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Introduction

You get hit with an incredible amount of statistical information on a daily 
basis. You know what I’m talking about: charts, graphs, tables, and head-

lines that talk about the results of the latest poll, survey, experiment, or other 
scientific study. The purpose of this book is to develop and sharpen your skills 
in sorting through, analyzing, and evaluating all that info, and to do so in a clear, 
fun, and pain-free way. You also gain the ability to decipher and make important 
decisions about statistical results (for example, the results of the latest medical 
studies), while being ever aware of the ways that people can mislead you with 
statistics. And you see how to do it right when it’s your turn to design the study, 
collect the data, crunch the numbers, and/or draw the conclusions.

This book is also designed to help those of you out there who are taking an 
introductory statistics class and can use some back-up. You’ll gain a working 
knowledge of the big ideas of statistics and gather a boatload of tools and tricks 
of the trade that’ll help you get ahead of the curve when you take your exams.

This book is chock-full of real examples from real sources that are relevant to 
your everyday life — from the latest medical breakthroughs, crime studies, 
and population trends to the latest U.S. government reports. I even address 
a survey on the worst cars of the millennium! By reading this book, you’ll 
understand how to collect, display, and analyze data correctly and effec-
tively, and you’ll be ready to critically examine and make informed decisions 
about the latest polls, surveys, experiments, and reports that bombard you 
every day. You even find out how to use crickets to gauge temperature!

You also get to enjoy poking a little fun at statisticians (who take themselves 
too seriously at times). After all, with the right skills and knowledge, you 
don’t have to be a statistician to understand introductory statistics.

About This Book
This book departs from traditional statistics texts, references, supplemental 
books, and study guides in the following ways:

 ✓ It includes practical and intuitive explanations of statistical concepts, 
ideas, techniques, formulas, and calculations found in an introductory 
statistics course.

 ✓ It shows you clear and concise step-by-step procedures that explain how 
you can intuitively work through statistics problems.
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 ✓ It includes interesting real-world examples relating to your everyday life 
and workplace.

 ✓ It gives you upfront and honest answers to your questions like, “What 
does this really mean?” and “When and how will I ever use this?”

Conventions Used in This Book
You should be aware of three conventions as you make your way through 
this book:

 ✓ Definition of sample size (n): When I refer to the size of a sample, I mean 
the final number of individuals who participated in and provided informa-
tion for the study. In other words, n stands for the size of the final data set.

 ✓ Dual-use of the word statistics: In some situations, I refer to statistics 
as a subject of study or as a field of research, so the word is a singular 
noun. For example, “Statistics is really quite an interesting subject.” In 
other situations, I refer to statistics as the plural of statistic, in a numeri-
cal sense. For example, “The most common statistics are the mean and 
the standard deviation.”

 ✓ Use of the word data: You’re probably unaware of the debate raging 
amongst statisticians about whether the word data should be singular 
(“data is . . .”) or plural (“data are . . .”). It got so bad that recently one 
group of statisticians had to develop two different versions of a statis-
tics T-shirt: “Messy Data Happens” and “Messy Data Happen.” At the risk 
of offending some of my colleagues, I go with the plural version of the 
word data in this book.

 ✓ Use of the term standard deviation: When I use the term standard 
deviation, I mean s, the sample standard deviation. (When I refer to the 
population standard deviation, I let you know.)

Here are a few other basic conventions to help you navigate this book:

 ✓ I use italics to let you know a new statistical term is appearing on the scene.

 ✓ If you see a boldfaced term or phrase in a bulleted list, it’s been desig-
nated as a keyword or key phrase.

 ✓ Addresses for Web sites appear in monofont.

What You’re Not to Read
I like to think that you won’t skip anything in this book, but I also know you’re 
a busy person. So to save time, feel free to skip anything marked with the 
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Technical Stuff icon as well as text in sidebars (the shaded gray boxes that 
appear throughout the book). These items feature information that’s interest-
ing but not crucial to your basic knowledge of statistics.

Foolish Assumptions
I don’t assume that you’ve had any previous experience with statistics, other 
than the fact that you’re a member of the general public who gets bombarded 
every day with statistics in the form of numbers, percents, charts, graphs, 
“statistically significant” results, “scientific” studies, polls, surveys, experi-
ments, and so on.

What I do assume is that you can do some of the basic mathematical opera-
tions and understand some of the basic notation used in algebra, such as 
the variables x and y, summation signs, taking the square root, squaring a 
number, and so on. If you need to brush up on your algebra skills, check out 
Algebra I For Dummies, 2nd Edition, by Mary Jane Sterling (Wiley).

I don’t want to mislead you: You do encounter formulas in this book, because 
statistics does involve a bit of number crunching. But don’t let that worry you. I 
take you slowly and carefully through each step of any calculations you need to 
do. I also provide examples for you to work along with this book, so that you can 
become familiar and comfortable with the calculations and make them your own.

How This Book Is Organized
This book is organized into five parts that explore the major areas of intro-
ductory statistics, along with a final part that offers some quick top-ten 
 nuggets for your information and enjoyment. Each part contains chapters 
that break down each major area of statistics into understandable pieces.

Part I: Vital Statistics about Statistics
This part helps you become aware of the quantity and quality of statistics 
you encounter in your workplace and your everyday life. You find out that a 
great deal of that statistical information is incorrect, either by accident or by 
design. You take a first step toward becoming statistically savvy by recogniz-
ing some of the tools of the trade, developing an overview of statistics as a 
process for getting and interpreting information, and getting up to speed on 
some statistical jargon.
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Part II: Number-Crunching Basics
This part helps you become more familiar and comfortable with making, 
interpreting, and evaluating data displays (otherwise known as charts, 
graphs, and so on) for different types of data. You also find out how to sum-
marize and explore data by calculating and combining some commonly used 
statistics as well as some statistics you may not know about yet.

Part III: Distributions and 
the Central Limit Theorem
In this part, you get into all the details of the three most common statistical 
distributions: the binomial distribution, the normal (and standard normal, 
also known as Z-distribution), and the t-distribution. You discover the charac-
teristics of each distribution and how to find and interpret probabilities, per-
centiles, means, and standard deviations. You also find measures of relative 
standing (like percentiles).

Finally, you discover how statisticians measure variability from sample to 
sample and why a measure of precision in your sample results is so important. 
And you get the lowdown on what some statisticians describe as the “Crowning 
Jewel of all Statistics”: the Central Limit Theorem (CLT). I don’t use quite this 
level of flourishing language to describe the CLT; I just tell my students it’s an 
MDR (“Mighty Deep Result”; coined by my PhD adviser). As for how my stu-
dents describe their feelings about the CLT, I’ll leave that to your imagination.

Part IV: Guesstimating and 
Hypothesizing with Confidence
This part focuses on the two methods for taking the results from a sample 
and generalizing them to make conclusions about an entire population. 
(Statisticians call this process statistical inference.) These two methods are 
confidence intervals and hypothesis tests.

In this part, you use confidence intervals to come up with good estimates for 
one or two population means or proportions, or for the difference between 
them (for example, the average number of hours teenagers spend watching 
TV per week or the percentage of men versus women in the United States 
who take arthritis medicine every day). You get the nitty-gritty on how con-
fidence intervals are formed, interpreted, and evaluated for correctness and 
credibility. You explore the factors that influence the width of a confidence 
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5 Introduction

interval (such as sample size) and work through formulas, step-by-step calcu-
lations, and examples for the most commonly used confidence intervals.

The hypothesis tests in this part show you how to use your data to test 
someone’s claim about one or two population means or proportions, or the 
difference between them. (For example, a company claims their packages are 
delivered in two days on average — is this true?) You discover how research-
ers (should) go about forming and testing hypotheses and how you can 
evaluate their results for accuracy and credibility. You also get detailed step-
by-step directions and examples for carrying out and interpreting the results 
of the most commonly used hypothesis tests.

Part V: Statistical Studies and the Hunt 
for a Meaningful Relationship
This part gives an overview of surveys, experiments, and observational stud-
ies. You find out what these studies do, how they are conducted, what their 
limitations are, and how to evaluate them to determine whether you should 
believe the results.

You also get all the details on how to examine pairs of numerical variables 
and categorical variables to look for relationships; this is the object of a great 
number of studies. For pairs of categorical variables, you create two-way tables 
and find joint, conditional, and marginal probabilities and distributions. You 
check for independence, and if a dependent relationship is found, you describe 
the nature of the relationship using probabilities. For numerical variables you 
create scatterplots, find and interpret correlation, perform regression analyses, 
study the fit of the regression line and the impact of outliers, describe the rela-
tionship using the slope, and use the line to make predictions. All in a day’s work!

Part VI: The Part of Tens
This quick and easy part shares ten ways to be a statistically savvy sleuth 
and root out suspicious studies and results, as well as ten surefire ways to 
boost your statistics exam score.

Some statistical calculations involve the use of statistical tables, and I provide 
quick and easy access to all the tables you need for this book in the appen-
dix. These tables are the Z-table (for the standard normal, also called the 
Z-distribution), the t-table (for the t-distribution), and the binomial table (for — 
you guessed it — the binomial distribution). Instructions and examples for using 
these three tables are provided in their corresponding sections of this book.
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Icons Used in This Book
Icons are used in this book to draw your attention to certain features that 
occur on a regular basis. Here’s what they mean:

 This icon refers to helpful hints, ideas, or shortcuts that you can use to save 
time. It also highlights alternative ways to think about a particular concept.

 This icon is reserved for particular ideas that I hope you’ll remember long 
after you read this book.

 This icon refers to specific ways that researchers or the media can mislead 
you with statistics and tells you what you can do about it. It also points out 
potential problems and cautions to keep an eye out for on exams.

 This icon is a sure bet if you have a special interest in understanding the more 
technical aspects of statistical issues. You can skip this icon if you don’t want 
to get into the gory details.

Where to Go from Here
This book is written in such a way that you can start anywhere and still be 
able to understand what’s going on. So you can take a peek at the table of 
contents or the index, look up the information that interests you, and flip to 
the page listed. However if you have a specific topic in mind and are eager 
to dive into it, here are some directions:

 ✓ To work on finding and interpreting graphs, charts, means or medians, 
and the like, head to Part II.

 ✓ To find info on the normal, Z-, t-, or binomial distributions or the Central 
Limit Theorem, see Part III.

 ✓ To focus on confidence intervals and hypothesis tests of all shapes and 
sizes, flip to Part IV.

 ✓ To delve into surveys, experiments, regression, and two-way tables, see 
Part V.

Or if you aren’t sure where you want to start, you may just go with Chapter 1 
for the big picture and then plow your way through the rest of the book. 
Happy reading!
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Vital Statistics 
about Statistics
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In this part . . . 

When you turn on the TV or open a newspaper, 
you’re bombarded with numbers, charts, graphs, 

and statistical results. From today’s poll to the latest 
major medical breakthroughs, the numbers just keep com-
ing. Yet much of the statistical information you’re asked 
to consume is actually wrong — by accident or even by 
design. How is a person to know what to believe? By doing 
a lot of good detective work.

This part helps awaken the statistical sleuth that lies 
within you by exploring how statistics affect your every-
day life and your job, how bad much of the information 
out there really is, and what you can do about it. This part 
also helps you get up to speed with some useful statistical 
jargon.
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Chapter 1

Statistics in a Nutshell
In This Chapter
▶ Finding out what the process of statistics is all about

▶ Gaining success with statistics in your everyday life, your career, and in the classroom

The world today is overflowing with data to the point where anyone (even 
me!) can be overwhelmed. I wouldn’t blame you if you were cynical right 

now about statistics you read about in the media — I am too at times. The 
good news is that while a great deal of misleading and incorrect information 
is lying out there waiting for you, a lot of great stuff is also being produced; 
for example, many studies and techniques involving data are helping improve 
the quality of our lives. Your job is to be able to sort out the good from the 
bad and be confident in your ability to do that. Through a strong understand-
ing of statistics and statistical procedures, you gain power and confidence 
with numbers in your everyday life, in your job, and in the classroom. That’s 
what this book is all about.

In this chapter, I give you an overview of the role statistics plays in today’s 
data-packed society and what you can do to not only survive but thrive. You 
get a much broader view of statistics as a partner in the scientific method — 
designing effective studies, collecting good data, organizing and analyzing the 
information, interpreting the results, and making appropriate conclusions. 
(And you thought statistics was just number-crunching!)

Thriving in a Statistical World
It’s hard to get a handle on the flood of statistics that affect your daily life 
in large and small ways. It begins the moment you wake up in the morning 
and check the news and listen to the meteorologist give you her predictions 
for the weather based on her statistical analyses of past data and present 
weather conditions. You pore over nutritional information on the side of your 
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cereal box while you eat breakfast. At work you pull numbers from charts 
and tables, enter data into spreadsheets, run diagnostics, take measure-
ments, perform calculations, estimate expenses, make decisions using statis-
tical baselines, and order inventory based on past sales data.

At lunch you go to the No. 1 restaurant based on a survey of 500 people. You 
eat food that was priced based on marketing data. You go to your doctor’s 
appointment where they take your blood pressure, temperature, weight, and 
do a blood test; after all the information is collected, you get a report show-
ing your numbers and how you compare to the statistical norms.

You head home in your car that’s been serviced by a computer running sta-
tistical diagnostics. When you get home, you turn on the news and hear the 
latest crime statistics, see how the stock market performed, and discover 
how many people visited the zoo last week.

At night, you brush your teeth with toothpaste that’s been statistically 
proven to fight cavities, read a few pages of your New York Times Best-Seller 
(based on statistical sales estimates), and go to sleep — only to start it all 
over again the next morning. But how can you be sure that all those statistics 
you encounter and depend on each day are correct? In Chapter 2, I discuss 
in more depth a few examples of how statistics is involved in our lives and 
workplaces, what its impact is, and how you can raise your awareness of it.

 Some statistics are vague, inappropriate, or just plain wrong. You need to 
become more aware of the statistics you encounter each day and train your 
mind to stop and say “wait a minute!”, sift through the information, ask ques-
tions, and raise red flags when something’s not quite right. In Chapter 3, you 
see ways in which you can be misled by bad statistics and develop skills to 
think critically and identify problems before automatically believing results.

Like any other field, statistics has its own set of jargon, and I outline and 
explain some of the most commonly used statistical terms in Chapter 4. 
Knowing the language increases your ability to understand and communicate 
statistics at a higher level without being intimidated. It raises your credibil-
ity when you use precise terms to describe what’s wrong with a statistical 
result (and why). And your presentations involving statistical tables, graphs, 
charts, and analyses will be informational and effective. (Heck, if nothing 
else, you need the jargon because I use it throughout this book; don’t worry 
though, I always review it.)

In the next sections, you see how statistics is involved in each phase of the 
scientific method.
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Designing Appropriate Studies
Everyone’s asking questions, from drug companies to biologists; from mar-
keting analysts to the U.S. government. And ultimately, everyone will use sta-
tistics to help them answer their questions. In particular, many medical and 
psychological studies are done because someone wants to know the answer 
to a question. For example,

 ✓ Will this vaccine be effective in preventing the flu?

 ✓ What do Americans think about the state of the economy?

 ✓ Does an increase in the use of social networking Web sites cause depres-
sion in teenagers?

The first step after a research question has been formed is to design an 
effective study to collect data that will help answer that question. This step 
amounts to figuring out what process you’ll use to get the data you need. In 
this section, I give an overview of the two major types of studies — surveys 
and experiments — and explore why it’s so important to evaluate how a 
study was designed before you believe the results.

Surveys
An observational study is one in which data is collected on individuals in a 
way that doesn’t affect them. The most common observational study is the 
survey. Surveys are questionnaires that are presented to individuals who 
have been selected from a population of interest. Surveys take many differ-
ent forms: paper surveys sent through the mail, questionnaires on Web sites, 
call-in polls conducted by TV networks, phone surveys, and so on.

 If conducted properly, surveys can be very useful tools for getting informa-
tion. However, if not conducted properly, surveys can result in bogus informa-
tion. Some problems include improper wording of questions, which can be 
misleading, lack of response by people who were selected to participate, or 
failure to include an entire group of the population. These potential problems 
mean a survey has to be well thought out before it’s given.

 Many researchers spend a great deal of time and money to do good surveys, 
and you’ll know (by the criteria I discuss in Chapter 16) that you can trust 
them. However, as you are besieged with so many different types of surveys 
found in the media, in the workplace, and in many of your classes, you need 
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to be able to quickly examine and critique how a survey was designed and 
conducted and be able to point out specific problems in a well-informed way. 
The tools you need for sorting through surveys are found in Chapter 16.

Experiments
An experiment imposes one or more treatments on the participants in such 
a way that clear comparisons can be made. After the treatments are applied, 
the responses are recorded. For example, to study the effect of drug dosage 
on blood pressure, one group may take 10 mg of the drug, and another group 
may take 20 mg. Typically, a control group is also involved, in which subjects 
each receive a fake treatment (a sugar pill, for example), or a standard, non-
experimental treatment (like the existing drugs given to AIDS patients.)

 Good and credible experiments are designed to minimize bias, collect lots 
of good data, and make appropriate comparisons (treatment group versus 
control group). Some potential problems that occur with experiments include 
researchers and/or subjects who know which treatment they got, factors not 
controlled for in the study that affect the outcome (such as weight of the sub-
ject when studying drug dosage), or lack of a control group (leaving no base-
line to compare the results with).

But when designed correctly, an experiment can help a researcher establish 
a cause-and-effect relationship if the difference in responses between the 
treatment group and the control group is statistically significant (unlikely to 
have occurred just by chance).

 Experiments are credited with helping to create and test drugs, determining 
best practices for making and preparing foods, and evaluating whether a new 
treatment can cure a disease, or at least reduce its impact. Our quality of life 
has certainly been improved through the use of well-designed experiments. 
However, not all experiments are well-designed, and your ability to determine 
which results are credible and which results are incredible (pun intended) is 
critical, especially when the findings are very important to you. All the info 
you need to know about experiments and how to evaluate them is found in 
Chapter 17.

Collecting Quality Data
After a study has been designed, be it a survey or an experiment, the individ-
uals who will participate have to be selected, and a process must be in place 
to collect the data. This phase of the process is critical to producing credible 
data in the end, and this section hits the highlights.
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Selecting a good sample
 Statisticians have a saying, “Garbage in equals garbage out.” If you select your 

subjects (the individuals who will participate in your study) in a way that is 
biased — that is, favoring certain individuals or groups of individuals — then 
your results will also be biased. It’s that simple.

Suppose Bob wants to know the opinions of people in your city regarding a 
proposed casino. Bob goes to the mall with his clipboard and asks people 
who walk by to give their opinions. What’s wrong with that? Well, Bob is only 
going to get the opinions of a) people who shop at that mall; b) on that par-
ticular day; c) at that particular time; d) and who take the time to respond.

Those circumstances are too restrictive — those folks don’t represent a cross 
section of the city. Similarly, Bob could put up a Web site survey and ask 
people to use it to vote. However, only people who know about the site, have 
Internet access, and want to respond will give him data, and typically only 
those with strong opinions will go to such trouble. In the end, all Bob has is a 
bunch of biased data on individuals that don’t represent the city at all.

 To minimize bias in a survey, the key word is random. You need to select your 
sample of individuals randomly — that is, with some type of “draw names out 
of a hat” process. Scientists use a variety of methods to select individuals at 
random, and you see how they do it in Chapter 16.

Note that in designing an experiment, collecting a random sample of people 
and asking them to participate often isn’t ethical because experiments impose 
a treatment on the subjects. What you do is send out requests for volunteers 
to come to you. Then you make sure the volunteers you select from the group 
represent the population of interest and that the data is well collected on those 
individuals so the results can be projected to a larger group. You see how that’s 
done in Chapter 17.

After going through Chapters 16 and 17, you’ll know how to dig down and 
analyze others’ methods for selecting samples and even be able to design 
a plan you can use to select a sample. In the end, you’ll know when to say 
“Garbage in equals garbage out.”

Avoiding bias in your data
Bias is the systematic favoritism of certain individuals or certain responses. 
Bias is the nemesis of statisticians, and they do everything they can to mini-
mize it. Want an example of bias? Say you’re conducting a phone survey 
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on job satisfaction of Americans; if you call people at home during the day 
between 9 a.m. and 5 p.m., you miss out on everyone who works during the 
day. Maybe day workers are more satisfied than night workers.

You have to watch for bias when collecting survey data. For instance: Some 
surveys are too long — what if someone stops answering questions halfway 
through? Or what if they give you misinformation and tell you they make 
$100,000 a year instead of $45,000? What if they give you answers that aren’t 
on your list of possible answers? A host of problems can occur when collect-
ing survey data, and you need to be able to pinpoint those problems.

 Experiments are sometimes even more challenging when it comes to bias and 
collecting data. Suppose you want to test blood pressure; what if the instru-
ment you’re using breaks during the experiment? What if someone quits the 
experiment halfway through? What if something happens during the experi-
ment to distract the subjects or the researchers? Or they can’t find a vein when 
they have to do a blood test exactly one hour after a dose of a drug is given? 
These problems are just some examples of what can go wrong in data collection 
for experiments, and you have to be ready to look for and find these problems.

After you go through Chapter 16 (on samples and surveys) and Chapter 17 
(on experiments), you’ll be able to select samples and collect data in an unbi-
ased way, being sensitive to little things that can really influence the results. 
And you’ll have the ability to evaluate the credibility of statistical results and 
to be heard, because you’ll know what you’re talking about.

Creating Effective Summaries
After good data have been collected, the next step is to summarize them to 
get a handle on the big picture. Statisticians describe data in two major ways: 
with numbers (called descriptive statistics) and with pictures (that is, charts 
and graphs).

Descriptive statistics
 Descriptive statistics are numbers that describe a data set in terms of its impor-

tant features:

 ✓ If the data are categorical (where individuals are placed into groups, 
such as gender or political affiliation), they are typically summarized 
using the number of individuals in each group (called the frequency) or 
the percentage of individuals in each group (called the relative frequency).
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15 Chapter 1: Statistics in a Nutshell

 ✓ Numerical data represent measurements or counts, where the actual 
numbers have meaning (such as height and weight). With numerical 
data, more features can be summarized besides the number or percent-
age in each group. Some of these features include

 • Measures of center (in other words, where is the “middle” of the 
data?)

 • Measures of spread (how diverse or how concentrated are the 
data around the center?)

 • If appropriate, numbers that measure the relationship between 
two variables (such as height and weight)

 Some descriptive statistics are more appropriate than others in certain situa-
tions; for example, the average isn’t always the best measure of the center of a 
data set; the median is often a better choice. And the standard deviation isn’t 
the only measure of variability on the block; the interquartile range has excel-
lent qualities too. You need to be able to discern, interpret, and evaluate the 
types of descriptive statistics being presented to you on a daily basis and to 
know when a more appropriate statistic is in order.

The descriptive statistics you see most often are calculated, interpreted, 
compared, and evaluated in Chapter 5. These commonly used descriptive 
statistics include frequencies and relative frequencies (counts and percents) 
for categorical data; and the mean, median, standard deviation, percentiles, 
and their combinations for numerical data.

Charts and graphs
Data is summarized in a visual way using charts and/or graphs. These are 
displays that are organized to give you a big picture of the data in a flash 
and/or to zoom in on a particular result that was found. In this world of quick 
information and mini-sound bites, graphs and charts are commonplace. Most 
graphs and charts make their points clearly, effectively, and fairly; however, 
they can leave room for too much poetic license, and as a result, can expose 
you to a high number of misleading and incorrect graphs and charts.

 In Chapters 6 and 7, I cover the major types of graphs and charts used to 
summarize both categorical and numerical data (see the preceding section 
for more about these types of data). You see how to make them, what their 
purposes are, and how to interpret the results. I also show you lots of ways 
that graphs and charts can be made to be misleading and how you can quickly 
spot the problems. It’s a matter of being able to say “Wait a minute here! 
That’s not right!” and knowing why not. Here are some highlights:
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16 Part I: Vital Statistics about Statistics 

 ✓ Some of the basic graphs used for categorical data include pie charts 
and bar graphs, which break down variables, such as gender or which 
applications are used on teens’ cellphones. A bar graph, for example, 
may display opinions on an issue using five bars labeled in order from 
“Strongly Disagree” up through “Strongly Agree.” Chapter 6 gives you all 
the important info on making, interpreting, and, most importantly, evalu-
ating these charts and graphs for fairness. You may be surprised to see 
how much can go wrong with a simple bar chart.

 ✓ For numerical data such as height, weight, time, or amount, a different 
type of graph is needed. Graphs called histograms and boxplots are 
used to summarize numerical data, and they can be very informative, 
providing excellent on-the-spot information about a data set. But of 
course they also can be misleading, either by chance or even by design. 
(See Chapter 7 for the scoop.)

 You’re going to run across charts and graphs every day — you can open 
a newspaper and probably find several graphs without even looking hard. 
Having a statistician’s magnifying glass to help you interpret the information 
is critical so that you can spot misleading graphs before you draw the wrong 
conclusions and possibly act on them. All the tools you need are ready for you 
in Chapter 6 (for categorical data) and Chapter 7 (for numerical data).

Determining Distributions
A variable is a characteristic that’s being counted, measured, or categorized. 
Examples include gender, age, height, weight, or number of pets you own. 
A distribution is a listing of the possible values of a variable (or intervals of 
values), and how often (or at what density) they occur. For example, the dis-
tribution of gender at birth in the United States has been estimated at 52.4% 
male and 47.6% female.

 Different types of distributions exist for different variables. The following 
three distributions are the most commonly occurring distributions in an intro-
ductory statistics course, and they have many applications in the real world:

 ✓ If a variable is counting the number of successes in a certain number 
of trials (such as the number of people who got well by taking a certain 
drug), it has a binomial distribution.

 ✓ If the variable takes on values that occur according to a “bell-shaped 
curve,” such as national achievement test scores, then that variable has 
a normal distribution.

 ✓ If the variable is based on sample averages and you have limited data, 
such as in a test of only ten subjects to see if a weight-loss program 
works, the t-distribution may be in order.
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17 Chapter 1: Statistics in a Nutshell

When it comes to distributions, you need to know how to decide which dis-
tribution a particular variable has, how to find probabilities for it, and how to 
figure out what the long-term average and standard deviation of the outcomes 
would be. To get you squared away on these issues, I’ve got three chapters for 
you, one dedicated to each distribution: Chapter 8 is all about the binomial, 
Chapter 9 handles the normal, and Chapter 10 focuses on the t-distribution.

 For those of you taking an introductory statistics course (or any statistics 
course, for that matter), you know that one of the most difficult topics to under-
stand is sampling distributions and the Central Limit Theorem (these two things 
go hand in hand). Chapter 11 walks you through these topics step by step so 
you understand what a sampling distribution is, what it’s used for, and how it 
provides the foundation for data analyses like hypothesis tests and confidence 
intervals (see the next section for more about analyzing data). When you under-
stand the Central Limit Theorem, it actually helps you solve difficult problems 
more easily, and all the keys to this information are there for you in Chapter 11.

Performing Proper Analyses
After the data have been collected and described using numbers and pic-
tures, then comes the fun part: navigating through that black box called the 
statistical analysis. If the study has been designed properly, the original ques-
tions can be answered using the appropriate analysis — the operative word 
here being appropriate.

 Many types of analyses exist, and choosing the right analysis for the right situ-
ation is critical, as is interpreting results properly, being knowledgeable of the 
limitations, and being able to evaluate others’ choice of analyses and the con-
clusions they make with them.

In this book, you get all the information and tools you need to analyze data 
using the most common methods in introductory statistics: confidence inter-
vals, hypothesis tests, correlation and regression, and the analysis of two-
way tables. This section gives you a basic overview of those methods.

Margin of error and confidence intervals
You often see statistics that try to estimate numbers pertaining to an entire 
population; in fact, you see them almost every day in the form of survey 
results. The media tells you what the average gas price is in the U.S., how 
Americans feel about the job the president is doing, or how many hours 
people spend on the Internet each week.
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But no one can give you a single-number result and claim it’s an accurate esti-
mate of the entire population unless he collected data on every single member 
of the population. For example, you may hear that 60 percent of the American 
people support the president’s approach to healthcare, but you know they 
didn’t ask you, so how could they have asked everybody? And since they didn’t 
ask everybody, you know that a one-number answer isn’t going to cut it.

What’s really happening is that data is collected on a sample from the popula-
tion (for example, the Gallup Organization calls 2,500 people at random), the 
results from that sample are analyzed, and conclusions are made regarding the 
entire population (for example, all Americans) based on those sample results.

 The bottom line is, sample results vary from sample to sample, and this 
amount of variability needs to be reported (but it often isn’t). The statis-
tic used to measure and report the level of precision in someone’s sample 
results is called the margin of error. In this context, the word error doesn’t 
mean a mistake was made; it just means that because you didn’t sample the 
entire population, a gap will exist between your results and the actual value 
you are trying to estimate for the population.

For example, someone finds that 60% of the 1,200 people surveyed support 
the president’s approach to healthcare and reports the results with a margin 
of error of plus or minus 2%. This final result, in which you present your find-
ings as a range of likely values between 58% and 62%, is called a confidence 
interval.

 Everyone is exposed to results including a margin of error and confidence 
intervals, and with today’s data explosion, many people are also using them 
in the workplace. Be sure you know what factors affect margin of error (like 
sample size) and what the makings of a good confidence interval are and how 
to spot them. You should also be able to find your own confidence intervals 
when you need to.

In Chapter 12, you find out everything you need to know about the margin 
of error: All the components of it, what it does and doesn’t measure, and 
how to calculate it for a number of situations. Chapter 13 takes you step by 
step through the formulas, calculations, and interpretations of confidence 
intervals for a population mean, population proportion, and the difference 
between two means and proportions.

Hypothesis tests
One main staple of research studies is called hypothesis testing. A hypothesis 
test is a technique for using data to validate or invalidate a claim about a 
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population. For example, a politician may claim that 80% of the people in her 
state agree with her — is that really true? Or, a company may claim that they 
deliver pizzas in 30 minutes or less; is that really true? Medical researchers 
use hypothesis tests all the time to test whether or not a certain drug is effec-
tive, to compare a new drug to an existing drug in terms of its side effects, 
or to see which weight-loss program is most effective with a certain group of 
people.

 The elements about a population that are most often tested are

 ✓ The population mean (Is the average delivery time of 30 minutes really 
true?)

 ✓ The population proportion (Is it true that 80% of the voters support this 
candidate, or is it less than that?)

 ✓ The difference in two population means or proportions (Is it true that 
the average weight loss on this new program is 10 pounds more than 
the most popular program? Or, is it true that this drug decreases blood 
pressure by 10% more than the current drug?)

 Hypothesis tests are used in a host of areas that affect your everyday life, 
such as medical studies, advertisements, polling data, and virtually anywhere 
that comparisons are made based on averages or proportions. And in the 
workplace, hypothesis tests are used heavily in areas like marketing, where 
you want to determine whether a certain type of ad is effective or whether a 
certain group of individuals buys more or less of your product now compared 
to last year.

Often you only hear the conclusions of hypothesis tests (for example, this 
drug is significantly more effective and has fewer side effects than the drug 
you are using now); but you don’t see the methods used to come to these 
conclusions. Chapter 14 goes through all the details and underpinnings of 
hypothesis tests so you can conduct and critique them with confidence. 
Chapter 15 cuts right to the chase of providing step-by-step instructions for 
setting up and carrying out hypothesis tests for a host of specific situations 
(one population mean, one population proportion, the difference of two pop-
ulation means, and so on).

After reading Chapters 14 and 15, you’ll be much more empowered when you 
need to know things like which group you should be marketing a product 
to; which brand of tires will last the longest; whether a certain weight-loss 
program is effective; and bigger questions like which surgical procedure you 
should opt for.
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Correlation, regression, 
and two-way tables
One of the most common goals of research is to find links between variables. 
For example,

 ✓ Which lifestyle behaviors increase or decrease the risk of cancer?

 ✓ What side effects are associated with this new drug?

 ✓ Can I lower my cholesterol by taking this new herbal supplement?

 ✓ Does spending a large amount of time on the Internet cause a person to 
gain weight?

Finding links between variables is what helps the medical world design better 
drugs and treatments, provides marketers with info on who is more likely to 
buy their products, and gives politicians information on which to build argu-
ments for and against certain policies.

 In the mega-business of looking for relationships between variables, you find 
an incredible number of statistical results — but can you tell what’s correct 
and what’s not? Many important decisions are made based on these studies, 
and it’s important to know what standards need to be met in order to deem 
the results credible, especially when a cause-and-effect relationship is being 
reported.

Chapter 18 breaks down all the details and nuances of plotting data from two 
numerical variables (such as dosage level and blood pressure), finding and 
interpreting correlation (the strength and direction of the linear relationship 
between x and y), finding the equation of a line that best fits the data (and 
when doing so is appropriate), and how to use these results to make predic-
tions for one variable based on another (called regression). You also gain 
tools for investigating when a line fits the data well and when it doesn’t, and 
what conclusions you can make (and shouldn’t make) in the situations where 
a line does fit.

I cover methods used to look for and describe links between two categorical 
variables (such as the number of doses taken per day and the presence or 
absence of nausea) in detail in Chapter 19. I also provide info on collecting 
and organizing data into two-way tables (where the possible values of one 
variable make up the rows and the possible values for the other variable 
make up the columns), interpreting the results, analyzing the data from two-
way tables to look for relationships, and checking for independence. And, as I 
do throughout this book, I give you strategies for critically examining results 
of these kinds of analyses for credibility.
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Drawing Credible Conclusions
 To perform statistical analyses, researchers use statistical software that 

depends on formulas. But formulas don’t know whether they are being used 
properly, and they don’t warn you when your results are incorrect. At the end 
of the day, computers can’t tell you what the results mean; you have to figure 
it out. Throughout this book you see what kinds of conclusions you can and 
can’t make after the analysis has been done. The following sections provide an 
introduction to drawing appropriate conclusions.

Reeling in overstated results
Some of the most common mistakes made in conclusions are overstating the 
results or generalizing the results to a larger group than was actually repre-
sented by the study. For example, a professor wants to know which Super 
Bowl commercials viewers liked best. She gathers 100 students from her 
class on Super Bowl Sunday and asks them to rate each commercial as it is 
shown. A top-five list is formed, and she concludes that all Super Bowl view-
ers liked those five commercials the best. But she really only knows which 
ones her students liked best — she didn’t study any other groups, so she can’t 
draw conclusions about all viewers.

Questioning claims of cause and effect
One situation in which conclusions cross the line is when researchers find 
that two variables are related (through an analysis such as regression; see 
the earlier section “Correlation, regression, and two-way tables” for more 
info) and then automatically leap to the conclusion that those two variables 
have a cause-and-effect relationship.

For example, suppose a researcher conducted a health survey and found 
that people who took vitamin C every day reported having fewer colds than 
people who didn’t take vitamin C every day. Upon finding these results, she 
wrote a paper and gave a press release saying vitamin C prevents colds, 
using this data as evidence.

Now, while it may be true that vitamin C does prevent colds, this research-
er’s study can’t claim that. Her study was observational, which means she 
didn’t control for any other factors that could be related to both vitamin C 
and colds. For example, people who take vitamin C every day may be more 
health conscious overall, washing their hands more often, exercising more, 
and eating better foods; all these behaviors may be helpful in reducing colds.
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 Until you do a controlled experiment, you can’t make a cause-and-effect con-
clusion based on relationships you find. (I discuss experiments in more detail 
earlier in this chapter.)

Becoming a Sleuth, Not a Skeptic
Statistics is about much more than numbers. To really “get” statistics, you 
need to understand how to make appropriate conclusions from studying data 
and be savvy enough to not believe everything you hear or read until you 
find out how the information came about, what was done with it, and how the 
conclusions were drawn. That’s something I discuss throughout the book, 
but I really zoom in on it in Chapter 20, which gives you ten ways to be a sta-
tistically savvy sleuth by recognizing common mistakes made by researchers 
and the media.

 For you students out there, Chapter 21 brings good statistical practice into the 
exam setting and gives you tips on increasing your scores. Much of my advice 
is based on understanding the big picture as well as the details of tackling sta-
tistical problems and coming out a winner on the other side.

 Becoming skeptical or cynical about statistics is very easy, especially after 
finding out what’s going on behind the scenes; don’t let that happen to you. 
You can find lots of good information out there that can affect your life in 
a positive way. Find a good channel for your skepticism by setting two per-
sonal goals:

 ✓ To become a well-informed consumer of the statistical information you 
see every day

 ✓ To establish job security by being the statistics “go-to” person who 
knows when and how to help others and when to find a statistician

Through reading and using the information in this book, you’ll be confident 
in knowing you can make good decisions about statistical results. You’ll con-
duct your own statistical studies in a credible way. And you’ll be ready to 
tackle your next office project, critically evaluate that annoying political ad, 
or ace your next exam!
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Chapter 2

The Statistics of Everyday Life
In This Chapter
▶ Raising questions about statistics you see in everyday life

▶ Encountering statistics in the workplace

Today’s society is completely taken over by numbers. Numbers are 
everywhere you look, from billboards showing the on-time statistics 

for a particular airline, to sports shows discussing the Las Vegas odds for 
upcoming football games. The evening news is filled with stories focusing on 
crime rates, the expected life span of junk-food junkies, and the president’s 
approval rating. On a normal day, you can run into 5, 10, or even 20 differ-
ent statistics (with many more on election night). Just by reading a Sunday 
newspaper all the way through, you come across literally hundreds of statis-
tics in reports, advertisements, and articles covering everything from soup 
(how much does an average person consume per year?) to nuts (almonds are 
known to have positive health effects — what about other types of nuts?).

In this chapter I discuss the statistics that often appear in your life and work 
and talk about how statistics are presented to the general public. After reading 
this chapter, you’ll realize just how often the media hits you with numbers and 
how important it is to be able to unravel the meaning of those numbers. Like 
it or not, statistics are a big part of your life. So, if you can’t beat ’em, join ’em. 
And if you don’t want to join ’em, at least try to understand ’em.

Statistics and the Media: More 
Questions than Answers?

Open a newspaper and start looking for examples of articles and stories involv-
ing numbers. It doesn’t take long before numbers begin to pile up. Readers are 
inundated with results of studies, announcements of breakthroughs, statisti-
cal reports, forecasts, projections, charts, graphs, and summaries. The extent 
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to which statistics occur in the media is mind-boggling. You may not even be 
aware of how many times you’re hit with numbers nowadays.

This section looks at just a few examples from one Sunday paper’s worth of 
news that I read the other day. When you see how frequently statistics are 
reported in the news without providing all the information you need, you may 
find yourself getting nervous, wondering what you can and can’t believe any-
more. Relax! That’s what this book is for — to help you sort out the good infor-
mation from the bad (the chapters in Part II give you a great start on that).

Probing popcorn problems
The first article I came across that dealt with numbers was “Popcorn plant 
faces health probe,” with the subheading: “Sick workers say flavoring chemi-
cals caused lung problems.” The article describes how the Centers for Disease 
Control (CDC) expressed concern about a possible link between exposure to 
chemicals in microwave popcorn flavorings and some cases of fixed obstruc-
tive lung disease. Eight people from one popcorn factory alone contracted this 
lung disease, and four of them were awaiting lung transplants.

According to the article, similar cases were reported at other popcorn facto-
ries. Now, you may be wondering, what about the folks who eat microwave 
popcorn? According to the article, the CDC finds “no reason to believe that 
people who eat microwave popcorn have anything to fear.” (Stay tuned.) 
The next step is to evaluate employees more in-depth, including conducting 
surveys to determine health and possible exposures to the said chemicals, 
checks of lung capacity, and detailed air samples. The question here is: How 
many cases of this lung disease constitute a real pattern, compared to mere 
chance or a statistical anomaly? (You find out more about this in Chapter 14.)

Venturing into viruses
The second article discussed a recent cyber attack: A wormlike virus made 
its way through the Internet, slowing down Web browsing and e-mail delivery 
across the world. How many computers were affected? The experts quoted in 
the article said that 39,000 computers were infected, and they in turn affected 
hundreds of thousands of other systems.

Questions: How did the experts get that number? Did they check each com-
puter out there to see whether it was affected? The fact that the article was 
written less than 24 hours after the attack suggests the number is a guess. 
Then why say 39,000 and not 40,000 — to make it seem less like a guess? To 
find out more on how to guesstimate with confidence (and how to evaluate 
someone else’s numbers), see Chapter 13.
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Comprehending crashes
Next in the paper was an alert about the soaring number of motorcycle fatali-
ties. Experts said that the fatality rate — the number of fatalities per 100,000 reg-
istered vehicles — for motorcyclists has been steadily increasing, as reported 
by the National Highway Traffic Safety Administration (NHTSA). In the article, 
many possible causes for the increased motorcycle death rate are discussed, 
including age, gender, size of engine, whether the driver had a license, alcohol 
use, and state helmet laws (or lack thereof). The report is very comprehensive, 
showing various tables and graphs with the following titles:

 ✓ Motorcyclists killed and injured, and fatality and injury rates by year, per 
number of registered vehicles, and per millions of vehicle miles traveled

 ✓ Motorcycle rider fatalities by state, helmet use, and blood alcohol content

 ✓ Occupant fatality rates by vehicle type (motorcycles, passenger cars, 
light trucks), per 10,000 registered vehicles and per 100 million vehicle 
miles traveled

 ✓ Motorcyclist fatalities by age group

 ✓ Motorcyclist fatalities by engine size (displacement)

 ✓ Previous driving records of drivers involved in fatal traffic crashes by 
type of vehicle (including previous crashes, DUI convictions, speeding 
convictions, and license suspensions and revocations)

 ✓ Percentage of alcohol-impaired motorcycle riders killed in traffic crashes 
by time of day, for single-vehicle, multiple-vehicle, and total crashes

This article is very informative and provides a wealth of detailed information 
regarding motorcycle fatalities and injuries in the U.S. However, the onslaught 
of so many tables, graphs, rates, numbers, and conclusions can be overwhelm-
ing and confusing and allow you to miss the big picture. With a little practice, 
and help from Part II, you’ll be better able to sort out graphs, tables, and charts 
and all the statistics that go along with them. For example, some important sta-
tistical issues come up when you see rates versus counts (such as death rates 
versus number of deaths). As I address in Chapter 3, counts can give you mis-
leading information if they’re used when rates would be more appropriate.

Mulling malpractice
Further along in the newspaper was a report about a recent medical mal-
practice insurance study: Malpractice cases affect people in terms of the fees 
doctors charge and the ability to get the healthcare they need. The article 
indicates that 1 in 5 Georgia doctors have stopped doing risky procedures 
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(such as delivering babies) because of the ever-increasing malpractice 
insurance rates in the state. This is described as a “national epidemic” and 
a “health crisis” around the country. Some brief details of the study are 
included, and the article states that of the 2,200 Georgia doctors surveyed, 
2,800 of them — which they say represents about 18% of those sampled — 
were expected to stop providing high-risk procedures.

Wait a minute! That can’t be right. Out of 2,200 doctors, 2,800 don’t perform 
the procedures, and that is supposed to represent 18%? That’s impossible! 
You can’t have a bigger number on the top of a fraction, and still have the 
fraction be under 100%, right? This is one of many examples of errors in 
media reporting of statistics. So what’s the real percentage? There’s no way 
to tell from the article. Chapter 5 nails down the particulars of calculating 
statistics so that you can know what to look for and immediately tell when 
something’s not right.

Belaboring the loss of land
In the same Sunday paper was an article about the extent of land development 
and speculation across the United States. Knowing how many homes are likely 
to be built in your neck of the woods is an important issue to get a handle on. 
Statistics are given regarding the number of acres of farmland being lost to 
development each year. To further illustrate how much land is being lost, the 
area is also listed in terms of football fields. In this particular example, experts 
said that the mid-Ohio area is losing 150,000 acres per year, which is 234 
square miles, or 115,385 football fields (including end zones). How do people 
come up with these numbers, and how accurate are they? And does it help 
to visualize land loss in terms of the corresponding number of football fields? 
I discuss the accuracy of data collected in more detail in Chapter 16.

Scrutinizing schools
The next topic in the paper was school proficiency — specifically, whether 
extra school sessions help students perform better. The article states that 
81.3% of students in this particular district who attended extra sessions passed 
the writing proficiency test, whereas only 71.7% of those who didn’t participate 
in the extra school sessions passed it. But is this enough of a difference to 
account for the $386,000 price tag per year? And what’s happening in these ses-
sions to cause an improvement? Are students in these sessions spending more 
time just preparing for those exams rather than learning more about writing 
in general? And here’s the big question: Were the participants in the extra ses-
sions student volunteers who may be more motivated than the average 
student to try to improve their test scores? The article doesn’t say.
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Studies like this appear all the time, and the only way to know what to believe 
is to understand what questions to ask and to be able to critique the quality 
of the study. That’s all part of statistics! The good news is, with a few clarify-
ing questions, you can quickly critique statistical studies and their results. 
Chapter 17 helps you do just that.

Studying sports
The sports section is probably the most numerically jampacked section of the 
newspaper. Beginning with game scores, the win/loss percentages for each 
team, and the relative standing for each team, the specialized statistics reported 
in the sports world are so deep they require wading boots to get through. 
For example, basketball statistics are broken down by team, by quarter, and 

Studying surveys of all shapes and sizes
Surveys and polls are among the most visible 
mechanisms used by today’s media to grab your 
attention. It seems that everyone wants to do a 
survey, including market managers, insurance 
companies, TV stations, community groups, and 
even students in high school classes. Here are 
just a few examples of survey results that are 
part of today’s news:

With the aging of the American workforce, 
companies are planning for their future lead-
ership. (How do they know that the American 
workforce is aging, and if it is, by how much is 
it aging?) A recent survey shows that nearly 
67% of human-resources managers polled said 
that planning for succession had become more 
important in the past five years than it had been 
in the past. The survey also says that 88% of the 
210 respondents said they usually or often fill 
senior positions with internal candidates. But 
how many managers did not respond, and is 
210 respondents really enough people to war-
rant a story on the front page of the business 
section? Believe it or not, when you start look-
ing for them, you’ll find numerous examples in 
the news of surveys based on far fewer par-
ticipants than 210. (To be fair, however, 210 can 

actually be a good number of subjects in some 
situations. The issues of what sample size is 
large enough and what percentage of respon-
dents is big enough are addressed in full detail 
in Chapter 16.)

Some surveys are based on current interests 
and trends. For example, a recent Harris-
Interactive survey found that nearly half (47%) 
of U.S. teens say their social lives would end 
or be worsened without their cellphones, and 
57% go as far as to say that their cellphones 
are the key to their social life. The study also 
found that 42% of teens say that they can text 
while blindfolded (how do you really test this?). 
Keep in perspective, though, that the study did 
not tell you what percentage of teens actually 
have cellphones or what demographic charac-
teristics those teens have compared to teens 
who do not have cellphones. And remember 
that data collected on topics like this aren’t 
always accurate, because the individuals who 
are surveyed may tend to give biased answers 
(who wouldn’t want to say they can text blind-
folded?). For more information on how to inter-
pret and evaluate the results of surveys, see 
Chapter 16.
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by player. For each player, you get minutes played, field goals, free throws, 
rebounds, assists, personal fouls, turnovers, blocks, steals, and total points.

Who needs to know this stuff, besides the players’ mothers? Apparently many 
fans do. Statistics are something that sports fans can never get enough of 
and players often can’t stand to hear about. Stats are the substance of water-
cooler debates and the fuel for armchair quarterbacks around the world.

Fantasy sports have also made a huge impact on the sports money-making 
machine. Fantasy sports are games where participants act as owners to build 
their own teams from existing players in a professional league. The fantasy 
team owners then compete against each other. What is the competition based 
on? Statistical performance of the players and teams involved, as measured 
by rules set up by a “league commissioner” and an established point system. 
According to the Fantasy Sports Trade Association, the number of people age 
12 and up who are involved in fantasy sports is more than 30 million, and the 
amount of money spent is $3–4 billion per year. (And even here you can ask 
how the numbers were calculated — the questions never end, do they?)

Banking on business news
The business section of the newspaper provides statistics about the stock 
market. In one week the market went down 455 points; is that decrease a lot 
or a little? You need to calculate a percentage to really get a handle on that.

The business section of my paper contained reports on the highest yields 
nationwide on every kind of certificate of deposit (CD) imaginable. (By the 
way, how do they know those yields are the highest?) I also found reports 
about rates on 30-year fixed loans, 15-year fixed loans, 1-year adjustable rate 
loans, new car loans, used car loans, home equity loans, and loans from your 
grandmother (well actually no, but if grandma read these statistics, she might 
increase her cushy rates).

Finally, I saw numerous ads for those beloved credit cards — ads listing the 
interest rates, the annual fees, and the number of days in the billing cycle. How 
do you compare all the information about investments, loans, and credit cards 
in order to make a good decision? What statistics are most important? The real 
question is: Are the numbers reported in the paper giving the whole story, or 
do you need to do more detective work to get at the truth? Chapters 16 and 17 
help you start tearing apart these numbers and making decisions about them.

Touring the travel news
You can’t even escape the barrage of numbers by heading to the travel section. 
For example, there I found that the most frequently asked question coming in to 
the Transportation Security Administration’s response center (which receives 
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about 2,000 telephone calls, 2,500 e-mail messages, and 200 letters per week on 
average — would you want to be the one counting all of those?) is, “Can I carry 
this on a plane?” This can refer to anything from an animal to a wedding dress to 
a giant tin of popcorn. (I wouldn’t recommend the tin of popcorn. You have to 
put it in the overhead compartment horizontally, and because things shift during 
flight, the cover will likely open; and when you go to claim your tin at the end of 
the flight, you and your seatmates will be showered. Yes, I saw it happen once.)

The number of reported responses in this case leads to an interesting statis-
tical question: How many operators are needed at various times of the day 
to field those calls, e-mails, and letters coming in? Estimating the number of 
anticipated calls is your first step, and being wrong can cost you money (if 
you overestimate it) or a lot of bad PR (if you underestimate it). These kinds 
of statistical challenges are tackled in Chapter 13.

Surveying sexual stats
In today’s age of info-overkill, it’s very easy to find out what the latest buzz 
is, including the latest research on people’s sex lives. An article in my paper 
reported that married people have 6.9 more sexual encounters per year than 
people who have never been married. That’s nice to know, I guess, but how 
did someone come up with this number? The article I’m looking at doesn’t 
say (maybe some statistics are better left unsaid?).

If someone conducted a survey by calling people on the phone asking for 
a few minutes of their time to discuss their sex lives, who will be the most 
likely to want to talk about it? And what are they going to say in response to 
the question, “How many times a week do you have sex?” Are they going to 
report the honest truth, tell you to mind your own business, or exaggerate a 
little? Self-reported surveys can be a real source of bias and can lead to mis-
leading statistics. But how would you recommend people go about finding 
out more about this very personal subject? Sometimes, research is more dif-
ficult than it seems. (Chapter 16 discusses biases that come up when collect-
ing certain types of survey data.)

Breaking down weather reports
Weather reports provide another mass of statistics, with forecasts of the next 
day’s high and low temperatures (how do they decide it’ll be 16 degrees and 
not 15 degrees?) along with reports of the day’s UV factor, pollen count, pol-
lution standard index, and water quality and quantity. (How do they get these 
numbers — by taking samples? How many samples do they take, and where do 
they take them?) You can find out what the weather is right now anywhere in 
the world. You can get a forecast looking ahead three days, a week, a month, 
or even a year! Meteorologists collect and record tons and tons of data on the 
weather each day. Not only do these numbers help you decide whether to take 
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your umbrella to work, but they also help weather researchers to better pre-
dict longer term forecasts and even global climate changes over time.

Even with all the information and technologies available to weather research-
ers, how accurate are weather reports these days? Given the number of times 
you get rained on when you were told it was going to be sunny, it seems they 
still have work to do on those forecasts. What the abundance of data really 
shows though, is that the number of variables affecting weather is almost 
overwhelming, not just to you, but for meteorologists, too.

 Statistical computer models play an important role in making predictions 
about major weather-related events, such as hurricanes, earthquakes, and vol-
cano eruptions. Scientists still have some work to do before they can predict 
tornados before they begin to form or tell you exactly where and when a hur-
ricane is going to hit land, but that’s certainly their goal, and they continue to 
get better at it. For more on modeling and statistics, see Chapter 18.

Musing about movies
Moving on to the arts section, I saw several ads for current movies. Each 
movie ad contains quotes from certain movie critics: “Two thumbs up!” “The 
supreme adventure of our time,” “Absolutely hilarious,” or “One of the top ten 
films of the year!” Do you pay attention to the critics? How do you determine 
which movies to go to? Experts say that although the popularity of a movie 
may be affected by the critics’ comments (good or bad) in the beginning of a 
film’s run, word of mouth is the most important determinant of how well a film 
does in the long run.

Studies also show that the more dramatic a movie is, the more popcorn is 
sold. Yes, the entertainment business even keeps tabs on how much crunch-
ing you do at the movies. How do they collect all this information, and how 
does it impact the types of movies that are made? This, too, is part of statis-
tics: designing and carrying out studies to help pinpoint an audience and find 
out what they like, and then using the information to help guide the making 
of the product. So the next time someone with a clipboard asks if you have a 
minute, you may want to stand up and be counted.

Highlighting horoscopes
Those horoscopes: You read them, but do you believe them? Should you? Can 
people predict what will happen more often than just by chance? Statisticians 
have a way of finding out, by using something they call a hypothesis test (see 
Chapter 14). So far they haven’t found anyone who can read minds, but people 
still keep trying!
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Using Statistics at Work
Now put down the Sunday newspaper and move on to the daily grind of the 
workplace. If you’re working for an accounting firm, of course numbers are 
part of your daily life. But what about people like nurses, portrait studio pho-
tographers, store managers, newspaper reporters, office staff, or construc-
tion workers? Do numbers play a role in those jobs? You bet. This section 
gives you a few examples of how statistics creep into every workplace.

 You don’t have to go far to see how statistics weaves its way in and out of 
your life and work. The secret is being able to determine what it all means and 
what you can believe, and to be able to make sound decisions based on the 
real story behind numbers so you can handle and become used to the statis-
tics of everyday life.

Delivering babies — and information
Sue works as a nurse during the night shift in the labor and delivery unit at 
a university hospital. She takes care of several patients in a given evening, 
and she does her best to accommodate everyone. Her nursing manager has 
told her that each time she comes on shift she should identify herself to the 
patient, write her name on the whiteboard in the patient’s room, and ask 
whether the patient has any questions. Why? Because a few days after each 
mother leaves with her baby, the hospital gives her a phone call asking about 
the quality of care, what was missed, what it could do to improve its service 
and quality of care, and what the staff could do to ensure that the hospital is 
chosen over other hospitals in town. For example, surveys show that patients 
who know the names of their nurses feel more comfortable, ask more ques-
tions, and have a more positive experience in the hospital than those who 
don’t know the names of their nurses. Sue’s salary raises depend on her abil-
ity to follow through with the needs of new mothers. No doubt the hospital 
has also done a lot of research to determine the factors involved in quality 
of patient care well beyond nurse-patient interactions. (See Chapter 17 for in-
depth info concerning medical studies.)

Posing for pictures
Carol recently started working as a photographer for a department store 
portrait studio; one of her strengths is working with babies. Based on the 
number of photos purchased by customers over the years, this store has 
found that people buy more posed pictures than natural-looking ones. As a 
result, store managers encourage their photographers to take posed shots.
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A mother comes in with her baby and has a special request: “Could you 
please not pose my baby too deliberately? I just like his pictures to look natu-
ral.” If Carol says, “Can’t do that, sorry. My raises are based on my ability to 
pose a child well,” you can bet that the mother is going to fill out that survey 
on quality service after this session — and not just to get $2.00 off her next 
sitting (if she ever comes back). Instead, Carol should show her boss the 
information in Chapter 16 about collecting data on customer satisfaction.

Poking through pizza data
Terry is a store manager at a local pizzeria that sells pizza by the slice. He is 
in charge of determining how many workers to have on staff at a given time, 
how many pizzas to make ahead of time to accommodate the demand, and 
how much cheese to order and grate, all with minimal waste of wages and 
ingredients. Friday night at midnight, the place is dead. Terry has five work-
ers left and has five large pans of pizza he could throw in the oven, making 
about 40 slices of pizza each. Should he send two of his workers home? 
Should he put more pizza in the oven or hold off?

The store owner has been tracking the demand for weeks now, so Terry 
knows that every Friday night things slow down between 10 and 12 p.m., but 
then the bar crowd starts pouring in around midnight and doesn’t let up until 
the doors close at 2:30 a.m. So Terry keeps the workers on, puts in the pizzas 
in 30-minute intervals from midnight on, and is rewarded with a profitable 
night, with satisfied customers and with a happy boss. For more information 
on how to make good estimates using statistics, see Chapter 13.

Statistics in the office
D.J. is an administrative assistant for a computer company. How can statis-
tics creep into her office workplace? Easy. Every office is filled with people 
who want to know answers to questions, and they want someone to “Crunch 
the numbers,” to “Tell me what this means,” to “Find out if anyone has any 
hard data on this,” or to simply say, “Does this number make any sense?” 
They need to know everything from customer satisfaction figures to changes 
in inventory during the year; from the percentage of time employees spend 
on e-mail to the cost of supplies for the last three years. Every workplace is 
filled with statistics, and D.J.’s marketability and value as an employee could 
go up if she’s the one the head honchos turn to for help. Every office needs a 
resident statistician — why not let it be you?
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Chapter 3

Taking Control: So Many Numbers, 
So Little Time

In This Chapter
▶ Examining the extent of statistics abuse

▶ Feeling the impact of statistics gone wrong

The sheer amount of statistics in daily life can leave you feeling over-
whelmed and confused. This chapter gives you a tool to help you deal 

with statistics: skepticism! Not radical skepticism like “I can’t believe any-
thing anymore,” but healthy skepticism like “Hmm, I wonder where that 
number came from?” and “I need to find out more information before I believe 
these results.” To develop healthy skepticism, you need to understand how 
the chain of statistical information works.

Statistics end up on your TV and in your newspaper as a result of a process. 
First, the researchers who study an issue generate results; this group is com-
posed of pollsters, doctors, marketing researchers, government researchers, 
and other scientists. They are considered the original sources of the statisti-
cal information.

After they get their results, these researchers naturally want to tell people 
about it, so they typically either put out a press release or publish a journal 
article. Enter the journalists or reporters, who are considered the media 
sources of the information. Journalists hunt for interesting press releases and 
sort through journals, basically searching for the next headline. When report-
ers complete their stories, statistics are immediately sent out to the public 
through all forms of media. Now the information is ready to be taken in by the 
third group — the consumers of the information (you). You and other consum-
ers of information are faced with the task of listening to and reading the infor-
mation, sorting through it, and making decisions about it.

At any stage in the process of doing research, communicating results, or 
consuming information, errors can take place, either unintentionally or by 
design. The tools and strategies you find in this chapter give you the skills to 
be a good detective.
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Detecting Errors, Exaggerations, 
and Just Plain Lies

Statistics can go wrong for many different reasons. First, a simple, honest 
error can occur. This can happen to anyone, right? Other times, the error is 
something other than a simple, honest mistake. In the heat of the moment, 
because someone feels strongly about a cause and because the numbers 
don’t quite bear out the point that the researcher wants to make, statistics 
get tweaked, or, more commonly, exaggerated, either in their values or how 
they’re represented and discussed.

Another type of error is an error of omission — information that is missing 
that would have made a big difference in terms of getting a handle on the real 
story behind the numbers. That omission makes the issue of correctness dif-
ficult to address, because you’re lacking information to go on.

You may even encounter situations in which the numbers have been com-
pletely fabricated and can’t be repeated by anyone because they never hap-
pened. This section gives you tips to help you spot errors, exaggerations, and 
lies, along with some examples of each type of error that you, as an informa-
tion consumer, may encounter.

Checking the math
The first thing you want to do when you come upon a statistic or the result 
of a statistical study is to ask, “Is this number correct?” Don’t assume it is! 
You’d probably be surprised at the number of simple arithmetic errors that 
occur when statistics are collected, summarized, reported, or interpreted.

 To spot arithmetic errors or omissions in statistics:

 ✓ Check to be sure everything adds up. In other words, do the percents 
in the pie chart add up to 100 (or close enough due to rounding)? Do the 
number of people in each category add up to the total number surveyed?

 ✓ Double-check even the most basic calculations.

 ✓ Always look for a total so you can put the results into proper perspec-
tive. Ignore results based on tiny sample sizes.

 ✓ Examine whether the projections are reasonable. For example, if three 
deaths due to a certain condition are said to happen per minute, that 
adds up to over 1.5 million such deaths in a year. Depending on what 
condition is being reported, this number may be unreasonable.
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Uncovering misleading statistics
By far, the most common abuses of statistics are subtle, yet effective, exag-
gerations of the truth. Even when the math checks out, the underlying sta-
tistics themselves can be misleading if they exaggerate the facts. Misleading 
statistics are harder to pinpoint than simple math errors, but they can have a 
huge impact on society, and, unfortunately, they occur all the time.

Breaking down statistical debates
Crime statistics are a great example of how statistics are used to show two 
sides of a story, only one of which is really correct. Crime is often discussed 
in political debates, with one candidate (usually the incumbent) arguing that 
crime has gone down during her tenure, and the challenger often arguing that 
crime has gone up (giving the challenger something to criticize the incum-
bent for). How can two candidates make such different conclusions based on 
the same data set? Turns out, depending on the way you measure crime, get-
ting either result can be possible.

Table 3-1 shows the population of the United States for 1998 to 2008, along 
with the number of reported crimes and the crime rates (crimes per 100,000 
people), calculated by taking the number of crimes divided by the population 
size and multiplying by 100,000.

Table 3-1 Number of Crimes, Estimated Population Size, 
 and Crime Rates in the U.S.

Year No. of Crimes Population Size Crime Rate per 100,000 People

1998 12,475,634 270,296,000 4,615.5

1999 11,634,378 272,690,813 4,266.5

2000 11,608,072 281,421,906 4,124.8

2001 11,876,669 285,317,559 4,162.6

2002 11,878,954 287,973,924 4,125.0

2003 11,826,538 290,690,788 4,068.4

2004 11,679,474 293,656,842 3,977.3

2005 11,565,499 296,507,061 3,900.6

2006 11,401,511 299,398,484 3,808.1

2007 11,251,828 301,621,157 3,730.5

2008 11,149,927 304,059,784 3,667.0
Source: U.S. Crime Victimization Survey
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Now compare the number of crimes and the crime rates for 2001 and 2002 in 
Table 3-1. In column 2, you see that the number of crimes increased by 2,285 
from 2001 to 2002 (11,878,954 – 11,876,669). This represents an increase 
of 0.019% (dividing the difference, 2,285, by the number of crimes in 2001, 
11,876,669). Note the population size (column 3) also increased from 2001 
to 2002, by 2,656,365 people (287,973,924 – 285,317,559), or 0.931% (dividing 
this difference by the population size in 2001). However, in column 4, you see 
the crime rate decreased from 2001 to 2002 from 4,162.6 (per 100,000 people) 
in 2001 to 4,125.0 (per 100,000) in 2002. How did the crime rate decrease? 
Although the number of crimes and the number of people both went up, the 
number of crimes increased at a slower rate than the increase in population 
size did (0.019% compare to 0.931%).

So how should the crime trend be reported? Did crime actually go up or 
down from 2001 to 2002? Based on the crime rate — which is a more accurate 
gauge — you can conclude that crime decreased during that year. But be 
watchful of the politician who wants to show that the incumbent didn’t do his 
job; he will be tempted to look at the number of crimes and claim that crime 
went up, creating an artificial controversy and resulting in confusion (not to 
mention skepticism) on behalf of the voters. (Aren’t election years fun?)

 To create an even playing field when measuring how often an event occurs, 
you convert each number to a percent by dividing by the total to get what 
statisticians call a rate. Rates are usually better than count data because rates 
allow you to make fair comparisons when the totals are different.

Untwisting tornado statistics
Which state has the most tornados? It depends on how you look at it. If you 
just count the number of tornados in a given year (which is how I’ve seen the 
media report it most often), the top state is Texas. But think about it. Texas 
is the second biggest state (after Alaska). Yes, Texas is in that part of the U.S. 
called “Tornado Alley,” and yes, it gets a lot of tornados, but it also has 
a huge surface area for those tornados to land and run.

A more fair comparison, and how meteorologists look at it, is to look at the 
number of tornados per 10,000 square miles. Using this statistic (depending 
on your source), Florida comes out on top, followed by Oklahoma, Indiana, 
Iowa, Kansas, Delaware, Louisiana, Mississippi, and Nebraska, and finally 
Texas weighs in at number 10. (Although I’m sure this is one statistic they 
are happy to rank low on; as opposed to their AP rankings in NCAA football.)

Other tornado statistics measured and reported include the state with 
the highest percentage of killer tornadoes as a percentage of all tornados 
(Tennessee); and the total length of tornado paths per 10,000 square miles 
(Mississippi). Note each of these statistics is reported appropriately as a rate 
(amount per unit).
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 Before believing statistics indicating “the highest XXX” or “the lowest XXX,” 
take a look at how the variable is measured to see whether it’s fair and whether 
there are other statistics that should be examined too to get the whole picture. 
Also make sure the units are appropriate for making fair comparisons.

Zeroing in on what the scale tells you
Charts and graphs are useful for making a quick and clear point about your 
data. Unfortunately, many times the charts and graphs accompanying everyday 
statistics aren’t done correctly and/or fairly. One of the most important ele-
ments to watch for is the way that the chart or graph is scaled. The scale of a 
graph is the quantity used to represent each tick mark on the axis of the graph. 
Do the tick marks increase by 1s, 10s, 20s, 100s, 1,000s, or what? The scale can 
make a big difference in terms of the way the graph or chart looks.

For example, the Kansas Lottery routinely shows its recent results from the Pick 
3 Lottery. One of the statistics reported is the number of times each number (0 
through 9) is drawn among the three winning numbers. Table 3-2 shows a chart 
of the number of times each number was drawn during 1,613 total Pick 3 games 
(4,839 single numbers drawn). It also reports the percentage of times that each 
number was drawn. Depending on how you choose to look at these results, you 
can again make the statistics appear to tell very different stories.

Table 3-2 Numbers Drawn in the Pick 3 Lottery

Number 
Drawn

No. of Times Drawn 
out of 4,839

Percentage of Times Drawn 
(No. of Times Drawn ÷ 4,839)

0 485 10.0%

1 468 9.7%

2 513 10.6%

3 491 10.1%

4 484 10.0%

5 480 9.9%

6 487 10.1%

7 482 10.0%

8 475 9.8%

9 474 9.8%

The way lotteries typically display results like those in Table 3-2 is shown in 
Figure 3-1a. Notice that in this chart, it seems that the number 1 doesn’t get 
drawn nearly as often (only 468 times) as number 2 does (513 times). The 
difference in the height of these two bars appears to be very large, exaggerating 
the difference in the number of times these two numbers were drawn. However, 
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to put this in perspective, the actual difference here is 513 – 468 = 45 out of a 
total of 4,839 numbers drawn. In terms of percentages, the difference between 
the number of times the number 1 and the number 2 are drawn is 45 ÷ 4,839 = 
0.009, or only nine-tenths of one percent.
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What makes this chart exaggerate the differences? Two issues come to mind. 
First, notice that the vertical axis, which shows the number of times (or fre-
quency) that each number is drawn, goes up by 5s. So a difference of 5 out of a 
total of 4,839 numbers drawn appears significant. Stretching the scale so that 
differences appear larger than they really are is a common trick used to exag-
gerate results. Second, the chart starts counting at 465, not at 0. Only the top 
part of each bar is shown, which also exaggerates the results. In comparison, 
Figure 3-1b graphs the percentage of times each number was drawn. Normally 
the shape of a graph wouldn’t change when going from counts to percentages; 
however, this chart uses a more realistic scale than the one in Figure 3-1a 
(going by 2% increments) and starts at 0, both of which make the differences 
appear as they really are — not much different at all. Boring, huh?

Maybe the lottery folks thought so too. In fact, maybe they use Figure 3-1a 
rather than Figure 3-1b because they want you to think that some “magic” is 
involved in the numbers, and you can’t blame them; that’s their business.

 Looking at the scale of a graph or chart can really help you keep the reported 
results in proper perspective. Stretching the scale out or starting the y-axis at 
the highest possible number makes differences appear larger; squeezing down 
the scale or starting the y-axis at a much lower value than needed makes dif-
ferences appear smaller than they really are.

Checking your sources
When examining the results of any study, check the source of the information. 
The best results are often published in reputable journals that are well known 
by the experts in the field. For example, in the world of medical science, the 
Journal of the American Medical Association (JAMA), the New England Journal 
of Medicine, The Lancet, and the British Medical Journal are all reputable jour-
nals doctors use to publish results and read about new findings.

 Consider the source and who financially supported the research. Many com-
panies finance research and use it for advertising their products. Although 
that in itself isn’t necessarily a bad thing, in some cases a conflict of interest 
on the part of researchers can lead to biased results. And if the results are 
very important to you, ask whether more than one study was conducted, and 
if so, ask to examine all the studies that were conducted, not just those whose 
results were published in journals or appeared in advertisements.

Counting on sample size
Sample size isn’t everything, but it does count for a great deal in surveys and 
studies. If the study is designed and conducted correctly, and if the participants 
are selected randomly (that is, with no bias; see Chapter 16 for more on random 
samples), sample size is an important factor in determining the accuracy and 
repeatability of the results. (See Chapters 16 and 17 for more information on 
designing and carrying out studies.)
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Many surveys are based on large numbers of participants, but that isn’t 
always true for other types of research, such as carefully controlled experi-
ments. Because of the high cost of some types of research in terms of time 
and money, some studies are based on a small number of participants or 
products. Researchers have to find the appropriate balance when determin-
ing sample size.

 The most unreliable results are those based on anecdotes, stories that talk 
about a single incident in an attempt to sway opinion. Have you ever told some-
one not to buy a product because you had a bad experience with it? Remember 
that an anecdote (or story) is really a nonrandom sample whose size is only one.

Considering cause and effect
Headlines often simplify or skew the “real” information, especially when the 
stories involve statistics and the studies that generated the statistics.

A study conducted a few years back evaluated videotaped sessions of 1,265 
patient appointments with 59 primary-care physicians and 6 surgeons in 
Colorado and Oregon. This study found that physicians who had not been 
sued for malpractice spent an average of 18 minutes with each patient, 
compared to 16 minutes for physicians who had been sued for malpractice. 
The study was reported by the media with the headline, “Bedside manner 
fends off malpractice suits.” However, this study seemed to say that if you 
are a doctor who gets sued, all you have to do is spend more time with your 
patients, and you’re off the hook. (Now when did bedside manner get charac-
terized as time spent?)

Beyond that, are we supposed to believe that a doctor who has been sued 
needs only add a couple more minutes of time with each patient to avoid 
being sued in the future? Maybe what the doctor does during that time 
counts much more than how much time the doctor actually spends with 
each patient. You tackle the issues of cause-and-effect relationships between 
variables in Chapter 18.

Finding what you wanted to find
You may wonder how two political candidates can discuss the same topic 
and get two opposing conclusions, both based on “scientific surveys.” Even 
small differences in a survey can create big differences in results. (See 
Chapter 16 for the full scoop on surveys.)

One common source of skewed survey results comes from question wording. 
Here are three different questions that are trying to get at the same issue — 
public opinion regarding the line-item veto option available to the president:
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 ✓ Should the line-item veto be available to the president to eliminate waste 
(yes/no/no opinon)?

 ✓ Does the line-item veto give the president too much individual power 
(yes/no/no opinion)?

 ✓ What is your opinion on the presidential line-item veto? Choose 1–5, 
with 1 = strongly opposed and 5 = strongly support.

The first two questions are misleading and will lead to biased results in oppo-
site directions. The third version will draw results that are more accurate in 
terms of what people really think. However, not all surveys are written with the 
purpose of finding the truth; many are written to support a certain viewpoint.

 Research shows that even small changes in wording affect survey outcomes, 
leading to results that conflict when different surveys are compared. If you 
can tell from the wording of the question how they want you to respond to it, 
you know you’re looking at a leading question; and leading questions lead to 
biased results.(See Chapter 16 for more on spotting problems with surveys.)

Looking for lies in all the right places
Every once in a while, you hear about someone who faked his data, or “fudged 
the numbers.” Probably the most commonly committed lie involving statistics 
and data is when people throw out data that don’t fit their hypothesis, don’t 
fit the pattern, or appear to be outliers. In cases when someone has clearly 
made an error (for example, someone’s age is recorded as 200), removing that 
erroneous data point or trying to correct the error makes sense. Eliminating 
data for any other reason is ethically wrong; yet it happens.

Regarding missing data from experiments, a commonly used phrase is 
“Among those who completed the study. . . .” What about those who didn’t 
complete the study, especially a medical one? Did they get tired of the side 
effects of the experimental drug and quit? If so, the loss of this person will 
create results that are biased toward positive outcomes.

 Before believing the results of a study, check out how many people were 
chosen to participate, how many finished the study, and what happened to all 
the participants, not just the ones who experienced a positive result.

Surveys are not immune to problems from missing data, either. For example, 
it’s known by statisticians that the opinions of people who respond to a 
survey can be very different from the opinions of those who don’t. In general, 
the lower the percentage of people who respond to a survey (the response 
rate), the less credible the results will be. For more about surveys and 
missing data, see Chapter 16.
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Feeling the Impact of 
Misleading Statistics

You make decisions every day based on statistics and statistical studies that 
you’ve heard about or seen, many times without even realizing it. Misleading 
statistics affect your life in small or large ways, depending on the type of 
 statistics that cross your path and what you choose to do with the information 
you’re given. Here are some little everyday scenarios where statistics slip in:

 ✓ “Gee, I hope Rex doesn’t chew up my rugs again while I’m at work. I heard 
somewhere that dogs on Prozac deal better with separation anxiety. How 
did they figure that out? And what would I tell my friends?”

 ✓ “I thought everyone was supposed to drink eight glasses of water a day, 
but now I hear that too much water could be bad for me; what should 
I believe?”

 ✓ “A study says people spend two hours a day at work checking and sending 
personal e-mails. How is that possible? No wonder my boss is paranoid.”

You may run into other situations involving statistics that can have a larger 
impact on your life, and you need to be able to sort it all out. Here are some 
examples:

 ✓ A group lobbying for a new skateboard park tells you 80% of the people 
surveyed agree that taxes should be raised to pay for it, so you should 
too. Will you feel the pressure to say yes?

 ✓ The radio news at the top of the hour says cellphones cause brain 
tumors. Your spouse uses his cellphone all the time. Should you panic 
and throw away all cellphones in your house?

 ✓ You see an advertisement that tells you a certain drug will cure your 
particular ill. Do you run to your doctor and demand a prescription?

 Although not all statistics are misleading and not everyone is out to get you, 
you do need to be vigilant. By sorting out the good information from the suspi-
cious and bad information, you can steer clear of statistics that go wrong. The 
tools and strategies in this chapter are designed to help you to stop and say, 
“Wait a minute!” so you can analyze and critically think about the issues and 
make good decisions.
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Chapter 4

Tools of the Trade
In This Chapter
▶ Seeing statistics as a process, not just as numbers

▶ Getting familiar with some basic statistical jargon

In today’s world, the buzzword is data, as in, “Do you have any data to sup-
port your claim?” “What data do you have on this?” “The data supported 

the original hypothesis that . . . ,” “Statistical data show that . . . ,” and “The 
data bear this out . . . .” But the field of statistics is not just about data.

 Statistics is the entire process involved in gathering evidence to answer ques-
tions about the world, in cases where that evidence happens to be data.

In this chapter, you see firsthand how statistics works as a process and 
where the numbers play their part. You’re also introduced to the most com-
monly used forms of statistical jargon, and you find out how these definitions 
and concepts all fit together as part of that process. So the next time you 
hear someone say, “This survey had a margin of error of plus or minus 
3 percentage points,” you’ll have a basic idea of what that means.

Statistics: More than Just Numbers
Statisticians don’t just “do statistics.” Although the rest of the world views 
them as number crunchers, they think of themselves as the keepers of the 
scientific method. Of course, statisticians work with experts in other fields to 
satisfy their need for data, because man cannot live by statistics alone, but 
crunching someone’s data is only a small part of a statistician’s job. (In fact, 
if that’s all we did all day, we’d quit our day jobs and moonlight as casino 
consultants.) In reality, statistics is involved in every aspect of the scientific 
method — formulating good questions, setting up studies, collecting good 
data, analyzing the data properly, and making appropriate conclusions. But 
aside from analyzing the data properly, what do any of these aspects have to 
do with statistics? In this chapter you find out.
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All research starts with a question, such as:

 ✓ Is it possible to drink too much water?

 ✓ What’s the cost of living in San Francisco?

 ✓ Who will win the next presidential election?

 ✓ Do herbs really help maintain good health?

 ✓ Will my favorite TV show get renewed for next year?

None of these questions asks anything directly about numbers. Yet each 
question requires the use of data and statistical processes to come up with 
the answer.

Suppose a researcher wants to determine who will win the next U.S. presiden-
tial election. To answer with confidence, the researcher has to follow several 
steps:

 1. Determine the population to be studied.

  In this case, the researcher intends to study registered voters who plan 
to vote in the next election.

 2. Collect the data.

  This step is a challenge, because you can’t go out and ask every person 
in the United States whether they plan to vote, and if so, for whom they 
plan to vote. Beyond that, suppose someone says, “Yes, I plan to vote.” 
Will that person really vote come Election Day? And will that same 
person tell you whom he actually plans to vote for? And what if that 
person changes his mind later on and votes for a different candidate?

 3. Organize, summarize, and analyze the data.

  After the researcher has gone out and collected the data she needs, 
getting it organized, summarized, and analyzed helps the researcher 
answer her question. This step is what most people recognize as the 
business of statistics.

 4. Take all the data summaries, charts, graphs, and analyses and draw con-
clusions from them to try to answer the researcher’s original question.

  Of course, the researcher will not be able to have 100% confidence that 
her answer is correct, because not every person in the United States was 
asked. But she can get an answer that she is nearly 100% sure is correct. 
In fact, with a sample of about 2,500 people who are selected in a fair 
and unbiased way (that is, every possible sample of size 2,500 had an 
equal chance of being selected), the researcher can get accurate results 
within plus or minus 2.5% (if all the steps in the research process are 
done correctly).
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 In making conclusions, the researcher has to be aware that every study has 
limits and that — because the chance for error always exists — the results 
could be wrong. A numerical value can be reported that tells others how confi-
dent the researcher is about the results and how accurate these results are 
expected to be. (See Chapter 12 for more information on margin of error.)

 After the research is done and the question has been answered, the results 
typically lead to even more questions and even more research. For example, 
if men appear to favor one candidate but women favor the opponent, the next 
questions may be: “Who goes to the polls more often on Election Day — men 
or women — and what factors determine whether they will vote?”

The field of statistics is really the business of using the scientific method to 
answer research questions about the world. Statistical methods are involved in 
every step of a good study, from designing the research to collecting the data, 
organizing and summarizing the information, doing an analysis, drawing con-
clusions, discussing limitations, and, finally, designing the next study in order 
to answer new questions that arise. Statistics is more than just numbers — it’s 
a process.

Grabbing Some Basic Statistical Jargon
Every trade has a basic set of tools, and statistics is no different. If you think 
about the statistical process as a series of stages that you go through to get 
from question to answer, you may guess that at each stage you’ll find a group 
of tools and a set of terms (or jargon) to go along with it. Now if the hair is 
beginning to stand up on the back of your neck, don’t worry. No one is asking 
you to become a statistics expert and plunge into the heavy-duty stuff, or to 
turn into a statistics nerd who uses this jargon all the time. Hey, you don’t 
even have to carry a calculator and pocket protector in your shirt pocket 
(because statisticians really don’t do that; it’s just an urban myth).

But as the world becomes more numbers-conscious, statistical terms are 
thrown around more in the media and in the workplace, so knowing what the 
language really means can give you a leg up. Also, if you’re reading this book 
because you want to find out more about how to calculate some statistics, 
understanding basic jargon is your first step. So, in this section, you get a 
taste of statistical jargon; I send you to the appropriate chapters elsewhere 
in the book to get details.

Data
Data are the actual pieces of information that you collect through your study. 
For example, I asked five of my friends how many pets they own, and the 
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data they gave me are the following: 0, 2, 1, 4, 18. (The fifth friend counted 
each of her aquarium fish as a separate pet.) Not all data are numbers; I also 
recorded the gender of each of my friends, giving me the following data: 
male, male, female, male, female.

Most data fall into one of two groups: numerical or categorical. (I present the 
main ideas about these variables here; see Chapter 5 for more details.)

 ✓ Numerical data: These data have meaning as a measurement, such as a 
person’s height, weight, IQ, or blood pressure; or they’re a count, such 
as the number of stock shares a person owns, how many teeth a dog 
has, or how many pages you can read of your favorite book before you 
fall asleep. (Statisticians also call numerical data quantitative data.)

  Numerical data can be further broken into two types: discrete and 
 continuous.

 • Discrete data represent items that can be counted; they take on 
possible values that can be listed out. The list of possible values 
may be fixed (also called finite); or it may go from 0, 1, 2, on to 
infinity (making it countably infinite). For example, the number of 
heads in 100 coin flips takes on values from 0 through 100 (finite 
case), but the number of flips needed to get 100 heads takes on 
values from 100 (the fastest scenario) on up to infinity. Its possible 
values are listed as 100, 101, 102, 103, . . . (representing the count-
ably infinite case).

 • Continuous data represent measurements; their possible values 
cannot be counted and can only be described using intervals on 
the real number line. For example, the exact amount of gas pur-
chased at the pump for cars with 20-gallon tanks represents nearly-
continuous data from 0.00 gallons to 20.00 gallons, represented by 
the interval [0, 20], inclusive. (Okay, you can count all these values, 
but why would you want to? In cases like these, statisticians bend 
the definition of continuous a wee bit.) The lifetime of a C battery 
can be anywhere from 0 to infinity, technically, with all possible 
values in between. Granted, you don’t expect a battery to last more 
than a few hundred hours, but no one can put a cap on how long it 
can go (remember the Energizer Bunny?).

