alkalimetallen eine kubisch-dichteste Kugelpackung aus. Die Ti⁴⁺-Ionen besetzen die Hälfte der Oktaederlücken, die nur von Halogeniden aufgespannt werden. Dabei bleiben in jeder zweiten Zwischenschicht die Oktaederlücken unbesetzt, während in der darauf folgenden Schicht wiederum alle Oktaederlücken mit Titanatomen aufgefüllt sind. Daraus resultieren Schichten von isolierten [TiX₆]²⁻-Oktaedern (Abb.7).

Abb. 6: Elementarzelle von K₂PtCl₆. Perspektivische Darstellung.

Abb. 7: Perspektivische Darstellung der Schichten von isolierten [PtCl₆]²⁻-Oktaedern in der Kristallstruktur von K₂PtCl₆.

Die Kalium-Ionen sind von 12 Chloridionen umgeben, und es resultiert die für dichteste Kugelpackungen charakteristische kuboktaedrische Umgebung. Die isolierten $[TiX_6]^{2^-}$ Oktaeder sind weit voneinander entfernt, sodass keine direkten Metall-Metall Wechselwirkungen zwischen den Metallzentren auftreten. In Rb₂TiCl₆ [48] etwa beträgt der Abstand zwischen zwei Titanzentren 701,6(2) pm.

2.2 Verbindungen vom Typ ATiX₃

Bei Synthesen in dem System A/Ti/X (A = Cs-K und X = I-Cl) erhält man oft Verbindungen der Zusammensetzung ATiX₃ in Form von langen schwarzen Nadeln oder Plättchen. Diese Verbindungen des zweiwertigen Titans treten bevorzugt auf, wenn bei hohen Temperaturen gearbeitet und sehr langsam abgekühlt wird. Somit stellen sie die bei Raumtemperatur thermodynamisch stabilsten, ternären Titanhalogenide dar. Die Verbindungen ATiX₃ (A = K-Cs, X = Cl-I) sind deshalb bereits seit längerer Zeit bekannt, dennoch gelang es erst vor kurzem die fehlenden Verbindungen strukturell an Einkristallen aufzuklären [49]. Die Strukturen der ATiX₃-Verbindungen lassen sich alle von der hexagonalen Perowskit-Struktur (CsNiCl₃ [50]) ableiten. Als gemeinsames Strukturmotiv liegen eindimensionale Stränge flächenverknüpfter [TiX₆]-Oktaeder vor, gemäß der Niggli-Schreibweise $\frac{1}{\infty}$ [TiX_{6/2}]. Diese Stränge sind wiederum von sechs weiteren Strängen hexagonal umgeben und entlang der kristallographischen c-Achse (001) angeordnet. Die Alkalimetallionen besetzen die Kub- bzw. Antikuboktaedrischen Lücken (KZ 12) und halten die Stränge zusammen. Eine niedersymmetrische Verzerrungsvariante des CsNiCl₃-Typs stellt die Struktur von KNiCl₃ [51] dar. In der KNiCl₃-Struktur kristallisiert z.B. KTiCl₃ [25], während RbTiCl₃ [52] noch in der CsNiCl₃-Struktur vorliegt. Der Grund hierfür lässt sich in dem ungünstigen Ionenradienverhältnis von Kalium- und Chlorid-Ionen $(r(K^+)/r(Cl^-))$ und dem damit verbundenen unterschiedlichem Koordinationsbedürfnis, im Vergleich zur Rubidiumverbindung finden. In der hexagonal-dichtesten Packung von Rb⁺ und Cl⁻ kommt es zu einer optimalen Raumerfüllung, wenn die Rb⁺-Ionen genau von 12 Cl⁻-Ionen umgeben sind, wie es eine unverzerrte hexagonale Packung verlangt. Die K⁺-Ionen sind für eine optimale Raumerfüllung dieser Lücken im Fall von KTiCl₃ jedoch zu klein. Daher kommt es zu einer Verzerrung der Chloridpackung, um die Koordinationszahl des Kaliums zu erhöhen. Dies geht einher mit einer Verringerung der Koordinationszahl von 12 (im Falle unverzerrter Packung) auf 11 für KTiCl₃. Dadurch kommt es zusätzlich zu einer Verzerrung in der Anordnung der $\frac{1}{20}$ [TiX_{6/2}]⁻Oktaderstränge zueinander, die sich durch eine Verdrehung um 26° und eine Verschiebung entlang [001] um eine 2/3 Oktaederlänge bemerkbar macht (Abb. 8) [25]. Dieser Symmetrieverlust äußert sich durch den Übergang von der Raumgruppe $P6_3/mmc$ (RbTiCl₃) in die niedersymmetrische, azentrische Raumgruppe $P6_3$ (KTiCl₃). Beide Raumgruppen stehen in einer direkten Gruppe-Untergruppe-Beziehung. Auch in den Gitterparametern lässt sich der Zusammenhang zwischen den beiden Strukturen finden: a(KNiCl₃-Typ) = $\sqrt{3} \cdot a(CsNiCl_3$ -Typ). Durch den Übergang in den niedriger symmetrischen KNiCl₃-Typ erhält man also eine Superzelle mit einer um den Faktor $\sqrt{3}$ längeren a-Achse. Aus den experimentellen Daten lassen sich Aussagen über das Auftreten des jeweiligen Strukturtyps treffen, wenn man die Ionenradienverhältnisse $r(A^+)/r(X^-)$ gegen das Verhältnis $r(Ti^{2+})/r(X^-)$ aufträgt [49]. Es hat sich gezeigt, dass bei einem Verhältnis von 1 und darüber der CsNiCl₃-Typ auftritt. Bei kleineren Verhältnissen tritt bevorzugt die KNiCl₃-Struktur auf. Der Ti-Ti-Abstand innerhalb der Oktaederstränge liegt für RbTiCl₃ bei 300,0 pm und stellt damit im Vergleich zu Rb₂TiCl₆ (701,6 pm), Rb₃TiCl₆ (708,3 pm) und Rb₃Ti₂Cl₉ (314,6 pm) den kürzesten Ti-Ti-Abstand zwischen den stets oktaedrisch umgebenen Titanzentren dar (Kapitel 1.3.4 und 1.3.3).

Abb. 8: Oben links: Elementarzelle von RbTiCl₃. Blick entlang [001]. Unten links: Anordnung der $\int_{\infty}^{1} [TiX_{6/2}]$ -Oktaderstränge in RbTiCl₃ entlang [001]. Oben rechts: Elementarzelle von KTiCl₃. Blick entlang [001]. Unten rechts: Anordnung der $\int_{\infty}^{1} [TiX_{6/2}]$ -Oktaderstränge in KTiCl₃ entlang [001].

2.3 Verbindungen vom Typ A₃Ti₂X₉

2.3.1 Allgemeines

Die Verbindungen vom Typ $A_3Ti_2X_9$ (A = Cs-K, X = Br-Cl) stellen eine weitere Klasse ternärer Halogenide des Titans dar. In den Enneahalogenodititanaten liegt Titan in der Oxidationsstufe + 3 vor (d¹-System). Das zentrale Strukturmotiv sind voneinander isolierte flächenverknüpfte Doppeloktaeder $[Ti_2X_9]^{3-}$. Diese Verbindungsklasse ist bereits für eine Vielzahl von Übergangsmetallen M sowie Hauptgruppenelementen bekannt und eingehend charakterisiert worden. Auch von den im Periodensystem benachbarten Elementen Scandium und Vanadium sind mit Cs₃Sc₂Cl₉ [53] und Cs₃V₂Cl₉ [54] bereits Vertreter dieses Typs dargestellt worden.

Bei den Verbindungen der Zusammensetzung A3M2X9 sollte man, wie bei den ATiX3-Verbindungen, ebenfalls ein Auftreten unterschiedlicher Strukturvarianten innerhalb dieser Reihe erwarten, wenn man das Ionenradienverhältnis $r(A^+)/r(X^-)$ als ausschlaggebend für das Auftreten dieser Strukturen ansieht (siehe Kapitel 2.2). Die Verbindungen vom Typ A₃Ti₂X₉ oder allgemein $A_3M_2X_9$ mit M = Übergangsmetall lassen sich nämlich ebenfalls von der Familie der Perowskite ableiten, wobei unterschiedliche Stapelvarianten oder andere Defekte die verschiedenen Strukturtypen bedingen. Man unterscheidet dabei den kubischen Perowskit (CaTiO₃ [55]) vom hexagonalen Perowskit (CsNiCl₃ [50]), in welchem auch die meisten Verbindungen vom Typ $ATiX_3$ [50] (mit A = Cs-Na und X = I-Cl) kristallisieren, auf die im vorigen Kapitel bereits näher eingegangen wurde. Für Titan konnten von Gloger mit K₃Ti₂Cl₉ [25] und *Hinz* mit Cs₃Ti₂Cl₉ [2] bereits zwei Enneachlorodititanate einkristallin dargestellt und strukturell charakterisiert werden. Die beiden Verbindungen kristallisieren nicht isotyp. Aufgrund der unterschiedlichen Ionenradien von K⁺ und Cs⁺ ergeben sich zwei verschiedene Strukturtypen, auf welche später noch detailliert eingegangen wird. K₃Ti₂Cl₉ kristallisiert in der sog. K₃W₂Cl₉-Struktur (P6₃/m) [56], während Cs₃Ti₂Cl₉ im Cs₃Cr₂Cl₉-Typ (P6₃/mmc) [58] vorliegt. Die in dieser Arbeit erstmals anhand von Einkristallen bestimmten Strukturen von Cs₃Ti₂Br₉, Rb₃Ti₂Br₉ sowie Rb₃Ti₂Cl₉ kristallisieren ebenfalls in der Cs₃Cr₂Cl₉-Struktur. Die Verbindungen $A_3Ti_2Cl_9$ mit A = Cs-K konnten zudem röntgenographisch phasenrein dargestellt werden, um magnetische und optische Untersuchungen durchzuführen (Kapitel 2.3.7 und 2.3.8). Um die Beschreibung der verschiedenen Strukturvarianten innerhalb der Klasse der A3M2X9-Verbindungen einzugrenzen, sollen an dieser Stelle nur die bei den Titanverbindungen gefundenen Strukturtypen eingehend beschrieben werden. Alle anderen Varianten in dieser Verbindungsklasse stellen Verzerrungsvarianten dar und lassen sich von den hier beschriebenen Strukturen ableiten [60].

2.3.2 Strukturen der Enneahalogenodititanate(III)

Der kubische Perowskit CaTiO₃ (3H-Typ) kristallisiert in der Raumgruppe $Pm\overline{3}m$. Die Ca²⁺-Ionen bilden zusammen mit den O²-Ionen eine kubisch-dichteste Kugelpackung aus. Die dabei entstehenden hexagonalen Schichten der Zusammensetzung [CaO₃] sind gemäß der Stapelfolge ABC angeordnet. Anstatt die Schichtenfolge explizit zu beschreiben, kann man auch das Jagodzinski-Symbol [58] verwenden. Für die Stapelung im kubischen Fall ABC ergibt sich das Symbol c (cubic) für jede Schicht. Bei der hexagonalen Variante AB verwendet man das Symbol h (hexagonal). So lassen sich an späterer Stelle einfacher Vergleiche ziehen und die Strukturen besser beschreiben. Bei der Beschreibung von einfachen Kugelpackungen sollte man sich in Erinnerung rufen, dass für jedes die Kugelpackung aufbauende Atom genau eine Oktaederlücke (OL) sowie zwei Tetraederlücken (TL) vorhanden sind, wobei die Tetraederlücken in unserer Betrachtung vorerst keine Rolle spielen, da die Metallionen nur die größeren Oktaederlücken besetzen. In CaTiO₃ sind nur ein Viertel aller OL mit Ti⁴⁺ besetzt sind. Die Ti⁴⁺-Ionen besetzen dabei alle OL, die nur von O²⁻ aufgespannt werden, um energetisch ungünstige, abstoßende Wechselwirkungen bei der Besetzung von OL, die von Ca²⁺-Ionen mit aufgestellt werden, zu vermeiden. Durch die festgelegte Stapelfolge c ergeben sich so allseits eckenverknüpfte [TiO₆]-Oktaeder, die ein dreidimensionales Netzwerk aufspannen.

Abb. 9: Ausschnitt aus der Kristallstruktur von CaTiO₃.

wurde.

Der hexagonale Perowskit CsNiCl₃ (2H-Typ) kristallisiert in der Raumgruppe *P6₃/mmc* mit zwei Formeleinheiten in der Elementarzelle. Die Cäsium-Ionen bilden zusammen mit den Chlorid-Ionen eine hexagonal-dichteste Kugelpackung in der Weise aus, dass Cs⁺ ausschließlich von Cl⁻ umgeben sind, um abstoßende Wechselwirkungen zu minimieren. Die so entstehenden hexagonalen Schichten der Zusammensetzung [CsCl₃] sind dementsprechend gemäß h gestapelt. Auch in dieser Struktur werden aus elektrostatischen Gründen nur die OL mit Ni²⁺ besetzt, die ausschließlich von Chloridionen aufgespannt werden. Der Unterschied zum kubischen Perowskit liegt in der Verknüpfung der Oktaeder. Aufgrund der Stapelabfolge AB (h) bilden sich ausschließlich Ketten von flächenverknüpften [NiCl₆]-Oktaedern aus, welche wiederum hexagonal entlang [001] angeordnet sind (siehe Kapitel 2.2).

In Analogie zu den Perowskiten lassen sich auch die Enneahalogenide des Titans beschreiben, indem man die Strukturen der $A_3Ti_2X_9$ -Verbindungen über die Stapelfolgen der hexagonalen [AX₃]-Schichten beschreibt. Der Bezug zu den Strukturen der Perowskite wird deutlich, wenn man die Summenformel der ATiX₃-Verbindungen verdreifacht:

$$ATiX_3$$
 (Perowskit) $\implies A_3Ti_3X_9 \implies A_3Ti_2\Box X_9$

Durch Verdreifachung der Elementarzelle in [001]-Richtung gelangt man von den ATiX₃-Verbindungen mit Perowskit-Struktur zu den Strukturen der A₃Ti₂X₉-Verbindungen, wenn nur 2/3 der ausschließlich von Halogenid aufgespannten OL besetzt werden. Damit werden von den insgesamt vorhandenen OL nur 1/6 mit Ti³⁺ besetzt. Dies geschieht in der Art, dass alle OL frei bleiben, die an kubische Schichten c angrenzen. Die Stapelsequenz der [AX₃]-Schichten (Abb. 10) in der Elementarzelle von Cs₃Cr₂Cl₉ ist demgemäß ABACBC, (hcc)₂ (Abb. 11). Die Ti-X-Abstände sollten für die A₃Ti₂X₉-Verbindungen mit Titan in der Oxidationsstufe +3 kleiner sein, als in den ATiX₃-Verbindungen mit zweiwertigem Titan. Aufgrund des kleineren Ionenradius von Ti³⁺ und nur einseitiger Flächenverknüpfung in den Doppeloktaedern ist auch ein Unterschied in den X-Ti-X Winkeln der Oktaeder zu erwarten. In Abbildung 12 ist ein Vergleich der Elementarzellen von CsNiCl₃ und Cs₃Cr₂Cl₉ dargestellt, wobei die Elementarzelle von CsNiCl₃ um den Faktor 3 entlang der [001]-Achse vergrößert

Abb. 10: Darstellung einer hexagonalen Schicht der Zusammensetzung [AX₃] im Cs₃Cr₂Cl₉-Strukturtyp. (gelb: Cs⁺; grün: Cl⁻).

Abb. 11: Stapelfolge der hexagonalen Schichten [AX₃] in Verbindungen des Cs₃Cr₂Cl₉-Typs. Stapelfolge ABACBC (hcc) in Richtung [001].

Abb. 12: Links: Darstellung der verdreifachten Elementarzelle von CsNiCl₃. Rechts: Elementarzelle von Cs₃Cr₂Cl₉.

Die flächenverknüpften Oktaederstränge entlang [001] werden derart "aufgebrochen", dass jede dritte Oktaederlücke unbesetzt bleibt und somit "nur" noch isolierte, flächenverknüpfte Doppeloktaeder übrig bleiben. Dabei bleiben genau die OL unbesetzt, die zwischen zwei c-Schichten liegen. Die hexagonale Stapelung der [MX₃]- Schichten muss jedoch erhalten bleiben, um weiterhin flächenverknüpfte Oktaeder ausbilden zu können.

Die Gründe für das Auftreten unterschiedlicher Strukturtypen bei den $A_3Ti_2X_9$ -Verbindungen sind elektrostatischer Natur, da sich nur bei annähernd gleich großen "Kugeln" ideale, unverzerrte Kugelpackungen ausbilden können. Betrachtet man gleich geladene Kationen innerhalb einer Hauptgruppe, so nimmt der Ionenradius von oben nach unten bei gleicher Koordinationszahl zu. So ist es auch verständlich, dass bei gleichem Anion und Zentralatom eine Verzerrung des Packungsgerüstes auftritt, wenn die Kationengröße variiert wird. Diese Verzerrung führt zwangsläufig zu einer Erniedrigung der Symmetrie. Dabei kann es vorkommen, dass durch den Wegfall einfacher Symmetrieelemente nur kleine Unterschiede in der Struktur auftreten, sodass das Strukturmotiv der flächenverknüpften Doppeloktaeder weitgehend erhalten bleibt. Im Falle der Enneachlorodititanate liegt solch eine Verzerrung vor, wenn man von Rb₃Ti₂Cl₉, welches im Cs₃Cr₂Cl₉-Typ kristallisiert, zu K₃Ti₂Cl₉ übergeht, das in der K₃W₂Cl₉-Struktur vorliegt. In K₃W₂Cl₉ [56] liegen ebenfalls isolierte Doppeloktaeder vor, die entlang [001] zu Strängen angeordnet sind. Die Schichten der Zusammensetzung [KCl₃] sind ebenfalls gemäß (hcc)₂ entlang [001] gestapelt, wie es auch für $Cs_3Cr_2Cl_9$ der Fall ist. Der einzige Unterschied liegt in der Ausrichtung der $[W_2Cl_9]^{3-}$ Einheiten zueinander (Abb. 13). Um die Koordination von K⁺ besser abzusättigen, sind die Doppeloktaeder zueinander um etwa 5,78° entlang der dreizähligen Achse (C₃) verdreht.

Abb. 13: Elementarzellen von Cs₃Cr₂Cl₉ (links) und K₃W₂Cl₉ (rechts). Blick entlang [001].

Durch die Verdrehung der Oktaeder um die C₃-Achse kommt es zum Wegfall der Spiegelebene senkrecht zu (201), welcher einhergeht mit einer Erniedrigung der Punktgruppensymmetrie von $\overline{6}$ m2 im Falle von Cs₃Cr₂Cl₉ auf $\overline{6}$ für K₃W₂Cl₉. Der Wegfall dieser Symmetrieelemente stellt einen translationengleichen Übergang vom Index zwei (t2) von der Raumgruppe *P*6₃/*mmc* (Cs₃Cr₂Cl₉) nach *P*6₃/*m* (K₃W₂Cl₉) dar. Die Raumgruppe *P*6₃/*m* ist eine Untergruppe von *P*6₃/*mmc* dar. Für die Doppeloktaeder bleibt die D_{3h}-Symmetrie jedoch erhalten. Einen weiteren Unterschied zwischen diesen beiden Strukturtypen findet man, wenn man die Ausrichtung der Metallzentren innerhalb der Doppeloktaeder zueinander vergleicht. Für den K₃W₂Cl₉-Typ charakteristisch sind stark anziehende M-M-Wechselwirkungen, die sich in einem kurzen W-W-Abstand von 241 pm bemerkbar machen, der einer W-W-Dreifachbindung entspricht (Abb.15) [61]. In der Cs₃Cr₂Cl₉-Struktrur lassen sich dagegen repulsive Wechselwirkungen finden [61]. Die Auslenkung der Metallatome findet aus den Oktaedermitten zu der Ebene der terminalen Chloridionen (X_t) statt (Abb.15), wobei der Cr-Cr-Abstand 312 pm beträgt.

Die Vorhersage über die Art der Metall-Metall-Wechselwirkungen ist schwierig, wenn man nur die Strukturdaten der Verbindungen zur Verfügung hat. Eine qualitative Beschreibung lässt jedoch die Betrachtung der Gestalt des $[M_2X_9]$ -Doppeloktaeders zu, mit deren Hilfe man ein Modell zur Abschätzung der Metall-Metall-Wechselwirkung im Hinblick auf sich abstoßende oder anziehende Metallzentren machen kann [59]. Dazu müssen bestimmte geometrische Parameter betrachtet werden, die unabhängig von der AX-Matrix sind, um vergleichende Betrachtungen heranzuführen. Die Verschiebung der Metallzentren aus den Oktaedermitten im Vergleich zu einem unverzerrten, idealen Doppeloktaeder ist dabei ausschlaggebend. Ein "ideales" Doppeloktaeder mit gemeinsamer Fläche besitzt D_{3h} -Symmetrie (Abb. 14).

Abb. 14: Darstellung eines "idealen" flächenverknüpften Doppeloktaeders.

Im diesem Doppeloktaeder müssen sowohl die Abstände der Metallzentren zu den terminalen Halogenatomen (Xt) als auch zu den verbrückenden Halogenatomen (Xbr) gleich sein [59]. Eine weitere geometrische Bedingung ist, dass die Winkel X_t-M-X_t (α), X_t-M-X_{br} (α) und X_{br} -M- X_{br} (α) alle 90° und die Winkel M- X_{br} -M (β) genau 70,53° betragen. Die Abstände d stellen den senkrechten Abstand des Metallatoms in der Oktaedermitte zu den von drei Atomen aufgespannten Dreiecksflächen des umgebenden Oktaeders dar. Im idealen Doppeloktaeder liegt das Metallatom exakt im Oktaederzentrum, was einem Verhältnis der Abstände d^I zu d^{II} von genau eins entspricht ($d^{I}/d^{II} = 1$). Anhand dieses Verhältnisses, in Korrelation mit den Winkeln α und β ist es möglich, eine aus rein geometrischen Betrachtungen erstellte Vorhersage über die Art der Metall-Metall-Wechselwirkungen innerhalb dieser Doppeloktaeder zu treffen [59]. Natürlich kann man in die Betrachtung auch weitere geometrische Parameter mit einbeziehen. Es hat sich jedoch gezeigt, dass diese Parameter mit dem Wert für d^I/d^{II} und den eben genannten Winkeln korrelieren [60]. Weiterhin soll erwähnt bleiben, dass die mögliche Ausbildung eines "idealen" flächenverknüpften Doppeloktaeders keinerlei chemische oder physikalische Gründe hat, demnach auch keinen energetisch begünstigten Zustand darstellt. Dieses Modell soll hier nur als Referenz zur Beurteilung der Metallwechselwirkungen, mithilfe der abgeleiteten Parameter dienen.

Für repulsive Wechselwirkungen ergibt sich ein d^I/d^{II}-Verhältnis von größer als eins $(d^{I}/d^{II} > 1)$. Man erwartet deshalb eine Zunahme des Winkels α ($\alpha > 90^{\circ}$), gleichzeitig aber auch eine Abnahme von α'' ($\alpha'' < 90^\circ$). Dadurch resultiert ein größerer Winkel β , der nun über 70,53° liegen sollte ($\beta > 70,53^\circ$). Umgekehrtes erwartet man im Fall attraktiver Wechselwirkungen. Dabei bleibt immer zu beachten, dass sich die Metallatome der Oktaederzentren in flächenverknüpften Oktaedern generell näher kommen, als es bei Kantenoder Eckenverknüpftung der Fall ist. Das führt nun dazu, dass unabhängig von der Elektronenkonfiguration der Metalle, stets repulsive Wechselwirkungen unterlagert sind, die sich aus der Coulomb-Abstoßung zwischen den positiv geladenen Metallzentren und der Abstoßung sich überlappender Elektronenhüllen ergeben. Man erwartet demnach stärker abweichende Werte von eins bei sich abstoßenden Metallzentren ($d^{I}/d^{II} > 1$), als bei anziehenden Wechselwirkungen ($d^{I}/d^{II} < 1$). Die in der Literatur gefundenen Werte von 0,89 bis 1.62 bestätigen diese Annahme. Die größten d^{I}/d^{II} -Verhältnisse sollten demnach bei stark positiv geladenen Metall-Ionen auftreten, die keine Elektronen mehr zur Ausbildung diskreter M-M-Bindungen bereitstellen können. Unbeachtet dabei bleibt jedoch, inwiefern weitere Wechselwirkungen, etwa mit den benachbarten Doppeloktaedern, die magnetischen und elektronischen Zustände der Metallzentren beeinflussen. So findet man bei Verbindungen, in denen aus elektronischen Gründen keine Bindungen aufgebaut werden können (z.B. bei Cs₃Bi₂I₉ [60]), dass es zu einer starken Dehnung der Doppeloktaeder kommt, was sich in einem d^I/d^{II}-Verhältnis von größer eins widerspiegelt (1,29). Dies würde die eben genannten geometrischen Überlegungen bestätigen. Andererseits müssten demnach die größten attraktiven Wechselwirkungen bei Verbindungen auftreten, in denen mehrere ungepaarte d-Elektronen vorliegen, vor allem bei 4d- und 5d-Elementen mit räumlich weiter ausgedehnten d-Orbitalen (im Falle von Übergangsmetallen als Zentralatome). Diese Überlegungen beziehen sich allein auf den Einfluss des Metallatoms selbst auf die Ausbildung von M-M-Wechselwirkungen. Einen wichtigen Einfluss auf die Gestalt des Doppeloktaeders und damit der M-M-Abstände besitzt jedoch die umgebende AX-Matrix. Dabei spielen vor allem die Größe der A⁺-Ionen und die Polarisierbarkeiten der X⁻-Ionen eine entscheidende Rolle.

In einem oktaedrischen Ligandenfeld erwartet man eine Aufspaltung der fünf im kugelsymmetrischen Feld entarteten d-Niveaus des Übergangsmetalls in drei energetisch tiefer liegende t_{2g} - und zwei energetisch höher liegende e_g - Niveaus. Die einfache Besetzung der drei energetisch niedriger liegenden t_{2g} -Niveaus führt dann bei d³-Konfiguration zu einem

größtmöglichen Energiegewinn. In den Anionen [Cr₂Cl₉]³⁻, [Mo₂Cl₉]³⁻ und [W₂Cl₉]³⁻ liegen Doppeloktaeder mit d³-Konfiguration vor, man würde also im Prinzip hier aus elektronischen Gründen die kürzesten M-M-Abstände und damit die kleinsten d^I/d^{II}-Verhältnisse erwarten. Für K₃W₂Cl₉ lässt sich ein d^{I}/d^{II} -Verhältnis von 0,9 und, wie bereits oben erwähnt, ein W-W-Abstand von 240,2 pm ermitteln, was einer Dreifachbindung entspricht. Dies konnte über Messungen der magnetischen Suszeptibilität χ , welche keine ungepaarten Elektronen im Grundzustand erkennen ließen, bestätigt werden [61]. In Cs₃Mo₂Cl₉ [62] liegt der Wert für das d^I/d^{II}-Verhältnis bei 0,98, was im Vergleich zum idealen Doppeloktaeder nur einen kleinen attraktiven Anteil vermuten lässt. Vergleicht man diesen Wert jedoch mit Werten von Verbindungen, in denen keine bindenden Wechselwirkungen auftreten $(d^{I}/d^{II} \ge 1,2)$, so lassen sich doch bindende Anteile vermuten, was ebenfalls durch Messungen der magnetischen Suszeptibilität bestätigt werden konnte [63]. Da das für Cs₃Cr₂Cl₉ [58] ermittelte d¹/d¹¹-Verhältnis bei 1,23 liegt, treten repulsive Wechselwirkungen auf, welche sich für die Cr³⁺-Ionen (d³) in einem fast temperaturunabhängigen Paramagnetismus bemerkbar machen [61]. Der Grund für repulsive Wechselwirkungen liegt hier, neben den bereits genannten Gründen, wohl darin, dass sich die 3d-Orbitale wesentlich näher am Atomkern befinden, als die weiter ausgedehnten 4d- und 5d-Orbitale. Dadurch kann es nicht zu einer genügenden Überlappung der Atomorbitale kommen, wie es bei Mo und besonders bei W der Fall ist, und damit nicht zur Ausbildung einer Metall-Metall-Bindung. Da die Metallatome räumlich jedoch relativ beieinander sich bei tieferen nahe liegen, lassen Temperaturen magnetische Wechselwirkungen erwarten. Ein Vergleich der geometrischen Verhältnisse bei den Verbindungen des Titans findet sich in Kapitel 2.3.5.

Abb. 15: Ausrichtung der Metallatome innerhalb der Doppeloktaeder [M₂Cl₉]³⁻. Links: [Cr₂Cl₉]³⁻ in Cs₃Cr₂Cl₉. Rechts: [W₂Cl₉]³⁻ in K₃W₂Cl₉ (W-W-Dreifachbindung gestrichelt angedeutet).

Es ist aber auch möglich, dass es zum Auftreten eines Strukturtyps kommt, in dem keine flächenverknüpften Doppeloktaeder auftreten. Als Beispiel sei hier Cs₃Bi₂Cl₉ [64] genannt, welches orthorhombisch in der Raumgruppe *Pnma* kristallisiert. Zwar liegen auch in Cs₃Bi₂Cl₉ dichtest-gepackte [CsCl₃]-Schichten vor, die gemäß (hcc)₂ gestapelt sind, jedoch treten hier, im Gegensatz zu Cs₃Bi₂I₉ [60], nur eckenverknüpfte Oktaeder auf. Der Grund liegt in der leichteren Polarisierbarkeit des größeren Iodid-Anions, welche dazu führt, dass die Bi³⁺-Ionen sich im flächenverknüpften Doppeloktaeder weiter voneinander entfernen können, als es bei den Chlorid-Anionen der Fall wäre. Dadurch lassen sich die ausschließlich repulsiven Wechselwirkungen verringern, die aufgrund der elektronischen Situation (6s²) dominieren. Durch Ausbildung eckenverknüpfter Oktaeder in Cs₃Bi₂Cl₉ werden die abstoßenden Kräfte, aufgrund der geometrisch bedingten, größeren räumlichen Entfernung der Metallatome, minimiert.

Da die Strukturen der $A_3M_2X_9$ -Verbindungen sich nicht sehr stark voneinander unterscheiden, wäre es denkbar, dass die niedersymmetrischen Varianten bei höheren Temperaturen eine Phasenumwandlung durchlaufen, um in höhersymmetrische Modifikationen überzugehen. Eine solche Phasenumwandlung findet man z.B. bei KTiCl₃ (Kapitel 2.2) oder bei den Verbindungen vom Typ A_3TiX_6 , die in Kapitel 2.4 besprochen werden. Im Rahmen dieser Arbeit konnte mithilfe thermischer Analysen eine Phasenumwandlung bei $K_3Ti_2Cl_9$ beobachtet werden (Kapitel 2.3.9).

2.3.3 Die Verbindungen A₃Ti₂Br₉ (A = Cs-Rb)

Durch thermische Untersuchungen in dem System A/Ti/Br (A = Cs-Rb) konnten von *Korol kov et al.* neben Verbindungen der Zusammensetzung ATiBr₃ und A₃TiBr₆, auch die Verbindungen Cs₃Ti₂Br₉ und Rb₃Ti₂Br₉ [66] gefunden werden, welche später anhand von röntgenographischen Pulveruntersuchungen als isotyp zu Cs₃Cr₂Cl₉ [57] kristallisierend beschrieben wurden [67]. Im Rahmen dieser Arbeit konnten die Strukturen nun anhand von Einkristalldaten aufgeklärt werden. Die Untersuchungen von *Ehrlich et al.* im System KBr/TiBr₃ ergaben keine Hinweise auf die Existenz von K₃Ti₂Br₉. Als einzige ternäre Verbindung mit Titan in der Oxidationsstufe +3 konnte nur K₃TiBr₆ gefunden werden [68]. Trotz einiger Darstellungsversuche konnte auch in dieser Arbeit keine Phase der Zusammensetzung K₃Ti₂Br₉ nachgewiesen werden. In den meisten Fällen erhielt man nur KTiBr₃ [25]. Die Ansätze in Kieselglasampullen, die bei den analogen Chloriden erfolgreich waren, führten hier lediglich zu den binären Phasen TiBr₂ und TiBr₃ neben KBr, wobei die Bildung von TiOBr [44] ebenfalls bevorzugt auftritt.

