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Impedance Control: An Approach
to Manipulation:.
Part I—Theory

Manipulation fundamentally requires the manipulator to be mechanically coupled
to the object being manipulated; the manipulator may not be treated as an isolated
system. This three-part paper presents an approach to the control of dynamic in-
teraction between a manipulator and its environment. In Part I this approach is
developed by considering the mechanics of interaction between physical systems.
Control of position or force alone is inadequate; control of dynamic behavior is
also required. It is shown that as manipulation is a fundamentally nonlinear
problem, the distinction between impedance and admittance is essential, and given
the environment contains inertial objects, the manipulator must be an impedance. A
generalization of a Norton equivalent network is defined for a broad class of
nonlinear manipulators which separates the control of motion from the control of
impedance while preserving the superposition properties of the Norton network. It
is shown that components of the manipulator impedance may be combined by
superposition even when they are nonlinear.

Introduction

Understanding movement and manipulation and how they
may best be controlled is a basic endeavour in several dif-
ferent fields. Understanding the strategies adopted by the
central nervous system in the control of movement is one of
the fundamental problems of neurophysiology; development
of artificial limbs to rehabilitate people with functional
disabilities requires an understanding of both how the human
normally controls and commands movement and how this
may best be implemented in a prosthesis or an orthosis; and
the use of robots for industrial automation has focused at-
tention on the problems of manipulation by machine.

The work presented here is an attempt to define a unified
and general approach to the control of manipulation. The
approach developed encompasses and includes the simple
positioning or transporting tasks typically performed by
robots and/or prostheses. It also builds on this capability,
extending it to facilitate the application of robots and/or
prostheses to tasks involving static and dynamic interactions
between the manipulator and its environment. It will be
shown (in Parts II and III) that the approach can lead to a
simplification of some problems in manipulator control.

By any reasonable definition, manipulation fundamentally
requires mechanical interaction with the object(s) being
manipulated, and a useful classification of manipulatory
tasks is by the magnitude of the mechanical work exchanged
between the manipulator and its environment. In some cases
the interaction forces are negligible, the instantaneous
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mechanical work done by the manipulator is negligible, (dW
= F+dX = 0) and for control purposes the manipulator may
be treated as an isolated system, with its motion (e.g.,
position, velocity, acceleration) as the controlled variable(s).
Generally, applications of industrial robots to date have been
based on position control, and some of the more successful
applications have been restricted to this case; examples are
spray-painting and welding [28].

In other situations the manipulator encounters constraints
in its environment and the interaction forces are not
negligible. Although the manipulator is kinematically coupled
to its environment, dynamic interaction is still absent. Along
the tangent to a pure (i.e., frictionless) kinematic constraint
the interaction forces are zero (F = 0) whereas along the
normal into the surface the motions are zero (@dX = 0) and in
all directions the instantaneous mechanical work done is again
negligible (dW = F+dX = 0). In this case an appropriate
control strategy is a combination of motion control along the
tangent and force control along the normal [22]. This ap-
proach to manipulator control has been termed ‘‘compliance'’
or ‘‘force control’’ [15], is more correctly called ‘‘ac-
commodation' [16], and is the topic of a considerable body
of laboratory research, although it has not yet seen
widespread industrial application.

The most general case (which includes the previous two as
special instances) is that in which the dynanic interaction is
neither zero nor negligible (dW = 0). A large class of
manufacturing operations fall into this category: examples
include drilling, reaming, routing, counterboring, grinding,
bending, chipping, fettling—any task requiring work to be
done on the environment. Many activities of daily living to be
performed by an amputee using a prosthesis—basically any
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task involving the use of a tool—are also in this category.
Because of the dynamic interaction, the manipulator may no
longer be treated for control purposes as an isolated system.
Strategies directed toward the control of a vector quantity
such as position, velocity, or force will be inadequate as they
are insufficient to control the mechanical work exchanged
between the manipulator and its environment.

A solution to this problem is to modulate and control the
dynamic behavior of the manipulator in addition to com-
manding its position or velocity. If the environment is
regarded as a source of ‘‘disturbances’ to the manipulator,
then modulating the ‘‘disturbance response’” of the
manipulator will permit control of dynamic interactions [18].
One way to vary the dynamic behavior of a manipulator
would be to vary the parameters and/or structure of a
feedback controller [16, 30], but this is not the only way, nor
always the best way. Exploiting the intrinsic properties of
mechanical hardware can also provide a simple, effective, and
reliable way of dealing with mechanical interaction (3, 4, 17,
31]. A unified framework in which to consider the action of
both hardware and software in controlling dynamic in-
teraction is desirable. In the following it is developed from
some simple and physically reasonable assumptions.

Physical Equivalence

Throughout this paper it will be assumed that the complete
controlled system is hierarchically organized: a high-level
supervisory system plans movement task and presents a set of
commands [c] to a lower-level (real-time) controller which
operates directly on the manipulator hardware. Seen from the
perspective of the high-level supervisor the control is ef-
fectively open-loop. The high-level supervisor, while it may
have access to sensory data, does not use that data in an
immediate feedback control mode to modulate its commands
to the lower-level controller during an ongoing movement.
This arrangement is diagrammed in Fig. 1. This organization
has been proposed as a general form of control and com-
munication for man/machine systems [26]: it is commonly
used for robots [2]; and there is some evidence that the
mammalian motor control system is similarly organized [5].

The manipulator is some collection of physical structures,
sensors, and actuators (hardware) combined with some set of
control algorithms (software). A unified framework for
considering the action of both hardware and software in the
control of dynamic behavior can be obtained by making the
reasonable assumption that no controller can make the
manipulator appear to the environment as anything other
than a physical system. This can be stated as the following
postulate:'

““It is impossible to devise a controller which will cause a
physical system to present an apparent behavior to its en-

TThis bears some resemblance to the Turing test of Artificial Intelligence [29].
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Fig. 1 A schematic diagram of the assumed hierarchical controller
structure

vironment which is distinguishable from that of a purely
physical system."

The value of this postulate is that it is now possible to
describe the complete controlled system as an equivalent
physical system. Any of the several graphical techniques for
describing physical systems may now be applied to the
complete system, controller plus hardware. The constraints
obeyed by physical systems are especially clearly represented
by Paynter’s bond graphs (14, 20, 23], and throughout this
paper the formalism and terminology of bond graphs will be
used.

Causality

Several important constraints on the behavior of physical
systems can be identified. Along each degree of freedom,
instantaneous power flow between two or more physical
systems (e.g., a physical system and its environment) is always
definable as the product of two conjugate variables, an effort
(e.g., a force, a voltage) and a flow (e.g., a velocity, a current)
[20]. An obvious but important physical constraint is that no
one system may determine both variables. Along any degree
of freedom a manipulator may impress a force on its en-
vironment or impose a displacement or velocity on it, but not
both.

Seen from the environment along any degree of freedom,
physical systems come in only two types: admittances, which
accept effort (e.g., force) inputs and yield flow (e.g., motion)
outputs; and impedances, which accept flow (e.g., motion)
inputs and yield effort (e.g., force) outputs. The concepts of
impedance and admittance are familiar to designers of
electrical systems as frequency-dependent generalizations of
resistance or conductance and are usually regarded as
equivalent and interchangeable representations of the same
system, For a linear system operating at finite frequencies this
is true, but manipulation is fundamentally a nonlinear
problem, and for a nonlinear system it is not true; the two
representations are in general not interchangeable.

For example, the constitutive equation for a point mass is
fundamentally written with velocity as the output variable,
defined as a function of momentum; momentum in turn is the
integral of the input force. As the constitutive equation for a
point mass is invertible the equations may also be written with

Nomenclature
W = mechanical work Y = admittance
F.F,,F, = force Z = impedance Zs(+) = impedance state equa-
X,X,,X, = position Zo = nodicimpedance tions
Ly,L,,L; = linklengths Zn = nonnodic impedance Zo(+») = impedance output equa-
0,0,,0,,0, = angle S(+) = static force/displace- tions
T,,T,,T; = torque ment relation y = admittance state var-
L(+) = linkage kinematic X, = virtual position iables
equations Vo = virtual velocity Ys(+) = admittance state equa-
:l[c}] = modulation by com- f = flow (velocity) tions
mand set t = time Yo(») = admittance output
Se = effort (force) source z = impedance state equations
Sf = flow (velocity) source variables Y = velocity
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Fig. 2 (a) A planar two-member linkage and (b} a bond-graph of the
associated kinematic transformations. Seen from the tip, this sytsem is
properly described as an admittance.

force as the output variable, defined as a function of the
derivative of the input velocity variable. The only difference
between the two representations of this linear element is that
in the strictest sense differentiation is not a physically
realizable operation as it is the limiting case of process which
requires knowledge of the future. However, it is often a
perfectly reasonable operation in a model (no worse than the
assumption of the existence of lumped-parameter elements)
although physically unrealizable infinite power flow may be
predicted during transients.

However, the constitutive equation of a nonlinear dynamic
element need not be invertible. The constitutive equation for
any device which stores elastic energy is fundamentally
written with force as the output variable, defined as a func-
tion of input displacement; displacement is in turn defined as
the integral of input velocity. The constitutive equation may
be nonmonotonic or even discontinuous; the only restriction
is that the potential energy integral must be definable (the
coenergy integral need not be). Real physical elastic devices
exist which cannot be described in the derivative causal form
with force as the input variable and motion as the output
variable.

This inviolable causal contraint is not unique to energy
storing elements. The real-world phenomenon of stiction is
typically represented by a dissipative element with a nonin-
vertible relation between force and velocity. A velocity may be
imposed and a resulting force is defined but the converse is
not true.

When more than one degree of freedom is considered,
kinematic relations may impose a further causal constraint.
Consider the planar linkage shown in Fig. 2(a). Assume that
this systemm may interact with its environment across an in-
teraction port at the tip of the linkage. A bond graph of the
linkage showing the two independent power bonds associated
with this point is shown in Fig. 2(b). The linkage equations are
a transformation between kinematic variables (8, 8,] and .
interaction port variables [ X, X :

X, =L ,cos8 +L,cosb, (0
X; =L| sin 8| +Lz sin H'_!_ (2)

For every point in [ 8,, 6, } there is a corresponding point in
[ X, X, but the transformation is, in general, not uniquely
invertible and there exists a two-dimensional infinity of points
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Fig. 3 (a) A planar three-member linkage and (b) a bond-graph of the
associated kinematic transformations. Seen from the tip this system is
properly described as an admittance.

in [ X, X, ]} for which no point in [#8,, 6,] exists. The latter
problem could be eliminated by suitably restricting the range
of points in { X, X, ], and given a knowledge of the current
joint angles the angular displacement corresponding to an
end-point displacement could be uniquely defined.

However, consider the planar linkage shown in Fig. 3(a)
and a corresponding bond graph shown in Fig. 3(d). The
kinematic transformation equations are:

X,=L,cosf +L,cosf;+L;cosb,
X1=L| sin B| +L3 sinﬁ': +L3 sin B;

3)
4)

Again, joint angles uniquely define end-point position but
the converse is not true; even given a suitably restricted set of
points in [X;, X;| and a knowledge of the current joint
angles, the end-point displacement does not provide sufficient
information to determine the joint angular displacements.

In constrast, the corresponding transformation from forces
applied at the interaction port to the resulting torques applied
to the links is always well defined:

T,=-L,sinf, F,+L,cos@, F, " (5)
T,=—L,sinf, Fy +L;cosf, F; (6)
T]=—L] Siﬂ63F|+L3C0533F1 (@3]

In fact, examination of the five-port bond graph of Fig.
3(b) will show that any combination of two efforts (forces or
torques) may be impressed. Similarly, for the four-port bond
graph of Fig. 2(b) any two efforts may be impressed. The
kinematic transformations X = L (#) (equations (1), (2), (3)
and (4)) are in fact part of the junction structure through
which the various elements in a physical system interact® and
impose a kinematic causal constraint which is related to but
distinct from the conditions imposed by zero- and one-

TAs an aside, it is the fact that in bond graphs functional relations are
represented at graph nodes which makes the equivalence of transformers,
gyrators and junctions clear. In contrast, in linear graphs (25) or Mason (signal
flow) graphs [27] the junctions are implicit in the graph structure while
transformers and gyrators masquerade as elements, and the equivalence is not
clear. This is a strong reason for preferring bond-graphs over other methods for
graphing physical dynamic systems. Paynter has pointed out some other mare
important reasons [21).
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Fig. 4 Bond graph equivalent nelwork representations of (a) pure
force control and (b) impedance control

junctions [20]. Any one bond may be causally indifferent but
its causality is constrained relative to the others.