 ✓ Categorical data: Categorical data represent characteristics such as a 
person’s gender, marital status, hometown, or the types of movies they 
like. Categorical data can take on numerical values (such as “1” indicating 
male and “2” indicating female), but those numbers don’t have meaning. 
You couldn’t add them together, for example. (Other names for categori-
cal data are qualitative data, or Yes/No data.)
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 Ordinal data mixes numerical and categorical data. The data fall into catego-
ries, but the numbers placed on the categories have meaning. For example, 
rating a restaurant on a scale from 0 to 4 stars gives ordinal data. Ordinal data 
are often treated as categorical, where the groups are ordered when graphs 
and charts are made. I don’t address them separately in this book.

Data set
A data set is the collection of all the data taken from your sample. For exam-
ple, if you measured the weights of five packages, and those weights were 
12, 15, 22, 68, and 3 pounds, those five numbers (12, 15, 22, 68, 3) constitute 
your data set. If you only record the general size of the package (for example, 
small, medium, or large), your data set may look like this: medium, medium, 
medium, large, small.

Variable
A variable is any characteristic or numerical value that varies from individual 
to individual. A variable can represent a count (for example, the number of 
pets you own); or a measurement (the time it takes you to wake up in the 
morning). Or the variable can be categorical, where each individual is placed 
into a group (or category) based on certain criteria (for example, political 
affiliation, race, or marital status). Actual pieces of information recorded on 
individuals regarding a variable are the data.

Population
For virtually any question you may want to investigate about the world, you 
have to center your attention on a particular group of individuals (for example, 
a group of people, cities, animals, rock specimens, exam scores, and so on). 
For example:

 ✓ What do Americans think about the president’s foreign policy?

 ✓ What percentage of planted crops in Wisconsin did deer destroy last year?

 ✓ What’s the prognosis for breast cancer patients taking a new experimen-
tal drug?

 ✓ What percentage of all cereal boxes get filled according to specification?
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In each of these examples, a question is posed. And in each case, you can 
identify a specific group of individuals being studied: the American people, 
all planted crops in Wisconsin, all breast cancer patients, and all cereal boxes 
that are being filled, respectively. The group of individuals you want to study 
in order to answer your research question is called a population. Populations, 
however, can be hard to define. In a good study, researchers define the popu-
lation very clearly, whereas in a bad study, the population is poorly defined.

The question of whether babies sleep better with music is a good example of 
how difficult defining the population can be. Exactly how would you define 
a baby? Under three months old? Under a year? And do you want to study 
babies only in the United States, or all babies worldwide? The results may be 
different for older and younger babies, for American versus European versus 
African babies, and so on.

 Many times researchers want to study and make conclusions about a broad 
population, but in the end — to save time, money, or just because they don’t 
know any better — they study only a narrowly defined population. That short-
cut can lead to big trouble when conclusions are drawn. For example, suppose 
a college professor wants to study how TV ads persuade consumers to buy 
products. Her study is based on a group of her own students who partici-
pated to get five points extra credit. This test group may be convenient, but 
her results can’t be generalized to any population beyond her own students, 
because no other population was represented in her study.

Sample, random, or otherwise
When you sample some soup, what do you do? You stir the pot, reach in with 
a spoon, take out a little bit of the soup, and taste it. Then you draw a conclu-
sion about the whole pot of soup, without actually having tasted all of it. If 
your sample is taken in a fair way (for example, you didn’t just grab all the 
good stuff) you will get a good idea how the soup tastes without having to eat 
it all. Taking a sample works the same way in statistics. Researchers want to 
find out something about a population, but they don’t have time or money 
to study every single individual in the population. So they select a subset of 
individuals from the population, study those individuals, and use that infor-
mation to draw conclusions about the whole population. This subset of the 
population is called a sample.

Although the idea of a selecting a sample seems straightforward, it’s anything 
but. The way a sample is selected from the population can mean the difference 
between results that are correct and fair and results that are garbage. Example: 
Suppose you want a sample of teenagers’ opinions on whether they’re spend-
ing too much time on the Internet. If you send out a survey using text messag-
ing, your results won’t represent the opinions of all teenagers, which is your 
intended population. They will represent only those teenagers who have access 
to text messages. Does this sort of statistical mismatch happen often? You bet.
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 Some of the biggest culprits of statistical misrepresentation caused by bad 
sampling are surveys done on the Internet. You can find thousands of surveys 
on the Internet that are done by having people log on to a particular Web site 
and give their opinions. But even if 50,000 people in the U.S. complete a survey 
on the Internet, it doesn’t represent the population of all Americans. It repre-
sents only those folks who have Internet access, who logged on to that particu-
lar Web site, and who were interested enough to participate in the survey 
(which typically means that they have strong opinions about the topic in ques-
tion). The result of all these problems is bias — systematic favoritism of certain 
individuals or certain outcomes of the study.

 How do you select a sample in a way that avoids bias? The key word is 
random. A random sample is a sample selected by equal opportunity; that 
is, every possible sample the same size as yours had an equal chance to be 
selected from the population. What random really means is that no group in 
the population is favored in or excluded from the selection process.

Non-random (in other words bad) samples are samples that were selected in 
such a way that some type of favoritism and/or automatic exclusion of a part 
of the population was involved. A classic example of a non-random sample 
comes from polls for which the media asks you to phone in your opinion on 
a certain issue (“call-in” polls). People who choose to participate in call-in 
polls do not represent the population at large because they had to be watch-
ing that program, and they had to feel strongly enough to call in. They tech-
nically don’t represent a sample at all, in the statistical sense of the word, 
because no one selected them beforehand — they selected themselves to 
participate, creating a volunteer or self-selected sample. The results will be 
skewed toward people with strong opinions.

To take an authentic random sample, you need a randomizing mechanism 
to select the individuals. For example, the Gallup Organization starts with a 
computerized list of all telephone exchanges in America, along with estimates 
of the number of residential households that have those exchanges. The com-
puter uses a procedure called random digit dialing (RDD) to randomly create 
phone numbers from those exchanges, and then selects samples of telephone 
numbers from those. So what really happens is that the computer creates a 
list of all possible household phone numbers in America and then selects a 
subset of numbers from that list for Gallup to call.

Another example of random sampling involves the use of random number 
generators. In this process, the items in the sample are chosen using a 
computer-generated list of random numbers, where each sample of items 
has the same chance of being selected. Researchers may use this type of ran-
domization to assign patients to a treatment group versus a control group in 
an experiment. This process is equivalent to drawing names out of a hat or 
drawing numbers in a lottery.
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 No matter how large a sample is, if it’s based on non-random methods, the 
results will not represent the population that the researcher wants to draw 
conclusions about. Don’t be taken in by large samples — first check to see how 
they were selected. Look for the term random sample. If you see that term, dig 
further into the fine print to see how the sample was actually selected and use 
the preceding definition to verify that the sample was, in fact, selected ran-
domly. A small random sample is better than a large non-random one.

Statistic
A statistic is a number that summarizes the data collected from a sample. 
People use many different statistics to summarize data. For example, data 
can be summarized as a percentage (60% of U.S. households sampled own 
more than two cars), an average (the average price of a home in this sample 
is . . .), a median (the median salary for the 1,000 computer scientists in this 
sample was . . .), or a percentile (your baby’s weight is at the 90th percentile 
this month, based on data collected from over 10,000 babies).

The type of statistic calculated depends on the type of data. For example, 
percentages are used to summarize categorical data, and means are used to 
summarize numerical data. The price of a home is a numerical variable, so 
you can calculate its mean or standard deviation. However, the color of a 
home is a categorical variable; finding the standard deviation or median of 
color makes no sense. In this case, the important statistics are the percent-
ages of homes of each color.

 Not all statistics are correct or fair, of course. Just because someone gives you 
a statistic, nothing guarantees that the statistic is scientific or legitimate. You 
may have heard the saying, “Figures don’t lie, but liars figure.”

Parameter
Statistics are based on sample data, not on population data. If you col-
lect data from the entire population, that process is called a census. If you 
then summarize the entire census information from one variable into a 
single number, that number is a parameter, not a statistic. Most of the time, 
researchers are trying to estimate the parameters using statistics. The U.S. 
Census Bureau wants to report the total number of people in the U.S., so it 
conducts a census. However, due to logistical problems in doing such an 
arduous task (such as being able to contact homeless folks), the census num-
bers can only be called estimates in the end, and they’re adjusted upward to 
account for people the census missed.
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Bias
Bias is a word you hear all the time, and you probably know that it means 
something bad. But what really constitutes bias? Bias is systematic favoritism 
that is present in the data collection process, resulting in lopsided, mislead-
ing results. Bias can occur in any of a number of ways:

 ✓ In the way the sample is selected: For example, if you want to estimate 
how much holiday shopping people in the United States plan to do this 
year, and you take your clipboard and head out to a shopping mall on the 
day after Thanksgiving to ask customers about their shopping plans, you 
have bias in your sampling process. Your sample tends to favor those 
die-hard shoppers at that particular mall who were braving the massive 
crowds on that day known to retailers and shoppers as “Black Friday.”

 ✓ In the way data are collected: Poll questions are a major source of bias. 
Because researchers are often looking for a particular result, the ques-
tions they ask can often reflect and lead to that expected result. For 
example, the issue of a tax levy to help support local schools is some-
thing every voter faces at one time or another. A poll question asking, 
“Don’t you think it would be a great investment in our future to support 
the local schools?” has a bit of bias. On the other hand, so does “Aren’t 
you tired of paying money out of your pocket to educate other people’s 
children?” Question wording can have a huge impact on results.

Other issues that result in bias with polls are timing, length, level of ques-
tion difficulty, and the manner in which the individuals in the sample were 
contacted (phone, mail, house-to-house, and so on). See Chapter 16 for more 
information on designing and evaluating polls and surveys.

 When examining polling results that are important to you or that you’re partic-
ularly interested in, find out what questions were asked and exactly how the 
questions were worded before drawing your conclusions about the results.

Mean (Average)
The mean, also referred to by statisticians as the average, is the most 
common statistic used to measure the center, or middle, of a numerical data 
set. The mean is the sum of all the numbers divided by the total number of 
numbers. The mean of the entire population is called the population mean, 
and the mean of a sample is called the sample mean. (See Chapter 5 for more 
on the mean.)
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 The mean may not be a fair representation of the data, because the average is 
easily influenced by outliers (very small or large values in the data set that are 
not typical).

Median
The median is another way to measure the center of a numerical data set. 
A statistical median is much like the median of an interstate highway. On 
many highways, the median is the middle, and an equal number of lanes lay 
on either side of it. In a numerical data set, the median is the point at which 
there are an equal number of data points whose values lie above and below 
the median value. Thus, the median is truly the middle of the data set. See 
Chapter 5 for more on the median.

 The next time you hear an average reported, look to see whether the median 
is also reported. If not, ask for it! The average and the median are two different 
representations of the middle of a data set and can often give two very differ-
ent stories about the data, especially when the data set contains outliers (very 
large or small numbers that are not typical).

Standard deviation
Have you heard anyone report that a certain result was found to be “two 
standard deviations above the mean”? More and more, people want to report 
how significant their results are, and the number of standard deviations 
above or below average is one way to do it. But exactly what is a standard 
deviation?

The standard deviation is a measurement statisticians use for the amount of 
variability (or spread) among the numbers in a data set. As the term implies, 
a standard deviation is a standard (or typical) amount of deviation (or dis-
tance) from the average (or mean, as statisticians like to call it). So the stan-
dard deviation, in very rough terms, is the average distance from the mean.

The formula for standard deviation (denoted by s) is as follows, where n 
equals the number of values in the data set, each x represents a number in 
the data set, and  is the average of all the data:

For detailed instructions on calculating the standard deviation, see Chapter 5.
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 The standard deviation is also used to describe where most of the data should 
fall, in a relative sense, compared to the average. For example, if your data 
have the form of a bell-shaped curve (also known as a normal distribution), 
about 95% of the data lie within two standard deviations of the mean. (This 
result is called the empirical rule, or the 68–95–99.7% rule. See Chapter 5 for 
more on this.)

 The standard deviation is an important statistic, but it is often absent when 
statistical results are reported. Without it, you’re getting only part of the story 
about the data. Statisticians like to tell the story about the man who had one 
foot in a bucket of ice water and the other foot in a bucket of boiling water. 
He said on average he felt just great! But think about the variability in the two 
temperatures for each of his feet. Closer to home, the average house price, for 
example, tells you nothing about the range of house prices you may encounter 
when house-hunting. The average salary may not fully represent what’s really 
going on in your company, if the salaries are extremely spread out.

 Don’t be satisfied with finding out only the average — be sure to ask for the 
standard deviation as well. Without a standard deviation, you have no way of 
knowing how spread out the values may be. (If you’re talking starting salaries, 
for example, this could be very important!)

Percentile
You’ve probably heard references to percentiles before. If you’ve taken any 
kind of standardized test, you know that when your score was reported, it 
was presented to you with a measure of where you stood compared to the 
other people who took the test. This comparison measure was most likely 
reported to you in terms of a percentile. The percentile reported for a given 
score is the percentage of values in the data set that fall below that certain 
score. For example, if your score was reported to be at the 90th percentile, 
that means that 90% of the other people who took the test with you scored 
lower than you did (and 10% scored higher than you did). The median is right 
in the middle of a data set, so it represents the 50th percentile. For more spe-
cifics on percentiles, see Chapter 5.

 Percentiles are used in a variety of ways for comparison purposes and to 
determine relative standing (that is, how an individual data value compares to 
the rest of the group). Babies’ weights are often reported in terms of percen-
tiles, for example. Percentiles are also used by companies to see where they 
stand compared to other companies in terms of sales, profits, customer satis-
faction, and so on.
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Standard score
The standard score is a slick way to put results in perspective without having 
to provide a lot of details — something that the media loves. The standard 
score represents the number of standard deviations above or below the mean 
(without caring what that standard deviation or mean actually are).

For example, suppose Bob took his statewide 10th-grade test recently and 
scored 400. What does that mean? Not much, because you can’t put 400 into 
perspective. But knowing that Bob’s standard score on the test is +2 tells you 
everything. It tells you that Bob’s score is two standard deviations above 
the mean. (Bravo, Bob!) Now suppose Emily’s standard score is –2. In this 
case, this is not good (for Emily), because it means her score is two standard 
deviations below the mean.

The process of taking a number and converting it to a standard score is 
called standardizing. For the details on calculating and interpreting standard 
scores when you have a normal (bell-shaped) distribution, see Chapter 9.

Distribution and normal distribution
The distribution of a data set (or a population) is a listing or function showing 
all the possible values (or intervals) of the data and how often they occur. 
When a distribution of categorical data is organized, you see the number or 
percentage of individuals in each group. When a distribution of numerical 
data is organized, they’re often ordered from smallest to largest, broken into 
reasonably sized groups (if appropriate), and then put into graphs and charts 
to examine the shape, center, and amount of variability in the data.

The world of statistics includes dozens of different distributions for categori-
cal and numerical data; the most common ones have their own names. One 
of the most well-known distributions is called the normal distribution, also 
known as the bell-shaped curve. The normal distribution is based on numeri-
cal data that is continuous; its possible values lie on the entire real number 
line. Its overall shape, when the data are organized in graph form, is a sym-
metric bell-shape. In other words, most (around 68%) of the data are cen-
tered around the mean (giving you the middle part of the bell), and as you 
move farther out on either side of the mean, you find fewer and fewer values 
(representing the downward sloping sides on either side of the bell).

The mean (and hence the median) is directly in the center of the normal dis-
tribution due to symmetry, and the standard deviation is measured by the 
distance from the mean to the inflection point (where the curvature of the 
bell changes from concave up to concave down). Figure 4-1 shows a graph 
of a normal distribution with mean 0 and standard deviation 1 (this distribu-
tion has a special name, the standard normal distribution or Z-distribution).The 
shape of the curve resembles the outline of a bell.
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Figure 4-1: 
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Because every distinct population of data has a different mean and standard 
deviation, an infinite number of different normal distributions exist, each 
with its own mean and its own standard deviation to characterize it. See 
Chapter 9 for plenty more on the normal and standard normal distributions.

Central Limit Theorem
 The normal distribution is also used to help measure the accuracy of many 

statistics, including the mean, using an important result in statistics called the 
Central Limit Theorem. This theorem gives you the ability to measure how much 
your sample mean will vary, without having to take any other sample means to 
compare it with (thankfully!). By taking this variability into account, you can now 
use your data to answer questions about the population, such as “What’s the 
mean household income for the whole U.S.?”; or “This report said 75% of all gift 
cards go unused; is that really true?” (These two particular analyses made pos-
sible by the Central Limit Theorem are called confidence intervals and hypothesis 
tests, respectively, and are described in Chapters 13 and 14, respectively.)

The Central Limit Theorem (CLT for short) basically says that for non-normal 
data, your sample mean has an approximate normal distribution, no matter what 
the distribution of the original data looks like (as long as your sample size was 
large enough). And it doesn’t just apply to the sample mean; the CLT is also 
true for other sample statistics, such as the sample proportion (see Chapters 13 
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and 14). Because statisticians know so much about the normal distribution 
(see the preceding section), these analyses are much easier. See Chapter 11 
for more on the Central Limit Theorem, known by statisticians as the “Crown 
jewel in the field of all statistics.” (Should you even bother to tell them to get 
a life?)

z-values
 If a data set has a normal distribution, and you standardize all the data to 

obtain standard scores, those standard scores are called z-values. All z-values 
have what is known as a standard normal distribution (or Z-distribution). The 
standard normal distribution is a special normal distribution with a mean equal 
to 0 and a standard deviation equal to 1.

The standard normal distribution is useful for examining the data and deter-
mining statistics like percentiles, or the percentage of the data falling between 
two values. So if researchers determine that the data have a normal distribu-
tion, they usually first standardize the data (by converting each data point 
into a z-value) and then use the standard normal distribution to explore and 
discuss the data in more detail. See Chapter 9 for more details on z-values.

Experiments
An experiment is a study that imposes a treatment (or control) to the sub-
jects (participants), controls their environment (for example, restricting their 
diets, giving them certain dosage levels of a drug or placebo, or asking them 
to stay awake for a prescribed period of time), and records the responses. 
The purpose of most experiments is to pinpoint a cause-and-effect relation-
ship between two factors (such as alcohol consumption and impaired vision; 
or dosage level of a drug and intensity of side effects). Here are some typical 
questions that experiments try to answer:

 ✓ Does taking zinc help reduce the duration of a cold? Some studies show 
that it does.

 ✓ Does the shape and position of your pillow affect how well you sleep at 
night? The Emory Spine Center in Atlanta says yes.

 ✓ Does shoe heel height affect foot comfort? A study done at UCLA says up 
to one-inch heels are better than flat soles.

In this section, I discuss some additional definitions of words that you may 
hear when someone is talking about experiments. Chapter 17 is entirely dedi-
cated to the subject. For now, just concentrate on basic experiment lingo.
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Treatment group versus control group
Most experiments try to determine whether some type of experimental treat-
ment (or important factor) has a significant effect on an outcome. For example, 
does zinc help to reduce the length of a cold? Subjects who are chosen to par-
ticipate in the experiment are typically divided into two groups: a treatment 
group and a control group. (More than one treatment group is possible.)

 ✓ The treatment group consists of participants who receive the experimen-
tal treatment whose effect is being studied (in this case, zinc tablets).

 ✓ The control group consists of participants who do not receive the experi-
mental treatment being studied. Instead, they get a placebo (a fake treat-
ment; for example, a sugar pill); a standard, nonexperimental treatment 
(such as vitamin C, in the zinc study); or no treatment at all, depending 
on the situation.

In the end, the responses of those in the treatment group are compared with 
the responses from the control group to look for differences that are statisti-
cally significant (unlikely to have occurred just by chance).

Placebo
A placebo is a fake treatment, such as a sugar pill. Placebos are given to the 
control group to account for a psychological phenomenon called the pla-
cebo effect, in which patients receiving a fake treatment still report having a 
response, as if it were the real treatment. For example, after taking a sugar 
pill a patient experiencing the placebo effect might say, “Yes, I feel better 
already,” or “Wow, I am starting to feel a bit dizzy.” By measuring the placebo 
effect in the control group, you can tease out what portion of the reports from 
the treatment group were real and what portion were likely due to the placebo 
effect. (Experimenters assume that the placebo effect affects both the treat-
ment and control groups.)

Blind and double-blind
A blind experiment is one in which the subjects who are participating in the 
study are not aware of whether they’re in the treatment group or the control 
group. In the zinc example, the vitamin C tablets and the zinc tablets would 
be made to look exactly alike and patients would not be told which type of pill 
they were taking. A blind experiment attempts to control for bias on the part 
of the participants.

A double-blind experiment controls for potential bias on the part of both the 
patients and the researchers. Neither the patients nor the researchers collect-
ing the data know which subjects received the treatment and which didn’t. So 
who does know what’s going on as far as who gets what treatment? Typically 
a third party (someone not otherwise involved in the experiment) puts 
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together the pieces independently. A double-blind study is best, because even 
though researchers may claim to be unbiased, they often have a special inter-
est in the results — otherwise they wouldn’t be doing the study!

Surveys (Polls)
A survey (more commonly known as a poll) is a questionnaire; it’s most often 
used to gather people’s opinions along with some relevant demographic infor-
mation. Because so many policymakers, marketers, and others want to “get 
at the pulse of the American public” and find out what the average American 
is thinking and feeling, many people now feel that they cannot escape the 
barrage of requests to take part in surveys and polls. In fact, you’ve probably 
received many requests to participate in surveys, and you may even have 
become numb to them, simply throwing away surveys received in the mail or 
saying “no” when asked to participate in a telephone survey.

If done properly, a good survey can really be informative. People use surveys 
to find out what TV programs Americans (and others) like, how consumers 
feel about Internet shopping, and whether the United States should allow 
someone under 35 to become president. Surveys are used by companies to 
assess the level of satisfaction their customers feel, to find out what products 
their customers want, and to determine who is buying their products. TV 
stations use surveys to get instant reactions to news stories and events, and 
movie producers use them to determine how to end their movies.

However, if I had to choose one word to assess the general state of surveys in 
the media today, I’d say it’s quantity rather than quality. In other words, you’ll 
find no shortage of bad surveys. But in this book you find no shortage of 
good tips and information for analyzing, critiquing, and understanding survey 
results, and for designing your own surveys to do the job right. (To take off 
with surveys, head to Chapter 16.)

Margin of error
You’ve probably heard or seen results like this: “This survey had a margin 
of error of plus or minus 3 percentage points.” What does this mean? Most 
surveys (except a census) are based on information collected from a sample 
of individuals, not the entire population. A certain amount of error is bound 
to occur — not in the sense of calculation error (although there may be some 
of that, too) but in the sense of sampling error, which is the error that occurs 
simply because the researchers aren’t asking everyone. The margin of error is 
supposed to measure the maximum amount by which the sample results are 
expected to differ from those of the actual population. Because the results of 
most survey questions can be reported in terms of percentages, the margin 
of error most often appears as a percentage, as well.
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How do you interpret a margin of error? Suppose you know that 51% of people 
sampled say that they plan to vote for Ms. Calculation in the upcoming election. 
Now, projecting these results to the whole voting population, you would have 
to add and subtract the margin of error and give a range of possible results in 
order to have sufficient confidence that you’re bridging the gap between your 
sample and the population. Supposing a margin of error of plus or minus 3 per-
centage points, you would be pretty confident that between 48% (51% – 3%) and 
54% (51% + 3%) of the population will vote for Ms. Calculation in the election, 
based on the sample results. In this case, Ms. Calculation may get slightly more 
or slightly less than the majority of votes and could either win or lose the elec-
tion. This has become a familiar situation in recent years when the media want 
to report results on Election Night, but based on early exit polling results, the 
election is “too close to call.” For more on the margin of error, see Chapter 12.

 The margin of error measures accuracy; it does not measure the amount of 
bias that may be present (find a discussion of bias earlier in this chapter). 
Results that look numerically scientific and precise don’t mean anything if 
they were collected in a biased way.

Confidence interval
One of the biggest uses of statistics is to estimate a population parameter 
using a sample statistic. In other words, use a number that summarizes a 
sample to help you guesstimate the corresponding number that summarizes 
the whole population (the definitions of parameter and statistic appear ear-
lier in this chapter). You’re looking for a population parameter in each of the 
following questions:

 ✓ What’s the average household income in America? (Population = all 
households in America; parameter = average household income.)

 ✓ What percentage of all Americans watched the Academy Awards this 
year? (Population = all Americans; parameter = percentage who watched 
the Academy Awards this year.)

 ✓ What’s the average life expectancy of a baby born today? (Population = 
all babies born today; parameter = average life expectancy.)

 ✓ How effective is this new drug on adults with Alzheimer’s? (Population = 
all people who have Alzheimer’s; parameter = percentage of these people 
who see improvement when taking this drug.)

It’s not possible to find these parameters exactly; they each require an 
estimate based on a sample. You start by taking a random sample from a 
population (say a sample of 1,000 households in America) and then finding 
the corresponding statistic from that sample (the sample’s mean household 
income). Because you know that sample results vary from sample to sample, 
you need to add a “plus or minus something” to your sample results if you 
want to draw conclusions about the whole population (all households in 
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America). This “plus or minus” that you add to your sample statistic in order 
to estimate a parameter is the margin of error.

When you take a sample statistic (such as the sample mean or sample per-
centage) and add/subtract a margin of error, you come up with what statisti-
cians call a confidence interval. A confidence interval represents a range of 
likely values for the population parameter, based on your sample statistic. 
For example, suppose the average time it takes you to drive to work each day 
is 35 minutes, with a margin of error of plus or minus 5 minutes. You estimate 
that the average time to work would be anywhere from 30 to 40 minutes. This 
estimate is a confidence interval.

 Some confidence intervals are wider than others (and wide isn’t good, 
because it equals less accuracy). Several factors influence the width of a con-
fidence interval, such as sample size, the amount of variability in the popula-
tion being studied, and how confident you want to be in your results. (Most 
researchers are happy with a 95% level of confidence in their results.) For 
more on factors that influence confidence intervals, as well as instructions for 
calculating and interpreting confidence intervals, see Chapter 13.

Hypothesis testing
Hypothesis test is a term you probably haven’t run across in your everyday 
dealings with numbers and statistics. But I guarantee that hypothesis tests 
have been a big part of your life and your workplace, simply because of the 
major role they play in industry, medicine, agriculture, government, and a 
host of other areas. Any time you hear someone talking about their study 
showing a “statistically significant result,” you’re encountering a hypothesis 
test. (A statistically significant result is one that is unlikely to have occurred 
by chance. See Chapter 14 for the full scoop.)

Basically, a hypothesis test is a statistical procedure in which data are col-
lected from a sample and measured against a claim about a population 
parameter. For example, if a pizza delivery chain claims to deliver all pizzas 
within 30 minutes of placing the order, on average, you could test whether 
this claim is true by collecting a random sample of delivery times over a cer-
tain period and looking at the average delivery time for that sample. To make 
your decision, you must also take into account the amount by which your 
sample results can change from sample to sample (which is related to the 
margin of error).

 Because your decision is based on a sample and not the entire population, a 
hypothesis test can sometimes lead you to the wrong conclusion. However, 
statistics are all you have, and if done properly, they can give you a good 
chance of being correct. For more on the basics of hypothesis testing, see 
Chapter 14.
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A variety of hypothesis tests are done in scientific research, including t-tests 
(comparing two population means), paired t-tests (looking at before/after 
data), and tests of claims made about proportions or means for one or more 
populations. For specifics on these hypothesis tests, see Chapter 15.

p-values
Hypothesis tests are used to test the validity of a claim that is made about a 
population. This claim that’s on trial, in essence, is called the null hypothesis. 
The alternative hypothesis is the one you would believe if the null hypothesis 
is concluded to be untrue. The evidence in the trial is your data and the sta-
tistics that go along with it. All hypothesis tests ultimately use a p-value to 
weigh the strength of the evidence (what the data are telling you about the 
population). The p-value is a number between 0 and 1 and interpreted in the 
following way:

 ✓ A small p-value (typically ≤ 0.05) indicates strong evidence against the 
null hypothesis, so you reject it.

 ✓ A large p-value (> 0.05) indicates weak evidence against the null hypoth-
esis, so you fail to reject it.

 ✓ p-values very close to the cutoff (0.05) are considered to be marginal 
(could go either way). Always report the p-value so your readers can 
draw their own conclusions.

For example, suppose a pizza place claims their delivery times are 30 minutes 
or less on average but you think it’s more than that. You conduct a hypothesis 
test because you believe the null hypothesis, Ho, that the mean delivery time 
is 30 minutes max, is incorrect. Your alternative hypothesis (Ha) is that the 
mean time is greater than 30 minutes. You randomly sample some delivery 
times and run the data through the hypothesis test, and your p-value turns out 
to be 0.001, which is much less than 0.05. You conclude that the pizza place 
is wrong; their delivery times are in fact more than 30 minutes on average, 
and you want to know what they’re gonna do about it! (Of course you could 
be wrong by having sampled an unusually high number of late pizzas just by 
chance; but whose side am I on?) For more on p-values, head to Chapter 14.

Statistical significance
Whenever data are collected to perform a hypothesis test, the researcher is 
typically looking for something out of the ordinary. (Unfortunately, research 
that simply confirms something that was already well known doesn’t make 
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headlines.) Statisticians measure the amount by which a result is out of the 
ordinary using hypothesis tests (see Chapter 14). They define a statistically 
significant result as a result with a very small probability of happening just by 
chance, and provide a number called a p-value to reflect that probability (see 
the previous section on p-values).

For example, if a drug is found to be more effective at treating breast cancer 
than the current treatment is, researchers say that the new drug shows a 
statistically significant improvement in the survival rate of patients with 
breast cancer. That means that based on their data, the difference in the 
overall results from patients on the new drug compared to those using the 
old treatment is so big that it would be hard to say it was just a coincidence. 
However, proceed with caution: You can’t say that these results necessarily 
apply to each individual or to each individual in the same way. For full details 
on statistical significance, see Chapter 14.

 When you hear that a study’s results are statistically significant, don’t auto-
matically assume that the study’s results are important. Statistically significant 
means the results were unusual, but unusual doesn’t always mean important. 
For example, would you be excited to learn that cats move their tails more 
often when lying in the sun than when lying in the shade, and that those 
results are statistically significant? This result may not even be important to 
the cat, much less anyone else!

Sometimes statisticians make the wrong conclusion about the null hypoth-
esis because a sample doesn’t represent the population (just by chance). 
For example, a positive effect that’s experienced by a sample of people who 
took the new treatment may have just been a fluke; or in the example in the 
preceding section, the pizza company really was delivering those pizzas on 
time and you just got an unlucky sample of slow ones. However, the beauty 
of research is that as soon as someone gives a press release saying that she 
found something significant, the rush is on to try to replicate the results, 
and if the results can’t be replicated, this probably means that the original 
results were wrong for some reason (including being wrong just by chance). 
Unfortunately, a press release announcing a “major breakthrough” tends 
to get a lot of play in the media, but follow-up studies refuting those results 
often don’t show up on the front page.

 One statistically significant result shouldn’t lead to quick decisions on any-
one’s part. In science, what most often counts is not a single remarkable 
study, but a body of evidence that is built up over time, along with a variety 
of well-designed follow-up studies. Take any major breakthroughs you hear 
about with a grain of salt and wait until the follow-up work has been done 
before using the information from a single study to make important decisions 
in your life. The results may not be replicable, and even if they are, you can’t 
know if they necessarily apply to each individual.
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Correlation versus causation
 Of all of the misunderstood statistical issues, the one that’s perhaps the most 

problematic is the misuse of the concepts of correlation and causation.

Correlation, as a statistical term, is the extent to which two numerical vari-
ables have a linear relationship (that is, a relationship that increases or 
decreases at a constant rate). Following are three examples of correlated 
variables:

 ✓ The number of times a cricket chirps per second is strongly related 
to temperature; when it’s cold outside, they chirp less frequently, and 
as the temperature warms up, they chirp at a steadily increasing rate. In 
statistical terms, you say number of cricket chirps and temperature have 
a strong positive correlation.

 ✓ The number of crimes (per capita) has often been found to be related to 
the number of police officers in a given area. When more police officers 
patrol the area, crime tends to be lower, and when fewer police officers 
are present in the same area, crime tends to be higher. In statistical 
terms we say the number of police officers and the number of crimes 
have a strong negative correlation.

 ✓ The consumption of ice cream (pints per person) and the number of 
murders in New York are positively correlated. That is, as the amount of 
ice cream sold per person increases, the number of murders increases. 
Strange but true!

But correlation as a statistic isn’t able to explain why or how the relationship 
between two variables, x and y, exists; only that it does exist.

Causation goes a step further than correlation, stating that a change in the 
value of the x variable will cause a change in the value of the y variable. Too 
many times in research, in the media, or in the public consumption of statis-
tical results, that leap is made when it shouldn’t be. For instance, you can’t 
claim that consumption of ice cream causes an increase in murder rates just 
because they are correlated. In fact, the study showed that temperature was 
positively correlated with both ice cream sales and murders. (For more on 
correlation and causation, see Chapter 18.) When can you make the causa-
tion leap? The most compelling case is when a well-designed experiment is 
conducted that rules out other factors that could be related to the outcomes 
(see Chapter 17 for information on experiments showing cause-and-effect).

 You may find yourself wanting to jump to a cause-and-effect relationship when 
a correlation is found; researchers, the media, and the general public do it all 
the time. However, before making any conclusions, look at how the data were 
collected and/or wait to see if other researchers are able to replicate the results 
(the first thing they try to do after someone else’s “groundbreaking result” hits 
the airwaves).
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Part II

Number-Crunching 
Basics
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In this part . . .

Number crunching: It’s a dirty job, but somebody has 
to do it. Why not let it be you? Even if you aren’t a 

numbers person and calculations aren’t your thing, the 
step-by-step approach in this part may be just what you 
need to boost your confidence in doing and really under-
standing statistics.

In this part, you get down to the basics of number crunch-
ing, from making and interpreting charts and graphs to 
cranking out and understanding means, medians, stan-
dard deviations, and more. You also develop important 
skills for critiquing someone else’s statistical information 
and getting at the real truth behind the data.
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Chapter 5

Means, Medians, and More
In This Chapter
▶ Summarizing data effectively

▶ Interpreting commonly used statistics

▶ Realizing what statistics do and don’t say

Every data set has a story, and if statistics are used properly, they do 
a good job of uncovering and reporting that story. Statistics that are 

improperly used can tell a different story, or only part of it, so knowing how 
to make good decisions about the information you’re given is very important.

A descriptive statistic (or statistic for short) is a number that summarizes or 
describes some characteristic about a set of data. In this chapter, you see 
some of the most common descriptive statistics and how they are used, and 
you find out how to calculate them, interpret them, and put them together 
to get a good picture of a data set. You also find out what these statistics say 
and what they don’t say about the data.

Summing Up Data with 
Descriptive Statistics

Descriptive statistics take a data set and boil it down to a set of basic infor-
mation. Summarized data are often used to provide people with information 
that is easy to understand and that helps answer their questions. Picture 
your boss coming to you and asking, “What’s our client base like these 
days, and who’s buying our products?” How would you like to answer that 
question — with a long, detailed, and complicated stream of numbers that 
are sure to glaze her eyes over? Probably not. You want clean, clear, and 
concise statistics that sum up the client base for her, so that she can see how 
brilliant you are and then send you off to collect even more data to see how 
she can include more people in the client base. (That’s what you get for being 
efficient.) 
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Summarizing data has other purposes, as well. After all the data have been 
collected from a survey or some other kind of study, the next step is for 
the researcher to try to make sense out of the data. Typically, the first step 
researchers take is to run some basic statistics on the data to get a rough 
idea about what’s happening in it. Later in the process, researchers can do 
more analyses to formulate or test claims made about the population the 
data came from, estimate certain characteristics about the population (like 
the mean), look for links between variables they measured, and so on.

Another big part of research is reporting the results, not only to your peers, but 
also to the media and the general public. Although a researcher’s peers may 
be anxiously waiting to hear about all the complex analyses that were done on 
a data set, the general public is neither ready for nor interested in that. What 
does the public want? Basic information. Statistics that make a point clearly and 
concisely are usually used to relay information to the media and to the public.

 If you really need to learn more from data, a quick statistical overview isn’t 
enough. In the statistical world, less is not more, and sometimes the real story 
behind the data can get lost in the shuffle. To be an informed consumer of sta-
tistics, you need to think about which statistics are being reported, what these 
statistics really mean, and what information is missing. This chapter focuses 
on these issues.

Crunching Categorical Data: 
Tables and Percents

Categorical data (also known as qualitative data) capture qualities or charac-
teristics about the individual, such as a person’s eye color, gender, political 
party, or opinion on some issue (using categories such as Agree, Disagree, or 
No opinion). Categorical data tend to fall into groups or categories pretty nat-
urally. “Political party,” for example, typically has four groups in the United 
States: Democrat, Republican, Independent, and Other. Categorical data often 
come from survey data, but they can also be collected in experiments. For 
example, in an experimental test of a new medical treatment, researchers 
may use three categories to assess the outcome of the experiment: Did the 
patient get better, worse, or stay the same while undergoing the treatment?

Categorical data are often summarized by reporting the percentage of indi-
viduals falling into each category. For example, pollsters may report politi-
cal affiliation statistics by giving the percentage of Republicans, Democrats, 
Independents, and Others. To calculate the percentage of individuals in a certain 
category, find the number of individuals in that category, divide by the total 
number of people in the study, and then multiply by 100%. For example, if a 
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survey of 2,000 teenagers included 1,200 females and 800 males, the resulting 
percentages would be (1,200 ÷ 2,000) ∗ 100% = 60% female and (800 ÷ 2,000) ∗ 
100% = 40% male.

You can break down categorical data further by creating something called 
two-way tables. Two-way tables (also called crosstabs) are tables with rows 
and columns. They summarize the information from two categorical variables 
at once, such as gender and political party, so you can see (or easily calcu-
late) the percentage of individuals in each combination of categories and use 
them to make comparisons between groups.

For example, if you had data about the gender and political party of your 
respondents, you would be able to look at the percentage of Republican 
females, Republican males, Democratic females, Democratic males, and so 
on. In this example, the total number of possible combinations in your table 
would be 2 ∗ 4 = 8, or the total number of gender categories times the total 
number of party affiliation categories. (See Chapter 19 for the full scoop, and 
then some, on two-way tables.)

The U.S. government calculates and summarizes loads of categorical data using 
crosstabs. Typical age and gender data, reported by the U.S. Census Bureau for 
a survey conducted in 2009, are shown in Table 5-1. (Normally age would be 
considered a numerical variable, but the way the U.S. government reports it, 
age is broken down into categories, making it a categorical variable.)

Table 5-1 U.S. Population, Broken Down by 
 Age and Gender (2009)

Age 
Group

Both 
Sexes

% Males % Females %

Under 5 21,299,656 6.94 10,887,008 7.19 10,412,648 6.69

5–9 20,609,634 6.71 10,535,900 6.96 10,073,734 6.48

10–14 19,973,564 6.51 10,222,522 6.75 9,751,042 6.27

15–19 21,537,837 7.02 11,051,289 7.30 10,486,548 6.74

20–24 21,539,559 7.02 11,093,552 7.32 10,446,007 6.72

25–29 21,677,719 7.06 11,115,560 7.34 10,562,159 6.79

30–34 19,888,603 6.48 10,107,974 6.67 9,780,629 6.29

35–39 20,538,351 6.69 10,353,016 6.84 10,185,335 6.55

40–44 20,991,605 6.84 10,504,139 6.94 10,487,466 6.74
(continued)
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Table 5-1 (continued) 

Age 
Group

Both 
Sexes

% Males % Females %

45–49 22,831,092 7.44 11,295,524 7.46 11,535,568 7.42

50–54 21,761,391 7.09 10,677,847 7.05 11,083,544 7.13

55–59 18,975,026 6.18 9,204,666 6.08 9,770,360 6.28

60–64 15,811,923 5.15 7,576,933 5.00 8,234,990 5.29

65–69 11,784,320 3.84 5,511,164 3.64 6,273,156 4.03

70–74 9,007,747 2.93 4,082,226 2.70 4,925,521 3.17

75–79 7,325,528 2.39 3,149,236 2.08 4,176,292 2.68

80–84 5,822,334 1.90 2,298,260 1.52 3,524,074 2.27

85–89 3,662,397 1.19 1,266,899 0.84 2,395,498 1.54

90–94 1,502,263 0.49 424,882 0.28 1,077,381 0.69

95–99 401,977 0.13 82,135 0.05 319,842 0.21

100+ 64,024 0.02 8,758 0.01 55,266 0.04

Total 307,006,550 100.00 151,449,490 100.00 155,557,060 100.00

You can examine many different facets of the U.S. population by looking at and 
working with different numbers from Table 5-1. For example, looking at gender, 
you notice that women slightly outnumber men — the population in 2009 was 
50.67% female (divide total number of females by total population size and mul-
tiply by 100%) and 49.33% male (divide total number of males by total popula-
tion size and multiply by 100%). You can also look at age: The percentage of the 
entire population that is under 5 years old was 6.94% (divide the total number 
under age 5 by the total population size and multiply by 100%). The largest 
group belongs to the 45–49 year olds, who made up 7.44% of the population.

Next, you can explore a possible relationship between gender and age by 
comparing various parts of the table. You can compare, for example, the per-
centage of females to males in the 80-and-over age group. Because these data 
are reported in 5-year increments, you have to do a little math in order to 
get your answer, though. The percentage of the population that’s female and 
aged 80 and above (looking at column 7 of Table 5-1) is 2.27% + 1.54% + 0.69% 
+ 0.21% + 0.04% = 4.75%. The percentage of males aged 80 and over (looking 
at column 5 of Table 5-1) is 1.52% + 0.84% + 0.28% + 0.05% + 0.01% = 2.70%. 
This shows that the 80-and-over age group for the females is about 76% larger 
than the males (because [4.75 – 2.70] ÷ 2.70 = 0.76).
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These data confirm the widely accepted notion that women tend to live 
longer than men. However, the gap between men and women is narrowing 
over time. According to the U.S. Census Bureau, back in 2001 the percentage 
of women who were 80 years old and over was 4.36, compared to 2.31 for the 
men. The females in this age group outnumbered the males by a whopping 
89% back in 2001 (note that [4.36 – 2.31] ÷ 2.31 = 0.89).

 After you have the crosstabs that show the breakdown of two categorical vari-
ables, you can conduct hypothesis tests to determine whether a significant 
relationship or link between the two variables exists, taking into account the 
fact that data vary from sample to sample. Chapter 14 gives you all the details 
on hypothesis tests.

Measuring the Center with 
Mean and Median

With numerical data, measurable characteristics such as height, weight, IQ, 
age, or income are represented by numbers that make sense within the con-
text of the problem (for example in units of feet, dollars, or people). Because 
the data have numerical meaning, you can summarize them in more ways 
than is possible with categorical data. The most common way to summarize 
a numerical data set is to describe where the center is. One way of thinking 
about what the center of a data set means is to ask, “What’s a typical value?” 
Or, “Where is the middle of the data?” The center of a data set can actually 
be measured in different ways, and the method chosen can greatly influence 
the conclusions people make about the data. This section hits on measures 
of center.

Averaging out to the mean
NBA players make a lot of money, right? You often hear about players like 
Kobe Bryant or LeBron James who make tens of millions of dollars a year. 
But is that what the typical NBA player makes? Not really (although I don’t 
exactly feel sorry for the others, given that they still make more money than 
most of us will ever make). Tens of millions of dollars is the kind of money 
you can command when you are a superstar among superstars, which is 
what these elite players are.
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So how much money does the typical NBA player make? One way to answer 
this is to look at the average (the most commonly used statistic of all time).

The average, also called the mean of a data set, is denoted . The formula for 
finding the mean is:

where each value in the data set is denoted by an x with a subscript i that 
goes from 1 (the first number) to n (the last number).

Here’s how you calculate the mean of a data set:

 1. Add up all the numbers in the data set.

 2. Divide by the number of numbers in the data set, n.

 The mean I discuss here applies to a sample of data and is technically called 
the sample mean. The mean of an entire population of data is denoted with the 
Greek letter μ and is called the population mean. It’s found by summing up 
all the values in the population and dividing by the population size, denoted 
N (to distinguish it from a sample size, n). Typically the population mean is 
unknown, and you use a sample mean to estimate it (plus or minus a margin of 
error; see all the details in Chapter 13).

For example, player salary data for the 13 players on the 2010 NBA Champion 
Los Angeles Lakers is shown in Table 5-2.

Table 5-2 Salaries for L.A. Lakers 
 NBA Players (2009–2010)

Player Salary ($)

Kobe Bryant 23,034,375

Pau Gasol 16,452,000

Andrew Bynum 12,526,998

Lamar Odom 7,500,000

Ron Artest 5,854,000

Adam Morrison 5,257,229

Derek Fisher 5,048,000

Sasha Vujacic 5,000,000

Luke Walton 4,840,000
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Player Salary ($)

Shannon Brown 2,000,000

Jordan Farmar 1,947,240

Didier Ilunga-Mbenga 959,111

Josh Powell 959,111

Total 91,378,064

The mean of all the salaries on this team is $91,378,064 ÷ 13 = $7,029,082. That’s a 
pretty nice average salary, isn’t it? But notice that Kobe Bryant really stands out 
at the top of this list, and he should — his salary was the second highest in the 
entire league that season (just behind Tracy McGrady). If you remove Kobe from 
the equation (literally), the average salary of all the Lakers players besides Kobe 
becomes $68,343,689 ÷ 12 = $5,695,307 — a difference of around 1.3 million.

This new mean is still a hefty amount, but it’s significantly lower than the 
mean salary of all the players including Kobe. (Fans would tell you that this 
reflects his importance to the team, and others would say no one is worth 
that much money; this issue is but the tip of the iceberg of the never-ending 
debates that sports fans — me included — love to have about statistics.)

Bottom line: The mean doesn’t always tell the whole story. In some cases it 
may be a bit misleading, and this is one of those cases. That’s because every 
year a few top-notch players (like Kobe) make much more money than any-
body else, and their salaries pull up the overall average salary.

 Numbers in a data set that are extremely high or extremely low compared to 
the rest of the data are called outliers. Because of the way the average is calcu-
lated, high outliers tend to drive the average upward (as Kobe’s salary did in 
the preceding example). Low outliers tend to drive the average downward.

Splitting your data down the median
Remember in school when you took an exam, and you and most of the rest 
of the class did badly, but a couple of nerds got 100? Remember how the 
teacher didn’t curve the scores to reflect the poor performance of most of 
the class? Your teacher was probably using the average, and the average in 
that case didn’t really represent what statisticians might consider the best 
measure of center for the students’ scores.

What can you report, other than the average, to show what the salary of a 
“typical” NBA player would be or what the test score of a “typical” student 
in your class was? Another statistic used to measure the center of a data set 
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is called the median. The median is still an unsung hero of statistics in the 
sense that it isn’t used nearly as often as it should be, although people are 
beginning to report it more nowadays.

The median of a data set is the value that lies exactly in the middle when the 
data have been ordered. It’s denoted in different ways; some people use M 
and some use . Here are the steps for finding the median of a data set:

 1. Order the numbers from smallest to largest.

 2. If the data set contains an odd number of numbers, choose the one 
that is exactly in the middle. You’ve found the median.

 3. If the data set contains an even number of numbers, take the two 
 numbers that appear in the middle and average them to find the 
median.

The salaries for the Los Angeles Lakers during the 2009–2010 season (refer to 
Table 5-2) are ordered from smallest (at the bottom) to largest (at the top). 
Because the list contains the names and salaries of 13 players, the middle 
salary is the seventh one from the bottom: Derek Fisher, who earned $5.048 
million that season from the Lakers. Derek is at the median.

 This median salary ($5.048 million) is well below the average of $7.029 million 
for the 2009–2010 Lakers team. Notice that only 4 players of the 13 earned more 
than the average Lakers salary of $7.029 million. Because the average includes 
outliers (like the salary of Kobe Bryant), the median salary is more representa-
tive of center for the team salaries. The median isn’t affected by the salaries of 
those players who are way out there on the high end the way the average is.

Note: By the way, the lowest Lakers’ salary for the 2009–2010 season was 
$959,111 — a lot of money by most people’s standards, but peanuts com-
pared to what you imagine when you think of an NBA player’s salary!

 The U.S. government most often uses the median to represent the center with 
respect to income data again because the median is not affected by outliers. 
For example, the U.S. Census Bureau reported that in 2008, the median house-
hold income was $50,233 while the mean was found to be $68,424. That’s quite 
a difference!

Comparing means and 
medians: Histograms
Sometimes the mean versus median debate can get quite interesting. 
Suppose you’re part of an NBA team trying to negotiate salaries. If you 
represent the owners, you want to show how much everyone is making 
and how much money you’re spending, so you want to take into account 
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those superstar players and report the average. But if you’re on the side of 
the players, you would want to report the median, because that’s more rep-
resentative of what the players in the middle are making. Fifty percent of the 
players make a salary above the median, and 50 percent make a salary below 
the median. To sort it all out, it’s best to find and compare both the mean 
and the median. A graph showing the shape of the data is a great place 
to start.

 One of the graphs you can make to illustrate the shape of numerical data (how 
many values are close to/far from the mean, where the center is, how many 
outliers there might be) is a histogram. A histogram is a graph that organizes 
and displays numerical data in picture form, showing groups of data and the 
number or percentage of the data that fall into each group. It gives you a nice 
snapshot of the data set. (See Chapter 7 for more information on histograms 
and other types of data displays.)

Data sets can have many different possible shapes; here is a sampling of 
three shapes that are commonly discussed in introductory statistics courses:

 ✓ If most of the data are on the left side of the histogram but a few larger 
values are on the right, the data are said to be skewed to the right.

  Histogram A in Figure 5-1 shows an example of data that are skewed to 
the right. The few larger values bring the mean upwards but don’t really 
affect the median. So when data are skewed right, the mean is larger than 
the median. An example of such data is NBA salaries.

 ✓ If most of the data are on the right, with a few smaller values showing up 
on the left side of the histogram, the data are skewed to the left.

  Histogram B in Figure 5-1 shows an example of data that are skewed 
to the left. The few smaller values bring the mean down, and again the 
median is minimally affected (if at all). An example of skewed-left data is 
the amount of time students use to take an exam; some students leave 
early, more of them stay later, and many stay until the bitter end (some 
would stay forever if they could!). When data are skewed left, the mean 
is smaller than the median.

 ✓ If the data are symmetric, they have about the same shape on either side 
of the middle. In other words, if you fold the histogram in half, it looks 
about the same on both sides.

  Histogram C in Figure 5-1 shows an example of symmetric data in a his-
togram. With symmetric data, the mean and median are close together.

 By looking at Histogram A in Figure 5-1 (whose shape is skewed right), you 
can see that the “tail” of the graph (where the bars are getting shorter) is 
to the right, while the “tail” is to the left in Histogram B (whose shape is 
skewed left). By looking at the direction of the tail of a skewed distribution, 
you determine the direction of the skewness. Always add the direction when 
describing a skewed  distribution.
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Figure 5-1: 
A) Data 
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right; B) data 
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Histogram C is symmetric (it has about the same shape on each side). 
However, not all symmetric data has a bell shape like Histogram C does. 
As long as the shape is approximately the same on both sides, then you 
say that the shape is symmetric.

 The average (or mean) of a data set is affected by outliers, but the median is 
not. In statistical lingo, if a statistic is not affected by a certain characteristic 
of the data (such as outliers, or skewness), then you say that statistic is resis-
tant to that characteristic. In this case the median is resistant to outliers; the 
mean is not. If someone reports the average value, also ask for the median so 
that you can compare the two statistics and get a better feel for what’s actu-
ally going on in the data and what’s truly typical.

Accounting for Variation
Variation always exists in a data set, regardless of which characteristics 
you’re measuring, because not every individual is going to have the same 
exact value for every variable. Variation is what makes the field of statistics 
what it is. For example, the price of homes varies from house to house, from 
year to year, and from state to state. The amount of time it takes you to get to 
work varies from day to day. The trick to dealing with variation is to be able to 
measure that variation in a way that best captures it.
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Reporting the standard deviation
By far the most common measure of variation for numerical data is the stan-
dard deviation. The standard deviation measures how concentrated the data 
are around the mean; the more concentrated, the smaller the standard devia-
tion. It’s not reported nearly as often as it should be, but when it is, you often 
see it in parentheses: (s = 2.68).

Calculating standard deviation
The formula for the sample standard deviation of a data set (s) is

To calculate s, do the following steps:

 1. Find the average of the data set, .

 2. Take each number in the data set (x) and subtract the mean from it to 

get .

 3. Square each of the differences, .

 4. Add up all of the results from Step 3 to get the sum of squares: .

 5. Divide the sum of squares (found in Step 4) by the number of numbers 
in the data set minus one; that is, (n – 1). Now you have:

 6. Take the square root to get

  which is the sample standard deviation, s. Whew!

 At the end of Step 5 you have found a statistic called the sample variance, 
denoted by s2. The variance is another way to measure variation in a data set; its 
downside is that it’s in square units. If your data are in dollars, for example, the 
variance would be in square dollars — which makes no sense. That’s why we 
proceed to Step 6. Standard deviation has the same units as the original data.

Look at the following small example: Suppose you have four quiz scores: 
1, 3, 5, and 7. The mean is 16 ÷ 4 = 4 points. Subtracting the mean from 
each number, you get (1 – 4) = –3, (3 – 4) = –1, (5 – 4) = +1, and (7 – 4) = +3. 
Squaring each of these results, you get 9, 1, 1, and 9. Adding these up, the 
sum is 20. In this example, n = 4, and therefore n – 1 = 3, so you divide 20 by 
3 to get 6.67. The units here are “points squared,” which obviously makes 
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no sense. Finally, you take the square root of 6.67, to get 2.58. The standard 
deviation for these four quiz scores is 2.58 points.

Because calculating the standard deviation involves many steps, in most 
cases you have a computer calculate it for you. However, knowing how to cal-
culate the standard deviation helps you better interpret this statistic and can 
help you figure out when the statistic may be wrong.

 Statisticians divide by n – 1 instead of by n in the formula for s so the results 
have nicer properties that operate on a theoretical plane that’s beyond the 
scope of this book (not the Twilight Zone but close; trust me, that’s more than 
you want to know about that!).

 The standard deviation of an entire population of data is denoted with the 
Greek letter σ. When I use the term standard deviation, I mean s, the sample 
standard deviation. (When I refer to the population standard deviation, I let 
you know.)

Interpreting standard deviation
Standard deviation can be difficult to interpret as a single number on its own. 
Basically, a small standard deviation means that the values in the data set 
are close to the mean of the data set, on average, and a large standard devia-
tion means that the values in the data set are farther away from the mean, on 
average.

A small standard deviation can be a goal in certain situations where the results 
are restricted, for example, in product manufacturing and quality control. A 
particular type of car part that has to be 2 centimeters in diameter to fit prop-
erly had better not have a very big standard deviation during the manufactur-
ing process. A big standard deviation in this case would mean that lots of parts 
end up in the trash because they don’t fit right; either that or the cars will have 
problems down the road.

But in situations where you just observe and record data, a large standard 
deviation isn’t necessarily a bad thing; it just reflects a large amount of varia-
tion in the group that is being studied. For example, if you look at salaries for 
everyone in a certain company, including everyone from the student intern to 
the CEO, the standard deviation may be very large. On the other hand, if you 
narrow the group down by looking only at the student interns, the standard 
deviation is smaller, because the individuals within this group have salaries 
that are less variable. The second data set isn’t better, it’s just less variable.

Similar to the mean, outliers affect the standard deviation (after all, the for-
mula for standard deviation includes the mean). In the NBA salaries example, 
the salaries of the L.A. Lakers in the 2009–2010 season (shown in Table 5-2) 
range from the highest, $23,034,375 (Kobe Bryant) down to $959,111 (Didier 
Ilunga-Mbenga and Josh Powell). Lots of variation, to be sure! The standard 
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deviation of the salaries for this team turns out to be $6,567,405; it’s almost 
as large as the average. However, as you may guess, if you remove Kobe 
Bryant’s salary from the data set, the standard deviation decreases because 
the remaining salaries are more concentrated around the mean. The stan-
dard deviation becomes $4,671,508.

 Watch for the units when determining whether a standard deviation is large. 
For example, a standard deviation of 2 in units of years is equivalent to a 
standard deviation of 24 in units of months. Also look at the value of the mean 
when putting standard deviation into perspective. If the average number of 
Internet newsgroups that a user posts to is 5.2 and the standard deviation is 
3.4, that’s a lot of variation, relatively speaking. But if you’re talking about the 
age of the newsgroup users where the mean is 25.6 years, that same standard 
deviation of 3.4 would be comparatively smaller.

Understanding properties of standard deviation
Here are some properties that can help you when interpreting a standard 
deviation:

 ✓ The standard deviation can never be a negative number, due to the way 
it’s calculated and the fact that it measures a distance (distances are 
never negative numbers).

 ✓ The smallest possible value for the standard deviation is 0, and that hap-
pens only in contrived situations where every single number in the data 
set is exactly the same (no deviation).

 ✓ The standard deviation is affected by outliers (extremely low or 
extremely high numbers in the data set). That’s because the standard 
deviation is based on the distance from the mean. And remember, the 
mean is also affected by outliers.

 ✓ The standard deviation has the same units as the original data.

Lobbying for standard deviation
The standard deviation is a commonly used statistic, but it doesn’t often get 
the attention it deserves. Although the mean and median are out there in 
common sight in the everyday media, you rarely see them accompanied by any 
measure of how diverse that data set was, and so you are getting only part of 
the story. In fact, you could be missing the most interesting part of the story.

Without standard deviation, you can’t get a handle on whether the data 
are close to the average (as are the diameters of car parts that come off 
of a conveyor belt when everything is operating correctly) or whether the 
data are spread out over a wide range (as are house prices and income 
levels in the U.S.).
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For example if someone told you that the average starting salary for someone 
working at Company Statistix is $70,000, you may think, “Wow! That’s great.” 
But if the standard deviation for starting salaries at Company Statistix is 
$20,000, that’s a lot of variation in terms of how much money you can make, 
so the average starting salary of $70,000 isn’t as informative in the end, is it?

On the other hand, if the standard deviation was only $5,000, you would have 
a much better idea of what to expect for a starting salary at that company. 
Which is more appealing? That’s a decision each person has to make; how-
ever it’ll be a much more informed decision once you realize standard devia-
tion matters.

Without the standard deviation, you can’t compare two data sets effectively. 
Suppose two sets of data have the same average; does that mean that the 
data sets must be exactly the same? Not at all. For example, the data sets 199, 
200, 201; and 0, 200, 400 both have the same average (200) yet they have very 
different standard deviations. The first data set has a very small standard 
deviation (s=1) compared to the second data set (s=200).

References to the standard deviation may become more commonplace in the 
media as more and more people (like you, for example) discover what the stan-
dard deviation can tell them about a set of results and start asking for it. In your 
career, you are likely to see the standard deviation reported and used as well.

Being out of range
The range is another statistic that some folks use to measure diversity in a 
data set. The range is the largest value in the data set minus the smallest value 
in the data set. It’s easy to find; all you do is put the numbers in order (from 
smallest to largest) and do a quick subtraction. Maybe that’s why the range is 
used so often; it certainly isn’t because of its interpretative value.

 The range of a data set is almost meaningless. It depends on only two num-
bers in the data set, both of which may reflect extreme values (outliers). My 
advice is to ignore the range and find the standard deviation, which is a more 
informative measure of the variation in the data set because it involves all 
the values. Or you can also calculate another statistic called the interquartile 
range, which is similar to the range with an important difference — it elimi-
nates outlier and skewness issues by only looking at the middle 50% of the 
data and finding the range for those values. The section “Exploring interquar-
tile range” at the end of this chapter gives you more details.
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Examining the Empirical 
Rule (68-95-99.7)

Putting a measure of center (such as the mean or median) together with a 
measure of variation (such as standard deviation or interquartile range) is a 
good way to describe the values in a population. In the case where the data 
are in the shape of a bell curve (that is, they have a normal distribution; see 
Chapter 9), the population mean and standard deviation are the combination 
of choice, and a special rule links them together to get some pretty detailed 
information about the population as a whole.

The Empirical Rule says that if a population has a normal distribution with 
population mean μ and standard deviation σ, then:

 ✓ About 68% of the values lie within 1 standard deviation of the mean (or 
between the mean minus 1 times the standard deviation, and the mean 
plus 1 times the standard deviation). In statistical notation, this is repre-
sented as μ ± 1σ.

 ✓ About 95% of the values lie within 2 standard deviations of the mean (or 
between the mean minus 2 times the standard deviation, and the mean plus 
2 times the standard deviation). The statistical notation for this is μ ± 2σ.

 ✓ About 99.7% of the values lie within 3 standard deviations of the mean 
(or between the mean minus 3 times the standard deviation and the 
mean plus 3 times the standard deviation). Statisticians use the following 
notation to represent this: μ ± 3σ.

 The Empirical Rule is also known as the 68-95-99.7 Rule, in correspondence 
with those three properties. It’s used to describe a population rather than a 
sample, but you can also use it to help you decide whether a sample of data 
came from a normal distribution. If a sample is large enough and you can see 
that its histogram looks close to a bell-shape, you can check to see whether 
the data follow the 68-95-99.7 percent specifications. If yes, it’s reasonable to 
conclude the data came from a normal distribution. This is huge because the 
normal distribution has lots of perks, as you can see in Chapter 9.

Figure 5-2 illustrates all three components of the Empirical Rule.

The reason that so many (about 68%) of the values lie within 1 standard 
deviation of the mean in the Empirical Rule is because when the data are 
bell-shaped, the majority of the values are mounded up in the middle, close 
to the mean (as Figure 5-2 shows).
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Adding another standard deviation on either side of the mean increases 
the percentage from 68 to 95, which is a big jump and gives a good idea of 
where “most” of the data are located. Most researchers stay with the 95% 
range (rather than 99.7%) for reporting their results, because increasing the 
range to 3 standard deviations on either side of the mean (rather than just 2) 
doesn’t seem worthwhile, just to pick up that last 4.7% of the values.

 The Empirical Rule tells you about what percentage of values are within a cer-
tain range of the mean, and I need to stress the word about. These results are 
approximations only, and they only apply if the data follow a normal distribu-
tion. However, the Empirical Rule is an important result in statistics because 
the concept of “going out about two standard deviations to get about 95% of 
the values” is one that you see mentioned often with confidence intervals and 
hypothesis tests (see Chapters 13 and 14).

Here’s an example of using the Empirical Rule to better describe a popula-
tion whose values have a normal distribution: In a study of how people make 
friends in cyberspace using newsgroups, the age of the users of an Internet 
newsgroup was reported to have a mean of 31.65 years, with a standard devi-
ation of 8.61 years. Suppose the data were graphed using a histogram and 
were found to have a bell-shaped curve similar to what’s shown in Figure 5-2.

According to the Empirical Rule, about 68% of the newsgroup users had ages 
within 1 standard deviation (8.61 years) of the mean (31.65 years). So about 
68% of the users were between ages 31.65 – 8.61 years and 31.65 + 8.61 years, 
or between 23.04 and 40.26 years. About 95% of the newsgroup users were 
between the ages of 31.65 – 2(8.61), and 31.65 + 2(8.61), or between 14.43 and 
48.87 years. Finally, about 99.7% of the newsgroup users’ ages were between 
31.65 – 3(8.61) and 31.65 + 3(8.61), or between 5.82 and 57.48 years.

This application of the rule gives you a much better idea about what’s hap-
pening in this data set than just looking at the mean, doesn’t it? As you 
can see, the mean and standard deviation used together add value to your 
results; plugging these values into the Empirical Rule allows you to report 
ranges for “most” of the data yourself.

 Remember, the condition for being able to use the Empirical Rule is that the 
data have a normal distribution. If that’s not the case (or if you don’t know 
what the shape actually is), you can’t use it. To describe your data in these 
cases, you can use percentiles, which represent certain cutoff points in the 
data (see the later section “Gathering a five-number summary”).
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Measuring Relative Standing 
with Percentiles

Sometimes the precise values of the mean, median, and standard deviation 
just don’t matter, and all you are interested in is where you stand compared 
to the rest of the herd. In this situation, you need a statistic that reports rela-
tive standing, and that statistic is called a percentile. The kth percentile is a 
number in the data set that splits the data into two pieces: The lower piece 
contains k percent of the data, and the upper piece contains the rest of the 
data (which amounts to [100 – k] percent, because the total amount of data is 
100%). Note: k is any number between 1 and 100.

 The median is the 50th percentile: The point in the data where 50% of the data 
fall below that point, and 50% fall above it.

In this section, you find out how to calculate, interpret, and put together per-
centiles to help you uncover the story behind a data set.

Calculating percentiles
To calculate the kth percentile (where k is any number between one and one 
hundred), do the following steps:

 1. Order all the numbers in the data set from smallest to largest.

 2. Multiply k percent times the total number of numbers, n.

 3a. If your result from Step 2 is a whole number, go to Step 4. If the result 
from Step 2 is not a whole number, round it up to the nearest whole 
number and go to Step 3b.

 3b. Count the numbers in your data set from left to right (from the small-
est to the largest number) until you reach the value indicated by Step 
3a. The corresponding value in your data set is the kth percentile.

 4. Count the numbers in your data set from left to right until you reach the 
one indicated by Step 2. The kth percentile is the average of that corre-
sponding value in your data set and the value that directly follows it.

For example, suppose you have 25 test scores, and in order from lowest to 
highest they look like this: 43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 77, 78, 
79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 99. To find the 90th percentile for these 
(ordered) scores, start by multiplying 90% times the total number of scores, 
which gives 90% ∗ 25 = 0.90 ∗ 25 = 22.5. Rounding up to the nearest whole 
number, you get 23.
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Counting from left to right (from the smallest to the largest number in the 
data set), you go until you find the 23rd number in the data set. That number 
is 98, and it’s the 90th percentile for this data set.

Now say you want to find the 20th percentile. Start by taking 0.20 ∗ 25 = 5; 
this is a whole number, so proceed from Step 3a to Step 4, which tells us the 
20th percentile is the average of the 5th and 6th numbers in the ordered data 
set (62 and 66). The 20th percentile then comes to (62 + 66) ÷ 2 = 64. The 
median (the 50th percentile) for the test scores is the 13th score: 77.

 There is no single definitive formula for calculating percentiles. The formula 
here is designed to make finding the percentile easier and more intuitive, 
especially if you’re doing the work by hand; however, other formulas are 
used when you’re working with technology. The results you get using various 
methods may differ but not by much.

Interpreting percentiles
Percentiles report the relative standing of a particular value within a data set. 
If that’s what you’re most interested in, the actual mean and standard devia-
tion of the data set are not important, and neither is the actual data value. 
What’s important is where you stand — not in relation to the mean, but in 
relation to everyone else: That’s what a percentile gives you.

For example, in the case of exam scores, who cares what the mean is, as long 
as you scored better than most of the class? Who knows, it may have been 
an impossible exam and 40 points out of 100 was a great score (that hap-
pened to me in an advanced math class once; heaven forbid this should ever 
happen to you!). In this case, your score itself is meaningless, but your per-
centile tells you everything.

Suppose your exam score is better than 90% of the rest of the class. That 
means your exam score is at the 90th percentile (so k = 90), which hope-
fully gets you an A. Conversely, if your score is at the 10th percentile (which 
would never happen to you, because you’re such an excellent student), then 
k = 10; that means only 10% of the other scores are below yours, and 90% of 
them are above yours; in this case an A is not in your future.

A nice property of percentiles is they have a universal interpretation: Being 
at the 95th percentile means the same thing no matter if you are looking at 
exam scores or weights of packages sent through the postal service; the 95th 
percentile always means 95% of the other values lie below yours, and 5% lie 
above it. This also allows you to fairly compare two data sets that have differ-
ent means and standard deviations (like ACT scores in reading versus math). 
It evens the playing field and gives you a way to compare apples to oranges, 
so to speak.
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 A percentile is not a percent; a percentile is a number (or the average of two 
numbers) in the data set that marks a certain percentage of the way through 
the data. Suppose your score on the GRE was reported to be the 80th percen-
tile. This doesn’t mean you scored 80% of the questions correctly. It means 
that 80% of the students’ scores were lower than yours and 20% of the stu-
dents’ scores were higher than yours.

 A high percentile doesn’t always constitute a good thing. For example, if your 
city is at the 90th percentile in terms of crime rate compared to cities of the 
same size, that means 90% of cities similar to yours have a crime rate that is 
lower than yours, which is not good for you. Another example is golf scores; 
a low score in golf is a good thing, so being at the 80th percentile with your 
score wouldn’t qualify you for the PGA tour, let’s just say that.

Comparing household incomes
The U.S. government often reports percentiles among its data summaries. For 
example, the U.S. Census Bureau reported the median (the 50th percentile) 
household income for 2001 to be $42,228, and in 2007 it was reported to be 
$50,233. The Bureau also reports various percentiles for household income 
for each year, including the 10th, 20th, 50th, 80th, 90th, and 95th. Table 5-3 
shows the values of each of these percentiles for both 2001 and 2007.

Table 5-3 U.S. Household Income (2001 versus 2007)

Percentile 2001 Household Income 2007 Household Income

10th $10,913 $12,162

20th $17,970 $20,291

50th $42,228 $50,233

80th $83,500 $100,000

90th $116,105 $136,000

95th $150,499 $177,000

Looking at the percentiles for 2001 in Table 5-3, you can see that the bottom 
half of the incomes are closer together than the top half of the incomes are. 
The difference between the 20th percentile and the 50th percentile is about 
$24,000, whereas the spread between the 50th percentile and the 80th per-
centile is more like $41,000. The difference between the 10th and 50th percen-
tiles is only about $31,000, whereas the difference between the 50th and the 
90th percentiles is a whopping $74,000.
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The percentiles for 2007 are all higher than the percentiles for 2001 (which 
is a good thing!). They are also more spread out. For 2007, the difference 
between the 20th and 50th percentiles is around $30,000, and from the 50th 
to the 80th it’s approximately $50,000; both of these differences are larger 
than for 2001. Similarly, the 10th percentile is farther from the 50th (about 
$38,000 difference) in 2007 compared to 2001, and the 50th is farther from the 
90th (by about $86,000) in 2007, compared to 2001.These results tell us that 
incomes are increasing in general at all levels between 2001 and 2007, but 
the gap is widening between those levels. For example, the 10th percentile 
for income in 2001 was $10,913 (as seen in Table 5-3), compared to $12,162 
in 2007; this represents about an 11 percent increase (subtract the two and 
divide by 10,913). Now compare the 95th percentiles for 2007 versus 2001; 
the increase is almost 18%. Now, technically, you may want to adjust the 2001 
values for inflation, but you get the basic idea. 

 Percentage changes affect the variability in a data set. For example, when 
salary raises are given on a percentage basis, the diversity in the salaries 
also increases; it’s the “rich get richer” idea. The guy making $30,000 gets a 
10 percent raise and his salary goes up to $33,000 (an increase of $3,000); but 
the guy making $300,000 gets a 10 percent raise and now makes $330,000 (a 
difference of $30,000). So when you first get hired for a new job, negotiate the 
highest possible salary you can because your raises that follow will also net a 
higher amount.

Examining ACT Scores
Each year millions of U.S. high school students take a nationally administered 
ACT exam as part of the process of applying for colleges. The test is designed 
to assess college readiness in the areas of English, Math, Reading, and 
Science. Each test has a possible score of 36 points.

ACT does not release the average or standard deviation of the test scores 
for a given exam. (That would be a real hassle if they did, because these sta-
tistics can change from exam to exam, and people would complain that this 
exam was harder than that exam when the actual scores are not relevant.) 
To avoid these issues, and for other reasons, ACT reports test results using 
percentiles.

Percentiles are usually reported in the form of a predetermined list. For 
example, the U.S. Census Bureau reports the 10th, 20th, 50th, 80th, 90th, and 
95th percentiles for household income (as shown in Table 5-3). However, 
ACT uses percentiles in a different way. Rather than reporting the exam 
scores corresponding to a premade list of percentiles, they list each possible 
exam score and report its corresponding percentile, whatever that turns out 
to be. That way, to find out where you stand, you just look up your score and 
you’ll find out your percentile.
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Table 5-4 shows the 2009 percentiles for the scores on the Mathematics and 
Reading ACT exams. To interpret an exam score, find the row correspond-
ing to the score and the column for the exam area (for example, Reading). 
Intersect row and column and you find out which percentile your score rep-
resents; in other words, you see what percentage of your fellow exam-taking 
comrades scored lower than you.

Table 5-4 Percentiles for All Possible ACT Exam 
 Scores in Math and Reading

ACT Score Mathematics Percentile Reading Percentile

34–36 99 99

33 98 97

32 97 95

31 96 93

30 95 91

29 93 88

28 91 85

27 88 81

26 84 78

25 79 74

24 74 70

23 68 65

22 62 59

21 57 54

20 52 47

19 47 41

18 40 34

17 33 30

16 24 24

15 14 19

14 06 14

13 02 09

12 01 06

11 01 03

1–10 01 01
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For example, suppose you scored 30 on the Math exam; in Table 5-4 you look 
at the row for 30 in the column for Math; you see your score is at the 95th 
percentile. In other words 95% of the students scored lower than you, and 
only 5% scored higher than you.

Now suppose you also scored a 30 on the Reading exam. Just because a score 
of 30 represents the 95th percentile for Math doesn’t necessarily mean a score 
of 30 is at the 95th percentile for Reading as well. (It’s probably reasonable 
to expect that fewer people score 30 or higher on the Math exam than on the 
Reading exam.)

To test my theory, look at column 3 of Table 5-4 in the row for a score of 30. You 
see that a score of 30 on the Reading exam puts you at the 91st percentile — 
not quite as great as your position on the Math exam, but certainly not a bad 
score.

Gathering a five-number summary
Beyond reporting a single measure of center and/or a single measure of 
spread, you can create a group of statistics and put them together to get 
a more detailed description of a data set. The Empirical Rule (as seen in 
“Examining the Empirical Rule (68-95-99.7)” earlier in this chapter) uses the 
mean and standard deviation in tandem to describe a bell-shaped data set. 
In the case where your data are not bell-shaped, you use a different set of 
statistics (based on percentiles) to describe the big picture of your data. This 
method involves cutting the data into four pieces (with an equal amount of 
data in each piece) and reporting the resulting five cutoff points that sepa-
rate these pieces. These cutoff points are represented by a set of five statis-
tics that describe how the data are laid out.

The five-number summary is a set of five descriptive statistics that divide 
the data set into four equal sections. The five numbers in a five-number 
 summary are:

 1. The minimum (smallest) number in the data set

 2. The 25th percentile (also known as the first quartile, or Q
1
)

 3. The median (50th percentile)

 4. The 75th percentile (also known as the third quartile, or Q
3
)

 5. The maximum (largest) number in the data set

For example, suppose you want to find the five-number summary of the fol-
lowing 25 (ordered) exam scores: 43, 54, 56, 61, 62, 66, 68, 69, 69, 70, 71, 72, 
77, 78, 79, 85, 87, 88, 89, 93, 95, 96, 98, 99, 99. The minimum is 43, the maxi-
mum is 99, and the median is the number directly in the middle, 77.
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To find Q1 and Q3 you use the steps shown in the section “Calculating per-
centiles,” with n = 25. Step 1 is done because the data are ordered. For Step 
2, since Q1 is the 25th percentile, multiply 0.25 ∗ 25 = 6.25. This is not a whole 
number, so Step 3a says to round it up to 7 and proceed to Step 3b.

Following Step 3b, you count from left to right in the data set until you reach 
the 7th number, 68; this is Q1. For Q3 (the 75th percentile) you multiply 0.75 
∗ 25 = 18.75, which you round up to 19. The 19th number on the list is 89, so 
that’s Q3. Putting it all together, the five-number summary for these 25 test 
scores is 43, 68, 77, 89, and 99. To best interpret a five-number summary, you 
can use a boxplot; see Chapter 7 for details.

Exploring interquartile range
The purpose of the five-number summary is to give descriptive statistics for 
center, variation, and relative standing all in one shot. The measure of center 
in the five-number summary is the median, and the first quartile, median, and 
third quartiles are measures of relative standing.

To obtain a measure of variation based on the five-number summary, you can 
find what’s called the interquartile range (or IQR). The IQR equals Q3 – Q1 (that 
is, the 75th percentile minus the 25th percentile) and reflects the distance 
taken up by the innermost 50% of the data. If the IQR is small, you know a lot 
of data are close to the median. If the IQR is large, you know the data are more 
spread out from the median. The IQR for the test scores data set is 89 – 68 = 
21, which is fairly large, seeing as how test scores only go from 0 to 100.

 The interquartile range is a much better measure of variation than the regular 
range (maximum value minus minimum value; see the section “Being out of 
range” earlier in this chapter). That’s because the interquartile range doesn’t 
take outliers into account; it cuts them out of the data set by only focusing 
on the distance within the middle 50 percent of the data (that is, between the 
25th and 75th percentiles).

 Descriptive statistics that are well chosen and used correctly can tell you a 
great deal about a data set, such as where the center is located, how diverse 
the data are, and where a good portion of the data lies. However, descriptive 
statistics can’t tell you everything about the data, and in some cases they 
can be misleading. Be on the lookout for situations where a different statistic 
would be more appropriate (for example, the median describes center more 
fairly than the mean when the data is skewed), and keep your eyes peeled for 
situations where critical statistics are missing (for example, when a mean is 
reported without a corresponding standard deviation).
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Chapter 6

Getting the Picture: Graphing 
Categorical Data

In This Chapter
▶ Making data displays for categorical data

▶ Interpreting and critiquing charts and graphs

Data displays, especially charts and graphs, seem to be everywhere, 
showing everything from election results, broken down by every con-

ceivable characteristic, to how the stock market has fared over the past few 
years (months, weeks, days, minutes). We’re living in an instant gratification, 
fast-information society; everyone wants to know the bottom line and be 
spared the details.

The abundance of graphs and charts is not necessarily a bad thing, but you 
have to be careful; some of them are incorrect or even misleading (some-
times intentionally and sometimes by accident), and you have to know what 
to look for.

This chapter is about graphs involving categorical data (data that places 
individuals into groups or categories, such as gender, opinion, or whether a 
patient takes medication every day. Here you find out how to read and make 
sense of these data displays and get some tips for evaluating them and spot-
ting problems. (Note: Data displays for numerical data, such as weight, exam 
score, or the number of pills taken by a patient each day, come in Chapter 7.)

The most common types of data displays for categorical data are pie charts 
and bar graphs. In this chapter, I present examples of each type of data dis-
play and share some thoughts on interpretation and tips for critically evalu-
ating each type.
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Take Another Little Piece of My Pie Chart
A pie chart takes categorical data and breaks them down by group, showing 
the percentage of individuals that fall into each group. Because a pie chart 
takes on the shape of a circle, the “slices” that represent each group can 
easily be compared and contrasted.

 Because each individual in the study falls into one and only one category, the 
sum of all the slices of the pie should be 100% or close to it (subject to a bit of 
rounding off). However, just in case, keep your eyes open for pie charts whose 
percentages just don’t add up.

Tallying personal expenses
When you spend your money, what do you spend it on? What are your 
top three expenses? According to the U.S. Bureau of Labor Statistics 2008 
Consumer Expenditure Survey, the top six sources of consumer expendi-
tures in the U.S. were housing (33.9%), transportation (17.0%), food (12.8%), 
personal insurance and pensions (11.1%), healthcare (5.9%), and entertain-
ment (5.6%). These six categories make up over 85% of average consumer 
expenses. (Although the exact percentages change from year to year, the list 
of the top six items remains the same.)

Figure 6-1 summarizes the 2008 U.S. expenditures in a pie chart. Notice that 
the “Other” category is a bit large in this chart (13.7%). However, with so 
many other possible expenditures out there (including this book), each one 
would only get a tiny slice of the pie for itself, and the resulting pie chart 
would be a mess. In this case, it is too difficult to break “Other” down further. 
(But in many other cases you can.)

 Ideally, a pie chart shouldn’t have too many slices because a large number 
of slices distracts the reader from the main point(s) the pie chart is trying to 
relay. However, lumping the remaining categories into one slice that’s one of 
the largest in the whole pie chart leaves readers wondering what’s included in 
that particular slice. With charts and graphs, doing it right is a delicate balance.

Bringing in a lotto revenue
State lotteries bring in a great deal of revenue, and they also return a large 
portion of the money received, with some of the revenues going to prizes and 
some being allocated to state programs such as education. Where does lot-
tery revenue come from? Figure 6-2 is a pie chart showing the types of games 
and their percentage of revenue as recently reported by Ohio’s state lottery. 
(Note the slices don’t sum to 100% exactly due to slight rounding error.)
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93 Chapter 6: Getting the Picture: Graphing Categorical Data

You can see by the pie chart in Figure 6-2 that 49.3% of the lottery sales rev-
enue comes from the instant (scratch-off) games. The rest come from various 
lottery-type games in which players choose a set of numbers and win if a cer-
tain number of their numbers match those chosen by the lottery.

 

Figure 6-1: 
Pie chart 
showing 

how people 
in the U.S. 

spend their 
money.

 

Top Consumer Expenses
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Transportation

Food
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5.6%
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Figure 6-2: 
Pie chart 

break-
ing down 
a state’s 

lottery 
 revenue.
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Notice that this pie chart doesn’t tell you how much money came in, only what 
percentage of the money came from each type of game. About half the money 
(49.3%) came from instant scratch-off games; does this revenue represent a 
million dollars, two million dollars, ten million dollars, or more? You can’t 
answer these questions without knowing the total amount of revenue dollars.

I was, however, able to find this information on another chart provided by 
the lottery Web site: The total revenue (over a 10-year period) was reported 
as “1,983.1 million dollars” — which you also know as 1.9831 billion dollars. 
Because 49.3% of sales came from instant games, they therefore represent 
sales revenue of $977,668,300 over a 10-year period. That’s a lot of (or dare I 
say a “lotto”) scratching.