2.3.3.1 Darstellung

Die Verbindungen Cs₃TiBr₆ und Rb₃TiBr₆ lassen sich durch Umsetzungen nach folgender Reaktionsgleichung darstellen:

 $3 \operatorname{Ti}Br_4 + 6 \operatorname{ABr} + \operatorname{Ti} \longrightarrow 2 \operatorname{A}_3 \operatorname{Ti}_2 \operatorname{Br}_9$

Ausgehend von 0,2 g TiBr₄ werden entsprechende Mengen an CsBr (RbBr) eingewogen und in einem Achatmörser innig zerrieben. Titan wird in Form von kleinen, etwa 4 mm langen Chips dem Reaktionsansatz zugegeben. Als Reaktionscontainer dienen Ta-Ampullen von etwa 5 cm Länge. Die in Kieselglas eingeschmolzenen Ta-Ampullen werden in einen Röhrenofen gegeben und folgendem Temperaturverlauf unterzogen:

{Aufheizen auf 687°C (Rb₃Ti₂Br₉: 676°C); Haltezeit 240 h, Abkühlen auf RT mit 99°C/h}. Die hohen Abkühlraten wurden gewählt, da sich bei kleinen Abkühlraten stets die thermodynamisch stabilen ATiBr₃-Verbindungen bildeten. Ein Einfluss auf die Kristallqualität durch schnelles Abkühlen konnte nicht festgestellt werden. Das weitere Vorgehen erfolgt wie in Kapitel 1.1 beschrieben. Beide Verbindungen kristallisieren in Form rötlich-schwarzer Stäbchen. An Luft zersetzen sie sich rasch über violette Zwischenstufen zu einem weißen Pulver.

2.3.3.2 Strukturbeschreibung

Cs₃Ti₂Br₉ und Rb₃Ti₂Br₉ kristallisieren hexagonal in der Raumgruppe *P*6₃/*mmc* (Nr.194) mit zwei Formeleinheiten in der Elementarzelle isotyp zu Cs₃Cr₂Cl₉ [57]. Die Visualisierung der Strukturen erfolgt anhand der Kristallstruktur von Cs₃Ti₂Br₉. Eine perspektivische Darstellung zeigt die Lage der Doppeloktaeder in der Elementarzelle dieser Verbindungen (Abb. 18). Der unverzerrte Cs₃Cr₂Cl₉-Typ lässt sich durch Betrachten der Anordnung der Doppeloktaeder zueinander in der Elementarzelle mit Blickrichtung [001] erkennen (Abb. 19). Die zwei kristallograpisch unterscheidbaren Cäsiumatome sind von jeweils 12 Bromatomen annähernd kuboktaedrisch (Cs1) bzw. antikuboktaedrisch (Cs2) umgeben (Abb. 16). Die weiteren Angaben zu Strukturbestimmung, sowie Bindungslängen und -winkel lassen sich den Tabellen 4-11 entnehmen.

Für Cs1 stammen von den 12 koordinierenden Bromid-Ionen jeweils 4 von einer gemeinsamen $[Ti_2Br_9]^{3-}$ -Einheit, wobei zwei davon jeweils terminale (X_t) und verbrückende (X_{br}) Bromide darstellen. Somit nimmt Cs1 Einfluss auf die Gestalt von drei $[Ti_2Br_9]^{3-}$ -

Einheiten, da es sich in der Ebene der verbrückenden Bromide (Br2) befindet (Abb. 16). Die gemittelten Cs1-Br-Abstände sind mit 381,5 pm deutlich kürzer als die gemittelten Cs2-Br-Abstände von 387,8 pm. Die Koordinationssphäre von Cs2 wird von vier $[Ti_2Br_9]^{3-}$ -Einheiten aufgespannt, die jeweils über eine Oktaederfläche koordinieren (Abb. 16). Dabei beträgt der Cs2-Br2-Abstand zu den drei in einer Ebene liegenden, verbrückenden Bromid-Ionen 404,6 pm, wodurch das Antikuboktaeder um Cs2 entlang [001] gestreckt wird und Cs2 etwas aus der Ebene der 6 terminalen Bromid-Ionen (Br1) geschoben wird.

Abb. 16: Koordinationssphäre von Cs1 (links) und Cs2 (rechts) in Cs₃Ti₂Br₉. Perspektivische Darstellung.

Die unterschiedliche Koordinationsgeometrie der beiden Cs^+ -Ionen wird durch ihre Lage in verschiedenen Schichten bestimmt. Cs1 bildet mit den verbrückenden Bromid-Ionen (Br2) eine $[Cs1(Br2)_3]$ -Schicht aus und ist von zwei $[Cs2(Br1)_3]$ -Schichten umgeben. Somit befindet sich Cs1 in einer h-Schicht, während Cs2 in einer c-Schicht liegt. Die Ti³⁺-Ionen liegen somit in den Oktaederlücken, die von c- und h-Schichten aufgespannt werden, wobei die gemeinsame Oktaederfläche einer h-Schicht angehört. Daraus ergibt sich entlang [001] die Stapelsequenz c-M-h-M-c-c-M-h-M-c (Abb.17).

Für Rb₃Ti₂Br₉ sind die gemittelten Rb-Br-Abstände aufgrund des kleineren Ionenradius von Rb⁺ entsprechend kleiner (\overline{d} (Rb1-Br) = 374,1 pm; \overline{d} (Rb2-Br) = 380.5 pm). Dies hat wiederum zur Folge, dass die Ti-Br2-Abstände im Falle von Rb₃Ti₂Br₉ kürzer sind, wodurch sich auch die Titanzentren näher kommen.

Abb. 17: Anordnung der $[Ti_2Br_9]^3$ -Doppeloktaeder in der Kristallstruktur von Cs₃Ti₂Br₉. Blick entlang [010].

Die für den $Cs_3Cr_2Cl_9$ -Typ gefundenen repulsiven Wechselwirkungen zwischen den Metallzentren führen bei $Cs_3Ti_2Br_9$ und $Rb_3Ti_2Br_9$ zu Ti-Ti-Abständen von 345,05 pm bzw. 336,6 pm. Die für Ti-Ti-Einfachbindungen in Ti_7Cl_{16} [4] ermittelten Abstände sind mit 295 pm deutlich kürzer, sodass hier keine direkten Ti-Ti-Bindungen zu erwarten sind. Durch die in Kapitel 2.3.2 gemachten Überlegungen zur Gestalt des Doppeloktaeders und den daraus resultierenden Schlussfolgerungen lassen sich anhand der in Tabelle 3 angegebenen Parameter weitere Abschätzungen über die Art der Wechselwirkungen in $Cs_3Ti_2Br_9$ und $Rb_3Ti_2Br_9$ machen.

Verbindung	d ^{II} /pm	d ^I /pm	d ^I /d ^{II}	β/°	a/°	a″ /°
Cs ₃ Ti ₂ Br ₉	132,42	172,52	1,30	79,52	94,74	83,47
Rb ₃ Ti ₂ Br ₉	133,11	168,29	1,26	77,84	94,34	84,71

Tab. 3: Beobachtete Parameter in der $[Ti_2Br_9]^3$ -Einheit von Cs₃Ti₂Br₉ und Rb₃Ti₂Br₉.

Für ein unverzerrtes, ideales Doppeloktaeder ergibt sich ein d^I/d^{II}-Verhältnis von eins. Bei repulsiven Wechselwirkungen wächst dieses Verhältnis entsprechend an und man erwartet Werte, die über eins liegen. In Cs₃Cr₂Cl₉ beträgt das d^{I}/d^{II} -Verhältnis 1,23 und es liegen keinerlei bindende Wechselwirkungen zwischen den Cr³⁺-Zentren vor [61]. Die für Cs₃Ti₂Br₉ und Rb₃Ti₂Br₉ beobachteten Werte von 1,3 und 1,26 entsprechen dieser Größe, sodass man bei beiden Verbindungen von repulsiven Wechselwirkungen ausgehen kann. Der größere Wert für Cs₃Ti₂Br₉ korrespondiert mit dem längeren Ti-Ti-Abstand im Vergleich zur Rubidiumverbindung. Der Grund für die unterschiedlichen Ti-Ti-Abstände liegt im größeren Platzanspruch des Cäsium-Ions und den daraus resultierenden größeren Cs-Br-Abständen. Dadurch werden die hexagonalen [CsBr₃]-Schichten entlang [001] aufgeweitet, und es kommt zu einer größeren Separation der h- und c-Schichten, korrelierend mit einer Verlängerung der kristallographischen c-Achse. Dies führt zu einer Dehnung der Doppeloktaedereinheit, welche sich in dem größeren Winkel β (M-X_{br}-M) von 79,52° bemerkbar macht im Vergleich zu 77,84° bei Rb₃Ti₂Br₉. Beide Winkel liegen damit deutlich über dem Winkel von 70,53°, der für das "ideale" Doppeloktaeder charakteristisch ist und bestätigen die erwartete Tendenz bei repulsiver Wechselwirkung der Metallzentren [59] (Kapitel 2.3.2). Genauso verhält es sich mit dem Winkel α'' , welcher für beide Verbindungen deutlich kleiner als 90° und für Cs₃Ti₂Br₉ aufgrund des längeren Ti-Ti-Abstands kleiner ist. Der Einfluss des unterschiedlichen Alkalimetalls auf den Winkel α (X_t-M-X_t) ist nur gering, was sich dann auch in den kaum unterschiedlichen Ti-Br1-Abständen in beiden Verbindungen widerspiegelt. Die Ti-Br2-Abstände korrespondieren in Cs₃Ti₂Br₉ (269,7 pm) und Rb₃Ti₂Br₉ (267,8 pm) sehr gut mit den gemittelten Ti-Br-Abständen in CsTiBr₃ (268,3 pm) und RbTiBr₃ (267,5 pm), in welchen flächenverknüpfte Oktaederketten vorliegen (Kapitel 1.3.2). Die kürzeren Ti-Br1-Abstände sind somit auch eine direkte Folge der unbesetzten Cl⁻-Oktaederlücke innerhalb der Dimerenstränge entlang [001], wodurch die terminalen Br1-Ionen nur von einem Ti³⁺-Ion angezogen werden und sich so stark kovalente Bindungsanteile ausbilden können.

Um den Einfluss des Alkalimetalls auf die Gestalt des Doppeloktaeders und damit die Tendenz zur Ausbildung von Metall-Metall-Wechselwirkungen zu beurteilen, benötigt man eine weitere Vergleichsreihe mit Titan als Zentralatom. Diese konnte für die Verbindungen $A_3Ti_2Cl_9$ (A = Cs-K) erstellt werden, wobei mit der Variation des Halogenid-Ions ein weiterer Einflussfaktor diskutiert werden kann (Kapitel 2.3.5). Die Ergebnisse der Messungen der magnetischen Suszeptibilität für die Verbindungen $A_3Ti_2Cl_9$, um die gemachten Schlussfolgerungen bei der Diskussion über Ti-Ti-Wechselwirkungen zu belegen, finden sich in Kapitel 2.3.7.

Abb. 18: Elementarzelle von Cs3Ti2Br9. Perspektivische Darstellung.

Abb. 19: Elementarzelle von Cs₃Ti₂Br₉. Blick entlang [001].

Summenformel $Cs_3Ti_2Br_9$ Temperatur/K 293(2) Kristallsystem hexagonal Raumgruppe *P6₃/mmc* (Nr.194) Gitterkonstanten/pm a = 764,0(2)c = 1902, 1(5)Zellvolumen/10⁶pm³ 961,4(3) Ζ 2 Dichte/gcm⁻³ 4,193 Diffraktometer IPDS I (STOE Darmstadt) Verwendete Strahlung Mo-K α , $\lambda = 71,07$ pm Monochromator Graphit Absorptionskoeffizient, μ/mm^{-1} 25,1 Absorptionskorrektur Numerisch, X-SHAPE F(000) 1048 $3,8 < 2\theta < 56,92^{\circ}$ Scanbreite Detektorabstand/mm 60 Belichtungszeit/min; Bilder 8;100 $0^{\circ} \leq \omega \leq 200, \ \varphi = 0^{\circ}$ Rotationswinkel, ω -Inkremente $\Delta \omega = 2^{\circ}$ -8 < h < 9Indexbereiche -9 < k < 8-23 < 1 < 23Zahl gemessener Reflexe 7154 Symmetrieunabhängig 406 299 beobachtet 0,1015 R_{int} 0,992 Goodness of fit R-Werte [I>2sigma(I)] $R_1 = 0.0404$, $wR_2 = 0.0698$ R-Werte (alle Daten) $R_1 = 0,0602, wR_2 = 0,0758$

Tab. 4: Kristallographische Daten von Cs₃Ti₂Br₉.

Atom	Lage	x/a	y/b	z/c	U_{eq}
Cs1	2b	0	0	3/4	0,03184
Cs2	4f	1/3	1/3	0,57636	0,03614
Ti	4f	1/3	1/3	0,65931	0,02386
Br1	6h	-0,49011	0,01992	3/4	0,02563
Br2	12k	-0,17226	0,17226	0,58975	0,03153

Tab. 5: Atomkoordinaten und äquivalente Auslenkungsparameter [10⁻⁴ pm²] von Cs₃Ti₂Br₉.

Tab. 6: Koeffizienten der anisotropen Temperaturfaktoren $U_{ij} [10^{-4} \text{ pm}^2]$ für Cs₃Ti₂Br₉.

Atom	U 11	U_{22}	<i>U</i> 33	<i>U</i> ₁₂	<i>U</i> 13	<i>U</i> ₂₃
Cs1	0,02745	0,02745	0,04069	0,000	0,000	0,01373
Cs2	0,03484	0,03484	0,03886	0,000	0,000	0,01742
Ti	0,02038	0,02038	0,03061	0,000	0,000	0,01024
Br1	0,02545	0,01876	0,03056	0,000	0,000	0,00933
Br2	0,03274	0,03274	0,03525	-0,00312	0,00312	0,02094

Tab. 7: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] in Cs₃Ti₂Br_{9.}

Atome	Abstand	Atome	Abstand
Ti-Ti	345,05(9)	Cs1-Br1	382,22(6) (6x)
Ti-Br1	251,0(2) (3x)	Cs2-Br2	381,0(1) (3x)
Ti-Br2	269,7(2) (3x)	Cs2-Br2	382,90(7) (6x)
Cs1-Br2	380,7(1) (6x)	Cs2-Br1	404,6(1) (3x)
Br1-Ti-Br1	94,34(7)	Br2-Ti-Br2	84,71(7)
Br1-Ti-Br2	90,27(2)	Br2-Ti-Br1	173,20(9)

Tab. 8: Kristallographische Daten von Rb₃Ti₂Br₉.

Summenformel	Rb ₃ Ti ₂ Br ₉	
Temperatur/K	293(2)	
Kristallsystem	hexagonal	
Raumgruppe	<i>P</i> 6 ₃ / <i>mmc</i> (Nr,194)	
Gitterkonstanten/pm	a = 749,3(1)	
	c = 1871,3(4)	
Zellvolumen/10 ⁶ pm ³	909.9(3)	
Ζ	2	
Dichte/gcm ⁻³	3,910	
Diffraktometer	IPDS I (STOE Darmstadt)	
Verwendete Strahlung	Mo-K α , $\lambda = 71,07 \text{ pm}$	
Monochromator	Graphit	
Absorptionskoeffizient, μ/mm^{-1}	28,6	
Absorptionskorrektur	Numerisch, X-SHAPE	
F(000)	940	
Scanbreite	$3,14 < 2\theta < 52,98^{\circ}$	
Detektorabstand/mm	60	
Belichtungszeit/min; Bilder	5; 100	
Detetion avriated to Intramente	$0^{\circ} \leq \omega \leq 200, \ \varphi = 0^{\circ}$	
Rotationswinkel, ω -inkremente	$\Delta \omega = 2^{\circ}$	
	-8 < h < 9	
Indexbereiche	-9 < k < 8	
	-23 < 1 < 23	
Zahl gemessener Reflexe	8254	
Symmetrieunabhängig	402	
beobachtet	256	
R _{int}	0,1064	
Goodness of fit	0,994	
R-Werte [I>2sigma(I)]	$R_1 = 0,0375, wR_2 = 0,0794$	
R-Werte (alle Daten)	$R_1 = 0,0707, wR_2 = 0,0924$	

Atom	Lage	x/a	<i>y/b</i>	z/c	U_{eq}
Rb1	2b	0	0	1/4	0,0570(7)
Rb2	4f	2/3	1/3	0,0714(1)	0,0637(5)
Ti	4f	1/3	2/3	0,1601(3)	0,0403(7)
Br1	6h	0,4939(1)	0,5061(1)	1/4	0,0445(4)
Br2	12k	0,1701(3)	0,3401(1)	0,0889(5)	0,0534(4)

Tab. 9: Atomkoordinaten und äquivalente Auslenkungsparameter [10⁻⁴ pm²] von Rb₃Ti₂Br₉.

Tab. 10: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} [10⁻⁴ pm²] für Rb₃Ti₂Br₉.

Atom	U 11	U_{22}	<i>U</i> 33	<i>U</i> ₁₂	<i>U</i> 13	U_{23}
Rb1	0,0493(9)	0,0493(9)	0,0723(6)	0,0000	0,0000	0,0247(5)
Rb2	0,0633(7)	0,0633(7)	0,0644(2)	0,0000	0,0000	0,0317(4)
Ti	0,0360(9)	0,0360(9)	0,0491(4)	0,0000	0,0000	0,0180(4)
Br1	0,0460(6)	0,0460(6)	0,0494(7)	0,0000	0,0000	0,0290(6)
Br2	0,0568(5)	0,0416(6)	0,0567(6)	-0,0093(5)	-0,0046(3)	0,0208(3)

Tab. 11: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] in Rb₃Ti₂Br_{9.}

Atome	Abstand	Atome	Abstand
Ti-Ti	336,6(5)	Rb1-Br1	374,73(6) (6x)
Ti-Br1	250,3(2) (3x)	Rb2-Br2	367,3(2) (3x)
Ti-Br2	267,8(2) (3x)	Rb2-Br2	376,11(6) (6x)
Rb1-Br2	373,5(1) (6x)	Rb2-Br1	402,5(2) (3x)
Br1-Ti-Br1	94,34(7)	Br2-Ti-Br2	84,71(7)
Br1-Ti-Br2	90,27(2)	Br2-Ti-Br1	173,20(9)

2.3.4 Die Verbindungen A₃Ti₂Cl₉ (A = K-Cs)

Im System A/Ti/Cl (A = Cs-K) wurden bereits diverse thermoanalytische Untersuchungen durchgeführt, in denen auch Verbindungen der Zusammensetzung $A_3Ti_2Cl_9$ (A = Cs-K) gefunden werden konnten, wobei röntgenographische Untersuchungen nur an polykristallinen Pulvern durchgeführt wurden [81-83]. Die Strukturen der Verbindungen K₃Ti₂Cl₉ [25] und Cs₃Ti₂Cl₉ [2] konnten später mit Hilfe röntgenographischer Einkristalluntersuchungen verfeinert werden. Darüber hinaus konnten im Falle von Cs₃Ti₂Cl₉ durch Messungen der magnetischen Suszeptibilität χ weitere Erkenntnisse über die Art der Ti-Ti-Wechselwirkungen gewonnen werden [65]. Im Rahmen dieser Arbeit konnten alle drei Verbindungen phasenrein dargestellt und mittels magnetischen und optischen Untersuchungsmethoden charakterisiert werden. Rb3Ti2Cl9 konnte zudem erstmals anhand von Einkristallen röntgenographisch untersucht und die Struktur aus den ermittelten Daten gelöst und verfeinert werden.

2.3.4.1 Darstellung und Strukturbeschreibung von Rb₃Ti₂Cl₉

Die Darstellung von Rb₃Ti₂Cl₉ gelingt durch Umsetzung von TiCl₃ und RbCl im molaren Verhältnis 2:3 in einer Kieselglasampulle. Die Reaktion erfolgt bei einer Temperatur von 680°C über die Dauer von 240 Stunden. Man erhält grüne Kristalle in Form kleiner Stäbchen oder hexagonaler Plättchen. Unter dem Mikroskop wurde ein für gut empfundener Kristall in ein Markröhrchen (0,1 mm) gebracht und seine Qualität mittels Laueaufnahmen geprüft. Mit Hilfe des IPDS I konnte ein Intensitätsdatensatz erstellt werden und die Struktur über die Anwendung direkter Methoden (SHELXS-97) und anschließender Differenz-Fourier-Synthesen (SHELXL-98) gelöst werden. Die Kristallstruktur von Rb₃Ti₂Cl₉ wurde auf der Basis von 237 symmetrieunabhängigen Reflexen (I>2 σ_1) bis zu den Gütefaktoren R₁ = 3,9 % und wR₂ = 6,6 % verfeinert.

Rb₃Ti₂Cl₉ kristallisiert hexagonal in der Raumgruppe $P6_3/mmc$ mit zwei Formeleinheiten in der Elementarzelle, isotyp zu Cs₃Cr₂Cl₉ [57]. Der Ti-Ti-Abstand liegt mit 314,5(1) pm wie zu erwarten zwischen jenem in Cs₃Ti₂Cl₉ [2] ($P6_3/mmc$) mit 321,5(2) pm und K₃Ti₂Cl₉ [25] ($P6_3/m$) mit 310,51(4) pm. Der kürzere Ti-Ti-Abstand im Vergleich zu Cs₃Ti₂Cl₉ ist die Folge von Packungseffekten, da sich die [ACl₃]-Schichten, bei Stapelung gemäß (hcc)₂ entlang [001] (Cs₃Cr₂Cl₉-Typ), im Falle des kleineren Rb⁺ näher kommen können. Die Besetzung der OL dreier übereinander liegender Schichten mit Ti³⁺ ergibt dann die charakteristischen [Ti₂Cl₉]-Doppeloktaeder, die in allen drei Verbindungen vorliegen. Der kurze Ti-Ti-Abstand

in K₃Ti₂Cl₉ hängt auch damit zusammen, dass die Verbindung in der niedersymmetrischen Raumgruppe $P6_3/m$ im K₃W₂Cl₉-Typ [56] kristallisiert, für den attraktive Wechselwirkungen charakteristisch sind. Die Gründe für den kürzeren Ti-Ti-Abstand in Rb₃Ti₂Cl₉ (314,5 pm) im Vergleich zum Bromid Rb₃Ti₂Br₉ (336,5 pm) sind sterischer Natur. Der größere Ionenradius für das Bromidanion bedingt eine längere Ti-Br-Bindung innerhalb des Doppeloktaeders [Ti₂Br₉]. Dadurch können sich die Ti-Atome nicht so nah kommen, wie es im Chlorid der Fall ist. Die Ti-Cl2 Abstände von 251,2 pm zu den verbrückenden Chloridionen in Rb₃Ti₂Cl₉ sind mit den gemittelten Ti-Cl-Abständen von 250,9 pm in RbTiCl₃ [52] vergleichbar. Lediglich die kurzen Abstände von Ti zu den terminalen Chloridionen (Cl1) von 234,1 pm zeigen die Auslenkung der Ti-Atome innerhalb des Oktaeders an. Die gemittelten Rb2-Cl-Abstände von 361,3 pm sind ebenfalls mit jenen in RbTiCl₃ [1] von 361 pm vergleichbar. Lediglich die kürzeren gemittelten Rb1-Cl-Abstände von 354,2 pm deuten auf eine unterschiedliche Stapelung der hexagonalen [RbCl₃]-Schichten hin. Lageparameter und thermische Auslenkungsparameter sowie ausgewählte Atomabstände und -winkel lassen sich den Tabellen 12-15 entnehmen.

Abb. 20: Kuboktaedrische Koordination von Cl⁻ um Rb1 (links) und antikuboktaedrische Koordination um Rb2 (rechts).

Tab. 12: Kristallographische Daten von Rb₃Ti₂Cl₉.

Summenformel	Rb ₃ Ti ₂ Cl ₉
Temperatur/K	293(2)
Kristallsystem	Hexagonal
Raumgruppe	<i>P</i> 6 ₃ / <i>mmc</i> (Nr.194)
Gitterkonstanten/pm	a = 711,9(1)
	c = 1764,7(3)
Zellvolumen/10 ⁶ pm ³	774,7(2)
Ζ	2
Dichte/gcm ⁻³	1,606
Diffraktometer	IPDS I (STOE Darmstadt)
Verwendete Strahlung	Mo-K α , $\lambda = 71,07$ pm
Monochromator	Graphit
Absorptionskoeffizient, μ/mm^{-1}	4,968
Absorptionskorrektur	Numerisch, X-SHAPE
F(000)	348
Scanbreite	$6,6 < 2\theta < 53,92^{\circ}$
Detektorabstand/mm	60
Belichtungszeit/min; Bilder	5; 100
Detetion serie la la del marte	$0^{\circ} \le \omega \le 200, \ \varphi = 0^{\circ}$
Rotationswinkel, ω -inkremente	$\Delta \omega = 2^{\circ}$
	-8 < h < 9
Indexbereiche	-9 < k < 8
	-22 < 1 < 22
Zahl gemessener Reflexe	5557
Symmetrieunabhängig	301
Beobachtet	237
R _{int}	0,0668
Goodness of fit	1,101
R-Werte [I>2sigma(I)]	$R_1 = 0,0288, wR_2 = 0,0632$
R-Werte (alle Daten)	$R_1 = 0,0390, wR_2 = 0,0657$

Atom	Lage	x/a	<i>y/b</i>	z/c	U_{eq}
Rb1	2b	0	0	1/4	0,0350(4)
Rb2	4f	1/3	-1/3	0,42741(6)	0,0404(3)
Ti	4f	-1/3	1/3	0,3391(2)	0,0222(4)
Cl1	6h	-0,0159(3)	0,4921(2)	1/4	0,0263(4)
C12	12k	0,3445(2)	0,1722(1)	0,4093(8)	0,0349(4)

Tab. 13: Atomkoordinaten und äquivalente Auslenkungsparameter [10⁻⁴ pm²] von Rb₃Ti₂Cl₉.

Tab. 14: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} [10⁻⁴ pm²] für Rb₃Ti₂Cl₉.

Atom	U 11	U_{22}	<i>U</i> 33	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Rb1	0,0302(5)	0,0302(5)	0,0445(7)	0,0000	0,0000	0,0151(2)
Rb2	0,0409(4)	0,0409(4)	0,0393(6)	0,0000	0,0000	0,0204(2)
Ti	0,0208(5)	0,0208(5)	0,0251(9)	0,0000	0,0000	0,0104(3)
Cl1	0,0186(8)	0,0289(7)	0,0281(7)	0,0000	0,0000	0,0093(4)
C12	0,0256(7)	0,0389(6)	0,0357(8)	0,0047(3)	0,0095(6)	0,0128(4)

Tab. 15: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] in Rb₃Ti₂Cl₉

Atome	Abstand	Atome	Abstand
Ti-Ti	314,6(3)	Rb1-Cl2	356,12(4) (6x)
Ti-Cl1	234,1(2) (3x)	Rb2-Cl1	350,0(2) (3x)
Ti-Cl2	251,1(2) (3x)	Rb2-Cl1	357,49(2) (6x)
Rb1-Cl1	352,3(2) (6x)	Rb2-Cl2	380,0(2) (3x)
Cl1-Ti-Cl1	94,60 (7)	Cl2-Ti-Cl2	84,92(6)
Cl1-Ti-Cl2	90,03(3)	Cl2-Ti-Cl1	173,15(8)

2.3.5 Vergleich der Verbindungen A₃Ti₂Br₉ (A = Cs, Rb) und A₃Ti₂Cl₉ (A = Cs-K)

Die in Kapitel 2.3.2 dargestellten Überlegungen zur Beurteilung der M-M-Wechselwirkungen in den $[M_2X_9]$ -Doppeloktaedern lassen für die Enneahalogenodititanate(III) aufgrund der hohen Ionenladung des Ti³⁺-Ions, sowie der geringen räumlichen Ausdehnung der 3d-Orbitale, repulsive Kräfte erwarten. In Tabelle 16 sind die ermittelten geometrischen Parameter der A₃Ti₂X₉-Verbindungen aufgelistet, die zur Beurteilung der Ti-Ti-Wechselwirkungen angeführt werden können. Darunter sind die gleichen Parameter für die beiden Verbindungen K₃W₂Cl₉ und Cs₃Cr₂Cl₉ aufgelistet, in denen bindende bzw. abstoßende Wechselwirkungen zwischen den Metallzentren auftreten, und die den Strukturen der Enneahalogenodititanate(III) zu Grunde liegen.

Verbindung	M-M/pm	d ^{II} /pm	d ^I /pm	d ^I /d ^{II}	β/°	a/°	a ′′°
Cs ₃ Ti ₂ Br ₉	345,1	132,42	172,52	1,30	79,52	94,74	83,47
Rb ₃ Ti ₂ Br ₉	336,6	133,11	168,29	1,26	77,84	94,34	84,71
Cs ₃ Ti ₂ Cl ₉ [2]	321,5	123,16	160,76	1,31	79,10	95,01	83,78
Rb ₃ Ti ₂ Cl ₉	314,5	123,83	157,27	1,27	77,57	94,61	84,93
K ₃ Ti ₂ Cl ₉ [25]	310,5	124,77	155,26	1,24	76,89	94,28	85,42
$Cs_3Cr_2Cl_9$ [58]	311,9	127,3	156,0	1,23	76,40	93,28	85,81
K ₃ W ₂ Cl ₉ [57]	240,1	135,43	120,47	0,89	58,11	91,33	98,42

Tab. 16: Berechnete Parameter in der $[Ti_2X_9]^{3-}$ -Einheit für A₃Ti₂X₉.

Ein Vergleich der d¹/d^{II}-Verhältnisse zeigt eine deutliche Auslenkung der Ti³⁺-Ionen aus den Oktaedermitten zu den in einer Ebene liegenden terminalen Halogenid-Ionen (X_t) an. Die gefundenen Werte sind dabei für alle Verbindungen mit 1,24 bis 1,30 größer als in Cs₃Cr₂Cl₉, was den erwarteten Schluss zulässt, dass bei allen Verbindungen repulsive Kräfte zwischen den Ti³⁺-Ionen herrschen. Dies bestätigt auch ein Vergleich der Winkel M-X_{br}-M (β), der im unverzerrten Doppeloktaeder, in welchem die Metalle exakt in den Oktaedermitten liegen, genau 70,53° beträgt. Bei einer Dehnung der [Ti₂X₉]-Einheit entlang [001], welcher einer Elongation des Ti-Ti-Abstands entspricht, muss dieser Winkel größer werden. Die gefundenen Werte liegen bei 76,89° bis 79,52°. Umgekehrt verhält es sich auch mit dem Winkel X_{br}-M-X_{br} (α [°]), der bei einer Elongation des Ti-Ti-Abstandes kleiner als 90° werden sollte. Die gefundenen Werte liegen zwischen 83,47° und 85,42°. Die geringsten Abweichungen findet man für den Winkel X_t-M-X_t (α), der auch in K₃W₂Cl₉ größer als 90°

ist. Der Einfluss des Packungsgerüsts scheint für α am geringsten zu sein, was sich auch in den kaum veränderten Ti-X_t-Abständen bei Variation des Alkalimetalls bemerkbar macht (K₃Ti₂Cl₉: 234,1 pm; Rb₃Ti₂Cl₉: 234,3 pm; Cs₃Ti₂Cl₉: 234,7 pm). Eine eindeutige Tendenz in den Ti-Ti-Abständen findet man jedoch bei Variation des Alkalimetalls. Mit zunehmendem Radius von A⁺ wird der Ti-Ti-Abstand größer. Der Grund dafür liegt, wie bereits für die Bromide erwähnt, in der Aufweitung der Schichtabstände entlang [001] mit zunehmendem Radius von A⁺, wodurch die h-Schichten (verbrückende X-Atome) stärker von den c-Schichten (terminale X-Atome) entfernt werden. Das führt dazu, dass die genau zwischen diesen beiden Schichten liegenden Ti³⁺-Ionen weiter voneinander entfernt werden, bei gleichzeitig unveränderten Ti-X_t-Abständen aufgrund stark kovalenter Bindungsanteile. Diesem packungsbedingten Effekt entgegen wirken lediglich starke Bindungskräfte zwischen den Metallionen, wie ein Vergleich der W-W-Abstände in K₃W₂Cl₉ (240 pm) und Cs₃W₂Cl₉ (249 pm) zeigt [84].

Der Einfluss des Halogens auf die Metallabstände wird bei den Titanverbindungen deutlich. Mit zunehmendem Radius von X⁻ vergrößert sich auch der M-M-Abstand, wobei das d^I/d^{II}- Verhältnis praktisch unverändert bleibt, wie der Vergleich dieser Werte von Rb₃Ti₂Cl₉ (1,27) mit Rb₃Ti₂Br₉ (1,26) deutlich macht. Die Gründe sind, wie im vorigen Kapitel erwähnt, überwiegend sterischer Natur. Aufgrund längerer Ti-Br-Abstände entfernen sich die Ti³⁺- Ionen weiter voneinander im Vergleich zum Chlorid, wobei die Winkel sich jedoch kaum ändern, sodass sich das d^I/d^{II}-Verhältnis nahezu unverändert zeigt.

