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Abstract

Simulation optimization is increasingly popular for solving complicated and mathematically

intractable business problems. Focusing on academic articles published between 1998 and

2013, the present survey aims to unveil the extent to which simulation optimization has

been used for solving practical inventory problems (as opposed to small, theoretical “toy

problems”), and to detect any trends that might have arisen (e.g., popular topics, effec-

tive simulation optimization methods, frequently studied inventory system structures). We

find that metaheuristics (especially genetic algorithms) and methods that combine several

simulation optimization techniques are the most popular. The resulting categorizations pro-

vide a useful overview for researchers studying complex inventory management problems,

by providing detailed information on the inventory system characteristics and the employed

simulation optimization techniques, highlighting articles that involve stochastic constraints

(e.g., expected fill rate constraints) or that employ a robust simulation optimization ap-

proach. Finally, in highlighting both trends and gaps in the research field, this review

suggests avenues for further research.

Keywords: Inventory management, Simulation optimization, Robust simulation optimiza-

tion

1 Introduction

The field of inventory management has attracted substantial attention in both academic liter-

ature and practice [165]. This is not surprising, as inventory represents a major cost for many

businesses; e.g., the cost of holding inventory in the United States in 2006 was estimated at 300

billion dollars [150]. The goal of inventory management is to determine a replenishment policy
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(i.e., when and how much to order) that optimizes certain criteria [125], usually related to costs

or service levels (though depending on the problem, other criteria might also be relevant)[147].

The number of textbooks and journal articles in this field is vast, and has shown an increasing

trend [150].

To find an optimal replenishment policy, many of these articles adopt analytical approaches

(see [114, 136] for reviews). However, as recognized by various authors (e.g., [13, 50, 139]),

practical stochastic inventory problems are often analytically intractable due to their complexity.

For example, the (s, S) inventory system becomes mathematically intractable when, due to

random lead times, orders cross in time [19]. In transshipment problems with more than two

retailers, the retailers need to share an identical cost structure for analytical tractability to

persist [106]. Likewise, in spare parts inventory management, simplifying assumptions are

required for the joint optimization of maintenance and spare parts inventory policies [69].

Simulation optimization is a potentially powerful and flexible tool for solving complex op-

timization problems, without the need to make restrictive assumptions [105]. Simulation opti-

mization (or sim-opt; also known as optimization via simulation or simulation-based optimiza-

tion) refers to optimization of the performance of simulated systems [45, 155]; it seeks to find

decision variables that will lead to optimal system performance, and it usually evaluates this

performance using a simulation of the system itself [46]. In spite of the growing popularity of

simulation optimization [67], Fu [54] mentions that the focus has been mostly on solving simple

“toy problems” and application of sim-opt for practical problems has been limited. Standard

inventory problems (such as the (s, S) system) are highly popular toy problems, designed to

check the performance of newly developed sim-opt approaches (e.g., [53, 156]). For instance,

the seminal paper of Bashyam and Fu [19], which was one of the first to study a stochastically

constrained (s, S) system, has more than 100 citations.

Focusing on academic articles published between 1998 (the publication year of [19]) and

2013, the present survey aims to unveil to which extent subsequent sim-opt research has stud-

ied practical inventory problems (as opposed to toy problems), and to detect any trends that

might have arisen (e.g., popular topics, effective sim-opt methods, frequently studied inven-

tory system structures). The resulting categorizations provide a useful overview for researchers

studying complex inventory replenishment problems: (1) they provide detailed inventory char-

acteristics of the articles (e.g., inventory topic, number of echelons, lead time assumptions,

presence of stochastic constraints); (2) they outline the employed sim-opt techniques, highlight-
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ing the articles that compare or combine sim-opt methods or that employ robust simulation

optimization; and (3) they reveal the areas that require further research.

The scope of this survey is restricted to problem settings in which the key decision variables

relate to the replenishment policy (i.e., when and how much to order) of input/output inventories

at the supply chain level. Input inventories get replenished by ordering from outside suppliers

(either within the same stage or another stage in the supply chain); an output inventory, instead,

delivers goods to another player (at the same or the next stage). We thus do not consider work-

in-process inventories within a given stage.

