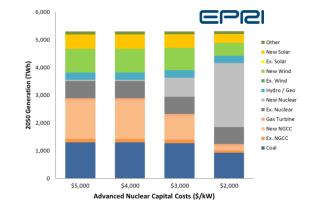
BWRX300

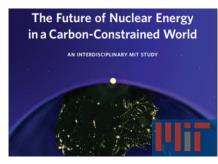
Deep decarbonization with nuclear

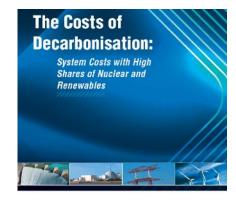
District Heating Seminar, Helsinki, Finland, March, 2019

Teaming for a deep decarbonization

Dominion Energy is to provide funding that could lead to commercialising the BWRX-300 small modular reactor (SMR), GE Hitachi Nuclear Energy (GEH) announced today.


GEH receives federal funds for BWRX-300 development 17 July 2018


GE Hitachi Nuclear Energy (GEH) is to receive USD1.9 million in funding from the US Department of Energy (DOE) to lead research into ways to efficiently building a power plant based on GE Hitachi's BWRX-300 small modular reactor. The research team includes Bechtel, Exelon, Hitachi-GE Nuclear Energy (HGNE) and the Massachusetts Institute of Technology (MIT).



Institutional views for deep decarbonization

OECD

NEA NEA

What: EPRI Study:

- At <2500/kW, new nuclear starts to displace coal and natural gas decisively
- Based on US conditions conditions would be market driven

How: MIT Findings:

- Solve the construction risk
- Attain proven supply chain
- Optimize all areas of the CAPEX

How: OECD/NEA Findings:

- Cost Effective low carbon requires variable renewable energy and nuclear (similar amounts)
- Nuclear power must evolve to meet future requirements
- OECD countries need to invest in decarbonized power sources, including nuclear, variable renewables, and hydro.

Design features

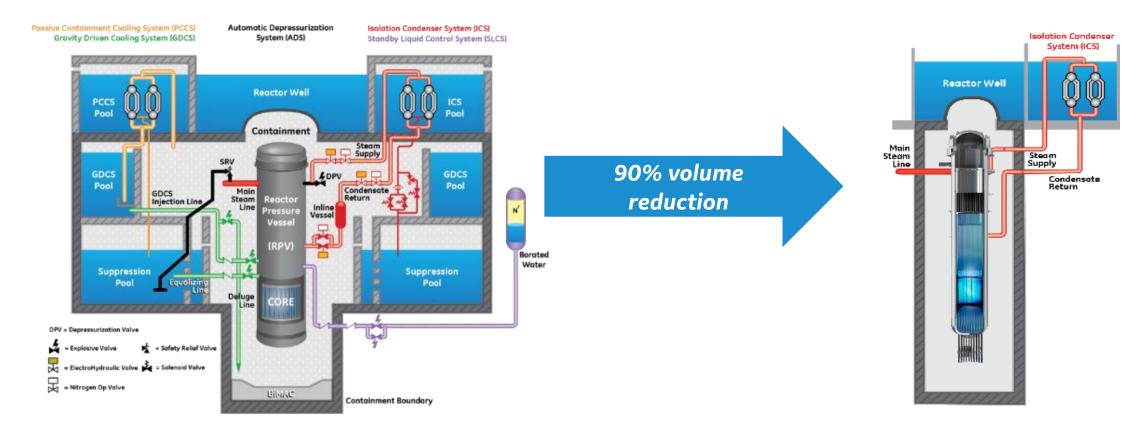
Competitive Capital Cost: <\$1B total & <\$2,250/kW LCOE: <\$35/MWh

Construction Risk

Modular construction, pre-manufactured, underground containment, reduced need for complex concrete structures Leverages other established industry technologies

Supply chain Key nuclear components are licensed GE Hitachi components

Optimization Fast deployment ... 1st COD before 2029 TI & BOP = off-the-shelf Flexible Electricity/Heat/Cooling configuration



Licensed pedigree, re-sized

ESBWR

Finding: Successful nuclear builds tend to have the following attributes:

a) Completion of needed portions of the design prior to start of construction

ESBWR design/licensing basis:

Natural circulation ... Isolation Condenser System cooling ... codes & methods

BWRX300

Optimized structures

 Mitigation of Large LOCAs ... eliminates many safety related Structures, Systems and Components

- Metal containment ... small, simple, robust
- Underground containment ... reduced security
- Conventional turbine building simple construction
- Defense-in-depth driving design ... balanced level of redundancy and diversity

Kiitos!

March 2019