The point of this discussion is that the distinction between
admittance and impedance is fundamental: Real physical
systems exist which can be described in one form and not the
other. A spring with a nonmonotonic constitutive equation
can only be described as an impedance; seen from an in-
teraction port at its tip, the behavior of a kinematically
constrained system such as the linkage of Fig. 3 can only be
described as an admittance.

The most important consequence of dynamic interaction
between two physical systems is that one must physically
complement the other: Along any degree of freedom, if one is
an impedance, the other must be an admittance and vice
versa. Now, for almost all manipulatory tasks the en-
vironment at least contains inertias and/or kinematic con-
straints, physical systems which accept force inputs and which
determine their own motion in response. However, as
described above, while a constrained inertial object can
always be pushed on, it cannot always be moved; These
systems are properly described as admittances. Seen from the
manipulator, the world is an admittance.

When a manipulator is mechanically coupled to its en-
vironment, to ensure physical compatibility with the en-
vironmental admittance, the manipulator should assume the
behavior of an impedance. Because the mechanical in-
teraction with the environment will change with different
tasks, or even in the course of a single task—the manipulator
may be coupled to the environment in one phase and
decoupled from it in another—the behavior of the
manipulator should be adaptable. Thus the controller should
be capable of modulating the impedance of the manipulator
as appropriate for a particular phase of a task.

Thus a general strategy for controlling a manipulator is to
control its motion (as in conventional robot control) and in
addition give it a *‘disturbance response’’ for deviations from
that motion which has the form of an impedance. The
dynamic interaction between manipulator and environment
may then be modulated, regulated, and controlled by
changing that impedance, and hence the approach described
in this paper has been termed *‘impedance control’’ [1, 6-1 1].
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Impedance Control, Force Control, and Compliance

If the environment as an admittance, then the manipulator
must always impress a force on the environment. It might
then be concluded that what is required in general is the
control of a vector of interaction forces. Because the con-
trolled manipulator corresponds to some equivalent physical
system, it may be represented by a network of physical system
elements such as a bond graph. An equivalent physical net-
work representing pure force control along a single degree of
freedom is shown in Fig. 4(@). In this graph the force com-
mands from the high-level supervisor to the low-level con-
troller are represented by an effort source, an ideal element
which may impose any time-history of force on the rest of the
system independent of its motion.

If it is assumed that at a minimum the manipulator should
be capable of stably-positioning a simple mass it can be seen
that this network is an incomplete description of the necessary
controller action: Stable positioning requires at a minimum a
static relation between force and position; some spring-like
element must be included in the equivalent physical network.
The controller must specify a vector quantity such as the
desired position, but it must also specify a quantity which is
fundamentally different: a relationship, an impedance, which
has properties similar to those of a second-rank, twice-
covariant tensor; it operates on a contravariant vector .of
deviations from the desired position to produce a covariant
vector of interface forces. In fact, linearized components of
the impedance such as the stiffness and the viscosity are
second-rank twice covariant tensors.

The simplest equivalent physical network representing
impedance control is shown in Fig. 4(b). The position com-
manded by the high-level supervisor is represented by a flow
source,’ an ideal element which may impose any time history
of velocity on the rest of the system. To prevent causal
conflict between this element and the environmental ad-
mittance (which must experience an impressed effort) a zero-
junction® is interposed between the two. The impedance
coupled to this zero-junction represents the relation between
force and motion commanded by the supervisor and includes
both the static force/displacement relation plus the possible
dynamic terms required to ensure controlled dynamic
behavior.

The problems of controlling the mechanical interaction
between a manipulator and its environment have been ad-
dressed by many researchers. The inadequacies of con-
ventional position control are widely recognized and the
alternatives are typically referred to as ‘‘force control,"
““‘compliance,’’ ‘‘compliant motion control’* or *‘fine motion
control’ [12, 13, 15, 19, 22, 30]. As discussed above, pure
force control is also inadequate; however, the term is applied
loosely to control strategies using force feedback in com-
bination with other feedback variables such as position
and/or velocity. The concept of tuning stiffness, damping,
and other aspects of the dynamic behavior of a manipulator
has been explored by several researchers [18, 19, 24, 30], and
the two possible causal forms of manipulator behavior were
discussed bv Nevins and Whitney [16]. However, they argued
that when the manipulator was in contact with the en-
vironment the appropriate strategy was to ‘‘command a
position or velocity and look at feedback forces’” and this
approach was used in their subsequent work [30] and that of
many other researchers [12, 13, 19]. This is equivalent to

Tin keeping with standard bond graph practice, the imposition of either a
position or a velocity is represented by a flow source, The assumption is that the
position is uniquely defined by the integral of the velocity. Either the velocity is
known for the infinite past, or an initial position and the subsequent time-
history of velocity are known (20).

4 A zero-junction means that all systems connected to it experience the same
effort whereas their flows sum to zero.
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Fig. 5 A bond graph equivalent network representation of the
minimum necessary structure of an impedance-controlled machine
including both nodic (Zo) and non-nodic (Zn) impedance

giving the manipulator the behavior of an admittance, em-
bodies an implicit assumption that the environment can be
described as an impedance, and the approach might
reasonably be termed ‘‘admittance control.”” As described
above, because of the nature of kinematically constrained
inertial objects, the environment is properly described as an
admittance and the manipulator should be an impedance.
This distinction is not merely one of terminology, but has
important consequences, as discussed further below. First, the
generality of impedance control is considered.

Generalized Equivalent Networks

Is the simple single-axis impedance controller represented
by the equivalent network of Fig. 4(b) applicable to a general
multi-axis manipulator? That network depicts the separation
of the controller action into two distinct components, one (the
flow source) representing the control of motion, the other (the
impedance) representing the control of dynamic interaction.
The separation of the controller action into a (vector) motion
component and a impedance component (which has the
properties of a tensor) can be achieved for a general class of
nonlinear controlled manipulators but some further
assumptions about the controller structure are required.

Figure 4(b) represents only the nodic component of the
impedance seen at the interaction port. Nodicity refers to the
invariance of the constitutive equation of an element under a
change in the reference value (origin) of its argument.
Consider again the static relation between force and position:
The nodic component of this relation is the part which may be
maintained invariant under a change in the coordinates of the
interaction port, i.e., when the manipulator moves. It may be
written in terms of a displacement of the end-point rather
than an absolute position of the end-point. A general relation
between force and position may include non-nodic com-
ponents, relations which may only be written in terms of the
position of the end point in some fixed reference frame.
Examples of the latter include the constraints imposed by the
finite workspace of a nonmobile manipulator. The non-nodic
components should be coupled to a one-junction® shared by
the manipulator and the environmental admittance. To in-
clude both of these components the minimum necessary
controller structure is as shown in Fig. 5. However, in most
practical situations the primary concern is to be able to specify
positions of the workpiece in the workspace and to be able to
control aspects of the behavoir of the workpiece at any of
these positions. Accordingly, the immediate concern of this
paper is with the nodic component of the impedance.

Equivalent networks of the Norton form (Fig. 4(b)) or the
complementary Thevenin form are familiar to systems
engineers, but they are normally applied only to linear systems
under steady-state conditions [25]. With nonlinear systems (as
usual) some difficulties are encountered. The basic concept
underlying both Thevenin and Norton equivalent networks is

SA one-junction means that all systems connected to it experience the same
flow whereas their efforts sum to zero.
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the separation of unilateral power transmission effects from
bilateral dynamic interaction effects. For any general physical
system the equivalent source term seen at an interaction port
is defined as that required to ensure zero power flow across
the port. The differential equation relating port variables
under conditions of zero net power flow is the impedance or
admittance. Note that nonlinearity does not enter into these
definitions. Unfortunately, the junction structure (common
effort or common flow) and concomitant superposition
properties of the Norton and Thevenin equivalent networks is
only guaranteed for linear systems. This means that in a
nonlinear system the separation of effects is possible, but
reassembling the pieces is not necessarily easy.

The superposition properties may be preserved by assuming
that the structure of the manipulator controller is such that it
is always capable of determining an equilibrium position of
an unconstrained inertial object. If the system is not at
equilibrium, assume the set of commands (which may in
general vary with time) are ‘‘frozen’ at their current in-
stantaneous values and impose steady-state conditions. The
manipulator behavior (assumed to be nodic) is then
characterized by a static relation between force and position
(modulated by the command set).

F=8(X):{c] (8)

By assumption the manipulator is interacting with an un-
constrained inertial object, thus at equilibrium in steady state
the interface force is zero. Now assume that zero interface
force defines an unique equilibrium position. That is, the class
of impedances considered is restricted so that if the gradient
of the static force/position relation is nonzero, zero force
defines an unique position. As a result the command set
always defines an equivalent equilibrium position.

Xo=Xop:lc} (9

This is the position with respect to which the input
displacements to the nodic impedance are measured. It may
be thought of as the position toward which the manipulator is
heading® at any point in time. The actual position of the
manipulator end-point may, of course, be different and as the
commands may change with time, the manipulator need never
reach the position X,. Consequently, this position need not be
restricted to lie within the workspace of the manipulator. It is
a convenient fiction and is a summary statement of one
consequence of the commands. To keep this distinction clear,
X, is referred to as a ‘‘virtual position’’ and its time history
X (1) isreferred to as a *‘virtual trajectory.”’

By defining the virtual trajectory the behavior of the
controlled manipulator has been decomposed into a vector of
port variables which may be commanded and a relation
between port variables, an impedance, which may also be
commanded. The value of this exercise is that by definition
the two components may now be reassembled in the simple
manner represented by a zero-junction. The superposition
properties of the Norton equivalent network have been
retained without restriction to linear systems.

The behavior of the manipulator may now be written as
follows (assuming a state-determined system):

Vo=Vy:{c] Virtual Source (10)

f=V,-V Junction Equations (11)

de/dt=2s(z, f ):{c) (12)
Nodic Impedance

F=Zo(z, f ):[c} (13)

As before, following standard bond graph convention the
imposition of a virtual position or a virtual trajectory has

EC}r. if the equilibrium point is unstable, away from which it is heading.
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Fig. 6 A bond graph equivalent network representating a multiaxis
manipulator with controlled nodic impedance interacting with an
admittance-type environment. The bond graph for the manipulator is a
generalized Norton equivalent network.

been represented by a flow source. Writing the environmental
admittance in general form:

dy/dt=Ys(y,F) (14)
Admittance

V="Yo(y) (15)

The two sets of equations may be combined to write the
complete system equations in standard (integrable) form:

dz/dt=2Zs[z,(Vy:lc) — Yo(y)]:lc} (16)
dy/dt=Ys[y,Zo(z,[Vo:lc] — Yo(y)Dl:(c] (17)
F=Zo(z,[Vo:{c) — Yo()]):{c] (18)
V="Yoly) (19)

The purpose of the foregoing discussion was to demon-
strate that a broad and useful class of nonlinear manipulator
behaviors may be represented by a simple equivalent network.
The only assumptions made were that the manipulator is
sufficiently controllable to be able to determine an
equilibrium position of an unconstrained inertial object such
as a mass, that the port impedance is nodic, and that its static
component is such that if its gradient is nonzero then zero
force defines an unique position—not a restrictive set of
assumptions. Thus a general class of manipulation problems
have the same basic structure as Fig. 4(b). The behavior of a
multiaxis impedance-controlled manipulator interacting with
an admittance-type environment may be represented by the
graph shown in Fig. 6, which is a generalization of a Norton
equivalent network. Not only does this graph provide a
compact representation of manipulation, the parallel with the
standard Norton equivalent network is quite complete: The
superposition properties of the Norton equivalent network
have been preserved.