Ordering takeout
It’s also important to watch for totals when examining a pie chart from a 
survey. A newspaper I read reported the latest results of a “people poll.” 
They asked, “What is your favorite night to order takeout for dinner?” The 
results are shown in a pie chart (see Figure 6-3).

You can clearly see that Friday night is the most popular night for ordering 
takeout (and that result makes sense) with decreasing demand moving from 
Saturday through Monday. The actual percentages shown in Figure 6-3 really 
only apply to the people who were surveyed; how close these results mimic 
the population depends on many factors, one of which is sample size. 
But unfortunately, sample size is not included as part of this graph. 
(For example, it would be nice to see “n = XXX” below the title; where 
n represents sample size.)

Without knowing the sample size, you can’t tell how accurate the informa-
tion is. Which results would you find to be more accurate — those based on 
25 people, 250 people, or 2,500 people? When you see the number 10%, you 
don’t know if it’s 10 out of 100, 100 out of 1,000, or even 1 out of 10. To statis-
ticians, 1 ÷ 10 is not the same as 100 ÷ 1,000, even though they both represent 
10%. (Don’t tell that to mathematicians — they’ll think you’re nuts!)

 Pie charts often don’t include mention of the total sample size. Always check 
for the sample size, especially if the results are very important to you; don’t 
assume it’s large! If you don’t see the sample size, go to the source of the data 
and ask for it.
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Figure 6-3: 
Pie chart 

for takeout 
food survey 

results.
 

Night of the Week for Ordering Takeout
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Saturday

Sunday

Monday

Tuesday

Wednesday

Thursday

38.0%

21.0%

12.0%

10.0%

7.0%

7.0%
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Projecting age trends
The U.S. Census Bureau provides an almost unlimited amount of data, statis-
tics, and graphics about the U.S. population, including the past, present, and 
projections for the future. It often makes comparisons between years in order 
to look for changes and trends.

One recent Census Bureau population report looked at what it calls the 
“older U.S. population” (by the government’s definition, this means people 
65 years old or over). Age was broken into the following groups: 65–69 years, 
70–74 years, 75–79 years, 80–84 years, and 85 and over. The Bureau calcu-
lated and reported the percentage in each age group for the year 2010 and 
made projections for the percentage in each age group for the year 2050.

I made side-by-side pie charts for the years 2010 versus 2050 (projections) 
to make comparisons; you can see the results in Figure 6-4. The percentage 
of the older population in each age group for 2010 is shown in one pie chart, 
and alongside it is a pie chart of the projected percentage for each age group 
for 2050 (based on the current age of the entire U.S. population, birth and 
death rates, and other variables).

If you compare the sizes of the slices from one graph to the other in Figure 6-4, 
you see that the slices for corresponding age groups are larger for the 2050 
projections (compared to 2010) as the age groups get older, and the slices 
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are smaller for the 2050 projections (compared to 2010) as the age groups get 
younger. For example the 65–69 age group decreases from 30% in 2010 to a 
projected 25% in 2050; while the 85-and-over age group increases from 14% 
in 2010 to 19% projected for 2050.

 

Figure 6-4: 
Side-by-side 

pie charts 
on the aging 

popula-
tion, 2010 

versus 2050 
 projections.

 

Age of U.S. 65-and-Over Population
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75–79

80–84

85 and over
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18.0%

14.0%

30.0%

2010

17.0%

19.0%

25.0%19.0%

2050 projection

23.0%
20.0%

The results from Figure 6-4 indicate a shift in the ages of the population 
toward the older categories. From there, the medical and social research 
communities can examine the ramifications of this trend in terms of health-
care, assisted living, social security, and so on.

 The operative words here are if the trend continues. As you know, many vari-
ables affect population size, and you need to take those into account when 
interpreting these projections into the future. The U.S. government always 
points out caveats like this in their reports; it is very diligent about that.

 The pie charts in Figure 6-4 work well for comparing groups because they are 
side-by-side on the same graph, using the same coding for the age groups in 
each, and their slices are in the same order for both as you move clockwise 
around the graphs. They aren’t all scrambled up on each graph so you have 
to hunt for a certain age group on each graph separately.
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Raising the Bar on Bar Graphs
A bar graph (or bar chart) is perhaps the most common data display used 
by the media. Like a pie chart, a bar graph breaks categorical data down by 
group. Unlike a pie chart, it represents these amounts by using bars of differ-
ent lengths; whereas a pie chart most often reports the amount in each group 
as percentages, a bar graph uses either the number of individuals in each 
group (also called the frequency) or the percentage in each group (called the 
relative frequency).

Tracking transportation expenses
How much of their income do people in the United States spend on transporta-
tion to get back and forth to work? It depends on how much money they make. 
The Bureau of Transportation Statistics (did you know such a department 
existed?) conducted a study on transportation in the U.S. recently, and many 
of its findings are presented as bar graphs like the one shown in Figure 6-5.

This particular bar graph shows how much money is spent on transporta-
tion for people in different household-income groups. It appears that as 
household income increases, the total expenditures on transportation also 
increase. This makes sense, because the more money people have, the more 
they have available to spend.

Evaluating a pie chart
The following tips help you taste test a pie chart 
for statistical correctness:

 ✓ Check to be sure the percentages add up to 
100% or very close to it (any round-off error 
should be very small).

 ✓ Beware of slices of the pie called “Other” 
that are larger than many of the other 
slices.

 ✓ Look for a reported total number of units 
(people, dollar amounts, and so on) so that 
you can determine (in essence) how “big” 
the pie was before being divided up into the 
slices that you’re looking at.

 ✓ Avoid three-dimensional pie charts; they 
don’t show the slices in their proper pro-
portions. The slices in front look larger than 
they should.
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But would the bar graph change if you looked at transportation expenditures 
not in terms of total dollar amounts, but as the percentage of household 
income? The households in the first group make less than $5,000 a year and 
have to spend $2,500 of it on transportation. (Note: The label reads “2.5,” but 
because the units are in thousands of dollars, the 2.5 translates into $2,500.)

 

Figure 6-5: 
Bar graph 

showing 
transportation  
expenses by 

household 
income 
group.
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This $2,500 represents 50% of the annual income of those who make $5,000 
per year; the percentage of the total income is even higher for those who 
make less than $5,000 per year. The households earning $30,000–$40,000 per 
year pay $6,000 per year on transportation, which is between 15% and 20% of 
their household income. So, although the people making more money spend 
more dollars on transportation, they don’t spend more as a percentage of 
their total income. Depending on how you look at expenditures, the bar 
graph can tell two somewhat different stories.

Another point to check out is the groupings on the graph. The categories for 
household income as shown aren’t equivalent. For example, each of the first 
four bars represents household incomes in intervals of $5,000, but the next 
three groups increase by $10,000 each, and the last group contains every 
household making more than $50,000 per year. Bar graphs using different-
sized intervals to represent numerical values (such as Figure 6-5) make true 
comparisons between groups more difficult. (However, I’m sure the govern-
ment has its reasons for reporting the numbers this way; for example, this 
may be the way income is broken down for tax-related purposes.)
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One last thing: Notice that the numerical groupings in Figure 6-5 overlap on 
the boundaries. For example, $30,000 appears in both the 5th and 6th bars of 
the graph. So, if you have a household income of $30,000, which bar do you fall 
into? (You can’t tell from Figure 6-5, but I’m sure the instructions are buried 
in a huge report in the basement of some building in Washington, D.C.) This 
kind of overlap appears quite frequently in graphs, but you need to know how 
the borderline values are being treated. For example, the rule may be “Any 
data lying exactly on a boundary value automatically goes into the bar to its 
immediate right.” (Looking at Figure 6-5, that puts a household with a $30,000 
income into the 6th bar rather than the 5th.) As long as they are being consis-
tent for each boundary, that’s okay. The alternative, describing the income 
boundaries for the 5th bar as “20,000 to $29,999.99,” is not an improvement. 
Along those lines, income data can also be presented using a histogram (see 
Chapter 7), which has a slightly different look to it.

Making a lotto profit
That lotteries rake in the bucks is a well-known fact; but they also shell it 
out. How does it all shake out in terms of profits? Figure 6-6 shows the recent 
sales and expenditures of a certain state lottery.

 

Figure 6-6: 
Bar graph of 
lottery sales 
and expen-
ditures for 

a certain 
state.
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In my opinion, this bar graph needs some additional info from behind the 
scenes to make it more understandable. The bars in Figure 6-6 don’t repre-
sent similar types of entities. The first bar represents sales (a form of rev-
enue), and the other bars represent expenditures. The graph would be much 
clearer if the first bar weren’t included; for example, the total sales could be 
listed as a footnote.

Tipping the scales on a bar graph
 Another way a graph can be misleading is through its choice of scale on the 

frequency/relative frequency axis (that is, the axis where the amounts in each 
group are reported), and/or its starting value.

By using a “stretched out” scale (for example, having each half inch of a bar 
represent 10 units versus 50 units), you can stretch the truth, make differ-
ences look more dramatic, or exaggerate values. Truth-stretching can also 
occur if the frequency axis starts out at a number that’s very close to where 
the differences in the heights of the bars start; you are in essence chopping 
off the bottom of the bars (the less exciting part) and just showing their tops; 
emphasizing (in a misleading way) where the action is. Not every frequency 
axis has to start at zero, but watch for situations that elevate the differences.

A good example of a graph with a stretched out scale is seen in Chapter 3, 
regarding the results of numbers drawn in the “Pick 3” lottery. (You choose 
three one-digit numbers and if they all match what’s drawn, you win.) In 
Chapter 3, the percentage of times each number (from 0–9) was drawn is 
shown in Table 3-2, and the results are displayed in a bar graph in Figure 3-1a. 
The scale on the graph is stretched and starts at 465, making the differences 
in the results look larger than they really are; for example, it looks like the 
number 1 was drawn much less often, whereas the number 2 was drawn 
much more often, when in reality there is no statistical difference between 
the percentage of times each number was drawn. (I checked.)

Why was the graph in Figure 3-1a made this way? It might lead people to think 
they’ve got an inside edge if they choose the number 2 because it’s “on a hot 
streak”; or they might be led to choose the number 1 because it’s “due to come 
up.” Both of these theories are wrong, by the way; because the numbers are 
chosen at random, what happened in the past doesn’t matter. In Figure 3-1b 
you see a graph that’s been made correctly. (For more examples of where 
our intuition can go wrong with probability and what the scoop really is, see 
another of my books, Probability For Dummies, also published by Wiley.)

Alternatively, by using a “squeezed down” scale (for example, having each 
half inch of a bar represent 50 units versus 10 units), you can downplay dif-
ferences, making results look less dramatic than they actually are. For exam-
ple, maybe a politician doesn’t want to draw attention to a big increase in 
crime from the beginning to the end of her term, so she may have the number 
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of crimes of each type shown where each half inch of a bar represents 500 
crimes, versus 100 crimes. This squeezes the numbers together and makes 
differences less noticeable. Her opponent in the next election would go the 
other way and use a stretched-out scale to emphasize a crime increase in 
dramatic fashion, and voilà! (Now you know the answer to the question “How 
can two people talk about the same data and get two different conclusions?” 
Welcome to the world of politics.)

 With a pie chart, however, the scale can’t be changed to over-emphasize (or 
downplay) the results. No matter how you slice up a pie chart, you’re always 
slicing up a circle, and the proportion of the total pie belonging to any given 
slice won’t change, even if you make the pie bigger or smaller.

Pondering pet peeves
A recent survey of 100 people with office jobs asked them to report their big-
gest pet peeves in the workplace. (Before going on, you may want to jot down 
a couple of yours, just for fun.) A bar graph of the results of the survey is 
shown in Figure 6-7. Poor time management looks to be the number-one issue 
for these workers (I hope they didn’t do this survey on company time).

 

Figure 6-7: 
Bar graph 
for survey 
data with 

multiple 
responses.
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 If you take a look at the percentages shown for each pet peeve listed, you see 
they don’t sum to one. That tells you that each person surveyed was allowed 
to choose more than one pet peeve (like that would be hard to do); perhaps 
they were asked to name their top three pet peeves, for example. For this data 
set and others like it that allow for multiple responses, a pie chart wouldn’t be 
possible (unless you made one for every single pet peeve on the list).

Note that Figure 6-7 is a horizontal bar graph (its bars go side to side) as opposed 
to a vertical bar graph (in which bars go up and down, as in Figure 6-6). Either ori-
entation is fine; use whichever one you prefer when you make a bar graph. Do, 
however, make sure that you label the axes appropriately and include proper 
units (such as gender, opinion, or day of the week) where appropriate.

Evaluating a bar graph
To raise the statistical bar on bar graphs, check 
out these tips:

 ✓ Bars that divide up values of a numerical 
variable (such as income) should be equal 
in width (if possible) for fair comparison.

 ✓ Be aware of the scale of the bar graph and 
determine whether it’s an appropriate rep-
resentation of the information.

 ✓ Some bar graphs don’t sum to one because 
they are showing the results of more than 

one variable; make sure it’s clear what’s 
being summarized.

 ✓ Check whether the results are shown as 
the percentage within each group (relative 
frequencies) or the number in each group 
(frequencies).

 ✓ If you see relative frequencies, check for 
the total sample size — it matters. If you 
see frequencies, divide each one by the 
total sample size to get percentages, which 
are easier to compare.
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Chapter 7

Going by the Numbers: 
Graphing Numerical Data

In This Chapter
▶ Making and interpreting histograms and boxplots for numerical data

▶ Examining time charts for numerical data collected over time

▶ Strategies for spotting misleading and incorrect graphs

The main purpose of charts and graphs is to summarize data and display 
the results to make your point clearly, effectively, and correctly. In this 

chapter, I present data displays used to summarize numerical data — data 
that represent counts (such as the number of pills a patient with diabetes 
takes per day, or the number of accidents at an intersection per year) or 
measurements (the time it takes you to get to work/school each day, or your 
blood pressure).

You see examples of how to make, interpret, and evaluate the most common 
data displays for numerical data: time charts, histograms, and boxplots. I also 
point out many potential problems that can occur in these graphs, includ-
ing how people often misread what’s there. This information will help you 
develop important detective skills for quickly spotting misleading graphs.

Handling Histograms
A histogram provides a snapshot of all the data broken down into numeri-
cally ordered groups, making it a quick way to get the big picture of the data, 
in particular, its general shape. In this section you find out how to make and 
interpret histograms, and how to critique them for correctness and fairness.
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Making a histogram
A histogram is a special graph applied to data broken down into numerically 
ordered groups; for example, age groups such as 10–20, 21–30, 31–40, and 
so on. The bars connect to each other in a histogram — as opposed to a bar 
graph (Chapter 6) for categorical data, where the bars represent categories 
that don’t have a particular order, and are separated. The height of each bar 
of a histogram represents either the number of individuals (called the fre-
quency) in each group or the percentage of individuals (the relative frequency) 
in each group. Each individual in the data set falls into exactly one bar.

 You can make a histogram from any numerical data set; however, you can’t 
determine the actual values of the data set from a histogram because all you 
know is which group each data value falls into.

An award winning example
Here’s an example of how to create a histogram for all you movie lovers out 
there (especially those who love old movies). The Academy Awards started in 
1928, and one of the most popular categories for this award is Best Actress in 
a Motion Picture. Table 7-1 shows the winners of the first eight Best Actress 
Oscars, the years they won (1928–1935), their ages at the time of winning their 
awards, and the movies they were in. From the table you see the ages range 
from 22 to 62 — much wider than you may have thought it would be.

Table 7-1 Ages of Best Actress Oscar Award 
 Winners 1928–1935

Year Winner Age Movie

1928 Laura Gainor 22 Sunrise
1929 Mary Pickford 37 Coquette
1930 Norma Shearer 30 The Divorcee
1931 Marie Dressler 62 Min and Bill
1932 Helen Hayes 32 The Sin of Madelon Claudet
1933 Katharine Hepburn 26 Morning Glory
1934 Collette Colbert 31 It Happened One Night
1935 Bette Davis 27 Dangerous

To find out more about the ages of Best Actresses, I expanded my data set to 
the period 1928–2009. The age variable for this data set is numerical, so you 
can graph it using a histogram. From there you can answer questions like: 
What do the ages of these actresses look like? Are they mostly young, old, 
in between? Are their ages all spread out, or are they similar? Are most of 
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them in a certain age range, with a few outliers (either very young or very old 
actresses, compared to the others)? To investigate these questions, a histo-
gram of ages of the Best Award actresses is shown in Figure 7-1.
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Notice that the age groups are shown on the horizontal (x) axis. They go by 
groups of 5 years each: 20–25, 25–30, 30–35, . . . 80–85. The percentage (rela-
tive frequency) of actresses in each age group appears on the vertical (y) 
axis. For example, about 27 percent of the actresses were between 30 and 35 
years of age when they won their Oscars.

Creating appropriate groups
 For Figure 7-1, I used groups of 5 years each in the above example because 

increments of 5 create natural breaks for years and because it provides 
enough bars to look for general patterns. You don’t have to use this particular 
grouping, however; you have a bit of poetic license when making a histogram. 
(However, this freedom allows others to deceive you as you see in the later 
section “Detecting misleading histograms.”) Here are some tips for setting up 
your histogram:

 ✓ Each data set requires different ranges for its groupings, but you want to 
avoid ranges that are too wide or too narrow.

 • If a histogram has really wide ranges for its groups, it places all the 
data into a very small number of bars that make meaningful com-
parisons impossible.
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 • If the histogram has very narrow ranges for its groups, it looks like 
a big series of tiny bars that cloud the big picture. This can make 
the data look very choppy with no real pattern.

 ✓ Make sure your groups have equal widths. If one bar is wider than the 
others, it may contain more data than it should.

One idea that may be appropriate for your histogram is to take the range of 
the data (largest minus smallest) and divide by 10 to get 10 groupings.

Handling borderline values
In the Academy Award example, what happens if an actress’s age lies right 
on a borderline? For example, in Table 7-1 Norma Shearer was 30 years old in 
1930 when she won the Oscar for The Divorcee. Does she belong in the 25–30 
age group (the lower bar) or the 30–35 age group (the upper bar)?

 As long as you are consistent with all the data points, you can either put all 
the borderline points into their respective lower bars or put all of them into 
their respective upper bars. The important thing is to pick a direction and be 
consistent. In Figure 7-1, I went with the convention of putting all borderline 
values into their respective upper bars — which puts Norma Shearer’s age in 
the 3rd bar, the 30–35 age group of Figure 7-1.

Clarifying the axes
The most complex part of interpreting a histogram for the reader is to get 
a handle on what’s being shown on the x and y axes. Having good descrip-
tive labels on the axes will help. Most statistical software packages label the 
x-axis using the variable name you provided when you entered your data (for 
example “age” or “weight”). However, the label for the y-axis isn’t as clear. 
Statistical software packages often label the y-axis of a histogram by writing 
“frequency” or “percent” by default. These terms can be confusing: frequency 
or percentage of what?

 Clarify the y-axis label on your histogram by changing “frequency” to “number 
of” and adding the variable name. To modify a label that simply reads “percent,” 
clarify by writing “percentage of” and the variable. For example, in the histo-
gram of ages of the Best Actress winners shown in Figure 7-1, I labeled the y-axis 
“Percentage of actresses in each age group.” In the next section you see how to 
interpret the results from a histogram. How old are those actresses anyway?

Interpreting a histogram
 A histogram tells you three main features of numerical data:

 ✓ How the data are distributed among the groups (statisticians call this 
the shape of the data)
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 ✓ The amount of variability in the data (statisticians call this the amount 
of spread in the data)

 ✓ Where the center of the data is (statisticians use different measures)

Checking out the shape of the data
One of the features that a histogram can show you is the shape of the data — 
in other words, the manner in which the data fall into the groups. For exam-
ple, all the data may be exactly the same, in which case the histogram is just 
one tall bar; or the data might have an equal number in each group; in which 
case the shape is flat.

Some data sets have a distinct shape. Here are three shapes that stand out:

 ✓ Symmetric: A histogram is symmetric if you cut it down the middle and 
the left-hand and right-hand sides resemble mirror images of each other.

  Figure 7-2a shows a symmetric data set; it represents the amount of time 
each of 50 survey participants took to fill out a certain survey. You see 
that the histogram is close to symmetric.

 ✓ Skewed right: A skewed right histogram looks like a lopsided mound, 
with a tail going off to the right.

  Figure 7-1, showing the ages of the Best Actress Award winners, is 
skewed right. You see on the right side there are a few actresses whose 
ages are older than the rest.

 ✓ Skewed left: If a histogram is skewed left, it looks like a lopsided mound 
with a tail going off to the left.

  Figure 7-2b shows a histogram of 17 exam scores. The shape is skewed 
left; you see a few students who scored lower than everyone else.

 Following are some particulars about classifying the shape of a data set:

 ✓ Don’t expect symmetric data to have an exact and perfect shape. Data 
hardly ever fall into perfect patterns, so you have to decide whether the 
data shape is close enough to be called symmetric.

  If the shape is close enough to symmetric that another person would notice 
it, and the differences aren’t enough to write home about, I’d classify it as 
symmetric or roughly symmetric. Otherwise, you classify the data as non-
symmetric. (More sophisticated statistical procedures exist that actually 
test data for symmetry, but they’re beyond the scope of this book.)

 ✓ Don’t assume that data are skewed if the shape is non-symmetric. 
Data sets come in all shapes and sizes, and many of them don’t have a 
distinct shape at all. I include skewness on the list here because it’s one 
of the more common non-symmetric shapes, and it’s one of the shapes 
included in a standard introductory statistics course.

  If a data set does turn out to be skewed (or close to it), make sure to 
denote the direction of the skewness (left or right).
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As you know from Figure 7-1, the actresses’ ages in Figure 7-1 are skewed 
right. Most of the actresses were between 20 and 50 years of age when they 
won, with about 27% of them between the ages of 30–35. A few actresses were 
older when they won their Oscars; about 6 percent were between 60–65 years 
of age, and less than 4% (total) were 70 years old or over (if you add the 
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percentages from the last two bars in the histogram). The last three bars 
are what make the data have a shape that is skewed right.

Measuring center: Mean versus median
A histogram gives you a rough idea of where the “center” of the data lies. The 
word center is in quotes because many different statistics are used to desig-
nate center. The two most common measures of center are the average (the 
mean) and the median. (For details on measures of center, see Chapter 5.)

 To visualize the average age (the mean), picture the data as people sitting on a 
teeter-totter. Your objective is to balance it. Because data don’t move around, 
assume the people stay where they are and you move the pivot point (which 
you can also think of as the hinge or fulcrum) anywhere you want. The mean 
is the place the pivot point has to be in order to balance the weight on each 
side of the teeter-totter.

The balancing point of the teeter-totter is affected by the weights of the 
people on each side, not by the number of people on each side. So the mean 
is affected by the actual values of the data, rather than the amount of data.

The median is the place where you put the pivot point so you have an 
equal number of people on each side of the teeter-totter, regardless of their 
weights. With the same number of people on each side, the teeter-totter 
wouldn’t balance in terms of weight unless the teeter-totter had people with 
the same total weight on each side. So the median isn’t affected by the values 
of the data, just their location within the data set.

 

The mean is affected by outliers, values in the data set that are away from the 
rest of the data, on the high end and/or the low end. The median, being the 
middle number, is not affected by outliers.

Viewing variability: Amount of spread around the mean
You also get a sense of variability in the data by looking at a histogram. For 
example, if the data are all the same, they are all placed into a single bar, 
and there is no variability. If an equal amount of data is in each group, the 
histogram looks flat with the bars close to the same height; this means a fair 
amount of variability.

 The idea of a flat histogram indicating some variability may go against your 
intuition, and if it does you’re not alone. If you’re thinking a flat histogram 
means no variability, you’re probably thinking about a time chart, where 
single numbers are plotted over time (see the section “Tackling Time Charts” 
later in this chapter). Remember, though, that a histogram doesn’t show data 
over time — it shows all the data at one point in time.

Equally confusing is the idea that a histogram with a big lump in the middle 
and tails sloping sharply down on each side actually has less variability than 
a histogram that’s straight across. The curves looking like hills in a histogram 
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represent clumps of data that are close together; a flat histogram shows data 
equally dispersed, with more variability.

 Variability in a histogram is higher when the taller bars are more spread out 
around the mean and lower when the taller bars are close to the mean.

For the Best Actress Award winners’ ages shown in Figure 7-1, you see many 
actresses are in the age range from 30–35, and most of the ages are between 
20–50 years in age, which is quite diverse; then you have those outliers, those 
few older actresses (I count 7 of them) that spread the data out farther, 
increasing its overall variability.

The most common statistic used to measure variability in a data set is the 
standard deviation, which in a rough sense measures the average distance 
that the data lie from the mean. The standard deviation for the Best Actress 
age data is 11.35 years. (See Chapter 5 for all the details on standard devia-
tion.) A standard deviation of 11.35 years is fairly large in the context of this 
problem, but the standard deviation is based on average distance from the 
mean, and the mean is influenced by outliers, so the standard deviation will 
be as well (see Chapter 5 for more information).

In the later section “Interpreting a boxplot,” I discuss another measure of 
variability, called the interquartile range (IQR), which is a more appropriate 
measure of variability when you have skewed data.

Putting numbers with pictures
 You can’t actually calculate measures of center and variability from the his-

togram itself because you don’t know the exact data values. To add detail to 
your findings, you should always calculate the basic statistics of center and 
variation along with your histogram. (All the descriptive statistics you need, 
and then some, appear in Chapter 5.)

Figure 7-1 is a histogram for the Best Actress ages; you can see it is skewed 
right. Then for Figure 7-3, I calculated some basic (that is, descriptive) statis-
tics from the data set. Examining these numbers, you find the median age is 
33.00 years and the mean age is 35.69 years.

The mean age is higher than the median age because of a few actresses that 
were quite a bit older than the rest when they won their awards. For exam-
ple, Jessica Tandy won for her role in Driving Miss Daisy when she was 81, 
and Katharine Hepburn won the Oscar for On Golden Pond when she was 74. 
The relationship between the median and mean confirms the skewness (to 
the right) found in Figure 7-1.
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Here are some tips for connecting the shape of the histogram (discussed in 
the previous section) with the mean and median:

 ✓ If the histogram is skewed right, the mean is greater than the median.

  This is the case because skewed-right data have a few large values that 
drive the mean upward but do not affect where the exact middle of the 
data is (that is, the median). Looking at the histogram of ages of the Best 
Actress Award winners in Figure 7-1, you see they’re skewed right.

 ✓ If the histogram is close to symmetric, then the mean and median are 
close to each other.

  Close to symmetric means it’s almost the same on either side; it doesn’t 
need to be exact. Close is defined in the context of the data; for example, 
the numbers 50 and 55 are said to be close if all the values lie between 0 
and 1,000, but they are considered to be farther apart if all the values lie 
between 49 and 56.

  The histogram shown in Figure 7-2a is close to symmetric. Its mean and 
median are both equal to 3.5.

 ✓ If the histogram is skewed left, the mean is less than the median.

  This is the case because skewed-left data have a few small values that 
drive the mean downward but do not affect where the exact middle of 
the data is (that is, the median).

  Figure 7-2b represents the exam scores of 17 students, and the data are 
skewed left. I calculated the mean and median of the original data set to 
be 70.41 and 74.00, respectively. The mean is lower than the median due 
to a few students who scored quite a bit lower than the others. These 
findings match the general shape of the histogram shown in Figure 7-2b.

 The tips for interpreting histograms found in the previous section can also be 
used the other way around. If for some reason you don’t have a histogram of 
the data, and you only have the mean and median to go by, you compare them 
to each other to get a rough idea as to the shape of the data set.
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 ✓ If the mean is much larger than the median, the data are generally 
skewed right; a few values are larger than the rest.

 ✓ If the mean is much smaller than the median, the data are generally 
skewed left; a few smaller values bring the mean down.

 ✓ If the mean and median are close, you know the data is fairly balanced, 
or symmetric, on each side.

 Under certain conditions, you can put together the mean and standard devia-
tion to describe a data set in quite a bit of detail. If the data have a normal 
distribution (a bell-shaped hill in the middle, sloping down at the same rate 
on each side; see Chapter 5), the Empirical Rule can be applied.

The Empirical Rule (also in Chapter 5) says that if the data have a normal dis-
tribution, about 68% of the data lie within 1 standard deviation of the mean, 
about 95% of the data lie within 2 standard deviations from the mean, and 
99.7% of the data lie within 3 standard deviations of the mean. These percent-
ages are custom-made for the normal distribution (bell-shaped data) only and 
can’t be used for data sets of other shapes.

Detecting misleading histograms
There are no hard and fast rules for how to create a histogram; the person 
making the graph gets to choose the groupings on the x-axis as well as the 
scale and starting and ending points on the y-axis. Just because there is an 
element of choice, however, doesn’t mean every choice is appropriate; in 
fact, a histogram can be made to be misleading in many ways. In the following 
sections, you see examples of misleading histograms and how to spot them.

Missing the mark with too few groups
Although the number of groups you use for a histogram is up to the discre-
tion of the person making the graph, there is such a thing as going overboard, 
either by having way too few bars, with everything lumped together, or by 
having way too many bars, where every little difference is magnified.

 To decide how many bars a histogram should have, I take a good look at the 
groupings used to form the bars on the x-axis and see if they make sense. 
For example, it doesn’t make sense to talk about exam scores in groups of 2 
points; that’s too much detail — too many bars. On the other hand, it doesn’t 
make sense to group actresses’ ages by intervals of 20 years; that’s not 
descriptive enough.

Figures 7-4 and 7-5 illustrate this point. Each histogram summarizes n = 222 
observations of the amount of time between eruptions of the Old Faithful 
geyser in Yellowstone Park. Figure 7-4 uses six bars that group the data by 
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10-minute intervals. This histogram shows a general skewed left pattern, but 
with 222 observations you are cramming an awful lot of data into only six 
groups; for example, the bar for 75–85 minutes has more than 90 pieces of 
data in it. You can break it down further than that.
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Histogram 

#1 show-
ing time 

between 
eruptions 

for Old 
Faithful gey-
ser (n = 222).

 

40

30

20

10

0
40

90

100

80

70

60

50

Time between Eruptions of Old Faithful (n = 222)

Time (minutes)

N
u

m
b

e
r 

o
f 

b
e

tw
e

e
n

-e
ru

p
ti

o
n

 t
im

e
s 

p
e

r 
g

ro
u

p

50 60 70 80 90

Figure 7-5 is a histogram of the same data set, where the time between erup-
tions is broken into groups of 3 minutes each, resulting in 19 bars. Notice the 
distinct pattern in the data that shows up with this histogram which wasn’t 
uncovered in Figure 7-4. You see two distinct peaks in the data; one peak 
around the 50-minute mark, and one around the 75-minute mark. A data set 
with two peaks is called bimodal; Figure 7-5 shows a clear example.

Looking at Figure 7-5, you can conclude that the geyser has two categories of 
eruptions; one group that has a shorter waiting time, and another group that 
has a longer waiting time. Within each group you see the data are fairly close 
to where the peak is located. Looking at Figure 7-4, you couldn’t say that.

 If the interval for the groupings of the numerical variable is really small, you 
see too many bars in the histogram; the data may be hard to interpret because 
the heights of the bars look more variable than they should be. On the other 
hand, if the ranges are really large, you see too few bars, and you may miss 
something interesting in the data. 
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Watching the scale and start/finish lines
The y-axis of a histogram shows how many individuals are in each group, 
using counts or percents. A histogram can be misleading if it has a deceptive 
scale and/or inappropriate starting and ending points on the y-axis.

 Watch the scale on the y-axis of a histogram. If it goes by large increments and 
has an ending point that’s much higher than needed, you see a great deal of 
white space above the histogram. The heights of the bars are squeezed down, 
making their differences look more uniform than they should. If the scale goes 
by small increments and ends at the smallest value possible, the bars become 
stretched vertically, exaggerating the differences in their heights and suggest-
ing a bigger difference than really exists.

An example comparing scales on the vertical (y) axes is shown in Figures 7-5 
and 7-6. I took the Old Faithful data (time between eruptions) and made a his-
togram with vertical increments of 20 minutes, from 0 to 100; see Figure 7-6. 
Compare this to Figure 7-5, with vertical increments of 5 minutes, from 0 to 
35. Figure 7-6 has a lot of white space and gives the appearance that the times 
are more evenly distributed among the groups than they really are. It also 
makes the data set look smaller, if you don’t pay attention to what’s on the 
y-axis. Of the two graphs, Figure 7-5 is more appropriate.
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Examining Boxplots
A boxplot is a one-dimensional graph of numerical data based on the five-
number summary, which includes the minimum value, the 25th percentile 
(known as Q1), the median, the 75th percentile (Q3), and the maximum value. 
In essence, these five descriptive statistics divide the data set into four parts; 
each part contains 25% of the data. (See Chapter 5 for a full discussion of the 
five-number summary.)

Making a boxplot
To make a boxplot, follow these steps:

 1. Find the five-number summary of your data set. (Use the steps out-
lined in Chapter 5.)

 2. Create a vertical (or horizontal) number line whose scale includes the 
numbers in the five-number summary and uses appropriate units of 
equal distance from each other.
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 3. Mark the location of each number in the five-number summary just 
above the number line (for a horizontal boxplot) or just to the right of 
the number line (for a vertical boxplot).

 4. Draw a box around the marks for the 25th percentile and the 75th 
 percentile.

 5. Draw a line in the box where the median is located.

 6. Determine whether or not outliers are present.

  To make this determination, calculate the IQR (by subtracting Q3 – Q1); 
then multiply by 1.5. Add this amount to the value of Q3 and subtract this 
amount from Q1. This gives you a wider boundary around the median 
than the box does. Any data points that fall outside this boundary are 
determined to be outliers.

 7. If there are no outliers (according to your results of Step 6), draw lines 
from the upper and lower edges of the box out to the minimum and 
maximum values in the data set.

 8. If there are outliers (according to your results of Step 6), indicate their 
location on the boxplot with * signs. Instead of drawing a line from 
the edge of the box all the way to the most extreme outlier, stop the 
line at the last data value that isn’t an outlier.

 Many if not most software packages indicate outliers in a data set by using an 
asterisk (*) or star symbol and use the procedure outlined in Step 6 to identify 
outliers. However, not all packages use these symbols and procedures; check 
to see what your package does before analyzing your data with a boxplot. 

A horizontal boxplot for ages of the Best Actress Oscar award winners from 
1928–2009 is shown in Figure 7-7. You can see the numbers separating sec-
tions of the boxplot match the five-number summary statistics shown in 
Figure 7-3.

 Boxplots can be vertical (straight up and down) with the values on the axis 
going from bottom (lowest) to top (highest); or they can be horizontal, with 
the values on the axis going from left (lowest) to right (highest). The next sec-
tion shows you how to interpret a boxplot.
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Figure 7-7: 
Boxplot 
of Best 

Actress 
ages (1928–
2009; n = 83 
actresses).
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Interpreting a boxplot
Similar to a histogram (see the section “Interpreting a histogram”), a box-
plot can give you information regarding the shape, center, and variability of 
a data set. Boxplots differ from histograms in terms of their strengths and 
weaknesses, as you see in the upcoming sections, but one of their biggest 
strengths is how they handle skewed data.

Checking the shape with caution!
A boxplot can show whether a data set is symmetric (roughly the same on 
each side when cut down the middle) or skewed (lopsided). A symmetric 
data set shows the median roughly in the middle of the box. Skewed data 
show a lopsided boxplot, where the median cuts the box into two unequal 
pieces. If the longer part of the box is to the right (or above) the median, the 
data is said to be skewed right. If the longer part is to the left (or below) the 
median, the data is skewed left.
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As shown in the boxplot of the data in Figure 7-7, the ages are skewed right. 
The part of the box to the left of the median (representing the younger 
actresses) is shorter than the part of the box to the right of the median (rep-
resenting the older actresses). That means the ages of the younger actresses 
are closer together than the ages of the older actresses. Figure 7-3 shows the 
descriptive statistics of the data and confirms the right skewness: the median 
age (33 years) is lower than the mean age (35.69 years).

 If one side of the box is longer than the other, it does not mean that side con-
tains more data. In fact, you can’t tell the sample size by looking at a boxplot; 
it’s based on percentages, not counts. Each section of the boxplot (the mini-
mum to Q1, Q1 to the median, the median to Q3, and Q3 to the maximum) con-
tains 25% of the data no matter what. If one of the sections is longer than 
another, it indicates a wider range in the values of data in that section (mean-
ing the data are more spread out). A smaller section of the boxplot indicates 
the data are more condensed (closer together).

 Although a boxplot can tell you whether a data set is symmetric (when the 
median is in the center of the box), it can’t tell you the shape of the symmetry 
the way a histogram can. For example, Figure 7-8 shows histograms from two 
different data sets, each one containing 18 values that vary from 1 to 6. The 
histogram on the left has an equal number of values in each group, and the one 
on the right has two peaks at 2 and 5. Both histograms show the data are sym-
metric, but their shapes are clearly different.

 

Figure 7-8: 
Histograms 

of two 
symmetric 
data sets.
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Figure 7-9 shows the corresponding boxplots for these same two data sets; 
notice they are exactly the same. This is because the data sets both have 
the same five-number summaries — they’re both symmetric with the same 
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amount of distance between Q1, the median, and Q3. However, if you just saw 
the boxplots and not the histograms, you might think the shapes of the two 
data sets are the same, when indeed they are not.

Figure 7-9: 
Boxplots 

of the two 
symmetric 

data sets 
from 

Figure 7-8.
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Despite its weakness in detecting the type of symmetry (you can add in a his-
togram to your analyses to help fill in that gap), a boxplot has a great upside 
in that you can identify actual measures of spread and center directly from 
the boxplot, where on a histogram you can’t. A boxplot is also good for com-
paring data sets by showing them on the same graph, side by side.

 All graphs have strengths and weaknesses; it’s always a good idea to show 
more than one graph of your data for that reason.

Measuring variability with IQR
Variability in a data set that is described by the five-number summary is mea-
sured by the interquartile range (IQR). The IQR is equal to Q3 – Q1, the difference 
between the 75th percentile and the 25th percentile (the distance covering the 
middle 50% of the data). The larger the IQR, the more variable the data set is.

From Figure 7-3, the variability in age of the Best Actress winners as mea-
sured by the IQR is Q3 – Q1 = 39 – 28 = 11 years. Of the group of actresses 
whose ages were closest to the median, half of them were within 11 years of 
each other when they won their awards.

 Notice that the IQR ignores data below the 25th percentile or above the 75th, 
which may contain outliers that could inflate the measure of variability of the 
entire data set. So if data is skewed, the IQR is a more appropriate measure of 
variability than the standard deviation.
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Picking out the center using the median
The median, part of the five-number summary, is shown by the line that cuts 
through the box in the boxplot. This makes it very easy to identify. The mean, 
however, is not part of the boxplot and can’t be determined accurately by 
just looking at the boxplot.

You don’t see the mean on a boxplot because boxplots are based completely 
on percentiles. If data are skewed, the median is the most appropriate mea-
sure of center. Of course you can calculate the mean separately and add it to 
your results; it’s never a bad idea to show both.

Investigating Old Faithful’s boxplot
The relevant descriptive statistics for the Old Faithful geyser data are found 
in Figure 7-10.

Figure 7-10: 
Descriptive 

statistics for 
Old Faithful 

data. 

Descriptive Statistics: Time between Eruptions

Variable
Time between

Total
Count

222
Mean
71.009

StDev
12.799

Minimum
42.000

Q1
60.000

Median
75.000

Q3
81.000

Maximum
95.000

IQR
21.000

You can predict from the data set that the shape will be skewed left a bit because 
the mean is lower than the median by about 4 minutes. The IQR is Q3 – Q1 = 
81 – 60 = 21 minutes, which shows the amount of overall variability in the time 
between eruptions; 50% of the eruptions are within 21 minutes of each other.

A vertical boxplot for length of time between eruptions of the Old Faithful 
geyser is shown in Figure 7-11. You confirm that the data are skewed left 
because the lower part of the box (where the small values are) is longer than 
the upper part of the box.

You see the values of the boxplot in Figure 7-11 that mark the five-number 
summary and the information shown in Figure 7-10, including the IQR of 21 
minutes to measure variability. The center as marked by the median is 75 
minutes; this is a better measure of center than the mean (71 minutes), which 
is driven down a bit by the left skewed values (the few that are shorter times 
than the rest of the data).

Looking at the boxplot (Figure 7-11), you see there are no outliers denoted by 
stars. However, note that the boxplot doesn’t pick up on the bimodal shape 
of the data that you see in Figure 7-5. You need a good histogram for that.
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Figure 7-11: 
Boxplot of 

eruption 
times for 

Old Faithful 
 geyser 

(n = 222).
 

80

70

60

50

40

90

100

Time between Eruptions of Old Faithful (n = 222)

Ti
m

e
 (

m
in

u
te

s)

Denoting outliers
Looking at the boxplot in Figure 7-7 for the Best Actress ages data, you see 
a set of outliers (seven in all) on the right side of the data set, marked by a 
group of stars (as described in Step 8 in the earlier section “Making a box-
plot”). Three of the stars lie on top of one another because three actresses 
were the same age, 61, when they won their Oscars.

You verify these outliers by applying the rule described in Step 6 of the sec-
tion “Making a Boxplot.” The IQR is 11 (from Figure 7-3), so you take 11 ∗ 1.5 = 
16.5 years. Add this amount to Q3 and you get 39 + 16.5 = 55.5 years; subtract-
ing this amount from Q1 you get 28 – 16.5 = 11.5 years. So an actress whose 
age was below 11.5 years (that is, 11 years old and under) or above 55.5 years 
(that is, 56 years old or over) is considered to be an outlier.

Of course, the lower end of this boundary (11.5 years) isn’t relevant because 
the youngest actress was 21 (Figure 7-3 shows the minimum is 21). So you 
know there aren’t any outliers on the low end of this data set.

However, seven outliers are on the high end of the data set, where the 
56-and-over actresses’ ages are. Table 7-2 shows the information on all seven 
outliers in the Best Actress ages data set.
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Table 7-2 Best Actress Winners with Ages 
 Designated as Outliers

Year Name Age Movie

1967 Katharine Hepburn 60 Guess Who’s Coming to Dinner
1968 Katharine Hepburn 61 The Lion in Winter
1985 Geraldine Page 61 Trip to Bountiful
2006 Helen Mirren 61 The Queen
1931 Marie Dressler 62 Min and Bill
1981 Katharine Hepburn 74 On Golden Pond
1989 Jessica Tandy 81 Driving Miss Daisy

The youngest of the outliers is 60 years old (Katharine Hepburn, 1967). Just 
to compare, the next youngest age in the data set is 49 (Susan Sarandon, 
1995). This indicates a clear break in this data set.

Making mistakes when interpreting a boxplot
It’s a common mistake to associate the size of the box in a boxplot with the 
amount of data in the data set. Remember that each of the four sections 
shown in the boxplot contains an equal percentage (25%) of the data; the 
boxplot just marks off the places in the data set that separate those sections.

 In particular, if the median splits the box into two unequal parts, the larger 
part contains data that’s more variable than the other part, in terms of its 
range of values. However, there is still the same amount of data (25%) in the 
larger part of the box as there is in the smaller part.

Another common error involves sample size. A boxplot is a one-dimensional 
graph with only one axis representing the variable being measured. There is 
no second axis that tells you how many data points are in each group. So if 
you see two boxplots side-by-side and one of them has a very long box and 
the other has a very short one, don’t conclude that the longer one has more 
data in it. The length of the box represents the variability in the data, not the 
number of data values.

 When viewing or making a boxplot, always make sure the sample size (n) is 
included as part of the title. You can’t figure out the sample size otherwise.
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Tackling Time Charts
A time chart (also called a line graph) is a data display used to examine trends 
in data over time (also known as time series data). Time charts show time on 
the x-axis (for example, by month, year, or day) and the values of the variable 
being measured on the y-axis (like birth rates, total sales, or population size). 
Each point on the time chart summarizes all the data collected at that par-
ticular time; for example, the average of all pepper prices for January or the 
total revenue for 2010.

Interpreting time charts
 To interpret a time chart, look for patterns and trends as you move across the 

chart from left to right.

The time chart in Figure 7-12 shows the ages of the Best Actress winners, 
in order of year won, from 1928–2009. Each dot indicates the age of a single 
actress, the one that won the Oscar that year. You see a bit of a cyclical pat-
tern across time; that is, the ages go up, down, up, down, up, down with at 
least some regularity. It’s hard to say what may be going on here; many vari-
ables go into determining an Oscar winner, including the type of movie, type 
of female role, mood of the voters, and so forth, and some of these variables 
may have a cyclical pattern to them.

Figure 7-12 also shows a very faint trend in age that is tending uphill; indi-
cating that the Best Actress Award winners may be winning their awards 
increasingly later in life. Again, I wouldn’t make too many assumptions 
from this result because the data has a great deal of variability.

As far as variability goes, you see that the ages represented by the dots do 
fluctuate quite a bit on the y-axis (representing age); all the dots basically fall 
between 20 and 80 years, with most of them between 25 and 45 years, I’d say. 
This goes along with the descriptive statistics found in Figure 7-3.
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Figure 7-12: 
Time Chart 
#1 for ages 

of Best 
Actress 

Academy 
Award 

winners, 
1928–2009.

 

Age of Best Actress Award Winners by Year (1928–2009)

Year won

A
g

e

2009200019911982197319641955194619371928

100

90

80

70

60

50

40

30

20

10

0

Understanding variability: Time 
charts versus histograms

 Variability in a histogram should not be confused with variability in a time 
chart. If values change over time, they’re shown on a time chart as highs and 
lows, and many changes from high to low (over time) indicate lots of variabil-
ity. So a flat line on a time chart indicates no change and no variability in the 
values across time. For example, if the price of a product stays the same for 12 
months in a row, the time chart for price would be flat.

But when the heights of a histogram’s bars appear flat, the data is spread out 
uniformly across all the groups, indicating a great deal of variability in the 
data. (For an example, refer to Figure 7-2a.)

Spotting misleading time charts
As with any graph, you have to evaluate the units of the numbers being plot-
ted. For example, it’s misleading to chart the number of crimes over time, 
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rather than the crime rate (crimes per capita) — because the population size 
of a city changes over time, crime rate is the appropriate measure. Make sure 
you understand what numbers are being graphed and examine them for fair-
ness and appropriateness.

Watching the scale and start/end points
The scale on the vertical axis can make a big difference in the way the time 
chart looks. Refer to Figure 7-12 to see my original time chart of the ages for 
the Best Actress Academy Award winners from 1928–2009 in increments of 
10 years. You see a fair amount of variability, as discussed previously.

In Figure 7-12, the starting and ending points on the vertical axis are 0 to 100, 
which creates a little bit of extra white space on the top and bottom of the 
picture. I could have used 10 and 90 as my start/end points, but this graph 
looks reasonable.

Now what happens if I change the vertical axis? Figure 7-13 shows the same 
data, with start/end points of 20 and 80. The increments of 10 years appear 
longer than the increments of 10 years shown in Figure 7-12. Both of these 
changes in the graph exaggerate the differences in ages even more.

 

Figure 7-13: 
Time Chart 
#2 for ages 

of Best 
Actress 

Oscar 
Award 

winners, 
1928–2009.
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 How do you decide which graph is the best one for your data? There is no per-
fect graph; there is no right or wrong answer; but there are limits. You can 
quickly spot problems just by zooming in on the scale and start/end points.

Simplifying excess data
A time chart of the time between eruptions for the Old Faithful data is shown 
in Figure 7-14. You see 222 dots on this graph; each one represents the time 
between one eruption and the next, for every eruption during a 16-day period.

This figure looks very complex; data are everywhere, there are too many 
points to really see anything, and you can’t find the forest for the trees. There 
is such a thing as having too much data, especially nowadays when you can 
measure data continuously and meticulously using all kinds of advanced 
technology. I’m betting they didn’t have a student standing by the geyser 
recording eruption times on a clipboard, for example!

To get a clearer picture of the Old Faithful data, I combined all the observa-
tions from a single day and found its mean; I did this for all 16 days, and then 
I plotted all the means on a time chart in order. This reduced the data from 
222 points to 16 points. The time chart is shown in Figure 7-15.

From this time chart I see a little bit of a cyclical pattern to the data; every day 
or two it appears to shift from short times between eruptions to longer times 
between eruptions. While these changes are not definitive, it does provide 
important information for scientists to follow up on when studying the behav-
ior of geysers like Old Faithful.

 

Figure 7-14: 
Time chart 

show-
ing time 

between 
eruptions 

for Old 
Faithful 
Geyser 
(n = 222 

consecutive 
observa-

tions).
 

Time between Old Faithful Eruptions, in Order Observed

Observation number

Ti
m

e
 (

m
in

u
te

s)

1 22 44 66 88 110 132 154 176 198 220

100

90

80

70

60

50

40

12_9780470911082-ch07.indd   12612_9780470911082-ch07.indd   126 3/25/11   8:16 PM3/25/11   8:16 PM



127 Chapter 7: Going by the Numbers: Graphing Numerical Data

 

Figure 7-15: 
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days).
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 A time chart condenses all the data for one unit of time into a single point. By 
contrast, a histogram displays the entire sample of data that was collected at 
that one unit of time. For example, Figure 7-15 shows the daily average time 
between eruptions for 16 days. For any given day, you can make a histogram 
of all the eruptions observed on that particular day. Displaying a time chart of 
average times over 16 days accompanied by a histogram summarizing all the 
eruptions for a particular day would be a great one-two punch.

Evaluating time charts
Here is a checklist for evaluating time charts, 
with a couple more thoughts added in:

 ✓ Examine the scale and start/end points on 
the vertical axis (the one showing the values 
of the data). Large increments and/or lots of 
white space make differences look less dra-
matic; small increments and/or a plot that 
totally fills the page exaggerate differences.

 ✓ If the amount of data you have is over-
whelming, consider boiling it down by find-
ing means/medians for blocks of time and 
plotting those instead.

 ✓ Watch for gaps in the timeline on a time 
chart. For example, it’s misleading to show 
equally spaced points on the horizontal 
(time) axis for 1990, 2000, 2005, and 2010. 
This happens when years are just treated 
like labels, rather than real numbers.

 ✓ As with any graph, take the units into 
account; be sure they’re appropriate for 
comparison over time. For example, are 
dollar amounts adjusted for inflation? Are 
you looking at number of crimes, or the 
crime rate?
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In this part . . . 

Statisticians study populations; that’s their bread 
and butter. They measure, count, or classify charac-

teristics of a population (using random variables); find 
probabilities and proportions; and create (or estimate) 
numerical summaries for the population (that is, param-
eters for the population). Sometimes you know a great deal 
about a population from the start; sometimes it’s hazier. 
This part studies populations under both scenarios.

If a population fits a specific distribution, tools are avail-
able for studying it. In Chapters 8 through 10, you see three 
commonly used distributions: the binomial distribution 
(for categorical data) and the normal and t-distributions 
(for numerical data). 

If the specifics about a population are unknown (as hap-
pens most of the time), you take a sample and generalize 
its results to the population. However, sample results vary, 
and you need to take that into account. In Chapter 11 you 
investigate sample variability, measure the precision of 
your sample results, and find probabilities for their likeli-
hood. From there you’ll be able to properly estimate 
parameters and test claims made about them, but that’s 
another Part — IV, to be exact.
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Chapter 8

Random Variables and the 
Binomial Distribution

In This Chapter
▶ Identifying a binomial random variable

▶ Finding probabilities using a formula or table

▶ Calculating the mean and variance

Scientists and engineers often build models for the phenomena they are 
studying to make predictions and decisions. For example, where and 

when is this hurricane going to hit when it makes landfall? How many acci-
dents will occur at this intersection this year if it’s not redone? Or, what will 
the deer population be like in a certain region five years from now?

To answer these questions, scientists (usually working with statisticians) 
define a characteristic they are measuring or counting (such as number of 
intersections, location and time when a hurricane hits, population size, and 
so on) and treat it as a variable that changes in some random way, accord-
ing to a certain pattern. They cleverly call them — you guessed it — random 
variables. In this chapter, you find out more about random variables, their 
types and characteristics, and why they are important. And you look at the 
details of one of the most common random variables: the binomial.

Defining a Random Variable
A random variable is a characteristic, measurement, or count that changes 
randomly according to a certain set or pattern. Its notation is X, Y, Z, and so 
on. In this section, you see how different random variables are characterized 
and how they behave in the long term in terms of their means and standard 
deviations.
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 In math you have variables like X and Y that take on certain values depending 
on the problem (for example, the width of a rectangle), but in statistics the 
variables change in a random way. By random, statisticians mean that you 
don’t know exactly what the next outcome will be but you do know that cer-
tain outcomes happen more frequently than others; everything’s not 50-50. 
(Like when I try to shoot baskets; it’s definitely not a 50% chance I’ll make one 
and 50% chance I’ll miss. It’s more like 5% chance of making it and a 95% 
chance of missing it.) You can use that information to better study data and 
populations and make good decisions. (For example, don’t put me in your bas-
ketball game to shoot free throws.)

Data have different types: categorical and numerical (see Chapter 4). While 
both types of data are associated with random variables, I discuss only 
numerical random variables here (this falls in line with most intro stat 
courses as well). For information on analyzing categorical variables, see 
Chapters 6 and 19.

Discrete versus continuous
Numerical random variables represent counts and measurements. They 
come in two different flavors: discrete and continuous, depending on the 
type of outcomes that are possible.

 ✓ Discrete random variables: If the possible outcomes of a random vari-
able can be listed out using whole numbers (for example, 0, 1, 2 . . . , 10; 
or 0, 1, 2, 3), the random variable is discrete.

 ✓ Continuous random variables: If the possible outcomes of a random 
variable can only be described using an interval of real numbers (for 
example, all real numbers from zero to infinity), the random variable 
is continuous.

Discrete random variables typically represent counts — for example, the 
number of people who voted yes for a smoking ban out of a random sample of 
100 people (possible values are 0, 1, 2, . . . , 100); or the number of accidents at 
a certain intersection over one year’s time (possible values are 0, 1, 2, . . .).

 Discrete random variables have two classes: finite and countably infinite. A 
discrete random variable is finite if its list of possible values has a fixed (finite) 
number of elements in it (for example, the number of smoking ban support-
ers in a random sample of 100 voters has to be between 0 and 100). One very 
common finite random variable is the binomial, which is discussed in this 
chapter in detail.
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A discrete random variable is countably infinite if its possible values can be 
specifically listed out but they have no specific end. For example, the number 
of accidents occurring at a certain intersection over a 10-year period can take 
on possible values: 0, 1, 2, . . . (you know they end somewhere but you can’t 
say where, so you list them all).

Continuous random variables typically represent measurements, such as 
time to complete a task (for example 1 minute 10 seconds, 1 minute 20 sec-
onds, and so on) or the weight of a newborn. What separates continuous 
random variables from discrete ones is that they are uncountably infinite; 
they have too many possible values to list out or to count and/or they can be 
measured to a high level of precision (such as the level of smog in the air in 
Los Angeles on a given day, measured in parts per million).

Examples of commonly used continuous random variables can be found in 
Chapter 9 (the normal distribution) and Chapter 10 (the t-distribution).

Probability distributions
A discrete random variable X can take on a certain set of possible outcomes, 
and each of those outcomes has a certain probability of occurring. The nota-
tion used for any specific outcome is a lowercase x. For example, say you roll 
a die and look at the outcome. The random variable X is the outcome of the 
die (which takes on possible values of 1, 2, . . . , 6). Now if you roll the die and 
get a 1, that’s a specific outcome, so you write “x = 1.”

The probability of any specific outcome occurring is denoted p(x), which 
you pronounce “p of x.” It signifies the probability that the random variable X 
takes on a specific value, which you call “little x.” For example, to denote the 
probability of getting a 1 on a die, you write p(1).

 Statisticians use an uppercase X when they talk about random variables in 
their general form; for example, “Let X be the outcome of the roll of a single 
die.” They use lowercase x when they talk about specific outcomes of the 
random variable, like x = 1 or x = 2.

A list or function showing all possible values of a discrete random variable, 
along with their probabilities, is called a probability distribution, p(x). For 
example, when you roll a single die, the possible outcomes are 1, 2, 3, 4, 5, 
and 6, and each has a probability of 1⁄6 (if the die is fair). As another example, 
suppose 40% of renters living in an apartment complex own one dog, 7% own 
two dogs, 3% own three dogs, and 50% own zero dogs. For X = the number of 
dogs owned, the probability distribution for X is shown in Table 8-1.
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Table 8-1 Probability Distribution for X = Number of Dogs 
 Owned by Apartment Renters

x p(x)

0 0.50

1 0.40

2 0.07

3 0.03

The mean and variance of a 
discrete random variable
The mean of a random variable is the average of all the outcomes you would 
expect in the long term (over all possible samples). For example, if you roll a 
die a billion times and record the outcomes, the average of those outcomes is 
3.5. (Each outcome happens with equal chance, so you average the numbers 
1 through 6 to get 3.5.) However, if the die is loaded and you roll a 1 more 
often than anything else, the average outcome from a billion rolls is closer 
to 1 than to 3.5.

 The notation for the mean of a random variable X is  (pronounced “mu 
sub x”; or just “mu x”). Because you are looking at all the outcomes in the long 
term, it’s the same as looking at the mean of an entire population of values, 
which is why you denote it  and not . (The latter represents the mean of 
a sample of values [see Chapter 5].) You put the X in the subscript to remind 
you that the variable this mean belongs to is the X variable (as opposed to a Y 
variable or some other letter).

The variance of a random variable is roughly interpreted as the average 
squared distance from the mean for all the outcomes you would get in the 
long term, over all possible samples. This is the same as the variance of the 
population of all possible values. The notation for variance of a random vari-
able X is . You say “sigma sub x, squared” or just “sigma squared.”

The standard deviation of a random variable X is the square root of the vari-
ance, denoted by  (say “sigma x” or just “sigma”). It roughly repre-
sents the average distance from the mean.

Just like for the mean, you use the Greek notation to denote the variance and 
standard deviation of a random variable. The English notation s2 and s repre-
sent the variance and standard deviation of a sample of individuals, not the 
entire population (see Chapter 5).
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 The variance is in square units, so it can’t be easily interpreted. You use stan-
dard deviation for interpretation because it is in the original units of X. The 
standard deviation can be roughly interpreted as the average distance away 
from the mean.

Identifying a Binomial
The most well-known and loved discrete random variable is the binomial. 
Binomial means two names and is associated with situations involving two 
outcomes; for example yes/no, or success/failure (hitting a red light or not, 
developing a side effect or not). This section focuses on the binomial random 
variable — when you can use it, finding probabilities for it, and finding its 
mean and variance.

A random variable is binomial (that is, it has a binomial distribution) if the 
following four conditions are met:

 1. There are a fixed number of trials (n).

 2. Each trial has two possible outcomes: success or failure.

 3. The probability of success (call it p) is the same for each trial.

 4. The trials are independent, meaning the outcome of one trial doesn’t 
influence that of any other.

Let X equal the total number of successes in n trials; if all four conditions are 
met, X has a binomial distribution with probability of success (on each trial) 
equal to p.

The lowercase p here stands for the probability of getting a success on one 
single (individual) trial. It’s not the same as p(x), which means the probabil-
ity of getting x successes in n trials.

Checking binomial conditions step by step
You flip a fair coin 10 times and count the number of heads (X). Does X have 
a binomial distribution? You can check by reviewing your responses to the 
questions and statements in the list that follows:

 1. Are there a fixed number of trials?

  You’re flipping the coin 10 times, which is a fixed number. Condition 1 is 
met, and n = 10.
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 2. Does each trial have only two possible outcomes — success or failure?

  The outcome of each flip is either heads or tails, and you’re interested in 
counting the number of heads. That means success = heads, and failure 
= tails. Condition 2 is met.

 3. Is the probability of success the same for each trial?

  Because the coin is fair, the probability of success (getting a head) is 
p = 1⁄2 for each trial. You also know that 1 – 1⁄2 = 1⁄2 is the probability of fail-
ure (getting a tail) on each trial. Condition 3 is met.

 4. Are the trials independent?

  You assume the coin is being flipped the same way each time, which 
means the outcome of one flip doesn’t affect the outcome of subsequent 
flips. Condition 4 is met.

Because the random variable X (the number of successes [heads] that occur 
in 10 trials [flips]) meets all four conditions, you conclude it has a binomial 
distribution with n = 10 and p = 1⁄2.

But not every situation that appears binomial actually is. Read on to see 
some examples of what I mean.

No fixed number of trials
Suppose that you’re going to flip a fair coin until you get four heads and you’ll 
count how many flips it takes to get there; in this case X = number of flips. 
This certainly sounds like a binomial situation: Condition 2 is met because 
you have success (heads) and failure (tails) on each flip; condition 3 is met 
with the probability of success (heads) being the same (0.5) on each flip; and 
the flips are independent, so condition 4 is met.

However, notice that X isn’t counting the number of heads, it counts the 
number of trials needed to get 4 heads. The number of successes (X) is fixed 
rather than the number of trials (n). Condition 1 is not met, so X does not 
have a binomial distribution in this case.

More than success or failure
Some situations involve more than two possible outcomes, yet they can 
appear to be binomial. For example, suppose you roll a fair die 10 times and 
let X be the outcome of each roll (1, 2, 3, . . . , 6). You have a series of n = 
10 trials, they are independent, and the probability of each outcome is the 
same for each roll. However, on each roll you’re recording the outcome on a 
six-sided die, a number from 1 to 6. This is not a success/failure situation, so 
condition 2 is not met.
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However, depending on what you’re recording, situations originally having 
more than two outcomes can fall under the binomial category. For example, if 
you roll a fair die 10 times and each time you record whether or not you get a 
1, then condition 2 is met because your two outcomes of interest are getting 
a 1 (“success”) and not getting a 1 (“failure”). In this case, p (the probabil-
ity of success) = 1⁄6, and 5⁄6 is the probability of failure. So if X is counting the 
number of 1s you get in 10 rolls, X is a binomial random variable.

Trials are not independent
The independence condition is violated when the outcome of one trial 
affects another trial. Suppose you want to know opinions of adults in your 
city regarding a proposed casino. Instead of taking a random sample of, say, 
100 people, to save time you select 50 married couples and ask each of them 
what their opinion is. In this case it’s reasonable to say couples have a higher 
chance of agreeing on their opinions than individuals selected at random, so 
the independence condition 4 is not met.

Probability of success (p) changes
You have 10 people — 6 women and 4 men — and you want to form a commit-
tee of 2 people at random. Let X be the number of women on the committee 
of 2. The chance of selecting a woman at random on the first try is 6⁄10. Because 
you can’t select this same woman again, the chance of selecting another 
woman is now 5⁄9. The value of p has changed, and condition 3 is not met.

 If the population is very large (for example all U.S. adults), p still changes 
every time you choose someone, but the change is negligible, so you don’t 
worry about it. You still say the trials are independent with the same probabil-
ity of success, p. (Life is so much easier that way!)

Finding Binomial Probabilities 
Using a Formula

After you identify that X has a binomial distribution (the four conditions from the 
section “Checking binomial conditions step by step” are met), you’ll likely want 
to find probabilities for X. The good news is that you don’t have to find them 
from scratch; you get to use established formulas for finding binomial probabili-
ties, using the values of n and p unique to each problem. Probabilities for a 
binomial random variable X can be found using the following formula for p(x):
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where

 ✓ n is the fixed number of trials.

 ✓ x is the specified number of successes.

 ✓ n – x is the number of failures.

 ✓ p is the probability of success on any given trial.

 ✓ 1 – p is the probability of failure on any given trial. (Note: Some textbooks 
use the letter q to denote the probability of failure rather than 1 – p.)

These probabilities hold for any value of X between 0 (lowest number of pos-
sible successes in n trials) and n (highest number of possible successes).

 The number of ways to rearrange x successes among n trials is called “n 

 choose x,” and the notation is . It’s important to note that this math 

 expression is not a fraction; it’s math shorthand to represent the number of 
ways to do these types of rearrangements.

In general, to calculate “n choose x,” you use the following formula:

The notation n! stands for n-factorial, the number of ways to rearrange n 
items. To calculate n!, you multiply n(n – 1)(n – 2) . . . (2)(1). For example 5! is 
5(4)(3)(2)(1) = 120; 2! is 2(1) = 2; and 1! is 1. By convention, 0! equals 1.

Suppose you have to cross three traffic lights on your way to work. Let X be 
the number of red lights you hit out of the three. How many ways can you hit 
two red lights on your way to work? Well, you could hit a green one first, then 
the other two red; or you could hit the green one in the middle and have red 
ones for the first and third lights, or you could hit red first, then another red, 
then green. Letting G = green and R=red, you can write these three possibili-
ties as: GRR, RGR, RRG. So you can hit two red lights on your way to work in 
three ways, right?

Check the math. In this example, a “trial” is a traffic light; and a “success” 
is a red light. (I know, that seems weird, but a success is whatever you are 
interested in counting, good or bad.) So you have n = 3 total traffic lights, and 
you’re interested in the situation where you get x = 2 red ones. Using the 

fancy notation,  means “3 choose 2” and stands for the number of ways 

to rearrange 2 successes in 3 trials.
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To calculate “3 choose 2,” you do the following:

This confirms the three possibilities listed for getting two red lights.

Now suppose the lights operate independently of each other and each one 
has a 30% chance of being red. Suppose you want to find the probability dis-
tribution for X. (That is, a list of all possible values of X — 0,1,2,3 — and their 
probabilities.)

Before you dive into the calculations, you first check the four conditions (from 
the section “Checking binomial conditions step by step”) to see if you have a 
binomial situation here. You have n = 3 trials (traffic lights) — check. Each trial 
is success (red light) or failure (yellow or green light; in other words, “non-red” 
light) — check. The lights operate independently, so you have the independent 
trials taken care of, and because each light is red 30% of the time, you know 
p = 0.30 for each light. So X = number of red traffic lights has a binomial distribu-
tion. To fill in the nitty gritties for the formulas, 1 – p = probability of a non-red 
light = 1 – 0.30 = 0.70; and the number of non-red lights is 3 – X.

Using the formula for p(x), you obtain the probabilities for x = 0, 1, 2, and 3 
red lights:

 

;

 

 
;

 

 
; and

 

.
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The final probability distribution for X is shown in Table 8-2. Notice these 
probabilities all sum to 1 because every possible value of X is listed and 
accounted for.

Table 8-2 Probability Distribution for X = Number 
 of Red Traffic Lights (n = 3, p = 0.30)

X p(x)

0 0.343

1 0.441

2 0.189

3 0.027

Finding Probabilities Using 
the Binomial Table

The previous section deals with values of n that are pretty small, but you may 
wonder how you are going to handle the formula for calculating binomial prob-
abilities when n gets large. No worries! A large range of binomial probabilities 
are provided in the binomial table in the appendix. Here’s how to use it:

Within the binomial table you see several mini-tables; each one corresponds 
with a different n for a binomial (n = 1, 2, 3, ..., 15, and 20 are available). Each 
mini-table has rows and columns. Running down the side of any mini-table, you 
see all the possible values of X from 0 through n, each with its own row. The col-
umns of the binomial table represent various values of p from 0.10 through 0.90.

Finding probabilities for 
specific values of X
To use the binomial table in the appendix to find probabilities for X = total 
number of successes in n trials where p is the probability of success on any 
individual trial, follow these steps:

 1. Find the mini-table associated with your particular value of n (the 
number of trials).
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 2. Find the column that represents your particular value of p (or the one 
closest to it, if appropriate).

 3. Find the row that represents the number of successes (x) you are 
interested in.

 4. Intersect the row and column from Steps 2 and 3. This gives you the 
probability for x successes, written as p(x).

For the traffic light example from “Finding Binomial Probabilities Using a 
Formula,” you can use the binomial table (Table A-3 in the appendix) to verify 
the results found by the binomial formula shown back in Table 8-2. Go to the 
mini-table where n =3 and look in the column where p = 0.30. You see four 
probabilities listed for this mini-table: 0.343, 0.441, 0.189, and 0.027; these are 
the probabilities for X = 0, 1, 2, and 3 red lights, respectively, matching those 
from Table 8-2.

Finding probabilities for X greater-than, 
less-than, or between two values
The binomial table (Table A-3 in the appendix) shows probabilities for X 
being equal to any value from 0 to n, for a variety of ps. To find probabilities 
for X being less-than, greater-than, or between two values, just find the cor-
responding values in the table and add their probabilities. For the traffic light 
example, you count the number of times (X) that you hit a red light (out of 
3 possible lights). Each light has a 0.30 chance of being red, so you have a 
binomial distribution with n = 3 and p = 0.30. If you want the probability that 
you hit more than one red light, you find p(x > 1) by adding p(2) + p(3) from 
Table A-3 to get 0.189 + 0.027 = 0.216.

The probability that you hit between 1 and 3 (inclusive) red lights is 
p(1 ≤ x ≤ 3) = 0.441 + 0.189 + 0.027 = 0.657.

 You have to distinguish between a greater-than (>) and a greater-than-or-equal-
to (≥) probability when working with discrete random variables. Repackaging 
the previous two examples, you see p(x > 1) = 0.216 but p(x ≥ 1) = 0.657. This is 
a non-issue for continuous random variables (see Chapter 9).

 Other phrases to remember: at least means that number or higher, and at most 
means that number or lower. For example, the probability that X is at least 2 is 
p(x ≥ 2); the probability that X is at most 2 is p(x ≤ 2).
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Checking Out the Mean and Standard 
Deviation of the Binomial

Because the binomial distribution is so commonly used, statisticians went 
ahead and did all the grunt work to figure out nice, easy formulas for finding 
its mean, variance, and standard deviation. (That is, they’ve already applied 
the methods from the section “Defining a Random Variable” to the binomial 
distribution formulas, crunched everything out, and presented the results to 
us on a silver platter — don’t you love it when that happens?) The following 
results are what came out of it.

If X has a binomial distribution with n trials and probability of success p on 
each trial, then:

 1. The mean of X is .

 2. The variance of X is .

 3. The standard deviation of X is .

For example, suppose you flip a fair coin 100 times and let X be the number of 
heads; then X has a binomial distribution with n = 100 and p = 0.50. Its mean 
is  heads (which makes sense, because heads and tails 
are 50-50). The variance of X is , which 
is in square units (so you can’t interpret it); and the standard deviation is the 
square root of the variance, which is 5. That means when you flip a coin 100 
times, and do that over and over, the average number of heads you’ll get is 
50, and you can expect that to vary by about 5 heads on average.

 The formula for the mean of a binomial distribution has intuitive meaning. The 
p in the formula represents the probability of a success, yes, but it also rep-
resents the proportion of successes you can expect in n trials. Therefore, the 
total number of successes you can expect — that is, the mean of X — is .

The formula for variance has intuitive meaning as well. The only variability in 
the outcomes of each trial is between success (with probability p) and failure 
(with probability 1 – p). Over n trials, the variance of the number of successes/
failures is measured by . The standard deviation is just the 
square root.

 If the value of n is too large to use the binomial formula or the binomial table 
to calculate probabilities (see the earlier sections in this chapter), there’s an 
alternative. It turns out that if n is large enough, you can use the normal distri-
bution to get an approximate answer for a binomial probability. The mean and 
standard deviation of the binomial are involved in this process. All the details 
are in Chapter 9.
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Chapter 9

The Normal Distribution
In This Chapter
▶ Understanding the normal and standard normal distributions

▶ Going from start to finish when finding normal probabilities

▶ Working backward to find percentiles

In your statistical travels you’ll come across two major types of random 
variables: discrete and continuous. Discrete random variables basically 

count things (number of heads on 10 coin flips, number of female Democrats 
in a sample, and so on). The most well-known discrete random variable is the 
binomial. (See Chapter 8 for more on discrete random variables and binomi-
als). A continuous random variable is typically based on measurements; it 
either takes on an uncountably infinite number of values (values within an 
interval on the real line), or it has so many possible values that it may as well 
be deemed continuous (for example, time to complete a task, exam scores, 
and so on).

In this chapter, you understand and calculate probabilities for the most 
famous continuous random variable of all time — the normal distribution. 
You also find percentiles for the normal distribution, where you are given a 
probability as a percent and you have to find the value of X that’s associated 
with it. And you can think how funny it would be to see a statistician wearing 
a T-shirt that said “I’d rather be normal.”

Exploring the Basics of the
Normal Distribution

A continuous random variable X has a normal distribution if its values fall 
into a smooth (continuous) curve with a bell-shaped pattern. Each normal 
distribution has its own mean, denoted by the Greek letter μ (say “mu”); and 
its own standard deviation, denoted by the Greek letter σ (say “sigma”). But 
no matter what their means and standard deviations are, all normal distribu-
tions have the same basic bell shape. Figure 9-1 shows some examples of 
normal distributions.
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Figure 9-1: 
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Every normal distribution has certain properties. You use these properties to 
determine the relative standing of any particular result on the distribution, and 
to find probabilities. The properties of any normal distribution are as follows:

 ✓ Its shape is symmetric (that is, when you cut it in half the two pieces are 
mirror images of each other).

 ✓ Its distribution has a bump in the middle, with tails going down and out 
to the left and right.

 ✓ The mean and the median are the same and lie directly in the middle of 
the distribution (due to symmetry).

 ✓ Its standard deviation measures the distance on the distribution from 
the mean to the inflection point (the place where the curve changes from 
an “upside-down-bowl” shape to a “right-side-up-bowl” shape).

 ✓ Because of its unique bell shape, probabilities for the normal distribu-
tion follow the Empirical Rule (full details in Chapter 5), which says the 
following:

 • About 68 percent of its values lie within one standard deviation 
of the mean. To find this range, take the value of the standard devi-
ation, then find the mean plus this amount, and the mean minus 
this amount.

 • About 95 percent of its values lie within two standard deviations of 
the mean. (Here you take 2 times the standard deviation, then add 
it to and subtract it from the mean.)

 • Almost all of its values (about 99.7 percent of them) lie within 
three standard deviations of the mean. (Take 3 times the standard 
deviation and add it to and subtract it from the mean.)

 ✓ Precise probabilities for all possible intervals of values on the normal 
distribution (not just for those within 1, 2, or 3 standard deviations from 
the mean) are found using a table with minimal (if any) calculations. 
(The next section gives you all the info on this table.)

Take a look again at Figure 9-1. To compare and contrast the distributions 
shown in Figure 9-1a, b, and c, you first see they are all symmetric with the 
signature bell shape. The examples in Figure 9-1a and Figure 9-1b have the 
same standard deviation, but their means are different; Figure 9-1b is located 
30 units to the right of Figure 9-1a because its mean is 120 compared to 90. 
Figures 9-1a and c have the same mean (90), but Figure 9-1a has more variabil-
ity than Figure 9-1c due to its higher standard deviation (30 compared to 10). 
Because of the increased variability, the values in Figure 9-1a stretch from 0 to 
180 (approximately), while the values in Figure 9-1c only go from 60 to 120.

Finally, Figures 9-1b and c have different means and different standard devia-
tions entirely; Figure 9-1b has a higher mean which shifts it to the right, and 
Figure 9-1c has a smaller standard deviation; its values are the most concen-
trated around the mean.

15_9780470911082-ch09.indd   14515_9780470911082-ch09.indd   145 3/25/11   8:16 PM3/25/11   8:16 PM



146 Part III: Distributions and the Central Limit Theorem 

 Noting the mean and standard deviation is important so you can properly inter-
pret numbers located on a particular normal distribution. For example, you can 
compare where the number 120 falls on each of the normal distributions in 
Figure 9-1. In Figure 9-1a, the number 120 is one standard deviation above the 
mean (because the standard deviation is 30, you get 90 + 1 ∗ 30 = 120). So on this 
first distribution, the number 120 is the upper value for the range where about 
68% of the data are located, according to the Empirical Rule (see Chapter 5).

In Figure 9-1b, the number 120 lies directly on the mean, where the values 
are most concentrated. In Figure 9-1c, the number 120 is way out on the 
rightmost fringe, 3 standard deviations above the mean (because the stan-
dard deviation this time is 10, you get 90 + 3[10]=120). In Figure 9-1c, values 
beyond 120 are very unlikely to occur because they are beyond the range 
where about 99.7% of the values should be, according to the Empirical Rule.

Meeting the Standard Normal 
(Z-) Distribution

One very special member of the normal distribution family is called the 
standard normal distribution, or Z-distribution. The Z-distribution is used to 
help find probabilities and percentiles for regular normal distributions (X). It 
serves as the standard by which all other normal distributions are measured.

Checking out Z
The Z-distribution is a normal distribution with mean zero and standard 
deviation 1; its graph is shown in Figure 9-2. Almost all (about 99.7%) of its 
values lie between –3 and +3 according to the Empirical Rule. Values on the 
Z-distribution are called z-values, z-scores, or standard scores. A z-value 
represents the number of standard deviations that a particular value lies 
above or below the mean. For example, z = 1 on the Z-distribution represents 
a value that is 1 standard deviation above the mean. Similarly, z = –1 repre-
sents a value that is one standard deviation below the mean (indicated by the 
minus sign on the z-value). And a z-value of 0 is — you guessed it — right on 
the mean. All z-values are universally understood.

If you refer back to Figure 9-1 and the discussion regarding where the number 
120 lies on each normal distribution in “Exploring the Basics of the Normal 
Distribution,” you can now calculate z-values to get a much clearer picture. 
In Figure 9-1a, the number 120 is located one standard deviation above the 
mean, so its z-value is 1. In Figure 9-1b, 120 is equal to the mean, so its z-value 
is 0. Figure 9-1c shows that 120 is 3 standard deviations above the mean, so 
its z-value is 3.
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 High standard scores (z-values) aren’t always the best. For example, if you’re 
measuring the amount of time needed to run around the block, a standard 
score of +2 is a bad thing because your time was two standard deviations 
above (more than) the overall average time. In this case, a standard score 
of –2 would be much better, indicating your time was two standard deviations 
below (less than) the overall average time.

Standardizing from X to Z
Probabilities for any continuous distribution are found by finding the area 
under a curve (if you’re into calculus, you know that means integration; if 
you’re not into calculus, don’t worry about it). Although the bell-shaped 
curve for the normal distribution looks easy to work with, calculating areas 
under its curve turns out to be a nightmare requiring high-level math proce-
dures (believe me, I won’t be going there in this book!). Plus, every normal 
distribution is different, causing you to repeat this process over and over 
each time you have to find a new probability.

To help get over this obstacle, statisticians worked out all the math gymnas-
tics for one particular normal distribution, made a table of its probabilities, 
and told the rest of us to knock ourselves out. Can you guess which normal 
distribution they chose to crank out the table for?

Yes, all the basic results you need to find probabilities for any normal distri-
bution (X) can be boiled down into one table based on the standard normal 
(Z-) distribution. This table is called the Z-table and is found in the appendix. 
Now all you need is one formula that transforms values from your normal dis-
tribution (X) to the Z-distribution; from there you can use the Z-table to find 
any probability you need.

Changing an x-value to a z-value is called standardizing. The so-called “z-formula” 
for standardizing an x-value to a z-value is:
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You take your x-value, subtract the mean of X, and divide by the standard 
deviation of X. This gives you the corresponding standard score (z-value or 
z-score).

 Standardizing is just like changing units (for example, from Fahrenheit to 
Celsius). It doesn’t affect probabilities for X; that’s why you can use the 
Z-table to find them!

 You can standardize an x-value from any distribution (not just the normal) 
using the z-formula. Similarly, not all standard scores come from a normal 
 distribution.

 Because you subtract the mean from your x-values and divide everything by 
the standard deviation when you standardize, you are literally taking the mean 
and standard deviation of X out of the equation. This is what allows you to 
compare everything on the scale from –3 to +3 (the Z-distribution) where nega-
tive values indicate being below the mean, positive values indicate being 
above the mean, and a value of 0 indicates you’re right on the mean.

Standardizing also allows you to compare numbers from different distribu-
tions. For example, suppose Bob scores 80 on both his math exam (which has 
a mean of 70 and standard deviation of 10) and his English exam (which has a 
mean of 85 and standard deviation of 5). On which exam did Bob do better, in 
terms of his relative standing in the class?

Bob’s math exam score of 80 standardizes to a z-value of . That 

tells us his math score is one standard deviation above the class average. His 
English exam score of 80 standardizes to a z-value of , putting

him one standard deviation below the class average. Even though Bob scored 
80 on both exams, he actually did better on the math exam than the English 
exam, relatively speaking.

 To interpret a standard score, you don’t need to know the original score, the 
mean, or the standard deviation. The standard score gives you the relative 
standing of a value, which in most cases is what matters most. In fact, on most 
national achievement tests, they won’t even tell you what the mean and stan-
dard deviation were when they report your results; they just tell you where 
you stand on the distribution by giving you your z-score.

Finding probabilities for Z with the Z-table
A full set of less-than probabilities for a wide range of z-values is in the Z-table 
(Table A-1 in the appendix). To use the Z-table to find probabilities for the 
standard normal (Z-) distribution, do the following:
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 1. Go to the row that represents the first digit of your z-value and the 
first digit after the decimal point.

 2. Go to the column that represents the second digit after the decimal 
point of your z-value.

 3. Intersect the row and column.

  This result represents p(Z < z), the probability that the random variable 
Z is less than the number z (also known as the percentage of z-values 
that are less than yours).

For example, suppose you want to find p(Z < 2.13). Using the Z-table, find the 
row for 2.1 and the column for 0.03. Intersect that row and column to find the 
probability: 0.9834. You find that p(Z < 2.13) = 0.9834.

Suppose you want to look for p(Z < –2.13). You find the row for –2.1 and the 
column for 0.03. Intersect the row and column and you find 0.0166; that means 
p(Z < –2.13) equals 0.0166. (This happens to be one minus the probability that 
Z is less than 2.13 because p(Z < +2.13) equals 0.9834. That’s true because the 
normal distribution is symmetric; more on that in the following section.)

Finding Probabilities for 
a Normal Distribution

Here are the steps for finding a probability when X has any normal distribution:

 1. Draw a picture of the distribution.

 2. Translate the problem into one of the following: p(X < a), p(X > b), or 
p(a < X < b). Shade in the area on your picture.

 3. Standardize a (and/or b) to a z-score using the z-formula:

 4. Look up the z-score on the Z-table (Table A-1 in the appendix) and 
find its corresponding probability.

  (See the section “Standardizing from X to Z” for more on the Z-table).