Der Einfluss der unterschiedlichen Polarisierbarkeiten des Anions beim Übergang vom Chlorid zum Bromid macht sich, neben den sterisch bedingten längeren Ti-Br-Abständen, kaum bemerkbar. Der Effekt sollte stärker ausgeprägt sein bei den Iodiden, die für Titan bislang nicht dargestellt werden konnten. Man kennt jedoch Cs₃Zr₂I₉ [10], welches im Cs₃Cr₂Cl₉-Typ kristallisiert. Der Zr-Zr-Abstand liegt bei 312,9(4) pm und kann als σ -Bindung zwischen den Zr³⁺-Zentren (d¹) aufgefasst werden. Das d¹/d^{II}-Verhältnis beträgt 1,04 und deutet damit anziehende Wechselwirkungen an. Die Bindungskräfte wirken hier der Separation der Zr-Ionen entgegen, die im Prinzip für den Cs₃Cr₂Cl₉-Typ nicht zu bindenden Wechselwirkungen führen sollte. Die höhere Polarisierbarkeit der Iodid-Ionen ermöglicht in diesem Fall ein Aufeinanderzurücken der Metallzentren und trägt somit zur Stabilität dieser Verbindung bei. Bindende Wechselwirkungen würde man deshalb auch für Cs₃Hf₂I₉ aufgrund der räumlich weiter ausgedehnten 5d-Orbitale erwarten, in Analogie zur Reihe Cr, Mo, W (Kapitel 3). Es bleibt festzuhalten, dass mit diesem Modell zwar eine qualitative Vorhersage

der Metall-Wechselwirkungen möglich ist. Um genaue Aussagen treffen zu können, sind aber weitere physikalische Messungen nötig.

2.3.6 Darstellung phasenreiner Proben von A₃Ti₂Cl₉ (A = Cs-K)

Die Verbindungen Cs₃Ti₂Cl₉, Rb₃Ti₂Cl₉ und K₃Ti₂Cl₉ konnten im Rahmen dieser Arbeit röntgenographisch phasenrein dargestellt werden. Dazu wurde das eingesetzte TiCl₃ vorher durch Sublimation gereinigt und die Alkalimetallhalogenide im Röhrenofen unter "dynamischem" Vakuum bei 250 °C getrocknet. Die Reaktionen erfolgten in Kieselglasampullen, welche durch Ausheizen unter Vakuum von größeren Spuren Wasser und Sauerstoff befreit wurden. Um größere Mengen für die verschiedenen weiteren Untersuchungen zu erhalten, lassen sich die Ansätze ohne weiteres im Gramm-Maßstab durchführen.

$2 \operatorname{TiCl}_3 + 3 \operatorname{ACl} \longrightarrow \operatorname{A_3Ti_2Cl_9}.$

Kieselglasampullen von etwa 8 cm Länge und einem Durchmesser von 9 mm wurden mit den entsprechenden Mengen der homogenisierten Substanzen beladen und unter Kühlung mit flüssigem Stickstoff an der Vakuumlinie abgeschmolzen. Die fertigen Ampullen wurden anschließend einem bestimmten Temperaturverlauf unterzogen. Dieser unterschiedet sich bei den Ansätzen nur in der jeweiligen Reaktionstemperatur T_{Rkt}, die in etwa den Schmelztemperaturen der Zielverbindungen entspricht (K₃Ti₂Cl₉: 574°C; Rb₃Ti₂Cl₉: 671°C; Cs₃Ti₂Cl₉: 705°C):

{ \longrightarrow Aufheizen auf T_{Rkt} mit 15 °C/h; \longrightarrow 240 h Tempern \longrightarrow Abschrecken in Wasser} Die Ampullen werden nach der Reaktion mit Hilfe eines Glasschneiders in der Handschuhbox vorsichtig geöffnet und in einem Mörser homogenisiert. Mithilfe des Pulverdiffraktometers STADI P (Mo-K_{α}) wurden von allen Proben Pulverdiffraktogramme erstellt, und mit den aus Einkristalldaten simulierten Diffraktogrammen verglichen. Eine Übereinstimmung aller Reflexlagen zeigt an, dass die gemessene Probe, innerhalb der Fehlergrenzen der röntgenographischen Untersuchung, aus einer homogenen Phase besteht. In Abb. 21 sind die entsprechenden Pulverdiffraktogramme zu sehen. Die Übereinstimmungen zeigen an, dass alle Verbindungen in ausreichender Menge röntgenographisch phasenrein darstellbar sind. Im Falle von K₃Ti₂Cl₉ machen sich jedoch leichte Textureffekte und ein breiterer Untergrund bemerkbar.

Abb. 21: Beobachtete und simulierte Pulverdiffraktogramme von Cs₃Ti₂Cl₉ (oben), Rb₃Ti₂Cl₉ (Mitte) und K₃Ti₂Cl₉ (unten).

2.3.7 Magnetische Messungen

Für die Verbindungen $A_3Ti_2Cl_9$ (A = Cs-K) konnte mithilfe eines SQUID-Magnetometers die magnetische Suszeptibilität χ in Abhängigkeit von der Temperatur bei einer Feldstärke von 1 Tesla (10000 Oe) gemessen werden. Da alle drei Verbindungen eine ähnliche Struktur aufweisen, sollten die erhaltenen Ergebnisse vergleichbar sein und eventuell den Einfluss des Ti-Ti-Abstandes auf die elektronischen Zustände der Ti³⁺-Zentren erkennen lassen. Die Messergebnisse für Cs₃Ti₂Cl₉ sind in Abb. 22 wiedergegeben. Der Temperaturverlauf der molaren magnetischen Suszeptibilität in Abb. 22 (links oben) lässt auf den ersten Blick keine Anzeichen für eine langreichweitige magnetische Ordnung erkennen, sondern erscheint Curie-Weiss-artig. Bei relativ hohen Temperaturen, d.h. um Raumtemperatur, erscheint ein Maximum, welches höchstwahrscheinlich auf eine magnetische Verunreinigung in der Probe zurückzuführen ist. Der Temperaturverlauf der reziproken magnetischen Suszeptibilität (Abb. 22 rechts oben) zeigt ein temperaturunabhängiges Verhalten zwischen 50 K und 250 K. Bei etwa 35 K fällt die Kurve steil ab und zeigt damit kein Curie-Weiss-Verhalten. Das effektive magnetische Moment μ_{eff} zeigt ein stark temperaturabhängiges Verhalten und deutet damit zunehmende Wechselwirkungen im Bereich niedriger Temperaturen an. Bei Raumtemperatur liegt der Wert bei etwa 1,9 und damit leicht oberhalb des Bereichs experimentell erhaltener Werte für Verbindungen des dreiwertigen Titans (1,7-1,8) [96]. Das nach der "spin-only"-Formel berechnete effektive magnetische Moment für ein d¹-Ion beträgt 1,73. Mit abnehmender Temperatur verringert sich auch das effektive magnetische Moment, was auf eine antiferromagnetische Wechselwirkung hindeutet. Der Kurvenverlauf von χT gegen T (links unten) entspricht dem für antiferromagnetisch koppelnde Ti³⁺-Ionen [65]. Ähnliches Verhalten ist auch für Rb₃Ti₂Cl₉ und K₃Ti₂Cl₉ zu sehen. Hier lassen sich die erhöhten Werte von $\mu_{e\!f\!f}$ bei Raumtemperatur auf eventuelle Ungenauigkeiten bei den Einwaagen oder Verunreinigungen mit Ti²⁺-Ionen zurückführen, die aufgrund der d²-Konfiguration ein höheres effektives magnetisches Moment zu Folge hätten. Weitreichende kooperative Effekte konnten für die Verbindungen nicht gefunden werden. Briat et al. [65] Messungen an Einkristallen von Cs₃Ti₂Cl₉ stark durch magnetische konnten antiferromagnetische Wechselwirkungen zwischen den Ti³⁺-Zentren finden, welche an polykristallinen Pulvern und theoretischen Berechnungen von Drillon [97] bestätigt wurden.

Abb. 22: Magnetische Messungen an Cs₃Ti₂Cl₉.

Abb. 23: Magnetische Messungen an Rb₃Ti₂Cl₉.

Abb. 24: Magnetische Messungen an K₃Ti₂Cl₉.

2.3.8 Optische Untersuchungen

An Proben der Verbindungen A₃Ti₂Cl₉ (A = Cs-K) wurden Absorptionsspektren im Bereich von 20000 cm⁻¹ bis 4000 cm⁻¹ aufgenommen. In diesem Bereich liegen für gewöhnlich die elektronischen Übergänge der d-Elektronen. Für Ti³⁺ erwartet man im oktaedrischen Ligandenfeld (O_h) eine Aufspaltung der im Grundzustand des freien Ions entarteten fünf 3d-Orbitale (²D-Grundzustand) in zwei Sätze von Orbitalen, die auf der Energieskala tiefer (t_{2g}-Niveaus) bzw. höher (eg-Niveaus) liegen. Der Grundzustand des Ti³⁺-Ions lässt sich durch Angabe des Termsymbols ²T_{2g} beschreiben. Eine Anregung des Übergangs ²T_{2g} \longrightarrow ²Eg entspricht in erster Näherung der Energiedifferenz zwischen den t_{2g}- und eg-Niveaus wenn man die Jahn-Teller-Verzerrung vernachlässigt, die eine weitere Aufspaltung der t_{2g}-Niveaus zur Folge hat. Bei den Enneahalogenodititanaten(III) treten zusätzliche Wechselwirkungen zwischen den Spins der Ti-Zentren in den Doppeloktaedern auf. Die Doppeloktaeder sind über 700 pm voneinander entfernt und können somit als voneinander isoliert betrachtet werden können. Spin-Bahn-Kopplungen müssen in Betracht gezogen und die energetischen Zustände der Ti³⁺-Ionen können nicht mehr unabhängig voneinander betrachtet werden. Dies

führt zu weiteren Aufspaltungen der einzelnen Terme, die mit komplexen Hamilton-Operatoren näherungsweise berechnet werden können. Dadurch sind zusätzliche elektronische Übergänge möglich, die sich am einfachsten anhand von Einkristallen mithilfe entsprechender Messmethoden ermitteln lassen [65]. In dieser Arbeit wurden die VIS/NIR-Messungen bei Raumtemperatur durchgeführt. Die Verbindungen wurden aufgrund der Luft- und Feuchtigkeitsempfindlichkeit in KBr-Presslingen eingebettet. Die erhaltenen Absorptionsbanden sind in Tab. 31 zu sehen. Die Verschiebung des Bandenmaximums zu kleineren Wellenzählen mit zunehmender Größe des Alkalimetalls ist auf die unterschiedlichen Polarisierbarkeiten der Alkalimetall-Ionen zurückzuführen ("Rotschift"). Mithilfe von Absorptionsmessungen an Cs₃Ti₂Cl₉-Einkristallen konnte von *Briat et al.* bei 14200 cm⁻¹ ebenfalls eine breite Absorptionsbande beobachtet werden. Weitere Aussagen über den Einfluss des Ti-Ti-Abstands auf die Bandenlagen können jedoch nicht vorgenommen werden.

Tab. 31: Beobachtete Absorptionsbanden bei den $A_3Ti_2Cl_9$ -Verbindungen (A = Cs-Na) in cm⁻¹.

	K ₃ Ti ₂ Cl ₉	Rb ₃ Ti ₂ Cl ₉	Cs ₃ Ti ₂ Cl ₉
$^{2}T_{2g} \rightarrow ^{2}E_{g}$	14950	14450	14265

Abb.25: Ausschnitt aus dem Absorptionsspektrum von Rb₃Ti₂Cl₉ im Wellenzahlenbereich von 12000 cm⁻¹ bis 16000 cm⁻¹.

2.3.9 Thermische Untersuchungen an K₃Ti₂Cl₉

Mithilfe der Differential-Scanning-Calometrie (DSC) wurde das thermische Verhalten von K₃Ti₂Cl₉ im Bereich von 0 bis 450°C untersucht. Dazu wurden etwa 10 mg Substanz in einen Al-Tiegel eingewogen und in der Ar-Box mit einem Deckel verschlossen. Die Probe wurde dann im Ar-Gegenstrom in die Reaktionskammer eingebracht. Bei einer konstanten Heizrate von 5 °C/min und einem Ar-Strom von 20 ml/min wurde die Probe auf 450°C gebracht und anschließend mit einer Abkühlrate von 5 °C/min wieder auf Raumtemperatur. Die erhaltene DSC-Kurve ist in Abb. 26 zu sehen.

Abb. 26: Auftragung des DSC-Signals gegen die Temperatur von K₃Ti₂Cl₉. Heizrate 5 °C/min. (schwarz:Aufheizkurve, rot: Abkühlkurve).

Bei einer Temperatur von 245,4°C tritt in der Aufheizkurve ein deutlicher endothermer Effekt auf, der sich über 4°C erstreckt. Im weiteren Verlauf der Basislinie treten kleinere Effekte auf, die wahrscheinlich von geringen Verunreinigungen stammen. In der Abkühlkurve verschwinden diese jedoch gänzlich. Es tritt beim Abkühlen bei 242,8°C ein exothermer Effekt auf, sodass eine Reversibilität des beobachteten thermischen Effekts gegeben ist. Die Hysterese ist mit weniger als 3°C nur gering. Die Bande ist deutlich schärfer als in der Aufheizkurve und deutet auf einen Phasenübergang erster Ordnung hin, der über ein kurzes Zeitintervall abläuft. Die Enthalpien der Übergänge, die durch Integration des Signals erhalten werden können, liegen mit 16,1 J/g (endothermes Signal) und 19,6 J/g etwas auseinander. Der Grund könnte in Verunreinigungen der Probe liegen. Für den Übergang vom K₃W₂Cl₉-Typ (P6₃/m) in den Cs₃Cr₂Cl₉-Typ (*P*6₃/*mmc*) ist lediglich eine Rotation der Doppeloktaeder um die C₃-Achse notwendig, weshalb dieser Phasenübergang auch in nur einem Schritt ablaufen könnte. Leider konnten im Rahmen dieser Arbeit keine temperaturabhängigen Pulveraufnahmen mehr ("in-situ-Pulverdiffraktometrie") durchgeführt werden, mit deren Hilfe man diesen Phasenübergang hätte klassifizieren können.

2.3.10 Diskussion der Ergebnisse

In dieser Arbeit sind die Strukturen der Verbindungen Cs₃Ti₂Br₉, Rb₃Ti₂Br₉ und Rb₃Ti₂Cl₉ erstmals anhand von Einkristallen aufgeklärt worden. Alle drei Verbindungen kristallisieren isotyp in der Raumgruppe P6₃/mmc im Cs₃Cr₂Cl₉-Typ [58]. Trotz zahlreicher Darstellungsversuche konnte keine Verbindung der Zusammensetzung K₃Ti₂Br₉ erhalten werden. Aufgrund geometrischer Betrachtungen der isolierten [Ti₂X₉]³⁻-Doppeloktaeder in den Kristallstrukturen wurden für alle drei Verbindungen repulsive Wechselwirkungen zwischen den Ti-Zentren ermittelt. Die Ti³⁺-Ionen sind aus den Oktaedermitten zu den terminalen Halogenid-Ionen hin ausgelenkt. Dabei wird die Auslenkung mit zunehmender Größe des Alkalimetalls in den Verbindungen stärker, was sich unmittelbar in den Ti-Ti-Abständen widerspiegelt. Durch Messungen der magnetischen Suszeptibilität bei den Verbindungen $A_3Ti_2Cl_9$ (A = Cs-K), die im Rahmen dieser Arbeit phasenrein dargestellt worden sind, werden diese Ergebnisse bestätigt, da alle drei Verbindungen bei Raumtemperatur paramagnetisch sind und der Wert von μ_{eff} den berechneten Wert von 1,73 B.M. annimmt. Mit abnehmender Temperatur tritt eine zunehmende antiferromagnetische Wechselwirkung zwischen den Ti³⁺-Ionen auf, die sich in einer Abnahme von μ_{eff} bemerkbar macht. Außerdem konnten von den Chloriden Absorptionsspektren (UV/VIS) aufgenommen werden, um die elektronischen d-d-Übergänge im oktaedrischen Ligandenfeld zu charakterisieren. Es wurden Absorptionen im Bereich von 14200 bis 14950 cm⁻¹ in Form breiter Banden erhalten, die den Übergang ${}^{2}T_{2g} \longrightarrow {}^{2}E_{g}$ widerspiegeln. Mittels thermoanalytischer Untersuchung (DSC) ist für K₃Ti₂Cl₉ [25] ein Phasenübergang beobachtet worden. K₃Ti₂Cl₉ (P6₃/m) kristallisiert in der niedersymmetrischen Variante der Cs₃Cr₂Cl₉-Struktur im K₃W₂Cl₉-Typ [56]. Der Grund liegt im ungünstigen Ionenradienverhältnis von K⁺ zu Cl⁻. Ein Phasenübergang bei höheren Temperaturen in den Cs₃Cr₂Cl₉-Typ (P6₃/mmc) ist aufgrund der Symmetrie-Beziehung zwischen P63/mmc und P63/m wahrscheinlich. Die DSC-Kurve zeigt einen scharfen endothermen Effekt bei 245,4 °C, der auf einen Phasenübergang 1. Ordnung hindeutet. Durch temperaturabhängige Messungen an Pulvern oder Einkristallen müsste dieser Übergang zu charakterisieren sein.

2.4 Verbindungen vom Typ A₃TiX₆

2.4.1 Allgemeines

Die Hexahalogenotitanate(III) der Alkalimetalle A₃TiX₆ stellen eine weitere Klasse von reduzierten, ternären Titanhalogeniden mit Titan in der Oxidationsstufe +3 (d¹-System) dar. Die Verbindungen A_3TiX_6 (A = Cs-Na, X = Cl-Br) sind zum Teil schon länger Bestandteil von Untersuchungen gewesen, wobei die Zusammensetzung durch thermische Analysen ermittelt und die Strukturen anhand von pulverdiffraktometrischen Untersuchungen zum Teil verfeinert werden konnten [57, 66-68]. Jedoch findet man in der Literatur bis heute, außer bei den Verbindungen Na₃TiCl₆ [69] und K₃TiCl₆ [69], keinerlei röntgenographische Einkristalluntersuchungen. Im Rahmen dieser Arbeit konnte ein Beitrag zur Strukturaufklärung geleistet werden, indem die Strukturen der Verbindungen Rb₃TiCl₆, Cs₃TiCl₆ und Rb₃TiBr₆ röntgenographisch anhand von Einkristallen aufgeklärt werden konnten. Außerdem konnten in der Reihe A₃TiCl₆ (A = Na-Cs) alle Verbindungen phasenrein dargestellt und mittels optischer und magnetischer Methoden sowie thermischer Analysen weiter charakterisiert werden. Das gemeinsame Strukturmotiv bei diesen Verbindungen sind voneinander isolierte $[TiX_6]^{3-}$ -Oktaeder, die sich in unterschiedlich geordneter Weise zu Schichten anordnen. Um die Strukturen der A₃TiX₆-Verbindungen vergleichend zu beschreiben, können gemeinsame Verwandtschaften zu höhersymmetrischen Strukturen genutzt werden, die als Basisstrukturen (Aristotypen) angesehen werden können. Ausgehend von einer solchen Basisstruktur lassen sich alle vorkommenden Strukturvarianten ableiten, wobei eine direkte Symmetriebeziehung im Sinne einer direkten Gruppe-Untergruppe-Beziehung [98] nicht zwingend erforderlich ist. Bereits in früheren Arbeiten wurde gezeigt, dass Verbindungen der Zusammensetzung A_3MX_6 (M = Metall) bei hohen Temperaturen in symmetrische Modifikationen übergehen. In einigen Fällen konnte höher die Hochtemperaturmodifikation Verbindungen mittels dieser pulverdiffraktometrischer Untersuchungen charakterisiert werden [71]. Bei der Hochtemperaturform handelt es sich um den kubischen Elpasolith-Typ (K₂NaAlF₆, $Fm\bar{3}m$) [71]), der als Derivatstruktur (Hettotyp) des kubischen Perowskits (SrTiO₃, $Pm\bar{3}m$) angesehen werden kann. Die Klasse der mit Elpasolith-Struktur kristallisierenden Verbindungen ist groß [85]. Die allgemeine Schreibweise der Elpasolithe $(A_2^{+1}B^{+1}M^{3+}X_6)$ deutet die großen Variationsmöglichkeiten in den Zusammensetzungen innerhalb dieser Verbindungsklasse an. Die Ionenradienverhältnisse haben dabei einen entscheidenden Einfluss auf die Struktur, und daher treten auch bei den Elpasolithen, wie bei den Perowskit-Strukturen, Verzerrungsvarianten niedrigerer Symmetrie in Abhängigkeit von der Zusammensetzung (sowie Druck und Temperatur) auf. Es konnte gezeigt werden, dass einige hexagonale Elpasolithe bei hohem Druck in kubische Modifikationen übergehen, wobei eine allgemeine Einteilung der Stabilitätsbereiche hexagonaler oder tetragonaler Verzerrungsvarianten über die Angabe des Toleranzfaktors t möglich ist [86].

Bei einigen Vertretern der A3MCl6-Verbindungen konnte gezeigt werden, dass sie in Abhängigkeit von der Temperatur mehrere reversible Phasenumwandlungen durchlaufen, bis sie in den kubischen Elpasolith-Typ übergehen [70]. So gehen etwa die Verbindungen (NH₄)₃YCl₆ und K₃YCl₆ ab etwa 100 °C zuerst in den Cs₃BiCl₆-Typ [72] über, bevor sie bei höheren Temperaturen eine weitere Phasenumwandlung durchlaufen, um in den Elpasolith-Typ überzugehen. Der Cs₃BiCl₆-Typ konnte auch für die im Rahmen dieser Arbeit dargestellten Verbindungen Cs3TiCl₆, Rb3TiCl₆ und Rb3TiBr₆ als bei Raumtemperatur stabilste Modifikation nachgewiesen werden. Die Untersuchungen zum thermischen Verhalten dieser Verbindungen finden sich in Kapitel 2.4.5. Da die Elpasolith-Struktur für viele A₃MX₆-Verbindungen die stabilste Hochtemperaturmodifikation ist, lässt sie sich als Basisstruktur für diese Verbindungsklasse ansehen. Die Gemeinsamkeit der K₂NaAlF₆-Struktur mit den, in dieser Arbeit untersuchten Hexahalogenotitanaten(III) $A_3 TiX_6$ (A = Cs-Na, X = Br-Cl) soll als Grundlage bei der Beschreibung der verschiedenen Strukturvarianten dienen. Im kubischen Elpasolith, K₂NaAlF₆ ($Fm\overline{3}m$) bilden die 6F⁻-Ionen zusammen mit den 2K⁺-Ionen eine kubisch-dichteste Kugelpackung aus. Die dadurch entstehenden Schichten der Zusammensetzung [KF₃] sind entlang [111] gemäß ABCA gestapelt (Abb. 28). Zwischen diesen Schichten besetzen Na und Al alternierend und geordnet 2/8 der Oktaederlücken und somit alle, die nur von Fluoridionen aufgespannt werden (Abb. 29). Dadurch entsteht ein dreidimensionales Netzwerk von allseits eckenverknüpften [AlF₆]- und [NaF₆]-Oktaedern. Ein Zusammenhang zur Struktur des idealen kubischen Perowskits (SrTiO₃) wird deutlich, wenn man die Summenformel von SrTiO₃ verdoppelt: Sr₂Ti₂O₆. In K₂NaAlF₆ nehmen somit K und F die Positionen von Sr bzw. O ein, welche im SrTiO₃ ebenfalls Schichten der Zusammensetzung [SrO₃] ausbilden. Mit Na⁺ und Al³⁺ besetzen nun jedoch zwei Ionen unterschiedlicher Größe die Oktaederlücken, die in SrTiO₃ nur von Ti⁴⁺ besetzt sind. Dadurch kommt es zu einer leichten Verzerrung der Symmetrie. Die Ti-Lage (1a) im Perowskit $(Pm\bar{3}m)$ spaltet in die symmetrieunabhängigen Lagen (4a) und (4b) im Elpasolith $(Fm\bar{3}m)$ auf. Dadurch können die Oktaedermitten abwechselnd von zwei unterschiedlichen Atomen besetzt werden. Die Lagesymmetrie $(m\bar{3}m)$ bleibt jedoch erhalten. Die Punktlage der Sr-Atome bleibt ebenfalls erhalten, jedoch verringert sich ihre Lagesymmetrie. Durch die Symmetrieverringerung der O-Lage im SrTiO₃ von 4/mmm (3d in $Pm\bar{3}m$) nach 4m.m (24e in $Fm\bar{3}m$) in K₂NaAlF₆ ergibt sich ein freier Ortsparameter x für die Positionen der Fluor-Atome. Dieser ermöglicht mit [AlF₆] und [NaF₆] nun die Anordnung zweier unterschiedlich großer Oktaeder in K₂NaAlF₆. $Fm\bar{3}m$ (K₂NaAlF₆) stellt eine Untergruppe von $Pm\bar{3}m$ (SrTiO₃) dar. Beide Verbindungen stehen somit in einer direkten Gruppe-Untergruppe-Beziehung. Durch einen klassengleichen Übergang vom Index 2 gelangt man von der kubischen Perowskit-Struktur (SrTiO₃) zur kubischen Elpasolith-Struktur (K₂NaAlF₆). Um die Translations-Symmetrie beizubehalten, müssen dabei alle drei kristallographischen Achsen verdoppelt werden.

Atom	Punktlage	Symmetrie	х	У	z
Sr	1b	$m\overline{3}m$	1/2	1/2	1/2
Ti	1a	$m\overline{3}m$	0	0	0
0	3d	4/mmm	1/2	0	0

	k2	
	2a, 2b	, 2c
$\frac{1}{2}$	7	

Atom	Punktlage	Symmetrie	Х	у	Z
K	8c	$\overline{4} 3m$	1/4	1/4	1/4
Al	4a	$m\overline{3}m$	0	0	0
Na	4b	$m\overline{3}m$	1/2	1/2	1/2
F	24e	4 <i>m.m</i>	0,219	0	0

Abb. 27: Elementarzelle in der Kristallstruktur von K₂NaAlF₆.

Abb. 28: Stapelung der hexagonalen [KF₃]-Schichten gemäß ABCA entlang [111].

Abb. 29: Alternierende Besetzung der Cl⁻-Oktaederlücken mit Na und Al.

Für die Ausbildung der Elpasolith-Struktur bei den A_3MX_6 -Verbindungen im Bereich hoher Temperaturen müssen thermische Effekte (höhere Ionenbeweglichkeiten) verantwortlich sein. Durch Vergleiche unterschiedlicher Vertreter der Elpasolith-Familie (A_2BMX_6) ließen sich Zusammenhänge in den Ionenradienverhältnissen finden, über die man die Strukturen der Verbindungen unabhängig von ihrer Zusammensetzung den einzelnen Elpasolith-Varianten zuordnen kann [86]. Daraus ließen sich allgemeine Aussagen zu Art und Größe der beteiligten Ionen ableiten, die zur Bildung der verschiedenen Elpasolith-Varianten führen. So tritt die Bildung des kubischen Elpasoliths bevorzugt auf, wenn die Ionen, die das Gerüst der kubischdichtesten Kugelpackung ausbilden, etwa den gleichen Ionenradius besitzen ($r(A^+) \approx r(X^-)$). Außerdem müssen die Kationen B⁺ kleiner sein als die Kationen A⁺, um eine Verzerrung des idealen Packungsgerüsts zu vermeiden ($r(A^+) > r(B^+)$), da unterschiedliche kristallographische Lagen besetzt werden. Im Falle der A_3MX_6 -Verbindungen sind die Kationenradien A⁺ und B⁺ gleich groß (A = B), und so kommt es zwangsläufig zu einer Verzerrung des "idealen" Packungsgerüsts. Diese Verzerrung ist umso ausgeprägter, je größer der Ionenradienunterschied zwischen A^+ und X ist. Eine welche Abschätzung, Verzerrungsvarianten unter bestimmten Bedingungen auftreten, kann mithilfe des von Goldschmidt [73] aufgestellten Toleranzfaktors t gemacht werden, der nach dem Modell harter Ionenkugeln für Perowskitverbindungen (AMX₃) berechnet wurde.

$$t = \left(\frac{1}{\sqrt{2}}\right) \frac{r(A) + r(X)}{r(M) + r(X)}$$

Der Wert t = 1 ergibt sich aus geometrischen Betrachtungen nur für die ideale kubische Struktur (SrTiO₃). *Babel* [74] konnte anhand ternärer Fluoride zeigen, dass bei Werten von 1 bis 0,82 der Perowskit-Typ vorliegt. Für kleinere Werte als 0,82 treten verschiedene Verzerrungsvarianten auf, die vor allem durch unterschiedliche Oktaederverdrehungen gekennzeichnet sind. Bei Werten von t > 1 treten zunehmend hexagonale Varianten auf, in denen es zur Ausbildung von flächenverknüpften Oktaedern kommt. Dieses rein qualitative Modell, welches nur von reinen Ionenverbindungen ausgeht und weitere Wechselwirkungen vernachlässigt, kann auch auf Verbindungen der Elpasolith-Familie (A₂BMX₆) angewendet werden. Der dafür modifizierte Toleranzfaktor t' berechnet sich nach:

$$t' = \frac{\sqrt{2 \cdot [r(A) + r(X)]}}{r(B) + r(M) + 2r(X)}$$

Für die Verbindungen der Zusammensetzung A_2BCrCl_6 [75] wurden bei Werten von t' = 1 bis 0,86 sowohl kubische als auch hexagonale bzw. tetragonale Varianten der Elpasolith-Struktur gefunden. Für kleinere Werte von t' treten dann mit dem K₃MoCl₆-Typ [76], welcher auch für K₃TiCl₆ [69] gefunden wurde, stärker verzerrte Varianten auf. Eine genauere Abschätzung über die Stabilitätsbereiche der einzelnen Strukturtypen lässt sich mit diesem Modell zwar nicht machen, da andere Wechselwirkungen, wie die Ausbildung kovalenter Bindungen oder die Polarisierbarkeiten der Anionen, nicht berücksichtigt werden. Jedoch kann man den Toleranzfaktor als grobe Richtgröße verwenden, um abzuschätzen, welcher Strukturtyp bei gegebener Zusammensetzung in einem adäquaten System stabil sein sollte.

Alternativ zur Beschreibung der unterschiedlichen Strukturen über dichtest-gepackte Schichten der Zusammensetzung [AX₃], lassen sich die Strukturen der Elpasolith-Familie und deren Verzerrungsvarianten auch über die Art der [MX₆]-Oktaederstapelung beschreiben [72]. Die [MX₆]-Oktaeder sind zwar voneinander isoliert, jedoch entlang bestimmter Orientierungen in der Kristallstruktur zu Schichten angeordnet. In Abhängigkeit von der jeweiligen Verzerrung existieren unterschiedliche Stapelvarianten dieser Schichten, wobei die Oktaeder sich vor allem in ihrer Orientierung zueinander unterscheiden. Der Elpasolith-Typ kann somit als eine kompakte Stapelung von dichtest-gepackten [MX₆]-Oktaederschichten angesehen werden, die einer ABC-Stapelung für kubisch-dichteste Kugelpackungen entspricht. Die Alkalimetalle besetzen dabei die Lücken, die von den [MX₆]-Oktaederrn aufgespannt werden, welche man, je nach Anzahl der koordinierenden Oktaedereinheiten ebenfalls als Oktaeder- bzw. Tetraederlücken auffassen kann.

Abb. 30: Stapelung der [AIF₆]-Oktaeder in der Kristallstruktur von K₂NaAlF₆.

In K₂NaAlF₆ ist Kalium von zwölf Fluoridionen umgeben (Kuboktaeder), wobei jeweils drei Fluoridionen von einer gemeinsamen $[AlF_6]^{3-}$ -Oktaederfläche stammen. Das Kalium-Ion befindet sich somit in einer, von vier $[AlF_6]^{3-}$ -Oktaedern aufgespannten, Tetraederlücke (Abb. 31). Der Winkel Al-K-Al entspricht dabei exakt dem Tetraederwinkel von 109,4°. Natrium besetzt nach dieser Beschreibung die Oktaederlücken, wonach jedes der 6 F⁻-Ionen von einem anderen $[AlF_6]^{3-}$ -Oktaeder stammen muss. Die Koordination erfolgt damit über die Ecken der Oktaeder. Die Al-Na-Al-Winkel betragen 90° bzw. 180° ("Oktaederwinkel").

Abb. 31: Umgebung der K⁺-(links) und Na⁺-Ionen (rechts) in der Kristallstruktur von K₂NaAlF₆.
Kalium (KZ 12) ist tetraedisch von 4 [AlF₆]-Oktaedern umgeben (flächenverknüpft).
Natrium (KZ 6) ist oktaedrisch von 6 [AlF₆]-Einheiten umgeben (eckenverknüpft).

Bei den unterschiedlichen Verzerrungen der annähernd dichtesten Kugelpackungen von $A^+/X^$ bilden sich die [AX₃]-Schichten nicht mehr vollständig aus. Eine Beschreibung der A₃TiX₆-Strukturen über die Anordnung dieser [AX₃]-Schichten im direkten Vergleich zur Elpasolith-Struktur, die man als Aristotyp für diese Verbindungsklasse ansehen kann, ist daher nicht immer möglich. Die Beschreibung über die Stapelvarianten der [MX₆]-Oktaeder bietet den Vorteil, die verschiedenen Strukturen ausschließlich über das bei allen Vertretern der A₃MX₆-Verbindungen auftretende Strukturmotiv isolierter Oktaedereinheiten zu beschreiben. Dabei kommt es nur auf die Stapelsequenz der unterschiedlichen Schichten von [MX₆]-Oktaedern an, welche meist um einen bestimmten Winkel zueinander verdreht sind.