Superposition of Impedances

The most interesting consequence of the assumptions
underlying impedance control is that if the dynamic behavior
of the manipulator is dissected into a set of component im-
pedances, these may be reassembled by simple addition even
when the behavior of any or all of the components is
nonlfinear. This is a direct consequence of the assumption that
the environment is an admittance. That admittance sums the
forces applied to it and determines its motion in response, as
represented by the one-junction of Fig. 5. The admittance also
acts to sum any impedances coupled to it. All of the systems
connected to the one-junction associated with the admittance
experience the same input velocity; the total force they apply
to the admittance is simply the sum of their individual force
responses to the motion of the environmental admittance.
Linearity of the impedances is not a consideration.
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Fig. 7 A bond graph equivalent network representation of the
superposition of multiple impedances coupled to an admittance. Each
component of the total impedance is represented by a generalized
Norton equivalent network. Non:nodic impedances may be included in
this system by setting the corresponding virtual flow source {o zero.

When the manipulator is decoupled from its environment
the terms in the dynamic equations due to the environmental
admittance disappear and in principle the manipulator alone
need exhibit no inertial behavior. In practice the uncoupled
manipulator still has inertia (albeit nonlinear and con-
figuration-dependent). Because of the inevitable inertial
dynamics of the isolated manipulator the superposition of
impedances holds even when the manipulator is uncoupled
from its environment as there is always an admittance to sum
forces and impedances.

This simple observation has many important consequences,
some of which will be pursued in the subsequent parts of this
paper. One which is immediately apparent is that different
controller actions aimed at simultaneously satisfying different
task requirements may be superimposed. Each task com-
ponent may be represented by a generalized Norton equivalent
network, but referred to a different node (or virtual position)
as shown in Fig. 7. Note that any non-nodic component of the
manipulator behavior may be included in this equivalent
network by associating it with a flow source identically equal
to zero and thus the assumption of nodicity made earlier is not
restrictive.

Summary

This paper has presented a unified approach to
manipulation termed ‘“‘impedance control."’ Because by its
nature manipulation requires mechanical interaction between
systems, the focus of the approach is on the characterization
and control of interaction. To understand interaction con-
cepts drawn from bond graph network analysis of dynamic
systems are useful, particularly the concept of causality. By
assuming that no control algorithm may make a physical
system behave like anything other than a physical system the
network concepts of bond graphs may be applied to describe
the way the controller may modify the behavior of the
manipulator. Several simple but fundamental observations
may then be made: Command and control of a vector such as
position or force is not enough to control dynamic interaction
between systems; the controller must also command and
control a relation between port variables. In the most com-
mon case in which the environment is an admittance (e.g., a
mass, possibly kinematically constrained) that relation should
be an impedance, a function, possibly nonlinear, dynamic, or
even discontinuous, specifying the force produced in response
to a motion imposed by the environment. Even more im-
portant, if the environment is an admittance, the total im-
pedance coupled to it (due to the manipulator or anything
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else) is expressible as a sum of component impedances, even
when the components are nonlinear.

Under a set of reasonable and unrestrictive assumptions the
interaction port behavior of the manipulator may be
decomposed into a vector motion component and an im-
pedance component with some of the characteristics of a
second-rank, twice-covariant tensor. The vector component
may be expressed as a virtual trajectory towards which the
controlled manipulator dynamics are trying to drive the in-
teraction port. Its significance is that it permits the motion
and impedance components of the manipulator behavior to be
reassembled by superposition as depicted by the junction
structure of a generalized Norton equivalent network. Note
that no restrictive assumptions of small displacements or
linearity were required.

Part II and 111 of this paper will discuss the implementation
and application of impedance control.
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Part ll—Implementation

This three-part paper presents an approach to the control of dynamic interaction
between a manipulator and its environment. Part [ presented the theoretical
reasoning behind impedance control. In Part II the implementation of impedance
control is considered. A feedback control aigorithm for imposing a desired car-
tesian impedance on the end-point of a nonlinear manipulator is presented. This

algorithm completely eliminates the need to solve the '‘inverse kinematics problem’’
in robot motion control. The modulation of end-point impedance without using
Sfeedback control is also considered, and it is shown that apparently "‘redundant’’
actuators and degrees of freedom such as exist in the primate musculoskeletal
system may be used to modulate end-point impedance and may play an essential
JSunctional role in the control of dynamic interaction.

Introduction

Most successful applications of industrial robots to date
have been based on position control, in which the robot is
treated essentially as an isolated system. However, many
practical tasks to be performed by an industrial robot or an
amputee with a prosthesis fundamentally require dynamic
interaction. The work presented in this three-part paper is an
attempt to define a unified approach to manipulation which is
sufficiently general to control manipulation under these
circumstances.

In Part [ this approach was developed by starting with the
reasonable postulate that no controller can make the
manipulator appear to the environment as anything other
than a physical system. An important consequence of
dynamic interaction between two physical systems such as a
manipulator and its environment is that one must physically
complement the other: Along any degree of freedom, if one is
an impedance, the other must be an admittance and vice
VEersa.

One of the difficulties of controlling manipulation stems
from the fact that while the bulk of existing control theory
applies to linear systems, manipulation is a fundamentally
nonlinear problem. The familiar concepts of impedance and
admittance are usually applied to linear systems and regarded
as equivalent and interchangeable. As shown in Part [, for a
nonlinear systemn, the distinction between the two is fun-
damental.

Now, for almost all manipulatory tasks the environment at
least contains inertias and kinematic constraints, physical
systems which accept force inputs and which determine their
motion in response and are properly described as admittances.
When a manipulator is mechanically coupled to such an

Contributed by the Dynamic Systems and Control Division for publication in
the JOURNAL OF DyNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript
received by the Dynamic Systems and Control Division, June 1983.
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environment, to ensure physical compatibility with the en-
vironmental admittance, something has to give, and the
manipulator should assume the behavior of an impedance.

Thus a general strategy for controlling a manipulator is to
control its motion (as in conventional robot control) and in
addition give it a *‘disturbance response’’ for deviations from
that motion which has the form of an impedance. The
dynamic interaction between manipulator and environment
may then be modulated, regulated, and controlled by
changing that impedance.

This second part of the paper presents some techniques for
controlling the impedance of a general nonlinear multiaxis
manipulator.

Implementation of Impedance Control

A distinction between impedance control and the more
conventional approaches to manipulator control is that the
controller attempts to implement a dynamic relation between
manipulator variables such as end-point position and force
rather than just control these variables alone. This change in
perspective results in a simplification of several control
problems.

Most of our work to date [3, 6, 13, 14, 16] has focused on
controlling the impedance of a manipulator as seen at its
‘‘port of interaction’’ with the environment, its end effector.
A substantial body of literature has been published on
methods for implementing a planned end effector cartesian
path [5, 27, 28, 32, 34, 35]. The approach is widely used in the
control of industrial manipulators and there is some evidence
of a comparable strategy of motion control in biological
systems [1, 24]. Following the lead from this prior work we
have investigated ways of presenting the environment with a
dynamic behavior which is simple when expressed in
workspace (e.g., Cartesian) coordinates.
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The lowest-order term in any impedance is the static
relation between output force and input displacement, a
stiffness. If, in common with much of the current work on
robot control, we assume actuators capable of generating
commanded forces (or torques), Tact, sensors capable of
observing actuator position (or angle), 8, and a purely
kinematic relation (i.e., no structural elastic effects) between
actuator position and end-point position', X=L(f), it is
straightforward to design a feedback control law to im-
plement in actuator coordinates a desired relation between
end-point (interface) force, Fint, and position, X. Defining
the desired equilibrium position for the end-point in the
absence of environmental forces (the virtual position) as X,, a
general form for the desired force-position relation is:

Fint =K[X, - X] (1)
Compute the Jacobian, J(6):
dX =J(0)do (2)
From the principal of virtual work:
Tact = J'(6)Fint (3)
The required relation in actuator coordinates is:
~Tact=J'(0)K [Xo —L(6)] (4)

No restriction of linearity has been placed on the relation
K[Xo —X], and the displacement of X from X, need not be

small. Note that in this equation the inverse Jacobian is not
required.

Inverting the kinematic equations of a manipulator to
determine the time-history of actuator (joint) positions
required to produce a desired time-history of end-point
positions has been described as one of the most difficult
problems in robot control [28]. For some manipulators (e.g.,
those with nonintersecting wrist joint axes) no explicit (closed-
form) algebraic solution may be possible, However, if K[X, —
X] is chosen so as to make the end-point sufficiently
stiff, then a controller which implements equation (4) will
accomplish Cartesian end-point position control and the need
to solve the ‘‘inverse kinematics problem'' has been com-
pletely eliminated. Only the forward kinematic equations for

""Throughout this paper, ''position'" will refer to both location and orien-
tation, and **lorce’" will refer to both force and moment.

the manipulator need be computed. This is a direct con-
sequence of the care which was taken to ensure that the
desired behavior was compatible with the fundamental
mechanics of manipulation and was expressed as an im-
pedance.

Another important term in the manipulator impedance is
the relation between force and velocity. Again, given the
above assumptions, it is straightforward to define a feedback
law to implement in actuator coordinates a desired relation
between end-point force and end-point velocity such as:

Fint=B[V,-V] (5)
From the manipulator kinematics:
V=J(0)w (6)
The required relation in actuator coordinates is:
Tact=J'(0)B[V, — J(f)w] ()]

Again note that the relation B[V, — V] need not be linear and
that inversion of the Jacobian is not required.

The dynamic behavior to be imposed on the manipulator
should be as simple as possible, but no simpler. The foregoing
equations take no account of the inertial, frictional, or
gravitational dynamics of the manipulator. Under some
circumstances this may be reasonable, but in many situations
these effects cannot be neglected. To ensure dynamic
feasibility the choice of the impedance to be imposed should
be based on the dominant dynamic behavior of the
manipulator. The choice is a tradeoff between keeping the
complexity of the controller within manageable limits while
ensuring that imposed behavior adequately reflects the real
dynamic behavior of the controlled system. As a result it
depends both on the manipulator itself and on the en-
vironment in which it operates. For example, a manipulator
intended for underwater applications will operate in a
predominantly viscous environment and it may be reasonable
to ignore inertial effects. In contrast, a manipulator intended
for operation in a free-fall orbit will encounter a
predominantly inertial environment. For terrestrial ap-
plications (which have been the main concern of our work)
both gravitational and inertial effects are important, and the
dominant dynamic behavior is that of a mass driven by
motion-dependent forces, second order in displacement along
each degree of freedom.

Nomenclature
% = admittance h = generalized momentum in
Z = impedance : _ : . actuato‘rcoordmates .
:{¢] = modulation by command M = inertia tensor in end-point p.= generalllzed momentum in
st coordinates end-point coordinates
Sf = flow source m = mass H(+) = Hamiltonian
Se = effort source [ = inertia T.T\,T; = torque
Fext = external force t = time ot 6,0, = abso!ute_;c_nntangle
: : F(+) = noninertial impedance py.py = relative joint angie
Fint = interface force Me = environmental inertia L,,L, = link lengths
X = end-point position tensor Ke = net stiffness due to elbow
Xo = commanded (virtual) I(6) = inertia tensor in actuator muscles
position ] coordinates Ks = net stiffness due to
V = end-point veloc_:uy C(6,w) = inertial coupling torques shoulder muscles
Vo = commanded (virtual) V(w) = velocity-dependent torques Kt = net stiffness due to two-
velocity S(#) = position-dependent joint muscles
K[+] = force/displacement rela- torques Kx = stiffness tensor in end-
Bl+] = ;‘l;':e/velocit relation G(0,w) = accelerative coupling terms pqinlcoordinates‘ o
2 Tact = actuator force or torque Ko = stiffness tensor in joint
8 = actuator position or angle Tint = interface torques coordinates
w = actuator velocity Y(0) = mobility tensor in actuator Ep = potential energy
L(») = linkage kinematic equa- coordinates Ek = kinetic energy
tions W(8) = mobility tensor in end- Ek* = kinetic coenergy
J(6) = Jacobian point coordinates A A, = eigenvalues
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Fig. 1 A bond graph equivalent network representation of an im-
pedance-controlled manipulator interacting with an environmental
admittance. Each bond represents a vector of power flows along
multiple degrees of freedom.