 5a. If you need a “less-than” probability — that is, p(X < a) — you’re done.

 5b. If you want a “greater-than” probability — that is, p(X > b) — take one 
minus the result from Step 4.

 5c. If you need a “between-two-values” probability — that is, p(a < X < b) — 
do Steps 1–4 for b (the larger of the two values) and again for a (the 
smaller of the two values), and subtract the results.
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 The probability that X is equal to any single value is 0 for any continuous 
random variable (like the normal). That’s because continuous random vari-
ables consider probability as being area under the curve, and there’s no area 
under a curve at one single point. This isn’t true of discrete random variables.

Suppose, for example, that you enter a fishing contest. The contest takes 
place in a pond where the fish lengths have a normal distribution with mean 
μ = 16 inches and standard deviation σ = 4 inches.

 ✓ Problem 1: What’s the chance of catching a small fish — say, less than 
8 inches?

 ✓ Problem 2: Suppose a prize is offered for any fish over 24 inches. What’s 
the chance of winning a prize?

 ✓ Problem 3: What’s the chance of catching a fish between 16 and 
24 inches?

To solve these problems using the steps that I just listed, first draw a pic-
ture of the normal distribution at hand. Figure 9-3 shows a picture of X’s 
distribution for fish lengths. You can see where the numbers of interest 
(8, 16, and 24) fall.

 

Figure 9-3: 
The distribu-

tion of fish 
lengths in a 

pond.
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Next, translate each problem into probability notation. Problem 1 is really 
asking you to find p(X < 8). For Problem 2, you want p(X > 24). And Problem 3 
is looking for p(16 < X < 24).

Step 3 says change the x-values to z-values using the z-formula:

For Problem 1 of the fish example, you have the following:
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Similarly for Problem 2, p(X > 24) becomes

And Problem 3 translates from p(16 < X < 24) to

Figure 9-4 shows a comparison of the X-distribution and Z-distribution for the 
values x = 8, 16, and 24, which standardize to z = –2, 0, and +2, respectively.

Now that you have changed x-values to z-values, you move to Step 4 and find 
(or calculate) probabilities for those z-values using the Z-table (in the appen-
dix). In Problem 1 of the fish example, you want p(Z < –2); go to the Z-table 
and look at the row for –2.0 and the column for 0.00, intersect them, and you 
find 0.0228 — according to Step 5a, you’re done. The chance of a fish being 
less than 8 inches is equal to 0.0228.

 

Figure 9-4: 
Standardiz-

ing numbers 
from a 

normal dis-
tribution (X) 
to numbers 

on the Z-
distribution.
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For Problem 2, find p(Z > 2.00). Because it’s a “greater-than” problem, this 
calls for Step 5b. To be able to use the Z-table, you need to rewrite this in 
terms of a “less-than” statement. Because the entire probability for the 
Z-distribution equals 1, we know p(Z > 2.00) = 1 – p(Z < 2.00) = 1 – 0.9772 = 
0.0228 (using the Z-table). So, the chance that a fish is greater than 24 inches 
is also 0.0228. (Note: The answers to Problems 1 and 2 are the same because 
the Z-distribution is symmetric; refer to Figure 9-3.)
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In Problem 3, you find p(0 < Z < 2.00); this requires Step 5c. First find p(Z < 
2.00), which is 0.9772 from the Z-table. Then find p(Z < 0), which is 0.5000 
from the Z-table. Subtract them to get 0.9772 – 0.5000 = 0.4772. The chance 
of a fish being between 16 and 24 inches is 0.4772.

 The Z-table does not list every possible value of Z; it just carries them out to two 
digits after the decimal point. Use the one closest to the one you need. And just 
like in an airplane where the closest exit may be behind you, the closest z-value 
may be the one that is lower than the one you need.

Finding X When You Know the Percent
Another popular normal distribution problem involves finding percentiles 
for X (see Chapter 5 for a detailed rundown on percentiles). That is, you are 
given the percentage or probability of being at or below a certain x-value, 
and you have to find the x-value that corresponds to it. For example, if you 
know that the people whose golf scores were in the lowest 10% got to go to 
the tournament, you may wonder what the cutoff score was; that score would 
represent the 10th percentile.

 A percentile isn’t a percent. A percent is a number between 0 and 100; a 
percentile is a value of X (a height, an IQ, a test score, and so on).

Figuring out a percentile 
for a normal distribution
Certain percentiles are so popular that they have their own names and their 
own notation. The three “named” percentiles are Q1 — the first quartile, 
or the 25th percentile; Q2 — the 2nd quartile (also known as the median or 
the 50th percentile); and Q3 — the 3rd quartile or the 75th percentile. (See 
Chapter 5 for more information on quartiles.)

Here are the steps for finding any percentile for a normal distribution X:

 1a. If you’re given the probability (percent) less than x and you need to 
find x, you translate this as: Find a where p(X < a) = p (and p is the 
given probability). That is, find the pth percentile for X. Go to Step 2.

 1b. If you’re given the probability (percent) greater than x and you need 
to find x, you translate this as: Find b where p(X > b) = p (and p is 
given). Rewrite this as a percentile (less-than) problem: Find b where 
p(X < b) = 1 – p. This means find the (1 – p)th percentile for X.
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 2. Find the corresponding percentile for Z by looking in the body of the 
Z-table (in the appendix) and finding the probability that is closest 
to p (from Step 1a) or 1 – p (from Step 1b). Find the row and column 
this probability is in (using the table backwards). This is the desired 
z-value.

 3. Change the z-value back into an x-value (original units) by using 

. You’ve (finally!) found the desired percentile for X.

  The formula in this step is just a rewriting of the z-formula, , so 
it’s solved for x.

Doing a low percentile problem
Look at the fish example used previously in “Finding Probabilities for a 
Normal Distribution,” where the lengths (X) of fish in a pond have a normal 
distribution with mean 16 inches and standard deviation 4 inches. Suppose 
you want to know what length marks the bottom 10 percent of all the fish 
lengths in the pond. What percentile are you looking for?

 Being at the bottom 10 percent means you have a “less-than” probability that’s 
equal to 10 percent, and you are at the 10th percentile.

Now go to Step 1a in the preceding section and translate the problem. In this 
case, because you’re dealing with a “less-than” situation, you want to find x 
such that p(X < x) = 0.10. This represents the 10th percentile for X. Figure 9-5 
shows a picture of this situation.

 

Figure 9-5: 
Bottom 10 

percent 
of fish in 

the pond, 
according to 

length.
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Now go to Step 2, which says to find the 10th percentile for Z. Looking in the 
body of the Z-table (in the appendix), the probability closest to 0.10 is 0.1003, 
which falls in the row for z = –1.2 and the column for 0.08. That means the 10th 
percentile for Z is –1.28; so a fish whose length is 1.28 standard deviations 
below the mean marks the bottom 10 percent of all fish lengths in the pond.
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But exactly how long is that fish, in inches? In Step 3, you change the z-value 
back to an x-value (fish length in inches) using the z-formula solved for x; you 
get x = 16 + –1.28 ∗ 4 = 10.88 inches. So 10.88 inches marks the lowest 10 per-
cent of fish lengths. Ten percent of the fish are shorter than that.

Working with a higher percentile
Now suppose you want to find the length that marks the top 25 percent of all 
the fish in the pond. This problem calls for Step 1b (in “Finding a percentile 
for a normal distribution”) because being in the top part of the distribution 
means you’re dealing with a greater-than probability. The number you are 
looking for is somewhere in the right tail (upper area) of the X-distribution, 
with p = 25 percent of the probability to its right and 1 – p = 75 percent to its 
left. Thinking in terms of the Z-table and how it only uses less-than probabili-
ties, you need to find the 75th percentile for Z, then change it to an x-value.

Step 2: The 75th percentile of Z is the z-value where p(Z < z) = 0.75. Using the 
Z-table (in the appendix), you find the probability closest to 0.7500 is 0.7486, 
and its corresponding z-value is in the row for 0.6 and column for 0.07. Put 
these together and you get a z-value of 0.67. This is the 75th percentile for Z. 
In Step 3, change the z-value back to an x-value (length in inches) using the 
z-formula solved for x to get x = 16 + 0.67 ∗ 4 = 18.68 inches. So, 75% of the 
fish are shorter than 18.68 inches. And to answer the original question, the 
top 25% of the fish in the pond are longer than 18.68 inches.

Translating tricky wording 
in percentile problems

 Some percentile problems are especially challenging to translate. For example, 
suppose the amount of time for a racehorse to run around a track in a quali-
fying round has a normal distribution with mean 120 seconds and standard 
deviation 5 seconds. The best 10 percent of the times qualify; the rest don’t. 
What’s the cutoff time for qualifying?

Because “best times” mean “lowest times” in this case, the percentage of 
times that lie below the cutoff must be 10, and the percentage above the cutoff 
must be 90. (It’s an easy mistake to think it’s the other way around.) The per-
centile of interest is therefore the 10th, which is down on the left tail of the 
distribution. You now work this problem the same way I worked Problem 1 
regarding fish lengths (see the section, “Finding Probabilities for a Normal 
Distribution”). The standard score for the 10th percentile is z = –1.28 look-
ing at the Z-table (in the appendix). Converting back to original units, you get 

 seconds. So the cutoff time needed for a 
racehorse to qualify (that is, to be among the fastest 10%) is 113.6 seconds. 
(Notice this number is less than the average time of 120 seconds, which makes 
sense; a negative z-value is what makes this happen.)
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 The 50th percentile for the normal distribution is the mean (because of 
symmetry) and its z-score is zero. Smaller percentiles, like the 10th, lie below 
the mean and have negative z-scores. Larger percentiles, like the 75th, lie 
above the mean and have positive z-scores.

Here’s another style of wording that has a bit of a twist: Suppose times to 
complete a statistics exam have a normal distribution with a mean of 40 min-
utes and standard deviation of 6 minutes. Deshawn’s time comes in at the 
90th percentile. What percentage of the students are still working on their 
exams when Deshawn leaves? Because Deshawn is at the 90th percentile, 90 
percent of the students have exam times lower than hers. That means 90% of 
the students left before Deshawn, so 100 – 90 = 10 percent of the students are 
still working when Deshawn leaves.

 To be able to decipher the language used to imply a percentile problem, look 
for clues like the bottom 10% (also known as the 10th percentile) and the top 
10% (also known as the 90th percentile). For the best 10%, you must determine 
whether low or high numbers qualify as “best.”

Normal Approximation to the Binomial
Suppose you flip a fair coin 100 times and you let X equal the number of 
heads. What’s the probability that X is greater than 60? In Chapter 8, you 
solve problems like this (involving fewer flips) using the binomial distribu-
tion. For binomial problems where n (the number of trials) is small, you 
can either use the direct formula (found in Chapter 8), the binomial table 
(found in the appendix), or you can use technology if available (such 
as a graphing calculator or Microsoft Excel).

However, if n is large the calculations get unwieldy and the binomial table 
runs out of numbers. If there’s no technology available (like when taking an 
exam), what can you do to find a binomial probability? Turns out, if n is large 
enough, you can use the normal distribution to find a very close approximate 
answer with a lot less work.

But what do I mean by n being “large enough”? To determine whether n is 
large enough to use what statisticians call the normal approximation to the 
binomial, both of the following conditions must hold:

 ✓ n ∗ p ≥ 10 (at least 10), where p is the probability of success

 ✓ n ∗ (1 – p) ≥ 10 (at least 10), where 1 – p is the probability of failure

15_9780470911082-ch09.indd   15515_9780470911082-ch09.indd   155 3/25/11   8:16 PM3/25/11   8:16 PM



156 Part III: Distributions and the Central Limit Theorem 

To find the normal approximation to the binomial distribution when n is 
large, use the following steps:

 1. Verify whether n is large enough to use the normal approximation by 
checking the two appropriate conditions.

  For the coin-flipping question, the conditions are met because n ∗ p = 
100 ∗ 0.50 = 50, and n ∗ (1 – p) = 100 ∗ (1 – 0.50) = 50, both of which are at 
least 10. So go ahead with the normal approximation.

 2. Translate the problem into a probability statement about X.

  For the coin-flipping example, you need to find p(X > 60).

 3. Standardize the x-value to a z-value, using the z-formula:

  

  For the mean of the normal distribution, use  (the mean of the 
  binomial), and for the standard deviation , use  (the standard 

deviation of the binomial; see Chapter 8).

  For the coin-flipping example, use  and 
   = . Then put these values into 

  the z-formula to get . To solve the problem, you 

  need to find p(Z > 2).

  On an exam, you won’t see μ and σ in the problem when you have a 
binomial distribution. However, you know the formulas that allow you to 
calculate both of them using n and p (both of which will be given in the 
problem). Just remember you have to do that extra step to calculate the 
μ and σ needed for the z-formula.

 4. Proceed as you usually would for any normal distribution. That is, do 
Steps 4 and 5 described in the earlier section “Finding Probabilities 
for a Normal Distribution.”

  Continuing the example, p(Z > 2.00) = 1 – 0.9772 = 0.0228 from the Z-table 
(appendix). So the chance of getting more than 60 heads in 100 flips of a 
coin is only about 2.28 percent. (I wouldn’t bet on it.)

 When using the normal approximation to find a binomial probability, your 
answer is an approximation (not exact) — be sure to state that. Also show that 
you checked both necessary conditions for using the normal approximation.
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Chapter 10

The t-Distribution
In This Chapter
▶ Characteristics of the t-distribution

▶ Relationship between Z- and t-distributions

▶ Understanding and using the t-table

The t-distribution is one of the mainstays of data analysis. You may have 
heard of the “t-test” for example, which is often used to compare two 

groups in medical studies and scientific experiments.

This short chapter covers the basic characteristics and uses of the t-distribution. 
You find out how it compares to the normal distribution (more on that in 
Chapter 9) and how to use the t-table to find probabilities and percentiles.

Basics of the t-Distribution
In this section, you get an overview of the t-distribution, its main characteristics, 
when it’s used, and how it’s related to the Z-distribution (see Chapter 9).

Comparing the t- and Z-distributions
The normal distribution is that well-known bell-shaped distribution whose mean 
is μ and whose standard deviation is σ (see Chapter 9 for more on the normal 
distribution). The most common normal distribution is the standard normal 
(also called the Z-distribution), whose mean is 0 and standard deviation is 1.

The t-distribution can be thought of as a cousin of the standard normal 
distribution — it looks similar in that it’s centered at zero and has a basic 
bell-shape, but it’s shorter and flatter than the Z-distribution. Its standard 
deviation is proportionally larger compared to the Z, which is why you see 
the fatter tails on each side.
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Figure 10-1 compares the t- and standard normal (Z-) distributions in their 
most general forms.

 

Figure 10-1: 
Comparing 

the standard 
normal (Z-) 
distribution 

to a generic 
t-distribution.

 

Standard normal
distribution (Z-distribution)

t -distribution

3210−1−2−3

The t-distribution is typically used to study the mean of a population, rather 
than to study the individuals within a population. In particular, it is used 
in many cases when you use data to estimate the population mean — for 
example, to estimate the average price of all the new homes in California. Or 
when you use data to test someone’s claim about the population mean — for 
example, is it true that the mean price of all the new homes in California is 
$500,000?

 These procedures are called confidence intervals and hypothesis tests and are 
discussed in Chapters 13 and 14, respectively.

The connection between the normal distribution and the t-distribution is that 
the t-distribution is often used for analyzing the mean of a population if the 
population has a normal distribution (or fairly close to it). Its role is espe-
cially important if your data set is small or if you don’t know the standard 
deviation of the population (which is often the case).

When statisticians use the term t-distribution, they aren’t talking about just 
one individual distribution. There is an entire family of specific t-distributions, 
depending on what sample size is being used to study the population mean. 
Each t-distribution is distinguished by what statisticians call its degrees of 
freedom. In situations where you have one population and your sample size 
is n, the degrees of freedom for the corresponding t-distribution is n – 1. For 
example, a sample of size 10 uses a t-distribution with 10 – 1, or 9, degrees of 
freedom, denoted t9 (pronounced tee sub-nine). Situations involving two popu-
lations use different degrees of freedom and are discussed in Chapter 15.
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Discovering the effect of variability 
on t-distributions
t-distributions based on smaller sample sizes have larger standard deviations 
than those based on larger sample sizes. Their shapes are flatter; their values 
are more spread out. That’s because results based on smaller data sets are 
more variable than results based on large data sets.

 The larger the sample size is, the larger the degrees of freedom will be, and 
the more the t-distributions look like the standard normal distribution 
(Z-distribution). A rough cutoff point where the t- and Z-distributions become 
similar (at least similar enough for jazz or government work) is around n = 30.

Figure 10-2 shows what different t-distributions look like for different sample 
sizes and how they all compare to the standard normal (Z-) distribution.

 

Figure 10-2: 
t-distribu-

tions for 
different 

sample 
sizes com-

pared to 
the Z-

distribution.
 

Z-distribution
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Using the t-Table
Each normal distribution has its own mean and standard deviation that classify 
it, so finding probabilities for each normal distribution on its own is not the way 
to go. Thankfully, you can standardize the values of any normal distribution 
to become values on a standard normal (Z-) distribution (whose mean is 0 and 
standard deviation is 1) and use a Z-table (in the appendix) to find probabilities. 
(Chapter 9 has info on normal distributions.)

In contrast, a t-distribution is not classified by its mean and standard devia-
tion, but by the sample size of the data set being used (n). Unfortunately, 
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there is no single “standard t-distribution” that you can use to transform the 
numbers and find probabilities on a table. Because it wouldn’t be humanly 
possible to create a table of probabilities and corresponding t-values for 
every possible t-distribution, statisticians created one table showing certain 
values of t-distributions for a selection of degrees of freedom and a selection 
of probabilities. This table is called the t-table (it appears in the appendix). In 
this section, you find out how to find probabilities, percentiles, and critical 
values (for confidence intervals) using the t-table.

Finding probabilities with the t-table
Each row of the t-table (in the appendix) represents a different t-distribution, 
classified by its degrees of freedom (df). The columns represent various 
common greater-than probabilities, such as 0.40, 0.25, 0.10, and 0.05. The 
numbers across a row indicate the values on the t-distribution (the t-values) 
corresponding to the greater-than probabilities shown at the top of the 
columns. Rows are arranged by degrees of freedom.

 Another term for greater-than probability is right-tail probability, which indi-
cates that such probabilities represent areas on the right-most end (tail) of 
the t-distribution.

For example, the second row of the t-table is for the t2 distribution (2 degrees 
of freedom, pronounced tee sub-two). You see that the second number, 0.816, 
is the value on the t2 distribution whose area to its right (its right-tail probabil-
ity) is 0.25 (see the heading for column 2). In other words, the probability that 
t2 is greater than 0.816 equals 0.25. In probability notation, that means p(t2 > 
0.816) = 0.25.

The next number in row two of the t-table is 1.886, which lies in the 0.10 
column. This means the probablity of being greater than 1.886 on the t2 distri-
bution is 0.10. Because 1.886 falls to the right of 0.816, its right-tail probability 
is lower.

Figuring percentiles for the t-distribution
You can also use the t-table (in the appendix) to find percentiles for a 
 t-distribution. A percentile is a number on a distribution whose less-than 
probability is the given percentage; for example, the 95th percentile of the 
t-distribution with n – 1 degrees of freedom is that value of t

n – 1 whose left-tail 
(less-than) probability is 0.95 (and whose right-tail probability is 0.05). (See 
Chapter 5 for particulars on percentiles.)

Suppose you have a sample of size 10 and you want to find the 95th percentile 
of its corresponding t-distribution. You have n – 1= 9 degrees of freedom, so 
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you look at the row for df = 9. The 95th percentile is the number where 95% 
of the values lie below it and 5% lie above it, so you want the right-tail area to 
be 0.05. Move across the row, find the column for 0.05, and you get t9 = 1.833. 
This is the 95th percentile of the t-distribution with 9 degrees of freedom.

Now, if you increase the sample size to n = 20, the value of the 95th percen-
tile decreases; look at the row for 20 – 1 = 19 degrees of freedom, and in the 
column for 0.05 (a right-tail probability of 0.05) you find t19 = 1.729. Notice 
that the 95th percentile for the t19 distribution is less than the 95th percen-
tile for the t9 distribution (1.833). This is because larger degrees of freedom 
indicate a smaller standard deviation and the t-values are more concentrated 
about the mean, so you reach the 95th percentile with a smaller value of t. 
(See the section “Discovering the effect of variability on t-distributions,” 
earlier in this chapter.)

Picking out t*-values for confidence intervals
Confidence intervals estimate population parameters, such as the population 
mean, by using a statistic (for example, the sample mean) plus or minus a 
margin of error. (See Chapter 13 for all the information you need on confi-
dence intervals and more.) To compute the margin of error for a confidence 
interval, you need a critical value (the number of standard errors you add 
and subtract to get the margin of error you want; see Chapter 13). When the 
sample size is large (at least 30), you use critical values on the Z-distribution 
(shown in Chapter 13) to build the margin of error. When the sample size is 
small (less than 30) and/or the population standard deviation is unknown, you 
use the t-distribution to find critical values.

To help you find critical values for the t-distribution, you can use the last 
row of the t-table, which lists common confidence levels, such as 80%, 90%, 
and 95%. To find a critical value, look up your confidence level in the bottom 
row of the table; this tells you which column of the t-table you need. Intersect 
this column with the row for your df (see Chapter 13 for degrees of freedom 
formulas). The number you see is the critical value (or the t*-value) for your 
confidence interval. For example, if you want a t*-value for a 90% confidence 
interval when you have 9 degrees of freedom, go to the bottom of the table, 
find the column for 90%, and intersect it with the row for df = 9. This gives 
you a t*-value of 1.833 (rounded).

 Across the top row of the t-table, you see right-tail probabilities for the 
 t-distribution. But confidence intervals involve both left- and right-tail proba-
bilities (because you add and subtract the margin of error). So half of the 
probability left from the confidence interval goes into each tail. You need to 
take that into account. For example, a t*-value for a 90% confidence interval 
has 5% for its greater-than probability and 5% for its less-than probability 
(taking 100% minus 90% and dividing by 2). Using the top row of the t-table, 
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you would have to look for 0.05 (rather than 10%, as you might be inclined to 
do.) But using the bottom row of the table, you just look for 90%. (The result 
you get using either method ends up being in the same column.)

 When looking for t*-values for confidence intervals, use the bottom row of the 
t-table as your guide, rather than the headings at the top of the table.

Studying Behavior Using the t-Table
You can use computer software to calculate any probabilities, percentiles, or 
critical values you need for any t-distribution (or any other distribution) if it’s 
available to you. (On exams it may not be available.) However, one of the nice 
things about using a table to find probabilities (rather than using computer 
software) is that the table can tell you information about the behavior of the 
distribution itself — that is, it can give you the big picture. Here are some 
nuggets of big-picture information about the t-distribution you can glean by 
scanning the t-table (in the appendix).

In Figure 10-2, as the degrees of freedom increase, the values on each 
t-distribution become more concentrated around the mean, eventually resem-
bling the Z-distribution. The t-table confirms this pattern as well. Because 
of the way the t-table is set up, if you choose any column and move down 
through the numbers in the column, you’re increasing the degrees of freedom 
(and sample size) and keeping the right-tail probability the same. As you do 
this, you see the t-values getting smaller and smaller, indicating the t-values 
are becoming closer to (hence more concentrated around) the mean.

I labeled the second-to-last row of the t-table with a z in the df column. This 
indicates the “limit” of the t-values as the sample size (n) goes to infinity. The 
t-values in this row are approximately the same as the z-values on the Z-table 
(in the appendix) that correspond to the same greater-than probabilities. This 
confirms what you already know: As the sample size increases, the t- and the 
Z-distributions look more and more alike. For example, the t-value in row 30 
of the t-table corresponding to a right-tail probability of 0.05 (column 0.05) is 
1.697. This lies close to z = 1.645, the value corresponding to a right-tail area of 
0.05 on the Z-distribution. (See row Z of the t-table.)

 It doesn’t take a super-large sample size for the values on the t-distribution 
to get close to the values on a Z-distribution. For example, when n = 31 and  
df = 30, the values in the t-table are already quite close to the corresponding 
values on the Z-table.
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Chapter 11

Sampling Distributions and the 
Central Limit Theorem

In This Chapter
▶	Understanding the concept of a sampling distribution

▶	Putting the Central Limit Theorem to work

▶	Determining the factors that affect precision

When you take a sample of data, it’s important to realize the results 
will vary from sample to sample. Statistical results based on samples 

should include a measure of how much those results are expected to vary. 
When the media reports statistics like the average price of a gallon of gas in 
the U.S. or the percentage of homes on the market that were sold over the 
last month, you know they didn’t sample every possible gas station or every 
possible home sold. The question is, how much would their results change if 
another sample was selected?

This chapter addresses this question by studying the behavior of means for 
all possible samples, and the behavior of proportions from all possible sam-
ples. By studying the behavior of all possible samples, you can gauge where 
your sample results fall and understand what it means when your sample 
results fall outside of certain expectations.

Defining a Sampling Distribution
A random variable is a characteristic of interest that takes on certain values 
in a random manner. For example, the number of red lights you hit on the 
way to work or school is a random variable; the number of children a ran-
domly selected family has is a random variable. You use capital letters such 
as X or Y to denote random variables and you use small case letters x or y 
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to denote actual outcomes of random variables. A distribution is a listing, 
graph, or function of all possible outcomes of a random variable (such as X) 
and how often each actual outcome (x), or set of outcomes, occurs. (See 
Chapter 8 for more details on random variables and distributions.)

For example, suppose a million of your closest friends each rolls a single die 
and records each actual outcome (x). A table or graph of all these possible 
outcomes (one through six) and how often they occurred represents the 
distribution of the random variable X. A graph of the distribution of X in this 
case is shown in Figure 11-1a. It shows the numbers 1–6 appearing with equal 
frequency (each one occurring 1⁄6 of the time), which is what you expect over 
many rolls if the die is fair.

Now suppose each of your friends rolls this single die 50 times (n = 50) and 
records the average, . The graph of all their averages of all their samples 
represents the distribution of the random variable . Because this distribu-
tion is based on sample averages rather than individual outcomes, this distri-
bution has a special name. It’s called the sampling distribution of the sample 
mean, . Figure 11-1b shows the sampling distribution of , the average of 
50 rolls of a die.

Figure 11-1b (average of 50 rolls) shows the same range (1 through 6) of out-
comes as Figure 11-1a (individual rolls), but Figure 11-1b has more possible 
outcomes. You could get an average of 3.3 or 2.8 or 3.9 for 50 rolls, for exam-
ple, whereas someone rolling a single die can only get whole numbers from 
1 to 6. Also, the shape of the graphs are different; Figure 11-1a shows a flat 
shape, where each outcome is equally likely, and Figure 11-1b has a mound 
shape; that is, outcomes near the center (3.5) occur with high frequency and 
outcomes near the edges (1 and 6) occur with extremely low frequency. A 
detailed look at the differences and similarities in shape, center, and spread 
for individuals versus averages, and the reasons behind them, is the topic of 
the following sections. (See Chapter 8 if you need background info on shape, 
center, and spread of random variables before diving in.)

The Mean of a Sampling Distribution
Using the die-rolling example from the preceding section, X is a random vari-
able denoting the outcome you can get from a single die (assuming the die 
is fair). The mean of X (over all possible outcomes) is denoted by  (pro-
nounced mu sub-x); in this case its value is 3.5 (as shown in Figure 11-1a). If 
you roll a die 50 times and take the average, the random variable  repre-
sents any outcome you could get. The mean of , denoted  (pronounced 
mu sub-x-bar) equals 3.5 as well. (You can see this result in Figure 11-1b.)
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to denote actual outcomes of random variables. A distribution is a listing, 
graph, or function of all possible outcomes of a random variable (such as X) 
and how often each actual outcome (x), or set of outcomes, occurs. (See 
Chapter 8 for more details on random variables and distributions.)

For example, suppose a million of your closest friends each rolls a single die 
and records each actual outcome (x). A table or graph of all these possible 
outcomes (one through six) and how often they occurred represents the 
distribution of the random variable X. A graph of the distribution of X in this 
case is shown in Figure 11-1a. It shows the numbers 1–6 appearing with equal 
frequency (each one occurring 1⁄6 of the time), which is what you expect over 
many rolls if the die is fair.

Now suppose each of your friends rolls this single die 50 times (n = 50) and 
records the average, . The graph of all their averages of all their samples 
represents the distribution of the random variable . Because this distribu-
tion is based on sample averages rather than individual outcomes, this distri-
bution has a special name. It’s called the sampling distribution of the sample 
mean, . Figure 11-1b shows the sampling distribution of , the average of 
50 rolls of a die.

Figure 11-1b (average of 50 rolls) shows the same range (1 through 6) of out-
comes as Figure 11-1a (individual rolls), but Figure 11-1b has more possible 
outcomes. You could get an average of 3.3 or 2.8 or 3.9 for 50 rolls, for exam-
ple, whereas someone rolling a single die can only get whole numbers from 
1 to 6. Also, the shape of the graphs are different; Figure 11-1a shows a flat 
shape, where each outcome is equally likely, and Figure 11-1b has a mound 
shape; that is, outcomes near the center (3.5) occur with high frequency and 
outcomes near the edges (1 and 6) occur with extremely low frequency. A 
detailed look at the differences and similarities in shape, center, and spread 
for individuals versus averages, and the reasons behind them, is the topic of 
the following sections. (See Chapter 8 if you need background info on shape, 
center, and spread of random variables before diving in.)

The Mean of a Sampling Distribution
Using the die-rolling example from the preceding section, X is a random vari-
able denoting the outcome you can get from a single die (assuming the die 
is fair). The mean of X (over all possible outcomes) is denoted by  (pro-
nounced mu sub-x); in this case its value is 3.5 (as shown in Figure 11-1a). If 
you roll a die 50 times and take the average, the random variable  repre-
sents any outcome you could get. The mean of , denoted  (pronounced 
mu sub-x-bar) equals 3.5 as well. (You can see this result in Figure 11-1b.)
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This result is no coincidence! In general, the mean of the population of all 
possible sample means is the same as the mean of the original population. 
(Notationally speaking, you write .) It’s a mouthful, but it makes sense 
that the average of the averages from all possible samples is the same as 
the average of the population that the samples came from. In the die rolling 
example, the average of the population of all 50-roll averages equals the aver-
age of the population of all single rolls (3.5).

 Using subscripts on , you can distinguish which mean you’re talking 
about — the mean of X (all individuals in a population) or the mean of  
(all sample means from the population).

Measuring Standard Error
The values in any population deviate from their mean; for instance, people’s 
heights differ from the overall average height. Variability in a population of 
individuals (X) is measured in standard deviations (see Chapter 5 for details 
on standard deviation). Sample means vary because you’re not sampling the 
whole population, only a subset; and as samples vary, so will their means. 
Variability in the sample mean ( ) is measured in terms of standard errors.

 Error here doesn’t mean there’s been a mistake — it means there is a gap 
between the population and sample results.

The standard error of the sample mean is denoted by  (sigma sub-x-bar). Its 
formula is , where  is population standard deviation (sigma sub-x) and 

n is size of each sample. In the next sections you see the effect each of these 
two components has on the standard error.

Sample size and standard error
The first component of standard error is the sample size, n. Because n is in 
the denominator of the standard error formula, the standard error decreases 
as n increases. It makes sense that having more data gives less variation (and 
more precision) in your results.

Suppose X is the time it takes for a clerical worker to type and send one letter of 
recommendation, and say X has a normal distribution with mean 10.5 minutes 
and standard deviation 3 minutes. The bottom curve in Figure 11-2 shows the 
picture of the distribution of X, the individual times for all clerical workers in the 
population. According to the Empirical Rule (see Chapter 9), most of the values 
are within 3 standard deviations of the mean (10.5) — between 1.5 and 19.5.
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Now take a random sample of 10 clerical workers, measure their times, and 
find the average, , each time. Repeat this process over and over, and graph all 
the possible results for all possible samples. The middle curve in Figure 11-2 
shows the picture of the sampling distribution of . Notice that it’s still cen-
tered at 10.5 (which you expected) but its variability is smaller; the standard 

error in this case is  minutes (quite a bit less than 3 minutes, 

the standard deviation of the individual times). 

Looking at Figure 11-2, the average times for samples of 10 clerical workers 
are closer to the mean (10.5) than the individual times are. That’s because 
average times don’t change as much from sample to sample as individual 
times change from person to person.

Now take all possible random samples of 50 clerical workers and find their 
means; the sampling distribution is shown in the tallest curve in Figure 11-2. 
The standard error of  goes down to  minutes. You can see 

the average times for 50 clerical workers are even closer to 10.5 than the 
ones for 10 clerical workers. By the Empirical Rule, most of the values fall 
between 10.5 – 3(.42) = 9.24 and 10.5 + 3(.42) = 11.76. Larger samples give 
even more precision around the mean because they change even less from 
sample to sample.
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This result is no coincidence! In general, the mean of the population of all 
possible sample means is the same as the mean of the original population. 
(Notationally speaking, you write .) It’s a mouthful, but it makes sense 
that the average of the averages from all possible samples is the same as 
the average of the population that the samples came from. In the die rolling 
example, the average of the population of all 50-roll averages equals the aver-
age of the population of all single rolls (3.5).

 Using subscripts on , you can distinguish which mean you’re talking 
about — the mean of X (all individuals in a population) or the mean of  
(all sample means from the population).

Measuring Standard Error
The values in any population deviate from their mean; for instance, people’s 
heights differ from the overall average height. Variability in a population of 
individuals (X) is measured in standard deviations (see Chapter 5 for details 
on standard deviation). Sample means vary because you’re not sampling the 
whole population, only a subset; and as samples vary, so will their means. 
Variability in the sample mean ( ) is measured in terms of standard errors.

 Error here doesn’t mean there’s been a mistake — it means there is a gap 
between the population and sample results.

The standard error of the sample mean is denoted by  (sigma sub-x-bar). Its 
formula is , where  is population standard deviation (sigma sub-x) and 

n is size of each sample. In the next sections you see the effect each of these 
two components has on the standard error.

Sample size and standard error
The first component of standard error is the sample size, n. Because n is in 
the denominator of the standard error formula, the standard error decreases 
as n increases. It makes sense that having more data gives less variation (and 
more precision) in your results.

Suppose X is the time it takes for a clerical worker to type and send one letter of 
recommendation, and say X has a normal distribution with mean 10.5 minutes 
and standard deviation 3 minutes. The bottom curve in Figure 11-2 shows the 
picture of the distribution of X, the individual times for all clerical workers in the 
population. According to the Empirical Rule (see Chapter 9), most of the values 
are within 3 standard deviations of the mean (10.5) — between 1.5 and 19.5.
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 Why is having more precision around the mean important? Because some-
times you don’t know the mean but want to determine what it is, or at least get 
as close to it as possible. How can you do that? By taking a large random 
sample from the population and finding its mean. You know that your sample 
mean will be close to the actual population mean if your sample is large, as 
Figure 11-2 shows (assuming your data are collected correctly; see Chapter 16 
for details on collecting good data).

Population standard deviation  
and standard error
The second component of standard error involves the amount of diversity  
in the population (measured by standard deviation). In the standard error 
formula  you see the population standard deviation, , is in the 

numerator. That means as the population standard deviation increases, 
the standard error of the sample means also increases. Mathematically this 
makes sense; how about statistically?

Suppose you have two ponds full of fish (call them pond #1 and pond #2), and 
you’re interested in the length of the fish in each pond. Assume the fish lengths 
in each pond have a normal distribution (see Chapter 9). You’ve been told that 
the fish lengths in pond #1 have a mean of 20 inches and a standard deviation 
of 2 inches (see Figure 11-3a). Suppose the fish in pond #2 also average 20 
inches but have a larger standard deviation of 5 inches (see Figure 11-3b).

Comparing Figures 11-3a and 11-3b, you see the lengths for the two populations 
of fish have the same shape and mean, but the distribution in Figure 11-3b 
(for pond #2) has more spread, or variability, than the distribution shown in 
Figure 11-3a (for pond #1). This spread confirms that the fish in pond #2 vary 
more in length than those in pond #1.

Now suppose you take a random sample of 100 fish from pond #1, find the 
mean length of the fish, and repeat this process over and over. Then you do 
the same with pond #2. Because the lengths of individual fish in pond #2 have 
more variability than the lengths of individual fish in pond #1, you know the 
average lengths of samples from pond #2 will have more variability than the 
average lengths of samples from pond #1 as well. (In fact, you can calculate 
their standard errors using the formula earlier in this section to be 0.20 and 
0.50, respectively.)

 Estimating the population average is harder when the population varies a lot 
to begin with — estimating the population average is much easier when the 
population values are more consistent. The bottom line is the standard error 
of the sample mean is larger when the population standard deviation is larger.
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Looking at the Shape of  
a Sampling Distribution

Now that you know about the mean and standard error of , the next step is 
to determine the shape of the sampling distribution of ; that is, the shape of 
the distribution of all possible sample means (all possible values of ) from 
all possible samples. You proceed differently for different conditions, which 
I divide into two cases: 1) the original distribution for X (the population) is 
normal, or has a normal distribution; and 2) the original distribution for X 
(the population) is not normal, or is unknown.

 Why is having more precision around the mean important? Because some-
times you don’t know the mean but want to determine what it is, or at least get 
as close to it as possible. How can you do that? By taking a large random 
sample from the population and finding its mean. You know that your sample 
mean will be close to the actual population mean if your sample is large, as 
Figure 11-2 shows (assuming your data are collected correctly; see Chapter 16 
for details on collecting good data).

Population standard deviation  
and standard error
The second component of standard error involves the amount of diversity  
in the population (measured by standard deviation). In the standard error 
formula  you see the population standard deviation, , is in the 

numerator. That means as the population standard deviation increases, 
the standard error of the sample means also increases. Mathematically this 
makes sense; how about statistically?

Suppose you have two ponds full of fish (call them pond #1 and pond #2), and 
you’re interested in the length of the fish in each pond. Assume the fish lengths 
in each pond have a normal distribution (see Chapter 9). You’ve been told that 
the fish lengths in pond #1 have a mean of 20 inches and a standard deviation 
of 2 inches (see Figure 11-3a). Suppose the fish in pond #2 also average 20 
inches but have a larger standard deviation of 5 inches (see Figure 11-3b).

Comparing Figures 11-3a and 11-3b, you see the lengths for the two populations 
of fish have the same shape and mean, but the distribution in Figure 11-3b 
(for pond #2) has more spread, or variability, than the distribution shown in 
Figure 11-3a (for pond #1). This spread confirms that the fish in pond #2 vary 
more in length than those in pond #1.

Now suppose you take a random sample of 100 fish from pond #1, find the 
mean length of the fish, and repeat this process over and over. Then you do 
the same with pond #2. Because the lengths of individual fish in pond #2 have 
more variability than the lengths of individual fish in pond #1, you know the 
average lengths of samples from pond #2 will have more variability than the 
average lengths of samples from pond #1 as well. (In fact, you can calculate 
their standard errors using the formula earlier in this section to be 0.20 and 
0.50, respectively.)

 Estimating the population average is harder when the population varies a lot 
to begin with — estimating the population average is much easier when the 
population values are more consistent. The bottom line is the standard error 
of the sample mean is larger when the population standard deviation is larger.
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Case 1: The distribution of X is normal
If X has a normal distribution, then  does too, no matter what the sample 
size n is. In the example regarding the amount of time (X) for a clerical 
worker to complete a task (refer to the section “Sample size and standard 
error”), you knew X had a normal distribution (refer to the lowest curve in 
Figure 11-2). If you refer to the other curves in Figure 11-2, you see the aver-
age times for samples of n = 10 and n = 50 clerical workers, respectively, also 
have normal distributions. 

 When X has a normal distribution, the sample means also always have a 
normal distribution, no matter what size samples you take, even if you take 
samples of only 2 clerical workers at a time.

The difference between the curves in Figure 11-2 is not their means or their 
shapes, but rather their amount of variability (how close the values in the 
distribution are to the mean). Results based on large samples vary less and 
will be more concentrated around the mean than results from small samples 
or results from the individuals in the population.

Case 2: The distribution of X is not normal —  
enter the Central Limit Theorem
If X has any distribution that is not normal, or if its distribution is unknown, 
you can’t automatically say the sample mean ( ) has a normal distribution. 
But incredibly, you can use a normal distribution to approximate the distribu-
tion of  — if the sample size is large enough. This momentous result is due 
to what statisticians know and love as the Central Limit Theorem.

 The Central Limit Theorem (abbreviated CLT) says that if X does not have a 
normal distribution (or its distribution is unknown and hence can’t be deemed 
to be normal), the shape of the sampling distribution of  is approximately 
normal, as long as the sample size, n, is large enough. That is, you get an 
approximate normal distribution for the means of large samples, even if the 
distribution of the original values (X) is not normal.

	 Most statisticians agree that if n is at least 30, this approximation will be rea-
sonably close in most cases, although different distribution shapes for X have 
different values of n that are needed. The larger the sample size (n), the closer 
the distribution of the sample means will be to a normal distribution.
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Averaging a fair die is approximately normal
Consider the die rolling example from the earlier section “Defining a Sampling 
Distribution.” Notice in Figure 11-1a, the distribution of X (the population of 
outcomes based on millions of single rolls) is flat; the individual outcomes of 
each roll go from 1 to 6, and each outcome is equally likely.

Things change when you look at averages. When you roll a die a large number 
of times (say a sample of 50 times) and look at your outcomes, you’ll prob-
ably find about the same number of 6s as 1s (note that 6 and 1 average out 
to 3.5); 5s as 2s (5 and 2 also average out to 3.5); and 4s as 3s (which also 
average out to 3.5 — do you see a pattern here?). So if you roll a die 50 times, 
you have a high probability of getting an overall average that’s close to 3.5. 
Sometimes just by chance things won’t even out as well, but that won’t happen 
very often with 50 rolls.

Getting an average at the extremes with 50 rolls is a very rare event. To get 
an average of 1 on 50 rolls, you need all 50 rolls to be 1. How likely is that? (If 
it happens to you, buy a lottery ticket right away, it’s the luckiest day of your 
life!) The same is true for getting an average near 6.

So the chance that your average of 50 rolls is close to the middle (3.5) is 
highest, and the chance of it being at or close to the extremes (1 or 6) is 
extremely low. As for averages between 1 and 6, the probabilities get smaller 
as you move farther from 3.5, and the probabilities get larger as you move 
closer to 3.5; in particular, statisticians show that the shape of the sampling 
distribution of sample means in Figure 11-1b is approximately normal as long 
as the sample size is large enough. (See Chapter 9 for particulars on the shape 
of the normal distribution.)

Note that if you roll the die even more times, the chance of the average being 
close to 3.5 increases, and the sampling distribution of the sample means 
looks more and more like a normal distribution.

Averaging an unfair die is still approximately normal
However, sometimes the values of X don’t occur with equal probability like 
they do when you roll a fair die. What happens then? For example, say the 
die isn’t fair, and the average value for many individual rolls turns out to be 
2 instead of 3.5. This means the distribution of X is skewed right (more low 
values like 1, 2, and 3, and fewer high values like 4, 5, and 6). But if the distri-
bution of X (millions of individual rolls of this unfair die) is skewed right, how 
does the distribution of  (average of 50 rolls of this unfair die) end up with 
an approximate normal distribution?

Case 1: The distribution of X is normal
If X has a normal distribution, then  does too, no matter what the sample 
size n is. In the example regarding the amount of time (X) for a clerical 
worker to complete a task (refer to the section “Sample size and standard 
error”), you knew X had a normal distribution (refer to the lowest curve in 
Figure 11-2). If you refer to the other curves in Figure 11-2, you see the aver-
age times for samples of n = 10 and n = 50 clerical workers, respectively, also 
have normal distributions. 

 When X has a normal distribution, the sample means also always have a 
normal distribution, no matter what size samples you take, even if you take 
samples of only 2 clerical workers at a time.

The difference between the curves in Figure 11-2 is not their means or their 
shapes, but rather their amount of variability (how close the values in the 
distribution are to the mean). Results based on large samples vary less and 
will be more concentrated around the mean than results from small samples 
or results from the individuals in the population.

Case 2: The distribution of X is not normal —  
enter the Central Limit Theorem
If X has any distribution that is not normal, or if its distribution is unknown, 
you can’t automatically say the sample mean ( ) has a normal distribution. 
But incredibly, you can use a normal distribution to approximate the distribu-
tion of  — if the sample size is large enough. This momentous result is due 
to what statisticians know and love as the Central Limit Theorem.

 The Central Limit Theorem (abbreviated CLT) says that if X does not have a 
normal distribution (or its distribution is unknown and hence can’t be deemed 
to be normal), the shape of the sampling distribution of  is approximately 
normal, as long as the sample size, n, is large enough. That is, you get an 
approximate normal distribution for the means of large samples, even if the 
distribution of the original values (X) is not normal.

	 Most statisticians agree that if n is at least 30, this approximation will be rea-
sonably close in most cases, although different distribution shapes for X have 
different values of n that are needed. The larger the sample size (n), the closer 
the distribution of the sample means will be to a normal distribution.
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Say that one person, Bob, is doing 50 rolls. What will the distribution of Bob’s 
outcomes look like? Bob is more likely to get low outcomes (like 1 and 2) and 
less likely to get high outcomes (like 5 and 6) — the distribution of Bob’s out-
comes will be skewed right as well.

In fact, because Bob rolled his die a large number of times (50), the distribu-
tion of his individual outcomes has a good chance of matching the distribu-
tion of X (the outcomes from millions of rolls). However, if Bob had only 
rolled his die a few times (say, 6 times), he would be unlikely to even get  
the higher numbers like 5 and 6, and hence his distribution wouldn’t look  
as much like the distribution of X.

If you run through the results of each of a million people like Bob who rolled 
this unfair die 50 times, each of their million distributions will look very simi-
lar to each other and very similar to the distribution of X. The more rolls they 
make each time, the closer their distributions get to the distribution of X and 
to each other. And here is the key: If their distributions of outcomes have a 
similar shape, no matter what that similar shape is, then their averages will 
be similar as well. Some people will get higher averages than 2 by chance, 
and some will get lower averages by chance, but these types of averages get 
less and less likely the farther you get from 2. This means you’re getting an 
approximate normal distribution centered at 2.

 The big deal is, it doesn’t matter if you started out with a skewed distribu-
tion, or some totally wacky distribution for X. Because each of them had 
a large sample size (number of rolls), the distributions of each person’s 
sample results end up looking similar, so their averages will be similar, close 
together, and close to a normal distribution. In fancy lingo, the distribution  
of  is approximately normal as long as n is large enough. This is all due to the 
Central Limit Theorem.

 In order for the CLT to work when X does not have a normal distribution, each 
person needs to roll their die enough times (that is, n must be large enough) 
so they have a good chance of getting all possible values of X, especially those 
outcomes that won’t occur as often. If n is too small, some folks will not get 
the outcomes that have low probabilities and their means will differ from 
the rest by more than they should. As a result, when you put all the means 
together, they may not congregate around a single value. In the end, the 
approximate normal distribution may not show up.
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Clarifying three major points about the CLT
I want to alert you to a few sources of confusion about the Central Limit 
Theorem before they happen to you:

	 ✓	The CLT is needed only when the distribution of X is not a normal dis-
tribution or is unknown. It is not needed if X started out with a normal 
distribution.

	 ✓	The formulas for the mean and standard error of  are not due to 
the CLT. These are just mathematical results that are always true. To 
see these formulas, check out the sections “The Mean of a Sampling 
Distribution” and “Measuring Standard Error,” earlier in this chapter.

	 ✓	The n stated in the CLT refers to the size of the sample you take each 
time, not the number of samples you take. Bob rolling a die 50 times is 
one sample of size 50, so n = 50. If 10 people do it, you have 10 samples, 
each of size 50, and n is still 50.

Finding Probabilities for the Sample Mean
After you’ve established through the conditions addressed in case 1 or case 
2 (see the previous sections) that  has a normal or approximately normal 
distribution, you’re in luck. The normal distribution is a very friendly distri-
bution that has a table for finding probabilities and anything else you need. 
For example, you can find probabilities for  by converting the -value to a 
z-value and finding probabilities using the Z-table (provided in the appendix). 
(See Chapter 9 for all the details on the normal and Z-distributions.)

The general conversion formula from -values to z-values is:

Substituting the appropriate values of the mean and standard error of , the 
conversion formula becomes:

Say that one person, Bob, is doing 50 rolls. What will the distribution of Bob’s 
outcomes look like? Bob is more likely to get low outcomes (like 1 and 2) and 
less likely to get high outcomes (like 5 and 6) — the distribution of Bob’s out-
comes will be skewed right as well.

In fact, because Bob rolled his die a large number of times (50), the distribu-
tion of his individual outcomes has a good chance of matching the distribu-
tion of X (the outcomes from millions of rolls). However, if Bob had only 
rolled his die a few times (say, 6 times), he would be unlikely to even get  
the higher numbers like 5 and 6, and hence his distribution wouldn’t look  
as much like the distribution of X.

If you run through the results of each of a million people like Bob who rolled 
this unfair die 50 times, each of their million distributions will look very simi-
lar to each other and very similar to the distribution of X. The more rolls they 
make each time, the closer their distributions get to the distribution of X and 
to each other. And here is the key: If their distributions of outcomes have a 
similar shape, no matter what that similar shape is, then their averages will 
be similar as well. Some people will get higher averages than 2 by chance, 
and some will get lower averages by chance, but these types of averages get 
less and less likely the farther you get from 2. This means you’re getting an 
approximate normal distribution centered at 2.

 The big deal is, it doesn’t matter if you started out with a skewed distribu-
tion, or some totally wacky distribution for X. Because each of them had 
a large sample size (number of rolls), the distributions of each person’s 
sample results end up looking similar, so their averages will be similar, close 
together, and close to a normal distribution. In fancy lingo, the distribution  
of  is approximately normal as long as n is large enough. This is all due to the 
Central Limit Theorem.

 In order for the CLT to work when X does not have a normal distribution, each 
person needs to roll their die enough times (that is, n must be large enough) 
so they have a good chance of getting all possible values of X, especially those 
outcomes that won’t occur as often. If n is too small, some folks will not get 
the outcomes that have low probabilities and their means will differ from 
the rest by more than they should. As a result, when you put all the means 
together, they may not congregate around a single value. In the end, the 
approximate normal distribution may not show up.
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 Don’t forget to divide by the square root of n in the denominator of z. Always 
divide by square root of n when the question refers to the average of the 
x- values.

Revisiting the clerical worker example from the previous section “Sample size 
and standard error,” suppose X is the time it takes a randomly chosen cleri-
cal worker to type and send a standard letter of recommendation. Suppose X 
has a normal distribution, and assume the mean is 10.5 minutes and the stan-
dard deviation 3 minutes. You take a random sample of 50 clerical workers 
and measure their times. What is the chance that their average time is less 
than 9.5 minutes?

This question translates to finding . As X has a normal distribution 
to start with, you know  also has an exact (not approximate) normal distri-
bution. Converting to z, you get:

So you want P(Z < –2.36), which equals 0.0091 (from the Z-table in the appen-
dix). So the chance that a random sample of 50 clerical workers average less 
than 9.5 minutes to complete this task is 0.91% (very small).

How do you find probabilities for  if X is not normal, or unknown? As a 
result of the CLT , the distribution of X can be non-normal or even unknown 
and as long as n is large enough, you can still find approximate probabilities 
for  using the standard normal (Z-)distribution and the process described 
earlier. That is, convert to a z-value and find approximate probabilities using 
the Z-table (in the appendix).

 When you use the CLT to find a probability for  (that is, when the distribu-
tion of X is not normal or is unknown), be sure to say that your answer is an 
approximation. You also want to say the approximate answer should be close 
because you’ve got a large enough n to use the CLT. (If n is not large enough 
for the CLT, you can use the t-distribution in many cases — see Chapter 10.)

 Beyond actual calculations, probabilities about  can help you decide 
whether an assumption or a claim about a population mean is on target, based 
on your data. In the clerical workers example, it was assumed that the average 
time for all workers to type up a recommendation letter was 10.5 minutes. 
Your sample averaged 9.5 minutes. Because the probability that they would 
average less than 9.5 minutes was found to be tiny (0.0091), you either got an 
unusually high number of fast workers in your sample just by chance, or the 
assumption that the average time for all workers is 10.5 minutes was simply 
too high. (I’m betting on the latter.) The process of checking assumptions or 
challenging claims about a population is called hypothesis testing; details are 
in Chapter 14.
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The Sampling Distribution  
of the Sample Proportion

The Central Limit Theorem (CLT) doesn’t apply only to sample means for 
numerical data. You can also use it with other statistics, including sample 
proportions for categorical data (see Chapter 6). The population proportion, 
p, is the proportion of individuals in the population who have a certain char-
acteristic of interest (for example, the proportion of all Americans who are 
registered voters, or the proportion of all teenagers who own cellphones). 
The sample proportion, denoted  (pronounced p-hat), is the proportion of 
individuals in the sample who have that particular characteristic; in other 
words, the number of individuals in the sample who have that characteristic 
of interest divided by the total sample size (n). 

For example, if you take a sample of 100 teens and find 60 of them own cell-
phones, the sample proportion of cellphone-owning teens is . 
This section examines the sampling distribution of all possible sample pro-
portions, , from samples of size n from a population.

The sampling distribution of  has the following properties:

	 ✓	Its mean, denoted by  (pronounced mu sub-p-hat), equals the popula-
tion proportion, p.

	 ✓	Its standard error, denoted by  (say sigma sub-p-hat), equals:

  (Note that because n is in the denominator, the standard error 
decreases as n increases.)

	 ✓	Due to the CLT, its shape is approximately normal, provided that the 
sample size is large enough. Therefore you can use the normal distribu-
tion to find approximate probabilities for . 

	 ✓	The larger the sample size (n), the closer the distribution of the sample 
proportion is to a normal distribution.

 If you are interested in the number (rather than the proportion) of individuals 
in your sample with the characteristic of interest, you use the binomial distri-
bution to find probabilities for your results (see Chapter 8).

 How large is large enough for the CLT to work for sample proportions? Most 
statisticians agree that both np and n(1 – p) should be greater than or equal to 
10. That is, the average number of successes (np) and the average number of 
failures n(1 – p) needs to be at least 10.

 Don’t forget to divide by the square root of n in the denominator of z. Always 
divide by square root of n when the question refers to the average of the 
x- values.

Revisiting the clerical worker example from the previous section “Sample size 
and standard error,” suppose X is the time it takes a randomly chosen cleri-
cal worker to type and send a standard letter of recommendation. Suppose X 
has a normal distribution, and assume the mean is 10.5 minutes and the stan-
dard deviation 3 minutes. You take a random sample of 50 clerical workers 
and measure their times. What is the chance that their average time is less 
than 9.5 minutes?

This question translates to finding . As X has a normal distribution 
to start with, you know  also has an exact (not approximate) normal distri-
bution. Converting to z, you get:

So you want P(Z < –2.36), which equals 0.0091 (from the Z-table in the appen-
dix). So the chance that a random sample of 50 clerical workers average less 
than 9.5 minutes to complete this task is 0.91% (very small).

How do you find probabilities for  if X is not normal, or unknown? As a 
result of the CLT , the distribution of X can be non-normal or even unknown 
and as long as n is large enough, you can still find approximate probabilities 
for  using the standard normal (Z-)distribution and the process described 
earlier. That is, convert to a z-value and find approximate probabilities using 
the Z-table (in the appendix).

 When you use the CLT to find a probability for  (that is, when the distribu-
tion of X is not normal or is unknown), be sure to say that your answer is an 
approximation. You also want to say the approximate answer should be close 
because you’ve got a large enough n to use the CLT. (If n is not large enough 
for the CLT, you can use the t-distribution in many cases — see Chapter 10.)

 Beyond actual calculations, probabilities about  can help you decide 
whether an assumption or a claim about a population mean is on target, based 
on your data. In the clerical workers example, it was assumed that the average 
time for all workers to type up a recommendation letter was 10.5 minutes. 
Your sample averaged 9.5 minutes. Because the probability that they would 
average less than 9.5 minutes was found to be tiny (0.0091), you either got an 
unusually high number of fast workers in your sample just by chance, or the 
assumption that the average time for all workers is 10.5 minutes was simply 
too high. (I’m betting on the latter.) The process of checking assumptions or 
challenging claims about a population is called hypothesis testing; details are 
in Chapter 14.
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To help illustrate the sampling distribution of the sample proportion, con-
sider a student survey that accompanies the ACT test each year asking 
whether the student would like some help with math skills. Assume (through 
past research) that 38% of all the students taking the ACT respond yes. That 
means p, the population proportion, equals 0.38 in this case. The distribution 
of responses (yes, no) for this population are shown in Figure 11-4 as a bar 
graph (see Chapter 6 for information on bar graphs).

Because 38% applies to all students taking the exam, I use p to denote the 
population proportion, rather than , which denotes sample proportions. 
Typically p is unknown, but I’m giving it a value here to point out how the 
sample proportions from samples taken from the population behave in  
relation to the population proportion.

 

Figure 11-4: 
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Now take all possible samples of n = 1,000 students from this population and 
find the proportion in each sample who said they need math help. The distri-
bution of these sample proportions is shown in Figure 11-5. It has an approxi-
mate normal distribution with mean p = 0.38 and standard error equal to:

(or about 1.5%).
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 The approximate normal distribution works because the two conditions for the 
CLT are met: 1) np = 1,000(0.38) = 380 (≥ 10); and 2) n(1 – p) = 1,000(0.62) = 620 
(also ≥ 10). And because n is so large (1,000), the approximation is excellent.

 

Figure 11-5: 
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Finding Probabilities for  
the Sample Proportion

You can find probabilities for , the sample proportion, by using the normal 
approximation as long as the conditions are met (see the previous section  
for those conditions). For the ACT test example, you assume that 0.38 or 38% 
of all the students taking the ACT test would like math help. Suppose you 
take a random sample of 100 students. What is the chance that more than  
45 of them say they need math help? In terms of proportions, this is equiva-
lent to the chance that more than 45 ÷ 100 = 0.45 of them say they need help; 
that is, .

To answer this question, you first check the conditions: First, is np at least 
10? Yes, because 100 ∗ 0.38 = 38. Next, is n(1 – p) at least 10? Again yes, 
because 100 ∗ (1 – 0.38) = 62 checks out. So you can go ahead and use 
the normal approximation.

You make the conversion of the -value to a z-value using the following 
general equation:

To help illustrate the sampling distribution of the sample proportion, con-
sider a student survey that accompanies the ACT test each year asking 
whether the student would like some help with math skills. Assume (through 
past research) that 38% of all the students taking the ACT respond yes. That 
means p, the population proportion, equals 0.38 in this case. The distribution 
of responses (yes, no) for this population are shown in Figure 11-4 as a bar 
graph (see Chapter 6 for information on bar graphs).

Because 38% applies to all students taking the exam, I use p to denote the 
population proportion, rather than , which denotes sample proportions. 
Typically p is unknown, but I’m giving it a value here to point out how the 
sample proportions from samples taken from the population behave in  
relation to the population proportion.

  

Now take all possible samples of n = 1,000 students from this population and 
find the proportion in each sample who said they need math help. The distri-
bution of these sample proportions is shown in Figure 11-5. It has an approxi-
mate normal distribution with mean p = 0.38 and standard error equal to:

(or about 1.5%).
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When you plug in the numbers for this example, you get:

And then you find P(Z > 1.44) = 1 – 0.9251 = 0.0749 using Table A-1 in the 
appendix. So if it’s true that 0.38 percent of all students taking the exam want 
math help, the chance of taking a random sample of 100 students and finding 
more than 45 needing math help is approximately 0.0749 (by the CLT).

 As noted in the previous section on sample means, you can use sample pro-
portions to check out a claim about a population proportion. (This procedure 
is a hypothesis test for a population proportion; all the details are found in 
Chapter 15.) In the ACT example, the probability that more than 45% of the 
students in a sample of 100 need math help (when you assumed 38% of the 
population needed math help) was found to be 0.0749. Because this prob-
ability is higher than 0.05 (the typical cutoff for blowing the whistle on a claim 
about a population value), you can’t dispute their claim that the percentage in 
the population needing math help is only 38%. Our sample result is just not a 
rare enough event. (See Chapter 15 for more on hypothesis testing for a popu-
lation proportion.)
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In this part . . .

Anytime you’re given a statistic by itself, you haven’t 
really gotten the full story. The statistic alone is 

missing the most important part: by how much that statis-
tic is expected to vary. All good estimates of population 
parameters contain not just a statistic but also a margin of 
error. This combination of a statistic plus or minus a mar-
gin of error is called a confidence interval.

Now suppose you’re already given a claim, assumption, or 
target value for the population parameter, and you want 
to test that claim. You do it with a hypothesis test based 
on sample statistics. Because sample statistics will vary, 
you need techniques that take this into account.

This part gives you a general, intuitive look at margin of 
error, confidence intervals, and hypothesis tests: their 
function, formulas, calculations, influential factors, and 
interpretation. You also get quick references and exam-
ples for the most commonly used confidence intervals 
and hypothesis tests.
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Chapter 12

Leaving Room for a Margin of Error
In This Chapter
▶ Understanding and calculating margin of error

▶ Exploring the effect of sample size

▶ Finding out what margin of error doesn’t measure

Good survey and experiment researchers always include some measure 
of how accurate their results are so that consumers of the information 

can put the results into perspective. This measure is called the margin of 
error (MOE) — it’s a measure of how close the sample statistic (one number 
that summarizes the sample) is expected to be to the population parameter 
being studied. (A population parameter is one number that summarizes the 
population. Find out more about statistics and parameters in Chapter 4.)
Thankfully, many journalists are also realizing the importance of the MOE in 
assessing information, so reports that include the margin of error are begin-
ning to appear in the media. But what does the margin of error really mean, 
and does it tell the whole story?

This chapter looks at the margin of error and what it can and can’t do to help 
you assess the accuracy of statistical information. It also examines the issue 
of sample size; you may be surprised at how small a sample can be used to 
get a good handle on the pulse of America — or the world — if the research 
is done correctly.

Seeing the Importance 
of That Plus or Minus

Margin of error is probably not a new term to you. You’ve probably heard of 
it before, most likely in the context of survey results. For example, you may 
have heard someone report, “This survey had a margin of error of plus or 
minus three percentage points.” And you may have wondered what you’re 
supposed to do with that information and how important it really is. The 
truth is, the survey results themselves (with no MOE) are only a measure of 
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how the sample of selected individuals felt about the issue; they don’t reflect 
how the entire population may have felt, had they all been asked. The margin 
of error helps you estimate how close you are to the truth about the popula-
tion based on your sample data.

 Results based on a sample won’t be exactly the same as what you would’ve 
found for the entire population, because when you take a sample, you don’t 
get information from everyone in the population. However, if the study is done 
right (see Chapters 16 and 17 for more about designing good studies), the 
results from the sample should be close to and representative of the actual 
values for the entire population, with a high level of confidence.

 The MOE doesn’t mean someone made a mistake; all it means is that you 
didn’t get to sample everybody in the population, so you expect your sample 
results to vary from that population by a certain amount. In other words, you 
acknowledge that your results will change with subsequent samples and are 
only accurate to within a certain range — which can be calculated using the 
margin of error.

Consider one example of the type of survey conducted by some of the lead-
ing polling organizations, such as the Gallup Organization. Suppose its latest 
poll sampled 1,000 people from the United States, and the results show that 
520 people (52%) think the president is doing a good job, compared to 48% 
who don’t think so. Suppose Gallup reports that this survey had a margin of 
error of plus or minus 3%. Now, you know that the majority (more than 50%) 
of the people in this sample approve of the president, but can you say that 
the majority of all Americans approve of the president? In this case, you can’t. 
Why not?

You need to include the margin of error (in this case, 3%) in your results. 
If 52% of those sampled approve of the president, you can expect that the 
percent of the population of all Americans who approve of the president will 
be 52%, plus or minus 3%. Therefore, between 49% and 55% of all Americans 
approve of the president. That’s as close as you can get with your sample of 
1,000. But notice that 49%, the lower end of this range, represents a minor-
ity, because it’s less than 50%. So you really can’t say that a majority of the 
American people support the president, based on this sample. You can only 
say you’re confident that between 49% and 55% of all Americans support the 
president, which may or may not be a majority.

Think about the sample size for a moment. Isn’t it interesting that a sample 
of only 1,000 Americans out of a population of well over 310,000,000 can lead 
you to be within plus or minus only 3% on your survey results? That’s incred-
ible! That means for large populations you only need to sample a tiny portion 
of the total to get close to the true value (assuming, as always, that you have 
good data). Statistics is indeed a powerful tool for finding out how people feel 
about issues, which is probably why so many people conduct surveys and 
why you’re so often bothered to respond to them as well.
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 When you are working with categorical variables (those that record certain 
characteristics that don’t involve measurements or counts; see Chapter 6), a 
quick-and-dirty way to get a rough idea of the margin of error for proportions, 
for any given sample size (n), is simply to find 1 divided by the square root of 
n. For the Gallup poll example, n = 1,000, and its square root is roughly 31.62, 
so the margin of error is roughly 1 divided by 31.62, or about 0.03, which is 
equivalent to 3%. In the remainder of this chapter, you see how to get a more 
accurate measure of the margin of error.

Finding the Margin of Error: 
A General Formula

The margin of error is the amount of “plus or minus” that is attached to your 
sample result when you move from discussing the sample itself to discussing 
the whole population that it represents. Therefore, you know that the general 
formula for the margin of error contains a “±” in front of it. So, how do you 
come up with that plus or minus amount (other than taking a rough estimate, 
as shown above)? This section shows you how.

Measuring sample variability
Sample results vary, but by how much? According to the Central Limit 
Theorem (see Chapter 11), when sample sizes are large enough, the so-called 
sampling distribution of the sample proportions (or the sample means) follows 
a bell-shaped curve (or approximate normal distribution — see Chapter 9). 
Some of the sample proportions (or sample means) overestimate the popula-
tion value and some underestimate it, but most are close to the middle.

And what’s in the middle of this sampling distribution? If you average out the 
results from all the possible samples you could take, the average is the actual 
population proportion, in the case of categorical data, or the actual population 
average, in the case of numerical data. Normally, you don’t know all the values 
of the population, so you can’t look at all of the possible sample results and 
average them out — but knowing something about all the other sample pos-
sibilities does help you to measure the amount by which you expect your own 
sample proportion (or average) to vary. (See Chapter 11 for more on sample 
means and proportions.)

 Standard errors are the basic building blocks of the margin of error. The stan-
dard error of a statistic is basically equal to the standard deviation of the pop-
ulation divided by the square root of n (the sample size). This reflects the fact 
that the sample size greatly affects how much that sample statistic is going to 
vary from sample to sample. (See Chapter 11 for more about standard errors.)
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 The number of standard errors you have to add or subtract to get the MOE 
depends on how confident you want to be in your results (this is called your 
confidence level). Typically, you want to be about 95% confident, so the basic 
rule is to add or subtract about 2 standard errors (1.96, to be exact) to get the 
MOE (you get this from the Empirical Rule; see Chapter 9). This allows you to 
account for about 95% of all possible results that may have occurred with 
repeated sampling. To be 99% confident, you add and subtract 2.58 standard 
errors. (This assumes a normal distribution on large n; standard deviation 
known. See Chapter 11.)

You can be more precise about the number of standard errors you have to add 
or subtract in order to calculate the MOE for any confidence level; if the condi-
tions are right, you can use values on the standard normal (Z-) distribution. (See 
Chapter 13 for details.) For any given confidence level, a corresponding value 
on the standard normal distribution (called a z*-value) represents the number 
of standard errors to add and subtract to account for that confidence level. 
For 95% confidence, a more precise z*-value is 1.96 (which is “about” 2), and 
for 99% confidence, the exact z*-value is 2.58. Some of the more commonly 
used confidence levels (also known as percentage confidence), along with 
their corresponding z*-values, are given in Table 12-1.

Table 12-1 z*-Values for Selected (Percentage) 
 Confidence Levels

Percentage Confidence z*-Value

80 1.28

90 1.645

95 1.96

98 2.33

99 2.58

 To find a z*-value like those in Table 12-1, add to the confidence level to make 
it a less-than probability and find its corresponding z-value on the Z-table. For 
example, a 95% confidence level means the “between” probability is 95%, so 
the “less-than” probability is 95% plus 2.5% (half of what’s left), or 97.5%. Look 
up 0.975 in the body of the Z-table and find z * = 1.96 for a 95% confidence level.

Calculating margin of error 
for a sample proportion
When a polling question asks people to choose from a range of answers 
(for example, “Do you approve or disapprove the president’s performance?”), 
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the statistic used to report the results is the proportion of people from the 
sample who fell into a certain group (for example, the “approve” group). 
This is known as the sample proportion. You find this number by taking the 
number of people in the sample that fell into the group of interest, divided by 
the sample size, n.

Along with the sample proportion, you need to report a margin of error. The 
general formula for margin of error for the sample proportion (if certain 

conditions are met) is , where  is the sample proportion, n is 

the sample size, and z* is the appropriate z*-value for your desired level of 
confidence (from Table 12-1). Here are the steps for calculating the margin of 
error for a sample proportion:

 1. Find the sample size, n, and the sample proportion, .

  The sample proportion is the number in the sample with the character-
istic of interest, divided by n.

 2. Multiply the sample proportion by .

 3. Divide the result by n.

 4. Take the square root of the calculated value.

  You now have the standard error, .

 5. Multiply the result by the appropriate z*-value for the confidence 
level desired.

  Refer to Table 12-1 for the appropriate z*-value. If the confidence level is 
95%, the z*-value is 1.96.

Looking at the example involving whether Americans approve of the presi-
dent, you can find the actual margin of error. First, assume you want a 95% 
level of confidence, so z* = 1.96. The number of Americans in the sample who 
said they approve of the president was found to be 520. This means that the 
sample proportion, , is 520 ÷ 1,000 = 0.52. (The sample size, n, was 1,000.) 
The margin of error for this polling question is calculated in the following way:

According to this data, you conclude with 95% confidence that 52% of all 
Americans approve of the president, plus or minus 3.1%.

 Two conditions need to be met in order to use a z*-value in the formula for 
margin of error for a sample proportion:

19_9780470911082-ch12.indd   18519_9780470911082-ch12.indd   185 3/25/11   8:15 PM3/25/11   8:15 PM



186 Part IV: Guesstimating and Hypothesizing with Confidence 

 1. You need to be sure that  is at least 10.

 2. You need to make sure that  is at least 10.

In the preceding example of a poll on the president, n = 1,000,  = 0.52, and 
 is 1 – 0.52 = 0.48. Now check the conditions:  = 1,000 ∗ 0.52 = 520, and 

 = 1,000 ∗ 0.48 = 480. Both of these numbers are at least 10, so every-
thing is okay.

Most surveys you come across are based on hundreds or even thousands of 
people, so meeting these two conditions is usually a piece of cake (unless the 
sample proportion is very large or very small, requiring a larger sample size 
to make the conditions work).

 A sample proportion is the decimal version of the sample percentage. In other 
words, if you have a sample percentage of 5%, you must use 0.05 in the for-
mula, not 5. To change a percentage into decimal form, simply divide by 100. 
After all your calculations are finished, you can change back to a percentage 
by multiplying your final answer by 100%.

Reporting results
Including the margin of error allows you to make conclusions beyond your 
sample to the population. After you calculate and interpret the margin of 
error, report it along with your survey results. To report the results from 
the president approval poll in the previous section, you say, “Based on my 
sample, 52% of all Americans approve of the president, plus or minus a 
margin of error of 3.1%. I am 95% confident in these results.”

How does a real-life polling organization report its results? Here’s an example 
from Gallup:

Based on the total random sample of 1,000 adults in (this) survey, we are 
95% confident that the margin of error for our sampling procedure and its 
results is no more than ±3.1 percentage points.

It sounds sort of like that long list of disclaimers that comes at the end of a 
car-leasing advertisement. But now you can understand the fine print!

 Never accept the results of a survey or study without the margin of error for 
the study. The MOE is the only way to estimate how close the sample statistics 
are to the actual population parameters you’re interested in. Sample results 
vary, and if a different sample had been chosen, a different sample result would 
have been obtained; the MOE measures that amount of difference.
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The next time you hear a media story about a survey or poll that was con-
ducted, take a closer look to see if the margin of error is given; if it’s not, you 
should ask why. Some news outlets are getting better about reporting the 
margin of error for surveys, but what about other studies?

Calculating margin of error 
for a sample mean
When a research question asks you to estimate a parameter based on a 
numerical variable (for example, “What’s the average age of teachers?”), the 
statistic used to help estimate the results is the average of all the responses 
provided by people in the sample. This is known as the sample mean (or 
average — see Chapter 5). And just like for sample proportions, you need to 
report a MOE for sample means.

The general formula for margin of error for the sample mean (assuming a  
certain condition is met) is , where σ is the population standard 

deviation, n is the sample size, and z* is the appropriate z*-value for your 
desired level of confidence (which you can find in Table 12-1).

Here are the steps for calculating the margin of error for a sample mean:

 1. Find the population standard deviation, , and the sample size, n.

  The population standard deviation will be given in the problem. 

 2. Divide the population standard deviation by the square root of the 
sample size.

   gives you the standard error.

 3. Multiply by the appropriate z*-value (refer to Table 12-1).

  For example, the z*-value is 1.96 if you want to be about 95% confident.

 The condition you need to meet in order to use a z*-value in the margin of 
error formula for a sample mean is either: 1) The original population has a 
normal distribution to start with, or 2) The sample size is large enough so 
the normal distribution can be used (that is, the Central Limit Theorem kicks 
in; see Chapter 11). In general, the sample size, n, should be above about 30 
for the Central Limit Theorem. Now, if it’s 29, don’t panic — 30 is not a magic 
number, it’s just a general rule of thumb. (The population standard deviation 
must be known either way.)

Suppose you’re the manager of an ice cream shop, and you’re training new 
employees to be able to fill the large-size cones with the proper amount of 
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ice cream (10 ounces each). You want to estimate the average weight of the 
cones they make over a one-day period, including a margin of error. Instead 
of weighing every single cone made, you ask each of your new employees to 
randomly spot check the weights of a random sample of the large cones they 
make and record those weights on a notepad. For n = 50 cones sampled, the 
sample mean was found to be 10.3 ounces. Suppose the population standard 
deviation of σ = 0.6 ounces is known.

What’s the margin of error? (Assume you want a 95% level of confidence.) It’s 
calculated this way:

So to report these results, you say that based on the sample of 50 cones, you 
estimate that the average weight of all large cones made by the new employees 
over a one-day period is 10.3 ounces, with a margin of error of plus or minus 
0.17 ounces. In other words, the range of likely values for the average weight 
of all large cones made for the day is estimated (with 95% confidence) to be 
between 10.30 – 0.17 = 10.13 ounces and 10.30 + 0.17 = 10.47 ounces. The new 
employees appear to be giving out too much ice cream (but I have a feeling the 
customers aren’t offended).

 Notice in the ice-cream-cone example, the units are ounces, not percentages! 
When working with and reporting results about data, always remember what 
the units are. Also, be sure that statistics are reported with their correct units 
of measure, and if they’re not, ask what the units are.

 In cases where n is too small (in general, less than 30) for the Central Limit 
Theorem to be used, but you still think the data came from a normal dis-
tribution, you can use a t*-value instead of a z*-value in your formulas. A 
t*-value is one that comes from a t-distribution with n – 1 degrees of free-
dom. (Chapter 10 gives you all the in-depth details on the t-distribution.) 
In fact, many statisticians go ahead and use t*-values instead of z*-values 
consistently, because if the sample size is large, t*-values and z*-values are 
approximately equal anyway. In addition, for cases where you don’t know 
the population standard deviation, σ, you can substitute it with s, the sample 
standard deviation; from there you use a t*-value instead of a z*-value in your 
formulas as well.

Being confident you’re right
If you want to be more than 95% confident about your results, you need to 
add and subtract more than 1.96 standard errors (see Table 12-1). For exam-
ple, to be 99% confident, you add and subtract 2.58 standard errors to obtain 
your margin of error. More confidence means a larger margin of error, though 
(assuming the sample size stays the same); so you have to ask yourself if it’s 
worth it. When going from 95% to 99% confidence, the z*-value increases by 
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2.58 – 1.96 = 0.62 (see Table 12-1). Most people don’t think adding and sub-
tracting this much more of a MOE is worthwhile, just to be 4% more confident 
(99% versus 95%) in the results obtained.

 You can never be completely certain that your sample results do reflect the 
population, even with the margin of error included. Even if you’re 95% confi-
dent in your results, that actually means that if you repeat the sampling pro-
cess over and over, 5% of the time the sample won’t represent the population 
well, simply due to chance (not because of problems with the sampling pro-
cess or anything else). In these cases, you would miss the mark. So all results 
need to be viewed with that in mind. 

Determining the Impact of Sample Size
The two most important ideas regarding sample size and margin of error are 
the following:

 ✓ Sample size and margin of error have an inverse relationship.

 ✓ After a point, increasing n beyond what you already have gives you 
a diminished return.

This section illustrates both concepts.

Sample size and margin of error
The relationship between margin of error and sample size is simple: As the 
sample size increases, the margin of error decreases. This relationship is 
called an inverse because the two move in opposite directions. If you think 
about it, it makes sense that the more information you have, the more accu-
rate your results are going to get (in other words, the smaller your margin 
of error will get). (That assumes, of course, that the data were collected and 
handled properly.)

 In the previous section, you see that the impact of a larger confidence level 
is a larger MOE. But if you increase the sample size, you can offset the larger 
MOE and bring it down to a reasonable size! Find out more about this concept 
in Chapter 13.

Bigger isn’t always (that much) better!
In the example of the poll involving the approval rating of the president (see 
the earlier section “Calculating margin of error for a sample proportion”), the 
results of a sample of only 1,000 people from well over 310,000,000 residents 
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in the United States could get to within about 3% of what the whole popula-
tion would have said, if they had all been asked. 

Using the formula for margin of error for a sample proportion, you can look at 
how the margin of error changes dramatically for samples of different sizes. 
Suppose in the presidential approval poll that n was 500 instead of 1,000. (Recall 
that  = 0.52 for this example.) Therefore the margin of error for 95% confidence 

is , which is equivalent to 4.38%. 

When n = 1,000 in the same example, the margin of error (for 95% confidence) 

is , which is equal to 3.10%. If n 

is increased to 1,500, the margin of error (with the same level of confidence) 

becomes , or 2.53%. Finally, when 

n = 2,000, the margin of error is , 
or 2.19%.

Looking at these different results, you can see that larger sample sizes 
decrease the MOE, but after a certain point, you have a diminished return. 
Each time you survey one more person, the cost of your survey increases, 
and going from a sample size of, say, 1,500 to a sample size of 2,000 decreases 
your margin of error by only 0.34% (one third of one percent!) — from 0.0253 
to 0.0219. The extra cost and trouble to get that small decrease in the MOE 
may not be worthwhile. Bigger isn’t always that much better!

But what may really surprise you is that bigger can actually be worse! I 
explain this surprising fact in the following section.

Keeping margin of error in perspective
The margin of error is a measure of how close you expect your sample 
results to represent the entire population being studied. (Or at least it gives 
an upper limit for the amount of error you should have.) Because you’re 
basing your conclusions about the population on your one sample, you have 
to account for how much those sample results could vary just due to chance.

Another view of margin of error is that it represents the maximum expected 
distance between the sample results and the actual population results (if 
you’d been able to obtain them through a census). Of course if you had the 
absolute truth about the population, you wouldn’t be trying to do a survey, 
would you?
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Just as important as knowing what the margin of error measures is realizing 
what the margin of error does not measure. The margin of error does not 
measure anything other than chance variation. That is, it doesn’t measure 
any bias or errors that happen during the selection of the participants, the 
preparation or conduct of the survey, the data collection and entry process, 
or the analysis of the data and the drawing of the final conclusions.

 A good slogan to remember when examining statistical results is “garbage in 
equals garbage out.” No matter how nice and scientific the margin of error 
may look, remember that the formula that was used to calculate it doesn’t 
have any idea of the quality of the data that the margin of error is based on. If 
the sample proportion or sample mean was based on a biased sample (one 
that favored certain people over others), a bad design, bad data-collection 
procedures, biased questions, or systematic errors in recording, then calculat-
ing the margin of error is pointless because it won’t mean a thing.

For example, 50,000 people surveyed sounds great, but if they were all visi-
tors to a certain Web site, the margin of error for this result is bogus because 
the calculation is all based on biased results! In fact, many extremely large 
samples are the result of biased sampling procedures. Of course, some 
people go ahead and report them anyway, so you have to find out what went 
into the formula: good information or garbage? If it turns out to be garbage, 
you know what to do about the margin of error. Ignore it. (For more infor-
mation on errors that can take place during a survey or experiment, see 
Chapters 16 and 17, respectively.)

The Gallup Organization addresses the issue of what margin of error does 
and doesn’t measure in a disclaimer that it uses to report its survey results. 
Gallup tells you that besides sampling error, surveys can have additional 
errors or bias due to question wording and some of the logistical issues 
involved in conducting surveys (such as missing data due to phone numbers 
that are no longer current). 

This means that even with the best of intentions and the most meticulous 
attention to details and process control, stuff happens. Nothing is ever per-
fect. But what you need to know is that the margin of error can’t measure the 
extent of those other types of errors. And if a highly credible polling organi-
zation like Gallup admits to possible bias, imagine what’s really going on with 
other people’s studies that aren’t nearly as well designed or conducted.
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Chapter 13

Confidence Intervals: Making 
Your Best Guesstimate

In This Chapter
▶ Understanding confidence interval pieces, parts, and interpretation

▶ Calculating with confidence

▶ Examining factors that influence the width of a confidence interval

▶ Detecting misleading results

Most statistics are used to estimate some characteristic about a popula-
tion of interest, such as average household income, the percentage 

of people who buy birthday gifts online, or the average amount of ice cream 
consumed in the United States every year (and the resulting average weight 
gain — nah!). Such characteristics of a population are called parameters. 
Typically, people want to estimate (take a good guess at) the value of a 
parameter by taking a sample from the population and using statistics from 
the sample that will give them a good estimate. The question is: How do you 
define “good estimate”?