An dieser Stelle werden nur die Strukturen der Trialkalihexahalogenotitanate(III) vorgestellt, die im Rahmen dieser Arbeit dargestellt worden sind oder die bereits dargestellt werden konnten. Für eine Zusammenfassung der verschiedenen Strukturvarianten innerhalb der Klasse der A₃MX₆-Verbindungen sei auf entsprechende Literaturstellen verwiesen [72-76]. Darüber hinaus sind bei den A_3 TiCl₆-Verbindungen (A = Cs-Na) weitergehende Untersuchungen durchgeführt worden. Die Ergebnisse der Messungen der magnetischen die Suszeptibilität und des thermischen Verhaltens, sowie Auswertung des Absorptionsverhaltens werden in anschließenden Kapiteln besprochen.
Durch die abnehmenden Ionenradien in der Reihe $Cs^+ > Rb^+ > K^+ > Na^+$ sollten innerhalb der Gruppe der A₃TiX₆-Verbindungen verschiedene Strukturtypen auftreten. Na₃TiCl₆ konnte bereits von Hinz [37] dargestellt und die Struktur anhand eines Einkristalls aufgeklärt werden. Demnach kristallisiert Na₃TiCl₆ monoklin in der Raumgruppe $P2_1/n$ mit zwei Formeleinheiten in der Elementarzelle im Kryolith-Typ (Na₃AlF₆ [78]). Die Kristalle besitzen eine hellgelbe Farbe. In dieser Struktur bilden Na1 und Ti ein Raumnetz eckenverknüpfter [TiCl₆]- und [Na(1)Cl₆]-Oktaeder aus (Abb. 32). Die Na2-Ionen entsprechen im Hinblick auf die Elpasolith-Struktur ("Na₂NaAlF₆") den A⁺-Ionen und müssten somit die kuboktaedrischen Lücken (KZ 12) besetzen, die von vier Oktaedern aufgespannt werden. Da Na⁺ jedoch zu klein ist, um diese Lücken vollständig auszufüllen, kommt es zu einer Verkippung der umliegenden Oktaeder, um die Koordinationssphäre von Na2 besser abzusättigen. Die Koordinationszahl für Na2 verringert sich dadurch von 12 (im "idealen" Elpasolith-Typ) auf 6+2 (Abb. 32). Eine Verwandtschaft zur Struktur des kubischen Elpasoliths ist anhand der Stapelung der [TiCl₆]-Oktaeder noch zu erkennen. Die Schichten der Zusammensetzung [Na(2)Cl₃] bilden im Prinzip noch die kubisch-dichteste Kugelpackung aus. Durch die Verkippung der [Na(1)Cl₆]- und [TiCl₆]-Oktaeder gelangt man jedoch vom kubischen Elpasolith zum niedersymmetrischen Kryolith-Typ. Die Raumgruppe $P2_1/n$ (Na₃AlF₆) stellt zudem eine Untergruppe von $Fm\overline{3}m$ (K₂NaAlF₆) dar, die man durch verschiedene translationen- und klassengleiche Übergänge erhält. Die Ti-Cl-Abstände sind mit 242,43-243,88 pm nicht mehr äquivalent wie in einem unverzerrten Oktaeder. Aufgrund der d¹-Konfiguration kommt es im oktaedrischen Ligandenfeld zu einer Aufspaltung der einfach besetzten t_{2g}-Niveaus im Sinne einer Jahn-Teller-Verzerrung.

Eine alternative strukturelle Möglichkeit zum Kryolith-Typ, in dem die Na⁺-Ionen zwei verschiedene Koordinationssphären aufweisen, wäre der aufgefüllte LiSbF₆-Typ, welcher für Na₃GdCl₆ [78] gefunden wurde. In diesem bilden die Cl⁻-Ionen alleine eine hexagonaldichteste Kugelpackung aus, während alle Na⁺-Ionen in Oktaederlücken sitzen. Dabei werden zwei der sechs Oktaederlücken regulär mit Na⁺ und Gd³⁺ besetzt, die restlichen zwei Natrium-Ionen besetzen statistisch verteilt die vier übrigen Oktaederlücken, gemäß Na_{4/2}(NaGd)Cl₆. Die Gründe für die Ausbildung der Kryolith-Struktur bei Na₃TiCl₆ müssen demnach im Verhältnis von r(Na⁺)/r(Ti⁺) liegen. In Kapitel 2.4.1 wurde erwähnt, dass die Ausbildung der Elpasolith-Struktur dann begünstigt ist, wenn r(A⁺) > r(B⁺) > r (M) ist. Da der Ionenradius von Ti³⁺ (67 pm [142]) kleiner ist als der von Gd³⁺ (105 pm [142]) ist die Bildung einer Elpasolith-Struktur (fcc) günstiger, welche im Kryolith-Typ, wie oben beschrieben, noch annähernd vorhanden ist. Na₃TiCl₆ besitzt zudem eine gute Na⁺-Ionenleitfähigkeit [37], wie sie für die ebenfalls mit Kryolith-Struktur kristallisierenden Verbindungen Na₃MCl₆ (M = Seltenerdmetall) gefunden werden konnte [79].

Abb. 32: Ausschnitt aus der Kristallstruktur von Na₃TiCl₆ (ohne Na2). Blick entlang [010]. Koordinationspolyeder f
ür Na(1) [KZ 6] (unten) und Na(2) [KZ 6+2] (oben).

K₃TiCl₆ wurde von *Gloger* [25] durch Umsetzung von TiCl₃ mit KCl in einer Tantalampulle (600°C) in Form von zitronengelben Einkristallen erhalten. K₃TiCl₆ kristallisiert monoklin in der Raumgruppe $P2_1/c$ mit vier Formeleinheiten in der Elementarzelle mit K₃MoCl₆-Struktur [77]. Auch in dieser Struktur liegen isolierte [TiCl₆]³⁻-Oktaeder vor. Im Gegensatz zu Na₃TiCl₆ besetzen die Titanatome jedoch zwei kristallographisch unterschiedliche Lagen (2*b* und 2*c*). Dies ermöglicht es, dass die [TiCl₆]³⁻-Oktaeder zueinander verdreht sein können, um die Koordinationssphäre der Kalium-Ionen besser abzusättigen. Die [TiCl₆]³⁻-Oktaeder sind entlang [111] in Form einer verzerrt kubisch-dichtesten Kugelpackung gestapelt (Abb. 33). Die Raumgruppen von K₃TiCl₆ und Na₃TiCl₆ stehen ebenfalls in einem direkten gruppentheoretischen Zusammenhang. Die Raumgruppe $P2_1/c$ stellt eine isomorphe Obergruppe zur Raumgruppe $P2_1/n$ dar, d.h. sie gehört zum gleichen Raumgruppentyp.

Abb. 33: Darstellung der Kristallstruktur von K₃TiCl₆. Koordinationspolyeder der drei kristallographisch unterschiedlichen Kaliumatome. [Blick entlang 010].

In der Struktur von K₃TiCl₆ lassen sich, aufgrund der Verzerrung des [K/Cl]-Gerüsts, drei kristallographisch unterschiedliche Kalium-Ionen finden. K1 und K2 sind von acht Chlorid-Ionen umgeben, die ein verzerrtes zweifach überkapptes trigonales Prisma bilden. K3 besitzt die Koordinationszahl zehn, wobei ein stark verzerrtes, zweifach überkapptes quadratisches Prisma ausgebildet wird. Der Grund für das Auftreten der K₃MoCl₆-Struktur liegt in dem ungünstigen Ionenradienverhältnis von K⁺ zu Cl⁻, welches bereits bei K₃Ti₂Cl₉ [25] und KTiCl₃ [25] erwähnt wurde. Die Kalium-Ionen sind zu groß für die Besetzung der Oktaederlücken, wie sie in der Kryolith-Struktur vorliegen. Damit weicht K₃TiCl₆ in einen Strukturtyp aus, indem die Kalium-Ionen weder die für Elpasolithe typische kuboktaedrische Koordination. Die Titan(III)-Ionen sind als Resultat dieser unterschiedlich verzerrten Kaliumkoordinationen nicht mehr äquivalent, sondern in Form zweier [TiCl₆]³⁻-Oktaeder zueinander um einen Winkel von 45° verdreht [25].

2.4.2.1 Die Verbindungen Rb₃TiCl₆ und Cs₃TiCl₆

2.4.2.2 Darstellung

Rb₃TiCl₆ und Cs₃TiCl₆ wurden durch Umsetzung von TiCl₃ mit RbCl (CsCl) im Verhältnis 1:3 in evakuierten Kieselglasampullen bei einer Temperatur von 780°C (760°C) erhalten.

$$TiCl_3 + 3 ACl \longrightarrow A_3TiCl_6 (A = Cs, Rb)$$

Beide Verbindungen kristallisieren in Form gelber Kristalle, die einen unregelmäßigen Habitus aufweisen. Von geeigneten Einkristallen wurde auf dem IPDS I ein Intensitätsdatensatz erstellt, und die Struktur mittels oben genannter Programme gelöst und verfeinert. Die im Achatmörser zerriebenen Kristalle ergeben ein hellgelbes Pulver, welches sich an der Luft über violette Zwischenstufen zu einem weißen Rückstand zersetzt.

2.4.2.3 Strukturbeschreibung

Rb₃TiCl₆ und Cs₃TiCl₆ kristallisieren monoklin in der Raumgruppe C2/c mit acht Formeleinheiten in der Elementarzelle isotyp zu Cs₃BiCl₆ [72]. Das für diese Verbindungsklasse charakteristische Motiv isolierter [TiCl₆]³⁻-Oktaeder findet man bei diesen Verbindungen in Form von zwei Titan(III)-Ionen, die auf zwei unterschiedlichen kristallographischen Lagen liegen (4d und 4e). Die $[TiCl_6]^3$ -Oktaeder sind um 45° gegeneinander verdreht und entlang [111] zu Schichten angeordnet. Diese Anordnung findet man im Prinzip auch in der Struktur von K3TiCl₆ (K3MoCl₆-Typ). Die Alkalimetall-Ionen in Cs₃TiCl₆ und Rb₃TiCl₆ liegen in Form stark verzerrter Koordinationspolyeder vor. Dabei sind (A)1 (A = Rb, Cs) und (A)2 von acht Chlorid-Ionen umgeben, die wiederum ein stark verzerrtes, zweifach überkapptes trigonales Prisma aufspannen. (A)3 besitzt die Koordinationszahl 11, wobei das Koordinationspolyeder stark an ein Antikuboktaeder (KZ 12) erinnert, dem ein Ligand in der 6-Ring Ebene fehlt (Abb. 34). Die gemittelten Cs3-Cl-Abstände von 377 pm liegen dementsprechend in der Größenordnung gemittelter Cs-Cl-Abstände, die man für kuboktaedrische Koordination, etwa in CsTiCl₃ [52] mit 371 pm, erwartet (\overline{d} (Rb3-Cl) = 365 pm, RbTiCl₃ [52]: 361 pm). Die gemittelten Cs1-Cl- und Cs2-Cl-Abstände von 353 bzw. 348 pm entsprechen der kleineren Koordinationszahl von acht $(\overline{d} \text{ (Rb1-Cl)} = 334 \text{ pm}; \overline{d} \text{ (Rb2-Cl)} = 337 \text{ pm})$. Im Prinzip lassen sich die unterschiedlichen

Umgebungen der A⁺-Ionen in Analogie zur Beschreibung der Verhältnisse im Elpasolith (Kapitel 2.4.1) erklären. Die A⁺-Ionen besetzen wiederum die Oktaederbzw. Tetraederlücken, die von $[TiCl_6]^{3-}$ -Oktaedern definiert werden. Dabei besetzen A(2) und A(3) die Tetraederlücken, A(1) die Oktaederlücken. Der Unterschied zum kubischen Elpasolith-Typ liegt darin, dass die umgebenden Oktaeder nicht mehr äquivalent sind, sondern um einen Winkel von 45° zueinander verdreht sind. Die "Tetraederlücke", in der sich (A)3 befindet, wird von drei [Ti2Cl6]-Oktaedern und einem [Ti1Cl6]-Oktaeder aufgespannt, wobei das [Ti1Cl₆]-Oktaeder nur noch über eine Kante und nicht mehr über eine Fläche koordiniert ist. Dadurch verringert sich die Koordinationszahl für A(3) von 12 auf 11 im Vergleich zur "idealen" Koordination, die man für K in K₂NaAlF₆ bei Besetzung der Tetraederlücke, die von vier äquivalenten [AlF₆]-Oktaedern aufgespannt wird, findet. Das Auftreten unterschiedlicher Koordinationszahlen bei der Besetzung "gleichartiger" Lücken von 8 für A(2) und 11 für A(3) liegt ebenfalls an der unterschiedlichen Ausrichtung der koordinierenden Oktaeder zueinander. Die Koordinationssphäre von A(2) wird von drei [Ti1Cl₆]-Oktaedern und einem [Ti2Cl₆]-Oktaeder aufgespannt, also genau umgekehrt zu A(3). Dabei koordiniert das [Ti2Cl₆]-Oktaeder über eine Fläche (analog zu K₂NaAlF₆) während [Ti1Cl₆] nur über Kanten bzw. Ecken koordiniert. Die Anordnung der [Ti2Cl₆]-Oktaederschichten lässt somit noch eine Verwandtschaft zum kubischen Aristotypen K₂NaAlF₆ erkennen (Abb. 35).

Abb. 34: Koordinationspolyeder der Cäsium-Ionen in der Kristallstruktur von Cs₃TiCl₆. (Cs1(KZ: 8), Cs2 (KZ: 8), Cs3 (KZ: 11).

Abb. 35: Elementarzelle von Cs₃TiCl₆. Blick entlang [010].

Die [Cs3Cl₃]-Schichten spiegeln somit noch die kubische Anordnung der [KF₃]-Schichten in K₂NaAlF₆ wider. Darauf folgen nun aber Schichten, die nicht mehr der kubischen [AX₃]-Zusammensetzung entsprechen. Die daraus für den Cs₃BiCl₆-Typ resultierende Stapelfolge der [TiCl₆]-Oktaederschichten (ABA'B'A) ist in Abb. 36 dargestellt. Man erkennt die verschiedenen Schichten anhand unterschiedlicher Verkippungen und Auslenkungen der Oktaeder zueinander. Die Schichten A bzw A' entsprechen der kubischen Anordnung.

Abb. 36: Darstellung der Schichtenfolge von $[TiCl_6]$ -Oktaedern in den Kristallstrukturen von A_3TiCl_6 (A = Rb, Cs) am Beispiel von Cs₃TiCl₆. Blick entlang [001] bzw. [100].

Eine Verwandtschaft der Cs₃BiCl₆-Struktur mit der Struktur von K₃MoCl₆ wird auch deutlich, wenn man die Elementarzellen der Verbindungen K₃TiCl₆ und Cs₃TiCl₆ vergleicht (Abb.37).

Abb. 37: Elementarzellen von K₃TiCl₆ (links) und Cs₃TiCl₆ (rechts). Blick entlang [010].

Im Prinzip handelt es sich bei der Cs₃TiCl₆-Struktur (C2/c) um eine Variante der K₃TiCl₆-Struktur ($P2_1/c$) mit verdoppelter a-Achse. Dies steht im Einklang damit, dass die Raumgruppe $P2_1/c$ eine Untergruppe von C2/c darstellt, die durch einen klassengleichen Übergang vom Index 2 unter Wegfall der C-Zentrierung und Halbierung der a-Achse entsteht. Ein Vergleich der Gitterkonstanten der A₃TiCl₆-Verbindungen ist in Tab. 17 aufgeführt. Die zunehmenden Verzerrungen führen in den Strukturen zu einer Vergrößerung der Elementarzellen, die sich in den kristallographischen a-Achsen widerspiegelt (monokline Aufstellung).

	Na ₃ TiCl ₆	K ₃ TiCl ₆	Rb ₃ TiCl ₆	Cs ₃ TiCl ₆
а	668,0(8)	1261,6(2)	2523,8(4)	2635,9(5)
b	709,1(6)	751,3(8)	770,2(2)	793,4(1)
с	981,4(1)	1210,7(2)	1246,7(2)	1278,8(2)
ß/°	90,31(2)	108,30(2)	100,11(2)	100,48(1)

 Tab. 17: Gitterparameter [pm] der A₃TiCl₆-Verbindungen.

Die gemittelten Ti-Cl-Abstände in Cs₃TiCl₆ (243,7 pm) und Rb₃TiCl₆ (243,8 pm) sind fast identisch, was aufgrund der gleichen Verzerrung in der [TiCl₆]-Oktaederausrichtung zu erwarten ist. Die Unterschiede liegen lediglich in der größeren Spanne der Ti-Cl-Abstände, die in Rb₃TiCl₆ mit Abständen von 239,8-246,4 pm größer ist. Für K₃TiCl₆ liegt die Varianz in den Ti-Cl-Abständen mit 239,9-248,5 pm in vergleichbarer Größenordnung, was als Indiz für die Ähnlichkeit beider Strukturen gewertet werden kann. Die geringsten Unterschiede in den Ti-Cl-Abständen findet man für Na₃TiCl₆ mit 242,4-243,9 pm. Dies liegt daran, dass Titan in der Kristallstruktur nur eine kristallographische Punktlage besetzt. Die Verzerrung des Oktaeders und die damit verbundenen Unterschiede in den Bindungslängen werden durch den Jahn-Teller-Effekt hervorgerufen. In K₂NaAlF₆ sind die Al-F-Abstände in den [AlF₆]-Oktaedern identisch.

Um die Abweichung von der idealen kubischen Elpasolith-Struktur zu bestimmen, kann man die Toleranzfaktoren t' heranziehen (Kapitel 2.4.1). Diese lassen sich mit den tabellierten effektiven Ionenradien nach Shannon [142] berechnen. Die Werte von t' sind in Tab. 18 aufgelistet. Die Toleranzfaktoren liegen mit Werten zwischen 0,79 und 0,82 in dem Bereich, bei dem man stärkere Verzerrungen ausgehend von der "idealen" Elpasolith-Struktur erwartet [75, 86]. Die drei Raumgruppen der vier Verbindungen stehen in einem gruppentheoretischem Zusammenhang und stellen Hettotypen der Raumgruppe des kubischen Elpasoliths ($Fm\overline{3}m$) dar. Allein aus den Werten von t' lassen sich die verschiedenen Strukturtypen nicht erklären. Die Kryolith-Struktur, in der Na₃TiCl₆ bei Raumtemperatur kristallisiert, zeigt eigentlich die geringsten strukturellen Abweichungen von der Elpasolith-Struktur, dennoch ist der Toleranzfaktor von Na₃TiCl₆ am kleinsten. Hier wird deutlich, dass bei der Berechnung von t' lediglich die effektiven Ionenradien herangezogen werden. Kovalente Bindungsanteile sowie Polarisierbarkeiten der Ionen werden nicht berücksichtigt. Um die kubische Elpasolith-Struktur bei den Hexachlorotitanaten(III) zu erhalten, müssen die Kationen variiert werden, damit die Bedingung A>B erfüllt wird (Kapitel 2.4.1). Für $Rb_2NaTiCl_6$ ergibt sich t' = 0,94 und es bildet sich die kubische Elpasolith-Struktur aus [150].

	Na ₃ TiCl ₆	K ₃ TiCl ₆	Rb ₃ TiCl ₆	Cs ₃ TiCl ₆
ť	0,79	0,79	0,81	0,82

Tab.18: Toleranzfaktoren t' der A₃TiCl₆-Verbindungen.

Weitere Lageparameter, thermische Auslenkungsfaktoren sowie ausgewählte Atomabstände und -winkel von Cs₃TiCl₆ und Rb₃TiCl₆ lassen sich den Tabellen 19-26 entnehmen.

Tab. 19: Kristallographische Daten von Cs₃TiCl₆.

Summenformel	Cs ₃ TiCl ₆
Temperatur/K	293(2)
Kristallsystem	monoklin
Raumgruppe	<i>C</i> 2/ <i>c</i> (Nr.15)
Gitterkonstanten/pm	a = 2635,9(5)
	$b = 793,40(9); \beta = 100.48(2)^{\circ}$
	c = 1278,8(2)
Zellvolumen/10 ⁶ pm ³	2629,8(3)
Ζ	8
Dichte/gcm ⁻³	1,665
Diffraktometer	IPDS I (STOE Darmstadt)
Verwendete Strahlung	Mo-K α , $\lambda = 71,07 \text{ pm}$
Monochromator	Graphit
Absorptionskoeffizient, μ/mm^{-1}	4,999
Absorptionskorrektur	Numerisch, X-SHAPE
F(000)	1156
Scanbreite	$3,14 < 2\theta < 54^{\circ}$
Detektorabstand/mm	100
Belichtungszeit/min; Bilder	5; 90
Potationswinkal a Inkromenta	$0^{\circ} \leq \omega \leq 180, \ \varphi = 0^{\circ}$
Rotationswinker, ω -inkremente	$\Delta \omega = 2^{\circ}$
	-33 < h < 33
Indexbereiche	-10 < k < 10
	-16 < l < 16
Zahl gemessener Reflexe	17149
Symmetrieunabhängig	2867
beobachtet	1695
R _{int}	0,0997
Goodness of fit	0,932
R-Werte [I>2sigma(I)]	$R_1 = 0,0484, wR_2 = 0,1121$
R-Werte (alle Daten)	$R_1 = 0,0886, wR_2 = 0,1265$

1 ab. 20. Atom	ab. 20. Atomicoordinaten und aquivalente Austenkungsparameter [10 pm] von Cs311Cl _{6.}						
Atom	Lage	x/a	<i>y/b</i>	z/c	U_{eq}		
Cs1	8f	0,3481(3)	0,1861(6)	0,8542(6)	0,0479(2)		
Cs2	8f	0,1641(3)	0,1947(1)	0,8027(1)	0,0509(2)		
Cs3	8f	0,4496(3)	0,2477(1)	0,5669(7)	0,0611(3)		
Ti1	4d	1/4	1/4	1/2	0,0364(6)		
Ti2	4e	0	0,2231(4)	3/4	0,0369(6)		
Cl1	8f	0,2503(2)	0,3787(4)	0,6733(2)	0,0445(6)		
Cl2	8f	0,4467(1)	0,5002(4)	0,8090(3)	0,0505(7)		
C13	8f	0,4469(3)	-0,0571(4)	0,8106(3)	0,0519(7)		
Cl4	8f	0,4454(1)	0,2746(4)	1,0771(2)	0,0522(7)		
C15	8f	0,3240(2)	0,0753(5)	0,5754(3)	0,0623(9)		
C16	8f	0,3111(3)	0,5420(5)	0,9610(3)	0,0675(1)		

Tab. 20: Atomkoordinaten und äquivalente Auslenkungsparameter [10⁻⁴ pm²] von Cs₃TiCl₆.

Tab. 21: Koeffizienten der anisotropen Temperaturfaktoren $U_{ij} [10^{-4} \text{ pm}^2]$ für Cs₃TiCl₆.

Atom	U 11	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cs1	0,0446(4)	0,0476(5)	0,0511(5)	-0,0039(3)	0,0078(3)	0,0054(3)
Cs2	0,0417(4)	0,0531(5)	0,0601(5)	0,0064(4)	0,0149(3)	0,0045(3)
Cs3	0,0578(5)	0,0707(6)	0,0570(5)	-0,0107(4)	0,0165(4)	-0,0105(4)
Ti1	0,0326(1)	0,0371(2)	0,041(1)	0,0004(12)	0,008(1)	-0,001(1)
Ti2	0,0331(1)	0,0415(2)	0,037(1)	0,000	0,009(1)	0,000
Cl1	0,0436(3)	0,0486(2)	0,044(2)	-0,003(1)	0,012(1)	-0,004(1)
C12	0,0421(4)	0,0512(2)	0,060(2)	0,011(1)	0,013(3)	-0,004(1)
C13	0,0462(2)	0,0505(2)	0,0604(2)	-0,0084(2)	0,0139(1)	0,007(1)
Cl4	0,0424(1)	0,072(2)	0,0411(2)	-0,001(4)	0,0035(1)	-0,0005(1)
C15	0,0575(2)	0,071(2)	0,0557(2)	0,0024(2)	0,0022(1)	0,0229(2)
Cl6	0,087(2)	0,063(2)	0,057(2)	0,0057(2)	0,0280(2)	0,0357(2)

Atome	Abstand	Atome	Abstand
Til -Cl6 (2x)	242,0(3) (2x)	Ti2 -Cl4 (2x)	240,9(3) (2x)
-Cl1 (2x)	243,9(3) (2x)	-Cl3 (2x)	244,9(3) (2x)
-C15	244,3(3) (2x)	-Cl2 (2x)	246,2(3) (2x)
Cs1 -Cl6	335,8(3)	Cs2 -Cl1	335,0(3) 337,6(3)
-Cl3	336,8(3)	-C15	338,6(4)
-Cl1	348,8(3) 353,1(3)	-Cl2	337,9(3)
-Cl4	354,0(3)	-C14	351,6(3)
-C15	361,4(4) 365,5(4)	-Cl6	351,7(4) 375,1(4)
-Cl2	371,9(3)	-Cl3	360,6(3)
Cs3 -Cl2	352,7(3) 370,1(4) 384,6(4)	Cs3 -Cl4	359,9(3) 379,5(4) 414,8(3) 359,9(3)
-C15	360,3(4)	-Cl3	376,6(3) 395 5(4)
-Cl6	401,9(5)		270,0(1)
Cl6-Ti1-Cl6	180,0(1)	Cl6-Ti1-Cl5	92,6(1)
Cl5-Ti1-Cl1	89,5(1)	Cl6-Ti1-Cl1	90.5(1)
Cl4-Ti2-Cl4	179,1(2)	Cl4-Ti2-Cl2	90,2(1)
Cl2-Ti2-Cl3	91,3(1)	Cl4-Ti2-Cl3	90.3(1)

 $\textbf{Tab. 22}: Ausgewählte Bindungslängen [pm] und Bind ungswinkel [°] in Cs_3TiCl_6.$

 $\label{eq:table_transform} \textbf{Tab. 23}: \mbox{ Kristallographische Daten von } \mbox{ Rb}_3\mbox{Ti}\mbox{ Cl}_6.$

Summenformel	Rb ₃ TiCl ₆
Temperatur/K	293(2)
Kristallsystem	monoklin
Raumgruppe	<i>C</i> 2/ <i>c</i> (Nr.15)
Gitterkonstanten/pm	a = 2523,8(4)
	b = 770,2(2); β = 100.12(2)°
	c = 1247,0(3)
Zellvolumen/10 ⁶ pm ³	2386,3(8)
Ζ	8
Dichte/gcm ⁻³	1,439
Diffraktometer	IPDS I (STOE Darmstadt)
Verwendete Strahlung	Mo-K α , $\lambda = 71,07 \text{ pm}$
Monochromator	Graphit
Absorptionskoeffizient, μ/mm^{-1}	7,078
Absorptionskorrektur	Numerisch, X-SHAPE
F(000)	940
Scanbreite	$3,54 < 2\theta < 54^{\circ}$
Detektorabstand/mm	60
Belichtungszeit/min; Bilder	6; 100
Rotationswinkel a Inkremente	$0^{\circ} \leq \omega \leq 200, \ \varphi = 0^{\circ}$
	$\Delta \omega = 2^{\circ}$
	-31 < h < 31
Indexbereiche	-9 < k < 9
	-15 < 1 < 15
Zahl gemessener Reflexe	10096
Symmetrieunabhängig	2540
beobachtet	1369
R _{int}	0,1764
Goodness of fit	0,939
R-Werte [I>2sigma(I)]	$R_1 = 0,0686, wR_2 = 0,1398$
R-Werte (alle Daten)	$R_1 = 0,1308, wR_2 = 0,1613$

Atom	Lage	x/a	y/b	z/c	U_{eq}
Rb1	8f	0,16333(6)	0,8097(2)	0,3014(1)	0,0297(4)
Rb2	8f	0,15310(6)	0,3152(2)	0,1465(1)	0,0288(4)
Rb3	8f	0,05040(8)	0,2522(2)	0,4328(2)	0,0472(5)
Til	4e	0,0000	0,7818(4)	0,2500	0,0166(7)
Ti2	4d	0,2500	0,2500	0,5000	0,0145(6)
Cl1	8f	0,0555(2)	0,5579(5)	0,3147(3)	0,0329(8)
Cl2	8f	0,0559(1)	0,7776(5)	0,4266(3)	0,0317(8)
C13	8f	0,0562(1)	1,0145(5)	0,1934(3)	0,0327(8)
Cl4	8f	0,1849(2)	0,0384(5)	0,5361(3)	0,0370(9)
C15	8f	0,2499(1)	0,1187(4)	0,3205(3)	0,0253(7)
C16	8f	0,1744(2)	0,4369(5)	0,4225(3)	0,0368(9)

Tab. 24: Atomkoordinaten und äquivalente Auslenkungsparameter [10⁻⁴ pm²] von Rb₃TiCl₆.

 $\textbf{Tab. 25}: Koeffizienten \ der \ anisotropen \ Temperaturfaktoren \ U_{ij} \ [10^{-4} \ pm^2] \ für \ Rb_3 TiCl_6.$

Atom	U_{11}	U_{22}	<i>U</i> ₃₃	U_{12}	<i>U</i> ₁₃	U ₂₃
Rb1	0,0281(8)	0,0217(7)	0,0405(8)	-0,0038(6)	0,0091(6)	-0,0032(6)
Rb2	0,0296(8)	0,0215(7)	0,0346(8)	-0,0034(5)	0,0037(5)	0,0043(6)
Rb3	0,044(1)	0,055(1)	0,0447(9)	-0,0179(8)	0,0150(7)	-0,0141(8)
Ti1	0,018(2)	0,018(2)	0,014(1)	0,000	0,004(1)	0,000
Ti2	0,018(2)	0,012(1)	0,013(1)	0,001(1)	0,002(1)	-0,002(1)
Cl1	0,032(2)	0,028(2)	0,038(2)	0,009(1)	0,004(2)	-0,010(1)
Cl2	0,029(2)	0,047(2)	0,017(1)	0,001(1)	-0,001(1)	-0,002(1)
C13	0,026(2)	0,028(2)	0,045(2)	0,016(1)	0,010(2)	-0,002(1)
Cl4	0,051(3)	0,028(2)	0,035(2)	0,001(1)	0,014(2)	-0,023(2)
C15	0,031(2)	0,021(1)	0,023(1)	-0,004(1)	0,003(1)	-0,005(1)
C16	0,040(2)	0,030(2)	0,038(2)	0,003(1)	0,002(2)	0,013(2)

Atome	Abstand	Atome	Abstand
Til -Cl2	239,8(3) (2x)	Ti2 -Cl4 (2x)	241,2(3) (2x)
-Cl1	244,6(4) (2x)	-Cl6 (2x)	244,9(4) (2x)
-Cl3	246,4(4) (2x)	-Cl5 (2x)	245,7(3) (2x)
Rb1 -Cl5	321,2(4) 323,0(4)	Rb2 -Cl1	319,6(4)
-C13	321,4(4)	-Cl4	321,6(4)
-Cl6	323,4(4)	-Cl5	333,3(4) 335,7(4)
-C12	336,7(4)	-Cl2	341,8(3)
-Cl4	337,7(4) 363,9(4)	-Cl3	349,1(4)
-Cl1	344,6(4)	-Cl6	350,2(4) 351,6(4)
Rb3 -Cl3	340,3(4) 352,7(5) 282,5(5)	Rb3 -Cl2	346,1(4) 365,9(4)
-Cl1	345,4(4) 367,1(4) 390,2(4)	-Cl4	403,0(4) 378,8(5)
-Cl6	346,0(5)		
Cl2-Ti1-Cl2	178,4(2)	Cl2-Ti1-Cl3	91,3(1)
Cl2-Ti1-Cl1	90,8(1)	Cl3-Ti1-Cl1	91.5(1)
Cl4-Ti2-Cl4	180,0(1)	Cl4-Ti2-Cl5	90,0(1)
Cl4-Ti2-Cl6	92,2(1)	C15-Ti2-C16	90.4(1)

 $\textbf{Tab. 26}: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] in Rb_{3}TiCl_{6}.$

2.4.3 Die Verbindungen A₃TiBr₆ (A = K-Cs)

Durch thermische Analysen sowie röntgenographische Pulveruntersuchungen in dem System A/Ti/Br (A = Cs, Rb) von *Korol kov* [66-67] wurden, neben weiteren ternären Verbindungen, auch die kongruent schmelzenden Verbindungen der Zusammensetzung Cs₃TiBr₆ und Rb₃TiBr₆ nachgewiesen. Durch Indizierung von Debye-Scherrer-Aufnahmen kamen *Kozhina* und *Korol kov* [67] zu dem Ergebnis, dass beide Verbindungen isotyp in der Raumgruppe $P6_{3}mc$ kristallisieren. *Ehrlich et al.* [68] fanden in dem binären System KBr/TiBr₃ die bei 672 °C schmelzende Verbindung K₃TiBr₆ als einzige ternäre Phase. Eine röntgenographische Untersuchung wurde nicht vorgenommen. Im System Na/Ti/Br konnten bis heute keine ternären Phasen dargestellt werden [80].