When the manipulator is decoupled from its environment
the term due to the environmental admittance disappears, and
in principle the manipulator alone need exhibit no mass-like
behavior. In practice, the uncoupled manipulator still has
inertia (albeit nonlinear and configuration-dependent). This
means that the controlled system, both with the manipulator
coupled to and uncoupled from its environment, can be
represented by an admittance coupled to an impedance as
shown in Fig. 1.

No physically realisable strategy can eliminate the inertial
effects of a manipulator but the apparent inertia seen at the
end effector can be modified. The approach we have taken to
deal with inertial manipulator behavior is to “*‘mask’’ the true
nonlinear inertial dynamics of the manipulator and impose
simpler dynamics, those of a rigid body. Most manipulatory
tasks are fundamentally described in relative coordinates, that
is, in terms of displacements and rotations with respect to a
workpiece, tool or fixture whose location in the workspace is
not known in advance with certainty. As a result, task
planning and execution will be simplified if the end-point
inertial behavior is modified to be that of a rigid body with an
inertia tensor which remains invariant under translation and
rotation of the coordinate axes. This is achieved if:

[ilm 80205 0 001
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0 0mOO
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000
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0
0 (8)
0
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0 I |
This is the inertia tensor of a rigid body such as a cube of
uniform density. This inertia tensor eliminates the angular
velocity product terms in the Euler equations for the motion
of a rigid body [8] and ensures that if the system is at rest the
applied force and the resulting acceleration vectors are
colinear.

To represent the dominant second-order behavior of the
manipulator the noninertial interface forces are assumed to
depend only on displacement, velocity and time:

Fint=F(X,V)-MdV /d! (9

If the noninertial behavior to be imposed is nodic, it may be

written in terms of a displacement from a commanded (time-
varying) position X,:

Fint=F(X, - X,V, - V)-MdV/d: (10)

Although there may be cases in which coupled nonlinear
viscoelastic behavior is useful, for simplicity the position- and
velocity-dependent terms may be separated:

Fint = K(Xo — X] + B(V, - V] - MdV /dt (11)

10/ Vol. 107, MARCH 1985

All of the parameters in this expression are implicitly assumed
to be functions of the set of control commands [c| and of
time.

This set of assumptions defines a target behavior which
includes inertial effects. The first two terms are the position-
and velocity-dependent impedances of equations (1) and (5).
If the environment is a simple rigid body acted on by un-
predictable (or merely unpredicted) forces, its dynamic
equations are:

Me dV /dt =Fext + Fint (12)

and the coupled equations of motion for the complete system
of figure 1 are:

(Me+M)dV/dt=K[X, — X] + B[V, — V] + Fext (13)

Note that in this case both the coupled and uncoupled
equations for the system have the same second-order form.

To implement the target behavior of equation (11), one
approach we have used is to express the desired Cartesian
coordinate impedance in actuator coordinates (the kinematic
transformations between actuator coordinates and end-point
coordinates provides sufficient information to do this) and
then use a model of the manipulator dynamics to derive the
required controller equations. Assuming that the kinematic,
inertial, gravitational, and frictional effects provide an
adequate model of the manipulator dynamics as follows:

I(0)dw/dt+ C(0,w) + V(w) + S(8) = Tact + Tint (14)

an expression for the required actuator torque as a function of
actuator position and velocity and end-point force can be
derived by straightforward substitution (see Appendix I):

Tact = [(OJ " (OM~'K[Xo - L(0)] + S(8)
+ I(0J~"(OM~'B[Vy —J(Dw] + V(w)
+ 1(6)J~'(6)M ~'Fint - J*(8)Fint

1(6)J ' (0)G(8,w) + C(8,w) (15)

This equation expresses the required behavior to be
provided by the controller as a nonlinear impedance in ac-
tuator coordinates. It may be viewed as a nonlinear feedback
law relating actuator torques to observations of actuator
position, velocity and interface force. The input (command)
variables are the desired cartesian position (and velocity) and
the terms of the desired (possibly nonlinear) cartesian
dynamic behavior characterized by M, B[+] and K[+].

The feasibility of this approach to cartesian impedance
control has been investigated [6,16] by implementing this
nonlinear control law to impose cartesian end-point dynamics
on a servo-controlled, planar, two-link mechanism (similar to
the nonlinear linkage in a SCARA? robot). A simple analysis
estimating the computation required to implement this
controller on a six-degree-of-freedom manipulator indicated
that the computational burden is comparable to ‘‘exact’’
approaches to generating forward-path manipulator com-
mands such as the recursive LaGrangian [17] and Newton-
Euler [21] methods or the configuration space method [18].

[f the interface forces and torques in equations (11) and (15)
are eliminated and the position- and velocity-dependent terms
reduced to linear diagonal forms, this implementation of
impedance control resembles the resolved acceleration
method [22]. However, unlike the resolved acceleration
method, the impedance control algorithm presented above is
based on desired end-point behaviour which may be chosen
rationally using approaches such as the optimisation
technique presented in Part I11. Furthermore, the impedance
control algorithm includes terms for coping with external
‘‘disturbances.”’” Without the external ‘‘disturbance’’ terms
(which have no counterpart in the resolved acceleration
algorithm) the manipulator is not capable of controlled

=Selective Compliance Assembly Robot Arm [23].
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mechanical interaction with its environment. Note also that
the above approach to defining the controller equations is not
restricted to commanded linear behavior and can be applied
equally well to achieve the more general coupled nonlinear
behavior of equation (9).

It is not claimed that the above algorithm is the only way to
achieve a desired end-point impedance. It is presented here
only to demonstrate that a control law capable of modulating
the end-point impedance of a manipulator may be for-
mulated. The controller of equation (15) was designed by a
technique which is similar to pole-placement methods [31] in
that the desired behaviour and a model of the actual
behaviour of the manipulator were compared algebraically to
derive the controller equations. In common with most ap-
proaches to manipulator control the approach is based on a
model which ignored many aspects of real manipulator
performance, particularly the dynamics of the actuators and
the transmission system. Furthermore, like many other ap-
proaches the method assumes that the Jacobian is invertible.

This technique is, of course, only one possible approach to
the design of a controller for implementing a desired cartesian
impedance, and, if one may draw from linear systems design
experience without overstretching the analogy to pole-
placements methods, it is not even likely to be the best. Other
approaches to controller design such as the model-referenced
adaptive control method [9] will probably be useful.

Impedance Modulation Without Feedback

Modulation of end-point impedance using feedback
strategies is not the only way to control the dynamic behavior
of a manipulator, nor is it always the best. This is particularly
evident in a biological system. One of the most distinctive
features of the primate neural control system is the
unavoidable delay associated with neural transmission. The
shortest time for information to get from peripheral sensors
(e.g., in the muscles or skin) in the human arm to the higher
levels of the central nervous system (e.g., the cortex) and back
to the actuators of the arm is 70 milliseconds, and loop
transmission delays of 100 to 150 milliseconds are typical [29].
This problem is further exacerbated if significant com-
putation is required (the response time to a visual stimulus is
somewhere between 200 and 250 milliseconds). The ef-
fectiveness of feedback control in the presence of a delay of
this magnitude is severely limited, particularly in dealing with
tasks involving dynamic interaction. Yet primates excel at
controlling dynamic interactions; How do they do that?

One alternative to feedback which we have explored is the
use of redundancies: ‘‘excess’’ actuators or ‘‘excess’’ skeletal
degrees of freedom. From a purely kinematic standpoint the
neuromuscular system is multiply redundant. For example,
the kinematic chain connecting the wrist joint to the chest
(clavicle, scapula, humerus, radius and ulna) has considerably
more degrees of freedom than those required to specify the
position (and orientation) of the hand in cartesian coor-
dinates. These skeletal redundancies can serve to provide a
measure of control over the inertial component of the end-
point dynamics.

In considering the apparent inertial behaviour of the end-
point it is useful to remember that an inertia is fundamentally
an admittance; flow (velocity) is determined as a response to
impressed effort (force). Dealing with kinematic redundancy
is considerably simplified if the constitutive equations are
written as a relation determining generalised velocity, w, (e.g.,
the velocities of the manipulator joints) as a function of
generalized momentum, h:

w=Y(®h (16)

Y(0) is the inverse of the more commonly used inertia tensor,
and to help distinguish the two, the term ‘‘mobility”’ is
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Fig. 2 A schematic representation ol the influence of kinematic
redundancies on the mabllity (inverse effective mass) of the end-point
of a planar linkage. The ellipsoid of gyration associated with the
mobillity tensor is shown In (a). The eigenvalues of the mobllity tensor
are inversely proportional to the effective mass in the direction of the
comresponding sigenvectors and the square root of their ratio deter-
mines the ratio of the major and minor axes of the ellipsoid, which are
colinear with the eigenvectors. For a planar, three-member linkage with
links of uniform density and cross section and lengths In the ratio 1: 2:
3 the effect on the ellipsoid of gyration of changing the linkage con-
:‘iguratlon for a fixed position of the end-point is shown in (), (c), and

suggested. The elements of the mobility tensor in general will
depend on the manipulator configuration.

At any given configuration, the kinematic transformations
between joint angles and end-point coordinates define not
only the relations between generalized displacements, flows
and efforts in the two coordinate frames, (see equations (2),
(3), and (6)) they also define the relation between the
generalised momenta in joint coordinates, h, and end-point
coordinates, p, through the Jacobian (see Appendix II):

h=J'(6)p (17)

Consequemiy._ the mobility tensor in end-point coordinates
W(6) is related to the mobility in joint coordinates Y(f) as
follows:

V= W(0)p (18)
W) =J(8) Y(0)J'(8) (19)

The physical meaning of the end-point mobility tensor is that
if the system is at rest (zero velocity) then a force vector
applied to the end-point causes an acceleration vector (not
necessarily co-linear with the applied force) which is obtained
by premultiplying the force vector by the mobility tensor (see
Appendix I1).

Note that the Jacobian in the above equation need not be
square, and that the end-point mobility is configuration
dependent. As a result, redundant degrees of freedom can be
used to modulate the end-point mobility. Consider the
simplified three-link model of the primate upper extremity
(arm, forearm and hand, each considered to be rigid bodies,
linked by simple pin-joints) moving in a plane as shown in
Fig. 2. For simplicity, assume the links are rods of uniform
density with lengths in the ratio of 1: 2: 3.

Any real linkage such as the skeleton is a generalised kinetic
energy storage system. Kinetic energy is always a quadratic
form in momentum:

Ek='"h"Y(6)h (20)

Thus the locus of deviations of the generalised momentum
from zero for which the kinetic energy is constant is an
ellipsoid, the ‘‘ellipsoid of gyration' [33]). It graphically

MARCH 1985, Vol. 107/ 11



Table 1 Variation of apparent end-point mass with linkage
configuration
Distal link Effective mass Effective mass
orientation X' -direction X-direction
(degrees) (kgm) (kgm)
90 0.322 1.823
135 0.568 0.568
180 1.824 0.323

Link Lengths: 1, 2, 3 meters; Linear density: | kgm/m

represents the directional properties of the mobility tensor.
The eigenvalues of the symmetric mobility tensor define the
size and shape and the eigenvectors the orientation of the
ellipsoid of gyration (see Appendix II). An ellipsoid of
gyration can be associated with the mobility tensor in any
coordinate frame, e.g., end-point coordinates (see Fig. 2(a)).

Figures 2(b) through 2(d) show the profound effect on the
ellipsoid of gyration of changes in arm configuration while
keeping the position of the end-point fixed. The inertial
resistance to a force applied radially inward toward the
shoulder (vertically downward in the figure) changes by
almost a factor of six as the hand rotates through ninety
degrees (see Table 1). In the configuration of Fig. 2(d) the
applied force has to accelerate all three links; in that of Fig.
2(b) it primarily has to accelerate the distal link. Clearly,
kinematic redundancies in a linkage provide a vehicle for
changing the way the end-point will react to external
disturbances without recourse to feedback strategies.