Table 1: Details of the search method

Database Simulation Optimization Inventory Quartiles Year

Web of Science Title or Topic Title or Topic Topic Q1 or Q2 1998-2013

ScienceDirect Title, abstract or keywords Title, abstract or keywords Full text Q1 or Q2 1998-2013

INFORMS Keywords Full text Full text Q1 or Q2 1998-2013

Taylor&Francis Keywords Full text Full text Q1 or Q2 1998-2013

This survey includes 102 relevant papers that are representative of this research field. As

shown in Table 1, these articles represent the results of a search in:

• The SCI Expanded index of the Web of Science. This search resulted in 2304 articles, 92

of which were relevant.

• ScienceDirect: this search resulted in 534 articles, 63 of which were relevant; 3 of these

were not in the Web of Science results.

• INFORMS: this search resulted in 68 articles, 10 of which were relevant; 4 of these were

new comparing to the Web of Science results.

• Taylor&Francis: this search resulted in 139 articles, 9 of which were relevant; 3 of these

were new comparing to the Web of Science results.

We considered articles published in all journals that are ranked in the Q1 or

Q2 quartiles based on the impact factor, for at least one of their subject cate-

gories (according to the Journal Citation Reports (JCR) published by Thomson Reuters;

http://wokinfo.com/products tools/analytical/jcr/).

We classify the articles into two categories: domain and methodology focused. A contribution

in the domain focused category seeks as its main purpose to tackle an inventory problem (with
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the help of simulation optimization). Because they aim to solve practical inventory problems,

the domain focused articles tend to relax the stringent, unrealistic assumptions that often

occur in (analytical) inventory management papers, then solve the resulting complex problem

using simulation optimization. Methodology focused articles instead seek to develop sim-opt

techniques and usually use simple inventory problems (so-called toy problems) to illustrate the

performance of their proposed method. As shown in Table 2, most of the surveyed articles were

published in European Journal of Operational Research, International Journal of Production

Economics, or International Journal of Production Research.

Table 2: List of Journals

Journal Methodology Domain Total

focused focused

European Journal of Operational Research 6 10 16

International Journal of Production Economics 1 11 12

International Journal of Production Research 0 11 11

Computers & Operations Research 3 5 8

Computers & Industrial Engineering 3 5 8

IIE Transactions 5 3 8

Operations Research 2 3 5

INFORMS Journal on Computing 3 0 3

Industrial & Engineering Chemistry Research 0 3 3

Applied Mathematical Modelling 0 3 3

Knowledge Based Systems 0 2 2

Omega 0 2 2

Expert Systems with Applications 1 1 2

Management Science 2 0 2

International Journal of Computer Integrated Manufacturing 1 1 2

Simulation Modeling Practice and Theory 2 0 2

Production and Operations Management 0 1 1

Annals of Operations Research 1 0 1

Journal of the Operational Research Society 1 0 1

Fuzzy Optimization and Decision Making 0 1 1

Decision Support Systems 1 0 1

Transportation Research Part E: Logistics and Transportation Review 0 1 1

Applied mathematics and computation 1 0 1

Computers & Mathematics with Applications 1 0 1

Mathematical and Computer Modelling 0 1 1

Applied Soft Computing 0 1 1

Computers & Chemical Engineering 1 0 1

Engineering Optimization 1 0 1

The International Journal of Advanced Manufacturing Technology 0 1 1
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The remainder of this review is organized as follows: Section 2 gives a brief overview of sim-

ulation optimization techniques and provides the required terminology and acronyms. Section 3

categorizes the articles according to their focus. In Section 4 we categorize the articles according

to the characteristics of the inventory problem, then in Section 5 we categorize them according

to the simulation optimization method they apply (the majority of the reviewed articles employ

metaheuristics, especially genetic algorithms, or methods that combine several sim-opt tech-

niques). Finally, Section 6 highlights the conclusions and promising areas for further research.

2 Simulation optimization techniques

In this section, we give a brief overview of simulation optimization techniques. Comprehensive

surveys are available in [52, 54, 135]; more recent reviews appear in [57, 67]. For an in-depth

discussion of popular sim-opt methods we refer to the recent handbook by Fu [56]. In its most

basic form, the simulation optimization problem aims to find the values of the decision variables

that minimize a given objective function:

min
θθθ∈Φ

J(θθθ), (1)

where θθθ represents the vector of decision variables, and Φ is the constraint set, which is deter-

ministic and known. Assuming that the objective function cannot be analytically expressed, it

must be estimated through simulation, leading to a problem of the form [57, 109]:

min
θθθ∈Φ

J(θθθ) = E[Y (θθθ,ωωω)], (2)

where ωωω represents a set of pseudorandom numbers, and Y is a random response, computed

through simulation. The value of the objective function J under the design scenario specified

by θθθ is estimated by n simulation runs at this design scenario [18, 89]:

