
Autolykos: The Ergo Platform PoW Puzzle

Alexander Chepurnoy, Vasily Kharin, Dmitry Meshkov

April 6, 2019
v1.0

1 Introduction

Security of Proof-of-Work blockchains relies on multiple miners trying to pro-
duce new blocks by participating in PoW puzzle lottery, and the network is
secure if the majority of them are honest. However, the reality becomes much
more complicated than the original one-CPU-one-vote idea from the Bitcoin
whitepaper[1].

The first threat to decentralization came from mining pools – miners tend
to unite in mining pools. Regardless of the PoW algorithm number of pools
controlling more then 50% of computational power is usually quite small: 4 pools
in Bitcoin, 2 in Ethereum, 3 in ZCash, etc. This problem led to the notion of
non-outsourceable puzzles [2, 3]. These are the puzzles constructed in such a way
that if a mining pool outsources the puzzle to a miner, miner can recover pool’s
private key and steal the reward with a non-negligible probability. However the
existing solutions either have too large solution size (kilobyte is already on the
edge of acceptability for distributed ledgers) or very specific and can not be
modified or extended in any way without breaking non-outsourceability.

The second threat to cryptocurrencies decentralization is that ASIC-equipped
miners are able to find PoW solutions orders of magnitude faster and more effi-
ciently than miners equipped with the commodity hardware. In order to reduce
the disparity between the ASICs and regular hardware, memory-bound compu-
tations where proposed in [4]. The most interesting practical examples are two
asymmetric memory-hard PoW schemes which require significantly less memory
to verify a solution than to find it [5, 6]. Despite the fact that ASICs already
exist for both of them [7, 8], they remain the only asymmetric memory-hard
PoW algorithms in use.

In this paper we propose Autolykos — new asymmetric memory-hard non-
outsourceable PoW puzzle. In Section 2 we provide a full specification of
Autolykos, while in Section 3 we discuss its properties. Few auxiliary algo-
rithms are placed in Appendix.

1

2 Ergo PoW puzzle

The proposed scheme requires following components:

1. Cyclic group G of prime order q with fixed generator g and identity ele-
ment e. Secp256k1 elliptic curve is used for this purposes.

2. Number of elements k required in the solution. Value k = 32 is used in
implementation.

3. Number N of elements in the list R ⊂ Z/qZ to be stored in miner’s
memory. Value N = 226 is used in implementation.

4. Hash function H which returns the values in Z/qZ. Particular implemen-
tation is based on Blake2b256 and is described in Alg.3.

5. Hash function genIndexes which returns a list of numbers from 0 . . . (N−
1) of size k. It is based on Blake2b256 and is described in Alg.4.

6. Target interval parameter b, that is recalculated via difficulty adjustment
rules.

7. Constant message M = [0, . . . , 1023].f latMap(i => Longs.toByteArray(i))
that is used to enlarge message size and increase elements calculation time.

Autolykos is based on one list k-sum problem: miner should find k elements
from the pre-defined list R of size N , such that

∑
j∈J rj−sk = d is in the interval

{−b, . . . , 0, . . . , b mod q}. In addition, we require set of element indexes J to
be obtained by one-way pseudo-random function genIndexes. This prevents
optimizations as soon as it is hard to find such a seed, that genIndexes(seed)
returns the desired indexes.

Thus we assume that the only option for miner is to use the simple brute-
force algorithm 1 to create a valid block.

Algorithm 1 Block mining

1: Input: upcoming block header hash m, key pair pk = gsk

2: Generate randomly a new key pair w = gx

3: Calculate ri∈[0,N) = H(j||M ||pk||m||w)
4: while true do
5: nonce ← rand
6: J := genIndexes(m||nonce)
7: d :=

∑
j∈J rj · x− sk mod q

8: if d < b then
9: return (m, pk,w, nonce, d)

10: end if
11: end while

Note that although the mining process utilizes private keys, solution itself
only contains public keys. Solution verification can be performed by Alg. 2.

2

Algorithm 2 Solution verification

1: Input: m, pk,w, nonce, d
2: require d < b
3: require pk, w ∈ G and pk, w 6= e
4: J := genIndexes(m||nonce)
5: f :=

∑
j∈J H(j||M ||pk||m||w)

6: require wf = gdpk

3 Discussion

First, notice that in Algorithm 1 we refer to construction f(m,nonce, w, pk) =∑
j∈genIndexes(m||nonce) H(j||M ||pk||w) as a hash function. Public key plays a

role of commitment. Therefore, the pair (pk, d) is a Schnorr signature with
a public key w over the message (m,nonce) with a hash function f . If one
denotes e the corresponding value of f , and pass to more common notations:
e = f(m,nonce, w,weg−d). The puzzle consists in trying different nonces and
keys in order for signature to satisfy d ∈ {−b, . . . , 0, . . . , b}. Security follows
from the security of Schnor signatures, and outsourcing the puzzle is equiva-
lent to outsourcing the signature (or parts of signature creation routine). The
only difference from conventional setup is the design of function f . It must
be constructed in such a way that efficient massive evaluations with different
nonces require allocating large amount of memory (benefitting from data reuse),
whereas single evaluation on verifier’s side can be done “on fly”.