As an aside, an alternative representation of inertial
behavior is via the ellipsoid of inertia [33]. Asada [4] has
suggested its use as a tool for designing robot mechanisms.
However, the ellipsoid of gyration is the more fundamental
representation; it is readily obtained even when the Jacobian
of the linkage is noninvertible. Also, while the matrix Y(8)
may never have zero eigenvalues, (assuming real links with
nonzero mass) the matrix W(6) may, because of the
kinematics of the linkage. If the inertial behavior of the tip is
written in the conventional (impedance) form:

p=M(OYV (21)

there exist locations in the workspace for which the eigen-
values of the tensor M(f) become infinite. Thus the end-point
inertia tensor can not be defined for some linkage con-
figurations. On the other hand the worst the eigenvalues of
W(# will do is go to zero, which is easier to deal with com-
putationally, Again, a reminder of the fact that the difference
between impedance and admittance is fundamental.

Impedance Modulation Using Actuator Redundancies

It is also possible to modulate the position- and velocity-
dependent components of end-point impedance without
feedback by exploiting the intrinsic properties of the ac-
tuators, and again apparent redundancies are useful.
Although a muscle is by no means thermodynamically
conservative, it exhibits a static relation between force and
length (for any given fixed level of neural input) similar to
that of a mechanical spring, i.e., one which permits the
definition of a potential function analogous to elastic energy.’
Muscle force also exhibits a dependence on velocity similar to
a mechanical damper. [t has been shown that the mechanical
impedance of a single muscle may be modulated by neural
commands both in the presence and in the absence of neural
feedback [7, 11, 12, 25, 26]. Simultaneously activating two or
more muscles which oppose each other across a joint is one
strategy which permits impedance to be modulated in-
dependent of joint torque (15, 20]. (This is what happens, for

"Curiousiy. the force/length behaviour of most muscles is such that the co-

energy integral is not defined and thus no compliance form is definable [29]:
Muscles are impedances, not admittances,
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Fig.3 A schematic representation of the influence of the polyarticular
muscles of the primate upper extremity on the range of end-point
stiffnesses which may be achieved without recourse to feedback
strategles by simultaneous activation of opposing muscles. The
ellipsoid associated with the symmatric differential stiffness tensor is
shown in (a). The eigenvalues of the stiffness tensar are proportional to
the stiffness in the direction of the corresponding eigenvectors and the
square root of their ratio determines the ratio of the major and minor
axes of the ellipsold, which are colinear with the eigenvectors.
Assuming the upper extremity may be modelled as a two-member
linkags with aqual link lengths, without biarticular muscles, a
necessary condition to achieve an end-point stiffness with equal
eigenvalues (hence a circular ellipsoid) is only satisfied at the point p
on the workspace boundary as shown in (b). With biarticular muscles
acting at equal moment arms about each joint an end-point stiffness
with equal eigenvalues and a circular ellipsoid may be achieved
throughout the region R shown in (c).

example, when one tenses the muscles of the arm without
moving; the impedance of the limb increases.)

There are also considerably more skeletal muscles than
joints, even beyond the antagonist pairing required to permit
unidirectional muscle force to produce bidirectional joint
torques. For example, the torque flexing the elbow joint (one
of the simpler joints in the primate upper extremity) is
generated by brachialis, brachioradialis, biceps capitus brevis,
and biceps capitus longus. Does this complexity serve any
purpose? If the control of end-point impedance of the limb
without feedback is considered it will seen that these apparent
actuator redundancies may have a functional role to play [13].

Consider the simplified two-link model of the primate
upper limb (forearm and hand treated as a single rigid body,
pin-jointed to the upper arm) moving in a horizontal plane as
shown in Fig. 3. In the absence of feedback, the static
component of the total end-point impedance will solely be due
to the spring-like properties of the individual muscles. For
each muscle, a potential function may be defined, and the
combined effect of multiple muscles is to define a total
potential function (which could be determined by adding the
potential functions of the individual muscles). The total
potential at any point is invariant under coordinate trans-
formations and the total potential function may be expressed
in any coordinate system by direct substitution.

Now, for simplicity, assume that the relations between
muscle force and length and muscle length and joint rotation
result in a linear torque/angle relation for each muscle. First
consider the monoarticular (single-joint) muscles which
generate torques about only a single joint: their combined
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effect is to define a diagonal stiffness tensor in relative
‘angular coordinates:

Lod

P2

|'T.] {Ks 0
LT: 0 Ke
Each of the terms Ks and Ke may vary. For example, the
stiffness about the human elbow can vary from about |
Nm/rad. to more than 200 Nm/rad [20, 36].

When this stiffness tensor is expressed in end-point
coordinates, because of the distortion due to the nonor-
thogonality of the kinematic transformations the end-point
stiffness will no longer be diagonal, but the range of end-point
stiffnesses which could be achieved without feedback using
monoarticular muscles to change Ks and Ke is quite restricted.
This is readily seen in the shape of the potential function
corresponding to this stiffness. For small displacements the
potential function is 2 quadratic form and its isopotential
contours are ellipsoids which graphically represent the
directional character of the stiffness tensor (see Fig. 3(a)).

To illustrate the nature of the problem, suppose it were
desired to have the end-point equally stiff in all directions.
This would correspond to a potential function with circular
isopotentials. However, given only single joint muscles,
throughout the useful workspace a potential function with
circular isopotentials can not be achieved. For example,
assuming links of equal length and joint ranges of 0 to 90
degrees for the shoulder and 0 to 180 degrees for the elbow, a
necessary condition to achieve circular isopotentials is only
satisfied at one point (point p in Fig. 3(b)) on the boundary of
the workspace (see Appendix I1I). This is because to specify a
symmetric second-rank tensor such as stiffness in two
dimensions requires three parameters and the monoarticular
muscles provide only two.

However, the biomechanical system abounds with
polyarticular muscles — muscles which generate torques about
more than one joint. The biceps and triceps muscles of the
upper arm cross both the elbow joint and the shoulder joint
and provide a mechanical coupling between shoulder and
elbow rotations which radically increases the range of stiff-
nesses which may be achieved without feedback.

For simplicity assume the same linear relation between
muscle-generated torque and angle for both joints. Now,
including the two-joint muscles, the stiffness tensor in relative
joint angle coordinates will have off-diagonal terms:

"T]} {Ks+Kr Kr} [91
= (23)
The term Kt represents the contribution of the two-joint
muscles and, like Ke and K, it may vary, Now suppose again
that it is desired to have the end-point equally stiff in all
directions. As a result of the two-joint muscles, as shown in
Appendix III, a potential field with circular isopotentials
could be achieved without feedback (by varying Ke, Ks, and
Kt) throughout a much larger region in the workspace (region
R in Fig. 3(c)). In effect, the two-joint muscles provide a third
parameter with which to modulate the stiffness tensor. Note
that this is not peculiar to the specific set of simplifying
assumptions made above: In general, the availability of
polyarticular muscles dramatically increases the range of end-
point impedances which could be achieved without feedback.
The point of this discussion is to demonstrate that im-
pedance control is possible without depending on feedback
strategies, by using to advantage the intrinsic behavior of the
manipulator ‘‘hardware."” Apparent redundancies in the
musculoskeletal system, which are frequently seen as
presenting a coordination problem which the biological

e

22)
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controller has to solve, may in fact represent a solution to a
problem: they may play a functional role in controlling the
interaction between the limb and the environment during
dynamic events sufficiently rapid to limit the effectiveness of
feedback control.

Summary

[n this part of the paper, techniques for implementing a
desired impedance on a manipulator were considered.
Feedback control algorithms for imposing Cartesian im-
pedances up to second order on a general nonlinear
manipulator were presented. Because care was taken to ask
for a manipulator behaviour which is compatible with the
fundamental mechanics of manipulation, (as outlined in Part
[) the need to solve the ‘‘inverse kinematics problem’' -
generally regarded as fundamental to all robot control — was
circumvented.

Techniques for modulating the end-point impedance of a
manipulator without recourse to feedback were also
discussed. Multiple actuators and “‘excess’’ linkage degrees of
freedom may also be used to modulate end-point impedance
and it is suggested that the apparent redundancies in the
primate musculoskeletal system may in fact play an essential
functional role in controlling interactive behavior. The
hypothesis that impedance modulation is one of the
prominent strategies of natural movement control provides
the motivation for a research project to develop a cyber-
netically controlled prosthesis which will give an amputee the
ability to change its impedance at will [2].

The modulation of end-point impedance without feedback
may also be important for industrial robots. Feedback loop
transmission delays are not just a biological problem; It is
widely recognized that computation time is one of the limiting
factors in the design of robot controllers. It could be argued
that as computation becomes cheaper and faster, this problem
will disappear, but one reasonable way of describing
manipulation is as a series of ‘‘collisions’” with objects in the
environment [10]. During a collision dynamic events take
place extremely rapidly and any feedback controller may
encounter difficulties. Control of dynamic interaction
without feedback is an interesting alternative and is currently
under investigation [19].

A feature of impedance control is that different controller
actions (aimed at satisfying different task requirements) may
be superimposed. For example, suppose that a desired end-
point position- and velocity-dependent behaviour is im-
plemented on a manipulator using a feedback control strategy
as outlined above in equations (4) and (7). At the same time
kinematic redundancies in the manipulator are used to
modulate the end-point mobility. At any given end-point
position, X, (which is determinable from the configuration, 6)
the manipulator configuation may be chosen to best ap-
proximate a desired inertial behaviour (for example, the
mobility normal to a kinematic constraint surface may be
maximised). This configuration may then be used in the
feedback law which implements the position- and velocity-
dependent behaviour. As the equations never require in-
version of the Jacobian, they can be applied to a manipulator
with kinematic redundancies. Note that this approach to end-
point control in the presence of kinematic redundancies is
significantly different from the use of a generalised
pseudoinverse [35].

Part IlI of this paper will discuss the application of im-
pedance control.
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APPENDIX 1

A Nonlinear Feedback Law for Impedance Control

Assume that the desired end-point behavior to be imposed
on the manipulator is given by:

MdY /dt—B[Y, - Y] - K[X, - X] = Fint

Assume that an adequate model of the manipulator dynamics
is:

I(8)dw/dt + C(8,w) + V(w) + S(8) = Tact + Tint

In this equation, /(#) is the configuration-dependent inertia
tensor for the manipulator, C(0,w) are the inertial coupling
terms (due to centrifugal and coriolis accelerations), V{w)
includes any velocity-dependent forces (e.g., frictional) and
S5(6) includes any static configuration-dependent forces (e.g.,
gravitational). Any actuator dynamics have been neglected.
The actuator forces (or torques) Tact are assumed to be the
control input to the manipulator.

The equation for the desired behavior may be regarded as a
specification of the desired end-point acceleration which is to
result from an external force impressed on the manipulator
admittance.

dv/dt=M"'K[X,—X]+M "'B[V,-V]+ M 'Fint

The corresponding acceleration in actuator coordinates is
obtained by differentiating the kinematic transformations.

dV/dt=J(0)dw/dt+ G (0,w)
where
G(8,w)=[d[J(B)w}|/db]w
dw/dt=J ' (0)[dV/dt— G(8,w)]

Each of the impedance terms in the desired end-point
behavior may be expressed in actuator coordinates using the
kinemaltic transformations

KXo = X]=K[Xq - L(®)]
B[V, - V]=B[V, - J()w]

For the purposes of controller design, each of these terms may
be regarded as a component of a desired feedback law relating
the control input Tact to the variables 8, w and Fint, which are
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assumed to be accessible measurements. The complete control
law is obtained by substitution.
163 ' (OM ' K[X, — L(8)] + S(6) (position terms)

+ [(8)3(OM "' B[V, - J(f)w] + V(w) (velocity terms)

+ [(6)) "' (OM ~'Fint —J'(6)Fint (force terms)

— [(6)) ()G (8,w) + C(8,w) (inertial coupling terms)
Note that although this equation does require the inverse
Jacobian, it does not require inversion of the kinematic
equations. Only the forward kinematic equations need be
computed. This will be important for those manipulators for

which no explicit algebraic (closed form) solution to the in-
verse kinematic equations exists.