Mit der Darstellung von Einkristallen der Verbindung Rb₃TiBr₆ und anschließender Einkristallröntgenstrukturanalyse konnten die Strukturen nun genau aufgeklärt werden.

2.4.3.1 Darstellung

Die Hexabromotitanate(III) der Alkalimetalle K, Rb und Cs lassen sich durch Synproportionierung von TiBr₄ mit Ti-Pulver in einer Schmelze des Alkalimetallbromids herstellen.

 $3 \operatorname{TiBr}_4 + 12 \operatorname{ABr} + \operatorname{Ti} \longrightarrow 4 \operatorname{A}_3 \operatorname{TiBr}_6$

Einkristalle von Rb₃TiBr₆ wurden durch Umsetzungen in Tantalampullen bei einer Reaktionstemperatur von 670°C erhalten. Nach einer Reaktionszeit von 240 h wurden die Ansätze mit einer Abkühlrate von 35 °C/h auf Raumtemperatur gebracht. Die Verbindungen kristallisieren in Form rötlich-schwarzer Kristalle mit unregelmäßigem Habitus. An der Luft zersetzen sie sich rasch zu einem weißen Rückstand. Es stellte sich als schwierig heraus, geeignete Einkristalle zu finden. Oft waren die Kristalle von schlechter Qualität. Trotzdem konnte von einem geeigneten Einkristall ein Intensitätsdatensatz erstellt werden und die Kristallstruktur von Rb₃TiBr₆ auf der Basis von 1388 symmetrieunabhängigen Reflexen (I>2 σ_1) bis zu den Gütefaktoren R₁ = 6,77 % und wR2 = 12,86 % verfeinert werden. Die stärkere Tendez zur Disproportionierung von TiBr₃, im Vergleich zu TiCl₃, und die hohe thermodynamische Stabilität der ATiBr₃-Verbindungen bei Raumtemperatur erschweren zudem die Bildung dieser Verbindungen. Dies könnte auch der Grund dafür sein, dass trotz zahlreicher Darstellungsversuche keine geeigneten Einkristalle von Cs₃TiBr₆ und K₃TiBr₆ erhalten wurden. Von *Kozhina* [67] wird selbiges Problem auf die höhere Stabilität der Verbindung Cs₃Ti₂Br₉ in dem System CsBr/TiBr₃ zurückgeführt. Außerdem können Phasenübergänge beim Abkühlvorgang zum Auftreten von Mehrlingskristallen führen, die eine Strukturbestimmung erheblich erschweren.

2.4.3.2 Strukturbeschreibung

 Rb_3TiBr_6 kristallisiert monoklin in der Raumgruppe C2/c mit acht Formeleinheiten in der Elementarzelle isotyp zu Cs_3BiCl_6 [72]. Die von *Kozhina* anhand von Pulvermessungen erhaltene hexagonale Symmetrie konnte damit nicht bestätigt werden [67]. Die Daten zur Strukturbestimmung, Lageparameter und thermische Auslenkungsparameter sowie ausgewählte Atomabstände und -winkel lassen sich den Tabellen 27-30 entnehmen.

Die beiden [TiBr₆]-Oktaeder sind bedingt durch die Lage zwischen verschiedenen [Rb/Br]-Schichten unterschiedlich stark verzerrt, was sich sowohl in den Bindungswinkeln als auch Bindungslängen widerspiegelt. Die gemittelten Ti-Br-Abstände liegen mit 259,3 pm in der gleichen Größenordnung wie in Rb₃Ti₂Br₉ (\overline{d} (Ti-Br) = 259,0 pm). Durch den geringeren Radienunterschied von Rb⁺ und Br⁻ liegt der berechnete Toleranzfaktor t' von 0,84 etwas über dem von Rb₃TiCl₆ (0,81). Ein Phasenübergang in eine verzerrte kubische Elpasolith-Modifikation ist deshalb schon bei niedrigen Temperaturen denkbar und könnte ein Grund für die Schwierigkeit sein, geeignete Einkristalle zu erhalten. In den Pulverdiffraktogrammen konnte man stets noch andere reduzierte Phasen nachweisen, was vielleicht der Grund für die hexagonale Indizierung bei Rb₃TiBr₆ von *Kozhina* war.

Abb. 38 : Darstellung der zwei kristallographisch unterschiedlichen [TiBr₆]-Oktaeder in Rb₃TiBr₆. Bindungslängen in pm.

 $\label{eq:table_transform} \textbf{Tab. 27}: Kristallographische Daten von Rb_3 TiBr_6.$

Summenformel	Rb ₃ TiBr ₆
Temperatur/K	293(2)
Kristallsystem	monoklin
Raumgruppe	<i>C</i> 2/ <i>c</i> (Nr.15)
Gitterkonstanten/pm	a = 2648,5(3)
	$b = 808,1(1); \beta = 99,86(1)^{\circ}$
	c = 1304,2(2)
Zellvolumen/10 ⁶ pm ³	2750,0(6)
Ζ	8
Dichte/gcm ⁻³	1,893
Diffraktometer	IPDS I (STOE Darmstadt)
Verwendete Strahlung	Mo-K α , λ = 71,07 pm
Monochromator	Graphit
Absorptionskoeffizient, μ/mm^{-1}	14,278
Absorptionskorrektur	Numerisch, X-SHAPE
F(000)	1372
Scanbreite	$5,28 < 2\theta < 53^{\circ}$
Detektorabstand/mm	60
Belichtungszeit/min; Bilder	12; 100
Rotationswinkal a Inkramenta	$0^{\circ} \leq \omega \leq 200, \ \varphi = 0^{\circ}$
Rotationswinker, ω -inkremente	$\Delta \omega = 2^{\circ}$
	-16 < h < 16
Indexbereiche	-10 < k < 10
	-31 < 1 < 31
Zahl gemessener Reflexe	11153
Symmetrieunabhängig	2782
beobachtet	1388
R _{int}	0,1732
Goodness of fit	0,858
R-Werte [I>2sigma(I)]	$R_1 = 0,0677, wR_2 = 0,1286$
R-Werte (alle Daten)	$R_1 = 0,1273, wR_2 = 0,1468$

Atom	Lage	x/a	<i>y/b</i>	z/c	U_{eq}
Rb1	8f	0,7996(2)	0,1869(2)	0,16204(7)	0,0323(5)
Rb2	8f	0,5678(2)	-0,2534(3)	-0,05058(9)	0,0580(7)
Rb3	8f	0,6467(2)	0,6815(2)	0,15457(7)	0,0332(5)
Ti1	4d	1/4	1/4	1/2	0,0177(9)
Ti2	4e	0	0,2154(5)	3/4	0,0199(9)
Br1	8f	0,6826(1)	0,3814(2)	0,25003(7)	0,0273(4)
Br2	8f	0,6837(2)	0,4434(2)	0,05649(8)	0,0394(5)
Br3	8f	0,6923(2)	-0,0205(2)	0,05695(7)	0,0367(5)
Br4	8f	0,9287(2)	0,2213(3)	0,05637(8)	0,0374(5)
Br5	8f	0,9224(2)	0,5576(2)	0,17422(8)	0,0372(5)
Br6	8f	0,5353(9)	0,0389(2)	0,18238(9)	0,0398(5)

Tab. 28: Atomkoordinaten und äquivalente Auslenkungsparameter [10⁻⁴ pm²] von Rb₃TiBr₆.

Tab. 29: Koeffizienten der a	anisotropen Tempe	eraturfaktoren U _{ij} [1	0^{-4} pm^2] für Rb ₃ TiCl ₆ .

Atom	U 11	U_{22}	U 33	U ₁₂	<i>U</i> 13	U_{23}
Rb1	0,044(1)	0,0281(9)	0,025(1)	0,0009(7)	0,0081(8)	0,0010(8)
Rb2	0,0581(2)	0,075(2)	0,044(2)	-0,018(1)	0,016(1)	-0,027(1)
Rb3	0,044(1)	0,0278(9)	0,027(1)	-0,0039(7)	0,0048(8)	0,0042(8)
Ti1	0,023(2)	0,013(2)	0,017(2)	-0,001(2)	0,003(2)	0,001(2)
Ti2	0,022(2)	0,020(2)	0,018(2)	0,000	0,0049(18)	0,000
Br1	0,028(1)	0,0265(8)	0,0278(1)	-0,0018(7)	0,0060(8)	-0,0034(7)
Br2	0,050(2)	0,037(1)	0,030(1)	-0,0123(8)	0,0054(9)	0,0112(9)
Br3	0,053(1)	0,035(1)	0,024(1)	0,0021(8)	0,0112(9)	-0,0168(9)
Br4	0,025(1)	0,0616(2)	0,024(1)	0,0054(9)	-0,0002(8)	-0,0013(9)
Br5	0,039(2)	0,034(1)	0,036(1)	-0,0144(8)	0,0019(9)	-0,0052(8)
Br6	0,036(1)	0,037(1)	0,048(1)	-0,0228(9)	0,013(1)	0,0005(9)

Atome	Abstand	Atome	Abstand
Til -Br6	257,2(2) (2x)	Ti2 -Br4 (2x)	254,4(2) (2x)
-Br5	260,2(2) (2x)	-Br2 (2x)	261,2(3) (2x)
-Br1	260,7(2) (2x)	-Br3 (2x)	262,0(3) (2x)
Rb1 -Br3	334,3(3)	Rb2 -Br3	356,4(3) 367,9(3) 403,0(4)
-Br1	337,4(3) 338,4(2)	-Br5	363,5(3)
-Br5	338,7(3)	-Br2	360,1(2) 385,5(4) 408,7(4) 362,5(3)
-Br4	351,6(3)	-Br4	384,0(3) 424,8(3)
-Br6	353,5(3) 377,3(3)	-Br6	392,3(4)
-Br2	359,8(2)		
Rb3 -Br2	333,4(3)	Rb3 -Br4	359,6(3)
-Br6	337,0(3)	-Br5	361,7(3) 368,3(3)
-Br1	346,8(3) 347,6(3)	-Br3	365,6(3)
Br6-Ti1-Br6	180,0(1)	Br6-Ti1-Br1	90,11(6)
Br6-Ti1-Br5	92,79(7)	Br5-Ti1-Br1	89,49(6)
Brd Tig Drd	177 8(2)	Br4 T;) Dr)	90.6(1)
D14-112-D14	01.54(0)	DI4-112-DI2	90,0(1)
Br4-112-Br3	91,54(9)	Br3-T12-Br2	91,58(6)

 $\textbf{Tab. 30}: Ausgewählte Bindungslängen [pm] und Bindungswinkel [°] in Rb_{3}TiBr_{6}.$

2.4.4 Magnetische Messungen

Für die Verbindungen A₃TiCl₆ (A = Cs-Na) konnten die magnetischen Suszeptibilitäten χ über einen Temperaturbereich von 3-300 K bei einer Feldstärke H = 1 T (10000 Oe) gemessen werden. Die pulverförmigen Proben werden dazu in spezielle Glaskapillaren eingeschmolzen, um sie vor Luft und Feuchtigkeit zu schützen. Die Ergebnisse sind in den Abbildungen 39-42 dargestellt.

Die Strukturen der Verbindungen weisen eine große Ähnlichkeit auf, die sich auch in ihren magnetischen Verhalten widerspiegeln sollte. Die Ti^{3+} -Ionen (d¹) sind bei allen Verbindungen über 700 pm voneinander isoliert. Der Temperaturverlauf der magnetischen Suszeptibilität χ lässt bei keiner Verbindung weitreichende kooperative Effekte vermuten und kann als Curie-Weiss-artig beschreiben werden. Die reziproke magnetische Suszeptibilität $1/\chi$ lässt sich oberhalb 50 K annähernd linear beschreiben, was ebenfalls Curie-Weiss-Verhalten bestätigt. Alle vier Verbindungen zeigen ein temperaturabhängiges Verhalten des effektiven magnetischen Moments, welches bei Raumtemperatur mit den berechneten "spin-only"-Werten von Ti³⁺ (1,73 B.M.) ganz gut übereinstimmt. Für die Verbindungen A₂BTiCl₆ (A = Cs, Rb; B = K, Na), welche kubische Varianten der A₃TiCl₆-Verbindungen darstellen, konnte ein ähnliches temperaturabhängiges Verhalten von µeff beobachtet werden [150]. Die Abweichungen der beobachteten μ_{eff} -Werte von den berechneten Werten bei tiefen Temperaturen lassen auf schwache antiferromagnetische Wechselwirkungen unterhalb von 50 K schließen. Bei den Verbindungen Rb₃TiCl₆ und K₃TiCl₆ erkennt man im Temperaturverlauf von χ T und μ_{eff} gegen T einen linearen Verlauf, der bei 20 K bzw. 15 K eine Unstetigkeit aufweist. Zu tieferen Temperaturen ist der Verlauf beider Kurven wesentlich steiler. Der Grund könnte im Auftreten von Ordnungszuständen liegen, bei denen sich die Spins der zueinander verdrehten Ti³⁺-Ionen ordnen. Für die genaue Aufklärung dieses Phänomens sind jedoch weitere physikalische Messungen erforderlich. Insgesamt lässt sich jedoch keine Abhängigkeit der Magnetisierung von den unterschiedlichen Packungsvarianten der [TiCl₆]³-Oktaeder erkennen.

Abb. 40: Magnetische Messungen an Rb₃TiCl₆.

Abb. 41: Magnetische Messungen an K₃TiCl₆.

Abb. 42: Magnetische Messungen an Na₃TiCl₆.

2.4.5 Thermisches Verhalten der A₃TiCl₆-Verbindungen (A = Cs-Na)

Mithilfe von DSC-Messungen konnte das thermische Verhalten der Chloride A₃TiCl₆ in einem Temperaturbereich von 0 bis 450°C untersucht werden. Aufgrund der strukturellen Ähnlichkeit der Verbindungen, die sich alle vom kubischen Aristotypen Elpasolith $(K_2NaAlF_6, Fm3m)$ ableiten lassen, sind Phasenübergänge bei höheren Temperaturen denkbar, an deren Ende der Elpasolith-Typ als Hochtemperaturphase stehen sollte. Bei allen Verbindungen lassen sich in den DSC-Kurven thermische Effekte erkennen, die man als Phasenübergänge klassifizieren kann (Abb. 43-46). Die Schmelzpunkte der Verbindungen liegen weit oberhalb von 500°C, genau wie die Schmelzpunkte der Alkalimetallhalogenide. TiCl₃ zersetzt sich oberhalb 450°C in TiCl₂ und TiCl₄ [27]. Für Cs₃TiCl₆ erkennt man in der 1. Aufheizkurve einen deutlichen endothermen Effekt bei 343,9°C, der beim 2. Aufheizvorgang etwas früher einsetzt (336,0°C). Diese Hysterese von 7,9°C lässt sich durch bessere Homogenisierung und vergleichbare Korngrößen nach dem 1. Abkühlvorgang begründen. Die Abkühlkurve zeigt einen exothermen Effekt bei 336.9°C und damit eine Hysterese zum endothermen Effekt des 2. Aufheizvorgangs von nur 1°C. Dieser thermische Effekt ist also reversibel. Die Enthalpien der Übergänge lassen sich direkt durch Integration der Signale erhalten. Für den exothermen und endothermen Effekt liegen die Enthalpien nahe beieinander (18 J/g und 20 J/g). Bei dem Phasenübergang handelt es sich wahrscheinlich um den Übergang vom Cs₃BiCl₆-Typ (C2/c) [72] in den kubischen Elpasolith-Typ [71]. Für Cs₃YCl₆ und Rb₃YCl₆ [70], welche ebenfalls in der Cs₃BiCl₆-Struktur kristallisieren, findet man ausschließlich den endothermen Phasenübergang Cs₃BiCl₆-Typ → Elpasolith-Typ im Temperaturbereich von 0°C -500°C, der bei 405°C bzw. 390°C bei diesen Verbindungen einsetzt.

Für Rb₃TiCl₆ liegt der endotherme Übergang in der Aufheizkurve bei etwas niedrigerer Temperatur (310,6°C), wobei auch hier eine geringe Hysterese zwischen den Temperaturen des endothermen und exothermen Effekts (303,6°C) zu finden ist. Die kleinen anhängenden Schultern der Signale lassen sich nicht eindeutig erklären, könnten aber auf einen Übergang 2.Ordnung hindeuten, der sich zumeist über einen gewissen Zeitraum hinzieht und so die Signale verbreitert. Die Enthalpien der beiden Übergänge sind vergleichbar, jedoch mit 11,2 J/g für den endothermen Effekt und 10,4 J/g beim Abkühlen kleiner als bei Cs₃TiCl₆. Der Grund dafür könnte im unterschiedlichen Ionenradienverhältnis von A⁺ zu Cl⁻ liegen, das für Rb₃TiCl₆ näher bei eins liegt und somit eine geringere Abweichung von der "idealen" kubischen Packung ($r(A^+) = r(X^-)$) bei höheren Temperaturen auftreten sollte. Bei dem betrachteten Phasenübergang müssen die Oktaeder zueinander verdreht werden und sich gleich ausrichten. Der Anstieg der Basislinie lässt sich vermutlich auf Verunreinigungen zurückführen.

Für K₃TiCl₆ lassen sich zwei thermische Effekte ausmachen, die auf zwei Phasenübergänge hindeuten. Der erste endotherme Effekt in der Aufheizkurve liegt bei 246,0°C und das entsprechende exotherme Signal in der Abkühlkurve mit einer Hysterese von 6,3°C versetzt bei 239,7°C. Die Bande für den exothermen Effekt ist außerordentlich scharf, was auf einen Phasenübergang 1. Ordnung hindeuten würde. Die Bande für den zweiten endothermen Effekt liegt in der Aufheizkurve bei 403,6°C und beim Abkühlen als exothermer Effekt bei 402,8°C, was nur eine geringe Hysterese von weniger als 1°C bedeutet und für einen reversiblen Vorgang spricht. Die beiden Banden sind deutlich breiter, was eher auf einen Übergang zweiter Ordnung schließen lässt. Man findet, wie auch bei C₃TiCl₆ und Rb₃TiCl₆, eine Schulter bei diesen Banden, wobei die Signalstärke in etwa dem vermuteten Übergang Cs₃BiCl₆-Typ → Elpasolith-Typ bei diesen Verbindungen entspricht. Dies könnte auch den ersten scharfen Peak erklären, der für K₃TiCl₆ den Übergang vom K₃MoCl₆-Typ ($P2_1/c$) [76] in den Cs₃BiCl₆-Typ bedeuten würde. Der strukturelle Zusammenhang zwischen den beiden Raumgruppen wurde bereits in Kapitel 2.4.2.2 erläutert. Die notwendigen Veränderungen in der Struktur sind bei diesem Phasenübergang nur gering und würden die schmale Signalbreite und die niedrigere Temperatur im Vergleich zum zweiten thermischen Signal erklären. Diese qualitativen Deutungen würden für K₃TiCl₆ somit zuerst einen Übergang von der K₃MoCl₆-Struktur in die Cs₃BiCl₆-Struktur und einen zweiten Phasenübergang von der Cs₃BiCl₆-Struktur in die Elpasolith-Struktur nahe legen. Für K₃YCl₆ findet man ähnliche Verhältnisse, wobei nicht ganz geklärt ist, ob es sich bei der Raumtemperaturmodifikation um den K₃MoCl₆-Typ handelt, da eine Indizierung der Pulverdiffraktogramme zusätzliche Reflexe erkennen ließ [70].

Bei Na₃TiCl₆ erkennt man wiederum nur einen endothermen Effekt in der Aufheizkurve, der bereits bei 153,0°C einsetzt und im zweiten Aufheizvorgang keiner Hysterese unterliegt. Anders sieht es in den Abkühlkurven aus, in denen man eine deutliche Verschiebung der exothermen Signale erkennt, wobei die 2. Abkühlkurve näher am korrespondierenden endothermen Signal liegt, was im Prinzip auf die unterschiedliche Vorbehandlung der Proben zurückzuführen ist. Bei diesem reversiblen Übergang könnte es sich um die Ausbildung der HT-Form des Kryolith-Typs (*Immm*) [143] handeln, da Na₃TiCl₆ bei Raumtemperatur im Kryolith-Typ ($P2_1/n$) [77] kristallisiert. Genauere Aussagen sind mit den DSC-Messungen alleine nicht möglich.

Abb. 43: Auftragung des DSC-Signals gegen die Temperatur für Cs₃TiCl₆.

Abb. 44: Auftragung des DSC-Signals gegen die Temperatur für Rb₃TiCl₆.

Abb. 45: Auftragung des DSC-Signals gegen die Temperatur für K₃TiCl₆.

Abb. 46: Auftragung des DSC-Signals gegen die Temperatur für Na₃TiCl₆.

2.4.6 Optisches Verhalten

Von den Verbindungen A_3TiCl_6 (A = Cs-Na) wurden Absorptionsspektren im Wellenzahlenbereich von 20000 cm⁻¹ bis 4000 cm⁻¹ aufgenommen. Da die [TiCl₆]-Oktaeder in diesen Verbindungen voneinander isoliert sind, kann man die Aufspaltung der d-Niveaus (²D-Grundzustand) in einem oktaedrischen Ligandenfeld mit O_h -Symmetrie zu Grunde legen. Der Grundzustand der t_{2g}^1 -Konfiguration wird mit dem Termsymbol ${}^2T_{2g}$ bezeichnet. Aufgrund der Symmetrie dieser Orbitale findet eine Wechselwirkung nur zu den besetzten p_π-Orbitalen der Chlorid-Liganden statt. Der T_{2g}-Zustand lässt sich somit als π -antibindend bezeichnen. Der angeregte Zustand ${}^{2}E_{g}$ lässt sich als antibindende Kombinationen von σ -Orbitalen der Chlorid-Ionen und den d-Orbitalen des Ti³⁺-Ions ansehen. In den Verbindungen A_2BTiCl_6 (A = Cs, Rb; B = K, Na) konnte gezeigt werden, dass die π -Wechselwirkungen der T_{2g}-Zustände mit den Clorid-Liganden viel schwächer sind als die σ-antibindenden Wechselwirkungen der E_g-Niveaus [150]. Die ${}^{2}E_{g}$ -Niveaus sind nicht entartet, da mit den ϵ_{g} -Normalschwingungen Wechselwirkungen auftreten. Die gefundene Aufspaltung ΔE der $^{2}E_{g}$ -Zustände von 1400 cm⁻¹ ist im Spektrum anhand einer Doppelbande zu erkennen. Die von *Reinen et al.* beobachteten Absorptionen liegen im Bereich von 11900 cm⁻¹ (\pm 200 cm⁻¹) und sind entsprechend ΔE in zwei Banden aufgespalten (± 1400 cm⁻¹). Analoge Wechselwirkungen liegen auch für den T_{22} -Grundzustand vor, sind aber aufgrund des π -Charakters dieser Orbitale wesentlich schwächer. Die statische Jahn-Teller Aufspaltung der einfach besetzten T2g-Zustände wird dadurch überlagert und ist auch bei sehr tiefen Temperaturen nicht im Spektrum zu sehen. Die aufgrund von Packungseffekten bedingte unterschiedliche Verzerrung der $[\text{TiCl}_6]^3$ -Oktaeder in den Strukturen der A₃TiCl₆-Verbindungen (A = Cs-Na) hat direkten Einfluss auf die Größe der Aufspaltung der ²E_g-Zustände. Durch die unterschiedlichen Polarisierbarkeiten der Alkalimetalle werden die antibindenden σ -Wechselwirkungen der ²E_g-Zustände zu den Chloriden beeinflusst. Dies führt zu einer Abnahme der Aufspaltung ΔE von Cs zu Na und äußert sich in einer Verschiebung der Bandenlage zu kleineren Wellenzahlen. Die bei Raumtemperatur durchgeführten Messungen ergaben für die A₃TiCl₆-Verbindungen (A = Cs-Na) Absorptionen im Bereich von 11000 cm⁻¹ bis 13500 cm⁻¹. Man erhält Doppelbanden, wobei die kleinere Bande zu niedrigeren Wellenzahlen verschoben ist (Abb. 47). Für K₃TiCl₆ und Rb₃TiCl₆ konnten keine aufgelösten Doppelbanden beobachtet werden. Die breiten Absorptionsbanden erstrecken sich über einen Bereich von 11200-13300 cm⁻¹. Die erhaltenen Ergebnisse zeigen dennoch eine gute Übereinstimmung der Bandenlagen mit den A₂BTiCl₆-Verbindungen, die kubische Elpasolith-Varianten der A₃TiCl₆-Verbindungen darstellen [150].

Tab.31: Beobachtete Absorptionsbanden bei den A_3TiCl_6 -Verbindungen (A = Cs-Na)

$^{2}T_{2g} \rightarrow ^{2}E_{g}$	Na ₃ TiCl ₆	K ₃ TiCl ₆	Rb ₃ TiCl ₆	Cs ₃ TiCl ₆
Bande	13140	11200-13500	11200-13500	13250
Schulter	11510	-	-	11180

Abb. 47: Ausschnitt aus dem Absorptionsspektrum von Na₃TiCl₆ im Wellenzahlenbereich von 9000-14500 cm⁻¹.

2.4.7 Diskussion der Ergebnisse

Im Rahmen dieser Arbeit sind die Strukturen der Hexahalogenotitanate(III) der Alkalimetalle, Cs₃TiCl₆, Rb₃TiCl₆ sowie Rb₃TiBr₆ erstmals anhand von Einkristallen aufgeklärt worden. Dabei sind strukturelle Zusammenhänge gefunden und zum Teil mittels gruppentheoretischer Betrachtungen erläutert worden. Den Aristotyp dieser Verbindungen stellt der kubische Elpasolith (K₂NaAlF₆) dar und allen Verbindungen gemeinsam sind isolierte $[TiX_6]^{3-}$ Oktaeder. Die unterschiedlichen Strukturvarianten werden durch die Ionenradienverhältnisse $r(A^+)/r(X^-)$ bestimmt. Der Toleranzfaktor t' gibt die Abweichung vom "idealen" Elpasolith-Typ an. Von den Chloriden A_3TiCl_6 (A = Cs-Na) konnten zudem magnetische Messungen durchgeführt werden, die auf schwache antiferromagnetische Wechselwirkungen im Bereich tiefer Temperaturen deuten. Außerdem kann mithilfe thermischer Analyse (DSC) gezeigt werden, dass alle Verbindungen bei höheren Temperaturen Phasenübergänge durchlaufen, wobei eine genaue Charakterisierung der Phasen nicht vorgenommen werden konnte. Die Absorptionsspektren der Verbindungen weisen im Bereich von 11000-13000 cm⁻¹ eine Doppelbande auf, die dem beobachteten elektronischen d-d-Übergang (${}^{2}T_{2g} \longrightarrow {}^{2}E_{g}$) für das d¹-System im oktaedrischen Ligandenfeld zugeordnet werden kann. Das Auftreten von Doppelbanden ist in erster Linie auf starke Schwingungswechselwirkungen der angeregten ²Eg-Niveaus zurückzuführen, die dadurch eine stärkere Aufspaltung erfahren, als die ²T_{2g}-Grundzustände.

2.5 Synthesen im System A/Ti/I

Im System A/Ti/I (A = Cs-Na) wurden zahlreiche Synthesen zur Darstellung von Verbindungen der Zusammensetzung $A_3Ti_2I_9$ und A_3TiI_6 unternommen. Leider konnten im Rahmen dieser Arbeit keine Verbindungen dieser Art erhalten werden. Die hohe Polarisierbarkeit des "weichen" Iodid-Anions ist wohl ein Grund dafür, dass in allen Fällen nur die offenbar thermodynamisch stabilen ATiI₃-Verbindungen erhalten worden sind (Kapitel 2.2), in denen Titan in der Oxidationsstufe +2 vorliegt. Die Stabilisierung niedriger Oxidationsstufen und die begünstigte Ausbildung von Ti-Ti-Bindungen durch leicht polarisierbare Anionen zeigen sich auch anhand der Bildung von K₄Ti₄OI₁₂ [5] und Rb₄Ti₄OI₁₂ [144], welche bei einigen Ansätzen fast phasenrein erhalten werden konnten (Abb. 48). Der Sauerstoff wird wohl durch Verunreinigungen der Edukte oder des Ampullenmaterials in die Ta-Container gelangt sein. Die Ausbildung von Ti-Ti-Bindungen

unter Beteiligung der d-Orbitale sollte in der weichen Iodmatrix begünstigt sein. Dies zeigt auch das Auftreten weiterer Iodide mit Ti-Ti-Bindungen, wie $CsTi_{4.3}I_{11}$ [109] oder $CsTi_{2}I_{7}$ [145], in diesem System. Vergleichbare Verhältnisse findet man auch beim benachbarten Scandium, wo die Verbindung $Cs_{3}Sc_{2}I_{9}$ [146] dargestellt werden konnte, wobei für Sc^{3+} keine d-Elektronen mehr für eine Bindung zur Verfügung stehen. Dennoch kennt man von Scandium zahlreiche Clusterphasen, wobei die [Sc_{6}]-Oktaeder meist durch Interstitiale stabilisiert sind.

Abb. 48: Ausschnitt aus der Kristallstruktur von $K_4Ti_4OI_{12}$ [5] mit isolierten $\{Ti_4O\}$ -Clustereinheiten. Blick entlang [001].

3. Halogenide des Hafniums

3.1 Allgemeines

Als ein Element der 4.Nebengruppe sollte Hafnium generell befähigt sein, ebenso wie die leichteren Homologen Titan und Zirkonium, binäre Halogenide der Form HfX, HfX₂, HfX₃ und HfX₄ zu bilden, wobei die Monohalogenide ("TiX") des Titans nicht bekannt sind. Die Halogenide des zwei- und dreiwertigen Titans und Zirkoniums sind mittlerweile alle strukturell charakterisiert und hinsichtlich der Bildung diskreter Metall-Metall-Wechselwirkungen weiter untersucht worden. Es konnte gezeigt werden, dass es bei tiefen Temperaturen sowohl bei den Halogeniden des zwei- als auch dreiwertigen Halogeniden Titans, zur Ausbildung von diskreten Metall-Metall-Bindungen kommt (Kapitel 1.1). Für Hafnium ist bisher nur die Struktur von HfI₄ [81] anhand von Einkristallendaten aufgeklärt worden.

In den vorherigen Kapiteln wurde ein Überblick über die Vielzahl ternärer Titanhalogenide gegeben. Die strukturelle Vielfalt dieser Verbindungen spiegelt den unterschiedlichen Einfluss des Ionenradienverhältnisses von A⁺ zu X⁻ und die Möglichkeit zur Ausbildung von Metall-Metall-Bindungen auch bei den frühen 3d-Übergangsmetallen wider. Geht man vom Titan eine Periode tiefer zum Zirkonium, so ist die Anzahl bekannter ternärer Zirkoniumhalogenide doch sehr überschaubar. Neben den einfachen A₂ZrX₆-Verbindungen [48, 100] (A = Cs-K; X = I-Cl) finden sich lediglich die Verbindung Cs₃Zr₂I₉ [10], welches isotyp zu $Cs_3Cr_2Cl_9$ kristallisiert, und AZr₆I₁₄ (A = Cs-Na) [101-102]. Darüber hinaus konnten von Corbett et. al. eine Vielzahl von Clusterverbindungen des Zirkoniums dargestellt werden, die alle der Reihe $A_m[Zr_6X_{12}Z]X_n$ (mit A = Alkalimetall, Erdalkalimetall oder Selten-Erdmetall; X = Cl, Br oder I; $0 \le n, m \le 6$) angehören. Die zentrale Baueinheit dieser Verbindungen stellen [Zr₆]-Oktaeder dar, in deren Oktaedermitten interstitielle Atome Z eingebaut sind (Abb. 49). Die Palette der als Interstitiale Z verwendeten Atome reicht von H [103], über Elemente der Hauptgruppen wie B, C [104] oder P [105] bis zu den Übergangsmetallen Cr, Mn, Fe, Co oder Ni [106]. Innerhalb dieser Verbindungen liegen die Clustereinheiten über Halogenatome verbrückt vor. Die Stabilitäten der verschiedenen Cluster beruhen, neben den elektronischen Verhältnissen, wohl auch auf dem stabilisierenden Einfluss der Zr-Z-Wechselwirkung. Wie bereits in Kapitel 1.1 erwähnt, existieren auch von Titan Verbindungen mit diskreten Ti-Ti-Bindungen. In den Verbindungen KTi₄Cl₁₁ [107], CsTi₂Cl₇ [108], CsTi_{4.3}I₁₁ [109] beispielsweise liegen als zentrale Clustereinheiten [Ti₃]- Dreiecke vor. Von Hafnium sind bis heute nur die ternären Verbindungen vom Typ A_2HfX_6 bekannt [11]. Durch Corbett et al. [111] konnten im System A/Hf/Z/Cl (A = Alkalimetall, Z = Interstitial) einige Clusterphasen in Form von Pulvern erhalten werden, die durch Vergleiche mit bekannten Zr-Verbindungen, isotyp verfeinert werden konnten. Die Verbindungen der Zusammensetzung Na_{0.8}Hf₆Cl₁₅B und Na_{0.76}Hf₆Cl₁₅B konnten anhand von Einkristallen bestimmt werden. Die Bandbreite dargestellter Hf-Cluster ist im Vergleich zu Zr gering, obwohl zahlreiche Versuche mit unterschiedlichsten Interstitialen durchgeführt wurden [111]. Bis heute lassen sich in der Literatur keine reduzierten, ternären Halogenide des Hafniums finden. Clusterphasen von Hafnium mit Bromid oder Iodid sind nicht bekannt. Diese Gründe und das Fehlen von Einkristalldaten der weiteren, binären Hafniumhalogenide führten dazu, neben den systematischen Untersuchungen im System A/Ti/X, weitere Untersuchungen von binären und ternären Halogeniden des Hafniums vorzunehmen. Dabei beschränkte man sich in erster Linie auf Iodide, da HfI4 durch die direkte Synthese aus den Elementen am einfachsten zugänglich ist. Außerdem sollte gerade das Iodid-Anion am ehesten in der Lage sein, Verbindungen in niederen Oxidationsstufen zu stabilisieren. Zudem wurden zahlreiche Syntheseversuche mit dem Ziel unternommen, erstmalig Clusterphasen des Hafniums mit Iodid oder Bromid darzustellen und zu charakterisieren. Aufgrund der zahlreich vorhandenen Zr-Cluster wurden die Ansätze mit Hf oftmals in Analogie zum Zr-System gewählt, wobei zumeist die Reaktionstemperaturen variiert wurden. Die präparativen Arbeitsmethoden sind bereits in Kapitel 1.2 erläutert wurden.