As long as the process is done correctly (and in the media, it often isn’t!), an 
estimate can often get very close to the parameter. This chapter gives you 
an overview of confidence intervals (the type of estimates used and recom-
mended by statisticians); why they should be used (as opposed to just a one-
number estimate); how to set up, calculate, and interpret the most commonly 
used confidence intervals; and how to spot misleading estimates.

Not All Estimates Are Created Equal
Read any magazine or newspaper or listen to any newscast, and you hear 
a number of statistics, many of which are estimates of some quantity or 
another. You may wonder how they came up with those statistics. In some 
cases, the numbers are well researched; in other cases, they’re just a shot 

20_9780470911082-ch13.indd   19320_9780470911082-ch13.indd   193 3/25/11   8:14 PM3/25/11   8:14 PM



194 Part IV: Guesstimating and Hypothesizing with Confidence 

in the dark. Here are some examples of estimates that I came across in one 
single issue of a leading business magazine. They come from a variety of 
sources:

 ✓ Even though some jobs are harder to get these days, some areas are 
really looking for recruits: Over the next eight years, 13,000 nurse anes-
thetists will be needed. Pay starts from $80,000 to $95,000.

 ✓ The average number of bats used by a major league baseball player per 
season is 90.

 ✓ The Lamborghini Murcielago can go from 0 to 60 mph in 3.7 seconds 
with a top speed of near 205 miles per hour.

Some of these estimates are easier to obtain than others. Here are some 
observations I was able to make about those estimates:

 ✓ How do you estimate how many nurse anesthetists are needed over the 
next eight years? You can start by looking at how many will be retiring 
in that time; but that won’t account for growth. A prediction of the need 
in the next year or two would be close, but eight years into the future is 
much harder to do.

 ✓ The average number of bats used per major league baseball player in a 
season could be found by surveying the players themselves, the people 
who take care of their equipment, or the bat companies that supply 
the bats.

 ✓ Determining car speed is more difficult but could be conducted as a test 
with a stopwatch. And they should find the average speed of many dif-
ferent cars (not just one) of the same make and model, under the same 
driving conditions each time.

 Not all statistics are created equal. To determine whether a statistic is reliable 
and credible, don’t just take it at face value. Think about whether it makes 
sense and how you would go about formulating an estimate. If the statistic is 
really important to you, find out what process was used to come up with it. 
(Chapter 16 handles all the elements involving surveys, and Chapter 17 gives 
you the lowdown on experiments.)

Linking a Statistic to a Parameter
A parameter is a single number that describes a population, such as the 
median household income for all households in the U.S. A statistic is a single 
number that describes a sample, such as the median household income of 
a sample of, say, 1,200 households. You typically don’t know the values of 
parameters of populations, so you take samples and use statistics to give 
your best estimates.

20_9780470911082-ch13.indd   19420_9780470911082-ch13.indd   194 3/25/11   8:14 PM3/25/11   8:14 PM



195 Chapter 13: Confidence Intervals: Making Your Best Guesstimate

Suppose you want to know the percentage of vehicles in the U.S. that are 
pickup trucks (that’s the parameter, in this case). You can’t look at every 
single vehicle, so you take a random sample of 1,000 vehicles over a range 
of highways at different times of the day. You find that 7% of the vehicles in 
your sample are pickup trucks. Now, you don’t want to say that exactly 7% 
of all vehicles on U.S. roads are pickup trucks, because you know this is only 
based on the 1,000 vehicles you sampled. Though you hope 7% is close to 
the true percentage, you can’t be sure because you based your results on a 
sample of vehicles, not on all the vehicles in the U.S.

So what to do? You take your sample result and add and subtract some 
number to indicate that you are giving a range of possible values for the pop-
ulation parameter, rather than just assuming the sample statistic equals the 
population parameter (which would not be good, although it’s done in the 
media all the time). This number that is added to and subtracted from a sta-
tistic is called the margin of error (MOE ). This plus or minus (denoted by ±) 
that’s added to any estimate helps put the results into perspective. When you 
know the margin of error, you have an idea of how much the sample results 
could change if you took another sample.

 The word error in margin of error doesn’t mean a mistake was made or the 
quality of the data was bad. It just means the results from a sample are not 
exactly equal to what you would have gotten if you had used the entire popu-
lation. This gap measures error due to random chance, the luck of the draw — 
not due to bias. (That’s why minimizing bias is so important when you select 
your sample and collect your data; see Chapters 16 and 17.)

Getting with the Jargon
A statistic plus or minus a margin of error is called a confidence interval:

 ✓ The word interval is used because your result becomes an interval. 
For example, say the percentage of kids who like baseball is 40%, plus 
or minus 3.5%. That means the percentage of kids who like baseball is 
somewhere between 40% – 3.5% = 36.5% and 40% + 3.5% = 43.5%. The 
lower end of the interval is your statistic minus the margin of error, and 
the upper end is your statistic plus the margin of error.

 ✓ With all confidence intervals, you have a certain amount of confidence 
in being correct (guessing the parameter) with your sample in the long 
run. Expressed as a percent, the amount of confidence is called the 
 confidence level.

You can find formulas and examples for the most commonly used confidence 
intervals later in this chapter.
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Following are the general steps for estimating a parameter with a confidence 
interval. Details on Steps 1 and 4–6 are included throughout the remainder of 
this chapter. Steps 2 and 3 involve sampling and data collection, which are 
detailed in Chapter 16 (sampling and survey data collection) and Chapter 17 
(data collection from experiments).

 1. Choose your confidence level and your sample size.

 2. Select a random sample of individuals from the population.

 3. Collect reliable and relevant data from the individuals in the sample.

 4. Summarize the data into a statistic, such as a mean or proportion.

 5. Calculate the margin of error.

 6. Take the statistic plus or minus the margin of error to get your final 
estimate of the parameter.

  This step calculates the confidence interval for that parameter.

Interpreting Results with Confidence
Suppose you, a research biologist, are trying to catch a fish using a hand 
net, and the size of your net represents the margin of error of a confidence 
interval. Now say your confidence level is 95%. What does this really mean? 
It means that if you scoop this particular net into the water over and over 
again, you’ll catch a fish 95% of the time. Catching a fish here means your 
confidence interval was correct and contains the true parameter (in this case 
the parameter is represented by the fish itself).

But does this mean that on any given try you have a 95% chance of catching 
a fish after the fact? No. Is this confusing? It certainly is. Here’s the scoop 
(no pun intended): On a single try, say you close your eyes before you scoop 
your net into the water. At this point, your chances of catching a fish are 95%. 
But then go ahead and scoop your net through the water with your eyes still 
closed. After that’s done, however, you open your eyes and see one of only 
two possible outcomes; you either caught a fish or you didn’t; probability 
isn’t involved anymore.

Likewise, after data have been collected, and the confidence interval has been 
calculated, you either captured the true population parameter or you didn’t. 
So you’re not saying you’re 95% confident that the parameter is in your par-
ticular interval. What you are 95% confident about is the process by which 
random samples are selected and confidence intervals are created. (That is, 
95% of the time in the long run, you’ll catch a fish.)
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You know that this process will result in intervals that capture the popula-
tion mean 95% of the time. The other 5% of the time, the data collected in the 
sample just by random chance has abnormally high or low values in it and 
doesn’t represent the population. This 5% measures errors due to random 
chance only and doesn’t include bias.

 The margin of error is meaningless if the data that went into the study were 
biased and/or unreliable. However, you can’t tell that by looking at anyone’s 
statistical results. My best advice is to look at how the data were collected 
before accepting a reported margin of error as the truth (see Chapters 16 and 
17 for details on data collection issues). That means asking questions before 
you believe a study.

Zooming In on Width
The width of your confidence interval is two times the margin of error. For 
example, suppose the margin of error is ± 5%. A confidence interval of 7%, plus 
or minus 5%, goes from 7% – 5% = 2%, all the way up to 7% + 5% = 12%. So the 
confidence interval has a width of 12% – 2% = 10%. A simpler way to calculate 
this is to say that the width of the confidence interval is two times the margin 
of error. In this case, the width of the confidence interval is 2 ∗ 5% = 10%.

 The width of a confidence interval is the distance from the lower end of the 
interval (statistic minus margin of error) to the upper end of the interval (sta-
tistic plus margin of error). You can always calculate the width of a confidence 
interval quickly by taking two times the margin of error.

The ultimate goal when making an estimate using a confidence interval is 
to have a narrow width, because that means you’re zooming in on what the 
parameter is. Having to add and subtract a large margin of error only makes 
your result much less accurate.

 So, if a small margin of error is good, is smaller even better? Not always. A 
narrow confidence interval is a good thing — to a point. To get an extremely 
narrow confidence interval, you have to conduct a much larger — and 
expensive — study, so a point comes where the increase in price doesn’t jus-
tify the marginal difference in accuracy. Most people are pretty comfortable 
with a margin of error of 2% to 3% when the estimate itself is a percentage 
(like the percentage of women, Republicans, or smokers).

How do you go about ensuring that your confidence interval will be narrow 
enough? You certainly want to think about this issue before collecting your 
data; after the data are collected, the width of the confidence interval is set.
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Three factors affect the width of a confidence interval:

 ✓ Confidence level

 ✓ Sample size

 ✓ Amount of variability in the population

Each of these three factors plays an important role in influencing the width 
of a confidence interval. In the following sections, you explore details of each 
element and how they affect width.

Choosing a Confidence Level
Every confidence interval (and every margin of error, for that matter) has a 
percentage associated with it that represents how confident you are that the 
results will capture the true population parameter, depending on the luck of the 
draw with your random sample. This percentage is called a confidence level.

A confidence level helps you account for the other possible sample results 
you could have gotten, when you’re making an estimate of a parameter using 
the data from only one sample. If you want to account for 95% of the other 
possible results, your confidence level would be 95%.

 What level of confidence is typically used by researchers? I’ve seen confidence 
levels ranging from 80% to 99%. The most common confidence level is 95%. In 
fact, statisticians have a saying that goes, “Why do statisticians like their jobs? 
Because they have to be correct only 95% of the time.” (Sort of catchy, isn’t it? 
And let’s see weather forecasters beat that.)

Variability in sample results is measured in terms of number of standard 
errors. A standard error is similar to the standard deviation of a data set, only 
a standard error applies to sample means or sample percentages that you 
could have gotten if different samples were taken. (See Chapter 11 for infor-
mation on standard errors.) 

 

Standard errors are the building blocks of confidence intervals. A confidence 
interval is a statistic plus or minus a margin of error, and the margin of error is 
the number of standard errors you need to get the confidence level you want.

Every confidence level has a corresponding number of standard errors that 
have to be added or subtracted. This number of standard errors is a called a 
critical value. In a situation where you use a Z-distribution to find the number 
of standard errors (as described later in this chapter), you call the critical 
value the z*-value (pronounced z-star value). See Table 13-1 for a list of 
 z*-values for some of the most common confidence levels.
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 As the confidence level increases, the number of standard errors increases, so 
the margin of error increases.

Table 13-1 z*-values for Various Confidence Levels

Confidence Level z*-value

80% 1.28

90% 1.645 (by convention)

95% 1.96

98% 2.33

99% 2.58

If you want to be more than 95% confident about your results, you need to 
add and subtract more than about two standard errors. For example, to be 
99% confident, you would add and subtract about two and a half standard 
errors to obtain your margin of error (2.58 to be exact). The higher the con-
fidence level, the larger the z*-value, the larger the margin of error, and the 
wider the confidence interval (assuming everything else stays the same). You 
have to pay a certain price for more confidence.

Note that I said “assuming everything else stays the same.” You can offset an 
increase in the margin of error by increasing the sample size. See the follow-
ing section for more on this.

Factoring In the Sample Size
The relationship between margin of error and sample size is simple: As the 
sample size increases, the margin of error decreases, and the confidence 
interval gets narrower. This relationship confirms what you hope is true: The 
more information (data) you have, the more accurate your results are going 
to be. (That, of course, assumes that the information is good, credible infor-
mation. See Chapter 3 for how statistics can go wrong.)

 The margin of error formulas for the confidence intervals in this chapter all 
involve the sample size (n) in the denominator. For example, the formula for 

 margin of error for the sample mean,  (which you’ll see in great detail 

 later in this chapter), has an n in the denominator of a fraction (this is the 
case for most margin of error formulas). As n increases, the denominator of this 
fraction increases, which makes the overall fraction get smaller. That makes the 
margin of error smaller and results in a narrower confidence interval.
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 When you need a high level of confidence, you have to increase the z*-value 
and, hence, margin of error, resulting in a wider confidence interval, which 
isn’t good. (See the previous section.) But you can offset this wider confidence 
interval by increasing the sample size and bringing the margin of error back 
down, thus narrowing the confidence interval.

The increase in sample size allows you to still have the confidence level you 
want, but also ensures that the width of your confidence interval will be small 
(which is what you ultimately want). You can even determine the sample 
size you need before you start a study: If you know the margin of error you 
want to get, you can set your sample size accordingly. (See the later section 
“Figuring Out What Sample Size You Need” for more.)

 When your statistic is going to be a percentage (such as the percentage of 
people who prefer to wear sandals during summer), a rough way to figure 
margin of error for a 95% confidence interval is to take 1 divided by the square 
root of n (the sample size). You can try different values of n and you can see 
how the margin of error is affected. For example, a survey of 100 people from 

 a large population will have a margin of error of about  or plus 

 or minus 10% (meaning the width of the confidence interval is 20%, which is 
pretty large). 

However, if you survey 1,000 people, your margin of error decreases dramati-
cally, to plus or minus about 3%; the width now becomes only 6%. A survey 
of 2,500 people results in a margin of error of plus or minus 2% (so the width 
is down to 4%). That’s quite a small sample size to get so accurate, when you 
think about how large the population is (the U.S. population, for example, is 
over 310 million!).

Keep in mind, however, you don’t want to go too high with your sample size, 
because a point comes where you have a diminished return. For example, 
moving from a sample size of 2,500 to 5,000 narrows the width of the confi-
dence interval to about 2 ∗ 1.4 = 2.8%, down from 4%. Each time you survey 
one more person, the cost of your survey increases, so adding another 2,500 
people to the survey just to narrow the interval by little more than 1% may 
not be worthwhile.

 

The first step in any data analysis problem (and when critiquing another per-
son’s results) is to make sure you have good data. Statistical results are only 
as good as the data that went into them, so real accuracy depends on the 
quality of the data as well as on the sample size. A large sample size that has 
a great deal of bias (see Chapter 16) may appear to have a narrow confidence 
interval — but means nothing. That’s like competing in an archery match and 
shooting your arrows consistently, but finding out that the whole time you’re 
shooting at the next person’s target; that’s how far off you are. With the field 
of statistics, though, you can’t accurately measure bias; you can only try to 
minimize it by designing good samples and studies (see Chapters 16 and 17).
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Counting On Population Variability
One of the factors influencing variability in sample results is the fact that the 
population itself contains variability. For example, in a population of houses 
in a fairly large city like Columbus, Ohio, you see a great deal of variety in not 
only the types of houses, but also the sizes and the prices. And the variability 
in prices of houses in Columbus should be more than the variability in prices 
of houses in a selected housing development in Columbus.

That means if you take a sample of houses from the entire city of Columbus 
and find the average price, the margin of error should be larger than if you 
take a sample from that single housing development in Columbus, even if you 
have the same confidence level and the same sample size.

Why? Because the houses in the entire city have more variability in price, and 
your sample average would change more from sample to sample than it would 
if you took the sample only from that single housing development, where 
the prices tend to be very similar because houses tend to be comparable in 
a single housing development. So you need to sample more houses if you’re 
sampling from the entire city of Columbus in order to have the same amount 
of accuracy that you would get from that single housing development.

 The standard deviation of the population is denoted . Notice that  appears 
in the numerator of the standard error in the formula for margin of error for 
the sample mean: .

Therefore, as the standard deviation (the numerator) increases, the standard 
error (the entire fraction) also increases. This results in a larger margin of 
error and a wider confidence interval. (Refer to Chapter 11 for more info on 
the standard error.)

 More variability in the original population increases the margin of error, 
making the confidence interval wider. This increase can be offset by increas-
ing the sample size.

Calculating a Confidence Interval 
for a Population Mean

When the characteristic that’s being measured (such as income, IQ, price, 
height, quantity, or weight) is numerical, most people want to estimate the 
mean (average) value for the population. You estimate the population mean, 

, by using a sample mean, , plus or minus a margin of error. The result is 
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called a confidence interval for the population mean, . Its formula depends 
on whether certain conditions are met. I split the conditions into two cases, 
illustrated in the following sections.

Case 1: Population standard 
deviation is known
In Case 1, the population standard deviation is known. The formula for a 
confidence interval (CI) for a population mean in this case is , 

where  is the sample mean,  is the population standard deviation, n is the 
sample size, and z* represents the appropriate z*-value from the standard 
normal distribution for your desired confidence level. (Refer to Table 13-1 for 
values of z* for the given confidence levels.)

 In this case, the data either have to come from a normal distribution, or if not, 
then n has to be large enough (at least 30 or so) for the Central Limit Theorem 
to kick in (see Chapter 11), allowing you to use z*-values in the formula.

To calculate a CI for the population mean (average), under the conditions for 
Case 1, do the following:

 1. Determine the confidence level and find the appropriate z*-value.

  Refer to Table 13-1.

 2. Find the sample mean ( ) for the sample size (n).

  Note: The population standard deviation is assumed to be a known 
value, .

 3. Multiply z* times  and divide that by the square root of n.

  This calculation gives you the margin of error.

 4. Take  plus or minus the margin of error to obtain the CI.

  The lower end of the CI is  minus the margin of error, whereas the 
upper end of the CI is  plus the margin of error.

For example, suppose you work for the Department of Natural Resources and 
you want to estimate, with 95% confidence, the mean (average) length of wall-
eye fingerlings in a fish hatchery pond.

 1. Because you want a 95% confidence interval, your z*-value is 1.96.

 2. Suppose you take a random sample of 100 fingerlings and determine 
that the average length is 7.5 inches; assume the population standard 
deviation is 2.3 inches. This means , , and n = 100.
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 3. Multiply 1.96 times 2.3 divided by the square root of 100 (which is 10). The 
margin of error is, therefore, ± 1.96 ∗ (2.3 ÷ 10) = 1.96 ∗ 0.23 = 0.45 inches.

 4. Your 95% confidence interval for the mean length of walleye fingerlings 
in this fish hatchery pond is 7.5 inches ± 0.45 inches. (The lower end of 
the interval is 7.5 – 0.45 = 7.05 inches; the upper end is 7.5 + 0.45 = 7.95 
inches.)

 After you calculate a confidence interval, make sure you always interpret it in 
words a non-statistician would understand. That is, talk about the results in 
terms of what the person in the problem is trying to find out — statisticians 
call this interpreting the results “in the context of the problem.” In this exam-
ple you can say: “With 95% confidence, the average length of walleye finger-
lings in this entire fish hatchery pond is between 7.05 and 7.95 inches, based 
on my sample data.” (Always be sure to include appropriate units.)

Case 2: Population standard deviation 
is unknown and/or n is small
In many situations, you don’t know , so you estimate it with the sample stan-
dard deviation, s; and/or the sample size is small (less than 30), and you can’t 
be sure your data came from a normal distribution. (In the latter case, the 
Central Limit Theorem can’t be used; see Chapter 11.) In either situation, you 
can’t use a z*-value from the standard normal (Z-) distribution as your critical 
value anymore; you have to use a larger critical value than that, because of 
not knowing what  is and/or having less data.

The formula for a confidence interval for one population mean in Case 2 
is , where t*

n – 1 is the critical t*-value from the t-distribution 

with n – 1 degrees of freedom (where n is the sample size). The t*-values for 
common confidence levels are found using the last row of the t-table (in the 
appendix). Chapter 10 gives you the full details on the  t-distribution and how 
to use the t-table.

 The t-distribution has a similar shape to the Z-distribution except it’s flatter 
and more spread out. For small values of n and a specific confidence level, 
the critical values on the t-distribution are larger than on the Z-distribution, 
so when you use the critical values from the t-distribution, the margin of error 
for your confidence interval will be wider. As the values of n get larger, the 
t*-values are closer to z*-values. (Chapter 10 gives you the full details on the 
t-distribution and its relationships to the Z-distribution.)
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In the fish hatchery example from Case 1, suppose your sample size was 10 
instead of 100, and everything else was the same. The t*-value in this case 
comes from a t-distribution with 10 – 1 = 9 degrees of freedom. This t*-value is 
found by looking at the t-table (in the appendix). Look in the last row where the 
confidence levels are located, and find the confidence level of 95%; this marks 
the column you need. Then find the row corresponding to df = 9. Intersect the 
row and column, and you find t* = 2.262. This is the t*-value for a 95% confi-
dence interval for the mean with a sample size of 10. (Notice this is larger than 
the z*-value of 1.96 found in Table 13-1.) Calculating the confidence 
interval, you get , or 5.86 to 9.15 inches. (Chapter 10 

gives you the full details on the t-distribution and how to use the t-table.)

Notice this confidence interval is wider than the one found when n = 100. 
In addition to having a larger critical value (t* versus z*), the sample size 
is much smaller, which increases the margin of error, because n is in its 
denominator.

 In a case where you need to use s because you don’t know , the confidence 
interval will be wider as well. It is also often the case that  is unknown and 
the sample size is small, in which case the confidence interval is also wider.

Figuring Out What Sample 
Size You Need

The margin of error of a confidence interval is affected by size (see the ear-
lier section “Factoring In the Sample Size”); as size increases, margin of error 
decreases. Looking at this the other way around, if you want a smaller margin 
of error (and doesn’t everyone?), you need a larger sample size. Suppose 
you are getting ready to do your own survey to estimate a population mean; 
wouldn’t it be nice to see ahead of time what sample size you need to get the 
margin of error you want? Thinking ahead will save you money and time and 
it will give you results you can live with in terms of the margin of error — you 
won’t have any surprises later.

 The formula for the sample size required to get a desired margin of error (MOE) 

 when you are doing a confidence interval for  is ; always round up 

 the sample size no matter what decimal value you get. (For example, if your cal-
culations give you 126.2 people, you can’t just have 0.2 of a person — you need 
the whole person, so include him by rounding up to 127.)
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In this formula, MOE is the number representing the margin of error you 
want, and z* is the z*-value corresponding to your desired confidence level 
(from Table 13-1; most people use 1.96 for a 95% confidence interval). If the 
population standard deviation, , is unknown, you can put in a worst-case 
scenario guess for it or run a pilot study (a small trial study) ahead of time, 
find the standard deviation of the sample data (s), and use that number. This 
can be risky if the sample size is very small because it’s less likely to reflect 
the whole population; try to get the largest trial study that you can, and/or 
make a conservative estimate for .

 Often a small trial study is worth the time and effort. Not only will you get 
an estimate of  to help you determine a good sample size, but you may also 
learn about possible problems in your data collection.

 I only include one formula for calculating sample size in this chapter: the one 
that pertains to a confidence interval for a population mean. (You can, 
however, use the quick and dirty formula in the earlier section “Factoring in 
the Sample Size” for handling proportions.)

Here’s an example where you need to calculate n to estimate a population 
mean. Suppose you want to estimate the average number of songs college 
students store on their portable devices. You want the margin of error to be 
no more than plus or minus 20 songs. You want a 95% confidence interval. 
How many students should you sample?

Because you want a 95% CI, z* is 1.96 (found in Table 13-1); you know your 
desired MOE is 20. Now you need a number for the population standard devi-
ation, . This number is not known, so you do a pilot study of 35 students 
and find the standard deviation (s) for the sample is 148 songs — use this 
number as a substitute for . Using the sample size formula, you calculate the 

sample size you need is , which you round 

up to 211 students (you always round up when calculating n). So you need 
to take a random sample of at least 211 college students in order to have a 
margin of error in the number of stored songs of no more than 20. That’s why 
you see a greater-than-or-equal-to sign in the formula here.

 You always round up to the nearest integer when calculating sample size, no 
matter what the decimal value of your result is (for example, 0.37). That’s 
because you want the margin of error to be no more than what you stated. If 
you round down when the decimal value is under .50 (as you normally do in 
other math calculations), your MOE will be a little larger than you wanted. 
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 If you are wondering where this formula for sample size came from, it’s actu-
ally created with just a little math gymnastics. Take the margin of error for-
mula (which contains n), fill in the remaining variables in the formula with 
numbers you glean from the problem, set it equal to the desired MOE, and 
solve for n.

Determining the Confidence Interval 
for One Population Proportion

When a characteristic being measured is categorical — for example, opinion 
on an issue (support, oppose, or are neutral), gender, political party, or type 
of behavior (do/don’t wear a seatbelt while driving) — most people want to 
estimate the proportion (or percentage) of people in the population that fall 
into a certain category of interest. For example, consider the percentage of 
people in favor of a four-day work week, the percentage of Republicans who 
voted in the last election, or the proportion of drivers who don’t wear seat 
belts. In each of these cases, the object is to estimate a population propor-
tion, p, using a sample proportion, , plus or minus a margin of error. The 
result is called a confidence interval for the population proportion, p.

The formula for a CI for a population proportion is , where  is 
the sample proportion, n is the sample size, and z* is the appropriate value 
from the standard normal distribution for your desired confidence level. 
Refer to Table 13-1 for values of z* for certain confidence levels.

To calculate a CI for the population proportion:

 1. Determine the confidence level and find the appropriate z*-value.

  Refer to Table 13-1 for z*-values.

 2. Find the sample proportion, , by dividing the number of people in 
the sample having the characteristic of interest by the sample size (n).

  Note: This result should be a decimal value between 0 and 1.

 3. Multiply  and then divide that amount by n.

 4. Take the square root of the result from Step 3.

 5. Multiply your answer by z*.

  This step gives you the margin of error.

 6. Take  plus or minus the margin of error to obtain the CI; the lower 

end of the CI is  minus the margin of error, and the upper end of the 

CI is  plus the margin of error.
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 The formula shown in the preceding example for a CI for p is used under the 
condition that the sample size is large enough for the Central Limit Theorem 
to kick in and allow us to use a z*-value (see Chapter 11), which happens in 
cases when you are estimating proportions based on large scale surveys (see 
Chapter 9). For small sample sizes, confidence intervals for the proportion are 
typically beyond the scope of an intro statistics course.

For example, suppose you want to estimate the percentage of the time you’re 
expected to get a red light at a certain intersection.

 1. Because you want a 95% confidence interval, your z*-value is 1.96.

 2. You take a random sample of 100 different trips through this intersec-
tion and find that you hit a red light 53 times, so .

 3. Find .

 4. Take the square root to get 0.0499.

  The margin of error is, therefore, plus or minus 1.96 ∗ (0.0499) = 0.0978, 
or 9.78%.

 5. Your 95% confidence interval for the percentage of times you will ever 
hit a red light at that particular intersection is 0.53 (or 53%), plus or 
minus 0.0978 (rounded to 0.10 or 10%). (The lower end of the interval is 
0.53 – 0.10 = 0.43 or 43%; the upper end is 0.53 + 0.10 = 0.63 or 63%.)

  To interpret these results within the context of the problem, you can say 
that with 95% confidence the percentage of the times you should expect 
to hit a red light at this intersection is somewhere between 43% and 
63%, based on your sample.

 While performing any calculations involving sample percentages, use the 
decimal form. After the calculations are finished, convert to percentages by 
multiplying by 100. To avoid round-off error, keep at least 2 decimal places 
throughout.

Creating a Confidence Interval for 
the Difference of Two Means

The goal of many surveys and studies is to compare two populations, such 
as men versus women, low versus high income families, and Republicans 
versus Democrats. When the characteristic being compared is numerical (for 
example, height, weight, or income), the object of interest is the amount of 
difference in the means (averages) for the two populations.
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For example, you may want to compare the difference in average age of 
Republicans versus Democrats, or the difference in average incomes of men 
versus women. You estimate the difference between two population means, 

, by taking a sample from each population (say, sample 1 and sample 2) 
and using the difference of the two sample means , plus or minus a 
margin of error. The result is a confidence interval for the difference of two 
population means, . The formula for the CI is different depending on 
certain conditions, as seen in the following sections; I call them Case 1 and 
Case 2.

Case 1: Population standard 
deviations are known
Case 1 assumes that both of the population standard deviations are known. The 
formula for a CI for the difference between two population means (averages) is 

, where  and n1 are the mean and size of the first sample, 

and the first population’s standard deviation, , is given (known);  and n2 
are 

the mean and size of the second sample, and the second population’s standard 
deviation, , is given (known). Here z* is the appropriate value from the stan-
dard normal distribution for your desired confidence level. (Refer to Table 13-1 
for values of z* for certain confidence levels.)

To calculate a CI for the difference between two population means, do the 
 following:

 1. Determine the confidence level and find the appropriate z*-value.

  Refer to Table 13-1.

 2. Identify , n
1
, and ; find , n

2
, and .

 3. Find the difference, ( ), between the sample means.

 4. Square  and divide it by n
1
; square  and divide it by n

2
. Add the 

results together and take the square root.

 5. Multiply your answer from Step 4 by z*.

  This answer is the margin of error.

 6. Take x
1

x
2
 plus or minus the margin of error to obtain the CI.

  The lower end of the CI is  minus the margin of error, whereas the 
upper end of the CI is  plus the margin of error.
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Suppose you want to estimate with 95% confidence the difference between 
the mean (average) length of the cobs of two varieties of sweet corn (allow-
ing them to grow the same number of days under the same conditions). Call 
the two varieties Corn-e-stats and Stats-o-sweet. Assume by prior research 
that the population standard deviations for Corn-e-stats and Stats-o-sweet 
are 0.35 inches and 0.45 inches, respectively.

 1. Because you want a 95% confidence interval, your z* is 1.96.

 2. Suppose your random sample of 100 cobs of the Corn-e-stats variety 
averages 8.5 inches, and your random sample of 110 cobs of Stats-o-
sweet averages 7.5 inches. So the information you have is: , 

, n1 = 100, , , and n2 = 110.

 3. The difference between the sample means, , from Step 3, is 8.5 – 7.5 = 
+1 inch. This means the average for Corn-e-stats minus the average for 
Stats-o-sweet is positive, making Corn-e-stats the larger of the two variet-
ies, in terms of this sample. Is that difference enough to generalize to the 
entire population, though? That’s what this confidence interval is going 
to help you decide.

 4. Square  (0.35) to get 0.1225; divide by 100 to get 0.0012. Square  (0.45) 
and divide by 110 to get 0.2025 ÷ 110 = 0.0018. The sum is 0.0012 + 0.0018 = 
0.0030; the square root is 0.0554 inches (if no rounding was done).

 5. Multiply 1.96 times 0.0554 to get 0.1085 inches, the margin of error.

 6. Your 95% confidence interval for the difference between the average 
lengths for these two varieties of sweet corn is 1 inch, plus or minus 
0.1085 inches. (The lower end of the interval is 1 – 0.1085 = 0.8915 
inches; the upper end is 1 + 0.1085 = 1.1085 inches.) Notice all the values 
in this interval are positive. That means Corn-e-stats is estimated to be 
longer than Stats-o-sweet, based on your data.

  To interpret these results in the context of the problem, you can say 
with 95% confidence that the Corn-e-stats variety is longer, on average, 
than the Stats-o-sweet variety, by somewhere between 0.8915 and 1.1085 
inches, based on your sample. 

Notice that you could get a negative value for . For example, if you had 
switched the two varieties of corn, you would have gotten –1 for this difference. 
You would say that Stats-o-sweet averaged one inch shorter than Corn-e-stats 
in the sample (the same conclusion stated differently).

 If you want to avoid negative values for the difference in sample means, 
always make the group with the larger sample mean your first group — all 
your differences will be positive (that’s what I do).
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Case 2: Population standard deviations are 
unknown and/or sample sizes are small
In many situations, you don’t know , and you estimate them with 
the sample standard deviations, s1, and s2; and/or the sample sizes are small 
(less than 30) and you can’t be sure whether your data came from a normal 
distribution.

A confidence interval for the difference in two population means under 

Case 2 is , where t* is the critical value 

from the t-distribution with n1 + n2 – 2 degrees of freedom; n1 and n2 are the 
two sample sizes, respectively; and s1 and s2 are the two sample standard 
deviations. This t*-value is found on the t-table (in the appendix) by 
intersecting the row for df = n1 + n2 – 2 with the column for the confidence 
level you need, as indicated by looking at the last row of the table. (See 
Chapter 10.) Here we assume the population standard deviations are similar; 
if not, modify by using the standard error and degrees of freedom. See the 
end of the section on comparing two means in Chapter 15.

In the corn example from Case 1, suppose the mean cob lengths of the two 
brands of corn, Corn-e-stats (group 1) and Stats-o-sweet (group 2), are the same 
as they were before:  inches. But this time you don’t know 
the population standard deviations, so you use the sample standard deviations 
instead — suppose they turn out to be s1 = 0.40 and s2 = 0.50 inches, respectively. 
Suppose the sample sizes, n1 and n2, are each only 15 in this case.

Calculating the CI, you first need to find the t*-value on the t-distribution with 
(15 + 15 – 2) = 28 degrees of freedom. (Assume the confidence level is still 95%.) 
Using the t-table (in the appendix), look at the row for 28 degrees of freedom 
and the column representing a confidence level of 95% (see the labels on the 
last row of the table); intersect them and you see t*28 = 2.048. Using the rest of 
the information you are given, the confidence interval for the difference in mean 

cob length for the two brands is

 

.

That means a 95% CI for the difference in the mean cob lengths of these two 
brands of corn in this situation is (0.0727, 1.9273) inches, with Corn-e-stats 
coming out on top. (Note: This CI is wider than what was found in Case 1, as 
expected.)
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Estimating the Difference 
of Two Proportions

When a characteristic, such as opinion on an issue (support/don’t support), 
of the two groups being compared is categorical, people want to report on 
the differences between the two population proportions — for example, the 
difference between the proportion of women who support a four-day work 
week and the proportion of men who support a four-day work week. How do 
you do this?

You estimate the difference between two population proportions, p1 – p2, by 
taking a sample from each population and using the difference of the two 
sample proportions, , plus or minus a margin of error. The result is called 
a confidence interval for the difference of two population proportions, p1 – p2.

The formula for a CI for the difference between two population proportions 

is , where  and n1 
are the sample propor-

tion and sample size of the first sample, and  and n2 
are the sample proportion 

and sample size of the second sample. z* is the appropriate value from the stan-
dard normal distribution for your desired confidence level. (Refer to Table 13-1 
for z*-values.)

To calculate a CI for the difference between two population proportions, do 
the following:

 1. Determine the confidence level and find the appropriate z*-value.

  Refer to Table 13-1.

 2. Find the sample proportion  for the first sample by taking the total 
number from the first sample that are in the category of interest 

and dividing by the sample size, n
1
. Similarly, find  for the second 

sample.

 3. Take the difference between the sample proportions, .

 4. Find  and divide that by n
1
. Find  and divide that 

by n
2
. Add these two results together and take the square root.

 5. Multiply z* times the result from Step 4.

  This step gives you the margin of error.
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 6. Take  plus or minus the margin of error from Step 5 to obtain 
the CI.

  The lower end of the CI is  minus the margin of error, and the 
upper end of the CI is  plus the margin of error.

The formula shown here for a CI for p1 – p2 is used under the condition that 
both of the sample sizes are large enough for the Central Limit Theorem to kick 
in and allow us to use a z*-value (see Chapter 11); this is true when you are 
estimating proportions using large scale surveys, for example. For small sample 
sizes, confidence intervals are beyond the scope of an intro statistics course.

Suppose you work for the Las Vegas Chamber of Commerce, and you want 
to estimate with 95% confidence the difference between the percentage of 
females who have ever gone to see an Elvis impersonator and the percentage 
of males who have ever gone to see an Elvis impersonator, in order to help 
determine how you should market your entertainment offerings.

 1. Because you want a 95% confidence interval, your z*-value is 1.96.

 2. Suppose your random sample of 100 females includes 53 females who 
have seen an Elvis impersonator, so  is 53 ÷ 100 = 0.53. Suppose also 
that your random sample of 110 males includes 37 males who have ever 
seen an Elvis impersonator, so  is 37 ÷ 110 = 0.34.

 3. The difference between these sample proportions (females – males) is 
0.53 – 0.34 = 0.19.

 4. Take 0.53 ∗ (1 – 0.53) and divide that by 100 to get 0.2491 ÷ 100 = 0.0025. 
Then take 0.34 ∗ (1 – 0.34) and divide that by 110 to get 0.2244 ÷ 110 = 
0.0020. Add these two results to get 0.0025 + 0.0020 = 0.0045; the square 
root is 0.0671.

 5. 1.96 ∗ 0.0671 gives you 0.13, or 13%, which is the margin of error.

 6. Your 95% confidence interval for the difference between the percentage 
of females who have seen an Elvis impersonator and the percentage of 
males who have seen an Elvis impersonator is 0.19 or 19% (which you 
got in Step 3), plus or minus 13%. The lower end of the interval is 0.19 – 
0.13 = 0.06 or 6%; the upper end is 0.19 + 0.13 = 0.32 or 32%.

  To interpret these results within the context of the problem, you can 
say with 95% confidence that a higher percentage of females than males 
have seen an Elvis impersonator, and the difference in these percent-
ages is somewhere between 6% and 32%, based on your sample.

Now I’m thinking there are some guys out there that wouldn’t admit they’d 
ever seen an Elvis impersonator (although they’ve probably pretended to be 
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one doing karaoke at some point). This may create some bias in the results. 
(The last time I was in Vegas, I believe I really saw Elvis; he was driving a van 
taxi to and from the airport. . . .)

 Notice that you could get a negative value for . For example, if you had 
switched the males and females, you would have gotten –0.19 for this differ-
ence. That’s okay, but you can avoid negative differences in the sample pro-
portions by having the group with the larger sample proportion serve as the 
first group (here, females).

Spotting Misleading Confidence Intervals
When the MOE is small, relatively speaking, you would like to say that these 
confidence intervals provide accurate and credible estimates of their param-
eters. This is not always the case, however.

 Not all estimates are as accurate and reliable as the sources may want you to 
think. For example, a Web site survey result based on 20,000 hits may have a 
small MOE according to the formula, but the MOE means nothing if the survey 
is only given to people who happened to visit that Web site.

In other words, the sample isn’t even close to being a random sample (where 
every sample of equal size selected from the population has an equal chance 
of being chosen to participate). Nevertheless, such results do get reported, 
along with their margins of error that make the study seem truly scientific. 
Beware of these bogus results! (See Chapter 12 for more on the limits of 
the MOE.)

 Before making any decisions based on someone’s estimate, do the following:

 ✓ Investigate how the statistic was created; it should be the result of a sci-
entific process that results in reliable, unbiased, accurate data.

 ✓ Look for a margin of error. If one isn’t reported, go to the original source 
and request it.

 ✓ Remember that if the statistic isn’t reliable or contains bias, the margin 
of error will be meaningless.

(See Chapter 16 for evaluating survey data and see Chapter 17 for criteria for 
good data in experiments.)
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Chapter 14

Claims, Tests, and Conclusions
In This Chapter
▶ Testing other people’s claims

▶ Using hypothesis tests to weigh evidence and make decisions

▶ Recognizing that your conclusions could be wrong

You hear claims involving statistics all the time; the media has no short-
age of them:

 ✓ Twenty-five percent of all women in the United States have varicose 
veins. (Wow, are some claims better left unsaid, or what?)

 ✓ Cigarette use in the U.S. continues to drop, with the percentage of all 
American smokers decreasing by about 2% per year over the last ten years.

 ✓ A 6-month-old baby sleeps an average of 14 to 15 hours in a 24-hour 
period. (Yeah, right!)

 ✓ A name-brand ready-mix pie takes only 5 minutes to make.

In today’s age of information (and big money), a great deal rides on being 
able to back up your claims. Companies that say their products are better 
than the leading brand had better be able to prove it, or they could face law-
suits. Drugs that are approved by the FDA have to show strong evidence that 
their products actually work without producing life-threatening side effects. 
Manufacturers have to make sure their products are being produced according 
to specifications to avoid recalls, customer complaints, and loss of business.

Although many claims are backed up by solid scientific (and statistically 
sound) research, others are not. In this chapter, you find out how to use statis-
tics to investigate whether a claim is actually valid and get the lowdown on the 
process that researchers should be using to validate claims that they make.

 

A hypothesis test is a statistical procedure that’s designed to test a claim. 
Before diving into details, I want to give you the big picture of a hypothesis 
test by showing the main steps involved. These steps are discussed in the fol-
lowing sections:

 1. Set up the null and alternative hypotheses.
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 2. Collect good data using a well-designed study (see Chapters 16 and 17).

 3. Calculate the test statistic based on your data.

 4. Find the p-value for your test statistic.

 5. Decide whether or not to reject H
o
 based on your p-value.

 6. Understand that your conclusion may be wrong, just by chance.

Setting Up the Hypotheses
Typically in a hypothesis test, the claim being made is about a population 
parameter (one number that characterizes the entire population). Because 
parameters tend to be unknown quantities, everyone wants to make claims 
about what their values may be. For example, the claim that 25% (or 0.25) 
of all women have varicose veins is a claim about the proportion (that’s the 
parameter) of all women (that’s the population) who have varicose veins 
(that’s the variable — having or not having varicose veins).

Researchers often challenge claims about population parameters. You may 
hypothesize, for example, that the actual proportion of women who have 
varicose veins is lower than 0.25, based on your observations. Or you may 
hypothesize that due to the popularity of high heeled shoes, the proportion 
may be higher than 0.25. Or if you’re simply questioning whether the actual 
proportion is 0.25, your alternative hypothesis is: “No, it isn’t 0.25.”

Defining the null
Every hypothesis test contains a set of two opposing statements, or hypoth-
eses, about a population parameter. The first hypothesis is called the null 
hypothesis, denoted Ho. The null hypothesis always states that the population 
parameter is equal to the claimed value. For example, if the claim is that the 
average time to make a name-brand ready-mix pie is five minutes, the statisti-
cal shorthand notation for the null hypothesis in this case would be as fol-
lows: Ho: μ = 5. (That is, the population mean is 5 minutes.)

 

All null hypotheses include an equal sign in them; there are no ≤ or ≥ signs in 
Ho. Not to cop out or anything, but the reason it’s always equal is beyond the 
scope of this book; let’s just say you wouldn’t pay me to explain it to you.

What’s the alternative?
Before actually conducting a hypothesis test, you have to put two possible 
hypotheses on the table — the null hypothesis is one of them. But, if the 
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null hypothesis is rejected (that is, there was sufficient evidence against it), 
what’s your alternative going to be? Actually, three possibilities exist for the 
second (or alternative) hypothesis, denoted Ha. Here they are, along with 
their shorthand notations in the context of the pie example:

 ✓ The population parameter is not equal to the claimed value (Ha: μ ≠ 5).

 ✓ The population parameter is greater than the claimed value (Ha: μ > 5).

 ✓ The population parameter is less than the claimed value (Ha: μ < 5).

Which alternative hypothesis you choose in setting up your hypothesis test 
depends on what you’re interested in concluding, should you have enough 
evidence to refute the null hypothesis (the claim).

For example, if you want to test whether a company is correct in claiming its 
pie takes five minutes to make and it doesn’t matter whether the actual aver-
age time is more or less than that, you use the not-equal-to alternative. Your 
hypotheses for that test would be Ho: μ = 5 versus Ha: μ ≠ 5.

If you only want to see whether the time turns out to be greater than what 
the company claims (that is, whether the company is falsely advertising its 
quick prep time), you use the greater-than alternative, and your two hypoth-
eses are Ho: μ = 5 versus Ha: μ > 5.

Finally, say you work for the company marketing the pie, and you think the 
pie can be made in less than five minutes (and could be marketed by the 
company as such). The less-than alternative is the one you want, and your 
two hypotheses would be Ho: μ = 5 versus Ha: μ < 5.

 How do you know which hypothesis to put in Ho and which one to put in Ha? 
Typically, the null hypothesis says that nothing new is happening; the previous 
result is the same now as it was before, or the groups have the same average 
(their difference is equal to zero). In general, you assume that people’s claims 
are true until proven otherwise. So the question becomes: Can you prove 
otherwise? In other words, can you show sufficient evidence to reject Ho?

Gathering Good Evidence (Data)
After you’ve set up the hypotheses, the next step is to collect your evidence 
and determine whether your evidence goes against the claim made in Ho. 
Remember, the claim is made about the population, but you can’t test the whole 
population; the best you can usually do is take a sample. As with any other situ-
ation in which statistics are being collected, the quality of the data is extremely 
critical. (See Chapter 3 for ways to spot statistics that have gone wrong.)

Collecting good data starts with selecting a good sample. Two important 
issues to consider when selecting your sample are avoiding bias and being 
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accurate. To avoid bias when selecting a sample, make it a random sample 
(one that’s got the same chance of being selected as every other possible 
sample of the same size) and choose a large enough sample size so that the 
results will be accurate. (See Chapter 11 for more information on accuracy.)

Data is collected in many different ways, but the methods used basically boil 
down to two: surveys (observational studies) and experiments (controlled 
studies). Chapter 16 gives all the information you need to design and critique 
surveys, as well as information on selecting samples properly. In Chapter 17, 
you examine experiments: what they can do beyond an observational study, the 
criteria for a good experiment, and when you can conclude cause and effect.

Compiling the Evidence: The Test Statistic
After you select your sample, the appropriate number-crunching takes 
place. Your null hypothesis (Ho) makes a statement about the population 
parameter — for example, “The proportion of all women who have varicose 
veins is 0.25” (in other words, Ho: p = 0.25); or the average miles per gallon of 
a U.S.-built light truck is 27 (Ho: μ = 27). The data you collect from the sample 
measures the variable of interest, and the statistics that you calculate will 
help you test the claim about the population parameter.

Gathering sample statistics
Say you’re testing a claim about the proportion of women with varicose veins. 
You need to calculate the proportion of women in your sample who have 
varicose veins, and that number will be your sample statistic. If you’re testing 
a claim about the average miles per gallon of a U.S.-built light truck, your 
statistic will be the average miles per gallon of the light trucks in your sample. 
And knowing you want to measure the variability in average miles per gallon 
for various trucks, you’ll want to calculate the sample standard deviation. (See 
Chapter 5 for all the information you need on calculating sample statistics.)

Measuring variability using standard errors
After you’ve calculated all the necessary sample statistics, you may think you’re 
done with the analysis part and ready to make your conclusions — but you’re 
not. The problem is you have no way to put your results into any kind of 
perspective just by looking at them in their regular units. That’s because you 
know that your results are based only on a sample and that sample results are 
going to vary. That variation needs to be taken into account, or your conclusions 
could be completely wrong. (How much do sample results vary? Sample 
variation is measured by the standard error; see Chapter 11 for more on this.)
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Suppose the claim is that the percentage of all women with varicose veins 
is 25%, and your sample of 100 women had 20% with varicose veins. The 
standard error for your sample percentage is 4% (according to formulas in 
Chapter 11), which means that your results are expected to vary by about 
twice that, or about 8%, according to the Empirical Rule (see Chapter 12). So 
a difference of 5%, for example, between the claim and your sample result 
(25% – 20% = 5%) isn’t that much, in these terms, because it represents a 
 distance of less than 2 standard errors away from the claim.

However, suppose your sample percentage was based on a sample of 1,000 
women, not 100. This decreases the amount by which you expect your 
results to vary, because you have more information. Again using formulas 
from Chapter 11, I calculate the standard error to be 0.013 or 1.3%. The 
margin of error (MOE) is about twice that, or 2.6% on either side. Now a dif-
ference of 5% between your sample result (20%) and the claim in Ho (25%) is 
a more meaningful difference; it’s way more than 2 standard errors.

Exactly how meaningful are your results? In the next section, you get more 
specific about measuring exactly how far apart your sample results are from 
the claim in terms of the number of standard errors. This leads you to a spe-
cific conclusion as to how much evidence you have against the claim in Ho.

Understanding standard scores
 The number of standard errors that a statistic lies above or below the mean 

is called a standard score (for example, a z-value is a type of standard score; 
see Chapter 9). In order to interpret your statistic, you need to convert it from 
original units to a standard score. When finding a standard score, you take 
your statistic, subtract the mean, and divide the result by the standard error.

In the case of hypothesis tests, you use the value in Ho as the mean. (That’s 
what you go with unless/until you have enough evidence against it.) The 
standardized version of your statistic is called a test statistic, and it’s the main 
component of a hypothesis test. (Chapter 15 contains the formulas for the 
most common hypothesis tests.)

Calculating and interpreting 
the test statistic
The general procedure for converting a statistic to a test statistic (standard 
score) is as follows:

 1. Take your statistic minus the claimed value (the number stated in H
o
).
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 2. Divide by the standard error of the statistic. (Different formulas for stan-
dard error exist for different problems; see Chapter 13 for detailed formulas 
for standard error and Chapter 15 for formulas for various test statistics.)

Your test statistic represents the distance between your actual sample 
results and the claimed population value, in terms of number of standard 
errors. In the case of a single population mean or proportion, you know that 
these standardized distances should at least have an approximate standard 
normal distribution if your sample size is large enough (see Chapter 11). So, 
to interpret your test statistic in these cases, you can see where it stands on 
the standard normal distribution (Z-distribution).

Using the numbers from the varicose veins example in the previous sec-
tion, the test statistic is found by taking the proportion in the sample with 
varicose veins, 0.20, subtracting the claimed proportion of all women with 
varicose veins, 0.25, and then dividing the result by the standard error, 0.04. 
These calculations give you a test statistic (standard score) of –0.05 ÷ 0.04 = 
–1.25. This tells you that your sample results and the population claim in Ho 
are 1.25 standard errors apart; in particular, your sample results are 1.25 
standard errors below the claim. Now is this enough evidence to reject the 
claim? The next section addresses that issue.

Weighing the Evidence and 
Making Decisions: p-Values

After you find your test statistic, you use it to make a decision about whether 
to reject Ho. You make this decision by coming up with a number that mea-
sures the strength of this evidence (your test statistic) against the claim in Ho. 
That is, how likely is it that your test statistic could have occurred while the 
claim was still true? This number you calculate is called the p-value; it’s the 
chance that someone could have gotten results as extreme as yours while Ho 
was still true. Similarly in a jury trial, the jury discusses how likely it is that all 
the evidence came out the way it did assuming the defendant was innocent.

This section shows all the ins and outs of p-values, including how to calculate 
them and use them to make decisions regarding Ho.

Connecting test statistics and p-values
To test whether a claim in Ho should be rejected (after all, it’s all about Ho) you 
look at your test statistic taken from your sample and see whether you have 
enough evidence to reject the claim. If the test statistic is large (in either the 
positive or negative directions), your data is far from the claim; the larger the 
test statistic, the more evidence you have against the claim. You determine 
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“how far is far” by looking at where your test statistic ends up on the distribu-
tion that it came from. When testing one population mean, under certain condi-
tions the distribution of comparison is the standard normal (Z-) distribution, 
which has a mean of 0 and a standard deviation of 1; I use it throughout this 
section as an example. (See Chapter 9 to find out more about the Z-distribution.)

 If your test statistic is close to 0, or at least within that range where most of the 
results should fall, then you don’t have much evidence against the claim (Ho) 
based on your data. If your test statistic is out in the tails of the standard normal 
distribution (see Chapter 9 for more on tails), then your evidence against the claim 
(Ho) is great; this result has a very small chance of happening if the claim is true. In 
other words, you have sufficient evidence against the claim (Ho), and you reject Ho.

But how far is “too far” from 0? As long as you have a normal distribution or 
a large enough sample size, you know that your test statistic falls somewhere 
on a standard normal distribution (see Chapter 11). If the null hypothesis (Ho) 
is true, most (about 95%) of the samples will result in test statistics that lie 
roughly within 2 standard errors of the claim. If Ha is the not-equal-to alterna-
tive, any test statistic outside this range will result in Ho being rejected. See 
Figure 14-1 for a picture showing the locations of your test statistic and their 
corresponding conclusions. In the next section, you see how to quantify the 
amount of evidence you have against Ho.

 

Figure 14-1: 
Decisions 

for Ha: not-
equal-to.

 

Reject HO Reject HO

0-2 +2

Fail to reject HO Fail to reject HO

 Note that if the alternative hypothesis is the less-than alternative, you reject 
Ho only if the test statistic falls in the left tail of the distribution (below –1.64). 
Similarly, if Ha is the greater-than alternative, you reject Ho only if the test sta-
tistic falls in the right tail (above 1.64).

Defining a p-value
 A p-value is a probability associated with your test statistic. It measures the 

chance of getting results at least as strong as yours if the claim (Ho) were true. 
In the case of testing the population mean, the farther out your test statistic is 
on the tails of the standard normal (Z-) distribution, the smaller your p-value 
will be, the less likely your results were to have occurred, and the more 
evidence you have against the claim (Ho).
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Calculating a p-value
To find the p-value for your test statistic:

 1. Look up your test statistic on the appropriate distribution — in this 
case, on the standard normal (Z-) distribution (see the Z-table in the 
appendix).

 2. Find the chance that Z is beyond (more extreme than) your test statistic:

 • If Ha contains a less-than alternative, find the probability that Z is 
less than your test statistic (that is, look up your test statistic on the 
Z-table and find its corresponding probability). This is the p-value.

 • If Ha contains a greater-than alternative, find the probability that 
Z is greater than your test statistic (look up your test statistic on 
the Z-table, find its corresponding probability, and subtract it from 
one). The result is your p-value.

 • If Ha contains a non-equal-to alternative, find the probability that Z 
is beyond your test statistic and double it. There are two cases:

  If your test statistic is negative, first find the probability that Z 
is less than your test statistic (look up your test statistic on the 
Z-table and find its corresponding probability). Then double this 
probability to get the p-value.

  If your test statistic is positive, first find the probability that Z is 
greater than your test statistic (look up your test statistic on the 
Z-table, find its corresponding probability, and subtract it from 
one). Then double this result to get the p-value.

 Why do you double the probabilities if your Ha contains a non-equal-to 
alternative? Think of the not-equal-to alternative as the combination of the 
greater-than alternative and the less-than alternative. If you’ve got a positive 
test statistic, its p-value only accounts for the greater-than portion of the not-
equal-to alternative; double it to account for the less-than portion. (The dou-
bling of one p-value is possible because the Z-distribution is symmetric.)

Similarly, if you’ve got a negative test statistic, its p-value only accounts for 
the less-than portion of the not-equal-to alternative; double it to also account 
for the greater-than portion.

When testing Ho: p = 0.25 versus Ha: p < 0.25 in the varicose veins example 
from the previous section, the p-value turns out to be 0.1056. This is because 
the test statistic (calculated in the previous section) was –1.25, and when you 
look this number up on the Z-table (in the appendix) you find a probability 
of 0.1056 of being less than this value. If you had been testing the two-sided 
alternative, Ha: p ≠ 0.25, the p-value would be 2 ∗ 0.1056, or 0.2112.
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 If the results are likely to have occurred under the claim, then you fail to reject 
Ho (like a jury decides not guilty). If the results are unlikely to have occurred 
under the claim, then you reject Ho (like a jury decides guilty). The cutoff point 
between rejecting Ho and failing to reject Ho is another whole can of worms 
that I dissect in the next section (no pun intended).

Making Conclusions
To draw conclusions about Ho (reject or fail to reject) based on a p-value, you 
need to set a predetermined cutoff point where only those p-values less than 
or equal to the cutoff will result in rejecting Ho. This cutoff point is called the 
alpha level (α), or significance level for the test. While 0.05 is a very popular 
cutoff value for rejecting Ho, cutoff points and resulting decisions can vary — 
some people use stricter cutoffs, such as 0.01, requiring more evidence 
before rejecting Ho, and others may have less strict cutoffs, such as 0.10, 
requiring less evidence.

If Ho is rejected (that is, the p-value is less than or equal to the predetermined 
significance level), the researcher can say she’s found a statistically signifi-
cant result. A result is statistically significant if it’s too rare to have occurred 
by chance assuming Ho is true. If you get a statistically significant result, you 
have enough evidence to reject the claim, Ho, and conclude that something 
different or new is in effect (that is, Ha).

 The significance level can be thought of as the highest possible p-value that 
would reject Ho and declare the results statistically significant. Following are 
the general rules for making a decision about Ho based on a p-value:

 ✓ If the p-value is less than or equal to your significance level, then it meets 
your requirements for having enough evidence against Ho; you reject Ho.

 ✓ If the p-value is greater than your significance level, your data failed to 
show evidence beyond a reasonable doubt; you fail to reject Ho.

However, if you plan to make decisions about Ho by comparing the p-value to 
your significance level, you must decide on your significance level ahead of 
time. It wouldn’t be fair to change your cutoff point after you’ve got a sneak 
peak at what’s happening in the data.

 You may be wondering whether it’s okay to say “Accept Ho” instead of “Fail to 
reject Ho.” The answer is a big no. In a hypothesis test, you are not trying to 
show whether or not Ho is true (which accept implies) — indeed, if you knew 
whether Ho was true, you wouldn’t be doing the hypothesis test in the first 
place. You’re trying to show whether you have enough evidence to say Ho is 
false, based on your data. Either you have enough evidence to say it’s false (in 
which case you reject Ho) or you don’t have enough evidence to say it’s false 
(in which case you fail to reject Ho).
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Setting boundaries for rejecting Ho
These guidelines help you make a decision (reject or fail to reject Ho) based 
on a p-value when your significance level is 0.05:

 ✓ If the p-value is less than 0.01 (very small), the results are considered 
highly statistically significant — reject Ho.

 ✓ If the p-value is between 0.05 and 0.01 (but not super-close to 0.05), the 
results are considered statistically significant — reject Ho.

 ✓ If the p-value is really close to 0.05 (like 0.051 or 0.049), the results 
should be considered marginally  significant — the decision could go 
either way.

 ✓ If the p-value is greater than (but not super-close to) 0.05, the results are 
considered non-significant — you fail to reject Ho.

 When you hear a researcher say her results are found to be statistically signifi-
cant, look for the p-value and make your own decision; the researcher’s pre-
determined significance level may be different from yours. If the p-value isn’t 
stated, ask for it.

Testing varicose veins
In the varicose veins example in the last section, the p-value was found to be 
0.1056. This p-value is fairly large and indicates very weak evidence against 
Ho by almost anyone’s standards because it’s greater than 0.05 and even 
slightly greater than 0.10 (considered to be a very large significance level). 
In this case you fail to reject Ho. You didn’t have enough evidence to say the 
proportion of women with varicose veins is less than 0.25 (your alternative 
hypothesis). This isn’t declared to be a statistically significant result.

But say your p-value had been something like 0.026. A reader with a personal 
cutoff point of 0.05 would reject Ho in this case because the p-value (of 0.026) 
is less than 0.05. His conclusion would be that the proportion of women with 
varicose veins isn’t equal to 0.25; according to Ha in this case, you conclude 
it’s less than 0.25, and the results are statistically significant. However, a 
reader whose significance level is 0.01 wouldn’t have enough evidence (based 
on your sample) to reject Ho because the p-value of 0.026 is greater than 0.01. 
These results wouldn’t be statistically significant.

Finally, if the p-value turned out to be 0.049 and your significance level is 0.05, 
you can go by the book and say because it’s less than 0.05 you reject Ho, but you 
really should say your results are marginal, and let the reader decide. (Maybe 
they can flip a coin or something — “Heads we reject Ho, tails, we don’t!”)
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Assessing the Chance of a Wrong Decision
After you make a decision to either reject Ho or fail to reject Ho, the next step is 
living with the consequences, in terms of how people respond to your decision.

 ✓ If you conclude that a claim isn’t true but it actually is, will that result in 
a lawsuit, a fine, unnecessary changes in the product, or consumer boy-
cotts that shouldn’t have happened? It’s possible.

 ✓ If you can’t disprove a claim that’s wrong, what happens then? Will 
products continue to be made in the same way as they are now? Will no 
new law be made, no new action taken, because you showed that noth-
ing was wrong? Missed opportunities to blow the whistle have been 
known to occur.

 Whatever decision you make with a hypothesis test, you know there is a 
chance of being wrong; that’s life in the statistics world. Knowing the kinds of 
errors that can happen and finding out how to curb the chance of them occur-
ring are key.

Making a false alarm: Type-1 errors
Suppose a company claims that its average package delivery time is 2 days, 
and a consumer group tests this hypothesis, gets a p-value of 0.04, and 
concludes that the claim is false: They believe that the average delivery time 
is actually more than 2 days. This is a big deal. If the group can stand by its 
statistics, it has done well to inform the public about the false advertising 
issue. But what if the group is wrong?

 Even if the group bases their study on a good design, collects good data, and 
makes the right analysis, it can still be wrong. Why? Because its conclusions 
were based on a sample of packages, not on the entire population. And as 
Chapter 11 tells you, sample results vary from sample to sample.

Just because the results from a sample are unusual doesn’t mean they’re 
impossible. A p-value of 0.04 means that the chance of getting your particu-
lar test statistic, even if the claim is true, is 4% (less than 5%). You reject Ho 
in this case because that chance is small. But even a small chance is still a 
chance!

Perhaps your sample, though collected randomly, just happens to be one of 
those atypical samples whose result ended up far from what was expected. 
So, Ho could be true, but your results lead you to a different conclusion. How 
often does that happen? Five percent of the time (or whatever your given 
cutoff probability is for rejecting Ho).
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 Rejecting Ho when you shouldn’t is called a type-1 error. I don’t really like this 
name, because it seems so nondescript. I prefer to call a type-1 error a false 
alarm. In the case of the packages, if the consumer group made a type-1 error 
when it rejected the company’s claim, they created a false alarm. What’s the 
result? A very angry delivery company, I guarantee that!

 To reduce the chance of false alarms, set a low cutoff probability (significance 
level) for rejecting Ho. Setting it to 5% or 1% will keep the chance of a type-1 
error in check.

Missing out on a detection: Type-2 errors
On the other hand, suppose the company really wasn’t delivering on its 
claim. Who’s to say that the consumer group’s sample will detect it? If the 
actual delivery time is 2.1 days instead of 2 days, the difference would be 
pretty hard to detect. If the actual delivery time is 3 days, even a fairly small 
sample would probably show that something’s up. The issue lies with those 
in-between values, like 2.5 days.

 If Ho is indeed false, you want to find out about it and reject Ho. Not rejecting Ho 
when you should have is called a type-2 error. I like to call it a missed detection.

Sample size is the key to being able to detect situations where Ho is false and, 
thus, avoiding type-2 errors. The more information you have, the less vari-
able your results will be (see Chapter 11) and the more ability you have to 
zoom in on detecting problems that exist with a claim made by Ho.

This ability to detect when Ho is truly false is called the power of a test. Power 
is a pretty complicated issue, but what’s important for you to know is that 
the higher the sample size, the more powerful a test is. A powerful test has a 
small chance for a type-2 error.

 As a preventative measure to minimize the chances of a type-2 error, statisti-
cians recommend that you select a large sample size to ensure that any differ-
ences or departures that really exist won’t be missed.
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Chapter 15

Commonly Used Hypothesis Tests: 
Formulas and Examples

In This Chapter
▶ Breaking down commonly used hypothesis tests

▶ Calculating their test statistics

▶ Using the results to make informed decisions

From product advertisements to media blitzes on recent medical break-
throughs, you often run across claims made about one or more popula-

tions. For example, “We promise to deliver our packages in two days or less” 
or “Two recent studies show that a high-fiber diet may reduce your risk of 
colon cancer by 20%.” Whenever someone makes a claim (also called a null 
hypothesis) about a population (such as all packages, or all adults) you can test 
the claim by doing what statisticians call a hypothesis test.

A hypothesis test involves setting up your hypotheses (a claim and its alterna-
tive), selecting a sample (or samples), collecting data, calculating the rele-
vant statistics, and using those statistics to decide whether the claim is true. 

In this chapter, I outline the formulas used for some of the most common 
hypothesis tests, explain the necessary calculations, and walk you through 
some examples.

 If you need more background information on hypothesis testing (such as 
setting up hypotheses, understanding test statistics, p-values, significance 
levels, and type-1 and type-2 errors), just flip to Chapter 14. All the general 
concepts of hypothesis testing are developed there. This chapter focuses on 
their application.
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Testing One Population Mean
When the variable is numerical (for example, age, income, time, and so on) 
and only one population or group (such as all U.S. households or all col-
lege students) is being studied, you use the hypothesis test in this section 
to examine or challenge a claim about the population mean. For example, a 
child psychologist says that the average time that working mothers spend 
talking to their children is 11 minutes per day, on average. (For dads, the 
claim is 8 minutes.) The variable — time — is numerical, and the population 
is all working mothers. Using statistical notation, μ represents the average 
number of minutes per day that all working mothers spend talking to their 
children, on average.

The null hypothesis is that the population mean, μ, is equal to a certain 
claimed value, μo. The notation for the null hypothesis is Ho: μ = μo. So the 
null hypothesis in our example is Ho: μ = 11 minutes, and μo is 11. The three 
possibilities for the alternative hypothesis, Ha, are μ ≠ 11, μ < 11, or μ > 11, 
depending on what you are trying to show. (See Chapter 14 for more on 
alternative hypotheses.) If you suspect that the average time working moth-
ers spend talking with their kids is more than 11 minutes, your alternative 
hypothesis would be Ha: μ > 11.

To test the claim, you compare the mean you got from your sample ( ) with the 
mean shown in Ho (μo). To make a proper comparison, you look at the differ-
ence between them, and divide by the standard error to take into account the 
fact that your sample results will vary. (See Chapter 12 for all the info you need 
on standard error.) This result is your test statistic. In the case of a hypothesis 
test for the population mean, the test statistic turns out (under certain condi-
tions) to be a z-value (a value from the Z-distribution; see Chapter 9 ).

Then you can look up your test statistic on the appropriate table (in this 
case, you look it up on the Z-table in the appendix), and find the chance that 
this difference between your sample mean and the claimed population mean 
really could have occurred if the claim were true.

The test statistic for testing one population mean (under certain conditions) is

where  is the sample mean, σ is the population standard deviation (assume 
for this case that this number is known), and z is a value on the Z-distribution. 
To calculate the test statistic, do the following:

 1. Calculate the sample mean, .

 2. Find .

 3. Calculate the standard error:  .
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 4. Divide your result from Step 2 by the standard error found in Step 3.

 The conditions for using this test statistic are that the population standard 
deviation, σ, is known, and either the population has a normal distribution or 
the sample size is large enough to use the CLT (n > 30); see Chapter 11.

For our example, suppose a random sample of 100 working mothers spend 
an average of 11.5 minutes per day talking with their children. (Assume prior 
research suggests the population standard deviation is 2.3 minutes.)

 1. We are given that  is 11.5, n = 100, and σ is 2.3.

 2. Take 11.5 – 11 = +0.5.

 3. Take 2.3 divided by the square root of 100 (which is 10) to get 0.23 for 
the standard error.

 4. Divide +0.5 by 0.23 to get 2.17. That’s your test statistic, which means your 
sample mean is 2.17 standard errors above the claimed population mean.

 The big idea of a hypothesis test is to challenge the claim that’s being made 
about the population (in this case, the population mean); that claim is shown 
in the null hypothesis, Ho. If you have enough evidence from your sample 
against the claim, Ho is rejected. 

To decide whether you have enough evidence to reject Ho, calculate the 
p-value by looking up your test statistic (in this case 2.17) on the standard 
normal (Z-) distribution — see the Z-table in the appendix — and take 1 minus 
the probability shown. (You subtract from 1 because your Ha is a greater-
than hypothesis and the table shows less-than probabilities.)

For this example you look up the test statistic (2.17) on the Z-table and find 
the (less-than) probability is 0.9850, so the p-value is 1 – 0.9850 = 0.015. It’s 
quite a bit less than your (typical) significance level 0.05, which means your 
sample results would be considered unusual if the claim (of 11 minutes) was 
true. So reject the claim (Ho: μ = 11 minutes). Your results support the alter-
native hypothesis Ha: μ > 11. According to your data, the child psychologist’s 
claim of 11 minutes per day is too low; the actual average is greater than that.

For information on how to calculate p-values for the less-than or not-equal-to 
alternatives, also see Chapter 14.

Handling Small Samples and Unknown 
Standard Deviations: The t-Test

In two cases, you can’t use the Z-distribution for a test statistic for one popu-
lation mean. The first case is where the sample size is small (and by small, 
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I mean dropping below 30 or so) the second case is when the population 
standard deviation, σ, is not known, and you have to estimate it using the 
sample standard deviation, s. In both cases, you have less reliable informa-
tion on which to base your conclusions, so you have to pay a penalty for this 
by using a distribution with more variability in the tails than a Z-distribution 
has. Enter the t-distribution. (See Chapter 10 for all things t-distribution, 
including its relationship with the Z.)

A hypothesis test for a population mean that involves the t -distribution is 
called a t-test. The formula for the test statistic in this case is:

, where t
n-1 is a value from the t-distribution with n–1 degrees

 
of freedom.

Note it is just like the test statistic for the large sample and/or normal distri-
bution case (see the section “Testing One Population Mean”), except σ is not 
known, so you substitute the sample standard deviation, s, instead, and use a 
t-value rather than a z-value.

 Because the t-distribution has fatter tails than the Z-distribution, you get a 
larger p-value from the t-distribution than one that the standard normal (Z-) 
distribution would have given you for the same test statistic. A bigger p-value 
means less chance of rejecting Ho. Having less data and/or not knowing the 
population standard deviation should create a higher burden of proof.

Putting the t-test to work
Suppose a delivery company claims they deliver their packages in 2 days on 
average, and you suspect it’s longer than that. The hypotheses are Ho: μ = 2 
versus Ha: μ > 2. To test this claim, you take a random sample of 10 packages 
and record their delivery times. You find the sample mean is  days, 
and the sample standard deviation is 0.35 days. (Because the population 
standard deviation, σ, is unknown, you estimate it with s, the sample stan-
dard deviation.) This is a job for the t-test.

 Because the sample size is small (n =10 is much less than 30) and the popula-
tion standard deviation is not known, your test statistic has a t-distribution. Its 
degrees of freedom is 10 – 1 = 9. The formula for the test statistic (referred to 
as the t-value) is:

To calculate the p-value, you look in the row in the t-table (in the appendix) 
for df = 9. Your test statistic (2.71) falls between two values in the row for 
df = 9 in the t-table: 2.26 and 2.82 (rounding to two decimal places). To calculate 
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the p-value for your test statistic, find which columns correspond to these two 
numbers. The number 2.26 appears in the 0.025 column and the number 2.82 
appears in the 0.010 column; you now know the p-value for your test 
statistic lies between 0.025 and 0.010 (that is, 0.010 < p-value < 0.025).

Using the t-table you don’t know the exact number for the p-value, but because 
0.010 and 0.025 are both less than your significance level of 0.05, you reject Ho; 
you have enough evidence in your sample to say the packages are not being 
delivered in 2 days, and in fact the average delivery time is more than 2 days.

 The t-table (in the appendix) doesn’t include every possible t-value; just find 
the two values closest to yours on either side, look at the columns they’re in, 
and report your p-value in relation to theirs. (If your test statistic is greater 
than all the t-values in the corresponding row of the t-table, just use the last 
one; your p-value will be less than its probability.)

 Of course you can use statistical software, if available, to calculate exact 
p-values for any test statistic; using software you get 0.012 for the exact 
p-value.  

Relating t to Z
The next-to-the-last line of the t-table shows the corresponding values from the 
standard normal (Z-) distribution for the probabilities listed on the top of each 
column. Now choose a column in the table and move down the column look-
ing at the t-values. As the degrees of freedom of the t-distribution increase, the 
t-values get closer and closer to that row of the table where the z-values are.

This confirms a result found in Chapter 10: As the sample size (hence 
degrees of freedom) increases, the t-distribution becomes more and more 
like the Z-distribution, so the p-values from their hypothesis tests are virtu-
ally equal for large sample sizes. And those sample sizes don’t even have to 
be that large to see this relationship; for df = 30 the t-values are already very 
similar to the z-values shown in the bottom of the table. These results make 
sense; the more data you have, the less of a penalty you have to pay. (And of 
course, you can use computer technology to calculate more exact p-values 
for any t-value you like.)

Handling negative t-values
For a less-than alternative hypothesis (Ha: xx < xx), your test statistic would 
be a negative number (to the left of 0 on the t-distribution). In this case, you 
want to find the percentage below, or to the left of, your test statistic to get 
your p-value. Yet negative test statistics don’t appear on the t-table (in the 
appendix).
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Not to worry! The percentage to the left (below) a negative t-value is the same 
as the percentage to the right (above) the positive t-value, due to symmetry. 
So to find the p-value for your negative test statistic, look up the positive 
version of your test statistic on the t-table, find the corresponding right tail 
(greater-than) probability, and use that.

For example, suppose your test statistic is –2.7105 with 9 degrees of freedom 
and Ha is the less-than alternative. To find your p-value, first look up +2.7105 
on the t-table; by the work in the previous section, you know its p-value falls 
between the column headings 0.025 and 0.010. Because the t-distribution is sym-
metric, the p-value for –2.7105 also falls somewhere between 0.025 and 0.010. 
Again you reject Ho because these values are both less than or equal to 0.05.

Examining the not-equal-to alternative
 To find the p-value when your alternative hypothesis (Ha) is not-equal-to, 

simply double the probability that you get from the t-table when you look up 
your test statistic. Why double it? Because the t-table shows only greater-than 
probabilities, which are only half the story. To find the p-value when you have 
a not-equal-to alternative, you must add the p-values from the less-than and 
greater-than alternatives. Because the t-distribution is symmetric, the less-than 
and greater-than probabilities are the same, so just double the one you looked 
up on the t-table and you’ll have the p-value for the not-equal-to alternative.

For example, if your test statistic is 2.7171 and Ha is a not-equal-to alterna-
tive, look up 2.7171 on the t-table (df = 9 again), and you find the p-value lies 
between 0.025 and 0.010, as shown previously. These are the p-values for the 
greater-than alternative. Now double these values to include the less-than 
alternative and you find the p-value for your test statistic lies somewhere 
between 0.025 ∗ 2 = 0.05 and 0.010 ∗ 2 = 0.020.

Testing One Population Proportion
When the variable is categorical (for example, gender or support/oppose) 
and only one population or group is being studied (for example, all registered 
voters), you use the hypothesis test in this section to test a claim about the 
population proportion. The test looks at the proportion (p) of individuals in 
the population who have a certain characteristic — for example, the propor-
tion of people who carry cellphones. The null hypothesis is Ho: p = po, where 
po is a certain claimed value of the population proportion, p. For example, if 
the claim is that 70% of people carry cellphones, po is 0.70. The alternative 
hypothesis is one of the following: p > po, p < po, or p ≠ po. (See Chapter 14 for 
more on alternative hypotheses.)
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The formula for the test statistic for a single proportion (under certain 
conditions) is:

where  is the proportion of individuals in the sample who have that charac-
teristic and z is a value on the Z-distribution (see Chapter 9). To calculate the 
test statistic, do the following:

 1. Calculate the sample proportion, , by taking the number of people in 
the sample who have the characteristic of interest (for example, the 
number of people in the sample carrying cellphones) and dividing 
that by n, the sample size.

 2. Find , where p
o
 is the value in H

o
.

 3. Calculate the standard error, .

 4. Divide your result from Step 2 by your result from Step 3.

To interpret the test statistic, look up your test statistic on the standard 
normal (Z-) distribution (in the appendix) and calculate the p-value (see 
Chapter 14 for more on p-value calculations).

 The conditions for using this test statistic are that  
(see Chapter 9 for details).

For example, suppose Cavifree claims that four out of five dentists recom-
mend Cavifree toothpaste to their patients. In this case, the population is all 
dentists, and p is the proportion of all dentists who recommended Cavifree. 
The claim is that p is equal to “four out of five,” or po is 4 ÷ 5 = 0.80. You sus-
pect that the proportion is actually less than 0.80. Your hypotheses are Ho: 
p = 0.80 versus Ha: p < 0.80.

Suppose that 151 out of your sample of 200 dental patients reported receiving 
a recommendation for Cavifree from their dentist. To find the test statistic for 
these results, follow these steps:

 1. Start with  and n = 200.

 2. Because po = 0.80, take 0.755 – 0.80 = –0.045 (the numerator of the test 
 statistic).

 3. Next, the standard error equals  (the denominator 
of the test statistic).

 4. The test statistic is .
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 Because the resulting test statistic is negative, it means your sample results 
are –1.61 standard errors below (less than) the claimed value for the popula-
tion. How often would you expect to get results like this if Ho were true? The 
chance of being at or beyond (in this case less than) –1.61 is 0.0537. (Keep the 
negative with the number and look up –1.61 in the Z-table in the appendix.) 
This result is your p-value because Ha is a less-than hypothesis. (See Chapter 14 
for more on this.)

Because the p-value is greater than 0.05 (albeit not by much), you don’t have 
quite enough evidence for rejecting Ho. You conclude that the claim that 80% 
of dentists recommend Cavifree can’t be rejected, according to your data. 
However, it’s important to report the actual p-value too, so others can make 
their own decisions.

 The letter p is used two different ways in this chapter: p-value and p. The 
letter p by itself indicates the population proportion, not the p-value. Don’t get 
confused. Whenever you report a p-value, be sure you add –value so it’s not 
confused with p, the population proportion.

Comparing Two (Independent) 
Population Averages

When the variable is numerical (for example, income, cholesterol level, or 
miles per gallon) and two populations or groups are being compared (for 
example, men versus women), you use the steps in this section to test a 
claim about the difference in their averages. (For example, is the difference 
in the population means equal to zero, indicating their means are equal?) 
Two independent (totally separate) random samples need to be selected, one 
from each population, in order to collect the data needed for this test. 

The null hypothesis is that the two population means are the same; in other 
words, that their difference is equal to 0. The notation for the null hypothesis 
is Ho: μ1 = μ2, where μ1 represents the mean of the first population and μ2 rep-
resents the mean of the second population.

 You can also write the null hypothesis as Ho: μ1 – μ2 = 0, emphasizing the idea 
that their difference is equal to zero if the means are the same.

The formula for the test statistic comparing two means (under certain condi-
tions) is:
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To calculate it, do the following:

 1. Calculate the sample means . (Assume the population stan-
dard deviations,  and  are given.) Let n

1
 and n

2
 represent the two 

sample sizes (they need not be equal).

  See Chapter 5 for these calculations.

 2. Find the difference between the two sample means: .

  Because μ1 – μ2 is equal to 0 if Ho is true, it doesn’t need to be included 
in the numerator of the test statistic. However, if the difference they are 
testing is any value other than 0, you subtract that value in the numera-
tor of the test statistic. 

 3. Calculate the standard error using the following equation:

 4. Divide your result from Step 2 by your result from Step 3.

 To interpret the test statistic, add the following two steps to the list:

 5. Look up your test statistic on the standard normal (Z-) distribution (see 
the Z-table in the appendix) and calculate the p-value.

  (See Chapter 14 for more on p-value calculations.)

 6. Compare the p-value to your significance level, such as 0.05. If it’s less 
than or equal to 0.05, reject H

o
. Otherwise, fail to reject H

o
.

  (See Chapter 14 for the details on significance levels.)

 The conditions for using this test are that the two population standard 
deviations are known and either both populations have a normal distribution 
or both sample sizes are large enough for the Central Limit Theorem (see 
Chapter 11).

For example, suppose you want to compare the absorbency of two brands 
of paper towels (call the brands Stats-absorbent and Sponge-o-matic). You 
can make this comparison by looking at the average number of ounces each 
brand can absorb before being saturated. Ho says the difference between the 
average absorbencies is 0 (nonexistent), and Ha says the difference is not 0. 
In other words, one brand is more absorbent than the other. Using statistical 
notation, you have Ho = μ1 – μ2 = 0 versus Ha = μ1 – μ2 ≠ 0. Here, you have no 
indication of which paper towel may be more absorbent, so the not-equal-to 
alternative is the one to use (see Chapter 14).

Suppose you select a random sample of 50 paper towels from each brand 
and measure the absorbency of each paper towel. Suppose the average 
absorbency of Stats-absorbent (x1) for your sample is 3 ounces, and assume 
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the population standard deviation is 0.9 ounces. For Sponge-o-matic (x2), 
the average absorbency is 3.5 ounces according to your sample; assume the 
population standard deviation is 1.2 ounces. Carry out this hypothesis test 
by following the 6 steps listed above:

 1. Given the above information, you know , σ1 = 0.9, , σ2 = 1.2, 
n1 = 50, and n2 = 50.

 2. The difference between the sample means for (Stats-absorbent – Sponge-
o-matic) is . (A negative difference simply 
means that the second sample mean was larger than the first.)

 3. The standard error is .

 4. Divide the difference, –0.5, by the standard error, 0.2121, which gives 
you –2.36. This is your test statistic.

 5. To find the p-value, look up –2.36 on the standard normal (Z-) distribu-
tion — see the Z-table in the appendix. The chance of being beyond, 
in this case to the left of, –2.36 is equal to 0.0091. Because Ha is a not-
equal-to alternative, you double this percentage to get 2 ∗ 0.0091 = 
0.0182, your p-value. (See Chapter 14 for more on the not-equal-to 
alternative.)

 6. This p-value is quite a bit less than 0.05. That means you have fairly 
strong evidence to reject Ho.

Your conclusion is that a statistically significant difference exists between 
the absorbency levels of these two brands of paper towels, based on your 
samples. And Sponge-o-matic comes out on top, because it has a higher 
average. (Stats-absorbent minus Sponge-o-matic being negative means 
Sponge-o-matic had the higher value.)

 If one or both of your samples happen to be under 30 in size, you use the 
t-distribution (with degrees of freedom equal to n1 – 1 or n2 – 1, whichever is 
smaller) to look up the p-value. If the population standard deviations, σ1 and 
σ2, are unknown, you use the sample standard deviations s1 and s2 instead, and 
you use the t-distribution with the abovementioned degrees of freedom. (See 
Chapter 10 for more on the t-distribution.)

Testing for an Average Difference 
 (The Paired t-Test)

You can test for an average difference using the test in this section when 
the variable is numerical (for example, income, cholesterol level, or miles 
per gallon) and the individuals in the sample are either paired up in some 
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way according to relevant variables such as age or perhaps weight, or the 
same people are used twice (for example, using a pre-test and post-test). 
Paired tests are typically used for studies in which someone is testing to see 
whether a new treatment, technique, or method works better than an existing 
method, without having to worry about other factors about the subjects that 
may influence the results (see Chapter 17 for details).