Tact

APPENDIX 1l

Generalized Inertial Systems and the Mobility Tensor

Any mechanical linkage is a generalized inertial system. The
defining property of an inertial system is its ability to store
kinetic energy, defined as the integral of (generalized) velocity
with respect to (generalized) momentum [8]. At any con-
figuration defined by the generalized coordinates the kinetic
energy is a quadratic form in (generalized) momentum.

Ek=":h'Y(0)h

From Hamilton's equations [30], the (generalized) velocity is
the momentum gradient of the kinetic energy.

H(h,0) = Ek(h,8)
db/dit=w= v H=Y(0)h

Kinetic energy is commonly confused with kinetic coenergy.
The two are not identical and are related by a Legendre
transform [8].

Ek*=wh-Ek=w'Y 'u-Ya' Y 'YY lu
Ek* =YY ' (Ow="rw' [(f)w

At any configuration kinetic coenergy is a quadratic form in
(generalized) velocity and its velocity gradient is the
(generalized) momentum [8).

h=/(f)w

For a generalized inertial system, Y is a symmetric, twice-
contravariant tensor. To distinguish it from its inverse, the
inertia tensor /, (symmetric, twice-covariant) Y will be termed
the mobility tensor.

A knowledge of the geometric relation between coordinate
frames is sufficient to transform any tensor from one frame
to another. As the joint angles arz a set of generalized
coordinates, for any configuration of the linkage of Fig. 2 the
end-point coordinates are related to the joint angles via the
kinematic transformations.

X=L(®

Differentiating these transformations yields the relation
between velocities (at any given configuration).
dX/dt=VY =J(f)w
J(8) in these equations is the configuration-dependent
Jacobian. As the coordinate transformation does not store,
dissipate or generate energy, incremental changes in energy

are the same in all coordinate frames. This yields the relation
between forces in each coordinate frame.

dEp=T'do=F'dX =F'J(6)do
At any given configuration
T=J(0)F

The same approach yields the relation between the
momenta in each coordinate frame.

Journal of Dynamic Systems, Measurement, and Control

dEk=dh'w=dp'V =dpJ(Bw
At any given configuration
h=J'(0)p

These relations may be used to express the mobility in end-
point coordinates.

V=Ju=JYI'p
Denoting the end-point mobility by W{(#8)
W) =JYJy
V= W(0)p

The physical meaning of the mobility tensor is that if the
system is at rest an applied force will produce an acceleration
equal to the force vector premultiplied by the mobility tensor.
At rest, df/dr =0 and hence:

dV/dr=Jw/dt
dw/dt= Ydh/dt
From the generalized Hamiltonian [30]:
dh/dt=T-V,H
At rest, h=0hence H(h,8) = Ek=0and v ,H =0. Thus:
dh/di=T
av/dit=JYJ)'F=WF

As the mobility tensor is symmetric it may be diagonalized
by rotating the coordinate axes to coincide with its eigen-
vectors. A force applied in the direction of an eigenvector
(when the system is at rest) results in an acceleration in the
same direction equal to the applied force multiplied by the
corresponding eigenvalue. The eigenvalues represent the
inverse of the apparent mass or inertia seen by the applied
force or torque.

Because the kinetic energy is a quadratic form in
momentum, it may be represented graphically by an ellipsoid
(see Fig. 2), the ellipsoid of gyration [33]. This may be
thought of as the set of all momenta which produce the same
kinetic energy (an isokinetic contour in momentum space).
The lengths of the principal axes of the ellipsoid of gyration
are inversely proportional to the square roots of the eigen-
values, proportional to the square roots of the associated
apparent mass or inertia. The long direction of the ellipsoid of
Fig. 2 is the direction of the greatest apparent inertia.

In the general case when the system is not at rest the relation
between applied force and resulting motion is (in general)
nonlinear and must be written in terms of a complete set of
state equations for the inertial system. A convenient set of
state variables are the Hamiltonian states, generalized
position (e.g., 8) and generalized momentum (h). The state
and output equations are in the form of generalized ad-
mittance (see Part 1) as follows.

State equations:

dh/dr= — 7 4[2h' Y(8)h]) +J' (0)F
do/di=v,[V2h"Y(®h]= Y (Hh
Output equations (position and velocity):
X=L(0)
V=J(8) Y(&h

APPENDIX III

Effect of Actuator Redundancy on Range of Feasible Stiff-
ness

The differential stiffness tensor in relative joint angle
coordinates |p,,p] due to the combined stiffnesses of
monoarticular actuators, Ks, Ke and biarticular actuators K7,
is:
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[T:] Ks+Kr Kt [ o

Lr:J Kt Ke+Kt Lo:
The transformation from relative joint angle coordinates
[ p1,p2 ) to absolute joint angle coordinates {6, ,0, | is:

A

Hence the stiffness tensor in absolute joint angle coordinates
is:

1 -1 Ks+Kt Kt I 0

Mol e
Ks+Ke —Ke

D [ -Ke K.f+Ke:|

The differential transformation from absolute joint angle

coordinates [#6,,6,) to Cartesian end-point coordinates
¥X| .X: ] is:

dX| “L| sin ﬁ| “L: sin 91 d6|

dX,| | Lycos8, L,cosb, | |db,

dx = Jdé

16/ Vol. 107, MARCH 1985

To achieve an isotropic end-point stiffness (for which the
corresponding potential function will have circular
isopotentials) its eigenvalues must be equal. For simplicity
assume each eigenvalue is unity.

Kx=1
The corresponding stiffness tensor in absolute angle coor-
dinates is:

Ko= VKxJ=1']
L, L,cos(8,-8))

L,®

L*
Ko=
L, L,cos (8;—3|}

To achieve an isotropic end-point stiffness it is necessary for
the actual joint coordinate stiffness to equal the desired joint
coordinate stiffness. Assuming L, =L, =1 it can be seen that
in the absence of biarticular actuators, i.e., Kt=0, this
condition is not satisfied except at:

6, -6, =180°

point p in figure 3b. In contrast, given bi-articular actuators,
i.e., Kt#0, isotropic stiffness can be achieved throughout the
region R in Fig. 3(c) defined by:

90° <#, -6, <180°
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Impedance Control: An Approach

to Manipulation:
Part 1ll—Applications

This three-part paper presents a unified approach to the control of a manipulator
applicable to free motions, kinematically constrained motions, and dynamic in-
teraction between the manipulator and its environment. In Part I the approach was
developed from a consideration of the fundamental mechanics of manipulation.
Part II presented techniques for implementing a desired manipulator impedance. In
Part II1 a technique for choosing the impedance appropriate to a given application
using optimization theory is presented. Based on a simplified analysis it is shown
that if the task objective is to tradeoff interface forces and motion errors, the
manipulator impedance should be proportional to the environmental admittance.
An application of impedance control to unconstrained motion is presented. The
superposition properties of nonlinear impedances are used to develop a real-time
Sfeedback control algorithm which permits a manipulator to avoid unpredictably
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moving objects without explicit path planning.

Introduction

The work presented in this three-part paper is an attempt to
define an approach to manipulation which is sufficiently
general to be applied both to the control of free motions and
to the control of dynamic interaction between a manipulator
and its environment. In Part [ it was shown from a con-
sideration of the mechanics of interaction that a general
strategy is to control the motion of the manipulator and in
addition control its dynamic behavior; controlling a vector
quantity such as force or position alone is inadequate. To be
compatible with the mechanics of an environment which in
general will contain constrained inertial objects, the
manipulator should exhibit the behavior of an impedance. It
was also shown in Part I that for a broad class of nonlinear
manipulators (basically those capable of positioning an
unconstrained inertial object) the relation between the
commanded motions and the commanded dynamic behavior
could be represented by a generalized Norton equivalent
network.

In Part II the implementation of a desired manipulator
impedance either using a feedback strategy or using the in-
trinsic mechanics of the manipulator was discussed. We now
turn to a consideration of a method for choosing an ap-
propriate manipulator impedance. In this, the Norton
equivalent network representation will prove to be of some
value. We will also show how the superposition property of
impedances leads to a simplification of a problem in
manipulator control.

Contributed by the Dynamic Systems and Control Division for publication in
the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript
received by the Dynamic Systems and Control Division, June 1983,
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Choosing an Appropriate Impedance

The manipulator impedance appropriate for a given
situation depends on the task to be performed. In most
manipulatory tasks there is a tradeoff to be made between
allowable interface forces and allowable deviations from
desired motions. Whether it has been rationally chosen or not,
the manipulator impedance specifies a relation between in-
terface forces and imposed motions. If the tradeoff implicit in
the task is expressed as a performance index to be maximized
or minimized which is a function of the interface forces and
motions then the impedance appropriate for that task may be
determined using optimization theory [10].

Because a general class of nonlinear manipulators can be
represented by a generalized Norton equivalent network as
shown in Fig. |, considerable insight into manipulation can be
gained by considering analogous (but simpler) systems with
the same Norton network structure. Assume a manipulator
interacts with a passive environment (no active energy source
terms). For simplicity, consider a single degree-of-freedom
and assume that both the manipulator impedance and the
environmental admittance are simple linear dissipative
elements. This simplified linear system has the same basic
structure as a more general multiple degree-of-freedom
nonlinear manipulator interacting with an environmental
admittance. The following equations relate the port variables:

V = YF (1
F = Z(Vy- V) (2)
V = YZV,/(1+YZ) 3)
F = ZV,/(1+Y2Z) (4)

Now assume that one task is to minimize the transmission of
power into the environmental admittance. Express this as an
objective function to be optimized:
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Fig. 1 A bond-graph equivalent network representation of an im-
pedance-controlled manipulator interacting with an environmental
admittance. Each bond represents a vector of power flows along
multiple degrees of freedom. The bond graph for the manipulator is a
generalized Norton equivalent network.

Objective: maximize P= FV where P= power transmitted
P=YZ*V, /(1 + YZ)? (5)

Maximizing the power transmitted requires the commanded
motion V, to be maximized, or the commanded impedance Z
to be maximized. Maximizing with respect to the admittance
Y yields an equality condition:

ZY=1 (6)
or
Zmanipulator = Zenvironment 7

The first two conditions state essentially that the machine
should operate on the boundaries of its performance en-
velope. The third condition states that (after the first two
conditions have been satisfied) the machine and environment
impedances should be matched. This is a familiar result and is
a design rule of great versatility, applicable in any situation in
which a source is to impart maximum power to a load. Its
applicability to robotic transport tasks has recently been
shown [19].

For manipulation, another common task is to minimize
deviations from desired motions while simultaneously
minimizing interface forces. Assume this objective may be
expressed as follows:

Objective: minimize Q=p(V, — V)* + F* (8)
p is a weighting coefficient specifying an allowable tradeoff

between interface forces and motion errors. Rewriting the
objective using equations (3) and (4):

Q=(p+Z)V2/(1 + Y2)? )

Minimizing this objective requires the commanded motion V,
to be minimized or the environmental admittance Y to be

maximized, two physically reasonable conditions. Minimizing
with respect to the commanded impedance yields the
following equality condition:

Z-pY=0 (10)

or

(1

This condition may be considered as a designer’s ‘‘rule of
thumb’ for manipulation, analogous to the impedance
matching rule applicable to power transmission: ‘‘Make the
manipulator impedance proportional to the environmental
admittance.”’ If the environment is unyielding (low ad-
mittance), the manipulator should accommodate the en-
vironment (low impedance); if the environment offers little
resistance (high admittance), the manipulator may impose
motion upon it (high impedance).

Although these results were obtained using an extreme
simplification of the mechanics of manipulation, this simple
static analysis captures the essence of the interaction between
manipulator and environment, and yields an intuitively
satisfying result: that manipulation (at least insofar as it is
modeled by the cost function of equation (8)) and power
transmission are fundamentally conflicting task require-
ments. In view of the fact that a manipulator must be ver-
satile — it may be called upon to transmit power in one phase
of a working cycle (e.g., transport a workpiece as fast as
possible) and manipulate at another (e.g., assemble the
workpiece to another) —a controllable mechanical impedance
is imperative.

The simple analysis presented above demonstrates that the
tradeoff implicit in the specification of most manipulatory
tasks may be mapped directly onto a statement about the
manipulator impedance. That analysis was purely static:
algebraic equations related the port variables, not differential
equations. In the following a method is presented for
determining an appropriate impedance in a simple dynamic
case.