Ĵn(θθθ) =

n∑
i=1

Y (θθθ, ωi)/n. (3)

The number of simulation replications n used in the estimation is a key determinant of the

computational cost for simulation optimization techniques [54]. As Banks et al. [16] explain,

Problem (2) is difficult, because the exact value of the objective function remains unknown;

we only have an estimate. Specifically, given two solutions θθθ1 and θθθ2 and simulation estimates
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of objective functions Ĵ(θθθ1) and Ĵ(θθθ2), the fact that Ĵ(θθθ1) < Ĵ(θθθ2) does not guarantee that

J(θθθ1) < J(θθθ2) [104]. In fact, the stochastic nature of the estimate is one of the most important

issues to be taken into account when designing a simulation optimization technique [54].

The problem may also feature constraints that must be evaluated by simulation; these are

commonly referred to as stochastic constraints (deterministic constraints are reflected in the set

Φ, e.g., s < S in (s, S) inventory problems; such deterministic constraints are easier to satisfy).

Stochastic constraints frequently arise in settings in which one simulation response must be

minimized (maximized), while other responses need to be smaller or larger than a threshold

[54, 57]. Problem (2) then can be extended as follows [8, 108]:

min
θθθ∈Φ

J(θθθ) =E[Y0(θθθ,ωωω)],

subject toE[Yj(θθθ,ωωω)] ≥ aj for j = 1, ..., r − 1, (4)

where Yi (i = 0, ..., r − 1) is a random response evaluated through simulation, and aj is the

deterministic threshold for constraint j. In rare cases, the objective function may be deter-

ministic; then at least one of the constraints must be estimated through simulation to have a

simulation optimization problem (e.g., [139]). Research dedicated to solving Problem (4) is still

relatively limited [20, 54, 57, 99, 109]. Two main approaches exist. In the first, the constraints

get incorporated into the objective function, using penalty functions or Lagrange multipliers

[54, 99], which essentially removes the stochastic constraint and facilitates a solution through

a standard simulation optimization technique. Examples of this approach include [96], where

a penalty function integrates the constraints into the objective function, and the problem then

can be solved using a random search, and [99] which uses Lagrange multipliers to handle con-

straints on the fill rate in an (R, s, S) inventory problem (see also [27, 108, 149]). The second

approach instead tries to modify the simulation optimization technique in a way that enables

it to handle stochastic constraints explicitly. In the remainder of this review, we specifically

highlight the articles that use the latter approach.

The different sim-opt methods can be categorized according to whether the decision variables

are discrete or continuous; Figure 1 (adapted from [18, 70]) gives an overview. When decision

variables are discrete and the feasible set is finite and small (at most a few hundred feasible

solutions, [155]), both multiple comparisons and ranking and selection (R&S) can be used. The

main idea of multiple comparisons is to run several simulation replications at each design point
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Figure 1: Categorization of sim-opt techniques

(at each θθθ) to make inferences about the simulation response, using confidence intervals [52].

The most popular approach in multiple comparisons is the multiple comparison with the best

(MCB) [52, 60, 68, 130]. Unlike multiple comparisons, R&S can handle problems with stochastic

constraints explicitly (see [20, 139]). Although R&S has many versions, the two main approaches

are the indifference zone and subset selection [52, 130]. In the indifference zone approach, we try

to find a solution θ̃θθ with an objective value that differs from the optimal solution J(θθθ∗) by at most

a small amount δ, with a probability of at least P ∗ [52]. The main goal in the subset selection

approach is to select a subset consisting of at most m designs such that it contains the best

design with a probability of at least P ∗ [135]. Comprehensive surveys of R&S can be found in

[40, 79]. When the feasible set is very large (or even infinite), metaheuristic methods are popular

[67]: examples include genetic algorithms, tabu search, simulated annealing, and particle swarm

optimization. Although these methods are mainly used with discrete decision variables, they

also could be used in a continuous case [54] (e.g., [6]). Excellent reviews of metaheuristic

methods can be found in [5, 104]. Recently, Tsai and Fu [138] modified genetic algorithms for

handling a single stochastic constraint. Ordinal optimization is the other, probably less popular

approach for solving large discrete problems. Instead of looking for the global optimum, this

method seeks to find one of the top-n solutions by sampling k solutions and trying to select

the best among them [130]. As highlighted in [155], “The critical decision is choosing k such

that at least one of the simulated solutions is a top-n solution”. More information on ordinal
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optimization can be found in [64]. Li et al. [95] modified this method to handle stochastic

constraints.