Abb. 49: Darstellung einer $[Zr_6X_{18}]$ -Clustereinheit mit 18 Anionen über den 12 Kanten und 6 Ecke des $[Zr_6]$ -Oktaeders, entsprechend der Eulerschen Beziehung E + F = K + 2 für ein Oktaeder (6 + 8 = 12 + 2). Die Verknüpfung der Einheiten kann über Ecken und Kanten erfolgen.

3.2 Binäre Halogenide des Hafniums

3.2.1 Allgemeines

Die ersten Versuche zur Darstellung reduzierter Hafniumhalogenide wurden 1947 von Schumb and Morehouse [112] veröffentlicht. Darin beschreiben die Autoren die Synthese von HfBr₃, in analoger Weise zum bereits 1931 von Young dargestellten ZrBr₃ [113], ohne jedoch röntgenographische Untersuchungen durchzuführen. Young konnte ZrBr3 durch Reduktion von ZrBr4 in einem "Heiß-kalten Rohr" unter Wasserstoffatmosphäre mit elementaren Aluminiumspänen gewinnen. Die Aufbereitung erfolgte durch Sublimation von unverbrauchtem ZrBr₄ und AlBr₃ [113]. Erst 1956 konnte durch Larsen and Leddy [114] die Synthese von Hafniumtrihalogeniden vereinfacht werden, indem die Tetrahalogenide (HfX₄) mit elementarem Hafnium bei höheren Temperaturen in Kieselglasampullen umgesetzt wurden. Mit dieser Methode erhielt man hohe Ausbeuten der Trihalogenide HfX_3 (X = Cl-I), welche mithilfe von röntgenographischen Pulvermethoden charakterisiert wurden. Außerdem gaben sie an, dass die Trihalogenide des Hafniums, im Falle des Iodids und Bromids, die einzigen reduzierten Phasen darstellen. Die Existenz von HfI2 und HfBr2 wurde aufgrund eines angenommenen Phasengleichgewichts bei 700°C ausgeschlossen. In späteren Arbeiten wurde gezeigt, dass die auf analoge Weise hergestellten Hafniumtrihalogenide noch einen gewissen Anteil an elementarem Hf enthielten [115]. Baker and Janus konnten HfI3 nach eigenen Angaben durch Reduktion von Hfl4 mit Aluminiumpulver bei 385°C in Kieselglasampullen darstellen [116]. Das erhaltene "Hfl3" enthielt jedoch noch Anteile an nicht verbrauchtem Aluminium.

Eine genauere Charakterisierung der Verhältnisse wurde später durch intensive Untersuchungen am System HfI₄/Hf von *Struss and Corbett* [117] vorgenommen. Durch röntgenographische Untersuchungen sowie analytische Bestimmungen des Hf-Gehalts durch Titration mit EDTA konnte gezeigt werden, dass zwischen Hf und HfI₃ keine weiteren reduzierten Phasen im Gleichgewicht vorliegen. Es existiert jedoch zwischen HfI₃ und HfI₄ eine nicht-stöchiometrische Phase mit der ermittelten Zusammensetzung von HfI_{3+x} (x = 0,2-0,5). HfI_{3,5} stellt dabei die obere Grenze dieser Phasen dar. Der Temperaturbereich, in welchem die ermittelten Phasen stabil sind, liegt zwischen 475°C und 575°C. Die Reduktion verläuft sehr langsam, sodass längere Temperzeiten notwendig waren. Dadurch konnten jedoch geeignete Pulverdiffraktogramme erhalten werden, die mehr Reflexe aufwiesen, als bei früheren Arbeiten beobachtet. Diese deuteten auf eine Überstruktur hin, in welcher die a-

und c-Parameter im Vergleich zu der von Dahl et al. [115] gefundenen Elementarzelle, verdoppelt (a = $2a_0$) bzw. vervierfacht (c = $4c_0$) sind. Die von *Dahl et al.* [115] aus Pulverdaten ermittelte Struktur wurde ebenfalls durch Struss and Corbett [117] bestätigt, jedoch mit zunehmender Abweichung bei Erreichen des Phasenlimits von Hfl35. Demnach liegen in HfI₃, wie auch in TiI₃-II [31], hexagonal-dichtest gepackte Schichten von I⁻ vor. Zwischen all diesen Schichten sind 1/3 der Oktaederlücken mit Hf³⁺ besetzt, sodass lineare Ketten von flächenverknüpften [HfI₆]-Oktaedern entstehen, gemäß $\frac{1}{20}$ [HfI_{6/2}]. Die Lücken zwischen diesen Ketten sind unbesetzt. Durch Auffüllen dieser Lücken mit Alkalimetallionen würde man zu den in Kapitel 1.3.2 besprochenen Verbindungen vom Typ ATiX₃ gelangen. Einkristalluntersuchungen an ZrI₃ [119] konnten eine Analogie zur angenommenen HfI₃-Struktur aber nicht bestätigen. ZrI₃ kristallisiert in der RuBr₃-Struktur [135], in der die Zr-Zr-Abstände nicht mehr äquidistant sind, da es zu einer, als eindimensionale Peierlsverzerrung aufzufassenden Ausbildung von diskreten Zr-Zr- σ -Bindungen innerhalb der Ketten, mit Zr-Zr-Abständen von 317,2(2) pm, kommt [8]. Ein Phasenübergang von der ZrI₃-Struktur in eine, der Hochtemperaturmodifikation von Til₃ entsprechende Phase mit äquidistanten Zr-Zr-Abständen konnte für ZrI₃ nicht gefunden werden. Mittlerweile wurden von Zr eine Vielzahl unterschiedlicher Phasen im nichtstöchiometrischen Bereich ZrX_{3+x} ermittelt, welche zum Teil anhand von Einkristalldaten verfeinert wurden [138].

Gezielte Synthesen im System HfCl4/Hf führten zu reduzierten Phasen mit nichtstöchiometrischen Zusammensetzungen im Bereich von HfCl-HfCl₃ [120]. Die Existenz eines Monochlorids der exakten Zusammensetzung HfCl wurde von Troyanov [121] ermittelt, und die Struktur anhand weiterer röntgenographischer Untersuchungen später von Troyanov [122] und Corbett [123] verfeinert. Die Struktur besteht aus dichtest-gepackten Schichten von Hf und Cl, wobei jeweils eine Schicht nur aus Atomen der gleichen Sorte aufgebaut ist. Die Schichtenfolge ist dabei genau wie bei ZrBr [124] und besteht aus einer X-Hf-Hf-X Schichtenanordnung, welche sich in Richtung der kristallographischen c-Achse wiederholt. Dabei kommt es zur Ausbildung von Hf-Hf-Doppelschichten, die auch für die Monohalogenide des Zr charakteristisch sind [120]. Die Existenz der zweiwertigen Halogenide des Hafniums (HfX_2) konnte auch bis heute nicht belegt werden. Zwar findet man in der Literatur Angaben zu auftretenden Gleichgewichten, die eine Disproportionierung von HfBr₂ in Hf-Metall und HfBr₄ vorhersagen [112], jedoch sind bislang keine röntgenographischen Untersuchungen bekannt, die eine Existenz dieser Verbindungen belegen. Im Folgenden soll nun über die Ergebnisse berichtet werden, die im Rahmen dieser Arbeit bei den Darstellungsversuchen niedervalenter Hafniumhalogenide erhalten wurden.

3.2.2 Darstellung von HfI₄

Die Darstellung von HfI₄ erfolgt durch direkte Umsetzung von Hf-Pulver (2-3 % Zr nominal) mit elementarem Jod (sublimiert). Als Reaktionscontainer dient eine 15 cm lange Kieselglasampulle, welche nach etwa 10 cm eine Verjüngung besitzt. Durch Gasphasentransport lässt sich das entstehende HfI₄ somit in der zweiten Reaktionskammer leicht von überschüssigem Hf-Pulver trennen. Das sehr feine Hf-Pulver wird in der Box in die Ampulle eingewogen und die entsprechende Menge an zuvor fein gemörsertem Iod im Ar-Gegenstrom an der Vakuumlinie zugegeben. Unter Kühlung mit flüssigem Stickstoff kann die Ampulle leicht unter Vakuum abgeschmolzen werden. Bei einer Reaktionstemperatur von 400C° beträgt die Reaktionszeit 48 Stunden. Das orange-gelbe Produkt wird in der Handschuhbox pulverisiert und anschließend bei etwa 200°C durch Sublimation von überschüssigem Iod befreit. Der Schmelzpunkt von HfI₄ liegt bei 440°C. In Abb. 49 ist ein Vergleich der beobachteten und aus Einkristalldaten simulierten Pulverdiffraktogramme von HfI₄ zu sehen. Die gute Übereinstimmung aller Reflexlagen zeigt, dass HfI₄ röntgenographisch phasenrein erhalten werden konnte (Abb.50).

Hf + 2 I₂
$$\xrightarrow{400^{\circ}C}$$
 HfI₄

.....

Abb. 50: Pulverdiffraktogramm von HfI₄ (schwarz: gemessen; rot: simuliertes HfI₄ [81]).

Die Ansätze wurden allesamt in Tantal-Ampullen nach den in Kapitel 1.1 beschriebenen Methoden durchgeführt. Die Syntheseversuche in Kieselglasampullen führten meist zu starken Verunreinigungen der Produkte mit HfO₂, welches dabei sogar in einkristalliner Form erhalten werden konnte. Diese Beobachtungen konnten auch von Corbett [117] gemacht werden, wobei ein nicht näher charakterisiertes Oxidiodid des Hafniums als intermediäres Produkt angenommen wird. Aufbauend auf die bereits in der Einleitung erwähnten Erkenntnisse bei der Bildung von Hafniumtrihalogeniden, sind die Reaktionsbedingungen verändert worden. Dies geschah zum einen durch Erhöhung der Reaktionstemperaturen und Haltezeiten, zum anderen durch Auswahl verschiedener Reduktionsmittel. Das Arbeiten bei höheren Temperaturen erfolgte unter Berücksichtigung des hohen Dampfdrucks von Hfl4, der bei zu großen Aufheizraten zu einem Riss in der Wand der Ta-Ampullen führt [117]. Durch diese meist nicht sichtbaren Lecks in der Containerwand diffundiert noch nicht reagiertes Hfl₄ in die Kieselglasampulle und wird damit der Reaktion entzogen. Dies konnte durch kleine Aufheizraten und eingeschobene Haltezeiten bei niedrigeren Temperaturen vermieden da gewisse Anteile von HfI4 so bereits vor Erreichen der höheren werden, Reaktionstemperaturen reduziert worden sind. Durch Umsetzung von Hfl4 mit Alkalimetallen (Cs-Na) konnte, neben den sich bildenden Alkalimetallhalogeniden AX, auch eine HfI₃-Phase erhalten werden (Abb. 51). Eine Abtrennung durch Sublimation war jedoch nicht möglich, da sich Hfl₃ dabei zersetzt.

Abb. 51: Pulverdiffraktogramm eines Ansatzes von HfI₄ + Na. (schwarz: beobachtet; rot: simuliertes NaI [140]; blau: simuliertes HfI₃ [115])

Daneben wurden auch Verbindungen der Zusammensetzung A₂HfI₆ [126] gebildet (Kapitel 2.1.2.2), die gerade im Fall von Cs eine hohe Stabilität aufweisen und oftmals phasenrein erhalten werden konnten.

Die Reduktion von HfI₄ mit den Erdalkalimetallen (Ea = Ba-Mg) liefert unterschiedliche Ergebnisse. Zum einen konnte ebenfalls HfI₃, neben den Erdalkalimetallhalogeniden EaX₂, erhalten werden. Es kam aber gerade bei höheren Temperaturen (> 600°C) oft zur Bildung von Oxidhalogeniden der Form Ea₄OI₆ [45, 46]. Bei zu tiefen Temperaturen (< 400°C) ist keine merkliche Umsetzung beobachtet worden. Eine ternäre Phase der Form EaHfI₆ konnte nicht erhalten werden. Die Gründe dürften, ähnlich wie bei Titan (Kapitel 2), in der höheren Stabilität der binären Phasen gegenüber möglichen ternären Verbindungen liegen.

Bei der direkten Umsetzung von HfI₄ mit Bor oder Kohlenstoff konnte keine merkliche Reaktion beobachtet werden. Auch die Erhöhung der Reaktionstemperatur (> 800°C) hat zu keiner merklichen Reaktion geführt. Setzt man HfI₄ in Gegenwart von Hf-Chips mit B um, so erhält man gerade bei höheren Temperaturen, neben kleinen Anteilen von HfI₃ und nicht umgesetztem HfI₄, HfB₂ [141] als Hauptphase. Dieses setzt sich auf dem Hf-Chip ab und entzieht somit Hf weiteren Reduktionsvorgängen, da HfB₂ eine hohe thermische Stabilität aufweist und eine Diffusion durch diese Schicht erschwert wird (Abb. 52).

Ähnliche Beobachtungen lassen sich auch bei der Reaktion von Hfl₄ und Al bei Anwesenheit von elementarem Hafnium machen. Das sich bildende HfAl₃ [125] setzt sich auf dem Hf-
102

Metall ab und schützt dieses regelrecht vor weiterer Reaktion. Ein Problem, das auch von Corbett beschrieben wurde [117]. Die Bildung solcher Phasen wurde auch bei der direkten Umsetzung von HfI₄ mit Aluminium beobachtet [117]. Der geschwindigkeitsbestimmende Schritt stellt somit die Diffusion von Hf durch diese Schichten dar und könnte auch ein Grund dafür sein, dass die Reaktionsgeschwindigkeiten im Allgemeinen sehr niedrig sind und die Umsetzungen häufig unvollständig waren. Dennoch konnten bei der Reaktion von Hfl4 mit schwarz-glänzende Kristalle erhalten werden. Al-Metall Die röntgenographische Einkristalluntersuchung ergab die Zusammensetzung HfI3,49, was dem Erreichen des von Corbett beschriebenen oberen Limits der nichtstöchiometrischen Phase, von HfI_{3.2}-HfI_{3.5} schon sehr nahe kommt. Angaben zur Darstellung und Strukturbestimmung von Hf0.86I3 (HfI_{3,49}) finden sich in Kapitel 3.2.4. Die erhaltenen Kristalle stellen zugleich auch eine Ausnahme dar, denn bei den meisten Ansätzen konnten keine Einkristalle erhalten werden. Die Proben lagen meist in Form von inhomogenen Pulvern vor, wobei die Reaktionen oft unvollständig waren, obwohl teilweise Reaktionszeiten von 8 Wochen gewählt wurden.

Neben den beschriebenen Umsetzungen mit HfI4 sind ebenso Versuche mit HfBr4 und HfCl4 durchgeführt worden. Auch hier kommt man zu ähnlichen Ergebnissen, wobei die Reaktionen stets unvollständig waren, trotz höherer Reaktionstemperaturen und längerer Haltezeiten. Meist fanden sich in den Ansätzen Gemische unterschiedlicher Phasen neben nicht umgesetzten Tetrahalogeniden. Die Probleme bei hohen Temperaturen waren die gleichen wie oben erwähnt. Im Fall von HfBr4 war ein Arbeiten oberhalb 600°C durch auftretende Risse in der Ampullenwand nur bedingt möglich. Hochtemperaturansätze von HfCl4 und HfBr4 mit elementarem Hf-Metall oder Al bei Temperaturen von 1400°C führten nicht zu neuen Phasen. Leider konnten weder Einkristalle von geeigneter Qualität noch reine Pulverproben bei diesen Umsetzungen erhalten werden. Dieses Problem stellt die zentrale Hürde beim Versuch dar, neue Phasen in diesem System zu erhalten und zu charakterisieren. Obwohl sich Hafnium in seiner vierwertigen Stufe ähnlich wie Zirkonium verhält, findet man bei den reduzierten Halogeniden Unterschiede. Die Lanthanidenkontraktion bewirkt demnach nur, dass große Ähnlichkeiten bei Verbindungen des Hafniums und Zirkoniums mit vierwertigen Kationen Zr^{4+} und Hf^{4+} auftreten. Die verbleibenden 5d-Elektronen des Hafniums, in seiner drei- (5d¹) und zweiwertigen (5d²) Stufe, scheinen einen entscheidenen Einfluss auf die Bildung ternärer Halogenide zu besitzen. Für das Auftreten der nichtstöchiometrischen Phase Hfl_{3+x} könnten demnach elektronische Effekte verantwortlich sein. Eine Aussage darüber lässt sich nur durch quantenchemische Berechnungen machen, die im Rahmen dieser Arbeit nicht durchgeführt werden konnten.

3.2.4 Die Verbindung Hf_{0,86}I₃

3.2.4.1 Einleitung

Bei den Metalltrihalogeniden MX₃ (M = Übergangsmetall, X = Halogen) bilden die X-Atome allein die hexagonal-dichteste Kugelpackung aus. In der Elementarzelle der hexagonaldichtesten Kugelpackung (hcp) befinden sich zwei Kugeln, zwei Oktaederlücken sowie vier Tetraederlücken. Die Raumgruppe ist P63/mmc. Um ein Drittel der Oktaederlücken zu besetzen, muss die Elementarzelle der hcp mindestens um den Faktor 3 vergrößert werden. Bei Verdreifachung der Elementarzelle kommt es zum Abbau von Translationssymmetrie und somit zu einem klassengleichen Übergang vom Index 3 [98]. Die verschiedenen Untergruppen und somit möglichen Strukturtypen lassen sich durch Aufstellen von sogenannten Bärnighausen-Stammbäumen [131] ermitteln, in denen mithilfe von Gruppe-Untergruppe-Beziehungen Symmetrieverwandtschaften zwischen verschiedenen Strukturen abgeleitet werden können. Da es bei niedersymmetrischen Raumgruppen jedoch zu einer beliebig großen Anzahl von Verzerrungsvarianten kommen kann, ist es nicht immer einfach, eine direkte Strukturverwandtschaft abzuleiten. Bei den Übergangsmetalltrihalogeniden müssen 1/3 der Oktaederlücken besetzt werden, wozu es generell eine große Anzahl an Möglichkeiten gibt. Das Symmetrieprinzip in der Kristallchemie begrenzt dabei die Anzahl an Anordnungsmöglichkeiten der Atome in der Kristallstruktur einerseits, wonach möglichst hochsymmetrische Anordnungen von Atomen bevorzugt sind und die Atome einer Sorte möglichst wenig unterschiedliche Punktlagen einnehmen. Andererseits spielen übergeordnete Effekte eine Rolle, die durch die chemische Beschaffenheit der Metallatome gesteuert werden (Metall-Metall-Wechselwirkungen).

Die Besetzung der Oktaederlücken der hexagonal-dichtesten Kugelpackung von I wird in den MI_3 -Verbindungen vor allem auf zwei Arten bewerkstelligt. Füllt man in jeder zweiten Zwischenschicht die Oktaederlücken zu 2/3, so gelangt man zur BiI₃-Struktur [15]. Die Struktur von BiI₃ lässt sich als geordnete Defektvariante des CdI₂-Typs [132] auffassen, da in der Struktur Schichten von kantenverknüpften [BiI₆]-Oktaedern vorliegen gemäß $^2_{\infty}$ [BiI_{6/2}]. Die Schichten werden wiederum nur durch schwache van-der-Waals-Kräfte zusammengehalten (Abb. 54). Vertreter des BiI₃-Typs sind beispielsweise die Verbindungen der 3. Nebengruppe ScI₃ [14] und YI₃ [133].

Füllt man in jeder Zwischenschicht 1/3 der Oktaederlücken mit Metallatomen, sodass Ketten von flächenverknüpften Oktaedern entstehen, gelangt man zur Struktur von TiI₃ ($P6_3/mcm$)

[14]. Die Oktaederstränge, $\frac{1}{\infty}$ [TiI_{6/2}], sind entlang [001] angeordnet und von sechs weiteren Strängen hexagonal umgeben, sodass nur Dispersionskräfte zwischen ihnen auftreten (Abb. 53). Dies ist auch ein Grund dafür, dass die Kristalle in Form langer Nadeln anfallen, die durch geringste mechanische Beanspruchung in weitere dünne Nadeln aufspalten, was eine Kristallstrukturuntersuchung bei diesen Verbindungen erschwert. Durch die Flächenverknüpfung kommen sich die Metallzentren im TiI₃-Typ räumlich sehr nah, sodass schon früh auf ausgeprägte Metall-Metall-Wechselwirkungen hingewiesen wurde.

Abb. 53: Anordnung der Oktaederketten bei Verbindungen mit TiI₃-Struktur. Links: Blick entlang [001], rechts: Blick entlang [010].

Abb. 54: Anordnung der [MX₆]-Oktaeder bei Verbindungen mit BiI₃-Struktur. Links: Blick entlang [001], rechts: Blick entlang [010].

Fortan wurden Verbindungen mit TiI₃-Struktur als Modellsysteme für 1-dimensionale Metalle betrachtet [115]. Die vermuteten starken M-M-Wechselwirkungen für Verbindungen mit TiI₃-Struktur wurden durch Messungen der magnetischen Suszeptibilität belegt, wobei die geringen Werte bei einigen Verbindungen für diskrete M-M-Einfachbindungen sprachen, die jedoch in der Raumgruppe $P6_{3}/mcm$ aus Gründen der Symmetrie nicht möglich sind [134]. Zunächst konnten die M-M-Bindungen nicht mittels röntgenographischer Methoden bewiesen werden, jedoch deuteten schwache Überstrukturreflexe auf eine vervierfachte Elementarzelle hin [31]. Erst 1968 konnte anhand der Struktur von RuBr₃ [135] gezeigt werden, dass die Überstruktureflexe nicht die Bedingungen einer trigonalen Lauegruppe erfüllten, sondern auf eine orthorhombische Zelle mit der Laue-Symmetrie *mmm* (D_{2h}) hinweisen. Die Verfeinerung der Struktur in der Raumgruppe *Pmmn* erlaubt die Ausbildung von [M-M]-Paaren, die sich innerhalb der Oktaederstränge ausbilden können. Die vorgetäuschte hexagonale Pseudozelle der Laue-Symmetrie 6/mmm lässt sich somit nur den intensivsten Reflexen zuordnen. Die hexagonale Metrik bei der Anordnung der Oktaederstränge bleibt der Verfeinerung in *Pmmn* erhalten, da durch die Lage des Inversionszentrums ($\frac{1}{2}$ $\frac{1}{2}$) die beiden Oktaederketten (x = $\frac{1}{4}$ und x = $\frac{3}{4}$) ineinander überführt werden, sodass die Paarbildung lediglich innerhalb der Ketten zu Abweichungen von der hexagonalen Modifikation führt. Zwischen den Raumgruppen $P6_{3}/mcm$ und *Pmmn* besteht eine direkte Gruppe-Untergruppe-Beziehung, wodurch sich auch das Auftreten von verzwillingten Kristallen erklären lässt [118].

Auch TiI₃ selbst ist dimorph und der Phasenübergang findet nur leicht oberhalb Raumtemperatur statt. Die Ti-Ti-Abstände in der Hochtemperaturform (TiI₃-II) sind mit 325,1(3) pm äquidistant [31]. Unterhalb von Raumtemperatur macht sich die Ausbildung von [Ti₂]-Dimeren in Abständen von 309,6(2) pm und 339,6(2) pm bemerkbar [25].

Von ZrI₃ [119] kennt man nur die RuBr₃-analoge Modifikation. Die kurzen Zr-Zr-Abstände innerhalb der Ketten von 317,2(2) pm können als Zr-Zr- σ -Bindungen aufgefasst werden, die von den beiden d-Elektronen ausgebildet wird. Die längeren Abstände von 350,7(2) pm zwischen den Dimeren lassen sich dementsprechend als anti-bindende Wechselwirkungen verstehen. Einen vergleichbaren Zr-Zr-Abstand von 318,5 pm findet man auch in ZrI₂ [137], in welchem Zick-Zack-Ketten von Zr-Atomen vorliegen. Ein Problem bei der Bestimmung der Struktur von ZrI₃ ist das Auftreten eines nicht-stöchiometrisch zusammengesetzten Bereichs zwischen ZrI₃ und ZrI₄ mit dem oberen Phasenlimit von ZrI_{3,5} [138], der eine Unterbesetzung auf einer der Zr-Lagen zur Folge hat. Die Struktur der Verbindung ZrI_{3,4} konnte anhand eines Einkristall gelöst und in der Raumgruppe *P*6₃/*mmc* verfeinert werden [139], wobei aufgrund der Unterbesetzung in einer Zirkoniumlage (ZrI_{3,4} = Zr_{0,881}I₃) eine Verzerrung der Symmetrie auftreten sollte, die zu einer Überstruktur führen würde. Eine Phase der Zusammensetzung ZrI_{3,43} konnte auch von *Daake* [138] ermittelt werden. Eine pulverdiffraktometrische Untersuchung ergab, dass die Gitterparameter c und a bei hexagonaler Aufstellung der Zelle mit zunehmendem x in ZrI_{3+x}, größer bzw. kleiner wurden. Bei den Untersuchungen traten zunehmend Überstrukturreflexe vor allem bei Erreichen der oberen Phasengrenze von ZrI_{3,5} auf. Die Lösung in der Raumgruppe des hexagonalen Aristotypen der TiI₃-Struktur, *P*6_y/*mmc*, schließt diese Reflexe nicht mit ein.

Abb. 55: Tieftemperaturform von RuBr₃. Beziehung zwischen der hexagonalen Pseudozelle (rot, Projektion [001]) und der orthorhombischen Aufstellung (schwarz, Projektion entlang [010]). Ausbildung von diskreten M-M-Bindungen (1-D-Peierls-Verzerrung)

Es wird angenommen, dass sich die nicht-stöchiometrische Phasen mit der Zusammensetzung HfI_{3+x} (x = 0,2-0,5) aufgrund partieller Oxidation von Hf^{3+} zu Hf^{4+} unter Hf-Metall-Abscheidung innerhalb der Ketten bildet (Abb. 56).

 $4Hf^{3+}$ \longrightarrow $3Hf^{4+} + Hf$

Das würde dann, im Vergleich zur "exakten" Zusammensetzung HfI₃, zu einer Unterbesetzung in den Hafniumlagen führen, wodurch sich innerhalb der Ketten Fehlstellen ausbilden. Der geschwindigkeitsbestimmende Schritt stellt die Diffusion des Metalls an die Oberfläche dar [117].

Abb. 56: Stabilitätsbereiche der verschiedenen HfI_{3+x}-Phasen in Abhängigkeit von der Temperatur [117]

3.2.4.2 Darstellung und Strukturbestimmung

Die Verbindung Hf_{0,86}I₃ wurde aus einem Ansatz erhalten, der zur Darstellung einer ternären Verbindung mit NaI gedacht war. Dazu wurden NaI, HfI₄ und Al in einem molaren Verhältnis von 1:1:4 in eine Ta-Ampulle eingewogen und bei 850°C für 500 h in einem Röhrenofen belassen. Nach langsamem Abkühlen (5 °C/h) erhält man schwarz-glänzende Kristalle in Form von kleinen Rechtecken. Ein analoger Ansatz mit HfI₄ und Al im Verhältnis 1:1 bei einer Temperatur von 600°C führte zur gleichen Verbindung. In beiden Ansätzen waren, neben einigen schwarz-glänzenden Kristallen auch immer noch Anteile von HfI₄ vorhanden. Gleich von mehreren Kristallen konnten die Zellkonstanten bestimmt werden und von einem geeigneten Einkristall konnte am IPDS I ein Intensitätsdatensatz erstellt werden Und die Struktur unter Anwendung direkter Methoden (SHELXS-97) und anschließender Differenz-Fourier-Synthesen (SHELXL-98) gelöst werden.

Die Kristallstruktur von $Hf_{0,86}I_3$ wurde auf der Basis 425 symmetrieunabhängiger Reflexe (I>2 σ_I) bis zu den Gütefaktoren $R_1 = 4,08$ % und $wR_2 = 5,89$ % in der Raumgruppe $R\bar{3}m$ verfeinert. Die Unterbesetzung in den Hafnium-Lagen könnte auf eine fehlgeordnete Struktur hindeuten. Es wurde deshalb im Beugungsbild nach einer Überstruktur gesucht, die eine solche Fehlordnung erfassen würde. Jedoch sind keine entsprechenden Reflexe auf allen drei kristallographischen Achsen gefunden worden, die eine Indizierung ermöglicht hätten. Lageparameter, thermische Auslenkungsparameter sowie ausgewählte Atomabstände und Winkel lassen sich den Tabellen 32-35 entnehmen.

3.2.4.3 Strukturbeschreibung

Die Verbindung Hf_{0,86}I₃ kristallisiert hexagonal in der Raumgruppe $R\overline{3}m$ mit 18 Formeleinheiten in der Elementarzelle und den Zellparametern a = 1250,3(2),c = 1999,6(3) pm. Die Struktur ist aufgebaut aus einer hexagonal-dichtesten Kugelpackung von Iodid-Anionen und es bilden sich flächenverknüpfte $\frac{1}{\infty}$ [HfI_{6/2}]-Oktaederstränge aus, die entlang [001] und aus Gründen der Symmetrie ($R\overline{3}m$) auch parallel zu [1/3, 2/3, 1] und [2/3, 1/3, 1] verlaufen (Abb. 57). Die Oktaederlücken in den umgebenden Oktaedersträngen sind nicht gefüllt, so dass die besetzten ${}^{1}_{\infty}$ [HfI_{6/2}]-Oktaederstränge voneinander isoliert sind. Würde man ein Drittel der 54 Oktaederlücken pro Elementarzelle mit Hafnium besetzen, käme man zu der Zusammensetzung Hf₁₈I₅₄ oder HfI₃, und somit zur am stärksten reduzierten Phase im Gleichgewicht zwischen Hfl₄ und dem Metall. In Hf_{0,86(1)}I₃ werden statistisch gesehen nicht alle Oktaederlücken besetzt. Dies äußert sich in der Unterbesetzung von einer von vier kristallographisch unterschiedlichen Hf-Lagen. Die Lage 3a (Hf1) besitzt nur einen Besetzungsfaktor von 0,14, während Hf2 (3b), Hf3 (6c) und Hf4(6c) voll besetzt sind. Somit sind 0,42 Hafniumatome statistisch auf drei Oktaederlücken verteilt. Dies führt innerhalb der Oktaederketten zur Ausbildung von [Hf-Hf]-Trimeren, die formal voneinander isoliert sind, wodurch es zu einer Verzerrung der hexagonalen Symmetrie innerhalb der Ketten kommt. Eine orthorhombische Symmetrie, die zur Struktur von ZrI₃ (Pmmn) führen würde, konnte nicht gefunden werden. Die Verbindung Hf_{0,86(1)}I₃ oder HfI_{3,49(1)} stellt die obere Grenze der nicht-stöchiometrischen Phase HfI_{3,2-3,5} [117] dar (Abb. 55). Die für die hexagonale Subzelle von $HfI_{3.5}$ aus Pulverdaten ermittelten Gitterparameter a = 723 pm und c = 667 pm [117] stimmen mit den aus der Superzelle von HfI_{3,49} berechneten Werten von $a' = a/\sqrt{3} = 721,9 \text{ pm und } c' = c/3 = 666.5 \text{ pm gut überein.}$

Innerhalb der Oktaederketten bilden sich zwei unterschiedliche, lineare [Hf₃]-Trimere aus, die sich in den Hf-Hf-Abständen unterscheiden. In [Hf3-Hf2-Hf3] sind die Hf-Atome 318,2(2) pm voneimader entfernt (Abb. 59). Dieser Abstand stimmt sehr gut überein mit dem oben erwähnten Zr-Zr-Abstand in ZrI₃ [119] von 317,2 pm, der als Zr-Zr- σ -Bindung aufgefasst werden kann. In dem zweiten Trimer [Hf4-Hf1-Hf4] sind die Hf-Abstände mit 306,7(2) pm deutlich kürzer. Die beiden Trimere sind durch den Hf3-Hf4-Abstand von 375,0(3) pm voneinander isoliert. Hf1 und Hf2 liegen jeweils in der Mitte der Trimeren weshalb man für beide sechs äquidistante Hf-I-Abstände findet (Tab. 34). Die Hf2-I-Abstände sind dabei mit 287,2(2) pm etwas kürzer (Hf1: 291,4(2) pm), was mit dem längeren Hf2-Hf3-Abstand korreliert. Die gemittelten Zr-I-Abstände liegen in ZrI₃ mit 290,0 pm in der gleichen Größenordnung. Der kürzere Hf1-Hf4-Abstand bewirkt eine stärkere Auslenkung der Hf4-Atome hin zu den verbrückenden I3-Atomen des Trimeren, was sich in den kurzen Hf4-I3-Abständen von 271,5(2) pm widerspiegelt. Der Abstand von Hf4 zu den I2-Atomen, welche die beiden Trimeren verbrücken, ist deshalb mit 300,1(2) pm deutlich länger. Ähnlich große Unterschiede in den Hf-I-Abständen mit 268-300 pm findet man auch in HfI₄ [81], mit Hf in der Oxidationsstufe +4. Der gemittelte Hf-I-Abstand in HfI₄ liegt bei 284 pm und ist damit nur unwesentlich größer als in Cs₂HfI₆ mit 283,0 pm. Die gemittelten Hf-I-Abstände in HfI_{3,49} liegen bei 287,2 pm und sind damit ähnlich lang wie in HfI₃ [115] (286,8 pm), dessen Struktur anhand von Pulveraufnahmen gelöst und verfeinert wurde.