 The average difference (tested in this section) isn’t the same as the difference 
in the averages (tested in the previous section):

 ✓ With the difference in averages, you compare the difference in the 
means of two separate samples to test the difference in the means of 
two different populations. 

 ✓ With the average difference, you match up the subjects so they are 
thought of as coming from a single population, and the set of differences 
measured for each subject (for example, pre-test versus post-test) are 
thought of as one sample. The hypothesis test then boils down to a test 
for one population mean (as I explain earlier in this chapter).

For example, suppose a researcher wants to see whether teaching students 
to read using a computer game gives better results than teaching with a 
tried-and-true phonics method. She randomly selects 20 students and puts 
them into 10 pairs according to their reading readiness level, age, IQ, and so 
on. She randomly selects one student from each pair to learn to read via the 
computer game method (abbreviated CM), and the other learns to read using 
the phonics method (abbreviated PM). At the end of the study, each student 
takes the same reading test. The data are shown in Table 15-1.

Table 15-1 Reading Scores for Computer Game Method 
 versus Phonics Method

Student Pair Computer Method Phonics Method Difference (CM – PM)

1 85 80 +5

2 80 80 0

3 95 88 +7

4 87 90 –3

5 78 72 +6

6 82 79 +3

7 57 50 +7

8 69 73 –4

9 73 78 –5

10 99 95 +4
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The original data are in pairs, but you’re really interested only in the dif-
ference in reading scores (computer reading score minus phonics reading 
score) for each pair, not the reading scores themselves. So the paired differ-
ences (the differences in the pairs of scores) are your new data set. See their 
values in the last column of Table 15-1.

By examining the differences in the pairs of observations, you really only 
have a single data set, and you only have a hypothesis test for one popula-
tion mean. In this case the null hypothesis is that the mean (of the paired dif-
ferences) is 0, and the alternative hypothesis is that the mean (of the paired 
 differences) is > 0.

If the two reading methods are the same, the average of the paired differ-
ences should be 0. If the computer method is better, the average of the 
paired differences should be positive; the computer reading score is larger 
than the phonics score.

 The notation for the null hypothesis is Ho: μ
d
 = 0, where μ

d
 is the mean of the 

paired differences for the population. (The d in the subscript just reminds you 
that you’re working with the paired differences.)

The formula for the test statistic for paired differences is , where 

 is the average of all the paired differences found in the sample, and t
n–1 is a 

value on the t-distribution with n
d
–1 degrees of freedom (see Chapter 10). 

 You use a t-distribution here because in most matched-pairs experiments the 
sample size is small and/or the population standard deviation σ

d
 is unknown, 

so it’s estimated by s
d
. (See Chapter 10 for more on the t-distribution.)

To calculate the test statistic for paired differences, do the following:

 1. For each pair of data, take the first value in the pair minus the second 
value in the pair to find the paired difference.

  Think of the differences as your new data set.

 2. Calculate the mean, , and the standard deviation, s
d
, of all the 

 differences.

 3. Letting n
d
 represent the number of paired differences that you have, 

calculate the standard error:

 4. Divide  by the standard error from Step 3.
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 Because μ
d
 is equal to 0 if Ho is true, it doesn’t really need to be included in the 

formula for the test statistic. As a result, you sometimes see the test statistic 
written like this:

 For the reading scores example, you can use the preceding steps to see whether 
the computer method is better in terms of teaching students to read.

To find the statistic, follow these steps:

 1. Calculate the differences for each pair (they’re shown in column 4 of 
Table 15-1).

  Notice that the sign on each of the differences is important; it indicates 
which method performed better for that particular pair.

 2. Calculate the mean and standard deviation of the differences from 
Step 1.

  My calculations found the mean of the differences, , and the stan-
dard deviation is s

d
 = 4.64. Note that n

d
 = 10 here.

 3. The standard error is .

  (Remember that here, n
d
 is the number of pairs, which is 10.)

 4. Take the mean of the differences (Step 2) divided by the standard 
error of 1.47 (Step 3) to get 1.36, the test statistic.

Is the result of Step 4 enough to say that the difference in reading scores 
found in this experiment applies to the whole population in general? Because 
the population standard deviation, σ, is unknown and you estimated it with 
the sample standard deviation (s), you need to use the t-distribution rather 
than the Z-distribution to find your p-value (see the section “Handling Small 
Samples and Unknown Standard Deviations: The t-Test,” earlier in this chap-
ter). Using the t-table (in the appendix) you look up 1.36 on the t-distribution 
with 10 – 1 = 9 degrees of freedom to calculate the p-value.

The p-value in this case is greater than 0.05 because 1.36 is smaller than (or to 
the left of) the value of 1.38 on the table, and therefore its p-value is more than 
0.10 (the p-value for the column heading corresponding to 1.38).

Because the p-value is greater than 0.05, you fail to reject Ho; you don’t 
have enough evidence that the mean difference in the scores between the 
computer method and the phonics method is significantly greater than 0. 
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However, that doesn’t necessarily mean a real difference isn’t present in the 
population of all students. But the researcher can’t say the computer game is 
a better reading method based on this sample of 10 students. (See Chapter 14 
for information on the power of a hypothesis test and its relationship to 
sample size.)

 In many paired experiments, the data sets are small due to costs and time 
associated with doing these kinds of studies. That means the t-distribution 
(see the t-table in the appendix) is often used instead of the standard normal 
(Z-) distribution (the Z-table in the appendix) when figuring out the p-value.

Comparing Two Population Proportions
This test is used when the variable is categorical (for example, smoker/
nonsmoker, Democrat/Republican, support/oppose an opinion, and so 
on) and you’re interested in the proportion of individuals with a certain 
characteristic — for example, the proportion of smokers. In this case, two 
populations or groups are being compared (such as the proportion of female 
smokers versus male smokers).

In order to conduct this test, two independent (separate) random samples 
need to be selected, one from each population. The null hypothesis is that the 
two population proportions are the same; in other words, that their difference 
is equal to 0. The notation for the null hypothesis is Ho: p1 = p2, where p1 is the 
proportion from the first population, and p2 is the proportion from the second 
population.

 Stating in Ho that the two proportions are equal is the same as saying their dif-
ference is zero. If you start with the equation p1 = p2 and subtract p2 from each 
side, you get p1 – p2 = 0. So you can write the null hypothesis either way.

The formula for the test statistic comparing two proportions (under certain 
conditions) is

where  is the proportion in the first sample with the characteristic of interest, 
 is the proportion in the second sample with the characteristic of interest,   

is the proportion in the combined sample (all the individuals in the first and 
second samples together) with the characteristic of interest, and z is a value 
on the Z-distribution (see Chapter 9). To calculate the test statistic, do the 
following:

22_9780470911082-ch15.indd   24022_9780470911082-ch15.indd   240 3/25/11   8:14 PM3/25/11   8:14 PM



241 Chapter 15: Commonly Used Hypothesis Tests: Formulas and Examples

 1. Calculate the sample proportions  and  for each sample. Let n
1
 and 

n
2
 represent the two sample sizes (they don’t need to be equal).

 2. Find the difference between the two sample proportions, .

 3. Calculate the overall sample proportion , the total number of indi-
viduals from both samples who have the characteristic of interest (for 
example, the total number of smokers, male or female, in the sample), 
divided by the total number of individuals from both samples (n

1
 + n

2
).

 4. Calculate the standard error:

 5. Divide your result from Step 2 by your result from Step 4. This answer 
is your test statistic.

To interpret the test statistic, look up your test statistic on the standard 
normal (Z-) distribution (the Z-table in the appendix) and calculate the p-value, 
then make decisions as usual (see Chapter 14 for more on p-values). 

Consider those drug ads that pharmaceutical companies put in magazines. The 
front page of an ad shows a serene picture of the sun shining, flowers bloom-
ing, people smiling — their lives changed by the drug. The company claims 
that its drugs can reduce allergy symptoms, help people sleep better, lower 
blood pressure, or fix whichever other ailment it’s targeted to help. The claims 
may sound too good to be true, but when you turn the page to the back of the 
ad, you see all the fine print where the drug company justifies how it’s able to 
make its claims. (This is typically where statistics are buried!) Somewhere in 
the tiny print, you’ll likely find a table that shows adverse effects of the drug 
when compared to a control group (subjects who take a fake drug), for fair 
comparison to those who actually took the real drug (the treatment group; see 
Chapter 17 for more on this).

For example, Adderall, a drug for attention deficit hyperactivity disorder 
(ADHD), reported that 26 of the 374 subjects (7%) who took the drug experi-
enced vomiting as a side effect, compared to 8 of the 210 subjects (4%) who 
were on a placebo (fake drug). Note that patients didn’t know which treat-
ment they were given. In the sample, more people on the drug experienced 
vomiting, but is this percentage enough to say that the entire population on 
the drug would experience more vomiting? You can test it to see.

In this example, you have Ho: p1 – p2 = 0 versus Ho: p1 – p2 > 0, where p1 repre-
sents the proportion of subjects who vomited using Adderall, and p2 repre-
sents the proportion of subjects who vomited using the placebo.
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 Why does Ha contain a “>” sign and not a “<” sign? Ha represents the scenario 
in which those taking Adderall experience more vomiting than those on the 
placebo — that’s something the FDA (and any candidate for the drug) would 
want to know about. But the order of the groups is important, too. You want 
to set it up so the Adderall group is first, so that when you take the Adderall 
proportion minus the placebo proportion, you get a positive number if Ha is 
true. If you switch the groups, the sign would have been negative.

Now calculate the test statistic:

 1. First, determine that

  The sample sizes are n1 = 374 and n2 = 210, respectively.

 2. Take the difference between these sample proportions to get 
.

 3. Calculate the overall sample proportion to get .

 4. The standard error is .

 5. Finally, the test statistic is 0.032 ÷ 0.020 = 1.60. Whew!

The p-value is the percentage chance of being at or beyond (in this case to 
the right of) 1.60, which is 1 – 0.9452 = 0.0548. This p-value is just slightly 
greater than 0.05, so, technically, you don’t have quite enough evidence to 
reject Ho. That means that according to your data, vomiting is not experi-
enced any more by those taking this drug when compared to a placebo.

 A p-value that’s very close to that magical but somewhat arbitrary significance 
level of 0.05 is what statisticians call a marginal result. In the preceding exam-
ple, because the p-value of 0.0548 is close to the borderline between accept-
ing and rejecting Ho, it’s generally viewed as a marginal result and should be 
reported as such.

The beauty of reporting a p-value is that you can look at it and decide for 
yourself what you should conclude. The smaller the p-value, the more evi-
dence you have against Ho, but how much evidence is enough evidence? Each 
person is different. If you come across a report from a study in which some-
one found a statistically significant result, and that result is important to you, 
ask for the p-value so that you can make your own decision. (See Chapter 14 
for more.)
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Part V

Statistical Studies 
and the Hunt for a 

Meaningful 
Relationship
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In this part . . .

Many statistics you hear and see each day are based 
on the results of surveys, experiments, and obser-

vational studies. Unfortunately, you can’t believe every-
thing you read or hear.

In this part, you look at what actually happens behind the 
scenes of these studies — how they are designed and con-
ducted and how the data is (supposed to be) collected — 
so that you’ll be able to spot misleading results. You also 
see what’s needed to conduct your own study correctly 
and effectively.

You also analyze data from good studies to look for rela-
tionships between two variables, where both variables are 
categorical (using two-way tables) or both are numerical 
(using correlation and regression). In addition, you see 
how to make proper conclusions and spot problems.
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Chapter 16

Polls, Polls, and More Polls
In This Chapter
▶ Realizing the impact of polls and surveys

▶ Going behind the scenes of polls and surveys

▶ Detecting biased and inaccurate survey results

Surveys are all the rage amid today’s information explosion. Everyone 
wants to know how the public feels about issues from prescription 

drug prices and methods of disciplining children to approval ratings of the 
president and ratings of reality TV shows. Polls and surveys are a big part 
of American life; they’re a vehicle for quickly getting information about how 
you feel, what you think, and how you live your life, and they’re a means of 
quickly disseminating information about important issues. Surveys highlight 
controversial topics, raise awareness, make political points, stress the impor-
tance of an issue, and educate or persuade the public.

 Survey results can be powerful, because when many people hear that “such 
and such percentage of the American people do this or that,” they accept 
these results as the truth, and then make decisions and form opinions based 
on that information. But in fact, many surveys don’t provide correct, complete, 
or even fair or balanced information.

In this chapter, I discuss the impact of surveys and how they’re used, and I 
take you behind the scenes of how surveys are designed and conducted so 
you know what to watch for when examining survey results and how to run 
your own surveys right. I also talk about how to interpret survey results and 
how to spot biased and inaccurate information, so that you can determine for 
yourself which results to believe and which to ignore.

Recognizing the Impact of Polls
A survey is an instrument that collects data through questions and answers. 
It is used to gather information about the opinions, behaviors, demographics, 
lifestyles, and other reportable characteristics of the population of interest. 
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What’s the difference between a poll and a survey? Statisticians don’t make 
a clear distinction between the two, but I’ve noticed that what people call a 
poll is typically a short survey containing only a few questions (maybe that’s 
how researchers get more people to respond — they call it a poll rather than a 
survey!). But for all intents and purposes, surveys and polls are the same thing.

You come into contact with surveys and their results on a daily basis. 
Compared to other types of studies, such as medical experiments, some sur-
veys can be relatively easy to conduct. They provide quick results that can 
often make interesting headlines in newspapers or eye-catching stories in 
magazines. People connect with surveys because they feel that survey results 
represent the opinions of people just like themselves (even though they may 
never have been asked to participate in a survey). And many people enjoy 
seeing how other people feel, what they do, where they go, and what they 
care about. Looking at survey results makes people feel linked with a bigger 
group, somehow. That’s what pollsters (the people who conduct surveys) 
bank on, and that’s why they spend so much time doing surveys and polls 
and reporting the results of this research.

Getting to the source
Who conducts surveys these days? Pretty much anyone and everyone who 
has a question to ask. Some of the groups that conduct polls and report the 
results include the following:

 ✓ News organizations

 ✓ Political parties and candidates running for office

 ✓ Professional polling organizations (such as the Gallup Organization, 
the Harris Poll, Zogby International, and the National Opinion Research 
Center [NORC])

 ✓ Representatives of magazines, TV shows, and radio programs

 ✓ Professional research organizations (like the American Medical 
Association, Smithsonian Institution, and Pew Research Center for 
the People and the Press)

 ✓ Special-interest groups (such as the National Rifle Association, 
Greenpeace, and American Civil Liberties Union)

 ✓ Academic researchers

 ✓ The United States government

 ✓ Joe Six-Pack (who can easily conduct his own survey on the Internet)
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 Some surveys are just for fun, and others are more serious. Be sure to check 
the source of any serious survey in which you’re asked to participate and for 
which you’re given results. Groups that have a special interest in the results 
should either hire an independent organization to conduct (or at least to 
review) the survey, or they should offer copies of the survey questions to the 
public. Groups should also disclose in detail how the survey was designed and 
conducted, so that the public can make an informed decision about the credi-
bility of the results.

Ranking the worst cars of the millennium
You may be familiar with a radio show called 
Car Talk that’s typically aired Saturday morn-
ings on National Public Radio and is hosted by 
“Click and Clack,” two brothers in Cambridge, 
Massachusetts, who offer wise and wacky 
advice to callers with strange car problems. 
The show’s Web site regularly offers “just for 
fun” surveys on a wide range of car-related 
topics, such as, “Who has bumper stickers 
on their cars, and what do they say?” One of 
their surveys asked the question, “What do you 
think was the worst car of the millennium?” 
Thousands upon thousands of folks responded 
with their votes — but, of course, these folks 
don’t represent all car owners. They represent 
only those who listen to the radio show, logged 

on to the Web site, and answered the survey 
question.

Just so you won’t be left hanging (and I 
know you’re dying to find out!), the results of 
the survey are shown in the following table. 
Although you may not be old enough to remem-
ber some of these vehicles, it is certainly an 
easy exercise to search the Internet for pictures 
and stories about them galore. (Remember, 
though, that these results represent only the 
opinions of Car Talk fans who took the time to 
get to the Web site and take the survey.) Notice 
that the  percentages won’t add up to 100% 
because the results in the table represent only 
the top ten vote-getters.

Rank Type of Car Percentage of Votes

1 Yugo 33.7%

2 Chevy Vega 15.8%

3 Ford Pinto 12.6%

4 AMC Gremlin 8.5%

5 Chevy Chevette 7.0%

6 Renault LeCar 4.3%

7 Dodge Aspen / Plymouth Volare 4.1%

8 Cadillac Cimarron 4.0%

9 Renault Dauphine 3.6%

10 Volkswagen (VW) Bus 2.7%
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Surveying what’s hot
The topics of many surveys are driven by current events, issues, and areas of 
interest; after all, timeliness and relevance to the public are two of the most 
attractive qualities of any survey. Here are just a few examples of some of the 
subjects being brought to the surface by today’s surveys, along with some of 
the results being reported:

 ✓ Does celebrity activism influence the political opinions of the American 
public? (Over 90% of the American public says no, according to CBS News.)

 ✓ What percentage of Americans have dated a co-worker? (A whopping 
40% have, according to a career networking Web site.)

 ✓ How many patients surf the Web to find health-related information? 
(55% do, according to a national medical journal.)

When you read the preceding survey results, do you find yourself thinking 
about what the results mean to you, rather than first asking yourself whether 
the results are valid? Some of the preceding survey results are more valid 
and accurate than others, and you should think about whether to believe the 
results first, before accepting them without question. Nationally known poll-
ing and research organizations such as those mentioned in the previous sec-
tion are credible sources, as well as journals that are peer-reviewed (meaning 
all papers published in the journal have been reviewed by others in the field 
and passed a certain set of standards). And the U.S. government does a good 
job with their data collection as well. If you are not familiar with a group con-
ducting a survey and the results are important to you, check out the source.

Impacting lives
Whereas some surveys are just fun to look at and think about, other surveys 
can have a direct impact on your life or your workplace. These life-decision 
surveys need to be closely scrutinized before action is taken or important 
decisions are made. Surveys at this level can cause politicians to change 
or create new laws, motivate researchers to work on the latest problems, 
encourage manufacturers to invent new products or change business policies 
and practices, and influence people’s behavior and ways of thinking. The fol-
lowing are some examples of survey results that can impact you:

 ✓ Children’s healthcare suffers: A survey of 400 pediatricians by the 
Children’s National Medical Center in Washington, D.C., reported that 
pediatricians spend, on average, only 8 to 12 minutes with each patient.
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 ✓ Teens drink more: According to the 2009 Partnership Attitude Tracking 
Study, conducted by the Partnership for a Drug-Free America, the 
number of teens in grades 9 through 12 that use alcohol has grown by 
4% (from 35% in 2008 to 39% in 2009), reversing the downward trend 
experienced in the ten years prior to the survey.

  Always look at how researchers define the terms they’re using to col-
lect their data. In the above example, how did they define “alcohol use”? 
Does it count if the teenager tried alcohol once? Does it mean they drink 
alcohol on a consistent basis? Results can be misleading if the range 
of what or who gets counted is too wide. Find out what questions were 
actually asked when the data was collected.

 ✓ Crimes go unreported: The U.S. Bureau of Justice Crime Victimization 
Survey concludes that only 49.4% of violent crimes were reported to 
police. The reasons victims gave for not reporting crimes to the police 
are listed in Table 16-1.

Table 16-1 Reasons Victims Didn’t Report Violent Crimes

Reason for Not Reporting Percentage of Victims

Considered it to be a personal matter 19.2%

The offender was not successful/didn’t complete the crime 15.9%

Reported the crime to another official 14.7%

Didn’t consider the crime to be important enough 5.5%

Didn’t think police would want to be bothered 5.3%

Lack of proof 5.0%

Fear of reprisal 4.6%

Too inconvenient/time consuming to report it 3.9%

Thought police would be biased/ineffective 2.7%

Property stolen had no ID number 0.5%

Not aware that a crime occurred until later 0.4%

Other reasons 22.3%

The most frequently given reason for not reporting a violent crime to the 
police was that the victim considered it to be a personal matter (19.2%). Note 
that almost 12% of the reasons relate to perception of the reporting process 
itself (for example, that it would take too much time or that the police would 
be bothered, biased, or ineffective).
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 By the way, did you notice how large the “Other reasons” category is? This 
large, unexplained percentage indicates that the survey can be more specific 
and/or more research can be done regarding why crime victims don’t report 
crimes. Maybe the victims themselves aren’t even sure.

Behind the Scenes: The Ins 
and Outs of Surveys

Surveys and their results are a part of your daily experience, and you use 
these results to make decisions that affect your life. (Some decisions may 
even be life changing.) Looking at surveys with a critical eye is important. 
Before taking action or making decisions based on survey results, you must 
determine whether those results are credible, reliable, and believable. A good 
way to begin developing these detective skills is to go behind the scenes and 
see how surveys are designed, developed, implemented, and analyzed.

The survey process can be broken down into a series of ten steps:

 1. Clarify the purpose of your survey.

 2. Define the target population.

 3. Choose the type and timing of the survey.

 4. Design the introduction with ethics in mind.

 5. Formulate the questions.

 6. Select the sample.

 7. Carry out the survey.

 8. Follow up, follow up, and follow up.

 9. Organize and analyze the data.

 10. Draw conclusions.

Each step presents its own set of special issues and challenges, but each step 
is critical in terms of producing survey results that are fair and accurate. This 
sequence of steps helps you design, plan, and implement a survey, but it can 
also be used to critique someone else’s survey, if those results are important 
to you.

Planning and designing a survey
The purpose of a survey is to answer questions about a target population. 
The target population is the entire group of individuals that you’re interested 
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in drawing conclusions about. In most situations, surveying the entire target 
population (that is, conducting a full-blown census) is impossible because 
researchers would have to spend too much time or money to do so. Usually, 
the best you can do is to select a sample of individuals from the target popu-
lation, survey those individuals, then draw conclusions about the target 
population based on the data from that sample.

Sounds easy, right? Wrong. Many potential problems arise after you realize 
that you can’t survey everyone in the entire target population. Then, after a 
sample is selected, many researchers aren’t sure what to do to get the data 
they need. Unfortunately, many surveys are conducted without taking the 
time needed to think through these issues, resulting in errors, misleading 
results, and wrong conclusions. In the following sections, I give specifics for 
the first five steps in the survey process.

Clarifying the purpose of your survey
This sounds like it should just be common sense, but in reality, many surveys 
have been designed and carried out that never met their purpose, or that met 
only some of the objectives, but not all of them. Getting lost in the questions 
and forgetting what you’re really trying to find out is easy to do. In stating the 
purpose of a survey, be as specific as possible. Think about the types of con-
clusions you would want to make if you were to write a report, and let that 
help you determine your goals for the survey.

Lots of researchers can’t see the forest for the trees. If a restaurant manager 
wants to determine and compare satisfaction rates for her customers, she 
needs to think ahead about what kinds of comparisons she wants to make 
and what information she wants to be able to report on. Questions that pin-
point when the customers came into the restaurant (date and time), or even 
what table they were at, are relevant. And if she wants to compare satisfac-
tion rates for, say, adults versus families, she needs to ask how many people 
were in the party and how many were children. But if she simply asks a 
couple of questions on satisfaction or throws in every question she can think 
of, without considering in advance why she needs the information, she may 
end up with more questions than answers.

 The more specific you can be about the purpose of the survey, the more easily 
you can design questions that meet your objectives, and the better off you’ll 
be when you need to write your report.

Defining the target population
Suppose, for example, that you want to conduct a survey to determine the 
extent to which people send and receive personal e-mail in the workplace. 
You may think that the target population is e-mail users in the workplace. 
However, you want to determine the extent to which personal e-mail is used 
in the workplace, so you can’t just ask e-mail users, or your results would be 
biased against those who don’t use e-mail in the workplace. But should you 
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also include those who don’t even have access to a computer during their 
workday? (See how fast surveys can get tricky?)

The target population that probably makes the most sense here is all the 
people who use Internet-connected computers in the workplace. Everyone 
in this group at least has access to e-mail, though only some of those with 
access to e-mail in the workplace actually use it, and of those who use it, only 
some use it for personal e-mail. (And that’s what you want to find out — how 
much they use e-mail for that purpose.)

 You need to be clear in your definition of the target population. Your defini-
tion is what helps you select the proper sample, and it also guides you in your 
conclusions, so that you don’t overgeneralize your results. If the researcher 
didn’t clearly define the target population, this can be a sign of other prob-
lems with the survey.

Choosing the type and timing of the survey
The next step in designing your survey is to choose what type of survey is 
most appropriate for the situation at hand. Surveys can be done over the 
phone, through the mail, with door-to-door interviews, or over the Internet. 
However, not every type of survey is appropriate for every situation. For 
example, suppose you want to determine some of the factors that relate to 
illiteracy in the United States. You wouldn’t want to send a survey through 
the mail, because people who can’t read won’t be able to take the survey. In 
that case, a telephone interview is more appropriate.

 Choose the type of survey that’s most appropriate for the target population, 
in terms of getting the most truthful and informative data possible. You also 
have to keep in mind the budget you have to work with; door-to-door inter-
views are more expensive than phone surveys, for example. When examining 
the results of a survey, be sure to look at whether the type of survey used is 
most appropriate for the situation, keeping budget considerations in mind.

Next you need to decide when to conduct the survey. In life, timing is every-
thing, and the same goes for surveys. Current events shape people’s opinions 
all the time, and although some pollsters try to determine how people feel 
about those events, others take advantage of events, especially negative 
ones, and use them as political platforms or as fodder for headlines and 
controversy. For example, surveys about gun control often come up after a 
shooting takes place. Also take note of other events that were going on at the 
time of the survey; for example, people may not want to answer their phones 
during the Super Bowl, on election night, during the Olympics, or around 
holidays. Improper timing can lead to bias.

In addition to the date, the time of day is also important. If you conduct a 
telephone survey to get people’s opinions on stress in the workplace and 
you call them at home between the hours of 9 a.m. and 5 p.m., you’re going 
to have bias in your results; those are the hours when the majority of people 
are at work (busy being stressed out!).

24_9780470911082-ch16.indd   25224_9780470911082-ch16.indd   252 3/25/11   8:13 PM3/25/11   8:13 PM



253 Chapter 16: Polls, Polls, and More Polls

Designing the introduction with ethics in mind
While this rule doesn’t apply to little polls that you see on the Internet and in 
magazines, serious surveys need to provide information pertaining to impor-
tant ethical issues. First, they should include what pollsters call a cover letter — 
an introduction that explains the purpose of the survey, what will be done with 
the data, whether the information the respondent supplies will be confidential 
or anonymous (see the sidebar “Anonymity versus confidentiality” later in this 
chapter), and that the person’s participation is appreciated but not required. 
The cover letter should also provide the researcher’s contact information for 
respondents to use if they have questions or concerns.

 If the survey is done by any institution or group that is federally regulated, 
such as a university, research institute, or a hospital, the survey has to be 
approved in advance by a committee designated to review, regulate, and/or 
monitor the research to make sure it’s ethical, scientific, and follows regula-
tions. Such committees are called institutional review boards (IRBs), indepen-
dent ethics committees (IECs), or ethical review boards (ERBs). The survey 
cover letter should explain who has approved the research. If you don’t see 
such information, ask.

Formulating the questions
After the purpose, type, timing, and ethical issues of the survey have been 
addressed, the next step is to formulate the questions. The way that the 
questions are asked can make a huge difference in the quality of the data that 
will be collected. One of the single most common sources of bias in surveys 
is the wording of the questions. Research shows that the wording of the 
questions can directly affect the outcome of a survey. Leading questions, also 
called misleading questions, are designed to favor a certain response over 
another. They can greatly affect how people answer the questions, and their 
responses may not accurately reflect how they truly feel about an issue.

For example, here are two ways that I’ve seen survey questions worded 
about a proposed school bond issue (both of which are leading questions):

Don’t you agree that a tiny percentage increase in sales tax is a worthwhile 
investment in improving the quality of the education of our children?

Don’t you think we should stop increasing the burden on the taxpayers and 
stop asking for yet another sales tax hike to fund the wasteful school system?

From the wording of each of these leading questions, you can easily see how 
the pollsters want you to respond. To make matters worse, neither question 
tells you exactly how much of a tax increase is being proposed, which is also 
misleading.

 The best way to word a question is in a neutral way, giving the reader the nec-
essary information required to make an informed decision. For example, the 
tax issue question is better worded this way:
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The school district is proposing a 0.01% increase in sales tax to provide 
funds for a new high school to be built in the district. What’s your opinion on 
the proposed sales tax? (Possible responses: strongly in favor, in favor, neu-
tral, against, strongly against.)

If the purpose of a survey is purely to collect information rather than influ-
ence or persuade the respondent, the questions should be worded in a neu-
tral and informative way in order to minimize bias. The best way to assess 
the neutrality of a question is to ask yourself whether you can tell how the 
person wants you to respond. If the answer is yes, that question is a leading 
question and can give misleading results.

 If the results of a survey are important to you, ask the researcher for a copy 
of the questions used on the survey so you can assess the quality of the ques-
tions. When conducting your own survey, have others check the questions to 
verify that the wording is neutral and informative.

Selecting the sample
After the survey has been designed, the next step is to select people to partici-
pate in the survey. Because typically you don’t have time or money to conduct a 
census (a survey of the entire target population), you need to select a subset of 
the population, called a sample. How this sample is selected can make all the dif-
ference in terms of the accuracy and the quality of the results.

Three criteria are important in selecting a good sample, as you find out in the 
following sections.

A good sample represents the target population
To represent the target population, the sample must be selected from the 
target population, the whole target population, and nothing but the target 
population. Suppose you want to find out how many hours of TV Americans 
watch in a day, on average. Asking students in a dorm at a local university to 
record their TV viewing habits isn’t going to cut it. Students represent only a 
portion of the target population.

 Unfortunately, many people who conduct surveys don’t take the time or 
spend the money to select a representative sample of people to participate in 
the study, and they end up with biased survey results. When presented with 
survey results, find out how the sample was selected before examining the 
results of the survey and see how well they match the target population.
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A good sample is selected randomly
A random sample is one in which every possible sample (of the same size) has 
an equal chance of being selected from the target population. The easiest exam-
ple to visualize here is that of a hat (or bucket) containing individual slips of 
paper, each with the name of a person written on it; if the slips are thoroughly 
mixed before each slip of paper is drawn out, the result will be a random sample 
of the target population (in this case, the population of people whose names are 
in the hat). A random sample eliminates bias in the sampling process.

Reputable polling organizations, such as the Gallup Organization, use a 
random digit-dialing procedure to telephone the members of their sample. Of 
course, this excludes people without telephones, but because most American 
households today have at least one telephone, the bias involved in excluding 
people without telephones is relatively small.

 Beware of surveys that have a large but not randomly selected sample. 
Internet surveys are the biggest culprit. Someone can say that 50,000 people 
logged on to a Web site to answer a survey, and that means the person post-
ing this site has gotten a lot of data. But the information is biased; research 
shows that people who respond to surveys tend to have stronger opinions 
than those that don’t respond. And if they didn’t even select the participants 
randomly to start with, imagine how strong (and biased) the respondents’ 
opinions would be. If the survey designer sampled fewer people but did so 
randomly, the survey results would be more accurate.

A good sample is large enough for the results to be accurate
If you have a large sample size, and if the sample is representative of the 
target population and is selected at random, you can count on that informa-
tion being pretty accurate. How accurate depends on the sample size, but the 
bigger the sample size, the more accurate the information will be (as long as 
that information is good information). The accuracy of most survey questions 
is measured in terms of a percentage. This percentage is called the margin of 
error, and it represents how much the researcher expects the results to vary if 
she were to repeat the survey many times using different samples of the same 
size. Read more about this in Chapter 12.

 A quick and dirty formula to estimate the minimum amount of accuracy of a 
survey involving categorical data (such as gender or political affiliation) is to 
take 1 divided by the square root of the sample size. For example, a survey of 
1,000 (randomly selected) people is accurate to within ±0.032, or 3.2 percent-
age points. (See Chapter 12 for the exact formula for calculating the accuracy 
of a survey.) In cases where not everyone responded, you should replace 
the sample size with the number of respondents (see the “Following up, fol-
lowing up, and following up” section later in this chapter). Remember, these 
quick-and-dirty estimates of accuracy are conservative; using the precise 
formulas gives you accuracy rates that are often much better than these. 
(See Chapter 13 for details.)
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 With large populations (in the thousands, say) it’s the size of the sample, not 
the size of the population, that matters. For example, if you randomly sample 
1,000 individuals from a large population, your accuracy level is estimated to 
be within 3.2 percentage points, no matter whether you sample from a small 
town of 10,000 people, a state of 1,000,000 people, or all of the United States. 
That fact was one of the things that blew my mind about statistics when I first 
learned it, and it still does today — it’s amazing how accurate you can get with 
such a comparatively small sample size.

 However, with small populations, you have to apply different methods to 
determine accuracy and sample size. A sample of 10 out of a population of 100 
takes a much larger piece out of the pie than a sample of 10 out of 10,000 does, 
for example. More advanced methods involving a finite population correction 
handle issues that come up with small populations.

Carrying out a survey
The survey has been designed, and the participants have been selected. Now 
you have to go about the process of carrying out the survey, which is another 
important step — one where lots of mistakes and biases can occur.

Collecting the data
During the survey itself, the participants can have problems understanding 
the questions, they may give answers that aren’t among the choices (in the 
case of a multiple choice question), or they may decide to give answers that 
are inaccurate or blatantly false; the latter is called response bias. (As an exam-
ple of response bias, think about the difficulties involved in getting people to 
tell the truth about whether they’ve cheated on their income-tax forms.) 

Some of the potential problems with the data-collection process can be 
minimized or avoided with careful training of the personnel who carry out 
the survey. With proper training, any issues that arise during the survey are 
resolved in a consistent and clear way, and fewer errors are made in record-
ing the data. Problems with confusing questions or incomplete choices for 
answers can be resolved by conducting a pilot study on a few participants 
prior to the actual survey and then, based on their feedback, fixing any prob-
lems with the questions.

Personnel can also be trained to create an environment in which each respon-
dent feels safe enough to tell the truth; ensuring that privacy will be protected 
also helps encourage more people to respond. To minimize interviewer bias, 
the interviewers must follow a script that’s the same for each subject.
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 Beware of conflicts of interest that come up with misleading surveys. For 
example, if you are being asked about the quality of your service by the 
person who gave you the service, you may not want to respond truthfully. Or, 
if your physical therapist gives you an “anonymous” feedback survey on your 
last day and tells you to give it to her when you’re done, the survey may have 
issues of bias.

Following up, following up, and following up
Anyone who has ever thrown away a survey or refused to “answer a few 
questions” over the phone knows that getting people to participate in a 
survey isn’t easy. If the researcher wants to minimize bias, the best way to 
handle it is to get as many folks to respond as possible by following up, one, 
two, or even three times. Offer dollar bills, coupons, self-addressed stamped 
return envelopes, chances to win prizes, and so on. Every little bit helps.

If only those folks who feel very strongly respond to a survey, that means 
that only their opinions will count, because the other people who didn’t 
really care about the issue didn’t respond, and their “I don’t care” vote didn’t 
get counted. Or maybe they did care, but they just didn’t take the time to tell 
anyone. Either way, their vote doesn’t count.

For example, suppose 1,000 people are given a survey about whether the 
park rules should be changed to allow dogs without leashes. Most likely, 

Anonymity versus confidentiality
If you were to conduct a survey to determine 
the extent of personal e-mail use at work, the 
response rate would probably be an issue, 
because many people are reluctant to discuss 
their use of personal e-mail in the workplace, 
or at least to do so truthfully. You could try to 
encourage people to respond by letting them 
know that their privacy would be protected 
during and after the survey.

When you report the results of a survey, you 
generally don’t tie the information collected to 
the names of the respondents, because doing 
so would violate the privacy of the respondents. 
You’ve probably heard the terms anonymous 
and confidential before, but what you may not 

realize is that these two words are completely 
different in terms of privacy issues. Keeping 
results confidential means that I could tie your 
information to your name in my report, but I 
promise that I won’t do that. Keeping results 
anonymous means that I have no way of tying 
your information to your name in my report, 
even if I wanted to.

If you’re asked to participate in a survey, be 
sure you’re clear about what the researchers 
plan to do with your responses and whether or 
not your name can be tied to the survey. (Good 
surveys always make this issue very clear for 
you.) Then make a decision as to whether you 
still want to participate.
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the respondents would be those who strongly agree or disagree with the 
proposed rules. Suppose only 200 people respond ed — 100 against and 100 
for the issue. That would mean that 800 opinions weren’t counted. Suppose 
none of those 800 people really cared about the issue either way. If you could 
count their opinions, the results would be 800 ÷ 1,000 = 80% “no opinion,” 
100 ÷ 1,000 = 10% in favor of the new rules, and 100 ÷ 1,000 = 10% against the 
new rules. But without the votes of the 800 non-respondents, the researchers 
would report, “Of the people who responded, 50% were in favor of the new 
rules and 50% were against them.” This gives the impression of a very differ-
ent (and a very biased) result from the one you would’ve gotten if all 1,000 
people had responded.

The response rate of a survey is a ratio found by taking the number of respon-
dents divided by the number of people who were originally asked to partici-
pate. You of course want to have the highest response rate you can get with 
your survey; but how high is high enough to be minimizing bias? The purest 
of the pure statisticians feel that a good response rate is anything over 70%, 
but I think we need to be a little more realistic. Today’s fast-paced society is 
saturated with surveys; many if not most response rates fall far short of 70%. 
In fact, response rates for today’s surveys are more likely to be in the 20% to 
30% range, unless the survey is conducted by a professional polling organiza-
tion such as Gallup or you are being offered a new car just for filling one out. 

 Look for the response rate when examining survey results. If the response rate 
is too low (much less than 50%) the results are likely to be biased and should 
be taken with a grain of salt, or even ignored.

 Don’t be fooled by a survey that claims to have a large number of respondents 
but actually has a low response rate; in this case, many people may have 
responded, but many more were asked and didn’t respond.

Note that statistical formulas at this level (including the formulas in this book) 
assume that your sample size is equal to the number of respondents, so statis-
ticians want you to know how important it is to follow up with people and not 
end up with biased data due to non-response. However, in reality, statisticians 
know that you can’t always get everyone to respond, no matter how hard you 
try; indeed, even the U.S. Census doesn’t have a 100% response rate. One way 
statisticians combat the non-response problem after the data have been col-
lected is to break down the data to see how well it matches the target popula-
tion. If it’s a fairly good match, they can rest easier on the bias issue.

So which number do you put in for n in all those statistical formulas you 
use so often (such as the sample mean in Chapter 5)? You can’t use the 
intended sample size (the number of people contacted). You have to use the 
final sample size (the number of people who responded). In the media you 
most often see only the number of respondents reported, but you also need 
the response rate (or the total number of respondents) to be able to critically 
evaluate the results.
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 Regarding the quality of results, selecting a smaller initial sample size and fol-
lowing them up more aggressively is a much better approach than selecting a 
larger group of potential respondents and having a low response rate, because 
of the bias introduced by non-response.

Interpreting results and finding problems
The purpose of a survey is to gain information about your target population; 
this information can include opinions, demographic information, or lifestyles 
and behaviors. If the survey has been designed and conducted in a fair and 
accurate manner with the goals of the survey in mind, the data should pro-
vide good information as to what’s happening with the target population 
(within the stated margin of error; see Chapter 12). The next steps are to 
organize the data to get a clear picture of what’s happening; to analyze the 
data to look for links, differences, or other relationships of interest; and then 
to draw conclusions based on the results.

Organizing and analyzing
After a survey has been completed, the next step is to organize and analyze 
the data (in other words, crunch some numbers and make some graphs). 
Many different types of data displays and summary statistics can be created 
and calculated from survey data, depending on the type of information that 
was collected. (Numerical data, such as income, have different character-
istics and are usually presented differently than categorical data, such as 
gender.) For more information on how data can be organized and summa-
rized, see Chapters 5 through 7. Depending on the research question, differ-
ent types of analyses can be performed on the data, including coming up with 
population estimates, testing a hypothesis about the population, or looking 
for relationships, to name a few. See Chapters 13, 14, 15, 18, and 19 for more 
on each of these analyses, respectively.

 Watch for misleading graphs and statistics. Not all survey data are organized 
and analyzed fairly and correctly. See Chapter 3 for more about how statistics 
can go wrong.

Drawing conclusions
The conclusions are the best part of any survey — they’re why the research-
ers do all of the work in the first place. If the survey was designed and carried 
out properly — the sample was selected carefully and the data were organized 
and summarized correctly — the results should fairly and accurately repre-
sent the reality of the target population. But, of course, not all surveys are 
done right. And even if a survey is done correctly, researchers can misinter-
pret or overinterpret results so that they say more than they really should.
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 You know the saying “Seeing is believing”? Some researchers are guilty of the 
converse, which is “Believing is seeing.” In other words, they claim to see what 
they want to believe about the results. All the more reason for you to know 
where the line is drawn between reasonable conclusions and misleading 
results, and to realize when others have crossed that line.

Here are some common errors made in drawing conclusions from surveys:

 ✓ Making projections to a larger population than the study actually 
 represents

 ✓ Claiming a difference exists between two groups when a difference isn’t 
really there (see Chapter 15)

 ✓ Saying, “these results aren’t scientific, but . . . ,” and then going on to 
present the results as if they are scientific

 To avoid common errors made when drawing conclusions, do the following:

 1. Check whether the sample was selected properly and that the conclu-
sions don’t go beyond the population presented by that sample.

 2. Look for any disclaimers about the survey before reading the results.

  That way, if the results aren’t based on a scientific survey (an accurate 
and unbiased survey), you’ll be less likely to be influenced by the results 
you’re reading. You can judge for yourself whether the survey results 
are credible.

 3. Be on the lookout for statistically incorrect conclusions.

  If someone reports a difference between two groups in terms of survey 
results, be sure that the difference is larger than the reported margin of 
error. If the difference is within the margin of error, you should expect 
the sample results to vary by that much just by chance, and the so-
called “difference” can’t really be generalized to the entire population. 
(See Chapter 14 for more on this.)

 Know the limitations of any survey and be wary of any information coming 
from surveys in which those limitations aren’t respected. A bad survey is 
cheap and easy to do, but you get what you pay for. But don’t let big expen-
sive surveys fool you either — they can be riddled with bias as well! Before 
looking at the results of any survey, investigate how it was designed and con-
ducted, using the criteria and tips in this chapter, so you can judge the quality 
of the results and express yourself confidently and correctly about what is 
wrong.

24_9780470911082-ch16.indd   26024_9780470911082-ch16.indd   260 3/25/11   8:13 PM3/25/11   8:13 PM



Chapter 17

Experiments: Medical 
Breakthroughs or 

Misleading Results?
In This Chapter
▶ Distinguishing experiments from observational studies

▶ Dissecting the criteria for a good experiment

▶ Watching for misleading results

Medical breakthroughs seem to come and go quickly. One day you 
hear about a promising new treatment for a disease, only to find out 

later that the drug didn’t live up to expectations in the last stage of testing. 
Pharmaceutical companies bombard TV viewers with commercials for pills, 
sending millions of people to their doctors clamoring for the latest and great-
est cures for their ills, sometimes without even knowing what the drugs are 
for. Anyone can search the Internet for details about any type of ailment, dis-
ease, or symptom and come up with tons of information and advice. But how 
much can you really believe? And how do you decide which options are best 
for you if you get sick, need surgery, or have an emergency?

In this chapter, you go behind the scenes of experiments, the driving force of 
medical studies and other investigations in which comparisons are made — 
comparisons that test, for example, which building materials are best, which 
soft drink teens prefer, and so on. You find out the difference between experi-
ments and observational studies and discover what experiments can do for 
you, how they’re supposed to be done, how they can go wrong, and how you 
can spot misleading results. With so many headlines, sound bites, and pieces 
of “expert advice” coming at you from all directions, you need to use all your 
critical thinking skills to evaluate the sometimes-conflicting information 
you’re presented with on a regular basis.
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Boiling Down the Basics of Studies
Although many different types of studies exist, you can basically boil them 
down to two types: experiments and observational studies. This section 
examines what exactly makes experiments different from other studies. But 
before I dive in to the details, I need to lay some jargon on you.

Looking at the lingo of studies
To understand studies, you need to find out what their commonly used terms 
mean:

 ✓ Subjects: Individuals participating in the study.

 ✓ Observational study: A study in which the researcher merely observes 
the subjects and records the information. No intervention takes place, 
no changes are introduced, and no restrictions or controls are imposed.

 ✓ Experiment: This study doesn’t simply observe subjects in their natural 
state; it deliberately applies treatments to them in a controlled situation 
and studies their effects on the outcome.

 ✓ Response: The response is the variable whose outcome is the million 
dollar question; it’s the variable whose outcome is of interest. For exam-
ple, if researchers want to know what happens to your blood pressure 
when you take a large amount of Ibuprofen each day, the response vari-
able is blood pressure.

 ✓ Factor: A factor is the variable whose effect on the response is being 
studied. For example, if you want to know whether a particular drug 
increases blood pressure, your factor is the amount of the drug taken. 
If you want to know which weight loss program is most effective, your 
factor would be the type of weight loss program used.

  You can have more than one factor in a study; however, in this book 
I stick with discussing one factor only. For the analysis of two-factor 
studies, including the use of Analysis of Variance (ANOVA) and multiple 
comparisons to compare treatment combinations, you can check out my 
book Statistics II For Dummies, also published by Wiley.

 ✓ Level: A level is one possible outcome of a factor. Each factor has a cer-
tain number of levels. In the weight loss example, the factor is the type 
of weight loss program and the levels would be the specific programs 
studied (for example Weight Watchers, South Beach, or the famous 
Potato Diet). Levels need not be ascending in any way; however, in a 
study like the drug example, the levels would be the various dosages 
taken each day, in increasing amounts.
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 ✓ Treatment: A treatment is a combination of the levels of the factors 
being studied. If you only have one factor, the levels and the treatments 
are the same thing. If you have more than one factor, each combination 
of levels of the factors is called a treatment.

  For example, if you want to study the effects of the type of weight loss 
program and the amount of water consumed daily, you have two fac-
tors: 1) the type of program, with 3 levels (Weight Watchers, South 
Beach, Potato Diet); and 2) the amount of water consumed, with, say, 
3 levels (24, 48, and 64 ounces per day). In this case, there are 3 ∗ 3 = 9 
treatments: Weight Watchers and 24 ounces of water per day; Weight 
Watchers and 48 ounces of water per day, . . . all the way up to the 
famous Potato Diet and 64 ounces of water per day. Each subject is 
assigned to one treatment. (With my luck, I’d get that last treatment.)

 ✓ Cause and effect: A factor and a response have a cause-and-effect 
relationship if a change in the factor results in a direct change in the 
response (for example, increasing calorie intake causes weight gain).

In the following sections, you see the differences between observational 
studies and experiments, when each is used, and what their strengths and/or 
weaknesses may be.

Observing observational studies
Just like with tools, you want to find the right type of study for the right job. 
In certain situations, observational studies are the optimal way to go. The 
most common observational studies are polls and surveys (see Chapter 16). 
When the goal is simply to find out what people think and to collect some 
demographic information (such as gender, age, income, and so on), surveys 
and polls can’t be beat, as long as they’re designed and conducted correctly.

In other situations, especially those looking for cause-and-effect relationships, 
observational studies aren’t optimal. For example, suppose you took a couple 
of vitamin C pills last week; is that what helped you avoid getting that cold 
that’s going around the office? Maybe the extra sleep you got recently or 
the extra hand-washing you’ve been doing helped you ward off the cold. Or 
maybe you just got lucky this time. With so many variables in the mix, how 
can you tell which one had an influence on the outcome of your not getting a 
cold? An experiment that takes these other variables into account is the way 
to go.

 When looking at the results of any study, first determine what the purpose of 
the study was and whether the type of study fits the purpose. For example, 
if an observational study was done instead of an experiment to establish a 
cause-and-effect relationship, any conclusions that are drawn should be care-
fully scrutinized.
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Examining experiments
The object of an experiment is to see if the response changes as a result of 
the factor you are studying; that is, you are looking for cause and effect. For 
example, does taking Ibuprofen cause blood pressure to increase? If so, by 
how much? But because results will vary with any experiment, you want to 
know that your results have a high chance of being repeatable if you found 
something interesting happening. That is, you want to know that your results 
were unlikely to be due to chance; statisticians call such results statistically 
significant. That’s the objective of any study, observational, or experimental.

 A good experiment is conducted by creating a very controlled environment — 
so controlled that the researcher can pinpoint whether a certain factor or 
combination of factors causes a change in the response variable, and if so, 
the extent to which that factor (or combination of factors) influences the 
response. For example, to gain government approval for a proposed blood 
pressure drug, pharmaceutical researchers set up experiments to determine 
whether that drug helps lower blood pressure, what dosage level is most 
appropriate for each different population of patients, what side effects (if any) 
occur, and to what extent those side effects occur in each population.

Designing a Good Experiment
How an experiment is designed can mean the difference between good 
results and garbage. Because most researchers are going to write the most 
glowing press releases that they can about their experiments, you have to 
be able to sort through the hype to determine whether to believe the results 
you’re being told. To decide whether an experiment is credible, check to see 
if it meets all the following criteria for a good experiment. A good experiment:

 ✓ Makes comparisons

 ✓ Includes a large enough sample size so that the results are accurate

 ✓ Chooses subjects that most accurately represent the target population

 ✓ Assigns subjects randomly to the treatment group(s) and the control 
group

 ✓ Controls for possible confounding variables

 ✓ Is ethical

 ✓ Collects good data

 ✓ Applies the proper data analysis

 ✓ Makes appropriate conclusions

In this section, each of these criteria is explained and illustrated with examples.
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Designing the experiment 
to make comparisons
Every experiment has to make bonafide comparisons to be credible. This 
seems to go without saying, but researchers often are so gung-ho to prove 
their results that they forget (or just don’t bother) to show that their factor, 
and not some other factor(s), including random chance, was the actual cause 
for any differences found in the response.

For example, suppose a researcher is convinced that taking vitamin C pre-
vents colds, and she assigns subjects to take one vitamin C pill per day and 
follows them for 6 months. Suppose the subjects get very few colds during 
that time. Can she attribute these results to the vitamin C and nothing else? 
No; there’s no way of knowing whether the subjects would have been just as 
healthy without the vitamin C, due to some other factor(s), or just by chance. 
There’s nothing to compare the results to.

 To tease out the real effect (if any) that your factor has on the response, you 
need a baseline to compare the results to. This baseline is called the control. 
Different methods exist for creating a control in an experiment; depending on 
the situation, one method typically rises to the top as being the most appro-
priate. Three common methods for including control are to administer: 1) a 
fake treatment; 2) a standard treatment; or 3) no treatment. The following sec-
tions describe each method.

 When examining the results of an experiment, make sure the researchers estab-
lished a baseline by creating a control group. Without a control group, you 
have nothing to compare the results to, and you never know whether the treat-
ment being applied was the real cause of any differences found in the response.

Fake treatments — the placebo effect
A fake treatment (also called a placebo) is not distinguishable from a “real” 
treatment by the subject. For example, when drugs are administered, a 
subject assigned to the placebo will receive a fake pill that looks and tastes 
exactly like a real pill; it’s just filled with an inert substance like sugar 
instead of the actual drug. A placebo establishes a baseline measure for 
what responses would have taken place anyway, in lieu of any treatment 
(this would have helped the vitamin C study mentioned under “Designing 
the experiment to make comparisons”). But a fake treatment also takes into 
account what researchers call the placebo effect, a response that people have 
(or think they’re having) because they know they’re getting some type of 
“treatment” (even if that treatment is a fake treatment, such as sugar pills).

Pharmaceutical companies are required to account for the placebo effect 
when examining both the positive and negative effects of a drug. When you 
see an ad for a drug in a magazine, you see the positive results of the drug 
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standing out in big, bright, happy, colorful visuals. Then look at the back of 
the page and you see it’s entirely filled in black with words written in 3-point 
font. Embedded somewhere on that page, you can find one or more tiny 
tables that show the number and nature of side effects reported by each 
treatment group (subjects who received an actual treatment) as well as the 
control group (subjects who were administered a placebo).

 If the control group is on a placebo, you may expect the subjects not to report 
any side effects, but you would be wrong. If you are taking a pill, you know it 
could be an actual drug, and you are being asked whether or not you’re expe-
riencing side effects, you might be surprised at what your response would be.

If you don’t take the placebo effect into account, you have to believe that any 
side effects (or positive results) reported are actually due to the drug. This 
gives an artificially high number of reported side effects because at least some 
of those reports are likely due to the placebo effect and not to the drug itself. 
If you have a control group to compare with, you can subtract the percentage 
of people in the control group who reported the side effects from the per-
centage of people in the treatment group that reported the side effects, and 
examine the magnitude of the numbers that remain. You’re in essence look-
ing at the net number of reported side effects due to the drug, rather than the 
gross number of side effects, some of which are due to the placebo effect.

 The placebo effect has been shown to be real. If you want to be fair about exam-
ining the reported side effects (or positive reactions) of a treatment, you have 
to also take into account the side effects (or positive reactions) that the control 
group reports — those reactions that are due to the placebo effect only.

Standard treatments
 In some situations, such as when the subjects have very serious diseases, 

offering a fake treatment as an option may be unethical. One famous example 
of a breech in ethics occurred in 1997. The U.S. government was harshly 
criticized for financing an HIV study that examined new dosage levels of AZT, 
a drug known at that time to cut the risk of HIV transmission from pregnant 
mothers to their babies by two-thirds. This particular study, in which 12,000 
pregnant women with HIV in Africa, Thailand, and the Dominican Republic 
participated, had a deadly design. Researchers gave half of the women vari-
ous dosages of AZT, but the other half of the women received sugar pills. Of 
course, had the U.S. government realized that a placebo was being given to 
half of the subjects, it wouldn’t have supported the HIV study. It’s not ethical 
to give a fake treatment to anyone with a deadly disease for which a standard 
treatment is available (in this case, the standard dosage of AZT).

When ethical reasons bar the use of fake treatments, the new treatment is 
compared to at least one existing or standard treatment that is known to be 
an effective treatment. After researchers have enough data to see that one of 
the treatments is working better than the other, they generally stop the exper-
iment and put everyone on the better treatment; again, for ethical reasons.
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No treatment
“No treatment” means the researcher can’t help but tell which group the sub-
ject is in, due to the nature of the experiment. The subjects in this case aren’t 
receiving any type of intervention in terms of their behavior, but they still 
serve as a control, establishing a baseline of data to compare their results 
with those in the treatment group(s). For example, if you want to determine 
whether speed walking around the block ten times a day lowers a person’s 
resting heart rate after six months, the subjects in your control group know 
they aren’t going to be speed walking — obviously you can’t do fake speed 
walking (although faking exercising and still reaping the benefits would be 
great, wouldn’t it?).

 In situations where the control group receives no treatment, you still make 
sure the groups of subjects (speed walkers versus non–speed walkers) are sim-
ilar in as many ways as possible, and that the other criteria for a good experi-
ment are being met. (See “Designing a Good Experiment” for the list of criteria.)

Selecting the sample size
The size of a (good) sample greatly affects the accuracy of the results. The 
larger the sample size, the more accurate the results, and the more powerful 
the statistical tests (in terms of being able to detect real results when they 
exist). In this section, I hit the highlights; Chapter 14 has the details.

 The word sample is often attributed to surveys where a random sample is 
selected from the target population (see Chapter 16). However, in the setting 
of experiments, a sample means the group of subjects who have volunteered 
to participate.

Limiting small samples to small conclusions
You may be surprised at the number of research headlines that have been 
made regarding large populations that were based on very small samples. 
Such headlines can be of concern to statisticians, who know that detecting 
true statistically significant results in a large population using a small sample 
is difficult because small data sets have more variability from sample to 
sample (see Chapter 12). When sample sizes are small and big conclusions 
have been made by the researcher, either the researchers didn’t use the right 
hypothesis test to analyze their data (for example, using the Z-distribution 
rather than the t-distribution; see Chapter 10) or the difference was so large 
that it would be very difficult to miss. The latter isn’t always the case, however.

 Be wary of research conclusions that find significant results based on small 
sample sizes (especially for experiments involving many treatments but only a 
few subjects assigned to each treatment). Statisticians want to see at least five 
subjects per treatment, but (much) more is (much) better. You do need to be 
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aware of some of the limitations of experiments such as cost, time, as well as 
ethical issues, and realize that the number of subjects for experiments is often 
smaller than the number of participants in a survey.

If the results are important to you, ask for a copy of the research report 
and look to see what type of analysis was done on the data. Also look at the 
sample of subjects to see whether this sample truly represents the popula-
tion about which the researchers are drawing conclusions.

Defining sample size
When asking questions about sample size, be specific about what you mean 
by the term. For example, you can ask how many subjects were selected to 
participate and also ask for the number who actually completed the experi-
ment; these two numbers can be very different. Make sure the researchers 
can explain any situations in which the research subjects decided to drop 
out or were unable (for some reason) to finish the experiment.

For example, an article in The New York Times titled “Marijuana Is Called an 
Effective Relief in Cancer Therapy” says in the opening paragraph that mari-
juana is “far more effective” than any other drug in relieving the side effects 
of chemotherapy. When you get into the details, you find out that the results 
are based on only 29 patients (15 on the treatment, 14 on a placebo). Then 
you find out that only 12 of the 15 patients in the treatment group actually 
completed the study. What happened to the other three subjects?

 Sometimes researchers draw their conclusions based on only those subjects 
who completed the study. This can be misleading, because the data don’t 
include information about those who dropped out (and why), which may be 
leading to biased data. For a discussion of the sample size you need to achieve 
a certain level of accuracy, see Chapter 13.

 Accuracy isn’t the only issue in terms of having “good” data. You still need to 
worry about eliminating bias by selecting a random sample (see Chapter 16 
for more on how random samples are taken).

Choosing the subjects
The first step in carrying out an experiment is selecting the subjects (par-
ticipants). Although researchers would like their subjects to be selected 
randomly from their respective populations, in most cases, this just isn’t 
appropriate. For example, suppose a group of eye researchers wants to test 
out a new laser surgery on nearsighted people. They need a random sample 
of subjects, so they randomly select various eye doctors from across the 
country and randomly select nearsighted patients from these doctors’ files. 
They call up each person selected and say, “We’re experimenting with a 
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new laser surgery technique for nearsightedness, and you’ve been selected at 
random to participate in our study. When can you come in for the surgery?” 
Something tells me that this approach wouldn’t go over very well with many 
people receiving the call (although some would probably jump at the chance, 
especially if they didn’t have to pay for the procedure).

 The point is that getting a truly random sample of people to participate in an 
experiment is generally more difficult than getting a random sample of folks 
to participate in a survey. However, statisticians can build techniques into the 
design of an experiment to help minimize the potential bias that can occur.

Making random assignments
One way to minimize bias in an experiment is to introduce some randomness. 
After the sample has been decided on, the subjects are randomly divided 
into treatment and control groups. The treatment groups receive the vari-
ous treatments being studied, and the control group receives the current (or 
standard) treatment, no treatment, or a placebo. (See the section “Designing 
the experiment to make comparisons” earlier in this chapter.)

Making random assignments of subjects to treatments is an extremely critical 
step toward minimizing bias in an experiment. Suppose a researcher wants to 
determine the effects of exercise on heart rate. The subjects in his treatment 
group run 5 miles and have their heart rates measured before and after the 
run. The subjects in his control group sit on the couch the whole time and 
watch reruns of old TV shows. Which group would you rather be in? Some 
health nuts out there would no doubt volunteer for the treatment group. If 
you’re not crazy about the idea of running five miles, you may opt for the 
easy way out and volunteer to be a couch potato. (Or maybe you hate to 
watch old reruns so much that you’d run five miles to avoid that.)

Finding volunteers
To find subjects for their experiments, research-
ers often advertise for volunteers and offer them 
incentives such as money, free treatments, or 
follow-up care for their participation. Medical 
research on humans is complicated and diffi-
cult, but it’s necessary in order to really know 
whether a treatment works, how well it works, 
what the dosage should be, and what the side 
effects are. In order to prescribe the right treat-
ments in the right amounts in real-life situations, 

doctors and patients depend on these studies 
being representative of the general population. 
In order to recruit such representative subjects, 
researchers have to do a broad advertisement 
campaign and select enough participants with 
enough different characteristics to represent a 
cross section of the populations of folks who 
will be prescribed these treatments in the 
future.

25_9780470911082-ch17.indd   26925_9780470911082-ch17.indd   269 3/25/11   8:13 PM3/25/11   8:13 PM



270 Part V: Statistical Studies and the Hunt for a Meaningful Relationship 

What impact would this selective volunteering have on the results of the study? 
If only the health nuts (who probably already have excellent heart rates) vol-
unteer to be in the treatment group, the researcher will be looking only at the 
effect of the treatment (running five miles) on very healthy and active people. 
He won’t see the effect that running five miles has on the heart rates of couch 
potatoes. This non-random assignment of subjects to the treatment and control 
groups could have a huge impact on the conclusions he draws from this study.

 To avoid major bias in the results of an experiment, subjects must be ran-
domly assigned to treatments by a third party and not be allowed to choose 
which group they will be in. The goal of random assignment is to create 
homogenous groups; any unusual characteristics or biases have an equal 
chance of appearing in any of the groups. Keep this in mind when you evaluate 
the results of an experiment.

Controlling for confounding variables
Suppose you’re participating in a research study that looks at factors influenc-
ing whether you catch a cold. If a researcher records only whether you got 
a cold after a certain period of time and asks questions about your behavior 
(how many times per day you washed your hands, how many hours of sleep 
you get each night, and so on), the researcher is conducting an observational 
study. The problem with this type of observational study is that without con-
trolling for other factors that may have had an influence and without regulat-
ing which action you were taking when, the researcher won’t be able to single 
out exactly which of your actions (if any) actually impacted the outcome.

 The biggest limitation of observational studies is that they can’t really show 
true cause-and-effect relationships, due to what statisticians call confounding 
variables. A confounding variable is a variable or factor that was not controlled 
for in the study but can have an influence on the results.

For example, one news headline boasted, “Study links older mothers, long 
life.” The opening paragraph said that women who have a first baby after age 
40 have a much better chance of living to be 100, compared to women who 
have a first baby at an earlier age. When you get into the details of the study 
(done in 1996) you find out, first of all, that it was based on 78 women in sub-
urban Boston who were born in 1896 and had lived to be at least 100, com-
pared to 54 women who were also born in 1896 but died in 1969 (the earliest 
year the researchers could get computerized death records). This so-called 
“control group” lived to be exactly 73, no more and no less. Of the women who 
lived to be at least 100 years of age, 19% had given birth after age 40, whereas 
only 5.5% of the women who died at age 73 had given birth after age 40.
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I have a real problem with these conclusions. What about the fact that the 
“control group” was based only on mothers who died in 1969 at age 73? What 
about all the other mothers who died before age 73, or who died between the 
ages of 73 and 100? What about other variables that may affect both mothers’ 
ages at the births of their children and longer life spans — variables such 
as financial status, marital stability, or other socioeconomic factors? The 
women in this study were in their thirties during the Depression; this may 
have influenced both their life span and if or when they had children.

 How do researchers handle confounding variables? They control for them as 
best they can, for as many of them as they can anticipate, trying to minimize 
their possible effect on the response. In experiments involving human sub-
jects, researchers have to battle many confounding variables.

For example, in a study trying to determine the effect of different types and 
volumes of music on the amount of time grocery shoppers spend in the store 
(yes, they do think about that), researchers have to anticipate as many pos-
sible confounding variables ahead of time and then control for them. What 
other factors besides volume and type of music may influence the amount of 
time you spend in a grocery store? I can think of several factors: gender, age, 
time of day, whether you have children with you, how much money you have, 
the day of the week, how clean and inviting the store is, how nice the employ-
ees are, and (most importantly) what your motive is — are you shopping for 
the whole week, or are you just running in to grab a candy bar?

How can researchers begin to control for so many possible confounding fac-
tors? Some of them can be controlled for in the design of the study, such as 
the time of the day, day of the week, and reason for shopping. But other fac-
tors (such as the perception of the store environment) depend totally on the 
individual in the study. The ultimate form of control for those person-specific 
confounding variables is to use pairs of people that are matched according 
to important variables, or to just use the same person twice: once with the 
treatment and once without. This type of experiment is called a matched-pairs 
design. (See Chapter 15 for more on this.)

 Before believing any medical headlines (or any headlines with statistics, for 
that matter), look to see how the study was conducted. Observational studies 
can’t control for confounding variables, so their results are not as statistically 
meaningful (no matter what the statistics say) as the results of a well-designed 
experiment are. In cases where an experiment can’t be done (after all, no one 
can force you to have a baby after or before age 40), make sure the observa-
tional study is based on a large enough sample that represents a cross-section 
of the population. And think about possible confounding variables that may 
affect the conclusions being drawn.
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Respecting ethical issues
The trouble with experiments is that some experimental designs are not 
ethical. You can’t force research subjects to smoke in order to see whether 
they get lung cancer, for example — you can only look at people who have 
lung cancer and work backward to see what factors (variables being studied) 
may have caused the disease. But because you can’t control for the various 
factors you’re interested in — or for any other variables, for that matter — 
singling out any one particular cause becomes difficult with observational 
studies. That’s why so much evidence was needed to show that smoking 
causes lung cancer, and why the tobacco companies only recently had to pay 
huge penalties to victims.

Although the causes of cancer and other diseases can’t be determined ethically 
by conducting experiments on humans, new treatments for cancer can be 
(and are) tested using experiments. Medical studies that involve experiments 
are called clinical trials. The U.S. government has a registry of federally and 
privately supported clinical trials conducted in the United States and around 
the world; it also has information available on who may participate in various 
clinical trials. Check out www.clinicaltrials.gov for more information.

Serious experiments (such as those funded by and/or regulated by the U.S. 
government) must pass a huge series of tests that can take years to carry 
out. The approval of a new drug, for example, goes through a very lengthy, 
comprehensive, and detailed process regulated and monitored by the FDA 
(Federal Drug Administration). One reason the cost of prescription drugs 
is so high is the massive amount of time and money needed to conduct 
research and development of new drugs, most of which fail to pass the tests 
and have to be scrapped.

Any experiments involving human subjects are also regulated by the fed-
eral government and have to gain approval by a committee created for the 
purpose of protecting “the rights and welfare of the participants.” The com-
mittees set up for different organizations have different names (such as 
Institutional Review Board [IRB], Independent Ethics Committee [IEC], or 
Ethical Review Board [ERB], to name a few) but they all serve the same pur-
pose. Research conducted on animals is more nebulous in terms of regula-
tions and continues to be a topic of much debate and controversy in the U.S. 
and around the world.

 Surveys, polls, and other observational studies are fine if you want to know 
people’s opinions, examine their lifestyles without intervention, or examine 
some demographic variables. If you want to try to determine the cause of a 
certain outcome or behavior (that is, a reason why something happened), an 
experiment is a much better way to go. If an experiment isn’t possible because 
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of ethics concerns (or because of expense or other reasons), a large body of 
observational studies examining many different factors and coming up with 
similar conclusions is the next best thing. (See Chapter 18 for more about 
cause-and-effect relationships.)

Collecting good data
What constitutes “good” data? Statisticians use three criteria for evaluating 
data quality; each of the criteria really relates most strongly to the quality of 
the measurement instrument that’s used in the process of collecting the data. 
To decide whether you’re looking at good data from a study, look for these 
characteristics:

 ✓ The data are reliable — you can get repeatable results with subse-
quent measurements. Many bathroom scales give unreliable data. You 
get on the scale, and it gives you one number. You don’t believe the 
number, so you get off, get back on, and get a different number. (If the 
second number is lower, you’ll most likely quit at this point; if not, you 
may continue getting on and off until you see a number you like.) Or you 
can do what some researchers do: Take three measurements, find the 
average, and use that; at least this will improve the reliability a bit.

  Unreliable data come from unreliable measurement instruments or unre-
liable data collection methods. Errors can go beyond the actual scales to 
more intangible measurement instruments, like survey questions, which 
can give unreliable results if they’re written in an ambiguous way (see 
Chapter 16).

  Find out how the data were collected when examining the results of a 
study. If the measurements are unreliable, the data could be inaccurate.

 ✓ The data are valid — they measure what they’re supposed to measure. 
Checking the validity of data requires you to step back and look at the 
big picture. You have to ask the question: Do these data measure what 
they should be measuring? Or should the researchers have been collect-
ing altogether different data? The appropriateness of the measurement 
instrument used is important. For example, many educators say that 
a student’s transcript is not a valid measure of their ability to perform 
well in college. Alternatives include a more holistic approach, taking into 
account not only grades, but adding weight to elements such as service, 
creativity, social involvement, extracurricular activities, and the like.

  Before accepting the results of an experiment, find out what data were 
measured and how they were measured. Be sure the researchers are 
 collecting valid data that are appropriate for the goals of the study.
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 ✓ The data are unbiased — they contain no systematic errors that either 
add to or subtract from the true values. Biased data are data that sys-
tematically overmeasure or undermeasure the true result. Bias can occur 
almost anywhere during the design or implementation of a study. Bias 
can be caused by a bad measurement instrument (like that bathroom 
scale that’s “always” 5 pounds over), by survey questions that lead par-
ticipants in a certain way, or by researchers who know what treatment 
each subject received and who have preconceived expectations.

 Bias is probably the number-one problem in collecting good data. However, 
you can minimize bias with methods similar to those discussed in Chapter 16 
for surveys and in the “Making random assignments” section earlier in this 
chapter, and by making your experiments double-blind whenever possible.

Double-blind means neither the subjects nor the researchers know who got 
what treatment or who is in the control group. The subjects need to be oblivi-
ous to which treatment they’re getting so that the researchers can measure the 
placebo effect. And researchers should be kept in the dark so they don’t treat 
subjects differently by either expecting or not expecting certain responses 
from certain groups. For example, if a researcher knows you’re in the treat-
ment group to study the side effects of a new drug, she may expect you to get 
sick and therefore may pay more attention to you than if she knew you were in 
the control group. This can result in biased data and misleading results.

If the researcher knows who got what treatment but the subjects don’t know, 
the study is called a blind study (rather than a double-blind study). Blind stud-
ies are better than nothing, but double-blind studies are best. In case you’re 
wondering: In a double-blind study, does anyone know which treatment was 
given to which subjects? Relax; typically a third party, such as a lab assistant, 
does that part.

In some cases the subjects know which group they’re in because it’s 
unconcealable — for example, when comparing the benefits of doing yoga 
versus jogging. However, bias can be reduced by not telling the subjects the 
precise purpose of the study. This irregular type of plan would have to be 
reviewed by an institutional review board to make sure it isn’t unethical to 
do; see the earlier section “Respecting ethical issues.”

Analyzing the data properly
After the data have been collected, they’re put into that mysterious box 
called the statistical analysis for number crunching. The choice of analysis is 
just as important (in terms of the quality of the results) as any other aspect 
of a study. A proper analysis should be planned in advance, during the design 
phase of the experiment. That way, after the data are collected, you won’t 
run into any major problems during the analysis.
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Here’s the bottom line when selecting the proper analysis: Ask yourself the 
question, “After the data are analyzed, will I be able to legitimately and correctly 
answer the question that I set out to answer?” If the answer is “no,” then that 
analysis isn’t appropriate.

Some basic types of statistical analyses include confidence intervals (used 
when you’re trying to estimate a population value, or the difference between 
two population values); hypothesis tests (used when you want to test a claim 
about one or two populations, such as the claim that one drug is more effec-
tive than another); and correlation and regression analyses (used when you 
want to show if and/or how one quantitative variable can predict or cause 
changes in another quantitative variable). See Chapters 13, 15, and 18, 
respectively, for more on each of these types of analyses.

 When choosing how you’re going to analyze your data, you have to make sure 
that the data and your analysis will be compatible. For example, if you want 
to compare a treatment group to a control group in terms of the amount of 
weight lost on a new (versus an existing) diet program, you need to collect 
data on how much weight each person lost — not just each person’s weight at 
the end of the study.

Making appropriate conclusions
In my opinion, the biggest mistakes researchers make when drawing conclu-
sions about their studies are the following (discussed in the following sections):

 ✓ Overstating their results

 ✓ Making connections or giving explanations that aren’t backed up by the 
statistics

 ✓ Going beyond the scope of the study in terms of whom the results apply to

Overstating the results
Many times, the headlines in the media overstate actual research results. 
When you read a headline or otherwise hear about a study, be sure to look 
further to find out the details of how the study was done and exactly what 
the conclusions were.

Press releases often overstate results, too. For example, in a recent press 
release by the National Institute for Drug Abuse, the researchers claimed that 
use of the street drug Ecstasy was down from the previous year. However, 
when you look at the actual statistical results in the report, you find that 
the percentage of teens from the sample who said they’d used Ecstasy was 
lower than those from the previous year, but this difference was not found to 
be statistically significant when they tried to project it onto the population 
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of all teens. This discrepancy means that although fewer teens in the sample 
used Ecstasy that year, the difference wasn’t enough to account for more 
than chance variability from sample to sample. (See Chapter 14 for more 
about statistical significance.)

 Headlines and leading paragraphs in press releases and news articles often 
overstate the actual results of a study. Big results, spectacular findings, and 
major breakthroughs make the news these days, and reporters and others in 
the media constantly push the envelope in terms of what is and isn’t newswor-
thy. How can you sort out the truth from exaggeration? The best thing to do is 
to read the fine print.

Taking the results one step beyond the actual data
A study that links having children later in life to longer life spans illustrates 
another point about research results. Do the results of this observational 
study mean that having a baby later in life can make you live longer? “No,” 
said the researchers. Their explanation of the results was that having a baby 
later in life may be due to women having a “slower” biological clock, which 
presumably would then result in the aging process being slowed down.

My question to these researchers is, “Then why didn’t you study that, instead 
of just looking at their ages?” The study didn’t include any information that 
would lead me to conclude that women who had children after age 40 aged 
at a slower rate than other women, so in my view, the researchers shouldn’t 
make that conclusion. Or the researchers should state clearly that this view 
is only a theory and requires further study. Based on the data in this study, 
the researchers’ theory seems like a leap of faith (although since I became a 
new mom at age 41, I’ll hope for the best!).

Frequently in a press release or news article, the researcher will give an 
explanation about why he thinks the results of the study turned out the way 
they did and what implications these results have for society as a whole 
when the “why” hasn’t been studied yet. These explanations may have been 
in response to a reporter’s questions about the research — questions that 
were later edited out of the story, leaving only the juicy quotes from the 
researcher. Many of these after-the-fact explanations are no more than theo-
ries that have yet to be tested. In such cases, you should be wary of conclu-
sions, explanations, or links drawn by researchers that aren’t backed up by 
their studies.

 Be aware that the media wants to make you read the article (they get paid 
to do that), so they will have strong headlines, or will make unconfirmed 
“cause-effect” statements because it is their job to sell the story. It is your job 
to be wary.
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Generalizing results to people beyond the scope of the study
You can make conclusions only about the population that’s represented 
by your sample. If you sample men only, you can’t make conclusions about 
women. If you sample healthy young people, you can’t make your conclu-
sions about everyone. But many researchers try to do just that, and it can 
give misleading results.

Here’s how you can determine whether a researcher’s conclusions measure up 
(Chapter 16 has more on samples and populations):

 1. Find out what the target population is (that is, the group that the 
researcher wants to make conclusions about).

 2. Find out how the sample was selected and see whether the sample is 
representative of that target population (and not some more narrowly 
defined population).

 3. Check the conclusions made by the researchers and make sure they’re 
not trying to apply their results to a broader population than they 
actually studied.

Making Informed Decisions
Just because someone says they conducted a “scientific study” or a “scientific 
experiment” doesn’t mean it was done right or that the results are credible 
(not that I’m saying you should discount everything that you see and hear). 
Unfortunately, I’ve come across a lot of bad experiments in my days as a sta-
tistical consultant. The worst part is that if an experiment was done poorly, 
you can’t do anything about it after the fact except ignore the results — and 
that’s exactly what you need to do.

 Here are some tips that help you make an informed decision about whether 
to believe the results of an experiment, especially one whose results are very 
important to you:

 ✓ When you first hear or see the result, grab a pencil and write down as 
much as you can about what you heard or read, where you heard or 
read it, who did the research, and what the main results were. (I keep 
pencil and paper in my TV room and in my purse just for this purpose.)

 ✓ Follow up on your sources until you find the person who did the origi-
nal research and then ask them for a copy of the report or paper.
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 ✓ Go through the report and evaluate the experiment according to the 
eight steps for a good experiment described in the “Designing a Good 
Experiment” section of this chapter. (You really don’t have to under-
stand everything written in a report in order to do that.)

 ✓ Carefully scrutinize the conclusions that the researcher makes regard-
ing his or her findings. Many researchers tend to overstate results, 
make conclusions beyond the statistical evidence, or try to apply their 
results to a broader population than the one they studied.

 ✓ Never be afraid to ask questions of the media, the researchers, and 
even your own experts. For example, if you have a question about a 
medical study, ask your doctor. He or she will be glad that you’re an 
empowered and well-informed patient!

 ✓ And finally, don’t get overly skeptical, just because you’re now a lot 
more aware of all the bad practices going on out there. Not everything 
is bad. There are many more good researchers, credible results, and 
well-informed reporters than not. You have to maintain a sense of being 
cautious and ready to spot problems without discounting everything.
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Chapter 18

Looking for Links: 
Correlation and Regression

In This Chapter
▶ Exploring statistical relationships between numerical variables

▶ Looking at correlation and linear regression

▶ Making predictions based on known relationships

▶ Considering correlation versus causation

Today’s media provide a steady stream of information, including reports 
on all the latest links that have been found by researchers. Just today I 

heard that increased video game use can negatively affect a child’s attention 
span, the amount of a certain hormone in a woman’s body can predict when 
she will enter menopause, and the more depressed you get, the more choco-
late you eat, and the more chocolate you eat, the more depressed you get 
(how depressing!).

Some studies are truly legitimate and help improve the quality and longevity 
of our lives. Other studies are not so clear. For example, one study says that 
exercising 20 minutes three times a week is better than exercising 60 minutes 
one time a week, another study says the opposite, and yet another study says 
there is no difference.

If you are a confused consumer when it comes to links and correlations, take 
heart; this chapter can help. You’ll gain the skills to dissect and evaluate 
research claims and make your own decisions about those headlines and 
sound bites that you hear each day alerting you to the latest correlation. 
You’ll discover what it truly means for two variables to be correlated, when a 
cause-and-effect relationship can be concluded, and when and how to predict 
one variable based on another.
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Picturing a Relationship 
with a Scatterplot

An article in Garden Gate magazine caught my eye: “Count Cricket Chirps to 
Gauge Temperature.” According to the article, all you have to do is find a 
cricket, count the number of times it chirps in 15 seconds, add 40, and voilà! 
You’ve just estimated the temperature in Fahrenheit.

The National Weather Service Forecast Office even puts out its own “Cricket 
Chirp Converter.” You enter the number of cricket chirps recorded in 15 sec-
onds, and the converter gives you the estimated temperature in four different 
units, including Fahrenheit and Celsius.

A fair amount of research does support the claim that frequency of cricket 
chirps is related to temperature. For the purpose of illustration I’ve taken 
only a subset of some of the data (see Table 18-1).

Table 18-1 Cricket Chirps and Temperature Data (Excerpt)

Number of Chirps (in 15 Seconds) Temperature (Fahrenheit)

18 57

20 60

21 64

23 65

27 68

30 71

34 74

39 77

Notice that each observation is composed of two variables that are tied 
together: the number of times the cricket chirped in 15 seconds (the 
X-variable) and the temperature at the time the data was collected (the 
Y-variable). Statisticians call this type of two-dimensional data bivariate data. 
Each observation contains one pair of data collected simultaneously. For 
example, row one of Table 18-1 depicts a pair of data (18, 57).

Bivariate data is typically organized in a graph that statisticians call a scatter-
plot. A scatterplot has two dimensions, a horizontal dimension (the X-axis) 
and a vertical dimension (the Y-axis). Both axes are numerical; each one 
contains a number line. In the following sections, I explain how to make and 
interpret a scatterplot.
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Making a scatterplot
 Placing observations (or points) on a scatterplot is similar to playing the game 

Battleship. Each observation has two coordinates; the first corresponds to the 
first piece of data in the pair (that’s the X coordinate; the amount that you go 
left or right). The second coordinate corresponds to the second piece of data 
in the pair (that’s the Y-coordinate; the amount that you go up or down). You 
place the point representing that observation at the intersection of the two 
coordinates.

Figure 18-1 shows a scatterplot for the cricket chirps and temperature data 
listed in Table 18-1. Because I ordered the data according to their X-values, 
the points on the scatterplot correspond from left to right to the observa-
tions given in Table 18-1, in the order listed.

 

Figure 18-1: 
Scatterplot 

of cricket 
chirps in 

relation to 
outdoor 

tempera-
ture.

 

80

75

70

65

60

20 25 30
Number of chirps in 15 seconds

Te
m

p
e

ra
tu

re
 (

d
e

g
re

e
s 

Fa
h

re
n

h
e

it
)

35 40

Interpreting a scatterplot
 You interpret a scatterplot by looking for trends in the data as you go from left 

to right:

 ✓ If the data show an uphill pattern as you move from left to right, this 
indicates a positive relationship between X and Y. As the X-values increase 
(move right), the Y-values increase (move up) a certain amount.
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 ✓ If the data show a downhill pattern as you move from left to right, this 
indicates a negative relationship between X and Y. As the X-values increase 
(move right) the Y-values decrease (move down) by a certain amount.

 ✓ If the data don’t seem to resemble any kind of pattern (even a vague 
one), then no relationship exists between X and Y.

One pattern of special interest is a linear pattern, where the data has a gen-
eral look of a line going uphill or downhill. Looking at Figure 18-1, you can see 
that a positive linear relationship does appear between number of cricket 
chirps and the temperature. That is, as the cricket chirps increase, the tem-
perature increases as well.