When the decision variables are continuous, most discrete simulation optimization tech-

niques become unsuitable, because the number of feasible solutions is infinite. As shown in

Figure 1, gradient-based methods (e.g., stochastic approximation, sample path optimization)

are appropriate when the objective function is differentiable (the differentiability and conti-

nuity of the objective function of Problem (2) can be checked by coupling theory, see [77]).

Stochastic approximation is a natural adaptation of steepest-descent algorithms in determin-

istic nonlinear optimization; sample path optimization tries to approximate Problem (2) by a

deterministic optimization problem, and then exploit deterministic optimization methods [4].

Both methods require simulation to estimate the gradient of the objective function [4], such as

by using finite differences, simultaneous perturbations, likelihood ratio, or perturbation analy-

sis (especially infinitesimal perturbation analysis or IPA). Finite differences and simultaneous

perturbations require no knowledge about the simulation model and are applicable to any sim-

ulated system [59]; the advantage of the latter (known as simultaneous perturbations stochastic

approximation or SPSA, proposed by Spall [127]) is that it only needs 2 simulation runs to

estimate the gradient regardless of the dimension of the problem, making it very efficient for

high dimensional problems [67, 128]. Likelihood ratio and perturbation analysis, on the other

hand, are not always applicable but usually provide unbiased estimators for the gradient; [55]

provides a comprehensive survey. Both stochastic approximation and sample path optimization

can handle stochastic constraints: see [19] and [4, 78], respectively. More information about

stochastic approximation can be found in [3, 52], for sample path optimization refer to [78, 119].

Metamodel and metaheuristic methods, in contrast, do not require differentiability of the ob-

jective function. Metamodel-based approaches apply the optimization to a metamodel that

captures the relation between the decision variables and the simulation output [80], providing

an approximating function for J(θθθ) that is inexpensive to compute [18]. After obtaining the

metamodel, it is possible to employ techniques developed for deterministic optimization to find

the optimal solution [17]. Local metamodels (such as RSM: [18, 80]) commonly determine a

search direction for the optimization; for global metamodels, we find neural networks, kriging

models, or radial basis functions usually employed (see [18] for an interesting review of these

metamodelling techniques). Both global and local metamodels can be used to solve Problem (4):

see Angün et al. [9] for an extension of RSM (referred to as generalized RSM, or GRSM; also
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Table 3: List of sim-opt methods and their associated acronyms

Approach Type

Metaheuristics (MH) Genetic algorithms (GA)

Particle swarm optimization (PSO)

Simulated annealing (SA)

Other metaheuristic methods (MH-O)

Metamodel-based methods (MM) Neural networks (NN)

Response surface methodology (RSM)

Kriging (KR)

Other Metamodel-based methods (MM-O)

Stochastic approximations (STA)

Sample path optimization (SPO)

Multiple comparisons (MC)

Ranking and selection (R&S)

Hybrid

Other

see [81]), Kleijnen et al. [82] and Biles et al. [28] for an illustration using kriging, and Nezhad

and Mahlooji [103] for an application of neural networks.

Table 3 lists the acronyms used throughout the current article to refer to the different

simulation optimization methods. The table follows the outline provided in Figure 1, adding

two extra categories: Hybrid (i.e., methods that combine different sim-opt approaches) and

Other (approaches that do not belong to any of the other categories).

3 Categorization based on domain/methodology focus

Table 4 offers an overview of the surveyed articles, classified as either domain or methodology

focused (defined in Section 1). The asterisk (*) is used to denote articles that study settings

involving explicit stochastic constraints: most of the papers (7 of 12) that deal with stochastic

constraints belong to the methodology focused category. As shown in Table 5, the stochastic

constraint in most of these articles is related to customer service (and especially expected fill

rate). In [44, 45], the variance of the objective function appears as a stochastic constraint: these

articles belong to the set of robust sim-opt papers; see Table 12.
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Table 4: Categorization of surveyed papers according to focus

Focus References

Domain 11, 12, 13, 14, 15*, 21*, 23, 24, 29, 30, 31, 37, 38, 39, 43, 47, 48, 49*, 50, 51, 62, 63,

65, 69, 72, 75, 76, 84, 85, 87, 88, 89, 97, 100, 101, 106, 107, 112, 113, 115, 117, 120,

121, 122, 124, 126, 129, 131, 132, 133, 134, 137, 139*, 140, 141, 142, 144, 145, 146,