Assume that the end-point inertial behavior of the
manipulator has been modified to be that of a rigid body
using (for example) the technique outlined in Part II. The
nodic (noninertial) interface forces can be represented by a
generalized Norton equivalent network as shown in Fig. 1 and
are assumed to depend only on the displacement (and its rate
of change) from a commanded time-varying (virtual)
position, with the displacement- and velocity-dependent terms
assumed to be separable. The dynamic equations for the
interaction port behavior are:

Zmanipulator = p Yenvironment

Fint = K[Xo — X] + B[V, — V] - MdV /dt (12)

The environment will be assumed to be a rigid workpiece

Nomenclature
P = power transmitted
Y = admittance Q = objective function t = time
Z = impedance p = weighting coefficient k = stiffness
Sf = flow source Fint = interface force b = viscosity
Se = effort source Fext = external force m = mass
:[c}] = modulation by command K[-] = force/displacement rela- m, = manipulator mass
set tion m, = environmental mass
Vy, = commanded (virtual) B[+] = force/velocity relation S = strength of Gaussian
velocity M = inertia tensor in end-point random process
Y = velocity coordinates 6 = Diracdelta function
Xo = commanded (virtual) Me = environmental inertia H = Pontryagin function
position tensor A; A; A; = LaGrange multipliers
X = position Ftol = force tolerance E[-] = expectation operator
F = force Xtol = position tolerance Overbar also denotes expectation
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Fig. 2 A bond graph equivalent network showing the interface bond
assumed in the derivation of the optimal dynamic impedance

acted on by unpredictable (or merely unpredicted) forces. Its
dynamic equations are:

Me dV/dt =Fext + Fint (13)

Both the isolated manipulator (Fint = 0) and the coupled
system have the behavior of a mass driven by motion-
dependent forces. The dynamic equations of the coupled
system are:

(Me+M)dY/dt=K[X, - X] + B[V, - Y]+ Fext (14)

A further simplification is to assume that the position-
dependent terms are curl-free!. A potential function is then
definable which is analogous to stored elastic energy. A
similar set of assumptions permit the velocity-dependent
terms to be described as a dissipative potential field. Finally,
the elastic and viscous terms will be assumed linear.

The combined inertia tensor, Me + M, for the manipulator
and the workpiece will not in general be diagonal. However, it
is symmetric and thus can be diagonalized by rotating the
coordinate axes in which the task is described. The stiffness
and viscosity tensors are to be chosen to suit the task. It will
be assumed that the eigenvectors of the symmetric stiffness
and viscosity tensors are colinear with those of the inertia
tensor. Given this assumption, the general six degree-of-
freedom problem decomposes into six single degree-of-
freedom problems. Consequently, each degree of freedom
may be dealt with separately as follows.

The task considered will be that of maintaining a fixed
position in the face of perturbations from the environment,
(These might be due to excitation forces from a power tool or
due to the process of using the tool.) To reflect the paucity of
a-priori information about the perturbations from the en-
vironment they will be modeled as a zero-mean, Gaussian,
purely-random process of strength S. The tradeoff implicit in
this task will be modeled as before (equation (8)) as the
minimization of interface forces and position errors. For
simplicity, the interface is assumed to be between the total
inertia (controlled manipulator plus environment) and the
elastic and viscous elements as shown in the equivalent net-
work of Fig. 2. The inertial behavior of the manipulator has
essentially been lumped with the admittance of the en-
vironment.

The objective function to be minimized is:

Q= j:l (F/Ftol)? + [(X, — X)/ Xtol]* ) dt (15)

Writing the equations for a single degree of freedom in phase
variable form:

iFr.'n' each component of the vector force field defined by X[+] and each
component of X, the crossed partial derivatives are identical.

Journal of Dynamic Systems, Measurement, and Control

X 0 1 X
d/dt =
v —k/m —b/m 14
0 0
+ Xo + Fext (16)
k/m 1/m

F=lk m] (17)
v

In these equations m refers to the combined apparent mass of
manipulator and workpiece along this degree of freedom.
Because of the random forcing term the objective function
(equation (15)) is a random variable and the optimum im-
pedance is obtained by minimizing its expectation with respect
to the parameters k and b of the manipulator impedance,
subject to the dynamic constraints imposed by the system
(equations (16) and (17)). The final simplifying assumption is
to consider only steady state conditions (the method is readily
generalized to the transient case using standard numerical
techniques). The analysis is presented in Appendix I. Sum-
marizing the results:

ko = Frol/ Xtol (18)
bope =V 2(Kopm) (19)

In this simple case the optimum stiffness is equal to the
ratio of force tolerance, Ftol, to position tolerance, Xtol.
With no penalty on velocity errors, the optimum damping is
such as to yield a damping ratio of 0.707. A nonzero penalty
on velocity errors would yield a more heavily damped system.

Viewed simply as an optimization problem, these results are
the well-known solution to the second-order feedback
regulator problem [13]. Their importance in this context is
twofold: First, they demonstrate that a tradeoff modeled by
an objective function such as equation (15) can be used to
derive a specification of the appropriate manipulator im-
pedance. Because of the assumptions permitting decoupling
of the end-point behavior along each degree of freedom, these
results can be applied to each degree of freedom in turn.
Furthermore, the analytical technique can be applied to
nonlinear systems [6, 9].

Second, and more important, the results are expressed in
terms of the mechanical behavior of the end-point regardless
of how that behavior is achieved. Although a large number of
(gratuitous) assumptions were made in the derivation, none of
them are impractical and the result expresses the required
impedance command to the manipulator in terms of readily
available mechanical quantities associated with the task. The
optimal impedance may be implemented by any means,
feedback or otherwise, permitted by a given manipulator
design. As outlined in Part 1I, the primate neuromuscular
system has the capacity to change its mechanical impedance
by simultaneous activation of opposing muscles [6, 9, 14] and
the above analytical technique has been used to derive a
prediction of antagonist coactivation which has been shown
to be consistent with experimental observation (6, 9].

In this simple analysis the external forces were almost
completely unmodelled. The assumption of a purely random
process is tantamount to an assumption of complete un-
predictability. The analysis demonstrates that even with
extremely little information about the environment, the in-
teraction between manipulator and environment may be
controlled so as to meet task specifications. Naturally, the
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more information about the environment that is available, the
better one would expect the system performance to be.
However, this suggests the tantalizing possibility that the
impedance may be chosen to tradeoff performance against
need for information about the environment. This is a topic
for further research.

Obstacle Avoidance Using Superposition of Impedances

One useful and important consequence of the assumptions
underlying impedance control is that if the dynamic behavior
of the manipulator is dissected into a set of component im-
pedances, these may be reassembled by simple addition even
when the behavior of any or all of the components is
nonlinear. This is a direct consequence of the assumption that
the environment is an admittance, containing at least an
inertia. That inertia acts to sum both forces applied to it and
impedances coupled to it.

The additive property of impedances permits complicated
tasks to be dealt with one piece at a time and all of the pieces
combined by simple addition. We have taken advantage of
this to implement a real-time feedback control law which
drives the manipulator end-point to a target location while
simultaneously preventing unwanted collision with un-
predictably moving objects in the manipulator’s workspace
[1-3,7, 8].

Obstacle avoidance is generally regarded as a problem in
position control, specifically that of planning a collision-free
path [15]. The approach we have taken is not to plan a path,
but to specify an impedance which produces the desired
behavior without explicit path planning. In the following
example, recall that although the need for the manipulator to
have the behavior of an impedance arose from considerations
of the mechanical interaction between a manipulator and its
environment, cases in which the mechanical work exchanged
is negligible (e.g., free motions) may be treated as special (or
degenerate) instances.

The primary difference between impedance control and the
more conventional approaches is that the controller attempts
to implement a dynamic relation between manipulator
variables such as end-point position and force rather than just
control these variables alone. That entire relation becomes the
command to the manipulator which may be updated as often
as practical considerations (such as speed of computation)
dictate. In this sense, impedance control is an augmentation
of conventional position control. Each command to the
manipulator specifies a position (as in conventional control)
and in addition specifies a relation determining the ac-
celerating force to be applied to the total mechanical ad-
mittance in response to deviations of the actual position from
the commanded position.

If the position- and velocity-dependent terms in the
commanded impedance are each assumed to satisfy the
requirements for the existence of a potential function then the
manipulator behavior is simplified. It may be thought of as
analogous to that of a sticky marble rolling on a continuously
deformable surface. Varying the impedance varies the shape
of the surface and the stickiness of the marble. Target
acquisition and obstacle avoidance may now be dealt with
separately as follows.

Successive target locations may be specified by means of a
(time-varying) depression in the surface. Each single com-
mand has a position-dependent component which specifies a
potential function which is a ‘‘valley’’ with its bottom at the
target. This ‘‘valley'" is depicted by a map of isopotential
contours in Fig. 3(a).

Conversely, given an observation of the relative location
(with respect to the end-point) of an obstacle (or any other
region in the workspace to be avoided) that object may be
avoided by specifying a (time-varying) bump in the deform-
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Flg. 3 A diagram of the potential functions corresponding to the
static component of the commanded impedances which may be used
for (a) target acquisition (b) obstacle avoidance and (c) simultaneous
target acquisition and obstacle avoidance. A plan view of the
Isopotential contours are shown in (a) and (b).

able surface., Now each single command also contains a
position-dependent component which specifies a potential
field with an unstable equilibrium point at the location of the
object to be avoided. The potential function is a *‘hill"
centered over the obstacle (see Fig. 3(b)).

The target-acquisition command and the obstacle-
avoidance command could be combined in a number of ways,
but remember that the admittance sums the impedances. The
inevitable inertial behavior of the end-point guarantees the
superposition of the components of the impedance-controller
action independent of the linearity of the components. It is
always possible to command obstacle-avoidance and target-
acquisition (or any other aspect of the complete task) in-
dependently and then combine all commands by simply
adding the impedances, in this case the corresponding
potential fields (see Fig. 3(c)) (7, 8]. Furthermore, a number
of obstacles and a target may be specified simultaneously.
Each task component may be represented as a generalized
Norton equivalent network and the combination of all the
task components represented by the equivalent network of
Fig. 4. '

It is important to note that the combined potential field of
Fig. 3(¢) represents a single command to the manipulator. Of
course, neither targets nor obstacles need stay fixed in the
workspace and a typical task will require multiple impedance
commands (just as locating the spot welds on an automobile
requires multiple position commands to a conventional robot
controller) and by updating the impedance commands
repeatedly this approach may be used to make a manipulator
avoid ‘‘invaders,”” objects which may move about the
workspace in an unpredictable (or merely unpredicted)
manner (2, 3].

The use of potential functions as commands to a robot is
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Fig. 4 A bond graph equivalent network representation of commands
to an impedance-controlled manipulator specilying simultaneous
target acquisition and avoidance of multiple obstacles. Each task
component is represented by a generalized Norton equivalent network.

similar to the approach used by Khatib and LeMaitre [12] to
navigate a manipulator through a complicated environment.
The distinguishing feature (and advantage) of impedance
control is that the same controller used to deal with free
motions can also be used to deal with real mechanical in-
teraction. The success of impedance control as a unifying
framework for dealing with both kinematically constrained
manipulations and free motions (including avoiding moving
“‘invaders’’) has been demonstrated by performing both of
these tasks in real time using a spherical coordinate
manipulator [1, 2]. The same controller was used for both
tasks and the algorithm was simple enough to be implemented
using 8-bit 2 MHz microprocessors (Z-80, one for each axis)
for the real-time controller. One example of the obstacle-
avoidance behavior achieved is shown in Fig. 5.