Wenn die Lagen der Hf1-Atome innerhalb der unabhängigen Oktaederstränge voll besetzt wären, würde dies zu der Zusammensetzung Hf₆I₁₈ führen, unter Berücksichtigung der zwei unterschiedlichen Trimeren. Entsprechend ließe sich die elektronische Situation mit $(Hf^{4+})_6(e^-)_6(\Gamma)_{18}$ beschreiben. Somit stünden für die beiden [Hf-Hf-Hf]-Trimere in Hf₆I₁₈ jeweils drei Elektronen zur Ausbildung der Hf-Hf-Bindungen zur Verfügung, gemäß ${(Hf_3)(e)_3}_{2}I_{18}$. Da die Hf1-Lagen in HfI_{3,49} jedoch nicht voll besetzt sind, stehen für Hf_{0,86}I₃ (= Hf_{5,16}I₁₈) statistisch gesehen nur 2,58 Elektronen für die Ausbildung der Hf-Hf-Bindungen zur Verfügung. Für Ba₆Pr₃I₁₉ [147] konnte mithilfe elektronischer Bandstrukturrechnungen gezeigt werden, dass die beiden verfügbaren Elektronen in den linearen [Pr₃I₁₆]⁹⁻-Trimeren eine offene Drei-Zentren-zwei-Elektronen-Bindung ausbilden. Die Ausbildung der Hf-Trimere könnte ebenfalls durch die elektronische Situation bedingt sein, was durch quantenchemische Berechnungen zu beweisen wäre, die im Rahmen dieser Arbeit jedoch nicht durchgeführt wurden.

Abb. 57: Darstellung der Elementarzelle von Hf_{0.86}I₃. Blick entlang [001].

Abb. 58: Darstellung der Elementarzelle von Hf_{0,86}I₃. Blick entlang [100].

Abb. 59: Darstellung einer ${}^{1}_{\infty}$ [HfI_{6/2}]-Kette mit trimeren [Hf-Hf]-Einheiten.

Die Zusammensetzung von HfI_{3,49} entspricht der oberen Phasengrenze von HfI_{3+x} mit x = 0,5. Während die Struktur von HfI₃ noch in der Raumgruppe $P6_3/mcm$ mit äquidistanten Hf-Hf-Abständen beschrieben werden kann, ist dies für Hf_{0,86}I₃ nicht mehr möglich. Aufgrund der statistischen Unterbesetzung der Hf-Lagen kommt es innerhalb der Oktaederkette zur Ausbildung von Trimeren. In der Raumgruppe $R\bar{3}m$ (Nr.166) ist diese Anordnung möglich. Weitere Überstrukturreflexe, die das Problem der Unterbesetzung hätten erfassen können, konnten nicht beobachtet werden. Die Ableitung der hexagonalen Subzelle von Hf_{0,86}I₃ führt zu einer Übereinstimmung mit den aus Pulveraufnahmen erhaltenen Werten [117]. Hinweise auf eine Verzwillingung konnten ebenfalls nicht erhalten werden. **Tab. 32**: Kristallographische Daten von $Hf_{0,86}I_3$.

Summenformel	$Hf_{0,86}I_{3}$
Temperatur/K	293(2)
Kristallsystem	Hexagonal
Raumgruppe	$R\overline{3}m$ (Nr.166)
Gitterkonstanten/pm	a = 1250,3(3)
	c = 1999, 6(3)
Zellvolumen/10 ⁶ pm ³	2707,3(6)
Ζ	18
Dichte/g·cm ⁻³	2,744
Diffraktometer	IPDS I (STOE Darmstadt)
Verwendete Strahlung	Mo-K α , $\lambda = 71,07 \text{ pm}$
Monochromator	Graphit
Absorptionskoeffizient, μ/mm^{-1}	14,477
Absorptionskorrektur	Numerisch, X-SHAPE
F(000)	1848
Scanbreite	$5,54 < 2\theta < 50^{\circ}$
Detektorabstand/mm	60
Belichtungszeit/min; Bilder	12; 100
Pototiongwinkal a Inkramenta	$0^{\circ} \leq \omega \leq 200, \ \varphi = 0^{\circ}$
Kotationswinker, <i>w</i> -mkremente	$\Delta \omega = 2^{\circ}$
	-15 < h < 15
Indexbereiche	-15 < k < 15
	-24 < 1 < 25
Zahl gemessener Reflexe	7556
Symmetrieunabhängig	719
beobachtet	425
R _{int}	0,1352
Goodness of fit	0,858
R-Werte [I>2sigma(I)]	$R_1 = 0,0408, wR_2 = 0,0589$
R-Werte (alle Daten)	$R_1 = 0,0800, wR_2 = 0,0647$

Atom	Lage	k	x/a	y/b	z/c	U_{eq}
Hf1	3a	0,14(1)	0,3333	0,6667	-0,3333	0,034(9)
Hf2	3b	1	0,3333	0,6667	0,1667	0,0168(6)
Hf3	6c	1	0,3333	0,6667	0,00753(9)	0,0156(5)
Hf4	6c	1	0,3333	0,6667	-0,17999(9)	0,0211(5)
I1	18h	1	0,44218(7)	0,55782(7)	0,08465(7)	0,0211(4)
I2	18h	1	0,22889(7)	0,77111(7)	-0,08132(7)	0,0197(4)
I3	18h	1	0,44209(8)	0,8842(2)	-0,24754(8)	0,0277(4)

Tab. 33: Atomkoordinaten und äquivalente Auslenkungsparameter $[10^{-4} \text{ pm}^2]$ von $\text{Hf}_{0.86}\text{I}_3$.

Tab. 34: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} [10⁻⁴ pm²] für Hf_{0,86}I₃.

Atom	<i>U</i> ₁₁	U_{22}	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
Hf1	0,004(8)	0,004(8)	0,09(2)	0,000	0,000	0,002(4)
Hf2	0,0184(9)	0,0184(9)	0,014(1)	0,000	0,000	0,0092(4)
Hf3	0,0138(6)	0,0138(6)	0,019(1)	0,000	0,000	0,0069(3)
Hf4	0,0209(6)	0,0209(6)	0,022(1)	0,000	0,000	0,0105(3)
I1	0,0285(7)	0,0285(7)	0,0176(8)	0,0003(3)	-0,0003(3)	0,0227(8)
I2	0,0263(7)	0,0263(7)	0,0163(7)	0,0014(3)	-0,0014(3)	0,0206(8)
13	0,0336(8)	0,0192(9)	0,0257(8)	0,0043(7)	0,0021(3)	0,0096(5)

Tab. 35: Ausgewählte Bindungslängen [pm] in $Hf_{0.86}I_3$.

Atome	Abstand	Atome	Abstand
Hf4-Hf1	306,6(2)	Hf4-I3	271,5(2) (3x)
-Hf3	375,0(3)	-I2	300,1(2) (3x)
Hf3-Hf2	318,2(2)	Hf1-I3	291,4(2) (6x)
		Hf2-I1	287,2(2) (6x)
		Hf3-I1	281,7(2) (3x)
		-I2	287,6(2) (3x)

3.3 Ternäre Halogenide des Hafniums

3.3.1 Allgemeines

Zur Darstellung von ternären Hafniumhalogeniden mit Alkalimetallen (A = Cs-Na) findet man in der Literatur nur wenige Angaben. Verbindungen vom Typ A₂MX₆ sind auch für Hafnium bekannt [126]. Zur Darstellung werden die binären Komponenten in Ampullen bei moderaten Temperaturen zur Reaktion gebracht. Anders sieht es mit den reduzierten Verbindungen aus. So existiert von Zirkonium die Verbindung Cs₃Zr₂I₉ [10], die dreiwertiges Zirkonium (d¹) enthält. Die Verbindung kristallisiert im Prinzip isotyp zu Cs₃Cr₂Cl₉ (Kapitel 2.3.2). Neben dieser auch von Titan bekannten Verbindungsklasse, finden sich keine weiteren Analogien zwischen Titan und Zirkonium. Gründe dafür liegen wahrscheinlich in den unterschiedlichen Ionenradien, sowie in den räumlich weiter ausgedehnten 4d-Orbitalen des Zr, im Vergleich zu den kernnahen 3d-Orbitalen des Titans. Dadurch ist Zirkonium besser in der Lage, in Verbindungen Zr-Zr-Bindungen auszubilden, und damit die Klasse ternärer Verbindungen um eine ausgeprägte Klasse von Clustervarianten zu erweitern. So konnte von Corbett mit CsZr₆I₁₄ [101] und KZr₆I₁₄ [129] die Palette ternärer Halogenide mit Alkalimetallen erweitert werden. Jedoch enthalten diese Verbindungen Cs bzw. K nicht in rein ionischer Form, sondern lokalisiert als Interstitiale in den Zentren von [Zr₆]-Oktaedern. Diese Cluster enthalten die charakteristischen [Zr₆X₁₂]-Clustereinheiten, in welchen die Halogenatome über allen Kanten der Zr-Oktaeder liegen. Die axialen Halogenatome verbrücken dabei die Clustereinheiten miteinander, sodass dreidimensionale Netzwerke entstehen. Die Betrachtung der elektronischen Verhältnisse ergab für Kalium eine Ladung von +0,4, die durch bindende K-Zr-Wechselwirkungen verursacht wird [129].

Es bleibt festzustellen, dass für Hafnium keine reduzierten Verbindungen der Zusammensetzung $A_xHf_yX_z$ bekannt sind. Im Folgenden werden nun kurz die Ergebnisse der im Rahmen dieser Arbeit, vor allem in dem System A/Hf/I (A = Cs-Na), durchgeführten Untersuchungen dargestellt. Die Untersuchungen in den analogen Systemen mit Bromid und Chlorid sollen an dieser Stelle nur kurz erwähnt bleiben.

3.3.2 Ergebnisse der Untersuchungen im System A/Hf/I

Im Rahmen dieser Arbeit konnten trotz zahlreicher Reaktionsansätze keine neuen ternären Verbindungen erhalten werden. Die Gründe hierfür können vielfältig sein. Zum einen wurden, wie auch im Falle der binären Systeme (Kapitel 2.1.1), häufig nur unzureichende

Umsetzungen beobachtet. Die Reaktionsgeschwindigkeiten sind auch bei höheren Temperaturen (> 900°C) nur gering. Der geschwindigkeitsbestimmende Schritt stellt bei Umsetzungen von HfI₄ mit Hf und AI wohl die Diffusion von HfI₄ durch eine Schicht von HfI₃ dar, die sich nach kurzer Zeit auf der Oberfläche des Hf-Metalls bildet. Die weitere Reaktion verläuft dann sehr langsam [82].

Bei allen Ansätzen mit CsI in Gegenwart von HfI₄ bildeten sich sofort orange-gelbe Kristalle von Cs_2HfI_6 [127], welche eine hohe thermodynamische Stabilität aufwiesen (Abb. 60). Eine weitere Reaktion von Cs_2HfI_6 mit Hf findet nicht statt.

Abb. 60: Pulverdiffraktogramm eines Ansatzes von Hfl₄ + CsI + Hf.(schwarz: beobachtet; rot: simuliertes Cs₂Hfl₆ [126]).

Die hohe Stabilität dieser Verbindung erschwert die mögliche Synthese von $Cs_3Hf_2I_9$. Um die bevorzugte Bildung von Cs_2HfI_6 zu umgehen, erfolgten direkte Umsetzungen von CsI mit HfI₃ im Verhältnis 3:2. Bei höheren Temperaturen haben diese Reaktionen jedoch nur zur Bildung von Cs_2HfI_6 neben HfI₃ geführt. Bei niedrigeren Temperaturen fand keine merkliche Umsetzung statt. Die Bildung von Cs_2HfI_6 spricht in diesem Fall für die bereits von *Corbett* angenommene Disproportionierung von HfI₃ zu HfI₄ und Hf [128]. Eine Existenz von intermediär gebildetem HfI₂, analog zu ZrI₂ [137], konnte nicht nachgewiesen werden. Eine alternative Möglichkeit zur Darstellung von $Cs_3Hf_2I_9$ bietet die Umsetzung von CsI₃ [148] mit Hf-Metall, die im Falle von Y erfolgreich zu $Cs_3Y_2I_9$ [127] geführt hat. CsI₃ lässt sich einfach und in ausreichender Menge durch Umsetzung von äquimolaren Mengen CsI und I₂ (sublimiert) in Ethanol (p. a.) gewinnen (Abb. 61). Nach langsamem Abkühlen erhält man schon nach ein paar Tagen schwarze, glänzende Kristalle von teilweise 1 mm Länge, die an der Luft stabil sind. In der Struktur von CsI₃ liegen [I-I-I]⁻ Einheiten vor, die als Addukt von I⁻ an I₂ aufgefasst werden können.

Abb. 61: Pulverdiffraktogramm von CsI₃ (schwarz: beobachtet; rot: simuliert [149])

Die Umsetzung von CsI_3 mit Hf-Chips in einer Tantalampulle bei 600°C führte jedoch ebenfalls nur zu Cs_2HfI_6 als Hauptphase, da sich das bei dieser Reaktion frei werdende Iod direkt mit Hf zu HfI₄ umsetzt, welches dann mit CsI weiterreagiert. Auch hier konnten keine weiteren Phasen identifiziert werden.

Die Umsetzungen von HfI₄ mit den anderen Alkalimetalliodiden haben zu ähnlichen Ergebnissen geführt, wie bereits in Kapitel 3.2 erläutert wurde. Auch die Reaktionen bei sehr hohen Temperaturen (> 950°C) blieben erfolglos. Es wurde auch versucht, eine Reaktion in einem Überschuss AI durchzuführen, wobei das Alkalimetalliodid als Flux fungiert. Dieses Verfahren lässt eine größere Reaktionsgeschwindigkeit erwarten und stellt eine gängige Methode in der Festkörperchemie dar. Doch auch hier wurden die Erwartungen nicht erfült. Eine Umsetzung findet nur zu den A₂HfI₆-Verbindungen statt, neben unverbrauchtem AI.

Wie bereits in Kapitel 3.2 erwähnt wurde, konnten auch bei Umsetzungen von Erdalkalimetallen mit HfI₄ keine ternären Verbindungen erhalten werden. Auch durch Umsetzungen von HfI₄ mit EaI₂, in Anwesenheit von elementarem Ea bzw. Hf-Metall, konnten keine merklichen Umsetzungen beobachtet werden. Der Grund dafür liegt wohl in

der hohen Gitterenthalpie der zweiwertigen Erdalkalimetallhalogenide und der damit verbundenen höheren Stabilität dieser Verbindungen gegenüber der Ausbildung ternärer Phasen.

3.4 Versuche zur Darstellung von Hf-Clustern

Die große Bandbreite an bekannten Zr-Clusterphasen war der Grund, gezielte Versuche zur Darstellung von Hf-Clustern durchzuführen. Die Reaktionsbedingungen wurden in Analogie zum Zr-System gewählt, wobei Reaktionsdauer und -temperatur zum Teil variiert wurden. Als Interstitiale wurden verschiedene Haupt- und Nebengruppenelemente gewählt. Neben den bereits erwähnten Umsetzungen mit Bor und Aluminium, wurden eine Vielzahl Reaktionen vor allem mit Kohlenstoff (Aktivkohle, Graphit), Silizium, Germanium, Phosphor, Kobalt und Eisen durchgeführt. Der Grund für die Auswahl dieser Interstitiale liegt in der unterschiedlichen Anzahl von Valenzelektronen, die diese Elemente in die Cluster einbringen können, um so zur Stabilität beizutragen. Die Größe der einzelnen Interstitiale spielt dabei scheinbar nur eine untergeordnete Rolle, wie die Vielzahl bekannter Zirkoniumcluster mit unterschiedlich großen Interstitialen belegt. Der Hauptunterschied in den physikalischen Eigenschaften von Zr und Hf liegt in der unterschiedlichen Dichte und Sublimationsenthalpie der Metalle. Die räumlich weiter ausgedehnten 5d-Orbitale des Hafniums sollten die Bildung von Metall-Metall-Bindungen zudem begünstigen. Dennoch konnten im Rahmen dieser Arbeit keine neuen Hf-Cluster erhalten werden. Die Synthesen führten zu den bereits in vorherigen Kapiteln genannten Ergebnissen. Auch anhand von Pulveraufnahmen wurden keine Clusterphasen im System A/Hf/Z/X (A = Cs-Na, X = I-Br, Z = Interstitial) identifiziert. Die Reaktionen führten nur zu bekannten binären Phasengemischen. Oftmals konnten die Pulverdiffraktogramme aufgrund zu geringer Intensitätsverhältnisse nicht ausgewertet werden. Versuche, die geringen Reaktionsgeschwindigkeiten durch Reaktionen bei Temperaturen von über 1400°C zu erhöhen, führten ebenfalls zu keinen neuen Erkenntnissen. Durch Reaktion mit der Ampullenwand konnte als einzige Clusterphase lediglich Ta₆I₁₄ [149] erhalten werden, in der oktaedrische Ta₆-Cluster vorliegen, die nicht durch Interstitiale stabilisiert sind.

IV. Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Arbeit wurden komplexe Titan(III)-halogenide mit Alkalimetallen dargestellt und die Strukturen der Verbindungen erstmals anhand von Einkristallen röntgenographisch aufgeklärt. Darüber hinaus konnten die Chloride phasenrein dargestellt und weitergehend charakterisiert werden. Dabei kamen thermoanalytische Untersuchungen zur Aufklärung von möglichen Phasenübergängen zum Einsatz sowie magnetische und optische Untersuchungen, um die ermittelten Struktureigenschaften zu charakterisieren. Im System A/Hf/I (A = Cs-Na) wurden keine neuen Verbindungen erhalten, jedoch konnten verschiedene Synthesewege aufgezeigt und diskutiert werden. Es gelang die Kristallstruktur eines binären Hafnium-Iodids anhand von Einkristallen aufzuklären, dessen Zusammensetzung das obere Limit einer nicht-stöchiometrischen Phase zwischen HfI₃ und HfI_{3.5} markiert. Gründe für die Schwierigkeiten der Synthese neuer Hafniumhalogenide werden diskutiert.

1. Die Verbindungen A₃Ti₂X₉

Die bei Synthesen im System A/Ti/X (A = Cs-K; Br-Cl)erhaltenen Enneahalogenodititanate(III) der Alkalimetalle stellen eine Klasse von Verbindungen des dreiwertigen Titans dar. Das charakteristische Strukturmotiv sind voneinander isolierte $[Ti_2X_9]^3$ -Doppeloktaeder mit gemeinsamer Fläche. Auch von zahlreichen anderen Übergangsmetallen ist diese Verbindungsklasse bekannt. Die Alkalimetalle bilden zusammen mit den Halogenen hexagonale Schichten der Zusammensetzung [AX₃] aus, die nach Art einer dichtesten Kugelpackung gestapelt sind. Die unterschiedlichen Stapelvarianten bedingen dann die verschiedenen Strukturtypen, die bei den $A_3M_2X_9$ -Verbindungen (M = Übergangsmetall) vorliegen. Der vorherrschende Strukturtyp bei den Titanverbindungen ist der Cs₃Cr₂Cl₉-Typ (P6₃/mmc). Die [AX₃]-Schichten sind gemäß ABACBC (hcc) gestapelt und die Ti³⁺-Ionen besetzen 1/6 der insgesamt vorhandenen Oktaederlücken bzw. 2/3 der nur von Halogenid-Ionen aufgespannten Oktaederlücken. Dabei bleiben die $[X_6]$ -Oktaederlücken unbesetzt, die zwischen kubischen Schichten liegen. Die [Ti₂X₉]-Doppeloktaeder sind entlang [001] zu Strängen angeordnet. Besetzt man alle Oktaederlücken, die nur von Chlorid-Ionen aufgespannt werden, gelangt man zu den ATiX₃-Verbindungen des zweiwertigen Titans, deren Strukturen sich von den hexagonalen Perowskiten ableiten lassen. Der Zusammenhang zwischen diesen Strukturen konnte durch den Vergleich der Elementarzellen von CsNiCl₃ und Cs₃Cr₂Cl₉ aufgezeigt werden.

	Cs ₃ Ti ₂ Br ₉	Rb ₃ Ti ₂ Br ₉	Rb ₃ Ti ₂ Cl ₉
Farbe	rot	rot	grün
RG	<i>P</i> 6 ₃ / <i>mmc</i> (Nr. 194)	<i>P</i> 6 ₃ / <i>mmc</i> (Nr.194)	<i>P</i> 6 ₃ / <i>mmc</i> (Nr. 194)
a/ pm	764,0(2)	749,3(1)	711,9(1)
c/ pm	1902,1(5)	1871,3(4)	1764,7(3)
d(Ti-Ti)/ pm	345,05(9)	336,6(5)	314,6(3)
R ₁ ; wR ₂ (alle Daten)	0,0602; 0,0758	0,0707; 0,0924	0,0390; 0,0657

Eine niedersymmetrische Variante der Cs₃Cr₂Cl₉-Struktur bildet der K₃W₂Cl₉-Typ ($P6_{3}/m$), in dem K₃Ti₂Cl₉ kristallisiert. Der Unterschied zwischen beiden Strukturen liegt in der Ausrichtung der Doppeloktaeder zueinander, welche in K₃Ti₂Cl₉ entlang [001] um etwa 6° zueinander verdreht sind. Außerdem sind für den K₃W₂Cl₉-Typ anziehende Wechselwirkungen zwischen den Metallzentren der Doppeloktaeder charakteristisch, während für Verbindungen mit Cs₃Cr₂Cl₉-Struktur repulsive Kräfte vorherrschend sind. Durch geometrische Betrachtungen der Doppeloktaeder bei den A3Ti2X9-Verbindungen im Vergleich zu einem "idealen" Doppeloktaeder können qualitative Aussagen über die auftretenden Wechselwirkungen zwischen den Titanzentren gemacht werden. Dabei spielt die Ausrichtung der Titanatome innerhalb der Oktaeder eine entscheidende Rolle, die über das $d^{I}\!/d^{II}$ -Verhältnis angegeben werden kann. Außerdem müssen bestimmte Winkel betrachtet

werden, die weitere Aussagen über die Verzerrung von der "idealen" Gestalt des Doppeloktaeders zulassen. Nach diesem Modell sollten ausschließlich repulsive Wechselwirkungen zwischen den Ti³⁺-Ionen in den $A_3Ti_2X_9$ -Verbindungen auftreten.

Um die aus den Strukturen abgeleiteten Aussagen zu bestätigen, wurden von den A₃Ti₂Cl₉-Verbindungen (A = Cs-K) phasenreine Proben dargestellt, damit magnetische und optische Untersuchungen durchgeführt werden konnten. Durch Messungen der magnetischen Suszeptibilität konnte bei Raumtemperatur ausschließlich paramagnetisches Verhalten gefunden werden, wobei die beobachteten Werte des effektiven magnetischen Moments μ_{eff} mit den nach der "spin-only"-Formel berechneten Werten für ein freies Ti³⁺-Ion übereinstimmen. Bei tieferen Temperaturen traten zunehmend antiferromagnetische Wechselwirkungen auf, die eine Verringerung von μ_{eff} zur Folge hatten.

Bei Untersuchungen des Absorptionsverhaltens pulverförmiger Proben bei Raumtemperatur, im Wellenzahlenbereich von 4000-20000 cm⁻¹, konnten breite Banden erhalten werden, die den elektronischen Übergang zwischen dem Grundzustand ${}^{2}T_{2g}$ der Ti³⁺-Ionen in den Doppeloktaedern und dem angeregten Zustand ${}^{2}E_{g}$ wiedergeben. Dabei müssen jedoch weitere Aufspaltungen der ${}^{2}E_{g}$ -Niveaus durch zunehmende Austauschwechselwirkungen (Spin-Bahn-Kopplung) und Verzerrungen von der D_{3d} -Symmetrie (Jahn-Teller-Verzerrung) berücksichtigt werden, die man jedoch nur anhand von Einkristallmessungen bei tieferen Temperaturen auflösen kann. Eine Verschiebung des Bandenmaximums zu kleineren Wellenzahlen von K₃Ti₂Cl₉ zu Cs₃Ti₂Cl₉ ist auf die unterschiedlichen Polarisierbarkeiten der Alkalimetall-Ionen zurückzuführen ("Rotschift").

	K ₃ Ti ₂ Cl ₉	Rb ₃ Ti ₂ Cl ₉	Cs ₃ Ti ₂ Cl ₉
$^{2}T_{2g} \rightarrow ^{2}E_{g} \text{ [cm}^{-1}\text{]}$	14950	14450	14265

Aufgrund der strukturellen Verwandtschaft zwischen dem Cs₃Cr₂Cl₉- und dem K₃W₂Cl₉-Typ ist ein Phasenübergang bei K₃Ti₂Cl₉ (Smp. 574°C) in die höhersymmetrische Modifikation denkbar. Mithilfe von thermoanalytischen Untersuchungen (DSC) konnte bei 245°C ein reversibler thermischer Effekt beobachtet werden, der auf eine Phasenumwandlung erster Ordnung hindeutet. Eine genaue Charakterisierung dieses Effekts mittels temperaturabhängiger Pulverdiffraktometrie sollte möglich sein, konnte im Rahmen dieser Arbeit jedoch nicht mehr durchgeführt werden.

2. Die Verbindungen A₃TiX₆

Die zweite Verbindungsklasse des dreiwertigen Titans stellen die A₃TiX₆-Verbindungen (A = Cs-Na; X = Br-Cl) dar. Das charakteristische Strukturmotiv sind voneinander isolierte [TiX₆]-Oktaeder. Strukturell lassen sich die Verbindungen vom kubischen Elpasolith (K₂NaAlF₆, $Fm\bar{3}m$) ableiten, der als Aristotyp dieser Verbindungsklasse angesehen werden kann. Durch Gruppe-Untergruppe Beziehungen zu den Raumgruppen der A₃TiCl₆-Verbindungen konnten Strukturverwandtschaften abgeleitet werden. Die Strukturen der im Rahmen dieser Arbeit dargestellten Verbindungen Cs₃TiCl₆, Rb₃TiCl₆ und Rb₃TiBr₆ wurden erstmals anhand von Einkristallen aufgeklärt. Außerdem konnten von den A₃TiCl₆-Verbindungen (A = Cs-Na) phasenreine Proben erhalten werden, um die Verbindungen weitergehend mittels thermoanalytischer Methoden hinsichtlich potentieller Phasenübergänge zu untersuchen. Weitere Charakterisierungen erfolgten mittels optischen und magnetischen Messungen.

	Cs ₃ TiCl ₆	Rb ₃ TiCl ₆	Rb ₃ TiBr ₆
Farbe	gelb	gelb	rot
RG	<i>C</i> 2/ <i>c</i> (Nr. 15)	<i>C</i> 2/ <i>c</i> (Nr.15)	<i>C</i> 2/ <i>c</i> (Nr. 15)
Z	8	8	8
a/ pm	2635,9(5)	2523,8(4)	2648,5(3)
b/ pm	793,40(9)	770,2(2)	808,1(1)
c/ pm	1278,8(2)	1247,0(3)	1304,2(2)
β/ °	100.48(2)	100.12(2)	99,86(1)
R ₁ ; wR ₂ (alle Daten)	0,0886; 0,1265	0,1308; 0,1613	0,1273; 0,1468

Die Struktur des kubischen Elpasoliths (K₂NaAlF₆, $Fm\bar{3}m$) lässt sich von der Struktur des kubischen Perowskits (SrTiO₃, $Pm\bar{3}m$) über eine Gruppe-Untergruppe-Beziehung ableiten. Die Kalium- und Fluorid-Ionen bilden die kubisch-dichteste Kugelpackung aus, wobei die Schichten der Zusammensetzung [KF₃] entlang [111] angeordnet sind. Na und Al besetzen alternierend und geordnet 2/8 der Oktaederlücken und somit alle, die nur von F⁻ alleine aufgespannt werden. Dadurch entsteht ein dreidimensionales Netzwerk von allseits eckenverknüpften [AlF₆]- und [NaF₆]-Oktaedern, welches in der Raumgruppe $Pm\bar{3}m$ des kubischen Perowskits aus Gründen der Symmetrie nicht erlaubt wäre. Die A₃TiX₆-Verbindungen leiten sich alle von der Elpasolith-Struktur ab, wobei die [TiX₆]-Oktaeder meist entlang einer C₃-Achse um einen bestimmten Winkel zueinander verdreht sind. Die Gründe für das Auftreten der verschiedenen Strukturtypen liegen im Ionenradienverhältnis der die Kugelpackung aufbauenden Alkalimetall- und Halogenid-Ionen. Abweichungen von der idealen Elpasolith-Struktur können mit den für Elpasolithe (A₂BMX₆) modifizierten Toleranzfaktoren t' angegeben werden. Bei zunehmender Abweichung von eins treten verschiedene Verzerrungsvarianten auf.

$$t' = \frac{\sqrt{2 \cdot [r(A) + r(X)]}}{r(B) + r(M) + 2r(X)}$$

	Na ₃ TiCl ₆	K ₃ TiCl ₆	Rb ₃ TiCl ₆	Cs ₃ TiCl ₆	Rb ₃ TiBr ₆
ť	0,79	0,79	0,81	0,82	0,84

Die Verbindungen Cs₃TiCl₆, Rb₃TiCl₆ und Rb₃TiBr₆ kristallisieren in der Cs₃BiCl₆-Struktur (C2/c), die im Prinzip eine Variante der K₃MoCl₆-Struktur ($P2_1/c$), in welcher K₃TiCl₆ vorliegt, mit verdoppelter a-Achse darstellt. Eine Verwandtschaft beider Strukturen lässt sich ebenfalls über eine Gruppe-Untergruppe-Beziehung zwischen den Raumgruppen C2/c und $P2_1/c$ ableiten. In beiden Strukturen liegen die Titanatome auf zwei kristallographisch unterschiedlichen Lagen, wobei die [TiCl₆]-Oktaeder gegeneinander um 45° verdreht sind. Dadurch bilden sich verschiedene Schichten von [TiCl₆]-Oktaedern aus, die entlang [111] gestapelt sind. Die Verwandtschaft zur Elpasolith-Struktur lässt sich noch durch kubische Stapelung von zwei [CsCl₃]-Schichten erahnen, zwischen denen die Ti2-Atome angeordnet sind. Durch Vergleiche der Koordinationspolyeder um die Alkalimetalle lassen sich ebenfalls

die Unterschiede zu den Elpasolith-Strukturen aufzeigen. Abweichungen von der für dichteste Kugelpackungen typischen Koordinationszahl (KZ) 12 zeigen die auftretenden Verzerrungen an.