152*, 153, 159, 161, 162, 163, 164

Methodology 1, 2, 7*, 19*, 22, 32*, 33, 34, 35, 36, 41, 42, 44*, 45*, 61, 66, 73, 74, 82*, 83*, 90, 91, 93,

94, 98, 99, 102, 111, 116, 118, 123, 143, 151, 154, 155, 160

*Note: The entries with asterisk are stochastically constrained

As shown in Figure 2, the majority of articles published between 1998 and 2013 are domain

focused; we thus find a clear indication that simulation optimization is increasingly used to

tackle practical inventory problems. The shift from methodology to domain focused articles is

most evident as from 2004. The figure also illustrates that the popularity of sim-opt in inventory

management research has increased significantly since 2004.

Table 5: Type of constraints in stochastically constrained articles

Type References

Customer service expected fill rate 7, 15, 19, 49, 82, 83

expected response time 139

other 21

Variance of objective function 44, 45

Expected holding cost 32

Expected inventory level 152

4 Categorization based on inventory problem characteristics

In this section, we categorize the surveyed articles according to the characteristics of the inven-

tory problem studied. We adopt the following criteria [148] :

• Echelons: indicates whether the inventory problem is Single, Dual, or Multi-echelon. A

supply chain stage only counts as an echelon when replenishment decisions (e.g., reorder

point, order-up-to level) are required for players at that specific stage; when no such
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Figure 2: Number of domain and methodology focused articles published in each year

decisions are required, the stage does not count as an echelon.

• Items: indicates a Single- or Multi -item problem.

• Horizon: the planing horizon of the problem, either single period, finite, infinite, or

irrelevant (IR).

• Lead time: the assumptions about the replenishment lead time at each echelon. Echelons

are separated by arrows: for a two-echelon system, we have lead time upstream echelon

→ lead time downstream echelon. For instance the notation DT→DT denotes that both

echelons have deterministic, while ST→ST implies that both have stochastic lead times.

Other notations are irrelevant (IR), negligible (NG), or not specified (NS ). For multi-

echelon systems, the notation “→ · · · ” states that the lead time is the same for all echelons,

for instance the notation ST → · · ·ST denotes a system where all echelons have stochastic

lead times.

• Policy: the replenishment policy used at any given echelon [148]. Echelons are separated

by arrows: for two echelon systems we again have policy of upstream echelon → policy

of downstream echelon. For multi-echelon systems, the notation “→ · · · ” states that the

policy is the same for all echelons:

– NV : traditional single-period newsvendor policy, with optimal order quantity deter-
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mined before the start of the sales period.

– (R, S): the inventory position is checked every R periods, after which an order brings

the inventory position back to the order-up-to level S.

– (R, s, S): the inventory position is checked every R periods; only when it is below a

reorder point s, an order is sent to bring the inventory position back to the order-

up-to level S.

– (r, Q): the inventory position is reviewed continuously; as soon as it falls below the

reorder point r, an order of size Q is generated.

– (s, nQ): the inventory position is reviewed continuously; as soon as it drops below

the reorder point s, an order is placed equal to the smallest multiple of Q that raises

the inventory position above s.

– (s, S): same as (R, s, S), but the inventory position is reviewed continuously.

– (S-1, S): The inventory position is reviewed continuously, and each customer order

triggers a replenishment order of one unit.

– other : any replenishment policy that does not fit into one of these policies.

– NS : not specified.

For instance (R, S)→(R, S) denotes that both echelons use the (R, S) inventory policy

and (s, S)→ · · · (s, S) indicates a multi-echelon system where all echelons employ the

(s, S) policy.

For the domain focused articles, we distinguish the following main inventory topics (each

having at least three reviewed articles): spare parts inventory management, transshipment

problem, substitution problems, inventory centralization benefits, and imperfect quality items

(where the percentage of defective items in each replenishment lot is random and inspection

is needed). Table 6 presents the categorization of the domain focused articles that belong to

these main topics. The remaining articles are categorized in Table 7; these focus on a multitude

of other topics (e.g., manufacturing and remanufacturing, assemble to order systems). Finally,

Table 8 categorizes the methodology focused contributions. For ease of reference, the tables

also show the sim-opt approach used (as outlined in Table 3).
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Table 6: Categorization of domain focused articles (main topics) according to the inventory
problem characteristics