As an aside, note that to be of practical value, the
“repulsive’’ force fields used to implement collision
avoidance must be nonlinear; the repulsive force must drop to
zero for sufficiently large separations between the end-
effector and objects in the environment (see Fig. 3(b)). This is
precisely the type of noninvertible, nonlinear force/dis-
placement behavior for which no inverse compliance form
exists. The concept of tuning the end-point stiffness and
damping of a manipulator has been discussed in the literature
under the general heading of ‘‘compliance,’”” ‘“‘compliant
motion control,”" *‘fine motion control,”’ or *‘force control’
[5, 11, 17, 18, 21-24, 28]. In most of this prior work, the
manipulator has been given the behavior of a linear com-
pliance (a special case of an admittance). The control strategy
presented here is considerably more general; If the end-point
dynamic behavior is expressed as an impedance, the above
obstacle-avoidance behavior is included as a special case; If it
were expressed as a compliance this useful behavior would be
excluded. In addition, the superposition property of im-
pedances coupled to an admittance would not be preserved.

Summary and Conclusion

This paper has presented a method for controlling a
manipulator which may interact dynamically with its en-
vironment. The approach is solidly based on the mechanics of
interaction and was developed in Part | from some reasonable
physical assumptions about manipulation: that the controlled
manipulator may be represented as an equivalent physical
system; that manipulation is a fundamentally nonlinear
problem (therefore impedance and admittance must be
distinguished); and that the environment contains
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Fig. 5 Avoidance of an unpredictably moving ‘“invader” by a
spherical-coordinate manipulator controlled by B8-bit, 2MHz, 280
microprocessors. The half circles show successive positions of the
manipulator end-effector and the invader in the vertical plane at 100
millisecond intervals. All of the behavior shown here is the robot's
response to a single impedance command from the supervising
computer, a PDP 11/44,

kinematically constrained inertial objects and is an ad-
mittance (therefore the manipulator must have the causality
of an impedance). Two theoretical consequences of these
assumptions are that a broad class of nonlinear manipulators
may be represented by a generalization of the familiar Norton
equivalent network, and that impedances may be superim-
posed even when they are nonlinear,

Impedance control is an extension of conventional position
control strategies. A time-varying position (the virtual
position) i1s commanded; in addition an impedance is com-
manded, a relation (possibly dynamic, nonlinear, discon-
tinuous and time-varying) between interface forces and
displacements from that position. This simple strategy of
commanding a relation rather than just a position (or a
velocity) has a profound impact on the problems of
manipulator control. In Part Il it was shown that it leads to
the elimination of the ‘‘inverse kinematic problem’’ [21] (that
of determining a joint trajectory from an end-point trajec-
tory).

Impedance control focuses on the interaction port and
describes the required behavior in terms of the mechanical
properties of the manipulator (e.g., its impedance) in-
dependent of the way this behavior is to be achieved. This sets
the stage for considering alternatives to feedback control.
These are important for high-speed manipulation; at suf-
ficiently high frequencies the behavior of any controlled
system is dominated by its open loop behavior. In Part II it
was shown that multiple actuators and ‘‘excess’’ linkage
degrees of freedom may be used to modulate end-point im-
pedance. It is suggested that the primate central nervous
system uses these non-feedback strategies and that the, ap-
parent redundancies in the primate musculoskeletal system
may in fact play an essential functional role in controlling
interactive behavior.

In this third part of the paper it was shown that in general,
the impedance appropriate to a given task may be deduced
from the task objective, and a method which uses op-
timization theory to do this was presented. Although the
examples presented were extremely simple, they retained the
structure of the basic manipulation problem, represented by
the generalized Norton equivalent network coupled to an
admittance. The static example led to an instructive result:
while power transmission requires machine impedance to
match environmental impedance, manipulation (trading off
movement errors against interface forces) requires a machine
impedance proportional to environmental admittance; power
transmission and manipulation are, in a sense, ‘‘orthogonal’’
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tasks. The dynamic example showed that the appropriate
impedance can be expressed in terms of force and motion
tolerances independent of the way the impedance is im-
plemented e.g., without assuming feedback control. The
method used is general and has been applied to a nonlinear
systeml.

The concept of tuning the dynamic behavior of a
manipulator has been explored by a number of researchers.
However, most of this prior work considered only linear
dynamic behavior and implemented it as an admittance (force
in, motion out). The restriction to linearity is not necessary
and as shown in the collision-avoidance example, nonlinear
behavior has its uses. The restriction to admittance causality is
not consistent with the physical constraints of interacting with
a (possibly constrained) inertial environment. That approach
might be justified by arguing that the environment could be
modelled as an impedance, (e.g., a spring [18, 28]); Un-
fortunately, admittances coupled to an impedance at a
common point (the end-effector of the robot) do not enjoy the
superposition properties of impedances coupled to an ad-
mittance at a common point. Impedance control offers a
significant advantage over this alternative.

The practical value of the additive property of nonlinear
impedances was shown in this third part of the paper by using
it to develop a feedback control law for avoiding un-
predictably moving objects. By taking advantage of the
superposition of impedances, target acquisition and obstacle
avoidance could be considered separately and implemented as
different components of a total commanded impedance which
were combined by simple addition. This approach does not
require explicit path planning and the control law was simple
enough to be implemented using 8-bit MHz microprocessors.
Note, however, that impedance control does not preclude a
preplanning or navigational approach and the two methods
may usefully complement one another; path-planning is
appropriate for the predictable aspects of the environment,
impedance control offers a method for dealing with its less
predictable aspects.

The choice of a realistic but appropriately simple form for
the impedance to be imposed leads to a dramatic sim-
plification of the problems of controlling the complete system
(manipulator and environment). Restricting attention to
impedances with exact differentials (force fields with zero
curl) permits the definition of potential functions for the
position- and velocity-dependent behavior. Because of the
simple form of the imposed dynamic equations the (elastic)
potential function and the external forces are sufficient to
define static stability. Asada [4] has shown how elastic fields
may be used as the basis of an approach to planning stable
grasp. Stable equilibrium configurations of end-effector and
workpiece are defined by finding minima of the potential
energy function. Gravitational forces are readily included by
expressing them as a potential function and combining it with
the potential function of the manipulator by simple addition.
Note, however, that the dynamic stability of the end-effector
is not guaranteed (that is, in principle, sustained oscillations
are possible). To ensure dynamic stability the dissipative field
must be chosen appropriately; the complete impedance must
be controlled, not just the elastic behavior.

The use of potential functions in effect maps the end-point
dynamics into a set of static functions and the visualization,
prediction and planning of the behavior of the complete
system is simplified. For example, in the absence of external
active sources the total energy of the system, kinetic plus
potential, may never increase. This permits easy prediction of
the maximum velocities which may result from a given set of
commands without computing the detailed trajectories.
Conversely, as the potential energy function is one of the
commands, it is readily chosen so that a desired maximum
velocity is never exceeded. If the impedance command is given
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when the system is at zero velocity (e.g., a workpiece has just
been grasped) then it is not even necessary to know the mass
of the grasped object.

A feature of impedance control is that it permits a unified
treatment of many aspects of manipulator control. The ac-
tions of both controller software and manipulator hardware
may be described through an equivalent physical system. As a
result powerful methods (such as bond graphs) for network
analysis of nonlinear systems may profitably be applied. Real
mechanical interaction may be treated in the same framework
as free (unconstrained) motions. The impedance controller
used to avoid unpredictably moving objects was also capable
of coping with kinematically constrained motions [1, 2].
Targets to be acquired are treated in the same way as obstacles
to be avoided as different components of a total task, where
each component is described by a generalized Norton
equivalent network. Path control [20, 25], rate control [26,
27], and acceleration control [16], could be considered in a
single framewnrk as important special cases of impedance
control (e.g., position control: maximize impedance; rate
control: no static impedance component). Pure force control
[11] (force commanded as a function of time only) could also
be considered in the same framework by regarding it as a
special case in which the impedance is purely elastic. A
potential function with a constant gradient defines the
magnitude of the commanded force, and the virtual position
(which may go outside the workspace) defines the direction of
the commanded force. The hybrid combination of force and
position control in orthogonal directions [17, 23] proposed
for dealing with pure kinematic constraints is also included
under impedance control.

Most important, the applicability of impedance control
extends beyond the workless conditions imposed by free
motions or pure kinematic constraints to include the control
of energetic interactions such as are encountered when using a
power tool. It promises to be particularly useful for un-
derstanding, controlling and coordinating the actions of
mutually interacting manipulators, such as the fingers of a
hand, the hand and the arm, or two arms. Using this ap-
proach each subsystem presents a simple behavior to the other
subsystems; This will facilitate the prediction and control of
the combined behavior of the entire system.

An alternative approach to manipulator control in the
presence of significant dynamic interaction is to change the
structure and/or parameters of a feedback controller as the
conditions imposed by the environment change. This would
require the controller to monitor the environment con-
tinuously, identify changes, and adapt its own behavior
accordingly — a far-from-trivial task. Changes in the structure
and parameters of the environment may take place very
rapidly (consider the transition from free motion to con-
strained motion as an object comes in contact with a surface)
and there may not be sufficient time for the usually lengthy
process of system identification. On the other hand, if the
controller is structured so that the manipulator always im-
presses a force on the environment in relation to its motion
(that is, it behaves as an impedance) there are no practical
situations in which its behavior is inappropriate, no practical
task has been excluded, and the need to identify the structure
of the environment has been reduced.

Of course, impedance control does not preclude the ap-
plication of adaptive strategies, and indeed the two ap-
proaches may complement each other, controlled impedance
taking care of the transitions and allowing time for iden-
tification and adaptation to optimize performance. Strictly
speaking, impedance control is a subset of parameter-
adaptive control; the primary distinctions are that the
parameters to be modulated are expressed in terms of a
physically meaningful quantity, mechanical impedance, and
unlike other work on parameter adaptation, no assumption is
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made that the implementation 5}!‘ the i_mpedance will be
through feedback control strategies. Ap impedance may be
implemented in @ number_ of ways, using to advantage the
resources of a specific manipulator. .

Essentially, impedance control is an attempt to combine the
control of ‘“‘transport’’ _lasks (which are the philosophical
underpinning of conventional robot control) with the cqntrol
of “‘interactive’” tasks such as the use ofa wol_s. The ulumgte
goal of this work is to understand the subleties of adaptive
tool-use, one of the distinguishing features of primate
behavior. Impedance control may provide the basis for un-
derstanding tool-using behavior in primates, restoring t_his
capability to an amputee using an artificial limb, and im-
plementing it on an industrial robot.
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APPENDIX I

Optimal Impedance for a One-Dimensional Dynamic
System
The system equations in phase variable form are:

X 0 | X
v —k/m —b/m v
0 0
+ Xo + Fext
k/m 1/m

The interface forceis: F=k(X, - X)+ bV
The objective function to be minimized is:
ok §u (F/Ftol)? + [(X, — X)/ Xtol]? ) dt
The external force Fext is a zero-mean, Gaussian, purely
random process of strength S. Thus:
E[Fext(t)] =0 E[Fext(t)Fext(t+ 7)) = Sé(r)

In steady state X = X,, ¥ = 0 thus without loss of generality
assume X, = 0. The covariance propagation equations are:

XX = 2Xv
L = b =
X =7 L
m m
L PLE - BPLE-7
m= m m

Because of the random forcing, the optimum impedance is
obtained by minimizing the expectation of the objective
function subject to the constraints imposed by the covariance
propagation equations. Writing p* = Ftol/Xtol

= _,_1 % Xy Y1 2 2\ v
EQI= oo [ (07 4 2k 0KV 4 (2 450K
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The Pontryagin function is: aH 4 as k
ryag nction i =—?\;=(k‘+p')->\g;

axXv
H = V2 +2kbXV+(k* +p)X? + 2\ XV aH g b k
o st ' S Ry 2D AIN N = 2Ry
1L (;7! SN Lt X‘:) axv m m
m m
aH : 5 b
7= -}\3 =} +)\_1_—'2XJ =
+)\,(——2—I/’ 2—XV) 9 ”
Assuming a steady-state solution exists, it may be obtained by
The minimizing conditions are: setting all rates of change to zero. Manipulating the resulting
aH A M equations yields:
—— =0=2bXV+2kX*- 2 X2~ 22XV L s —. S
ak m XV =0 V=—\o X'=_—
o 2 - 2bm 2bk
— =0= 2bv’2+zkxv-—x"v——‘ -
ab m ki = P kop = Ftol/ Xtol
The LaGrange multipliers are determined from the costate s e
equations: bﬁpt = chprm buvl =N Zkaprm
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