Na₃TiCl₆ kristallisiert in der Kryolith-Struktur ($P2_1/n$), in der die [TiCl₆]- und [Na1Cl₆]-Oktaeder ein Netzwerk aus eckenverknüpften Oktaedern bilden. Die Abweichungen von der Elpasolith-Struktur ergeben sich durch die verringerte Koordinationszahl von Na2 (KZ 6 + 2). Für die Verbindungen A₃TiCl₆ (A = Cs-Na)wurden aufgrund der engen Symmetrieverwandtschaften thermoanalytische Untersuchungen (DSC) in einem Temperaturbereich von 0-450°C durchgeführt, um mögliche Phasenübergänge zu beobachten. Für alle vier Verbindungen konnten reversible thermische Effekte beobachtet werden, die sich Phasenumwandlungen zuordnen lassen, wobei eine weitergehende Charakterisierung mittels temperaturabhängiger Pulverdiffraktometrie notwendig ist. Durch Vergleiche mit den A₃YCl₆-Verbindungen, bei denen temperaturabhängige Messungen durchgeführt wurden, konnten qualitative Aussagen zu den beobachteten Umwandlungen gemacht werden. Danach gehen Cs₃TiCl₆ und Rb₃TiCl₆ bei über 300°C direkt in den kubischen Elpasolith-Typ über. Für K₃TiCl₆ lässt sich unterhalb 300°C ein scharfes Signal erhalten, das auf einen Übergang erster Ordnung hindeutet und der eine Phasenumwandlung in den Cs₃BiCl₆-Typ bedeuten könnte wie er auch für K₃YCl₆ gefunden wurde. Bei Temperaturen um 400°C zeigt sich ein weiterer thermischer Effekt, der den Übergang in die Elpasolith-Struktur bedeuten würde. Na₃TiCl₆ zeigt in dem beobachteten Temperaturbereich nur ein thermisches Signal unterhalb 200 °C, welches einer deutlichen Hysterese unterliegt. Dabei könnte es sich um den Übergang vom Kryolith-Typ ($P2_1/n$) in die Hochtemperaturform des Kryoliths (*Immm*) handeln.

Das Absorptionsverhalten der A₃TiCl₆-Verbindungen (A = Cs-Na) ähnelt dem der kubischen Vertreter A₂BTiCl₆ (A = Cs, Rb; B = K, Na) im Wellenzahlenbereich von 4000 cm⁻¹ bis 20000 cm⁻¹. Die Aufnahmen wurden bei Raumtemperatur anhand von Pulvern durchgeführt, die in KBr-Presslingen eingebettet waren. Man erhält Doppelbanden, die dem Übergang ${}^{2}T_{2g} \rightarrow {}^{2}E_{g}$ entsprechen, wobei die kleinere Bande zu niedrigeren Wellenzahlen verschoben ist. Die Doppelbanden entstehen durch Wechselwirkungen der angeregten ${}^{2}E_{g}$ -Niveaus mit den ϵ_{g} -Normalschwingungen, wodurch diese eine Aufspaltung erfahren. Die Größe der Aufspaltung entspricht der Differenz der erhaltenen Banden, da die σ -antibindenden Eg-Niveaus von den unterschiedlichen Polarisierbarkeiten der Alkalimetall-Ionen stärker beeinflusst werden als die π -antibindenden ${}^{2}T_{2g}$ -Niveaus. Die erhaltenen Doppelbanden fresultieren somit in erster Linie aus dynamischen Jahn-Teller-Aufspaltungen durch Wechselwirkungen der ${}^{2}E_{g}$ -Niveaus mit den Schwingungsmoden ϵ_{g} . Bei K₃TiCl₆ und Rb₃TiCl₆ waren die Doppelbanden nicht aufgelöst, und man erhielt eine breite Absorptionsbande.

	Na ₃ TiCl ₆	K ₃ TiCl ₆	Rb ₃ TiCl ₆	Cs ₃ TiCl ₆
Bande	13140	11200-13500	11200-13500	13250
Schulter	11510	-	-	11180

Die Ergebnisse aus den Messungen der magnetischen Suszeptibilität zeigen den erwarteten Verlauf von μ_{eff} , wie er auch bei den A₂BTiCl₆-Verbindungen beobachtet wurde. Die bei Raumtemperatur gemessenen Werte von μ_{eff} stimmen mit den berechneten Werten für ein Ti³⁺-Ion gut überein. Bei tieferen Temperaturen kommt es zu einer Verringerung des effektiven magnetischen Moments, das jedoch erst unterhalb 50 K deutlich abfällt. Dieser Verlauf deutet auf schwache antiferromagnetische Wechselwirkungen im Bereich unterhalb von 50 K hin. Einen Einfluss der unterschiedlichen Strukturvarianten auf die Magnetisierung lässt sich nicht direkt ausmachen.

3. Die Verbindung HfI_{3,49}

Intensive Untersuchungen im System A/Hf/I (A = Cs-Na) lieferten keine neuen ternären Verbindungen. Es konnten lediglich die Verbindungen der Zusammensetzung A_2 HfI₆ erhalten werden, in denen Hafnium in der vierwertigen Stufe vorliegt. Trotz zahlreicher Variationen

der Reaktionsbedingungen (Temperaturverlauf, Reaktionspartner, Ampullenmaterial) konnte lediglich die Verbindung HfI_{3,49} = Hf_{0,86}I₃ in Form von Einkristallen erhalten und die Struktur mittels röntgenographischer Untersuchungen aufgeklärt werden. Hinweise auf binäre Halogenide mit zweiwertigem Hafnium wurden nicht erhalten. Somit stellt HfI₃ die am stärksten reduzierte Phase bei den Iodiden dar. Diese Beobachtung steht im Einklang mit den Erkenntnissen, die in der Literatur zu finden sind. Zwischen HfI₃ und HfI₄ liegt eine Phase mit nicht-stöchiometrischer Zusammensetzung vor, wobei HfI_{3,49} die obere Grenze dieser Phase markiert. Die Gründe für das Auftreten eines solchen Phasenbereichs, der auch für Zirkonium gefunden wurde, könnten elektronischer Natur sein. Man kann annehmen, dass die Hf³⁺-Ionen in HfI₃ partiell zu Hf⁴⁺ oxidiert werden, wodurch eine Leerstelle aus Gründen des Ladungsausgleichs entsteht und Hf-Metall an die Oberfläche diffundiert. Aufgrund der Unterbesetzung in den Hf-Positionen lässt sich die Verbindung besser als Hf_{0,86}I₃ formulieren.

Hf _{0,86} I ₃			
Farbe	schwarz		
RG	<i>R</i> 3 <i>m</i> (Nr. 166)		
Ζ	18		
a/ pm	1250,3(3)		
c/ pm	1999,6(3)		
d(Hf-Hf)/ pm	306,7(2); 318,2(2)		
R ₁ ; wR ₂ (alle Daten)	0,0737; 0,0791		

In der Kristallstruktur von $Hf_{0.86}I_3$ bilden die Iod-Atome eine hexagonal-dichteste Kugelpackung aus, in der Hafnium die Oktaederlücken besetzt, sodass flächenverknüpfte $\frac{1}{\infty}$ [HfI_{6/2}]-Oktaederstränge entstehen, die entlang [001] sowie parallel [1/3, 2/3, 1] und [2/3, 1/3, 1] verlaufen. Innerhalb der Oktaederketten kommt es durch die Unterbesetzung in einer von vier kristallographisch unabhängigen Hf-Lagen zur Ausbildung von linearen Hf₃-Trimeren. Die Lage 3a (Hf1) besitzt nur einen Besetzungsfaktor von 0,14. Die Trimere sind jedoch nicht identisch, sondern unterscheiden sich in den Hf-Hf-Abständen von 306,7(2) pm und 318,2(2) pm voneinander. Eine Überstruktur, die das Problem der Unterbesetzung hätte erfassen können, wurde nicht gefunden. Die Gitterparameter von Hf_{0,86}I₃ deuten auf eine Überstruktur von HfI₃. Die abgeleitete Subzelle mit a' = a/ $\sqrt{3}$ = 721,9 pm und c' = c/3 = 666,5 pm zeigt eine gute Übereinstimmung mit den in der Literatur angegebenen

Gitterparametern von $HfI_{3,5}$. Die Ausbildung der Trimeren könnte elektronische Gründe haben, was durch quantenmechanische Rechnungen zu beweisen wäre.

Weiterhin wurden zahlreiche Versuche zur Darstellung von Hf-Clustern in dem System A/Hf/Z/X (A = Cs-Na, Z = Interstitial; X = I-Br) unternommen, wobei als Interstitiale verschiedene Haupt- und Nebengruppenelemente mit unterschiedlichen Valenzelektronenzahlen eingesetzt wurden. Auch hier konnten keine neuen Verbindungen erhalten werden. Die Gründe dafür lassen sich nicht direkt ausmachen, deuten aber auf elektronische Effekte hin, da die Verbindungen mit Hf in der Oxidationsstufe (+IV) große Ähnlichkeiten zu Zirkonium zeigen.

IV. Literatur

- [1] G. Meyer, U. Packruhn, Z. Anorg. Allg. Chem. 1985, 524, 90.
- [2] T. Gloger, D.J. Hinz, G. Meyer, A. Lachgar, Z. Kristallogr. 1996, 211, 821.
- [3] L. Jongen, G. Meyer, Z. Anorg. Allg. Chem. 2004, 630, 1732.
- [4] (a) H. Schäfer, R. Laumann, Z. Anorg. Allg. Chem. 1981, 474, 135.
 (b) B. Krebs, G. Henkel, Z. Anorg. Allg. Chem. 1981, 474, 149.
- [5] L. Jongen, A.-V. Mudring, A. Möller, G. Meyer, Angew. Chem. Int. Ed. 2004, 43, 3245.
- [6] R. P. Ziebarth, J.D. Corbett, Acc. Chem. Res. 1989, 22, 256.
- [7] J.D. Corbett, J. Chem. Soc., Dalton Trans. 1996, 575.
- [8] J.D. Corbett in: *Modern Perspectives in Inorganic Crystal Chemistry;* E. Parthé (Hrsg.), Kluwer, Dordrecht, The Netherlands 1992, 27.
- [9] J.D. Corbett, J. Alloys Compd. 1995, 229, 10.
- [10] D.H. Guthrie, G. Meyer, J. D. Corbett, Inorg. Chem. 1981, 20, 1192.
- [11] Hollemann, Wiberg, *Lehrbuch der Anorganischen Chemie*, 101. Aufl., de Gruyter, Berlin, New York, **1995**.
- [12] A.W. Struss, J.D. Corbett, Inorg. Chem. 1969, 8, 227.
- [13] A. Lachgar, D.S. Dudis, J.D. Corbett, Inorg. Chem. 1990, 29, 2242.
- [14] H. Hillebrecht, Th. Ludwig, G. Thiele, Z. Anorg. Allg. Chem. 2004, 630, 2199
- [15] M. Ruck, Z. Kristallogr. 1995, 210, 650.
- [16] D. Sinram, C. J. Brendel, B. Krebs, Inorg. Chim. Acta 1982, 64, 131.
- [17] R.-Y. Qi, J. D. Corbett, Inorg. Chem. 1994, 33, 5727.
- [18] J. Karle, H. Hauptmann, Acta Crystallogr. 1950, 3, 181.
- [19] C. Starr, F. Bitter, A. R. Kaufmann, Phys. Rev. 1940, 58, 977.
- [20] W. Klemm, E. Krose, Z. Anorg. Allg. Chem. 1942, 249, 198.
- [21] D. Sayre, Acta Crystallogr. 1952, 5, 60.
- [22] J. Lewis, D. J. Machin, I. E. Newnham, R.S. Nyholm, J. Chem. Soc. 1962, 2036.
- [23] E. Keller, *Chemie in unserer Zeit* **1982**, 16, 116.
- [24] C. H. Maule, J. H. Tothill, P. Strange, J. A. Wilson, J. Solid State Phys. 1988, 21, 2067.
- [25] T. Gloger, Dissertation, Universität zu Köln, 1998.
- [26] B. Palosz, E. Salje, J. Appl. Crystallogr. 1989, 22, 622.
- [27] P. Ehrlich, W. Gutsche, H.J. Seifert, Z. Anorg. Allg. Chem. 1961, 312, 79.
- [28] J. D. Fast, Rec. Trav. Chem. 1939, 58, 174.

- [29] B. G. Newland, R. A. Shelton, J. Less-Common Metals 1970, 22, 369.
- [30] K. Broedersen, H. K. Breitenbach, G. Thiele, Z. Anorg. Allg. Chem. 1968, 357, 162.
- [31] H. G. von Schnering, Naturwissenschaften 1966, 18, 359.
- [32] S.I. Troyanov, V.B. Rybakov, V.M. Ionov, Russ. J. Inorg. Chem. 1990, 35, 494.
- [33] S.I. Troyanov, E.M. Snigireva, V.B. Rubakov, Russ. J. Inorg. Chem. 1991, 36, 634.
- [34] S.I. Troyanov, E.M. Snigireva, A.P. Pisarevskii, A.I. Yanovskii, Y.T. Struchkov, *Russ. J. Inorg. Chem.* 1994, 39, 374.
- [35] G. Natta, P. Corrandi, I. W. Bassi, L. Porri, Atti Accad. Nazl. Lincei. Rend., Classe Sci Fis., Mat. Nat. 1958, 24, 121.
- [36] D.J. Hinz, G. Meyer, Th. Dedecke, W. Urland, Angew. Chem. 1995, 107, 97.
- [37] D. Hinz, Dissertation, Universität Hannover, 1994
- [38] D.J. Hinz, Th. Dedecke, W. Urland, G. Meyer, Z. Anorg. Allg. Chem. 1994, 620, 801.
- [39] J. Zhang, R.-Y. Qi, Inorg. Chem. 1991, 30, 4794.
- [40] J. Zhang, J.D. Corbett, Z. Anorg. Allg. Chem. 1990, 590, 36.
- [41] D. Hinz, G. Meyer, J. Chem. Soc., Chem. Comm. 1994, 125.
- [42] J.D. Corbett, Inorg. Syntheses 1983, 22, 15.
- [43] H. Schäfer, F. Wartenpfuhl, R. Weise, Z. Anorg. Allg. Chem. 1958, 295, 268.
- [44] H.G. von Schnering, M. Collin, M. Hassheider, Z. Anorg. Allg. Chem. 1972, 387, 137.
- [45] M.G. Barker, M.G. Francesconi, C. Wilson, Acta Crystallogr. 2001, E57, 44.
- [46] H. Hagemann, F.Kubel, H. Bill, Eur. J. Solid State Inorg. Chem. 1996, 33, 1101.
- [47] R.J. Williams, D.R. Dillin, W.O. Milligan, Acta Crystallogr. 1973. B29, 1369.
- [48] G. Engel, Z. Kristallogr. 1935, 90, 341.
- [49] L. Jongen, Th. Gloger, J. Beekhuizen, G. Meyer, Z. Anorg. Allg. Chem. 2005, 631, 582
- [50] V.J. Minkiewicz, D.E. Cox, G. Shirane, Solid State Comm., 1970, 8, 1001.
- [51] D. Visser, G.C. Verschoor, D.J. Ijdo, Acta Crystallogr. 1980. B36, 28.
- [52] G. Meyer, U. Packruhn, Z. Anorg. Allg. Chem. 1985, 524, 90.
- [53] K.R. Poeppelmeier, J.D. Corbett, T.P. McMullen, D.R. Torgeson, R.G. Barnes, *Inorg. Chem.* 1980, 19, 129.
- [54] B. Leuenberger, B. Briat, J.C. Canit, A. Furrer, P. Fischer, H. Güdel, *Inorg. Chem.* 1986, 25, 2930.
- [55] T. Barth, Norsk Geologis Tidsskrift 1925, 8, 201.
- [56] W.H. Watson, J. Waser, Acta Crystallogr. 1958, 11, 689.
- [57] G.J. Wessel, D.J.W. Ijdo, Acta Crystallogr. 1957, 10, 466.
- [58] H. Jagodzinski, Acta Crystallogr. 1954, 7, 17.

- [59] F.A. Cotton, D.A. Ucko, Inorg. Chim. Acta 1972, 6, 161
- [60] B. Chabot, E. Parthé, Acta Crystallogr. 1978. B34, 645.
- [61] R. Saillant, R.A.D. Wentworth, Inorg. Chem. 1968, 7, 1606.
- [62] R. Saillant, R.B. Jackson, W.E. Streib, K. Folting, R.A.D. Wentworth, *Inorg. Chem.* 1971, 10, 1453.
- [63] R. Saillant, R.A.D. Wentworth, Inorg. Chem. 1969, 8, 1226.
- [64] K. Kihara, T. Sudo, Acta Crystallogr. 1974. B30, 1088.
- [65] B. Briat, O. Kahn, I. Morgenstern-Badarau, J.C. Rivoal, Inorg. Chem. 1981, 20, 4193.
- [66] S.A. Shchukarev, L.V. Vasil'kova, D.V. Korol'kov, Russ. J. Inorg. Chem. 1963, 8, 1006.
- [67] I.I. Kozhina, D.V. Korol'kov, Zh. Strukt. Khimii 1965, 6, 97.
- [68] P. Ehrlich, G. Kaupa, K. Blankenstein, Z. Anorg. Allg. Chem. 1959, 299, 213.
- [69] D. Hinz, Th. Gloger, G. Meyer, Z. Anorg. Allg. Chem. 2000, 626, 822.
- [70] H. Mattfeld, G. Meyer, Z. Anorg. Allg. Chem. 1992, 618, 13.
- [71] L. R. Morss, J. Inorg. Nucl. Chem. 1974, 36, 3876.
- [72] F. Benachenhou, G. Mairesse, G. Nowogrocki, D. Thomas, J. Solid State Chem. 1986, 65, 13.
- [73] V.M. Goldschmidt, Naturwissenschaften 1926, 14, 477.
- [74] D. Babel, R. Haegele, J. Solid State Chem. 1976, 18, 39.
- [75] G. Friedrich, H. Fink, H.J. Seifert, Z. Anorg. Allg. Chem. 1987, 548, 141.
- [76] Z. Amilius, B. van Laar, H.M. Rietveld, Acta Crystallogr. 1969. B 25, 400.
- [77] F.C Hawthorne, R.B. Ferguson, Canad. Mineral. 1975, 13, 377.
- [78] G. Meyer, Z. Anorg. Allg. Chem. 1984, 517, 191.
- [79] A. Bohnsack, G. Meyer, Z. Anorg. Allg. Chem. 1997, 623, 837.
- [80] J. Beekhuizen, Diplomarbeit, Universität zu Köln, 2004.
- [81] A.V. Storonkin, I.V. Vasil'kova, I.I. Kozhina, E.N. Ryabov, *Zh. Fiz. Khim.* 1969, 43, 1008-1010.
- [82] I.V. Vasil'kova, I.I. Kozhina, E.N. Ryabov, A.V. Storonkin, *Zh. Fiz. Khim.* 1970, 44, 2854-2856.
- [83] A. Stebler, B. Leuenberger, H.U. Güdel, Inorg. Synth. 1989, 26, 377.
- [84] R. Stranger, I. E. Grey, I. C. Madsen. P. W. Smith, J. Solid State Chem. 1987, 69, 162.
- [85] G.Meyer, Prog. Solid State Chem. 1982, 14, 141.
- [86] J. Arndt, D. Babel, R. Haegele, N. Rombach, Z. Anorg. Allg. Chem. 1975, 418, 193.
- [87] Institut für Anorganische Chemie der Universität zu Köln, http://www.gerdmeyer.de.

- [88] H. Krischner, Einführung in die Röntgenfeinstrukturanalyse, 3. Aufl. Vieweg, Braunschweig, Wiesbaden, 1987.
- [89] W. Massa: Kristallstrukturbestimmung, 3. Aufl. B. G. Teubner, Stuttgart, Leipzig, Wiesbaden, 2002.
- [90] Stoe&Cie: WIN X- POW 1.07, Programm zur Bearbeitung von Röntgenpulverdaten, Darmstadt, 2000.
- [91] G. M. Sheldrick: SHELXL-97 Program for the Solution of Crystal Structures, Göttingen, 1997.
- [92] G. M. Sheldrick: SHELXL-97 Program for the Refinement of Crystal Structures, Göttingen 1997.
- [93] Stoe&Cie: X- SHAPE 1.06- Programm zur Optimierung der Gestalt von Einkristallen. Darmstadt, 2001.
- [94] Stoe&Cie: X- RED 1.22: Programm zur Datenreduktion einschlieβlich Absorptionskorrektur, Darmstadt, 2001.
- [95] Crystal Impact: Diamond 3.1 c- Visuelles Informationssystem f
 ür Kristallstrukturen, Bonn, 1999.
- [96] H. Lueken, Magnetochemie, B.G. Teubner, Stuttgart/Leipzig, 1999.
- [97] M. Drillon, R. Georges, Phys. Rev. 1981, B241, 1278.
- [98] U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.
- [99] B. Krebs, D. Sinram, J. Less-Common Met. 1980, 76, 7.
- [100] V. Chibrikin, Russ. J. Inorg. Chem. 1981, 26, 1376.
- [101] D.H. Guthrie, J.D. Corbett, Inorg. Chem. 1982, 21, 3290.
- [102] J.D. Smith, J.D. Corbett, J. Am. Chem. Soc. 1984, 106, 4618.
- [103] R.P. Ziebarth, J.D. Corbett, J. Solid State Chem. 1989, 80, 56.
- [104] R.P. Ziebarth, J.D. Corbett, J. Am. Chem. Soc. 1987, 109, 4844.
- [105] G. Rosenthal, J.D. Corbett, Inorg. Chem. 1988, 27, 53.
- [106] T. Hughbanks, G. Rosenthal, J.D. Corbett, J. Am. Chem. Soc. 1988, 110, 1511.
- [107] (a) H. Schäfer, R. Laumann, Z. Anorg. Allg. Chem. 1981, 474, 135.
 - (b) B. Krebs, G. Henkel, Z. Anorg. Allg. Chem. 1981, 474, 149.
- [108] J. Zhang, J.D. Corbett, Z. Anorg. Allg. Chem. 1990, 580, 3.
- [109] J. Zhang, R.-Y. Qi, Inorg. Chem. 1991, 30, 4794.
- [110] D. Sinram, C. Brendel, B. Krebs, Inorg. Chim. Acta 1982, 64, L131.
- [111] R.-Y. Qi, J.D. Corbett, Inorg. Chem. 1994, 33, 5727.
- [112] W.C. Schumb, C.K. Morehouse, J. Am. Chem. Soc. 1947, 69, 2696.

- [113] R.C. Young, J. Am. Chem. Soc. 1931, 53, 2148.
- [114] E.M. Larsen and J.J. Leddy, J. Am. Chem. Soc. 1956, 78, 5983.
- [115] L.F. Dahl, T. Chiang, P.W. Seabaugh, E.M. Larsen, Inorg. Chem. 1964, 3, 1236.
- [116] W.A. Baker, Jr., A.R. Janus, J. Inorg. Nucl. Chem. 1964, 26, 2087.
- [117] A.W. Struss, J.D. Corbett, Inorg. Chem. 1969, 8, 227.
- [118] H. Hillebrecht, Th. Ludwig, G. Thiele, Z. Anorg. Allg. Chem. 2004, 630, 2199.
- [119] A. Lachgar, D.S. Dudis, J.D. Corbett, Inorg. Chem. 1990, 29, 2242.
- [120] A.W. Struss, J.D. Corbett, Inorg. Chem. 1970, 9, 1373.
- [121] S.I. Troyanov, V.I. Tsirel'nikov, Russ. J. Inorg. Chem. 1970, 15, 1762.
- [122] A.S. Izmailovich, S.I. Troyanov, I. Tsirel'nikov, *Russ. J. Inorg. Chem.* 1974, 19, 1597.
- [123] D.G. Adolphson, JD. Corbett, Inorg. Chem. 1976, 15, 1820.
- [124] R.L. Daake, J.D. Corbett, Inorg. Chem. 1977, 16, 2029.
- [125] A.E. Dwight, J.W. Downey, R.A. Conner, Acta Crystallogr. 1961, 14, 75.
- [126] D. Sinram, C. Brendel, B. Krebs, Inorg. Chim. Acta. 1982, 64, L131
- [127] D.H. Guthrie, G. Meyer, J.D. Corbett, Inorg. Chem. 1981, 20, 1192.
- [128] D.H. Guthrie, J.D. Corbett, Inorg. Chem. 1982, 21, 3290.
- [129] J.D. Smith, J.D. Corbett, J. Am. Chem. Soc. 1984, 106, 4618.
- [130] U.Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.
- [131] H. Bärninghausen, MATCH, Commun. in Math. Chem. 1980, 9, 139.
- [132] B. Palosz, E. Salje, J. Appl. Crystallogr. 1989, 22, 622.
- [133] L. Jongen, G. Meyer, Acta Crystallogr. 2005, E61, i151.
- [134] H.G. von Schnering, K. Brodersen, F. Moers, H.-K. Breitbach, G. Thiele, J. Less-Common Met. 1966, 11, 288.
- [135] K. Brodersen, H.-K. Breitbach, G. Thiele, Z. Anorg. Allg. Chem. 1968, 357, 162.
- [136] H. Hillebrecht, Th. Ludwig, G. Thiele, Z. Anorg. Allg. Chem. 2004, 630, 2199.
- [137] J.D. Corbett, D.H. Guthrie, Inorg. Chem. 1982, 21, 1747.
- [138] R.L. Daake, J.D. Corbett, Inorg. Chem. 1978, 17, 1192.
- [139] E.M. Larsen, J.S. Wrazel, L.G. Hoard, Inorg. Chem. 1982, 21, 2619.
- [140] H.E. Swanson, W.P. Davey, Natl. Bur. Stand. (U. S.) 1955, Circ. 539, 31.
- [141] F. Glaser, D. Moskovitz, B. Post, J. Met. 1953, 5, 1119.
- [142] R.D. Sannon, C.T. Prewitt, Acta Crystallogr. 1969, B25, 925.
- [143] H.X. Yang, S. Ghose, D.M. Hatch, Phys. Chem. Min. 1993, 19, 528.
- [144] L. Jongen, G. Meyer, Z. Kristallogr. 2004. Suppl. 21, 166.

- [145] L. Jongen, G. Meyer, Z. Anorg. Allg. Chem. 2004, 630, 211.
- [146] G. Meyer, J.D. Corbett, Inorg. Chem. 1981, 20, 2627.
- [147] N. Gerlitzki, A.-V. Mudring, G. Meyer, Z. Anorg. Allg. Chem. 2005, 631, 381.
- [148] H.A. Tasman, K.H. Boswijk, Acta Crystallogr. 1955, 8, 59.
- [149] H.M. Artelt, G. Meyer, Z. Kristallogr. 1993, 206, 306.
- [150] R. Ameis, S. Kremer, D. Reinen, Inorg. Chem. 1985, 24, 2751.

Danksagung

An dieser Stelle soll allen Personen gedankt werden, die direkt oder indirekt zum Gelingen dieser Arbeit beigetragen haben.

Am Anfang möchte ich dafür besonders meinem Doktorvater Herrn Prof. Dr. Gerd Meyer danken, der mir dieses Thema zur Verfügung gestellt und mich während der gesamten Arbeit unterstützt hat, auch wenn es einmal nicht so gut lief.

Daneben danke ich Herrn Prof. Dr. Uwe Ruschewitz für die Übernahme des Ko-Referats.

Dr. Ingo Pantenburg und Ingrid Müller danke ich für die Einkristallaufnahmen und die entgegen gebrachte Geduld, da die Kristalle nicht immer unseren Vorstellungen von einem Einkristall entsprachen.

Frau Prof. Anja Mudring und Mitarbeitern danke ich für die Unterstützung bei den Aufnahmen der DSC-Kurven.

Frau Priv.-Doz. Angela Möller und Peter Kliesen gilt mein Dank für die Aufnahmen der UV-VIS Spektren.

Für die zahlreichen Pulveraufnahmen danke ich Horst Schumacher. Bei Frau Prof. Felser und Mitarbeitern bedanke ich mich für die Durchführung der magnetischen Messungen.

Meinen Laborkollegeninnen, Dipl.-Chem. Stefanie Hammerich und Dipl.-Chem. Sina Zimmermann, danke ich für die gute Zusammenarbeit und gegenseitige Unterstützung. Gleicher Dank gilt auch meinen ehemaligen Laborkollegen Dr. Liesbet Jongen und Dr. Andriy Palasyuk. Darüber hinaus danke ich allen Mitarbeitern vom Arbeitskreis Meyer, inklusive allen Subgruppen für die nette Arbeitsatmosphäre. Herrn Dipl.-Chem. Derk Wandner danke ich für Hochtemperaturansätze sowie Dr. Leo Pak für die unterhaltsamen Gespräche während der Praktikumsaufsicht. Auch möchte ich mich bei meinen weiteren Studienkollegen und Freunden bedanken, allen voran Dr. Oliver Büchner, für die anspornenden Gespräche und geselligen Abende während der Studienzeit.

Meine beiden letzten Dankesworte richten sich zum einen an meine Verlobte Dipl.-Chem. Nazife Cesur (Nas), der ich für die schöne gemeinsame Studienzeit und die entgegengebrachte Unterstützung und Liebe besonders danken möchte. Meine abschließenden Dankesworte gelten meiner Familie für die fortwährende Unterstützung und den großen Rückhalt während der gesamten Studienzeit.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeiteinschließlich Tabellen, Karten und Abbildungen-, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie- abgesehen von unten angegebenen Teilpublikationen- noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Gerd Meyer betreut worden.

Köln, Oktober 2006-10-19

Jan Beellin

Zur Wahrung der Priorität wurden Teile dieser Arbeit bereits publiziert:

Jan Beekhuizen, Gerd Meyer: Zur Kristallstruktur von Rb₃Ti₂Cl₉, *Z. Kristallogr.* **2005**, Suppl.22, 166.

Jan Beekhuizen, Gerd Meyer: Ternäre Halogenide des dreiwertigen Titans: Verbindungen vom Typ A_3 TiX₆ (A = Cs-Na; X = Br-Cl), *Z.Kristallogr.* **2005**, Suppl.24, 178.

Lebenslauf

Persönliche Daten

Name:	Jan Arndt Beekhuizen
Geburtsdatum:	14.02.1978
Geburtsort:	Leverkusen
Familienstand:	ledig

Hochschulausbildung

07/04-	Universität zu Köln: Promotion im Fach			
	Anorganische	Chemie/Festkörperchemie		
	(Sonderforschungsbereich 608 der DFG)			
	Arbeitsgebiet: Neue Untersuchungen an			
		Halogeniden des Titans		
		und Hafniums		
	Betreuer:	Prof. Dr. Gerd Meyer		
10/98-06/04	Universität z	u Köln: Diplomstudiengang Chemie		
	Abschluss:	Diplom-Chemiker (Note: sehr gut)		
	Schwerpunkt:	Anorganische Chemie/Festkörper-		
		chemie		
	Arbeitsgebiet:	Neue Untersuchungen an Bromiden		
		des Titans		
	Betreuer:	Prof. Dr. Gerd Meyer		

Zivildienst

Betreuer beim Sozialamt Leverkusen

Schulausbildung

1994-1997	Landrat-Lucas-Gymnasium, Leverkusen
	Abiturnote: gut
1988-1994	Werner-Heisenberg-Gymnasium, Leverkusen
1984-1988	Gemeinschafts-Grundschule Herderstraße,
	Leverkusen

Nebentätigkeiten

07/04-	Wissenschaftlicher Assistent am Institut für
	Anorganische Chemie der Universität zu Köln im
	Arbeitskreis Prof. Meyer
01/04-06/04	Studentische Hilfskraft am Institut für Anorganische
	Chemie der Universität zu Köln

Weitere Kenntnisse

Fremdsprachen:	Englisch, sehr gut in Wort und Schrift
	Französisch, gute Grundkenntnisse
	Niederländisch, gute Grundkenntnisse
EDV-Kenntnisse:	Windows, MS Office (Word, Excel, Powerpoint), Origin,
	Internet, Spezielle Software aus dem Bereich der
	Festkörperchemie(X-STEP, SHELX, X-SHAPE, X-
	RED, WinXPow, Diamond)

Tagungsbeiträge und Publikationen

Jan Beekhuizen, Gerd Meyer: Zur Kristallstruktur von Rb₃Ti₂Cl₉, *Gemeinsame Jahrestagung der DGK, DGKK und dem Nationalkomitee für Kristallographie der Österreichischen Akademie der Wissenschaften*, Köln, 28.2-4.3.2005. Jan Beekhuizen, Gerd Meyer: Ternäre Halogenide des dreiwertigen Titans: Verbindungen vom Typ A_3TiX_6 (A = Cs-Na; X = Br-Cl), *Gemeinsame Jahrestagung der DGK, DGKK und dem Nationalkomitee für Kristallographie der Österreichischen Akademie der Wissenschaften*, Freiburg, 03.03-06.03. 2006.

Liesbet Jongen, Thomas Gloger, Jan Beekhuizen, Gerd Meyer: Divalent Titanium: The Halides ATiX₃ (A = K-Cs; X = Cl-I), *Z. Anorg. Allg. Chem.* **2005**, 631, 582-586.

Jan Beekhuizen, Gerd Meyer: Zur Kristallstruktur von Rb₃Ti₂Cl₉, *Z. Kristallogr.* **2005**, Suppl.22, 166.

Jan Beekhuizen, Gerd Meyer: Ternäre Halogenide des dreiwertigen Titans: Verbindungen vom Typ A_3TiX_6 (A = Cs-Na; X = Br-Cl), *Z.Kristallogr.* **2005**, Suppl.24, 178.

Jan Beellin

Leverkusen, 30.08.2006