 In this chapter I explore linear relationships only. A linear relationship between 
X and Y exists when the pattern of X- and Y-values resembles a line, either 
uphill (with a positive slope) or downhill (with a negative slope). Other types 
of trends may exist in addition to the uphill/downhill linear trends (for exam-
ple, curves or exponential functions); however, these trends are beyond the 
scope of this book. The good news is that many relationships do fall under the 
uphill/downhill linear scenario.

 Scatterplots show possible associations or relationships between two vari-
ables. However, just because your graph or chart shows something is going 
on, it doesn’t mean that a cause-and-effect relationship exists.

For example, a doctor observes that people who take vitamin C each day 
seem to have fewer colds. Does this mean vitamin C prevents colds? Not 
necessarily. It could be that people who are more health conscious take 
vitamin C each day, but they also eat healthier, are not overweight, exercise 
every day, and wash their hands more often. If this doctor really wants to 
know if it’s the vitamin C that’s doing it, she needs a well-designed experi-
ment that rules out these other factors. (See the later section “Explaining the 
Relationship: Correlation versus Cause and Effect” for more information.)

Quantifying Linear Relationships 
Using the Correlation

After the bivariate data have been organized graphically with a scatterplot 
(see the preceding section), and you see some type of linear pattern, the 
next step is to do some statistics that can quantify or measure the extent 
and nature of the relationship. In the following sections, I discuss correla-
tion, a statistic measuring the strength and direction of a linear relationship 
between two variables; in particular, how to calculate and interpret correla-
tion and understand its most important properties.
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Calculating the correlation
In the earlier section “Interpreting a scatterplot,” I say data that resembles an 
uphill line has a positive linear relationship and data that resembles a down-
hill line has a negative linear relationship. However, I didn’t address the issue 
of whether or not the linear relationship was strong or weak. The strength of 
a linear relationship depends on how closely the data resembles a line, and of 
course varying levels of “closeness to a line” exist.

Can one statistic measure both the strength and direction of a linear relation-
ship between two variables? Sure! Statisticians use the correlation coefficient 
to measure the strength and direction of the linear relationship between two 
numerical variables X and Y. The correlation coefficient for a sample of data 
is denoted by r.

 Although the street definition of correlation applies to any two items that are 
related (such as gender and political affiliation), statisticians use this term 
only in the context of two numerical variables. The formal term for correlation 
is the correlation coefficient. Many different correlation measures have been 
created; the one used in this case is called the Pearson correlation coefficient 
(but from now on I’ll just call it the correlation).

The formula for the correlation (r) is

where n is the number of pairs of data;  and  are the sample means of all 
the x-values and all the y-values, respectively; and s

x
 and s

y
 are the sample 

standard deviations of all the x- and y-values, respectively.

 Use the following steps to calculate the correlation, r, from a data set:

 1. Find the mean of all the x-values ( ) and the mean of all the y-values ( ).

  See Chapter 5 for more on calculating the mean.

 2. Find the standard deviation of all the x-values (call it s
x
) and the stan-

dard deviation of all the y-values (call it s
y
).

  See Chapter 5 to find out how to calculate the standard deviation.

 3. For each (x, y) pair in the data set, take x minus  and y minus , and 

multiply them together to get .

 4. Add up all the results from Step 3.
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 5. Divide the sum by s
x
 ∗ s

y
.

 6. Divide the result by n – 1, where n is the number of (x, y) pairs. (It’s 
the same as multiplying by 1 over n – 1.)

  This gives you the correlation, r.

For example, suppose you have the data set (3, 2), (3, 3), and (6, 4). You 
calculate the correlation coefficient r via the following steps. (Note for this 
data the x-values are 3, 3, 6, and the y-values are 2, 3, 4.)

 1.  is 12 ÷ 3 = 4, and  is 9 ÷ 3 = 3.

 2. The standard deviations are s
x
 = 1.73 and s

y
 = 1.00.

  See Chapter 5 for step-by-step calculations.

 3. The differences found in Step 3 multiplied together are: (3 – 4)(2 – 3) = 
(– 1)( – 1) = +1; (3 – 4)(3 – 3) = (– 1)(0) = 0; (6 – 4)(4 – 3) = (2)(1) = +2.

 4. Adding the Step 3 results, you get 1 + 0 + 2 = 3.

 5. Dividing by s
x
 ∗ s

y
 gives you 3 ÷ (1.73 ∗ 1.00) = 3 ÷ 1.73 = 1.73.

 6. Now divide the Step 5 result by 3 – 1 (which is 2), and you get the cor-
relation r = 0.87.

Interpreting the correlation
 The correlation r is always between +1 and –1. To interpret various values of 

r (no hard and fast rules here, just Rumsey’s rule of thumb), see which of the 
following values your correlation is closest to:

 ✓ Exactly –1: A perfect downhill (negative) linear relationship

 ✓ –0.70: A strong downhill (negative) linear relationship

 ✓ –0.50: A moderate downhill (negative) relationship

 ✓ –0.30: A weak downhill (negative) linear relationship

 ✓ 0: No linear relationship

 ✓ +0.30: A weak uphill (positive) linear relationship

 ✓ +0.50: A moderate uphill (positive) relationship

 ✓ +0.70: A strong uphill (positive) linear relationship

 ✓ Exactly +1: A perfect uphill (positive) linear relationship
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 If the scatterplot doesn’t indicate there’s at least somewhat of a linear rela-
tionship, the correlation doesn’t mean much. Why measure the amount of 
linear relationship if there isn’t enough of one to speak of? However you can 
take the idea of no linear relationship two ways: 1) If no relationship at all 
exists, calculating the correlation doesn’t make sense because correlation 
only applies to linear relationships; and 2) If a strong relationship exists but 
it’s not linear, the correlation may be misleading, because in some cases a 
strong curved relationship exists yet the correlation turns out to be strong. 
That’s why it’s critical to examine the scatterplot first.

Figure 18-2 shows examples of what various correlations look like, in terms 
of the strength and direction of the relationship. Figure 18-2a shows a cor-
relation of +1, Figure 18-2b shows a correlation of –0.50, Figure 18-2c shows a 
correlation of +0.85, and Figure 18-2d shows a correlation of +0.15. Comparing 
Figures 18-2a and c, you see Figure 18-2a is a perfect uphill straight line, and 
Figure 18-2c shows a very strong uphill linear pattern. Figure 18-2b is going 
downhill but the points are somewhat scattered in a wider band, showing a 
linear relationship is present, but not as strong as in Figures 18-2a and 18-2c. 
Figure 18-2d doesn’t show much of anything happening (and it shouldn’t, 
since its correlation is very close to 0).

 

Figure 18-2: 
Scatterplots 

with cor-
relations 

of a) +1.00; 
b) –0.50; 

c) +0.85; and 
d) +0.15.

 

ba

dc
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Many folks make the mistake of thinking that a correlation of –1 is a bad 
thing, indicating no relationship. Just the opposite is true! A correlation of 
–1 means the data are lined up in a perfect straight line, the strongest linear 
relationship you can get. The “–” (minus) sign just happens to indicate a 
negative relationship, a downhill line.

 How close is close enough to –1 or +1 to indicate a strong enough linear 
relationship? Most statisticians like to see correlations beyond at least +0.5 
or –0.5 before getting too excited about them. Don’t expect a correlation to 
always be 0.99 however; remember, this is real data, and real data aren’t perfect.

For my subset of the cricket chirps versus temperature data from the earlier 
section “Picturing a Relationship with a Scatterplot,” I calculated a correlation 
of 0.98, which is almost unheard of in the real world (these crickets are good!).

Examining properties of the correlation
 Here are several important properties of the correlation coefficient:

 ✓ The correlation is always between –1 and +1, as I explain in the preceding 
section.

 ✓ The correlation is a unitless measure, which means that if you 
change the units of X or Y, the correlation won’t change. For example, 
changing the temperature from Fahrenheit to Celsius won’t affect 
the correlation between the frequency of chirps (X) and the outside 
 temperature (Y).

 ✓ The variables X and Y can be switched in the data set without changing 
the correlation. For example, if height and weight have a correlation of 
0.53, weight and height have the same correlation.

Working with Linear Regression
In the case of two numerical variables X and Y, when at least a moderate 
correlation has been established through both the correlation and the scat-
terplot, you know they have some type of linear relationship. Researchers 
often use that relationship to predict the (average) value of Y for a given 
value of X using a straight line. Statisticians call this line the regression line. 
If you know the slope and the y-intercept of that regression line, then you can 
plug in a value for X and predict the average value for Y. In other words, you 
predict (the average) Y from X. In the following sections, I provide the basics 
of understanding and using the linear regression equation (I explain how to 
make predictions with linear regression later in this chapter).
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 Never do a regression analysis unless you have already found at least a mod-
erately strong correlation between the two variables. (My rule of thumb is it 
should be at or beyond either positive or negative 0.50, but other statisticians 
may have different criteria.) I’ve seen cases where researchers go ahead and 
make predictions when a correlation is as low as 0.20! By anyone’s standards, 
that doesn’t make sense. If the data don’t resemble a line to begin with, you 
shouldn’t try to use a line to fit the data and make predictions (but people 
still try).

Figuring out which variable 
is X and which is Y
Before moving forward to find the equation for your regression line, you have 
to identify which of your two variables is X and which is Y. When doing cor-
relations (as I explain earlier in this chapter), the choice of which variable is X 
and which is Y doesn’t matter, as long as you’re consistent for all the data. 
But when fitting lines and making predictions, the choice of X and Y does 
make a difference.

 So how do you determine which variable is which? In general, Y is the vari-
able that you want to predict, and X is the variable you are using to make that 
prediction. In the earlier cricket chirps example, you are using the number of 
chirps to predict the temperature. So in this case the variable Y is the tem-
perature, and the variable X is the number of chirps. Hence Y can be predicted 
by X using the equation of a line if a strong enough linear relationship exists.

 Statisticians call the X-variable (cricket chirps in my earlier example) the 
explanatory variable, because if X changes, the slope tells you (or explains) 
how much Y is expected to change in response. Therefore, the Y variable is 
called the response variable. Other names for X and Y include the independent 
and dependent variables, respectively.

Checking the conditions
 In the case of two numerical variables, you can come up with a line that 

enables you to predict Y from X, if (and only if) the following two conditions 
from the previous sections are met:

 ✓ The scatterplot must form a linear pattern.

 ✓ The correlation, r, is moderate to strong (typically beyond 0.50 or –0.50).

Some researchers actually don’t check these conditions before making pre-
dictions. Their claims are not valid unless the two conditions are met.
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But suppose the correlation is high; do you still need to look at the scatter-
plot? Yes. In some situations the data have a somewhat curved shape, yet the 
correlation is still strong; in these cases making predictions using a straight 
line is still invalid. Predictions need to be made based on a curve. (This topic 
is outside the scope of this book; if you are interested, see Statistics II For 
Dummies, where I tackle nonlinear relationships.)

Calculating the regression line
For the crickets and temperature data, you can see that the scatterplot in 
Figure 18-1 shows a linear pattern. The correlation between cricket chirps 
and temperature was found earlier in this chapter to be very strong (r = 0.98). 
You now can find one line that best fits the data (in terms of having the small-
est overall distance to the points). Statisticians call this technique for finding 
the best-fitting line a simple linear regression analysis using the least squares 
method.

 The formula for the best-fitting line (or regression line) is y = mx + b, where 
m is the slope of the line and b is the y-intercept. This equation itself is the 
same one used to find a line in algebra; but remember, in statistics the points 
don’t lie perfectly on a line — the line is a model around which the data lie if a 
strong linear pattern exists.

 ✓ The slope of a line is the change in Y over the change in X. For example, 
a slope of 10⁄3 means as the x-value increases (moves right) by 3 units, the 
y-value moves up by 10 units on average.

 ✓ The y-intercept is that place on the y-axis where the value of x is zero. For 
example, in the equation 2x – 6, the line crosses the y-axis at the point 
–6. The coordinates of this point are (0, –6); when a line crosses the 
y-axis, the x-value is always 0.

 To come up with the best-fitting line, you need to find values for m and b that 
fit the pattern of data the best, for your given criteria. Different criteria exist 
and can lead to other lines, but the criteria I use in this book (and in all intro-
ductory level statistics courses in general) is to find the line that minimizes 
what statisticians call the sum of squares for error (SSE). The SSE is the sum of 
all the squared differences from the points on the proposed line to the actual 
points in the data set. The line with the lowest possible SSE wins and its equa-
tion is used as the best-fitting line. This process is where the name the least-
squares method comes from.

You may be thinking that you have to try lots and lots of different lines to 
see which one fits best. Fortunately, you have a more straightforward option 
(although eyeballing a line on the scatterplot does help you think about what 
you’d expect the answer to be). The best-fitting line has a distinct slope and 
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y-intercept that can be calculated using formulas (and, I may add, these for-
mulas aren’t too hard to calculate).

 To save a great deal of time calculating the best fitting line, first find the “big 
five,” five summary statistics that you’ll need in your calculations:

 1. The mean of the x values (denoted )

 2. The mean of the y values (denoted )

 3. The standard deviation of the x values (denoted s
x
)

 4. The standard deviation of the y values (denoted s
y
)

 5. The correlation between X and Y (denoted r)

Finding the slope
The formula for the slope, m, of the best-fitting line is

where r is the correlation between X and Y, and s
x
 and s

y
 are the standard 

deviations of the x-values and the y-values, respectively. You simply divide s
y 

by s
x
 and multiply the result by r.

Note that the slope of the best-fitting line can be a negative number because 
the correlation can be a negative number. A negative slope indicates that the 
line is going downhill. For example, an increase in police officers is related 
to a decrease in the number of crimes in a linear fashion; the correlation and 
hence the slope of the best-fitting line is negative in this case.

 The correlation and the slope of the best-fitting line are not the same. The for-
mula for slope takes the correlation (a unitless measurement) and attaches 
units to it. Think of s

y
 ÷ s

x
 as the variation (resembling change) in Y over 

the variation in X, in units of X and Y. For example, variation in temperature 
(degrees Fahrenheit) over the variation in number of cricket chirps (in 15 
seconds).

Finding the y-intercept
The formula for the y-intercept, b, of the best-fitting line is , where 

 and  are the means of the x-values and the y-values, respectively, and m is 
the slope (the formula for which is given in the preceding section).

 So to calculate the y-intercept, b, of the best-fitting line, you start by finding 
the slope, m, of the best-fitting line using the steps listed in the preceding sec-
tion. You then multiply m by  and subtract your result from .
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 Always calculate the slope before the y-intercept. The formula for the y-intercept 
contains the slope!

Interpreting the regression line
Even more important than being able to calculate the slope and y-intercept 
to form the best-fitting regression line is the ability to interpret their values; 
I explain how to do so in the following sections.

Interpreting the slope
The slope is interpreted in algebra as rise over run. If, for example, the slope 
is 2, you can write this as 2⁄1 and say that as you move from point to point on 
the line, as the value of the X variable increases by 1, the value of the Y vari-
able increases by 2. In a regression context, the slope is the heart and soul of 
the equation because it tells you how much you can expect Y to change as X 
increases.

In general, the units for slope are the units of the Y variable per units of the X 
variable. It’s a ratio of change in Y per change in X. Suppose in studying the 
effect of dosage level in milligrams (mg) on systolic blood pressure (mmHg), 
a researcher finds that the slope of the regression line is –2.5. You can write 
this as –2.5⁄1 and say that systolic blood pressure is expected to decrease by 
2.5 mmHg on average per 1 mg increase in drug dosage.

 Always make sure to use proper units when interpreting slope. If you don’t 
consider units, you won’t really see the connection between the two variables 
at hand. For example if Y is exam score and X = study time, and you find the 
slope of the equation is 5, what does this mean? Not much without any units 
to draw from. Including the units, you see you get an increase of 5 points 
(change in Y) for every 1 hour increase in studying (change in X). Also be sure 
to watch for variables that have more than one common unit, such as tem-
perature being in either Fahrenheit or Celsius; know which unit is being used.

If using a 1 in the denominator of slope is not super-meaningful to you, you 
can multiply the top and bottom by any number (as long as it’s the same 
number) and interpret it that way instead. In the systolic blood pressure 
example, instead of writing slope as –2.5⁄1 and interpreting it as a drop of 
2.5 mmHg per 1 mg increase of the drug, you can multiply the top and bottom 
by 10 to get –25⁄10 and say an increase in dosage of 10 mg results in a decrease 
in systolic blood pressure of 25 mmHg.

Interpreting the y-intercept
The y-intercept is the place where the regression line y = mx + b crosses the 
y-axis where x = 0, and is denoted by b (see the earlier section “Finding the 
y-intercept”). Sometimes the y-intercept can be interpreted in a meaningful 
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way, and sometimes not. This uncertainty differs from slope, which is always 
interpretable. In fact, between the two elements of slope and y-intercept, the 
slope is the star of the show, with the y-intercept serving as the less-famous 
but still noticeable sidekick.

 At times the y-intercept makes no sense. For example, suppose you use rain 
to predict bushels per acre of corn. You know if the data set contains a point 
where rain is 0, the bushels per acre must be 0 as well. As a result, if the 
regression line crosses the y-axis somewhere else besides 0 (and there is no 
guarantee it will cross at 0 — it depends on the data), the y-intercept will make 
no sense. Similarly, in this context a negative value of y (corn production) 
cannot be interpreted.

Another situation where you can’t interpret the y-intercept is when data are 
not present near the point where x = 0. For example, suppose you want to 
use students’ scores on Midterm 1 to predict their scores on Midterm 2. The 
y-intercept represents a prediction for Midterm 2 when the score on Midterm 
1 is 0. You don’t expect scores on a midterm to be at or near 0 unless some-
one didn’t take the exam, in which case her score wouldn’t be included in the 
first place.

Many times, however, the y-intercept is of interest to you, it has meaning, and 
you have data collected in the area where x = 0. For example, if you’re predict-
ing coffee sales at football games in Green Bay, Wisconsin, using temperature, 
some games get cold enough to have temperatures at or even below 0 degrees 
Fahrenheit, so predicting coffee sales at these temperatures makes sense. (As 
you may guess, they sell more and more coffee as the temperature dips.)

Putting it all together with an example: 
The regression line for the crickets
In the earlier section “Picturing a Relationship with a Scatterplot,” I introduce 
the example of cricket chirps related to temperature. The “big five” statistics, 
which I explain in “Calculating the regression line,” are shown in Table 18-2 for 
the subset of cricket data. (Note: I’m rounding for ease of explanation only.)

Table 18-2 “Big Five” Statistics for the Cricket Data

Variable Mean Standard Deviation Correlation

Number of chirps (x)  = 26.5 sx = 7.4 r = +0.98

Temp (y)  = 67 sy = 6.8
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The slope, m, for the best-fitting line for the subset of cricket chirps versus 

temperature data is . So as the number of chirps 

increases by 1 chirp per 15 seconds, the temperature is expected to increase 
by 0.90 degrees Fahrenheit on average. To get a more meaningful interpre-
tation, you can multiply the top and bottom of the slope by 10 and say as 
chirps increase by 10 (per 15 seconds) temperature increases 9 degrees 
Fahrenheit.

Now, to find the y-intercept, b, you take , or 67 – (0.90)(26.5) = 43.15. So 
the best-fitting line for predicting temperature from cricket chirps based on 
the data is y = 0.90x + 43.15, or temperature (in degrees Fahrenheit) = 0.90 ∗ 
(number of chirps in 15 seconds) + 43.2. Now can you use the y-intercept to pre-
dict temperature when no chirping is going on at all? Because no data was col-
lected at or near this point, you cannot make predictions for temperature in this 
area. You can’t predict temperature using crickets if the crickets are silent.

Making Proper Predictions
After you have determined a strong linear relationship and you find the equa-
tion of the best fitting line using y = mx + b, you use that line to predict (the 
average) y for a given x-value. To make predictions, you plug the x-value into 
the equation and solve for y. For example, if your equation is y = 2x + 1 and 
you want to predict y for x = 1, then plug 1 into the equation for x to get  
y = 2(1) + 1 = 3.

Keep in mind that you choose the values of X (the explanatory variable) 
that you plug in; what you predict is Y, the response variable, which totally 
depends on X. By doing this, you are using one variable that you can easily 
collect data on to predict a Y variable that is difficult or not possible to mea-
sure. This process works well as long as X and Y are correlated. This concept 
is the big idea of regression.

Using the examples from the previous section, the best-fitting line for the 
crickets is y = 0.90x + 43.2. Say you’re camping outside, listening to the crick-
ets, and remember you can predict temperature by counting cricket chirps. 
You count 35 chirps in 15 seconds, put in 35 for x, and find that y = 0.9(35) + 
43.2 = 74.7. (Yeah, you memorized the formula before you went camping just 
in case you needed it.) So because the crickets chirped 35 times in 15 sec-
onds, you figure the temperature is probably about 75 degrees Fahrenheit.

 Just because you have a regression line doesn’t mean you can plug in any value 
for X and do a good job of predicting Y. Making predictions using x-values that 
fall outside the range of your data is a no-no. Statisticians call this extrapolation; 
watch for researchers who try to make claims beyond the range of their data.
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For example, in the chirping data, no data is collected for fewer than 18 
chirps or more than 39 chirps per 15 seconds (refer to Table 18-1). If you try 
to make predictions outside this range, you are going into uncharted terri-
tory; the farther outside this range you go with your x-values, the more dubi-
ous your predictions for y will get. Who’s to say the line still works outside 
of the area where data were collected? Do you really think that crickets will 
chirp faster and faster without limit? At some point they would either pass 
out or burn up! And what does a negative number of chirps really mean? 
(Is this similar to asking what the sound of one hand clapping is?)

 Be aware that not every data point will necessarily fit the regression line well, 
even if the correlation is high. A point or two may fall outside the overall pat-
tern of the rest of the data; such points are called outliers. One or two outliers 
probably won’t affect the overall fit of the regression line much, but in the end 
you can see that the line didn’t do well at those specific points.

The numerical difference between the predicted value of y from the line and 
the actual y-value you got from your data is called a residual. Outliers have 
large residuals compared to the rest of the points; they are worth investigat-
ing to see if there was an error in the data at those points or if there is some-
thing particularly interesting in the data to follow up on. (I give a much more 
detailed look at residuals in the book Statistics II For Dummies.)

Explaining the Relationship: Correlation 
versus Cause and Effect

Scatterplots and correlations identify and quantify relationships between two 
variables. However, if a scatterplot shows a definite pattern and the data are 
found to have a strong correlation, that doesn’t necessarily mean that a cause-
and-effect relationship exists between the two variables. A cause-and-effect 
relationship is one where a change in one variable (in this case X) causes a 
change in another variable (in this case Y). (In other words, the change in Y is 
not only associated with a change in X, but also directly caused by X.)

For example, suppose a well-controlled medical experiment is conducted to 
determine the effects of dosage of a certain drug on blood pressure. (See a 
total breakdown of experiments in Chapter 17.) The researchers look at their 
scatterplot and see a definite downhill linear pattern; they calculate the cor-
relation, and it’s strong. They conclude that increasing the dosage of this drug 
causes a decrease in blood pressure. This cause-and-effect conclusion is okay 
because they controlled for other variables that could affect blood pressure in 
their experiment, such as other drugs taken, age, general health, and so on.
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However, if you made a scatterplot and examined the correlation between ice 
cream consumption versus murder rates in New York City, you would also 
see a strong linear relationship (this one is uphill). Yet no one would claim 
that more ice cream consumption causes more murders to occur.

What’s going on here? In the first case, the data were collected through a 
well-controlled medical experiment, which minimizes the influence of other 
factors that may affect blood pressure. In the second example, the data were 
based just on observation, and no other factors were examined. Researchers 
subsequently found out that this strong relationship exists because increases 
in murder rates and ice cream sales are both related to increases in tempera-
ture. Temperature in this case is called a confounding variable; it affects both 
X and Y but was not included in the study (see Chapter 17).

 Whether two variables are found to be causally associated depends on how the 
study was conducted. I’ve seen many instances in which people try to claim 
cause-and-effect relationships just by looking at scatterplots or correlations. 
Why would they do this? Because they want to believe it (in other words for 
them it’s “believing is seeing,” rather than the other way around). Beware of this 
tactic. In order to establish cause and effect, you need to have a well-designed 
experiment or a boatload of observational studies. If someone is trying to estab-
lish a cause-and-effect relationship by showing a chart or graph, dig deeper 
to find out how the study was designed and how the data were collected, and 
evaluate the study appropriately using the criteria outlined in Chapter 17.

The need for a well-designed experiment in order to claim cause and effect 
is often ignored by some researchers and members of the media, who give 
us headlines such as “Doctors can lower malpractice lawsuits by spending 
more time with patients.” In reality, it was found that doctors who have fewer 
lawsuits are the type who spend a lot of time with patients. But that doesn’t 
mean taking a bad doctor and having him spend more time with his patients 
will reduce his malpractice suits; in fact, spending more time with them may 
create even more problems.
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Chapter 19

Two-Way Tables and 
Independence

In This Chapter
▶ Setting up two-way tables with categorical variables

▶ Delving into marginal, joint, and conditional distributions

▶ Checking for independence and dependence

▶ Having perspective on the results of two-way tables

Categorical variables place individuals into groups based on certain 
characteristics, behaviors, or outcomes, such as whether you ate break-

fast this morning (yes, no) or political affiliation (Democrat, Republican, 
Independent, “other”). Oftentimes people look for relationships between two 
categorical variables; hardly a day goes by that you don’t hear about another 
relationship that’s reported to have been found.

Here are just a few examples I found on the Internet recently:

 ✓ Dog owners are more likely to take their animal to the vet than cat owners.

 ✓ Heavy use of social-networking Web sites in teens is linked to depression.

 ✓ Children who play more video games do better in science classes.

With all this information being given to you about variables that are related, 
how do you decide what to believe? For example, does heavy use of social-
networking Web sites cause depression, or is it the other way around? Or 
perhaps a third variable out there is related to both of them, such as prob-
lems in the home.

In this chapter, you see how to organize and analyze data from two categori-
cal variables. You find out how to use proportions to make comparisons and 
look at overall patterns and how to check for independence of two categori-
cal variables. You see how to describe dependent relationships appropriately 
and to evaluate results claiming to indicate cause-and-effect relationships, 
making predictions, and/or projecting their results to a population.
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Organizing a Two-Way Table
To explore links between two categorical variables, you first need to organize 
the data that’s been collected, and a table is a great way to do that. A two-way 
table classifies individuals into groups based on the outcomes of two categor-
ical variables (for example, gender and opinion).

Suppose your local community developers are building a campground, and 
they’ve decided pets will be allowed as long as they’re on a leash. They are 
now trying to decide whether the campground should have a separate sec-
tion for pets. You have a hunch that non–pet campers in the area may be 
more in favor of a separate pet area than pet campers, so you decide to find 
out what the members of the camping community think. You randomly select 
100 campers from the local area and conduct a pet camping survey, record-
ing each person’s opinion on having a pet section (yes, no) and if they camp 
with pets (yes, no). You now have a spreadsheet with 100 rows of data, one 
for each person you surveyed. Each row has two pieces of data: one column 
for whether the person is a pet camper (yes, no) and one column for that 
person’s opinion on having a pet section (support, oppose). Suppose the first 
10 rows of your data set look like what’s shown in Table 19-1.

Table 19-1 First 10 Rows of Data from the Pet Camping Survey

Person Pet Camper? Opinion on a Separate Pet Section

1 Yes Oppose

2 Yes Oppose

3 Yes Support

4 No Support

5 No Support

6 Yes Support

7 No Oppose

8 No Support

9 Yes Support

10 No Oppose

From this small portion of your data set, you can start to break it down your-
self. For example, looking at column 2 results, you see that half the respon-
dents (5 ÷ 10 = 0.50) camp with pets and the other half do not. Of those who 
camp with pets (that is, of those five people who have a yes in column 2), 
three of them (60%) support having a separate section; and the same results 
are true for non–pet campers. These results from these 10 campers likely 
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don’t apply to all 100 campers surveyed; however, if you tried to examine the 
raw data from all 100 rows of this data set by hand, you wouldn’t make much 
progress in seeing patterns without a lot of hard work.

In order to get a handle on what’s happening in a large data set when you are 
examining two categorical variables, you organize your data into a two-way 
table. The following sections take you through it.

Setting up the cells
 A two-way table organizes categorical data from two variables by using rows 

to represent one variable (such as pet camping — yes or no) and columns to 
represent the other variable (such as opinion on a pet section — support or 
oppose). Each person appears exactly once in the table.

Continuing with the camping example I start earlier in this chapter, in Table 19-2 
I summarize the results from all 100 campers surveyed.

Table 19-2 Two-Way Table of Pet Camping Survey Data 
 (All 100 Rows)

Support Separate 
Pet Section

Oppose Separate 
Pet Section

Pet Camper 20 10

Non–Pet Camper 55 15

Table 19-2 has 2 ∗ 2 = 4 numbers in it. These numbers represent the cells of 
the two-way table; each one represents an intersection of a row and column. 
The cell in the upper left corner of the table represents the 20 people who are 
pet campers supporting a pet section. In the upper right cell 10 people are pet 
campers opposing a pet section. In the lower left are the 55 non–pet campers 
who want a pet section; the 15 people in the lower right are non–pet campers 
opposing a pet section.

Figuring the totals
 Before getting to the nitty-gritty analysis of a two-way table in the later section 

“Interpreting Results from a Two-Way Table,” you calculate some totals and 
add them to the table for later reference. You summarize each variable sepa-
rately by calculating the marginal totals, which represent the total number in 
each row (for the first variable) and the total number in each column (for the 
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second variable). The marginal row totals form an additional column on the 
right side of the table, and the marginal column totals form an additional row 
on the bottom of the table.

For example, in Table 19-2 in the preceding section, the marginal row total for 
row 1, the number of pet campers, is 20 + 10 = 30; the marginal row total for 
non–pet campers (row 2) is 55 + 15 = 70. The marginal column total for those 
wanting a pet section (column 1) is 20 + 55 = 75; and the marginal column 
total for those not wanting a separate section (column 2) is 10 + 15 = 25.

 The grand total is the total of all the cells in the table and is equal to the 
sample size. (Note the marginal totals are not included in the grand total, only 
the cells.) The grand total sits in the lower right-hand corner of the two-way 
table. In this example, the grand total is 20 + 10 + 55 + 15 = 100. Table 19-3 
shows the marginal row and column totals and the grand total for the pet 
camping survey data.

The marginal row totals always sum to the grand total, because everyone 
in the survey either camps with a pet or they don’t. In the last column of 
Table 19-3 you see that 30 + 70 = 100. Similarly the marginal column totals 
always sum to the grand total; everyone in the survey either wants a pet 
section or they don’t; in the last row of Table 19-3 you see 75 + 25 = 100.

Table 19-3 Two-Way Table of Pet Camping Survey Data, 
 Including Marginal Totals

Support Separate 
Pet Section

Oppose Separate 
Pet Section

Marginal Row 
Totals

Pet Camper 20 10 20 + 10 = 30

Non–Pet Camper 55 15 55 + 15 = 70

Marginal Column 
Totals

20 + 55 = 75 10 + 15 = 25 Grand total = 
100 (20 + 10 + 55 
+ 15)

 When organizing a two-way table, always include the marginal totals and the 
grand total. It gets you off on the right foot when analyzing the data.

Interpreting Two-Way Tables
After the two-way table is set up (with the help of the information in the 
previous section), you calculate percents to explore the data to answer your 
research questions. Here are some questions of interest from the camping 
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data earlier in this chapter (each question will be handled in the following 
sections, respectively):

 ✓ What percentage of the campers are in favor of a pet section?

 ✓ What percentage of the campers are pet campers who support a pet 
 section?

 ✓ Do more non–pet campers support a pet section, compared to pet campers?

The answers to these (and any other) questions about the data come from 
finding and working with the proportions, or percentages, of individuals 
within certain parts of the table. This process involves calculating and examin-
ing what statisticians call distributions. A distribution in the case of a two-way 
table is a list of all the possible outcomes for one variable or a combination of 
variables, along with their corresponding proportions (or percentages).

For example, the distribution for the pet camping variable lists the percent-
ages of people who do and do not camp with pets. The distribution for the 
combination of the pet camping variable (yes, no) and the opinion variable 
(support, oppose) lists the percentages of: 1) pet campers who support a pet 
section; 2) pet campers who oppose a pet section; 3) non–pet campers who 
support a pet section; and 4) the non–pet campers who oppose a pet section.

 For any distribution, all the percentages must sum to 100%. If you’re using pro-
portions (decimals), they must sum to 1.00. Each individual has to be some-
where, and he can’t be in more than one place at one time.

In the following sections, you see how to find three types of distributions, each 
one helping you to answer its corresponding question in the preceding list.

Singling out variables with 
marginal  distributions
If you want to examine one variable at a time in a two-way table, you don’t 
look in the cells of the table, but rather in the margins. As seen in the earlier 
section “Figuring the totals,” the marginal totals represent the total number 
in each row (or column) separately. In the two-way table for the pet camping 
survey (refer to Table 19-3), you see the marginal totals for the pet camping 
variable (yes/no) in the right-hand column, and you find the marginal totals 
for the opinion variable (support/oppose) in the bottom row.

If you want to make comparisons between two groups (for example, pet 
campers versus non–pet campers), however, the results are easier to inter-
pret if you use proportions instead of totals. If 350 people were surveyed, 
visualizing a comparison is easier if you’re told that 60% are in Group A and 
40% are in Group B, rather than saying 210 people are in Group A and 140 are 
in Group B.
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To examine the results of a two-way table based on a single variable, you find 
what statisticians call the marginal distribution for that variable. In the follow-
ing sections, I show you how to calculate and graph marginal distributions.

Calculating marginal distributions
 To find a marginal distribution for one variable in a two-way table, you take 

the marginal total for each row (or column) divided by the grand total.

 ✓ If your variable is represented by the rows (for example, the pet camp-
ing variable in Table 19-3), use the marginal row totals in the numerators 
and the grand total in the denominators. Table 19-4 shows the marginal 
distribution for the pet camping variable (yes, no).

 ✓ If your variable is represented by the columns (for example, opinion on the 
pet section policy, shown in Table 19-3), use the marginal column totals for 
the numerators and the grand total for the denominators. Table 19-5 shows 
the marginal distribution for the opinion variable (support, oppose).

 In either case, the sum of the proportions for any marginal distribution must 
be 1 (subject to rounding). All results in a two-way table are subject to round-
ing error; to reduce rounding error, keep at least 2 digits after the decimal 
point throughout.

Table 19-4 Marginal Distribution for Pet Camping Variable

Pet Camping Proportion

Yes 30 ÷ 100 = 0.30

No 70 ÷ 100 = 0.70

Total 1.00

Table 19-5 Marginal Distribution for the Opinion Variable

Opinion Proportion

Support pet section 75 ÷ 100 = 0.75

Oppose pet section 25 ÷ 100 = 0.25

Total 1.00

Graphing marginal distributions
You graph a marginal distribution using either a pie chart or a bar graph. 
Each graph shows the proportion of individuals within each group for a 
single variable. Figure 19-1a is a pie chart summarizing the pet camping 
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 variable, and Figure 19-1b is a pie chart showing the breakdown of the opin-
ion variable. You see that the results of these two pie charts correspond with 
the marginal distributions in Tables 19-4 and 19-5, respectively.

 

Figure 19-1: 
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variable; 
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From the results of the two separate marginal distributions for the pet camp-
ing and opinion variables, you say that the majority of all the campers in this 
sample are non–pet campers (70%) and the majority of all the campers in this 
sample (75%) support the idea of having a pet section.

 While marginal distributions show us how each variable breaks down on its 
own, they don’t tell us about the connection between two variables. For the 
camping example, you know what percentage of all campers support a new 
pet section, but you can’t distinguish the opinions of the pet campers from the 
non–pet campers. Distributions for making such comparisons are found in the 
later section, “Comparing groups with conditional distributions.”

Examining all groups — 
a joint distribution
Story time: A certain auto manufacturer conducted a survey to see what char-
acteristics customers prefer in their small pickup trucks. They found that the 
most popular color for these trucks was red and the most popular option was 
four-wheel drive. In response to these results, the company started making 
more of their small pickup trucks red with four-wheel drive.

Guess what? They struck out; people weren’t buying those trucks. Turns out 
that the customers who bought the red trucks were more likely to be women, 
and women didn’t use four-wheel drive as often as men did. Customers who 
bought the four-wheel drive trucks were more likely to be men, and they 
tended to prefer black ones over red ones. So the most popular outcome of 
the first variable (color) paired with the most popular outcome of the second 
variable (options on the vehicle) doesn’t necessarily add up to the most 
popular combination of the two variables.

 To figure out which combination of two categorical variables contains the 
highest proportion, you need to compare the cell proportions (for example, 
the color and vehicle options together) rather than the marginal propor-
tions (the color and vehicle option separately). The joint distribution of both 
variables in a two-way table is a listing of all possible row and column com-
binations and the proportion of individuals within each group. You use it to 
answer questions involving two characteristics; such as “What proportion of 
the voters are Democrat and female?” or, “What percentage of the campers 
are pet campers who support a pet section?” In the following sections, I show 
you how to calculate and graph joint distributions.

Calculating joint distributions
A joint distribution shows the proportion of the data that lies in each cell of 
the two-way table. For the pet camping example, the four row-column combi-
nations are:
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 ✓ All campers who camp with pets and support a pet section.

 ✓ All campers who camp with pets and oppose a pet section.

 ✓ All campers who don’t camp with pets and support a pet section.

 ✓ All campers who don’t camp with pets and oppose a pet section.

 The key phrase in all of the proportions mentioned in the preceding list is 
all campers. You are taking the entire group of all campers in the survey and 
breaking them into four separate groups. When you see the word all, think 
joint distribution. Table 19-6 shows the joint distribution for all campers in the 
pet camping survey.

Table 19-6 Joint Distribution for the Pet Camping Survey Data

Support Separate 
Pet Section

Oppose Separate 
Pet Section

Camp with Pets 20 ÷ 100 = 0.20 10 ÷ 100 = 0.10

Don’t Camp with Pets 55 ÷ 100 = 0.55 15 ÷ 100 = 0.15

 To find a joint distribution for a two-way table, you take the cell count (the 
number of individuals in a cell) divided by the grand total, for each cell in 
the table. The total of all these proportions should be 1 (subject to rounding 
error). 

To get the numbers in the cells of Table 19-6, take the cells of Table 19-3 and 
divide by their corresponding grand total (100, in this case). Using the results 
listed in Table 19-6, you report the following:

 ✓ 20% of all campers surveyed camp with pets and support a pet section. 
(See the upper left-hand cell of the table.)

 ✓ 10% of all campers surveyed camp with pets and oppose a pet section. 
(See the upper right-hand cell of the table.)

 ✓ 55% of all campers surveyed don’t camp with pets and do support the 
pet section policy. (See the lower left-hand cell of the table.)

 ✓ 15% of all campers surveyed don’t camp with pets and oppose the pet 
section policy. (See the lower right-hand cell of the table.)

Adding all the proportions shown in Table 19-6, you get 0.20 + 0.10 + 0.55 + 0.15 = 
1.00. Every camper shows up in one and only one of the cells of the table.
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Graphing joint distributions
To graph a joint distribution from a two-way table, you make a single pie 
chart with four slices, representing each proportion of the data that falls 
within a row-column combination. Groups containing more individuals get a 
bigger piece of the overall pie, and hence get more weight when all the votes 
are counted up. Figure 19-2 is a pie chart showing the joint distribution for 
the pet camping survey data.

 

Figure 19-2: 
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joint distri-

bution of the 
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variables.
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From the pie chart shown in Figure 19-2, you see some results that stand out. 
The majority of campers in this sample (0.55 or 55%) don’t camp with pets 
and support a separate section for pets. The smallest slice of the pie repre-
sents those campers who camp with pets and are opposed to a separate sec-
tion for pets (0.10 or 10%).

A joint distribution gives you a breakdown of the entire group by both vari-
ables at once and allows you to compare the cells to each other and to the 
whole group. The results in Figure 19-2 show that if they were asked to vote 
today as to whether or not to have a pet section, when all the votes were 
added up, most of the weight would be placed on the opinions of non–pet 
campers, because they make up the majority of campers in the survey (70%, 
according to Table 19-4), and the pet campers would have less of a voice, 
because they are a smaller group (30%).
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 A limitation of a joint distribution is that you can’t fairly compare two groups 
to each other (for example pet campers versus non–pet campers) because the 
joint distribution puts more weight on larger groups. The next section shows 
how to fairly compare the groups in a two-way table.

Comparing groups with conditional 
distributions
You need a different type of distribution other than a joint distribution to 
compare the results from two groups (for example comparing opinions of pet 
campers versus non–pet campers). Conditional distributions are used when 
looking for relationships between two categorical variables; the individuals 
are first split into the groups you want to compare (for example, pet campers 
and non–pet campers); then the groups are compared based on their opinion 
on a pet section (yes, no). In the following sections, I explain how to calculate 
and graph conditional distributions.

Calculating conditional distributions
 To find conditional distributions for the purpose of comparison, first split the 

individuals into groups according to the variable you want to compare. Then 
for each group, take the cell count (the number of individuals in a particular 
cell) divided by the marginal total for that group. Do this for all the cells in 
that group. Now repeat for the other group, using its marginal total as the 
denominator and the cells within its group as the numerators. (See the earlier 
section “Figuring the totals” for more about marginal totals.) You now have 
two conditional distributions, one for each group, and you fairly compare the 
results for the two groups.

For the pet camping survey data example (earlier in this chapter), you 
compare the opinions of two groups: pet campers and non–pet campers; 
in statistical terms you want to find the conditional distributions of opinion 
based on the pet camping variable. That means you split the individuals 
into the pet camper and non–pet camper groups, and then for each group, 
you find the percentages of who supports and opposes the new pet section. 
Table 19-7 shows these two conditional distributions in table form (working 
off Table 19-3).
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Table 19-7 Conditional Distributions of Opinion for 
 Pet Campers versus Non–Pet Campers

Support Pet 
Section Policy

Oppose Pet 
Section Policy

Total

Pet Campers 20 ÷ 30 = 0.67 10 ÷ 30 = 0.33 1.00

Non–Pet Campers 55 ÷ 70 = 0.79 15 ÷ 70 = 0.21 1.00

 Notice that Table 19-7 differs from Table 19-6 in the earlier section “Calculating 
joint distributions” in terms of how the values in the table add up. This rep-
resents the key difference between a joint distribution and a conditional 
distribution that allows you to make fair comparisons using the conditional 
distribution:

 ✓ In Table 19-6, the proportions in the cells of the entire table sum to 1 
because the entire group is broken down by both variables at once in a 
joint distribution.

 ✓ In Table 19-7, the proportions in each row of the table sum to 1 because  
each group is treated separately in a conditional distribution.

Graphing conditional distributions
One effective way to graph conditional distributions is to make a pie chart for 
each group (for example, one for pet campers and one for non–pet campers) 
where each pie chart shows the results of the variable being studied (opinion: 
yes or no).

Another method is to use a stacked bar graph. A stacked bar graph is a spe-
cial bar graph where each bar has a height of 1 and represents an entire 
group (one bar for pet campers and one bar for non–pet campers). Each bar 
shows how that group breaks down regarding the other variable being stud-
ied (opinion: yes or no).

Figure 19-3 is a stacked bar graph showing two conditional distributions. The 
first bar is the conditional distribution of opinion for the pet camping group 
(row 1 of Table 19-7) and the second bar represents the conditional distribu-
tion of opinion for the non–pet camping group (row 2 of Table 19-7).

Using Table 19-7 and Figure 19-3, first look at the opinions of each group. 
More than 50% of the pet campers support the pet section (the exact number 
rounds to 67%), so you say the majority of pet campers support a pet sec-
tion. Similarly, the majority of non–pet campers (about 79%, way more than 
half) support a pet section.
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Now you compare the opinions of the two groups by comparing the per-
centage of supporters in the pet camping group (67%) to the percentage of 
supporters in the non-pet camping group (79%). While both groups have a 
majority of supporters of the pet section, you see more of the non–pet camp-
ers support the policy than pet campers (because 79% > 67%). By comparing 
the conditional distributions, you’ve found that a relationship appears to 
exist between opinion and pet camping, and your original hunch that non-
pet campers in the area may be more in favor of a separate pet area than pet 
campers is correct, based on this data.

 The difference in the results found in Figure 19-3 isn’t as large as you may have 
thought by looking at the joint distribution in Figure 19-2. The conditional dis-
tribution takes into account and adjusts for the number in each group being 
compared, while the joint distribution puts everyone in the same boat. That’s 
why you need conditional distributions to make fair comparisons.

 When making my conclusions regarding the pet-camping data, the opera-
tive words I use are “a relationship appears to exist.” The results of the pet 
camping survey are based on only your sample of 100 campers. To be able to 
generalize these results to the whole population of pet campers and non–pet 
campers in this community (which is really what you want to do), you need to 
take into account that these sample results will vary, and when they do vary, 
will they still show the same kind of difference? That’s what a hypothesis test 
will tell you (all the details are in Chapter 14).
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 To conduct a hypothesis test for a relationship between two categorical vari-
ables (when each variable has only two categories, like yes/no or male/
female), you either do a test for two proportions (see Chapter 15) or a Chi-
square test (which is covered in my book Statistics II For Dummies, also pub-
lished by Wiley). If one or more of your variables have more than two 
categories, such as Democrats/Republicans/Other, you must use the Chi-
square test to test for independence in the population.

 Be mindful that you may run across a report in which someone is trying to 
give the appearance of a stronger relationship than really exists, or trying to 
make a relationship less obvious by how the graphs are made. With pie charts, 
the sample size often is not reported, leading you to believe the results are 
based on a large sample when they may not be. With bar graphs, they stretch 
or shrink the scale to make differences appear larger or smaller, respectively. 
(See Chapter 6 for more information on misleading graphs of categorical data.)

Checking Independence and 
Describing Dependence

The main reason researchers collect data on two categorical variables is to 
explore possible relationships or connections between the variables. For 
example, if a survey finds that more females than males voted for the incum-
bent president in the last election, then you conclude that gender and voting 
outcome are related. If a relationship between two categorical variables has 
been found (that is, the results from the two groups are different), then stat-
isticians say they’re dependent.

However, if you find that the percentage of females who voted for the incum-
bent is the same as the percentage of males who voted for the incumbent, 
then the two variables (gender and voting for the incumbent) have no rela-
tionship and statisticians say those two variables are independent. In this sec-
tion, you find out how to check for independence and describe relationships 
found to be dependent.

Checking for independence
Two categorical variables are independent if the percentages for the second 
variable (typically representing the results you want to compare, such as 
support or oppose) do not differ based on the first variable (typically repre-
senting the groups you want to compare, such as men versus women). You 
can check for independence with the methods that I cover in this section.
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Comparing the results of two conditional distributions
 Two categorical variables are independent if the conditional distributions 

are the same for all groups being compared. The variables are independent 
because breaking them down and comparing them by group doesn’t change 
the results. In the election example I introduced at the beginning of “Checking 
Independence and Describing Dependence,” independence means the condi-
tional distribution for opinion is the same for the males and the females.

Suppose you do a survey of 200 voters to see if gender is related to whether 
they voted for the incumbent president, and you summarize your results in 
Table 19-8.

Table 19-8 Results of Election Survey

Voted for Incumbent 
President

Didn’t Vote for 
Incumbent President

Marginal 
Row Totals

Males 44 66 110

Females 36 54 90

Marginal 
Column Totals

80 120 Grand total 
= 200

To see whether gender and voting are independent, you find the conditional 
distribution of voting pattern for the males and the conditional distribution of 
voting pattern for the females. If they’re the same, you’ve got independence; 
if not, you’ve got dependence. These two conditional distributions have been 
calculated and appear in rows 1 and 2, respectively, of Table 19-9. (See the 
earlier section “Comparing groups with conditional distributions” for details.)

To get the numbers in Table 19-9, I started with Table 19-8 and divided the 
number in each cell by its marginal row total to get a proportion. Each row in 
Table 19-9 sums to 1 because each row represents its own conditional distribu-
tion. (If you’re male, you either voted for the incumbent or you didn’t — same 
for females.)

Row 1 of Table 19-9 shows the conditional distribution of voting pattern for 
males. You see 40% voted for the incumbent and 60% not. Similarly, row 2 
of the table shows the conditional distribution of voting pattern for females; 
again, 40% voted for the incumbent and 60% did not. Because these distribu-
tions are the same, men and women voted the same way; gender and voting 
pattern are independent.
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Table 19-9 Results of Election Survey with 
 Conditional Distributions

Voted for Incumbent 
President

Didn’t Vote for Incumbent 
President

Total

Males 44 ÷ 110 = 0.40 66 ÷ 110 = 0.60 1.00

Females 36 ÷ 90 = 0.40 54 ÷ 90 = 0.60 1.00

Figure 19-4 shows the conditional distributions of voting pattern for males 
and females using a graph called a stacked bar chart. Because the bars look 
exactly alike, you conclude that gender and voting pattern are independent.
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 To have independence, you don’t need the percentages within each bar to be 
50-50 (for example, 50% males in favor and 50% males opposed). It’s not the 
percentages within each bar (group) that have to be the same; it’s the percent-
ages across the bars (groups) that need to match (for example, 60% of males 
in favor and 60% of females in favor).

 Instead of comparing rows of a two-way table to determine independence, 
you can compare the columns. In the voting example you’d be comparing the 
gender breakdowns for the group who voted for the incumbent to the gender 
breakdowns for the group who didn’t vote for the incumbent. The conclusion 
of independence would be the same as what you found previously, although 
the percentages you calculate would be different.
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Comparing marginal and conditional to check for independence
Another way to check for independence is to see whether the marginal distri-
bution of voting pattern (overall) equals the conditional distribution of voting 
pattern for each of the gender groups (males and females). If these distribu-
tions are equal, then gender doesn’t matter. Again, gender and voting pattern 
are independent.

Looking at the voting pattern example, you find the conditional distribution of 
voting pattern for the males (first bar in Figure 19-4) is 40% yes and 60% no. To 
find the marginal (overall) distribution of voting pattern (males and females 
together), take the marginal column totals in the last row of Table 19-8 (80 yes 
and 120 no) and divide through by 200 (the grand total). You get 80 ÷ 200 = 
0.40 or 40% yes, and 120 ÷ 200 = 0.60 or 60% no. (See the section “Calculating 
marginal distributions” earlier in this chapter for more explanation.) The mar-
ginal distribution of overall voting pattern matches the conditional distribu-
tion of voting pattern for males, so voting pattern is independent of gender.

 Here’s where a small table with only two rows and two columns cuts you 
a break. You have to compare only one of the conditionals to the marginal 
because you have only two groups to compare. If the voting pattern for the 
males is the same as the overall voting pattern, then the same will be true 
for the females. To check for independence when you have more than two 
groups, you use a Chi-square test (discussed in my book Statistics II For 
Dummies, published by Wiley).

Describing a dependent relationship
Two categorical variables are dependent if the conditional distributions 
are different for at least two of the groups being compared. In the election 
example from the previous section, the groups are males and females, and 
the variable being compared is whether the person voted for the incumbent 
president.

Dependence in this case means knowing that the outcome of the first vari-
able does affect the outcome of the second variable. In the election example, 
if dependence had been found, it would mean that males and females didn’t 
have the same voting pattern for the incumbent (for example, more males 
voting for the incumbent than females). (Pollsters use this kind of data to 
help steer their campaign strategies.)

 Other ways of saying two variables are dependent are to say they are related, 
or associated. However, statisticians don’t use the term correlation to indi-
cate relationships between categorical variables. The word correlation in this 
context applies to the linear relationship between two numerical variables 
(such as height and weight), as seen in Chapter 18. (This mistake occurs in the 
media all the time, and it drives us statisticians crazy!)
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Here’s an example to help you better understand dependence: A recent 
press release put out by The Ohio State University Medical Center caught my 
attention. The headline said that aspirin can prevent polyps in colon-cancer 
patients. Having had a close relative who succumbed to this disease, I was 
heartened at the prospect that researchers are making progress in this area 
and decided to look into it.

The researchers studied 635 colon-cancer patients; they randomly assigned 
approximately half of them to an aspirin regimen (317 people) and the other 
half to a placebo (fake pill) regimen (318 people). They followed the patients 
to see which ones developed subsequent polyps and which did not. The data 
from the study are summarized in Table 19-10.

Table 19-10 Summary of Aspirin and Polyps Study Results

Developed Subsequent 
Polyps

Didn’t Develop 
Subsequent Polyps

Total

Aspirin 54 (17%) 263 (83%) 317 (100%)

Placebo 86 (27%) 232 (73%) 318 (100%)

Total 140 495 635

Comparing the results in the rows of Table 19-10 to check for independence 
means finding the conditional distribution of outcomes (polyps or not) for 
the aspirin group and comparing it to the conditional distribution of out-
comes for the placebo group. Making these calculations, you find that 54 ÷ 
317 = 17% of patients in the aspirin group developed polyps (the rest, 83%, 
did not), compared to 86 ÷ 318 = 27% of the placebo group who developed 
subsequent polyps (the rest, 73%, did not).

Because the percentage of patients developing polyps is much smaller for the 
aspirin group compared to the placebo group (17% versus 27%), a dependent 
relationship appears to exist between aspirin-taking and the development of 
subsequent polyps among the colon-cancer patients in this study. (But does 
it carry over to the population? You find out in the section “Projecting from 
sample to population” later in this chapter.)

Cautiously Interpreting Results
It’s easy to get carried away when a relationship between two variables 
has been found; you see this happen all the time in the media. For example, 
a study reports that eating eggs doesn’t affect your cholesterol as once 
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thought; in the details of the report you see the study was conducted on a 
total of 20 men who were all in excellent health, on low-fat diets, who exercised 
several times a week. Ten men in good health ate two eggs a day and their cho-
lesterol didn’t change much, compared to ten men who didn’t eat two eggs per 
day. Do these results carry over to the entire population? Can’t tell — the sub-
jects in the study don’t represent the rest of us. (See Chapter 17 for the scoop 
on evaluating experiments.)

In this section, you see how to put the results from a two-way table into 
proper perspective in terms of what you can and can’t say and why. This 
basic understanding gives you the ability to critically evaluate and make deci-
sions about results presented to you (not all of which are correct).

Checking for legitimate cause and effect
Researchers studying two variables often look for links that indicate a cause-
and-effect relationship. A cause-and-effect relationship between two categorical 
variables means as you change the value of one variable and all else remains 
the same, it causes a change in the second variable — for example, if being on 
an aspirin regimen decreases the chance of developing subsequent polyps in 
colon-cancer patients.

However, just because two variables are found to be related (dependent) 
doesn’t mean they have a cause-and-effect relationship. For example, observ-
ing that people who live near power lines are more likely to visit the hospi-
tal in a year’s time due to illness doesn’t necessarily mean the power lines 
caused the illnesses.

 The most effective way to conclude a cause-and-effect relationship is by con-
ducting a well-designed experiment (where possible). All the details are laid 
out in Chapter 17, but I touch on the main points here. A well-designed experi-
ment meets the following three criteria:

 ✓ It minimizes bias (systematic favoritism of subjects or outcomes).

 ✓ It repeats the experiment on enough subjects so the results are reliable 
and repeatable by another researcher.

 ✓ It controls for other variables that may affect the outcome that weren’t 
included in the study.

In the earlier section “Describing a dependent relationship,” I discuss a study 
involving the use of aspirin to prevent polyps in cancer patients. Because of 
the way the data was collected for this study, you can be confident about the 
conclusions drawn by the researchers; this study was a well-designed experi-
ment, according to the criteria established in Chapter 17. To avoid problems, 
the researchers in this study did the following:
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 ✓ Randomly chose who took the aspirin and who received a fake pill

 ✓ Had large enough sample sizes to obtain accurate information

 ✓ Controlled for other variables by conducting the experiment on patients 
in similar situations with similar backgrounds

Because their experiment was well-designed, the researchers concluded 
that a cause-and-effect relationship was found for the patients in this study. 
The next test is to see whether they can project these results to the popula-
tion of all colon-cancer patients. If so, they are truly entitled to the headline 
“Aspirin Prevents Polyps in Colon-Cancer Patients.” The next section walks 
you through the test.

 Whether two related variables are found to be causally associated depends on 
how the study was conducted. A well-designed experiment is the most con-
vincing way to establish cause and effect. In cases where an experiment would 
be unethical (for example, proving that smoking causes lung cancer by forcing 
people to smoke), a mountain of convincing observational studies (where you 
collect data on people who smoke and people who don’t) would be needed to 
show that an association between two variables crosses over into a cause-and-
effect  relationship.

Projecting from sample to population
In the aspirin/polyps experiment discussed in the earlier section “Describing 
a dependent relationship,” I compare the percentage of patients developing 
subsequent polyps for the aspirin group versus the non-aspirin group and 
got the results 17% and 27%, respectively. For this sample, the difference is 
quite large, so I’m cautiously optimistic that these results would carry over 
to the population of all cancer patients. But what if the numbers were closer, 
such as 17% and 20%? Or 17% compared to 19%? How different do the pro-
portions have to be in order to signal a meaningful association between the 
two variables?

 Percentages compared using data from your sample reflect relationships 
within your sample. However, you know that results change from sample to 
sample. To project these conclusions to the population of all colon-cancer 
patients (or any population being studied), the difference in percentages 
found by the sample has to be statistically significant. Statistical significance 
means even though you know results will vary, even taking that variation into 
account it’s very unlikely the differences were due to chance. That way, the 
same conclusion about a relationship can be made about the whole popula-
tion, not just for a particular data set.
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I analyzed the data from the aspirin/polyps study using a hypothesis test for 
the difference of two proportions (found in Chapter 15). The proportions being 
compared were the proportion of patients taking aspirin who developed subse-
quent polyps and the proportion of patients not taking aspirin who developed 
subsequent polyps. Looking at these results, my p-value is less than 0.0024. 
(A p-value measures how likely you were to have gotten the results from your 
sample if the populations really had no difference; see Chapter 14 to get the 
scoop on p-values.)

Because this p-value is so small, the difference in proportions between the 
aspirin and non-aspirin groups is declared to be statistically significant, and 
I conclude that a relationship exists between taking aspirin and developing 
fewer subsequent polyps.

 You can’t make conclusions about relationships between variables in a popu-
lation based only on the sample results in a two-way table. You must take into 
account the fact that results change from sample to sample. A hypothesis test 
gives limits for how different the sample results can be to still say the vari-
ables are independent. Beware of conclusions based only on sample data from 
a two-way table.

Making prudent predictions
A common goal of research (especially medical studies) is to make predic-
tions, recommendations, and decisions after a relationship between two 
categorical variables is found. However, as a consumer of information, you 
have to be very careful when interpreting results; some studies are better 
designed than others.

The colon-cancer study from the previous section shows that patients who 
took aspirin daily had a lower chance of developing subsequent polyps 
(17% compared to 27% for the non-aspirin group). Because this was a well-
designed experiment and the hypothesis test for generalizing to the popu-
lation was significant, making predictions and recommendations for the 
population of colon-cancer patients based on these sample results is appro-
priate. They’ve indeed earned the headline of their press release: “Aspirin 
Prevents Polyps in Colon-Cancer Patients.”

Resisting the urge to jump to conclusions
 Try not to jump to conclusions when you hear or see a relationship being 

reported regarding two categorical variables. Take a minute to figure out 
what’s really going on, even when the media wants to sweep you away with a 
dramatic result.
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For example, as I write this, a major news network reports that men are 40% 
more likely to die from cancer than women. If you’re a man, you may think 
you should panic. But when you examine the details, you find something dif-
ferent. Researchers found that men are much less likely to go to the doctor 
than women, so by the time cancer is found, it’s more advanced and difficult 
to treat. As a result, men were more likely to die of cancer after its diagno-
sis. (They aren’t necessarily more likely to get cancer; that’s for a different 
study.) This study was meant to promote early detection as the best protec-
tion and encourage men to keep their annual checkups. The message would 
have been clearer had the media reported it correctly (but that’s not as excit-
ing or dramatic).
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The Part of Tens
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In this part . . .

Where would a statistics book be without some sta-
tistics of its own? This part contains ten methods 

for being a statistically savvy sleuth and ten tips for 
boosting your score on a statistics exam. You can use 
this quick, concise reference to help critique or design a 
survey, detect common statistical abuses, and ace your 
introductory statistics course.
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Chapter 20

Ten Tips for the Statistically 
Savvy Sleuth

In This Chapter
▶ Recognizing common statistical mistakes made by researchers and the media

▶ Avoiding mistakes when doing your statistics

This book is not only about understanding the statistics that you come 
across in the media and in your workplace; it’s even more about digging 

deeper to examine whether those statistics are correct, reasonable, and fair. 
You have to be vigilant — and a bit skeptical — to deal with today’s informa-
tion explosion, because many of the statistics you find are wrong or mislead-
ing, either by error or by design. If you don’t critique the information you’re 
consuming, in terms of its correctness, completeness, and fairness, who will? 
In this chapter, I outline ten tips for detecting common statistical mistakes 
made by researchers and by the media and ways to avoid making them 
yourself.

Pinpoint Misleading Graphs
Most graphs and charts contain great information that makes a point clearly, 
concisely, and fairly. However, many graphs give incorrect, mislabeled, and/or 
misleading information; or they simply lack important information that the 
reader needs to make critical decisions about what is being presented. Some 
of these shortcomings occur by mistake; others are incorporated by design in 
hopes you won’t notice. If you’re able to pick out problems with a graph before 
you contemplate any conclusions, you won’t be taken in by misleading graphs.

Figure 20-1 shows examples of four important types of data displays: pie 
charts, bar graphs, time charts, and histograms. In this section I point out 
some of the ways you can be misled if these types of graphs are not made 
properly. (For more information on making charts and graphs correctly and 
identifying misleading ones, see Chapters 6 and 7.)
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Pie charts
Pie charts are exactly what they sound like: circular (pie-shaped) charts that 
are divided into slices that represent the percentage (relative frequency) of 
individuals that fall into different groups. Groups  represent a categorical 
variable, such as gender, political party, or employment status. Figure 20-1a 
is a pie chart showing a breakdown of voter opinions on some issue (call it 
Issue 1).

Here’s how to sink your teeth into a pie chart and test it for quality:

 ✓ Check to be sure the percentages add up to 100 percent, or close to it 
(any round-off error should be small).

 ✓ Be careful when you see a slice of the pie called “other”; this is the 
catch-all category. If the slice for “other” is too large (larger than other 
slices), the pie chart is too vague. On the other extreme, pie charts with 
many tiny slices give you information overload.

 ✓ Watch for distortions that come with the three-dimensional (“exploded”) 
pie charts, in which the slice closest to you looks larger than it really is 
because of the angle at which it’s presented.

 ✓ Look for a reported total number of individuals who make up the pie 
chart so you can determine how big the sample was before it was divided 
up into slices. If the size of the data set (the number of respondents) is 
too small, the information isn’t reliable.

Bar graphs
A bar graph is similar to a pie chart, except that instead of being in the shape 
of a circle that’s divided up into slices, a bar graph represents each group as 
a bar, and the height of the bar represents the number (frequency) or per-
centage (relative frequency) of individuals in that group. Figure 20-1b is a rel-
ative frequency–style bar graph showing voter opinions on some issue (call it 
Issue 1); its results correspond with the pie chart shown in Figure 20-1a.

When examining a bar graph:

 ✓ Check for the sample size. If the bars represent frequencies, you find the 
sample size by summing them up; if the bars represent relative frequen-
cies, you need the sample size to know how much data went into making 
the graph.
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 ✓ Consider the units being represented by the height of the bars and what 
the results mean in terms of those units. For example, are they show-
ing the total number of crimes, or the crime rate (also known as total 
number of crimes per capita)?

 ✓ Evaluate the starting point of the axis where the counts (or percents) are 
shown, and watch for the extremes: If the heights of the bars fluctuate from 
200 to 300 but the counts axis starts at 0, the heights of the bars won’t look 
much different. However, if the starting point on the counts axis is 200, you 
are basically chopping off the bottoms of all the bars, and what differences 
remain (ranging from 0 to 100) will look more dramatic than they should.

 ✓ Check out the range of values on the axis where the counts (or percents) 
are shown. If the heights of the bars range from 6 to 108 but the axis 
shows 0 to 500, the graph will have a great deal of white space and dif-
ferences in the bars become hard to distinguish. However, if the axis 
goes from 5 to 110 with almost no breathing room, the bars will be 
stretched to the limit, making differences between groups look larger 
than they should.

Time charts
A time chart shows how a numerical variable changes over time (for exam-
ple, stock prices, car sales, or average temperature). Figure 20-1c is an exam-
ple of a time chart showing the percentage of yes voters from 2002 to 2010, in 
2-year increments.

Here are some issues to watch for with time charts:

 ✓ Watch the scale on the vertical (quantity) axis as well as the horizontal 
(timeline) axis; results can be made to look more or less dramatic than 
they actually are by simply changing the scale.

 ✓ Take into account the units being portrayed by the chart and be sure 
they are equitable for comparison over time; for example, are dollar 
amounts being adjusted for inflation?

 ✓ Beware of people trying to explain why a trend is occurring without 
additional statistics to back themselves up. A time chart generally 
shows what is happening. Why it’s happening is another story!

 ✓ Watch for situations in which the time axis isn’t marked with equally 
spaced jumps. This often happens when data are missing. For example, 
the time axis may have equal spacing between 2001, 2002, 2005, 2006, 
2008 when it should actually show empty spaces for the years in which 
no data are available.
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Figure 20-1: 
Four types 
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Histograms
A histogram is a graph that breaks the sample into groups according to a 
numerical variable (such as age, height, weight, or income) and shows either 
the number of individuals (frequency) or the percentage of individuals (rela-
tive frequency) that fall into each group. Figure 20-1d is a frequency style his-
togram showing the ages of voters in a certain election.

Some items to watch for regarding histograms include the following:

 ✓ Watch the scale used for the vertical (frequency/relative frequency) 
axis, looking especially for results that are exaggerated or played down 
through the use of inappropriate scales.

 ✓ Check out the units on the vertical axis to see whether they report
 frequencies or relative frequencies; if they’re relative frequencies, you 
need the sample size to determine how much data you’re looking at.

 ✓ Look at the scale used for the groupings of the numerical variable on the 
horizontal axis. If the groups are based on small intervals (for example, 
0–2, 2–4, and so on), the heights of the bars may look choppy and overly 
volatile. If the groups are based on large intervals (for example, 0–100, 
100–200, and so on), the data may give a smoother appearance than is 
realistic. 

Uncover Biased Data
Bias in statistics is the result of a systematic error that either overestimates 
or underestimates the true value. For example, if I use a ruler to measure 
plants and that ruler is 1⁄2-inch short, all of my results are biased; they’re 
 systematically lower than their true values.

Here are some of the most common sources of biased data:

 ✓ Measurement instruments may be systematically off. For example, a 
police officer’s radar gun may say you were going 76 miles per hour 
when you know you were only going 72 miles per hour. Or a badly 
adjusted scale may always add 5 pounds to your weight.

 ✓ The way the study is designed can create bias. For example, a survey 
question that asks, “Have you ever disagreed with the government?” will 
overestimate the percentage of people who are generally unhappy with 
the government. (See Chapter 16 for ways to minimize bias in surveys.)

 ✓ The sample of individuals may not represent the population of 
interest — for example, examining student study habits by only going 
to the campus library. (See more in the section, “Identify Non-Random 
Samples” later in this chapter.)
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 ✓ Researchers aren’t always objective. Suppose in a drug study one group 
of patients is given a sugar pill and the other group is given the real 
drug. If the researchers know who received the real drug, they may inad-
vertently pay more attention to those patients to see if it’s working; they 
may even project results onto the patients (such as saying, “I bet you’re 
feeling better, aren’t you?”). This creates a bias in favor of the drug. (See 
Chapter 17 for more information on setting up good experiments.)

 To spot biased data, examine how the data were collected. Ask questions 
about the selection of the participants, how the study was conducted, what 
questions were used, what treatments (medications, procedures, therapy, 
and so on) were given (if any) and who knew about them, what measurement 
instruments were used and how they were calibrated, and so on. Look for sys-
tematic errors or favoritism, and if you see too much of it, ignore the results.

Search for a Margin of Error
The word error has a somewhat negative connotation, as if an error is some-
thing that is always avoidable. In statistics, that’s not always the case. For 
example, a certain amount of what statisticians call sampling error will always 
occur whenever someone tries to estimate a population value using anything 
other than the entire population. Just the act of selecting a sample from the 
population means you leave out certain individuals, and that means you’re 
not going to get the precise, exact population value. No worries, though. 
Remember that statistics means never having to say you’re certain — you 
have to only get close. And if the sample is large enough, the sampling error 
will be small (assuming it’s good data of course).

To evaluate a statistical result, you need a measure of its accuracy — typi-
cally through the margin of error. The margin of error tells you how much 
the researcher expects her results to vary from sample to sample. (For more 
information on margin of error, see Chapter 12.) When a researcher or the 
media fail to report the margin of error, you’re left to wonder about the accu-
racy of the results, or worse, you just assume that everything is fine, when in 
many cases, it’s not.

 When looking at statistical results in which a number is being estimated (for 
example, the percentage of all Americans who think the president is doing a 
good job), always check for the margin of error. If it’s not included, ask for it! 
(Or if given enough other pertinent information, you can calculate the margin 
of error yourself using the formulas in Chapter 13.)
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Identify Non-Random Samples
If you’re trying to study a population but you can only study a sample of 
individuals from it, how can you ensure that your sample represents the 
population? The most important criteria is to select your sample in a random 
fashion; that is, to take a random sample. You know a sample is random if it 
had the same chance of being selected as every other possible sample of the 
same size did. (It’s like pulling names from a hat.)

Many surveys aren’t based on random samples, however. For example, TV 
polls asking viewers to “call us with your opinion” don’t represent random 
samples. In fact they don’t represent samples at all; when you take a sample, 
you select individuals from the population; for call-in polls, the individuals 
select themselves.

Experiments (particularly medical studies) typically can’t involve a random 
sample of individuals, for ethical reasons. You can’t call someone and say, 
“You were chosen at random to participate in a sleep study. You’ll need to 
come down to our lab tomorrow and stay there for two nights.” Such types 
of experiments are conducted using subjects that volunteer to participate — 
they’re not randomly selected first.

 But even though you can’t randomly select the subjects (participants) for your 
experiment, you can still get valid results if you incorporate the randomness in 
a different way — by randomly assigning the subjects to the treatment group 
and the control group. If the groups were assigned at random, they have a good 
chance of being very similar, except for what treatment they received. That 
way, if you do find a large enough difference in the outcomes of the groups, you 
can attribute those differences to the treatment, rather than to other factors.

 Before making any decisions about statistical results from a survey, look to 
see how the sample of individuals was selected. If the sample wasn’t selected 
randomly, take the results with a grain of salt (see Chapter 16). If you’re look-
ing at the results of an experiment, find out whether the subjects were ran-
domly assigned to the treatment and control groups; if not, ignore the results 
(see Chapter 17).

Sniff Out Missing Sample Sizes
Both the quality and quantity of information is important in assessing how 
accurate a statistic will be. The more good data that goes into a statistic, the 
more accurate that statistic will be. The quality issue is tackled in the sec-
tion “Uncover Biased Data” earlier in this chapter. When the quality has been 
established, you need to assess the accuracy of the information, and for that 
you need to look at how much information was collected (that is, you have to 
know the sample size).

29_9780470911082-ch20.indd   32529_9780470911082-ch20.indd   325 3/25/11   8:12 PM3/25/11   8:12 PM



326 Part VI: The Part of Tens 

Small sample sizes make results less accurate (unless your population was 
small to begin with). Many headlines aren’t exactly what they appear to be 
when the details reveal a study that was based on a small sample. Perhaps 
even worse, many studies don’t even report the sample size at all, which 
should lead you to be skeptical of the results. (For example, an old chewing 
gum ad said, “Four out of five dentists surveyed recommend [this gum] for 
their patients who chew gum.” What if they really did ask only five dentists?)

 Don’t think about this too much, but according to statisticians (who are picky 
about precision), 4 out of 5 is much different than 4,000 out of 5,000, even 
though both fractions equal 80 percent. The latter represents a much more 
precise (repeatable) result because it’s based on a much higher sample size. 
(Assuming it’s good data, of course.) If you ever wondered how math and sta-
tistics are different, here’s your answer! (Chapter 12 has more on precision.)

However, more data isn’t always better data — it depends on how well the 
data were collected (see Chapter 16). Suppose you want to gather the opin-
ions of city residents on a city council proposal. A small random sample with 
well-collected data (such as a mail survey of a small number of homes chosen 
at random from a city map) is much better than a large non-random sample 
with poorly collected data (for example, posting a Web survey on the city 
manager’s Web site and asking for people to respond).

 Always look for the sample size before making decisions about statistical 
information. The smaller the sample size, the less precise the information. If 
the sample size is missing from the article, get a copy of the full report of the 
study, contact the researcher, or contact the journalist who wrote the article.

Detect Misinterpreted Correlations
Everyone wants to look for connections between variables; for example, what 
age group is more likely to vote Democrat? If I take even more vitamin C, 
am I even less likely to get a cold? How does staring at the computer all day 
affect my eyesight? When you think of connections or associations between 
variables, you probably think of correlation. Yes, correlation is one of the 
most commonly used statistics — but it’s also one of the most misunder-
stood and misused, especially throughout the media.

Some important points about correlation are as follows (see Chapter 18 for 
all the additional information):

 ✓ The statistical definition of correlation (denoted by r) is the mea-
sure of strength and direction of the linear relationship between 
two numerical variables. A correlation tells you whether the variables 
increase together or go in opposite directions and the extent to which 
the pattern is consistent across the data set.
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 ✓ The statistical term correlation is only used in the context of two 
numerical variables (such as height and weight). It does not apply to 
two categorical variables (such as political party and gender).

  For example, voting pattern and gender may be related, but using the 
word correlated to describe their relationship isn’t “sc” (statistically cor-
rect, get it?). You can say two categorical variables are associated.

 ✓ If a strong correlation and scatterplot exist between two numerical 
variables, you should be able to draw a straight line through the points, 
and the points should lie close to the line. If a line doesn’t fit the data well, 
the variables likely won’t have a strong correlation (r), and vice versa. (See 
Chapter 18 for information on line-fitting, also known as linear regression.)

  A weak correlation implies that a linear relationship doesn’t exist between 
the two variables, but this doesn’t necessarily mean the variables aren’t 
related at all. They may have some other type of relationship besides a 
linear relationship. For example, bacteria multiply at an exponential rate 
over time (their numbers explode, doubling faster and faster).

 ✓ Correlation doesn’t automatically mean cause and effect. For example, 
suppose Susan reports based on her observations that people who 
drink diet soda have more acne than people who don’t. If you’re a diet 
soda drinker, don’t break out just yet! This correlation may be a freak 
coincidence that only happened to the people she observed. At most, it 
means more research needs to be done (beyond observation) in order 
to draw any connections between diet soda and acne. (Susan can read 
Chapter 17 to find out how to design a good experiment.)

Reveal Confounding Variables
A confounding variable is a variable that isn’t included in a study but whose 
influence can affect the results and create confusing (confounding) conclu-
sions. For example, suppose a researcher reports that eating seaweed helps 
you live longer, but when you examine the study, you find out that it was 
based on a sample of people who regularly eat seaweed in their diets and are 
over the age of 100. When you read the interviews of these people, you dis-
cover some of their other secrets to long life (besides eating seaweed): They 
slept an average of 8 hours a day, drank a lot of water, and exercised every 
day. So did the seaweed cause them to live longer? You can’t tell, because 
several confounding variables (exercise, water consumption, and sleeping 
patterns) may also have contributed.

 The best way to control for confounding variables is to conduct a well-
designed experiment (see Chapter 17), which involves setting up two groups 
that are alike in as many ways as possible, except that one group receives a 
specified treatment and the other group receives a control (a fake treatment, 
no treatment, or a standard, non-experimental treatment).You then compare 
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the results from the two groups, attributing any significant differences to the 
treatment (and to nothing else, in an ideal world).

 This seaweed study wasn’t a designed experiment; it was an observational 
study. In observational studies, no control for any variables exists; people 
are merely observed, and information is recorded. Observational studies are 
great for surveys and polls, but not for showing cause-and-effect relationships, 
because they don’t control for confounding variables. A well-designed experi-
ment provides much stronger evidence.

If doing an experiment is unethical (for example, showing smoking causes 
lung cancer by forcing half of the subjects in the experiment to smoke ten 
packs a day for 20 years while the other half of the subjects smoke nothing), 
then you must rely on mounting evidence from many observational studies 
over many different situations, all leading to the same result. (See Chapter 17 
for all the details on designing experiments.)

Inspect the Numbers
Just because a statistic appears in the media doesn’t mean it’s correct. In 
fact, errors appear all the time (by mistake or by design), so stay on the look-
out for them. Here are some tips for spotting botched numbers:

 ✓ Make sure everything adds up to what it’s reported to. With pie charts, 
be sure all the percentages add up to 100 percent (subject to a small 
amount of rounding error).

 ✓ Double-check even the most basic of calculations. For example, a pie 
chart shows that about 83.33 percent of Americans are in favor of an 
issue, but the accompanying article reports “7 out of every 8” Americans 
are in favor of the issue. Are these statements saying the same thing? 
No; 7 divided by 8 is 87.5 percent — if you want 83.33 percent, it’s 5 out 
of 6.

 ✓ Look for the response rate of a survey; don’t just be happy with the 
number of participants. (The response rate is the number of people 
who responded divided by the total number of people surveyed times 
100 percent.) If the response rate is much lower than 50 percent, the 
results may be biased, because you don’t know what the non-respon-
dents would have said. (See Chapter 16 for the full scoop on surveys and 
their response rates.)

 ✓ Question the type of statistic used, to determine whether it’s appropri-
ate. For example, suppose the number of crimes went up, but so did the 
population size. Instead of reporting the number of crimes, the media 
need to report the crime rate (number of crimes per capita).
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 Statistics are based on formulas that take the numbers you give them and 
crunch out what you ask them to crunch out. The formulas don’t know whether 
the final answers are correct or not. The people behind the formulas should 
know better, of course. Those who don’t know better will make mistakes; those 
who do know better might fudge the numbers anyway and hope you don’t catch 
on. You, as a consumer of information (also known as a certified skeptic), must 
be the one to take action. The best policy is to ask questions.

Report Selective Reporting
You cannot credit studies in which a researcher reports his one statistically 
significant result but fails to mention the reports of his other 25 analyses, 
none of which came up significant. If you had known about all the other anal-
yses, you may have wondered whether this one statistically significant result 
is truly meaningful, or simply due to chance (like the idea that a monkey 
typing randomly on the typewriter would eventually write Shakespeare). It’s 
a legitimate question.

The misleading practice of analyzing data until you find something is what 
statisticians call data snooping or data fishing. Here’s an example: Suppose 
Researcher Bob wants to figure out what causes first graders to argue with 
each other so much in school (he must not be a parent or he wouldn’t even 
try to touch this one!). He sets up a study in which he observes a classroom 
of first graders every day for a month and records their every move. He gets 
back to his office, enters all his data, hits a button that asks the computer 
to perform every analysis known to man, and sits back in his chair eagerly 
awaiting the results. After all, with all this data he’s bound to find something.

After poring through his results for several days, he hits pay dirt. He runs 
out of his office and tells his boss he’s got to put out a press release saying a 
ground-breaking study finds that first graders argue most when 1) the day of 
the week ends in the letter y or 2) when the goldfish in their classroom aquar-
ium swims through the hole in its sunken pirate ship. Great job, Researcher 
Bob! I’ve got a feeling that a month of watching a group of first graders took 
the edge off his data analysis skills.

 The bottom line is that if you collect enough data and analyze it long enough, 
you’re bound to find something, but that something may be totally meaning-
less or just a fluke that’s not repeatable by other researchers.

How do you protect yourself against misleading results due to data fishing? 
Find out more details about the study, starting with how many tests were 
done in total, and how many of those tests were found to be non-significant. 
In other words, get the whole story if you can, so that you can put the signifi-
cant results into perspective.
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 To avoid being reeled in by someone’s data fishing, don’t just go with the first 
result that you hear, especially if it makes big news and/or seems a little suspi-
cious. Contact the researchers and ask for more information about their data, 
or wait to see whether other researchers can verify and replicate their results.

Expose the Anecdote
Ah, the anecdote — one of the strongest influences on public opinion and 
behavior ever created. And one of the least valid. An anecdote is a story or 
result based on a single person’s experience or situation. For example:

 ✓ The waitress who won the lottery — twice.

 ✓ The cat that learned how to ride a bicycle.

 ✓ The woman who lost a hundred pounds in two days on the new miracle 
potato diet.

 ✓ The celebrity who claims to have used an over-the-counter hair color for 
which she is a spokesperson (yeah, right).

Anecdotes make great news; the more sensational the better. But sensational 
stories are outliers from the norm of life. They don’t happen to most people.

You may think you’re out of reach of the influence of anecdotes. But what 
about those times when you let one person’s experience influence you? Your 
neighbor loves his Internet service provider, so you try it, too. Your friend 
had a bad experience with a certain brand of car, so you don’t bother to test-
drive it. Your dad knows somebody who died in a car crash because she was 
trapped in the car by her seat belt, so he decides never to wear his.

While some decisions are okay to make based on anecdotes, some of the 
more important decisions you make should be based on real statistics and 
real data that come from well-designed studies and careful research.

 An anecdote is really a data set with a sample size of only one. You have no 
information to compare it to, no statistics to analyze, no possible explanations 
or information to go on — just a single story. Don’t let anecdotes have much 
influence over you. Instead, rely on scientific studies and statistical informa-
tion based on large random samples of individuals who represent their target 
populations (not just a single situation). When someone tries to persuade you 
by telling you an anecdote just say, “Show me the data!”
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Chapter 21

Ten Surefire Exam Score Boosters
In This Chapter
▶ Getting into the zone

▶ Developing savvy strategies

▶ Preventing silly mistakes

I’ve taught more than 40,000 students in my teaching career (don’t try to 
guess how old I am, it’s not polite!), and each student has taken at least 

three exams for me. That makes over 120,000 exams I’ve graded or had a hand 
in grading, and believe me, I’ve seen it all. I’ve seen excellent answers, disas-
trous answers, and everything in between. I’ve gotten notes from students in 
the margins asking me to go easy on them because their dog ran away and they 
didn’t have time to study. I’ve seen some answers that even I couldn’t figure 
out. I’ve laughed, I’ve cried, and I’ve beamed with pride at what my students 
have come up with in exam situations.