To achieve this, algorithm 1 requires to keep the whole list R during the
main loop. Every pre-calculated hash occupies 32 bytes, so the whole list of N
elements occupies N · 32 = 2Gb of memory. For sure, a miner can recalculate
these elements “on fly” during the main loop and thus reduce memory require-
ments. However in such a case the number of calls of H will significantly grow
up (e.g. assuming GPU hashrate G = 230H/s [9] and block interval t = 120 s,
every element will be used (G/N) · k · t = 3 · 104 times on average.) reducing
miner’s efficiency and profit.

While list R is quite big, it’s filling consumes quite a lot of time: our initial
implementation [10] consumed 25 seconds on Nvidia GTX 1070 to fill list R.
This part, however, may be sufficiently optimized if miner in addition stores a
list of unfinalized hashes ui∈[0,N) = H(i||M ||pk in memory, consuming 5 more
Gigabytes of it. In such a case this work to calculate unfinalized hashes should
be done only once during mining initialization while finalizing them and filling
the list R for the new header will only consume few milliseconds (for about 50
ms on Nvidia GTX 1070).

The protocol is quite efficient in terms of solution size and verification time:
it consists of 2 public keys of size 32 bytes, number d that is at most 32 bytes
(but contains a lot of leading zeros in case of the small target b) and an 8-bytes
long nonce. Header verification requires verifier to calculate 1 genIndexes hash,
k hashes H and perform two exponentiations in the group. Reference Scala

3

implementation [11] allows verifying block header in 2 milliseconds on Intel
Core i5-7200U, 2.5GHz.

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] A. Miller, A. Kosba, J. Katz, and E. Shi, “Nonoutsourceable scratch-off
puzzles to discourage bitcoin mining coalitions,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 680–691.

[3] I. E. P. Daian, E. G. Sirer, and A. Juels, “Piecework: Generalized out-
sourcing control for proofs of work,” in BITCOIN Workshop, 2017.

[4] C. Dwork, A. Goldberg, and M. Naor, “On memory-bound functions for
fighting spam,” in Annual International Cryptology Conference. Springer,
2003, pp. 426–444.

[5] A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-work
based on the generalized birthday problem,” Ledger, vol. 2, pp. 1–30, 2017.

[6] Ethash. [Online]. Available: https://github.com/ethereum/wiki/wiki/
Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3

[7] Bitmain confirms release of first ethereum asic
miners. [Online]. Available: https://www.coindesk.com/
bitmain-confirms-release-first-ever-ethereum-asic-miners

[8] Bitmains latest crypto asic can mine zcash. [Online]. Available:
https://www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash

[9] Non-specialized hardware comparison. [Online]. Available: https://en.
bitcoin.it/wiki/Non-specialized hardware comparison

[10] Autolykos gpu miner. [Online]. Available: https://github.com/
ergoplatform/Autolykos-GPU-miner

[11] Autoleakus scala implementation. [Online]. Available: https://github.com/
ergoplatform/ergo/tree/master/src/main/scala/org/ergoplatform/mining

Appendix

Implementation of hash function H which returns the values in Z/qZ:

4

https://github.com/ethereum/wiki/wiki/Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3
https://github.com/ethereum/wiki/wiki/Ethash/6e97c9cea49605264c6f4d1dc9e1939b1f89a5a3
https://www.coindesk.com/bitmain-confirms-release-first-ever-ethereum-asic-miners
https://www.coindesk.com/bitmain-confirms-release-first-ever-ethereum-asic-miners
https://www.coindesk.com/bitmains-latest-crypto-asic-can-mine-zcash
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://github.com/ergoplatform/Autolykos-GPU-miner
https://github.com/ergoplatform/Autolykos-GPU-miner
https://github.com/ergoplatform/ergo/tree/master/src/main/scala/org/ergoplatform/mining
https://github.com/ergoplatform/ergo/tree/master/src/main/scala/org/ergoplatform/mining

Algorithm 3 Numeric hash

1: function H(input)
2: validRange := (2256/q) · q
3: hashed := Blake2b256(input)
4: if hashed < validRange then
5: return hashed.mod(q)
6: else
7: return H(hashed)
8: end if
9: end function

Implementation of hash function genIndexes which returns a list of size k
with numbers in 0 . . . (N − 1):

Algorithm 4 Index generator

1: function genIndexes(seed)
2: hash := Blake2b256(seed)
3: extendedHash := hash||hash
4: return (0 . . . k − 1).map(i => extendedHash.slice(i, i + 4).mod(N))
5: end function

5

	Introduction
	Ergo PoW puzzle
	Discussion