In this chapter, I’ve put together a list of ten strategies most often used by 
students who do well on exams. These students are not necessarily smarter 
than everyone else (although you do have to know your material, of course), 
but they are much better prepared. As a result, they are able to handle new 
problems and situations without getting thrown off; they make fewer little 
mistakes that chip away at an exam score; and they are less likely to have 
that deer-in-the headlights look, not being able to start a problem. They are 
more likely to get the right answer (or at least get partial credit) because 
they are good at labeling information and organizing their work. No doubt 
about it — preparation is the key to success on a stat exam.

You too can be a successful statistics student — or more successful, if you’re 
already doing well — by following the simple strategies outlined in this 
chapter. Remember, every point counts, and they all add up, so let’s start 
boosting your exam score right away!
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Know What You Don’t Know, and 
then Do Something about It

Figuring out what you know and what you don’t know can be hard when you 
are taking a statistics class. You read the book and can understand all the 
examples in your notes, but you can’t do your homework problems. You can 
answer all your roommate’s statistics questions, but you can’t answer your 
own. You walk out of an exam thinking you did well, but when you see your 
grade, you are shocked.

What’s happening here? The bottom line is, you have to be aware of what you 
know and what you don’t know if you want to be successful. This is a very 
tough skill to develop, but it’s well worth it. Students often find out what they 
don’t know the hard way — by losing points on exam questions. Mistakes are 
okay, we all make them — what matters is when you make them. If you make 
a mistake before the exam while you still have time to figure out what you’re 
doing wrong, it doesn’t cost you anything. If you make that same mistake on 
an exam, it’ll cost you points.

 Here’s a strategy for figuring out what you know and what you don’t know. 
Go through your lecture notes and place stars by any items from the notes 
that you don’t understand. You can also “test” yourself, as I describe later in 
“Yeah-yeah trap #2,” and make a list of problems that stumped you. Take your 
notes and list to your professor and ask him to go through the problem areas 
with you. Your questions will be specific enough that your professor can zoom 
in when he’s talking with you, give you specific information and examples, and 
then check to make sure you understand each idea before moving on to the 
next item. Meeting with your professor won’t take long; sometimes getting one 
question answered has a ripple effect and clears up other questions farther 
down on your list.

 Leave no stone unturned when it comes to making sure you understand all the 
concepts, examples, formulas, notation, and homework problems before you 
walk into the exam. I always tell my students that 30 minutes with me has a 
potential of raising your grade by 10%, because I’m awfully good at explaining 
things and answering questions — and I’m probably better at it than any room-
mate, brother-in-law, or friend who took the class four years ago with another 
professor. A quick office visit with your professor is well worth your time — 
especially if you bring a detailed list of questions with you. If for some reason 
your professor is not available, see if you have access to a tutor for help.
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Avoid “Yeah-Yeah” Traps
What’s a “yeah-yeah” trap? It’s a term I use when you get caught saying 
“Yeah-yeah, I got this; I know this, no problem,” but then comes the exam and 
whoa — you didn’t have it, you didn’t know it, and Houston, you actually had 
a problem. Yeah-yeah traps are bad because they lull you into thinking you 
know everything, you don’t have any questions, and you’ll get 100% on the 
exam, when the truth is you still need to resolve some issues.

Although many different yeah-yeah traps exist, I point out the two most 
common ones in this section and help you avoid them. I call them (cleverly) 
yeah-yeah trap #1 and yeah-yeah trap #2. Both of these traps are subtle, and 
they can sneak up on even the most conscientious students, so if you recog-
nize yourself in this section, don’t feel bad. Just think how many points you’ll 
be saving yourself when you get out of “yeah-yeah” mode and into “wait a 
minute — here’s something I need to get straightened out!” mode.

All-purpose pointers for succeeding in class
Here’s some general advice my students have 
found helpful:

 ✓ I know you’ve heard this before, but you 
really are at an advantage if you go to class 
every day so you have a full set of notes to 
review. It also ensures you didn’t miss any 
of the little things that add up to big points 
on an exam.

 ✓ Don’t just write down what the professor 
wrote down — that’s for amateurs. The 
professionals also write down anything 
else he made a big deal about but didn’t 
write down. That’s what separates the As 
from the Bs.

 ✓ Do little things to stay organized while you 
go through the course; you won’t get over-
whelmed later when it’s crunch time. The 
day I invested 5 dollars and bought a good 

mechanical pencil, a good eraser, a cheap 
three-hole punch for my handouts, and a 
tiny stapler was one of the best days of my 
student life. Okay, it’ll probably cost you 10 
dollars for these items today, but trust me, 
it’ll be worth it!

 ✓ Get to your know your professor and let her 
get to know you. Introducing yourself on 
the first day makes a big impression; get-
ting face time (as well as some good help) 
by asking a question after class (if you have 
one) or stopping in during office hours 
never hurts. Don’t worry about whether 
your questions are silly — it’s not what 
level you’re at now that counts; it’s your 
desire to get to the next level and do well in 
the class that’s important. That’s what your 
professor wants to see.
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Yeah-yeah trap #1
Yeah-yeah trap #1 happens when you study by looking through your lecture 
notes over and over again, saying “yeah, I get that,” “I understand that,” and 
“okay, I can do that,” but you don’t actually try the problems from scratch 
totally on your own. If you understand a problem that’s already been done by 
someone else, it only means you understand what that person did when they 
worked the problem. It doesn’t say anything about whether you could have 
done it on your own in an exam situation when the pressure is on and you’re 
staring at a blank space where your answer is supposed to be. Big difference!

I fall into yeah-yeah trap #1 too. I read through my DVR (digital video record-
ing) manual from beginning to end, and it all made total sense to me. But a 
week later when I went to record a movie, I had no clue how to do it. Why not? 
I understood the information as I was reading along, but I didn’t try to apply it 
for myself, and when the time came I couldn’t remember how to do it.

Students always tell me, “If someone sets up the problem for me, I can always 
figure it out.” The problem is, almost anyone can solve a problem that’s 
already been set up. In fact, the whole point is being able to set it up, and no 
one is going to do that for you on an exam.

 Avoid yeah-yeah trap #1 by going through your notes, pulling out a set of 
examples that your professor used, and writing each one on a separate piece 
of paper (just the problem, not the solution). Then mix up the papers and 
make an “exam” out of them. For each problem, try to start it by writing down 
just the very first step. Don’t worry about finishing the problems; just con-
centrate on starting them. After you’ve done this step for all the problems, go 
back into your lecture notes and see if you started them right. (On the back of 
each problem, write down where it came from in your notes so you can check 
your answers faster.)

Yeah-yeah trap #2
Yeah-yeah trap #2 is even more subtle than yeah-yeah trap #1. A student 
comes into my office after the exam and says, “Well I worked every problem 
in the notes, I redid all the homework problems, I worked all the old exams 
you posted, and I did great on all of them; I hardly got a single problem 
wrong. But when I took the exam, I bombed it.”

What happened? Nine out of ten times, students in yeah-yeah trap #2 did 
indeed work all those problems, and spent hours upon hours doing so. But 
whenever they got stuck and couldn’t finish a problem, they peeked at the 
solutions (which they kept sitting right next to them), saw where they went 
wrong, said “yeah-yeah, that was a silly mistake — I knew that!” and contin-
ued on to finish the problem. In the end they thought they got the problems 
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correct all by themselves, but on an exam they lost some (if not all) of the 
points, depending on where they originally got stuck.

So how do you avoid yeah-yeah trap #2? By making a test run under “real” 
exam conditions where the pressure is on. Here’s how:

 1. Study as much as you need to, in whatever manner you need to, until 
you are ready to test your knowledge.

 2. Sit down with a practice exam, or if one isn’t available, make your 
own by choosing some problems from homework, your notes, or the 
book and shuffling them up.

  Just like at a real exam, you also need a pencil, a calculator, and any 
other materials you are allowed to bring to your exam — and nothing 
else! Putting your book and notes away may make you feel anxious, 
frustrated, or exposed when you do a test run of an exam, but you really 
need to find out what you can do on your own before you do the real 
thing.

  Some teachers allow you to bring a review sheet (also sometimes called 
a memory sheet or — cringe — a cheat sheet), a sheet of paper on which 
you can write any helpful information you want, subject to limitations 
that your professor may give. If your teacher allows review sheets at 
tests, use one for your practice test, too.

 3. Turn on the oven timer for however long your exam is scheduled to 
last, and then get started.

 4. Work as many problems as you can to the best of your ability, and 
when you are finished (or time runs out), put your pencil down.

 5. When your “exam” is over, get into the lotus position and breathe in, 
hold it, and breathe out three times. Then look at the solutions and 
grade your paper the way your professor would.

  If you couldn’t start a problem, even if you just forgot one little thing 
and you immediately recognized it when you saw the solutions — you 
can’t say “Yeah-yeah, I knew that; I wouldn’t make that mistake on a real 
exam”; you have to say “No, I couldn’t start it on my own. I would have 
gotten 0 points for that problem. I need to figure this out.”

 You don’t get a second chance on a real exam, so when you’re studying, don’t 
be afraid to admit when you can’t do a problem correctly on your own; just be 
glad you caught it, and figure out how to fix the problem so you’ll get it right 
next time. Go back over it in your notes, read about it in the book, ask your 
professor, try more problems of the same type, or ask your study buddy to 
quiz you on it. Also, try to see a pattern in the type of problems that you were 
missing points on or getting wrong altogether. Figure out why you missed 
what you missed. Did you read the questions too fast, which caused you to 
answer them incorrectly? Was it a vocabulary or a notation issue? How did 
your studying align with what was on the test? And so on.
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 Being critical of yourself is hard, and finding out you didn’t know something 
you thought you knew is a little scary. But if you put yourself out there and 
find your mistakes before they cost you points, you’ll zoom in on your weak-
nesses, turn them into strengths, boost your knowledge, and get a higher 
exam score.

Make Friends with Formulas
Many students are not comfortable with formulas (unless you are a math 
nerd, in which case formulas make you shout for joy). That unease is 
understandable — I used to be intimidated by them too (formulas, that is — 
not math nerds). The trouble is, you really can’t survive too long without 
eventually using a formula in a statistics class, so becoming comfortable with 
them right from the start is important. A formula tells you much more than 
how to calculate something. It shows the thinking process behind the calcula-
tions. For example, the big picture regarding standard deviation can be seen 
by analyzing its formula:

Subtracting the mean, , from a value in the data set, , measures how far 
above or below the mean that number is. Because you don’t want the posi-
tive and negative differences to cancel each other out, you square them all 
to make them positive (but remember that this gives you square units). Then 
you add them up and divide by n – 1, which is near to finding an average, and 
take the square root to get back into original units. In a general sense, you 
are finding something like the average distance from the mean.

Stepping back even further, you can tell from the formula that the standard 
deviation can’t be negative, because everything is squared. You also know 
the smallest it can be is zero, which occurs when all the data are the same 
(that is, all are equal to the mean). And you see how data that is far from the 
mean will contribute a larger number to the standard deviation than data 
that is close to the mean.

And here’s another perk. Because you understand the formula for standard 
deviation now, you know what it’s really measuring: the spread of the data 
around the mean. So when you get an exam question saying “Measure the 
spread around the mean,” you’ll know what to do. Bam!

30_9780470911082-ch21.indd   33630_9780470911082-ch21.indd   336 3/25/11   8:12 PM3/25/11   8:12 PM



337 Chapter 21: Ten Surefire Exam Score Boosters

 In order to feel comfortable about formulas, follow these tips:

 ✓ Get into the right mind-set. Think of formulas as mathematical short-
hand and nothing more. All you have to do is be able to decipher them. 
Oftentimes you’re allowed to bring a review sheet to your exam, or 
you’ll be given a formula sheet with your exam, so you may not have to 
make things harder by memorizing them.

 ✓ Understand every part of every formula. In order for any formula to be 
useful, you have to understand all its components. For example, before 
you can use the formula for standard deviation, you need to know what 

   and  mean and what  stands for. Otherwise it’s totally useless.

 ✓ Practice using formulas from day one. Use them to verify the calcula-
tions done in lecture or in your book. If you get a different answer from 
what’s shown, figure out what you are doing wrong. Making mistakes 
here is okay — you caught the problem early, and that’s all that counts.

 ✓ Whenever you use a formula to do a problem, write it down first and 
then plug in the numbers in the second step. The more often you write 
down a formula, the more comfortable you will be using it on an exam. 
And if (heaven forbid!) you copy the formula down wrong, your instruc-
tor will be able to follow your error, which may mean some partial credit 
for you!

 Chances are, if you’ve learned some formulas in your class, you’re going to 
need to use them on your exam. Don’t expect to be able to use formulas with 
confidence on an exam if you haven’t practiced with them and written them 
down many, many times beforehand. Practice when the problems are easy so 
when they get harder you won’t have to worry as much.

Make an “If-Then-How” Chart
Quarterbacks always talk about trying to get the game to “slow down” for 
them so they feel like they have more time to think and react. You want the 
same thing when you take a statistics exam. (See, you and your NFL hero 
really do have something in common!) The game starts slowing down for a 
quarterback when he begins to see patterns in the way the defense lines up 
against him, rather than feeling like every play brings a completely different 
look. Similarly for you, the exam starts to “slow down” when the problems 
start falling into categories as you read them, rather than each one appearing 
to be totally different from anything you’ve ever seen before.
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To make this happen, many of my students find help in making what I call an 
if-then-how chart. An if-then-how chart maps out the types of problems you are 
likely to run into, strategies to solve them, and examples for quick reference. The 
basic idea of the if-then-how chart is to say “If the problem asks for X, then I solve 
it by doing Y, and here’s how.” An if-then-how chart contains three columns:

 ✓ If: In the if column, write down a succinct description of what you are 
asked to find or do. For example, if the problem asks you to test a claim 
about the population mean (see Chapter 14 for more about claims), 
write “Test a claim — population mean.” If you are asked to give your 
best estimate of the population mean (Chapter 13 has the scoop on esti-
mates), write “Estimate population mean.”

  Problems are worded in different ways, because that’s how the real 
world works. Pay attention to different wordings that in essence boil 
down to the same problem, and add them to the appropriate place in the 
if column where the actual problem is already listed. For example, one 
problem may ask you to estimate the population mean; another problem 
may say, “Give a range of likely values for the population mean.” These 
questions ask for the same thing, so include both in your if column.

 ✓ Then: In your then column you write the exact statistical procedure, for-
mula, or technique you need to solve that type of problem using the statisti-
cal lingo. For example, when your if column says “Test a claim — population 
mean,” your then column should say “Hypothesis test for μ.” When your if 
statement reads “Estimate population mean” your then column should read 
“Confidence interval for μ.”

  To match strategies to situations, look carefully at how the examples in 
your lecture notes and your book were done and use them as your guide.

 ✓ How: In the how column, write an example, a formula, and/or a quick 
note to yourself that will spark your mind and send you off running in 
the right direction. Write whatever you need to feel comfortable (no 
one’s going to see it but you, so make it your way!). For example, sup-
pose your if column says “Estimate the population mean,” and your 
then column says “Confidence interval — population mean.” In the how 
column, you can write the formula.

Although I just took a lot of time and talking to walk you through it, making 
an if-then-how chart is much easier done than said. Below is an example of an 
entry in an if-then-how chart for the confidence interval problem I just laid out.

If Then How

Estimate the population mean (also 
known as range of likely values)

CI for μ
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Using these three columns, fill in your if-then-how chart with each different 
type of problem you’ve covered in class. Don’t write down every little exam-
ple; look for patterns in the problems and boil down the number of scenarios 
to a doable list.

 If-then-how charts should be customized to your needs, so the only way it’s 
going to work is if you make it yourself. No two people think alike; what works 
for your friend may not work for you. However, it might be helpful to compare 
your chart with a friend’s once you are both finished, to see if you’ve left any-
thing out.

 If you’re allowed to bring a review sheet to exams, I suggest putting your if-
then-how chart on one side. On the other side, write down those little nuggets 
of information your professor gave you in lecture but didn’t write down. If you 
aren’t allowed to have a review sheet during the exam, call me crazy, but I’ll 
argue that you should still make one to study from. Making one really helps 
you sort out all the ideas so when you take the exam you’ll be much more 
clear about what to look for and how to set up and solve problems. Lots of 
students come out of an exam saying they didn’t even use their review sheet, 
and that’s when you know you’ve done a good job putting one together: When 
it went on the sheet, it went into your mind!

Figure Out What the Question Is Asking
Students often tell me that they don’t understand what a problem is asking 
for. That’s the million dollar question, isn’t it? And it’s not a trivial matter. 
Oftentimes the actual question is embedded somewhere in the language of 
the problem; it isn’t usually as clear as: “Find the mean of this data set.”

 For example, a question may ask you to “interpret” a statistical result. What 
does “interpret” really mean? To most professors the word “interpret” means 
to explain in words that a nonstatistician would understand.

Suppose you are given some computer output analyzing number of crimes 
and number of police officers, and you are asked to interpret the correlation 
between them. First you pick off the number from the output that represents 
the correlation (say it’s –0.85); then you talk about its important features in 
language that is easy for others to understand. The answer I would like to 
see on an exam goes something like this: “The correlation between number 
of police officers and number of crimes is –0.85; they have a strong negative 
linear relationship. As the number of police officers increases, number of 
crimes decreases.”
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 If you know what the problem is asking for, you have a better chance of actu-
ally solving it. You’ll gain confidence when you know what you are supposed 
to do. On the flip side, if you don’t know what the problem is asking, even 
starting it will be very hard. Your anxiety will go up, which can affect your 
ability to work other problems as well. So how do you boil down a problem to 
figure out exactly what it’s asking for? Here are some tips to follow:

 ✓ Check the very last sentence of the problem — that’s usually where 
the question is located. Rather than reading the entire problem a 
second (and third and fourth) time and getting yourself all worked up, 
just read it once and then focus on the end of the problem.

 ✓ Practice boiling down questions ahead of time. Look at all the exam-
ples from your lecture notes, your homework problems, and problems 
in your textbook and try to figure out what each problem is asking for. 
Eventually you’ll start to see patterns in the way problems are worded, 
and you’ll get better at figuring out what they are really asking for.

 ✓ Ask your professor what clues you should look for, and bring example 
problems with you. She will be impressed because you are trying to 
figure out the big picture, and oh, how professors love those “big pic-
ture” questions! And after she helps you, you can add those to your if-
then-how chart (see “Make an ‘If-Then-How’ Chart”).

 ✓ Translate the wording of the problem into a statistical statement. This 
involves labeling not only what you are given (as discussed in the next 
section), but also what you want to find.

  For example, Professor Barb wants to give 20 percent of her students an A 
on her statistics exam; your job is to find the cutoff exam score for an A, 
and this translates to “find the score representing the 80th percentile.”

Label What You’re Given
 Many students try to work problems by pushing around numbers that are 

given in the problem. This approach may work with easy problems, but 
everyone hits the wall at some point and needs more support to solve harder 
problems. You’ll benefit from getting into the habit of labeling everything 
properly — labeling is the critical connection between the if column and the 
then column in your if-then-how chart (described earlier in this chapter). You 
may read a problem and know what you need to do, but without understand-
ing how to use what you’re given in the problem, you won’t be able to solve it 
correctly. To really understand the numbers the problem gives you, take each 
one and write down what it stands for.

Suppose you’re given the following problem to solve: “You want to use the 
size of a house in a certain city (in square feet) to predict its price (in thou-
sands). You collect data on 100 randomly selected homes that have recently 
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been sold. You find the mean price is $219,100 with standard deviation of 
$60,100, and you know the mean size is 1,993 square feet, with standard devi-
ation of 349 square feet. You find the correlation between size and price for 
these homes is +0.90. Find the best-fitting regression line that you can use to 
predict house price using size.”

Your first step is labeling everything. Knowing you use size to predict price, 
you figure size must be the x variable and price must be the y variable. You 
then label the means  (square feet) and  (in thousands) 
respectively; the standard deviations are labeled  (square feet) and 

 (in thousands), respectively, and the correlation is labeled r = 0.90. 
The sample size is n = 100. Now you can plug your numbers into the right for-
mulas. (See Chapter 18 regarding correlation and regression.)

When you know you have to work with a regression line and that formulas 
are involved, having all the given information organized and labeled, ready to 
go, is very comforting. It’s one less thing to think about. (The problem in this 
particular example is solved in the section “Make the Connection and Solve 
the Problem.”) If that example doesn’t convince you, here are six more rea-
sons to label what you are given in a problem:

 ✓ Labeling allows you to check your work more easily. When you go 
back to check your work (as I advise in the section “Do the Math — 
Twice”), you’ll quickly see what you were thinking when you did the 
problem the first time.

 ✓ Your professor will be impressed. He will see your labels and realize you 
at least know what the given information stands for. That way if your cal-
culations go haywire, you still have a chance for partial credit.

 ✓ Labeling saves time. I know that writing down more information seems 
like a strange way to save time, but by labeling all the items, you can pull 
out the info you need in a flash.

  For example, suppose you need to do a 95% confidence interval for the 
population mean (using what you know from Chapter 13) and you’re 
told that the sample mean is 60, the population standard deviation is 
10, and the sample size is 200. You know the formula has to involve , , 
and n, and you see one that does:

  

  Because you’ve already labeled everything, you just grab what you need, 
put it into the formula, throw in a z*-value of 1.96 (the critical value 
corresponding to a 95% confidence level), and crunch it out to get the 
answer:
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 ✓ Labels keep your mind organized. You are less likely to get buried in 
calculations and forget what you’re doing if your work involves symbols 
and not just numbers. By sorting out the information you are given, 
you’re less likely to resort to reading the problem over and over again, 
raising your anxiety level each time.

 ✓ You use the labels to figure out which formula or technique you need 
to use to solve a problem. For example, if you think you need a hypoth-
esis test but no claim is made about the population mean, hold up. 
You may need a confidence interval instead; this realization saves you 
precious time because you won’t be spinning your wheels in the wrong 
direction. Labels help you quickly narrow down your options.

 ✓ Labeling helps you resist the urge to just write down numbers and 
push them around on the paper. More often than not, number-pushing 
leads to wrong answers and less (if any) partial credit if your answer 
is wrong. Your professor may not be able to follow you, or just doesn’t 
want to spend all that time trying to figure it out (sorry to say, but this 
happens sometimes).

 Labeling saves you anxiety, time, and points when you take your exam. But 
in order to be successful on exam day, you need to start this practice early 
on, while the problems are easy to do. Don’t expect to suddenly be able to 
sort out the information on exam day if you never did it before; it’s not gonna 
happen. Make it your habit right away and you won’t freak out when you see 
a new problem. You’ll at least be able to break it down into smaller chunks, 
which always helps.

Draw a Picture
You’ve heard the expression “A picture is worth a thousand words.” As a 
statistics professor, I say, “A picture is worth a thousand points (or at least 
half the points on a given problem).” When the given information and/or the 
question being asked can be expressed in a picture form, you should do it. 
Here’s why:

 ✓ A picture can help you see what’s going on in the problem. For exam-
ple, if you know exam scores have a normal distribution with mean 75 
and standard deviation 5 (see Chapter 9 for more about normal distribu-
tion), you draw a bell-shaped curve, marking off the mean in the center 
and three standard deviations on each side. You can now visualize the 
scenario you’re dealing with.

 ✓ You can use the drawing to help figure out what you are trying to find. 
For example, if you need to know the probability that Bob scored more 
than 70 points on the exam, you shade in the area to the right of 70 on 
your drawing, and you’re on your way.
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 ✓ Your professor knows that you understand the basics of the problem, 
increasing your chance for partial credit. On the other hand, someone 
who got the problem wrong doesn’t get much sympathy if the professor 
knows drawing a simple picture would have avoided the whole problem.

 ✓ Students who draw pictures tend to get more problems correct than 
students who don’t. Without a picture you can easily lose track of what’s 
needed, and make mistakes like finding P(X < 70) instead of P(X > 70), for 
example. Also, checking for and spotting errors before you turn in your 
exam is easier if you have a picture to look at.

 Drawing a picture may seem like a waste of valuable time on an exam, but it’s 
actually a time-saver because it gets you going in the right direction, keeps 
you focused throughout the problem, and helps ensure you answer the right 
question. Drawing a picture can also help you analyze your final numerical 
answer and either confirm you’ve got it right, or quickly a spot and fix an error 
and save yourself some points. (Be sure to draw pictures while studying so 
they come naturally during an exam.)

Make the Connection and 
Solve the Problem

 When you’ve figured out what the problem is asking, you have everything 
labeled, and you have your pictures drawn, it’s time to solve the problem. 
After doing the prep work, nine times out of ten you’ll remember a technique 
you learned from class, a formula that contains the items you’ve labeled, and/
or an example you worked through. Use or remember your if-then-how chart 
and you’ll be on your way. (See “Make an ‘If-Then-How’ Chart” if you need 
more info.)

 Breaking down a problem means having less to think about at each step, and 
in a stressful exam situation where you may forget your own name, that’s a 
real plus! (This strategy reminds me of the saying, “How do you eat an ele-
phant? One bite at a time.”)

In the example of using size of a home to predict its price (see the earlier sec-
tion “Label What You’re Given”), you know the mean and standard deviation 
of size, the mean and standard deviation of price, and the correlation between 
them; and you’ve labeled them all. The question asks you to find the equation 
of the best-fitting regression line to predict price based on size of the home; 
you know that means find the equation y = a + bx where x = size (square feet) 
and y = price (thousands of dollars), b is the slope of the regression line, and 
a is the y-intercept. (Flip to Chapter 18 for more about this formula.)
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Now you recognize what to do — you have to find a and b. You remember (or 
can find) that those formulas are  and . Grab the numbers 

you’ve labeled ( ), put them 
into the formulas, and solve (sounds like a commercial for a frozen dinner 
doesn’t it?). You find the slope is  and the y-intercept is 

, so the equation of the best-fitting regression 
line is . (See Chapter 18 for the details of regression.)

Do the Math — Twice
I can still remember some of the struggles I had way back in high school 
algebra. For the longest time 3 times 2 was equal to 5 for me; this mistake 
(and others like it) caused me to miss a handful of points on every exam and 
homework assignment, and I just could not get past it. One day I decided I’d 
had enough of losing points here and there for silly errors, and I did some-
thing about it. From that day on, I wrote out all of my work, step by step, and 
resisted the urge to do steps in my head. When I got my final answer, instead 
of moving on, I went back and checked every step, and I did so with the mind-
set that a mistake had probably slipped in somewhere and it was my job to 
find it before anyone else did.

This approach forced me to look at each step with fresh eyes, as if I were 
grading someone else’s paper. I caught more mistakes because I never 
skipped over a step without bothering to check it. I finally stopped thinking 
3 times 2 was 5 because I caught myself in the act enough times. My exam 
grades went up, just because I started checking things more carefully. It 
reminds me of the carpenter’s saying, “Measure twice, cut once.” They waste 
a lot less wood that way.

 Every time you find and fix a mistake before you turn in your exam, you’re get-
ting a handful of points back for yourself. Find your errors before your profes-
sor does, and you’ll be amazed how those points add up. However, remember 
that time is not unlimited on an exam, so try to get the problems right the first 
time. Labeling everything, drawing pictures, writing down formulas, and show-
ing all your work will definitely help!

Analyze Your Answers
A very prominent statistician I know has a framed piece of paper on his office 
wall. It’s a page of an exam he took way back when he was a student. It’s got a 
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big red circle around one of his answers, which happens to be the number 2. 
Why was writing the number 2 for an answer such a problem? Because the 
question asked him to find a probability, and probabilities are always between 
0 and 1. As a result, he didn’t get any points for that problem, not even partial 
credit. In fact, I’ll bet his professor wanted to give him negative points for 
making such a mistake. (They really don’t like it when you totally miss the 
boat.)

 Always take the time to check your final answer to see if it makes sense. A neg-
ative standard deviation, a probability more than 1, or a correlation of –121.23 
is not going to go over well with your professor, and it will not be treated like 
a simple math error. It will be treated as a fundamental error in not knowing 
(or perhaps caring) what the result should look like.

 If you know an answer you got can’t possibly be right, but you cannot for the 
life of you figure out where you went wrong, don’t waste any more time on it. 
Just write a note in the margin that says you know your answer can’t be right 
but you can’t figure out your error. This helps separate you from the regular Joe 
who found a probability of 10,524.31 (yes, I’ve seen it) and merrily moved on.

By the way, you may be wondering why this world-class statistician still 
keeps this exam page framed on his office wall. He says it’s to keep him 
humble. Learn from his example and never move on to the next problem 
without stepping back and saying “does this answer even make sense?”
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Appendix

Tables for Reference

This appendix includes tables for finding probabilities and/or critical 
values for the three distributions used in this book: the Z-distribution 

(standard normal), the t-distribution, and the binomial distribution.

The Z-Table
Table A-1 shows less-than-or-equal-to probabilities for the Z-distribution; that 
is, p(Z ≤ z) for a given z-value. (See Chapter 9 for calculating z-values for a 
normal distribution; see Chapter 11 for calculating z-values for a sampling 
distribution.) To use Table A-1, do the following:

 1. Determine the z-value for your particular problem.

  The z-value should have one leading digit before the decimal point (posi-
tive, negative, or zero) and two digits after the decimal point; for example 
z = 1.28, –2.69, or 0.13.

 2. Find the row of the table corresponding to the leading digit and first 
digit after the decimal point. 

  For example, if your z-value is 1.28, look in the “1.2” row; if z = –1.28, look 
in the “–1.2” row.

 3. Find the column corresponding to the second digit after the decimal 
point. 

  For example, if your z-value is 1.28 or –1.28, look in the “.08” column.

 4. Intersect the row and column from Steps 2 and 3.

  This number is the probability that Z is less than or equal to your 
z-value. In other words, you’ve found p(Z ≤ z). For example, if z = 1.28, 
you see p(Z ≤ 1.28) = 0.8997. For z = –1.28, you see p(Z ≤ –1.28) = 0.1003.
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Table A-1 The Z-Table

    z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

–3.6 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001

–3.5 .0002 .0002 .0002 .0002 .0002  .0002  .0002 .0002 .0002 .0002

–3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 .0002

–3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0003 .0003

–3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005

–3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007

–3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

–2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

–2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

–2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

–2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

–2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

–2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

–2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

–2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

–2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

–2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

–1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

–1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

–1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

–1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

–1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

–1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

–1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

–1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

–1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

–1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

–0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

–0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

–0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

–0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

–0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

–0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

–0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

–0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

–0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

–0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

Number in the

table represents

P(Z � z)

0z
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  z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549

0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998

3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999

0

Number in the

table represents

P(Z � z)

z
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The t-Table
Table A-2 shows right-tail probabilities for selected t-distributions 
(see Chapter 10 for more on the t-distribution). 

Follow these steps to use Table A-2 to find right-tail probabilities and 
p-values for hypothesis tests involving t (see Chapter 15):

 1. Find the t-value for which you want the right-tail probability (call it t), 
and find the sample size (for example, n).

 2. Find the row corresponding to the degrees of freedom (df ) for your 
problem (for example, n – 1). Go across that row to find the two t-val-
ues between which your t falls.

  For example, if your t is 1.60 and your n is 7, you look in the row for 
df = 7 – 1 = 6. Across that row you find your t lies between t-values 1.44 
and 1.94.

 3. Go to the top of the columns containing the two t-values from Step 2.

  The right-tail (greater-than) probability for your t-value is somewhere 
between the two values at the top of these columns. For example, your 
t = 1.60 is between t-values 1.44 and 1.94 (df = 6); so the right tail prob-
ability for your t is between 0.10 (column heading for t = 1.44); and 0.05 
(column heading for t = 1.94).

 The row near the bottom with Z in the df column gives right-tail (greater-than) 
probabilities from the Z-distribution (Chapter 10 shows Z ’s relationship 
with t). 

Use Table A-2 to find t*-values (critical values) for a confidence interval 
involving t (see Chapter 13):

 1. Determine the confidence level you need (as a percentage).

 2. Determine the sample size (for example, n).

 3. Look at the bottom row of the table where the percentages are shown. 
Find your % confidence level there.

 4. Intersect this column with the row representing your degrees of free-
dom (df). This is the t-value you need for your confidence interval.

  For example, a 95% confidence interval with df=6 has t*=2.45. (Find 95% 
on the last line and go up to row 6.)
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Table A-2 The t-Table

0.40 0.25 0.10 0.05

Numbers in each row of the table are values on a t-distribution with
(df ) degrees of freedom for selected right-tail (greater-than) probabilities (p).

0.025

t (p, df)

0.01 0.005 0.0005

1

df/p

0.324920 1.000000 3.077684 6.313752 12.70620 31.82052 63.65674 636.6192

2 0.288675 0.816497 1.885618 2.919986 4.30265 6.96456 9.92484 31.5991

3 0.276671 0.764892 1.637744 2.353363 3.18245 4.54070 5.84091 12.9240

4 0270722 0.740697 1.533206 2.131847 2.77645 3.74695 4.60409 8.6103

5

6

0.267181 0.726687 1.475884 2.015048 2.57058 3.36493 4.03214 6.8688

0.264835 0.717558 1.439756 1.943180 2.44691 3.14267 3.70743 5.9588

7 0.263167 0.711142 1.414924 1.894579 2.36462 2.99795 3.49948 5.4079

8 0.261921 0.706387 1.396815 1.859548 2.30600 2.89646 3.35539 5.0413

9 0.260955 0.702722 1.383029 1.833113 2.26216 2.82144 3.24984 4.7809

10 0260185 0.699812 1.372184 1.812461 2.22814 2.76377 3.16927 4.5869

11 0259556 0.697445 1.363430 1.795885 2.20099 2.71808 3.10581 4.4370

12 0259033 0.695483 1.356217 1.782288 2.17881 2.68100 3.05454 43178

13 0.258591 0.693829 1.350171 1.770933 2.16037 2.65031 3.01228 4.2208

14 0.258213 0.692417 1.345030 1.761310 2.14479 2.62449 2.97684 4.1405

15 0.257885 0.691197 1.340606 1.753050 2.13145 2.60248 2.94671 4.0728

16 0257599 0.690132 1.336757 1.745884 2.11991 2.58349 2.92078 4.0150

17 0.257347 0.689195 1.333379 1.739607 2.10982 2.56693 2.89823 3.9651

18 0.257123 0.688364 1.330391 1.734064 2.10092 2.55238 2.87844 3.9216

19 0.256923 0.687621 1.327728 1.729133 2.09302 2.53948 2.86093 3.8834

20 0.256743 0.686954 1.325341 1.724718 2.08596 2.52798 2.84534 3.8495

21 0.256580 0.686352 1.323188 1.720743 2.07961 2.51765 2.83136 3.8193

22 0256432 0.685805 1.321237 1.717144 2.07387 2.50832 2.81876 3.7921

23 0256297 0.685306 1.319460 1.713872 2.06866 2.49987 2.80734 3.7676

24 0.256173 0.684850 1.317836 1.710882 2.06390 2.49216 2.79694 3.7454

25 0.256060 0.684430 1.316345 1.708141 2.05954 2.48511 2.78744 3.7251

26 0.255955 0.684043 1.314972 1.705618 2.05553 2.47863 2.77871 3.7066

27 0.255858 0.683685 1.313703 1.703288 2.05183 2.47266 2.77068 3.6896

28 0.255768 0.683353 1.312527 1.701131 2.04841 2.46714 2.76326 3.6739

29 0.255684 0.683044 1.311434 1.699127 2.04523 2.46202 2.75639 3.6594

30 0.255605 0.682756 1.310415 1.697261 2.04227 2.45726 2.75000 3.6460

z 0.253347 0.674490 1.281552 1.644854 1.95996 2.32635 2.57583 3.2905

CI 80% 90% 95% 98% 99% 99.9%
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The Binomial Table
Table A-3 shows probabilities for the binomial distribution (see Chapter 8).

To use Table A-3, do the following:

 1. Find these three numbers for your particular problem:

 • The sample size, n

 • The probability of success, p

 • The x-value for which you want p(X = x)

 2. Find the section of Table A-3 that’s devoted to your n.

 3. Look at the row for your x-value and the column for your p.

 4. Intersect that row and column. You have found p(X = x).

 5. To get the probability of being less than, greater than, greater than or 
equal to, less than or equal to, or between two values of X, you add 
the appropriate values of Table A-3 using the steps found in Chapter 8.

  For example, if n=10, p=0.6, and you want p(X=9), go to the n=10 section, 
the x=9 row, and the p=0.6 column to find 0.04.
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Table A-3 The Binomial Table

p

Binomial probabilities:

(continued)

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

1 0 0.900 0.800 0.750 0.700 0.600 0.500 0.400 0.300 0.250 0.200 0.100
1 0.100 0.200 0.250 0.300 0.400 0.500 0.600 0.700 0.750 0.800 0.900

2 0 0.810 0.640 0.563 0.490 0.360 0.250 0.160 0.090 0.063 0.040 0.010
1 0.180 0.320 0.375 0.420 0.480 0.500 0.480 0.420 0.375 0.320 0.180
2 0.010 0.040 0.063 0.090 0.160 0.250 0.360 0.490 0.563 0.640 0.810

3 0 0.729 0.512 0.422 0.343 0.216 0.125 0.064 0.027 0.016 0.008 0.001
1 0.243 0.384 0.422 0.441 0.432 0.375 0.288 0.189 0.141 0.096 0.027
2 0.027 0.096 0.141 0.189 0.288 0.375 0.432 0.441 0.422 0.384 0.243
3 0.001 0.008 0.016 0.027 0.064 0.125 0.216 0.343 0.422 0.512 0.729

4 0 0.656 0.410 0.316 0.240 0.130 0.063 0.026 0.008 0.004 0.002 0.000
1 0.292 0.410 0.422 0.412 0.346 0.250 0.154 0.076 0.047 0.026 0.004
2 0.049 0.154 0.211 0.265 0.346 0.375 0.346 0.265 0.211 0.154 0.049
3 0.004 0.026 0.047 0.076 0.154 0.250 0.346 0.412 0.422 0.410 0.292
4 0.000 0.002 0.004 0.008 0.026 0.063 0.130 0.240 0.316 0.410 0.656

5 0 0.590 0.328 0.237 0.168 0.078 0.031 0.010 0.002 0.001 0.000 0.000
1 0.328 0.410 0.396 0.360 0.259 0.156 0.077 0.028 0.015 0.006 0.000
2 0.073 0.205 0.264 0.309 0.346 0.312 0.230 0.132 0.088 0.051 0.008
3 0.008 0.051 0.088 0.132 0.230 0.312 0.346 0.309 0.264 0.205 0.073
4 0.000 0.006 0.015 0.028 0.077 0.156 0.259 0.360 0.396 0.410 0.328
5 0.000 0.000 0.001 0.002 0.010 0.031 0.078 0.168 0.237 0.328 0.590

6 0 0.531 0.262 0.178 0.118 0.047 0.016 0.004 0.001 0.000 0.000 0.000
1 0.354 0.393 0.356 0.303 0.187 0.094 0.037 0.010 0.004 0.002 0.000
2 0.098 0.246 0.297 0.324 0.311 0.234 0.138 0.060 0.033 0.015 0.001
3 0.015 0.082 0.132 0.185 0.276 0.313 0.276 0.185 0.132 0.082 0.015
4 0.001 0.015 0.033 0.060 0.138 0.234 0.311 0.324 0.297 0.246 0.098
5 0.000 0.002 0.004 0.010 0.037 0.094 0.187 0.303 0.356 0.393 0.354
6 0.000 0.000 0.000 0.001 0.004 0.016 0.047 0.118 0.178 0.262 0.531

7 0 0.478 0.210 0.133 0.082 0.028 0.008 0.002 0.000 0.000 0.000 0.000
1 0.372 0.367 0.311 0.247 0.131 0.055 0.017 0.004 0.001 0.000 0.000
2 0.124 0.275 0.311 0.318 0.261 0.164 0.077 0.025 0.012 0.004 0.000
3 0.023 0.115 0.173 0.227 0.290 0.273 0.194 0.097 0.058 0.029 0.003
4 0.003 0.029 0.058 0.097 0.194 0.273 0.290 0.227 0.173 0.115 0.023
5 0.000 0.004 0.012 0.025 0.077 0.164 0.261 0.318 0.311 0.275 0.124
6 0.000 0.000 0.001 0.004 0.017 0.055 0.131 0.247 0.311 0.367 0.372
7 0.000 0.000 0.000 0.000 0.002 0.008 0.028 0.082 0.133 0.210 0.478

Numbers in the table represent p (X=x) for a binomial
distribution with n trials and probability of success p.

31_9780470911082-bapp01.indd   35331_9780470911082-bapp01.indd   353 3/25/11   8:12 PM3/25/11   8:12 PM



354 Statistics For Dummies, 2nd Edition 

Table A-3 (continued)

p

Binomial probabilities:

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

8 0 0.430 0.168 0.100 0.058 0.017 0.004 0.001 0.000 0.000 0.000 0.000
1 0.383 0.336 0.267 0.198 0.090 0.031 0.008 0.001 0.000 0.000 0.000
2 0.149 0.294 0.311 0.296 0.209 0.109 0.041 0.010 0.004 0.001 0.000
3 0.033 0.147 0.208 0.254 0.279 0.219 0.124 0.047 0.023 0.009 0.000
4 0.005 0.046 0.087 0.136 0.232 0.273 0.232 0.136 0.087 0.046 0.005
5 0.000 0.009 0.023 0.047 0.124 0.219 0.279 0.254 0.208 0.147 0.033
6 0.000 0.001 0.004 0.010 0.041 0.109 0.209 0.296 0.311 0.294 0.149
7 0.000 0.000 0.000 0.001 0.008 0.031 0.090 0.198 0.267 0.336 0.383
8 0.000 0.000 0.000 0.000 0.001 0.004 0.017 0.058 0.100 0.168 0.430

9 0 0.387 0.134 0.075 0.040 0.010 0.002 0.000 0.000 0.000 0.000 0.000
1 0.387 0.302 0.225 0.156 0.060 0.018 0.004 0.000 0.000 0.000 0.000
2 0.172 0.302 0.300 0.267 0.161 0.070 0.021 0.004 0.001 0.000 0.000
3 0.045 0.176 0.234 0.267 0.251 0.164 0.074 0.021 0.009 0.003 0.000
4 0.007 0.066 0.117 0.172 0.251 0.246 0.167 0.074 0.039 0.017 0.001
5 0.001 0.017 0.039 0.074 0.167 0.246 0.251 0.172 0.117 0.066 0.007
6 0.000 0.003 0.009 0.021 0.074 0.164 0.251 0.267 0.234 0.176 0.045

Numbers in the table represent p(X=x) for a binomial
distribution with n trials and probability of success p.

7 0.000 0.000 0.001 0.004 0.021 0.070 0.161 0.267 0.300 0.302 0.172
8 0.000 0.000 0.000 0.000 0.004 0.018 0.060 0.156 0.225 0.302 0.387
9 0.000 0.000 0.000 0.000 0.000 0.002 0.010 0,040 0.075 0.134 0.387

10 0 0.349 0.107 0.056 0.028 0.006 0.001 0.000 0.000 0.000 0.000 0.000
1 0.387 0.268 0.188 0.121 0.040 0.010 0.002 0.000 0.000 0.000 0.000
2 0.194 0.302 0.282 0.233 0.121 0.044 0.011 0.001 0.000 0.000 0.000
3 0.057 0.201 0.250 0.267 0.215 0.117 0.042 0.009 0.003 0.001 0.000
4 0.011 0.088 0.146 0.200 0.251 0.205 0.111 0.037 0.016 0.006 0.000
5 0.001 0.026 0.058 0.103 0.201 0.246 0.201 0.103 0.058 0.026 0.001
6 0.000 0.006 0.016 0.037 0.111 0.205 0.251 0.200 0.146 0.088 0.011
7 0.000 0.001 0.003 0.009 0.042 0.117 0.215 0.267 0.250 0.201 0.057
8 0.000 0.000 0.000 0.001 0.011 0.044 0.121 0.233 0.282 0.302 0.194
9 0.000 0.000 0.000 0.000 0.002 0.010 0.040 0.121 0.188 0.268 0.387

10 0.000 0.000 0.000 0.000 0.000 0.001 0.006 0.028 0.056 0.107 0.349

11 0 0.314 0.086 0.042 0.020 0.004 0.000 0.000 0.000 0.000 0.000 0.000
1 0.384 0.236 0.155 0.093 0.027 0.005 0.001 0.000 0.000 0.000 0.000
2 0.213 0.295 0.258 0.200 0.089 0.027 0.005 0.001 0.000 0.000 0.000
3 0.071 0.221 0.258 0.257 0.177 0.081 0.023 0.004 0.001 0.000 0.000
4 0.016 0.111 0.172 0.220 0.236 0.161 0.070 0.017 0.006 0.002 0.000
5 0.002 0.039 0.080 0.132 0.221 0.226 0.147 0.057 0.027 0.010 0.000
6 0.000 0.010 0.027 0.057 0.147 0.226 0.221 0.132 0.080 0.039 0.002
7 0.000 0.002 0.006 0.017 0.070 0.161 0.236 0.220 0.172 0.111 0.016
8 0.000 0.000 0.001 0.004 0.023 0.081 0.177 0.257 0.258 0.221 0.071
9 0.000 0.000 0.000 0.001 0.005 0.027 0.089 0.200 0.258 0.295 0.213

10 0.000 0.000 0.000 0.000 0.001 0.005 0.027 0.093 0.155 0.236 0.384
11 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.020 0.042 0.086 0.314
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p

Binomial probabilities:

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

12 0 0.282 0.069 0.032 0.014 0.002 0.000 0.000 0.000 0.000 0.000 0.000
1 0.377 0.206 0.127 0.071 0.017 0.003 0.000 0.000 0.000 0.000 0.000
2 0.230 0.283 0.232 0.168 0.064

0.142
0.016 0.002 0.000 0.000 0.000 0.000

3 0.085 0.236 0.258 0.240 0.054 0.012 0.001 0.000 0.000 0.000
4 0.021 0.133 0.194 0.231 0.213 0.121 0.042 0.008 0.002 0.001 0.000
5 0.004 0.053 0.103 0.158 0.227 0.193 0.101 0.029 0.011 0.003 0.000
6 0.000 0.016 0.040 0.079 0.177 0.226 0.177 0.079 0.040 0.016 0.000
7 0.000 0.003 0.011 0.029 0.101 0.193 0.227 0.158 0.103 0.053 0.004
8 0.000 0.001 0.002 0.008 0.042 0.121 0.213 0.231 0.194 0.133 0.021
9 0.000 0.000 0.000 0.001 0.012 0.054 0.142 0.240 0.258 0.236 0.085

10 0.000 0.000 0.000 0.000 0.002 0.016 0.064 0.168 0.232 0.283 0.230
11 0.000 0.000 0.000 0.000 0.000 0.003 0.017 0.071 0.127 0.206 0.377
12 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.014 0.032 0.069 0.282

13 0 0.254 0.055 0.024 0.010 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1 0.367 0.179 0.103 0.054 0.011 0.002 0.000 0.000 0.000 0.000 0.000
2 0.245 0.268 0.206 0.139 0.045 0.010 0.001 0.000 0.000 0.000 0.000
3 0.100 0.246 0.252 0.218 0.111 0.035 0.006 0.001 0.000 0.000 0.000
4 0.028 0.154 0.210 0.234 0.184 0.087 0.024 0.003 0.001 0.000 0.000
5 0.006 0.069 0.126 0.180 0.221 0.157 0.066 0.014 0.005 0.001 0.000
6 0.001 0.023 0.056 0.103 0.197 0.209 0.131 0.044 0.019 0.006 0.000
7 0.000 0.006 0.019 0.044 0.131 0.209 0.197 0.103 0.056 0.023 0.001
8 0.000 0.001 0.005 0.014 0.066 0.157 0.221 0.180 0.126 0.069 0.006
9 0.000 0.000 0.001 0.003 0.024 0.087 0.184 0.234 0.210 0.154 0.028

10 0.000 0.000 0.000 0.001 0.006 0.035 0.111 0.218 0.252 0.246 0.100
11 0.000 0.000 0.000 0.000 0.001 0.010 0.045 0.139 0.206 0.268 0.245
12 0.000 0.000 0.000 0.000 0.000 0.002 0.011 0.054 0.103 0.179 0.367
13 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.010 0.024 0.055 0.254

14 0 0.229 0.044 0.018 0.007 0.001 0.000 0.000 0.000 0.000 0.000 0.000
1 0.356 0.154 0.083 0.041 0.007 0.001 0.000 0.000 0.000 0.000 0.000
2 0.257 0.250 0.180 0.113 0.032 0.006 0.001 0.000 0.000 0.000 0.000
3 0.114 0.250 0.240 0.194 0.085 0.022 0.003 0.000 0.000 0.000 0.000
4 0.035 0.172 0.220 0.229 0.155 0.061 0.014 0.001 0.000 0.000 0.000
5 0.008 0.086 0.147 0.196 0.207 0.122 0.041 0.007 0.002 0.000 0.000
6 0.001 0.032 0.073 0.126 0.207 0.183 0.092 0.023 0.008 0.002 0.000
7 0.000 0.009 0.028 0.062 0.157 0.209 0.157 0.062 0.028 0.009 0.000
8 0.000 0.002 0.008 0.023 0.092 0.183 0.207 0.126 0.073 0.032 0.001
9 0.000 0.000 0.002 0.007 0.041 0.122 0.207 0.196 0.147 0.086 0.008

10 0.000 0.000 0.000 0.001 0.014 0.061 0.155 0.229 0.220 0.172 0.035
11 0.000 0.000 0.000 0.000 0.003 0.022 0.085 0.194 0.240 0.250 0.114
12 0.000 0.000 0.000 0.000 0.001 0.006 0.032 0.113 0.180 0.250 0.257
13 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.041 0.083 0.154 0.356
14 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.007 0.018 0.044 0.229

(continued)

Numbers in the table represent p(X=x) for a binomial
distribution with n trials and probability of success p.
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Table A-3 (continued)

p

Binomial probabilities:

px(1 – p) n – x( )n
x

n x 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

15 0 0.206 0.035 0.013 0.005 0.000 0.000 0.000
1 0.343 0.132 0.067 0.031 0.005 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000

0.000 0.000 0.000

2 0.267 0.231 0.156 0.092 0.022 0.003 0.000

0.000
0.000
0.000

3 0.129 0.250 0.225 0.170 0.063 0.014 0.002 0.000 0.000 0.000 0.000
4 0.043 0.188 0.225 0.219 0.127 0.042 0.007 0.001 0.000 0.000 0.000
5 0.010 0.103 0.165 0.206 0.186 0.092 0.024 0.003 0.001 0.000 0.000
6 0.002 0.043 0.092 0.147 0.207 0.153 0.061 0.012 0.003 0.001 0.000
7 0.000 0.014 0.039 0.081 0.177 0.196 0.118 0.035 0.013 0.003 0.000
8 0.000 0.003 0.013 0.035 0.118 0.196 0.177 0.081 0.039 0.014 0.000
9 0.000 0.001 0.003 0.012 0.061 0.153 0.207 0.147 0.092 0.043 0.002

10 0.000 0.000 0.001 0.003 0.024 0.092 0.186 0.206 0.165 0.103 0.010
11 0.000 0.000 0.000 0.001 0.007 0.042 0.127 0.219 0.225 0.188 0.043
12 0.000 0.000 0.000 0.000 0.002 0.014 0.063 0.170 0.225 0.250 0.129
13 0.000 0.000 0.000 0.000 0.000 0.003 0.022 0.092 0.156 0.231 0.267
14 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.031 0.067 0.132 0.343
15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.035 0.206

20 0 0.122 0.012 0.003 0.001 0.000 0.000 0.000 0.000

0.005

0.000 0.000 0.000
1 0.270 0.058 0.021 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.285 0.137 0.067 0.028 0.003 0.000 0.000 0.000 0.000 0.000 0.000
3 0.190 0.205 0.134 0.072 0.012 0.001 0.000 0.000 0.000 0.000 0.000
4 0.090 0.218 0.190 0.130 0.035 0.005 0.000 0.000 0.000 0.000 0.000
5 0.032 0.175 0.202 0.179 0.075 0.015 0.001 0.000 0.000 0.000 0.000
6 0.009 0.109 0.169 0.192 0.124 0.037 0.005 0.000 0.000 0.000 0.000
7 0.002 0.055 0.112 0.164 0.166 0.074 0.015 0.001 0.000 0.000 0.000
8 0.000 0.022 0.061 0.114 0.180 0.120 0.035 0.004 0.001 0.000 0.000
9 0.000 0.007 0.027 0.065 0.160 0.160 0.071 0.012 0.003 0.000 0.000

10 0.000 0.002 0.010 0.031 0.117 0.176 0.117 0.031
0.065 0.027 0.007 0.007

0.010 0.002 0.000
11 0.000 0.000 0.003 0.012 0.071 0.160 0.160
12 0.000 0.000 0.001 0.004 0.035 0.120 0.180 0.114 0.061 0.022 0.000
13 0.000 0.000 0.000 0.001 0.015 0.074 0.166 0.164 0.112 0.055 0.002
14 0.000 0.000 0.000 0.000 0.005 0.037 0.124 0.192 0.169 0.109 0.009
15 0.000 0.000 0.000 0.000 0.001 0.015 0.075 0.179 0.202 0.175 0.032
16 0.000 0.000 0.000 0.000 0.000 0.005 0.035 0.130 0.190 0.218 0.090
17 0.000 0.000 0.000 0.000 0.000 0.001 0.012 0.072 0.134 0.205 0.190
18 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.028 0.067 0.137 0.285
19 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.021 0.058 0.270
20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.012 0.122

Numbers in the table represent p(X=x) for a binomial
distribution with n trials and probability of success p.
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Index

• Symbols and 
Numerics •
> (greater than), 141
> (greater than or equal to), 141
90th percentile (top 10%), 155
68-95-99.7% rule, 53, 81–83, 112
10th percentile (bottom 10%), 155

• A •
ACT scores, comparing, 87–89
alpha level, 223
alternative hypothesis, 61, 217
analyses

confi dence interval, 18
correlation, 20
data from experiments, 274–277
data in surveys, 259
hypothesis tests, 18–19
margin of error, 18
overview, 17–18
regression, 20
two-way tables, 20

anecdotes
avoiding infl uence of, 330
as factor in misleading statistics, 40

anonymous respondents, 257
arithmetic errors, 34
average (mean)

binomials, 142
boxplots, 120
calculating, 71–73
histograms, 109
median compared with, 74–76
normal distribution, 143
overview, 51–52
population, 51
random variables, 134
sample, 51
sampling distribution, 164–166

• B •
bad sample, 49
bar graphs

described, 16
evaluating, 102
frequency, 97
horizontal, 102
misleading, 320–321
overview, 97
relative frequency, 97
scale of, 100–101
for state lottery profi ts, 99–100
tips for, 102
for tracking transportation expenses, 

97–99
vertical, 102
for workplace pet peeves, 101–102

bell-shaped curve, 54–55
best-fi tting line

calculating, 288–290
described, 286
example, 291–292
interpreting, 290–291
linear regression, 286, 288–292
slope of, 289–291
y-intercept, 289–290

bias
in data, 274
described, 49
in experiments, 13–14
overview, 51
sources of, 323–324
in surveys, 13–

biased sample, 191
big picture information determined with 

t-table, 162
bimodal data set, 113
binomial distribution

described, 16
mean, 142
standard deviation, 142
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binomial distribution (continued)

tables, 352–356
variance, 142

binomials
conditions, checking step by step, 

135–136
formula, fi nding binomial probabilities 

using a, 137–140
mean, 142
multiple outcomes, situations having, 

136–137
normal approximation, 155–156
overview, 135
probability of success changes, 137
specifi c values of X, fi nding probabilities 

for, 140–141
standard deviation, 142
table, fi nding binomial probabilities using 

a binomial, 140–141
trials, no fi xed number of, 136
trials, not independent, 137
variance, 142
X greater-than, less-than, or between two 

values, fi nding probabilities for, 141
bivariate data, 280
blind experiments, 57, 274
borderline values in histograms, 106
boxplots

creating, 115–117
described, 16, 115
errors in interpreting, 122
horizontal, 116
interpreting, 117–122
mean in, 120
median in, 120
for Old Faithful’s eruptions, 120–121
outliers in, 121–122
skewed left, 117
skewed right, 117–118
symmetric, 117–119
variability in, 119
vertical, 116

breaking down problems as exam strategy, 
343–344

business section of newspaper, 
statistics in, 28

• C •
calculating

conditional distributions, 305–306
correlation, 283–284
joint distributions, 302–303
marginal distributions, 300
p-values, 222–223
regression line, 288–290
test statistic, 219–220

Car Talk (radio show), 247
carrying out surveys, 256–259
categorical data (qualitative data). See also 

graphing categorical data
calculating, 68–71
described, 68, 91
summaries for, 14, 15

categorical variables, 295
causation, 63
cause-and-effect relationship

correlation compared, 293–294
defi ned, 263
described, 21–22, 293
determining, 313–314
as factor in misleading statistics, 40
questioning claims of, 21–22

cells in two-way tables, setting up, 297
census, 50
center of data, 107, 109
Central Limit Theorem (CLT), 55–56, 171–173
charts and graphs. See also specifi c charts 

and graphs
for categorical data, 16
misleading statistics, 37–39
for numerical data, 16
overview, 15–16
in summaries, 15–16

children’s healthcare, surveys about, 248
clinical trials, 272
collecting data for surveys, 256–257
comparisons

defi ning experiment to make, 265–267
of two population averages in hypothesis 

tests, 234–236
of two population proportions in 

hypothesis tests, 240–242
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conclusions
avoiding jumping to, 316
cause and effect, questioning claims of, 

21–22
drawing, 259–260
overstated results in, 21
overview, 21

conditional distributions
calculating, 305–306
graphing, 306–308
overview, 305

confi dence intervals
choosing confi dence level for, 198–199
evaluating, 213
interpreting, 196–197
misleading, 213
overview, 59–60, 195–196
for population mean, 201–204, 208–211
population proportion, 206–207, 211–213
population variability, 201
sample size, 199–200, 204–206
t-table, 161–162
width of, 197–198

confi dence levels
choosing, 198–199
described, 195
margin of error (MOE), 184, 188–189
z-value for, 198–199

confi dential respondents, 257
confounding variables

described, 294
experiments, 270–271
mistake recognition, 327–328

consumers of information, 33
continuous data, 46
continuous random variables, 132–133, 143. 

See also normal distribution
control group, 57, 266
correlation

calculating, 283–284
cause and effect relationship compared, 

293–294
described, 20, 63, 282
detecting misinterpreted, 326–327
interpreting, 284–286
properties, 286

correlation coeffi cient, 283
countably infi nite values, 46, 133
counts, 103
cover letter for surveys, 253
crime rates, 35–36
crime statistics, 35–36
critical value, 198
customer satisfaction statistics, 31–32
cutoff points, 223
cynical attitude about statistics, 22

• D •
daily life statistics, 9–10
data

bias in, 274
categorical, 46
continuous, 46
discrete, 46
numerical, 46
ordinal, 47
overview, 45–47
qualitative, 46
quantitative, 46
reliability of, 273
validity of, 273
yes/no, 46

data collection
experiments, 273–274
hypothesis test, 217–218
overview, 12
random sample selection, 13
sample selection, 13

data fi shing, avoiding, 329–330
data set, 47
decisions based on results of experiments, 

making informed, 277–278
degrees of freedom (df), 158, 160
dependent variables, 287, 308, 311–312
descriptive statistics

categorical data, 68–71
empirical rule, 81–83
fi ve-number summary, 89–90
histograms, 74–76
interquartile range, 90
mean, 71–73
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descriptive statistics (continued)

median, 73–74
overview, 14–15, 67–68
percentiles, 83–89
range, 80
standard deviation, 77–80
in summaries, 14–15

designing studies to answer a research 
question

with experiments, 12
overview, 11
with surveys, 11–12

detecting errors, 34
discrete data, 46
discrete random variables, 132–133, 143. 

See also binomials
distribution. See also specifi c distributions

conditional, 305–308
described, 164, 299
joint, 302–305
marginal, 299–302
overview, 16–17, 54–55
two-way tables, 299–308

double-blind experiments, 57–58, 274
double-checking your work as exam 

strategy, 344

• E •
empirical rule (68-95-99.7), 53, 81–83, 112
erroneous data, removing, 41
errors

in arithmetic, 34
described, 34, 166, 225
detecting, 34
erroneous data, removing, 41
in interpretation of survey results, 259–260
in interpreting boxplots, 122
missing data as factor in, 41
of omission, 34
reasonableness of projections, 

examining, 34
type-1 errors (false alarms), 225–226
type-2 errors (missed detection), 226

estimates, 32, 193–194. See also confi dence 
intervals

ethical issues
experiments, 272–273
surveys, 253

ethical review boards (ERBs), 253, 272
evaluating

bar graphs, 102
confi dence intervals, 213
histograms, 110–112
pie charts, 97
time charts, 127

exaggerations. See misleading statistics
exam strategies

breaking down problems, 343–344
double-checking your work, 344
formulas, being comfortable using, 336–337
“if-then-how” chart, making an, 337–339
“know what you don’t know, and then do 

something about it,” 332
labeling everything in problem, 340–342
overview, 333
picture form, expressing your exam 

question in, 342–343
problems, understanding what the 

question is asking in test, 339–340
real exam conditions, practicing under, 

334–336
sense, analyzing your answers to confi rm 

they make, 344–345
“yeah-yeah” traps, avoiding, 333–336
on your own, trying problems, 334

examples
media and statistics, 24–30
misleading graphs, 322
normal distribution, 144
regression line, 291–292

excess data in time charts, 126–127
experiments

analyzing data from, 274–277
bias in, minimizing, 13–14
blind, 57
comparisons, defi ning the experiment to 

make, 265–267
confounding variables, 270–271
control group, 57, 266
data collection for, 273–274
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decisions based on results of, making 
informed, 277–278

defi ned, 262
double-blind, 57–58
ethical issues, 272–273
fake treatment, 265–266
no treatment, 267
overview, 12, 56–58, 264
placebo, 57
placebo effect, 265–266
random assignments of subjects to 

treatments, 269–270
sample size, selecting, 267–268
standard treatment, 266
subjects, choosing, 268–269
treatment group, 57, 266
volunteers, fi nding, 269

explanatory variable, 287
extrapolation, 292

• F •
factor, 262
fake treatment, 265–266
false alarms, 225–226
fantasy sports, 28
fatality rate, 25
fi nite values, 46
fi ve-number summary, 89–90
fl at histograms, 109
following up surveys, 257–259
formulas

being comfortable using, 336–337
for fi nding binomial probabilities, 137–140
for Z-distribution (standard normal 

distribution), 147
frequency

in bar graphs, 97
described, 14, 97
in histograms, 104

• G •
Gallup Organization, 182, 191, 255
“garbage in equals garbage out,” 13

generalizing research results, 276–277
grand total, 298
graphing. See also misleading graphs

conditional distributions, 306–308
joint distributions, 304–305
marginal distributions, 300–302

graphing categorical data
bar graphs, 97–102
pie charts, 92–97

graphing numerical data
boxplots, 115–122
histograms, 103–115
time charts, 123–127

groupings in histograms, 105–106, 112–114
guidelines for p-values, 224

• H •
high percentiles, 153–154
histograms

borderline values in, 106
center of data, 107, 109
creating, 104–106
described, 16, 74–76, 103–104
evaluating, 110–112
fl at, 109
frequency, 104
groupings, 105–106, 112–114
interpreting, 106–110
mean (average), 109
median, 109
misleading, 112–115
misleading graphs, 323
outliers in, 109
relative frequency, 104
scale, 114
setting up, 105–106
shape of data, 106–109
showing ages of best actress Oscar 

winners, 104–111
skewed left, 107, 111–112
skewed right, 107, 111–112
spread of data, 106
symmetric, 107, 111–112
time charts compared, 124
tips for, 111
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histograms (continued)

variability in, 109–110
x-axis in, 106
y-axis in, 106, 114

horizontal bar graphs, 102
horizontal boxplots, 116
horoscopes, statistics in, 30
household incomes, comparing, 86–87
hypotheses, 227
hypothesis tests

alternative hypothesis, 217
comparing two population averages, 

234–236
comparing two population proportions, 

240–242
data, collecting, 217–218
described, 18–19, 60–61, 215–216
null hypothesis, 216–217
paired t-test, 236–240
population mean, 228–229
sample statistics, gathering, 218
setting up, 216–217
standard errors, measuring variability 

with, 218–219
standard scores, 219
test statistic, 219–220
testing for an average difference, 236–240
testing one population proportion, 232–234
t-test, 229–232

• I •
“if-then-how” chart as exam strategy, 

337–339
impact

of misleading statistics, 42
of surveys, 248–250

implications of research results, 276
incorrect numbers, looking for, 328–329
independent ethics committees (IECs), 

253, 272
independent variables, 287, 308–311
infl ection point, 54, 145
institutional review boards (IRBs), 253, 272
Internet virus, statistics about, 24

interpretation
boxplots, 117–122
cause-and-effect relationship, 

determining, 313–314
conclusions, avoiding jumping to, 316
confi dence intervals, 196–197
correlation, 284–286
histograms, 106–110
predictions, making, 315
projecting from sample to population, 

314–315
regression line, 290–291
scatterplot, 281–282
surveys, 259–260
test statistic, 220
time charts, 123–124
two-way tables, 298–308

interquartile range (IQR), 80, 90, 110, 119

• J •
jargon, 45–63
joint distributions

calculating, 302–303
graphing, 304–305
overview, 302

• K •
“know what you don’t know, and then 

do something about it” as exam 
strategy, 332

kth percentile
calculating, 84–85
described, 84

• L •
labeling everything in problem as exam 

strategy, 340–342
land development, statistics about, 26
leading questions, 253
level, 262
lies, 41
limitations, 190–191
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line graphs. See time charts
linear regression

conditions for, 287–288
explanatory variable, 287
overview, 286–287
regression line, 286, 288–292
response variable, 287

lotto revenue, pie charts of, 92–94
low percentiles, 152–153

• M •
margin of error (MOE). See also confi dence 

intervals
checking for, 324
confi dence levels, 184, 188–189
fi nding, 183–189
limitations, 190–191
overview, 58–59, 181–183
results, reporting, 186–187
sample mean, 187–188
sample proportion, 184–186
sample size, 189–191
sample variability, measuring, 183–184
standard errors, 183–184

marginal column totals, 298
marginal distributions

calculating, 300
graphing, 300–302
overview, 299–300

marginal row totals, 298
marginal totals, 297–298
mean (average)

binomials, 142
boxplots, 120
calculating, 71–73
histograms, 109
median compared with, 74–76
normal distribution, 143
overview, 51–52
population, 51
random variables, 134
sample, 51
sampling distribution, 164–166

measurements, 103

media, statistics in
business section, 28
examples of, 24–30
horoscopes, 30
Internet virus, 24
land development, 26
medical malpractice insurance, 25–26
microwave popcorn and cancer, 24
motorcycle fatalities, 25
movies, 30
overview, 23–24
school profi ciency, 26–27
sexual activity, 29
sports section, 27–28
surveys and polls, 27
travel section, 28–29
weather report, 29–30

media sources, 33
median

boxplots, 120
calculating, 73–74
histograms, 109
mean compared with, 74–76
overview, 52

medical malpractice insurance, 
statistics about, 25–26

medical studies, 31
microwave popcorn and cancer, 

statistics about, 24
misleading graphs

bar graphs, 320–321
confi dence intervals, 213
examples, 322
histograms, 112–115, 323
overview, 37–39, 319
pie charts, 320
time charts, 124–127, 321

misleading questions, 253
misleading statistics

anecdotes as factor in, 40
cause-and-effect relationships as factor 

in, 40
crime statistics, 35–36
impact of, 42
overview, 35
sample size as factor in, 39–40
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misleading statistics (continued)

sources, checking, 39
tornado statistics, 36–37
uncovering, 35–41
wording of questions as factor in, 40–41

missed detection, 226
missing data as factor in errors, 41
mistake recognition

anecdotes, avoiding infl uence of, 330
biased data, sources of, 323–324
confounding variables, revealing, 327–328
correlations, detecting misinterpreted, 

326–327
data fi shing, avoiding, 329–330
graphs, avoiding misleading, 319–323
incorrect numbers, looking for, 328–329
margin of error, checking for, 324
random samples, checking for, 325
sample size, checking, 325–326

motorcycle fatalities, statistics about, 25
movies, statistics about, 30

• N •
negative t-values, 231–232
90th percentile (top 10%), 155
no treatment in experiments, 267
non-random sample, 49–50
normal approximation, 155–156
normal distribution

examples of, 144
fi nding probabilities for, 149–151
mean, 143
overview, 54–55, 143–146
percentiles for, fi nding, 152–155
properties, 144–145
standard deviation, 143
Z-distribution (standard normal 

distribution), 146–149
null hypothesis, 61, 216–217
numerical data. See also graphing 

numerical data
described, 71, 103
summaries for, 15

• O •
observational studies

defi ned, 262
overview, 263

Old Faithful’s eruptions, boxplots for, 
120–121

omission errors, 34
on your own, trying problems, 334
ordering takeout, pie charts for, 94–95
ordinal data, 47
organizing data in surveys, 259
original sources, 33
outliers

boxplots, 121–122
described, 52, 293
histograms, 109

overstated results, 21, 275–276

• P •
paired t-tests, 61, 236–240
parameters

described, 50, 193, 194
statistics linked to, 194–195

percentiles
ACT scores, comparing, 87–89
calculating, 84–85
described, 84
high, 153–154
household incomes, comparing, 86–87
interpreting, 85–89
kth percentile, 84–85
low, 152–153
90th percentile (top 10%), 155
overview, 53
10th percentile (bottom 10%), 155
t-table, 160–161

percentiles for normal distribution
fi nding, 152–155
high percentiles, 153–154
low percentiles, 152–153
steps for fi nding, 152
wording in percentile problems, 

translating, 154–155

32_9780470911082-bindex.indd   36432_9780470911082-bindex.indd   364 3/25/11   8:12 PM3/25/11   8:12 PM



365365 Index

personal expenses, pie charts for, 92
picture form, expressing your exam 

question in, 342–343
pie charts

described, 16, 92
evaluating, 97
of lotto revenue, 92–94
misleading graphs, 320
for ordering takeout, 94–95
for personal expenses, 92
for projecting age trends, 95–96
tips for, 97

placebo, 57
placebo effect, 57, 265–266
planning and designing surveys, 250–254
polls

analyzing data in, 259
bias in, minimizing, 13
carrying out, 256–259
collecting data for, 256–257
conclusions, drawing, 259–260
cover letter for, 253
errors in interpretation of survey results, 

259–260
ethical issues, 253
following up, 257–259
impact of, 248–250
interpreting results of, 259–260
media and statistics, 27
organizing data in, 259
overview, 11–12, 58, 245–246
planning and designing, 250–254
process for, 250
purpose of your survey, clarifying, 251
questions on, formulating, 253–254
response rate, 258
sample selection, 254–256
sources for, 246–247
target population, 250–252
timing for, 252
topics for, 248
type of, 252

pollsters, 246
population, 47–48

population mean
confi dence intervals for, 201–204
described, 51, 72
hypothesis tests, 228–229

population proportion, 175, 206–207
population standard deviation

confi dence intervals for population mean 
when you don’t know, 203–204

confi dence intervals for population mean 
when you know, 202–203

confi dence intervals for the difference of 
two population means when you don’t 
know, 210–211

confi dence intervals for the difference of 
two population means when you know, 
208–210

standard error, 167–169
population variability, 201
predictions

interpretation, 315
overview, 292–293

probabilities
sample mean, 173–174
sample proportion, 177–178
t-table, 160

probability distributions, 133–134
Probability For Dummies (Rumsey), 100
problems, understanding what the 

question is asking in test, 339–340
process for surveys, 250
projecting age trends, pie charts for, 95–96
projecting from sample to population, 

314–315
properties

correlation, 286
normal distribution, 144–145

purpose of your survey, clarifying, 251
p-values

calculating, 222–223
defi ning, 221
guidelines for, 224
overview, 61, 220
test statistics and, 220–221
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• Q •
qualitative data (categorical data). See also 

graphing categorical data
calculating, 68–71
described, 68, 91
summaries for, 14, 15

quantitative data, 46
questions on surveys, formulating, 253–254

• R •
random assignments of subjects to 

treatments in experiments, 269–270
random digit dialing (RDD), 49
random samples

checking for, 325
described, 49–50, 255
selecting, 13

random variables. See also binomials
mean, 134
overview, 131–132, 163–164
standard deviation, 134

rates, 36
real exam conditions, practicing for exam 

under, 334–336
reasonableness of projections, examining, 34
regression, 20
regression line

calculating, 288–290
described, 286
example, 291–292
interpreting, 290–291
linear regression, 286, 288–292
slope of, 289–291
y-intercept, 289–290

relative frequency
in bar graphs, 97
described, 14, 97
in histograms, 104

relative standing, 53, 84
reliability of data, 273
research process, 43–45
research question design

with experiments, 12
overview, 11
with surveys, 11–12

residuals, 293
response, 262
response bias, 256
response rate, 258
response variable, 287
results

decisions based on results of experiments, 
making informed, 277–278

generalizing research, 276–277
implications of research, 276
overstated, 21, 275–276
reporting, 186–187
surveys, interpreting results of, 259–260

right-tail probability, 160
Rumsey, Deborah

Probability For Dummies, 100
Statistics II For Dummies, 262, 288, 293, 308

• S •
sample mean

described, 51, 72
margin of error (MOE), 187–188
probabilities for, fi nding, 173–174

sample proportion
margin of error (MOE), 184–186
sampling distribution, 175–177

sample selection
described, 13
surveys, 254–256

sample size
checking, 325–326
confi dence intervals, 199–200, 204–206
defi ning, 268
determining needed, 204–206
as factor in misleading statistics, 39–40
margin of error (MOE), 189–191
selecting, 267–268
standard error, 166–167
t-distribution, 159

sample statistics, gathering, 218
sample variability, measuring, 183–184
sample variance, 77
samples

bad, 49
described, 48–50, 254
non-random, 49–50
random, 49–50, 255
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self-selected, 49
size of, 255–256
target population, representing, 254
volunteer, 49

sampling distribution
if X does not have normal distribution, 

170–173
if X has normal distribution, 170
mean, 164–166
overview, 163–164
of sample proportion, 175–177
shape of, 170–173

sampling error, 58, 324
scale

bar graphs, 100–101
described, 37–39
histograms, 114
time charts, 125–126

scatterplot
creating, 281
interpreting, 281–282
overview, 280

school profi ciency, statistics about, 26–27
scientifi c method, 43–45
self-selected sample, 49
sense, analyzing your exam answers to 

confi rm they make, 344–345
setting up

cells in two-way tables, 297
histograms, 105–106
hypothesis test, 216–217

sexual activity, statistics about, 29
shape of data in histograms, 106–109
shape of sampling distribution, 170–173
signifi cance level, 223
68-95-99.7% rule, 53, 81–83, 112
size of sample, 255–256
skepticism about statistics, 22, 33
skewed left

boxplots, 117
described, 75
histograms, 107, 111–112

skewed right
boxplots, 117–118
described, 75
histograms, 107, 111–112

slope of regression line, 289–291

sources
of bias, 323–324
checking, 39
media, 33
original, 33
for surveys, 246–247

specifi c values of X, fi nding probabilities 
for, 140–141

sports section of newspaper, statistics in, 
27–28

spread of data in histograms, 106
standard deviation

binomials, 142
calculating, 77–78
described, 52–53, 110
importance of, 79–80
interpreting, 78–79
normal distribution, 143
properties of, 79

standard error
measuring variability with, 218–219
overview, 166, 183–184
population standard deviation, 167–169
sample size and, 166–167

standard normal distribution
formula for, 147
overview, 54–55, 56, 146–147
relationship to t-distribution, 231
standardizing, 147–148
tables, 347–349
t-distribution compared, 157–158
Z-table used to fi nd probabilities for Z, 

148–149
standard scores

hypothesis test, 219
overview, 54

standard treatment in experiments, 266
standardizing, 54
start/end points, 125
state lottery profi ts, bar graphs for, 99–100
statistical analyses, 274–275
statistical signifi cance, 61–62
statisticians

described, 43
in workplace, 32

statistics. See also confi dence intervals
in daily life, 9–10
described, 50, 194
linked to parameters, 194–195
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Statistics II For Dummies (Rumsey), 262, 
288, 293, 308

subjects
choosing, 268–269
defi ned, 262

sum of squares for error (SSE), 288
summaries

for categorical data, 14, 15
with charts and graphs, 15–16
with descriptive statistics (numbers), 

14–15
for numerical data, 15
overview, 14

surveys
analyzing data in, 259
bias in, minimizing, 13
carrying out, 256–259
collecting data for, 256–257
conclusions, drawing, 259–260
cover letter for, 253
errors in interpretation of survey results, 

259–260
ethical issues, 253
following up, 257–259
impact of, 248–250
interpreting results of, 259–260
media and statistics, 27
organizing data in, 259
overview, 11–12, 58, 245–246
planning and designing, 250–254
process for, 250
purpose of your survey, clarifying, 251
questions on, formulating, 253–254
response rate, 258
sample selection, 254–256
sources for, 246–247
target population, 250–252
timing for, 252
topics for, 248
type of, 252

symmetry
in boxplots, 117–119
in data, 75
in histograms, 107, 111–112

• T •
tables

binomial distribution, 352–356
t-distribution, 350–351
z-distribution, 347–349

target population
defi ning, 251–252
described, 250–251
representing, 254
surveys, 250–252

t-distribution
hypothesis tests, 229–232
overview, 16, 157–158
sample size and, 159
tables, 350–351
z-distribution, relationship to, 231
z-distribution compared, 157–158

teen drinking, surveys about, 249
10th percentile (bottom 10%), 155
terminology

alternative hypothesis, 61
bad sample, 49
bell-shaped curve, 54
bias, 51
blind experiment, 57
categorical data, 46
causation, 63
census, 50
Central Limit Theorem, 55–56
confi dence intervals, 55, 59–60
continuous data, 46
control group, 57
correlation, 63
data, 45–47
data set, 47
discrete data, 46
distribution, 54
double-blind experiment, 57–58
empirical rule, 53
estimates, 50
experiments, 56–58
hypothesis test, 55, 60–61
infl ection point, 54
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margin of error, 58–59
mean (average), 51–52
median, 52
non-random sample, 49
normal distribution, 53, 54–55
null hypothesis, 61
numerical data, 46
ordinal data, 47
outliers, 52
parameter, 50
percentile, 53
placebo, 57
placebo effect, 57
polls, 58
population, 47–48
population mean, 51
p-values, 61
random digit dialing (RDD), 49
random sample, 49–50
relative standing, 53
sample, 48–50
sample mean, 51
sampling error, 58
self-selected sample, 49
standard deviation, 52–53
standard normal distribution, 54–55
standard score, 54
standardizing, 54
statistic, 50
statistical signifi cance, 61–62
surveys, 58
treatment group, 57
variable, 47
volunteer sample, 49
Z-distribution, 54–55
z-values, 56

test statistic
calculating, 219–220
described, 219
hypothesis test, 219–220
interpreting, 220
p-values, 220–221

testing for an average difference, 236–240
testing one population proportion, 232–234

time charts
evaluating, 127
excess data in, 126–127
histograms compared, 124
interpreting, 123–124
misleading, 124–127, 321
overview, 123
scale, 125–126
start/end points, 125
variability in, 123–124

timing for surveys, 252
tips

for bar graphs, 102
for histograms, 111
for pie charts, 97

topics for surveys, 248
tornado statistics, 36–37
totals, calculating, 297–298
tracking transportation expenses, bar 

graphs for, 97–99
travel section, statistics in, 28–29
treatment, 263
treatment group, 57, 266
t-table

big picture information determined with, 162
confi dence intervals, 161–162
overview, 159–160, 230–232, 350–351
percentiles, 160–161
probabilities, 160

t-test, 61, 229–232
two-way tables

cells, setting up, 297
described, 20, 69, 296–297
distributions, 299–308
interpreting, 298–308
marginal totals, 297–298
totals, calculating, 297–298

type-1 errors (false alarms), 225–226
type-2 errors (missed detection), 226

• U •
uncountable infi nite, 133
uncovering misleading statistics, 35–41
unreported crimes, surveys about, 249–250
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• V •
validity of data, 273
variability

boxplots, 119
histograms, 109–110
time charts, 123–124

variable
described, 16
overview, 47

variance binomials, 142
variance of random variables, 134–135
variation

overview, 76
range, 80
standard deviation, calculating, 77–78
standard deviation, importance of, 79–80
standard deviation, interpreting, 78–79
standard deviation, properties of, 79

vertical bar graphs, 102
vertical boxplots, 116
volunteers

fi nding, 269
sample, 49

• W •
weather report, statistics in, 29–30
width of confi dence intervals, 197–198
wording

in percentile problems, translating, 154–155
of survey questions as factor in 

misleading statistics, 40–41
workplace pet peeves, 101–102

workplace statistics
on customer satisfaction, 31–32
for medical studies, 31
overview, 31
statisticians in workplace, 32
using estimates, 32

• X •
x-axis in histograms, 106
X greater-than, less-than, or between two 

values, fi nding probabilities for, 141

• Y •
y-axis in histograms, 106, 114
“yeah-yeah” traps, avoiding, 333–336
yes/no data, 46
y-intercept, 289–290

• Z •
Z-distribution (standard normal 

distribution)
formula for, 147
overview, 54–55, 56, 146–147
relationship to t-distribution, 231
standardizing, 147–148
tables, 347–349
t-distribution compared, 157–158
Z-table used to fi nd probabilities for Z, 

148–149
Z-table, 148–149, 347–349
z-values, 56
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