Topic Echelons Items Horizon Lead time Policy Sim-opt References

Spare parts Single Single Infinite DT (R,s,S) MH 144

ST (r,Q) MM 24

(s,S) other 121

Multi Finite DT (s,S) MH 100

Infinite ST (S-1,S) Hybrid 139*

(s,S) MH 69

Dual Single Infinite ST→ST (S-1,S)→(S-1,S) MH 141

Transshipment Single Single Finite DT (R,S) Hybrid 162

(R,s,S) MH 65

Infinite NG (R,S) Hybrid 63, 106, 107

DT (R,s,S) Hybrid 161

ST (R,s,S) MH 43

Dual Single Finite DT→DT (R,s,S)→(R,s,S) Hybrid 137

Infinite DT→DT (R,S)→(R,S) MM 23

ST→ST (S-1,S)→(S-1,S) MH 141

Centralization Single Multi Finite DT other MH 37

Dual Single Finite DT→DT (R,S)→(R,S) Hybrid 49*

(R,s,S)→(R,s,S) MH 50

Multi Single Infinite DT→ · · ·DT (R,S)→ · · · (R,S) MH 101

ST→ · · · ST (r,Q)→ · · · (r,Q) MH 84

Imperfect quality Single Single Infinite NG (r,Q) MH 146

MM 31

other 145

Multi Infinite DT other MH 126

Substitution Single Multi Single IR NV MH 140

STA 117

Hybrid 21*

*Note: The entries with asterisk are stochastically constrained.

Table 6 reveals clear distinctions regarding the inventory policies studied. While spare parts

problems, transshipment problems and centralization problems are almost exclusively studied

using order-up-to policies, imperfect quality problems tend to assume a fixed order quantity, and

substitution problems are limited to (single-period) newsvendor settings. Table 9 provides fur-

ther details on the transshipment papers; following [110], we include the type of transshipment,

the pooling policy, the number of depots or retailers and the presence of non-identical depots

(i.e., depots/retailers that differ in terms of cost parameters) , fixed ordering cost, and/or a
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transshipment lead time. Within an emergency transshipment approach, a firm that confronts a

stock-out can ask another firm at the same echelon to ship inventory; transshipment thus occurs

after demand is observed but before it is satisfied [106]. In contrast, a preventive transshipment

redistributes stock before the demand is realized, to decrease the chances of a stock-out [137].

In the complete pooling policy, a stocking location can ship its entire on-hand inventory to

another location; in the partial policy, stocking locations “share only a certain amount of their

inventory for transshipment” [106].

As is evident from Table 9, most surveyed transshipment articles consider emergency trans-

shipment, combined with a complete pooling policy. Herer et al. [63] were among the first to

study transshipment problems with an arbitrary number of retailers that differ in terms of the

cost parameters (a setting that is not analytically tractable [106]). Their problem has been ex-

tended in several ways by subsequent authors: Özdemir et al. [106] added limited transportation

capacity between retailers and showed that the sim-opt method of [63] can be easily modified

for this setting, Hochmuth and Köchel [65] studied more flexible and realistic transshipment

policies, Yücesan and Gong [162] relaxed the assumption of a negligible replenishment lead

time, and Özdemir et al. [107] took supplier capacity into account (an extension that compli-

cates the sample path optimization of [63]). Although Tlili et al. [137] assume only 2 identical

retailers, the limited supplier capacity and presence of replenishment lead time make their prob-

lem difficult. Finally, in preventive transshipment articles, Young Yun et al. [161] optimize the

replenishment policies of a single depot while Dang et al. [43] extend this problem to N depots.

Likewise, Table 10 details the characteristics of the articles that consider spare parts inven-

tory management. As mentioned by Lynch et al. [100], spare parts inventory management is a

special case of general inventory management, typically characterized by (1) very high stockout

costs (due to the high cost associated with machine downtime), (2) erratic and low volume de-

mand, and (3) considerable holding costs, because spare parts are usually quite expensive. The

availability of spare parts is a necessary requirement for efficient and effective maintenance, and

accordingly, spare parts inventory management has received considerable research attention.

Maintenance can be corrective or preventive: Corrective maintenance restores the machine to

a specified condition in case of a failure [100], whereas preventive maintenance refers to actions

taken before the failure to maintain an operating machine in a desired condition [144]. Preven-

tive maintenance can be time-based (also known as scheduled maintenance), with maintenance

done at certain intervals, irrespective of the system condition, or condition-based, such that
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Table 7: Categorization of domain focused articles (other topics), according to the inventory
problem characteristics

Echelons Items Horizon Lead time Policy Sim-opt References

Single Single Single NG NV MC 14

Finite NG (R,S) MH 38

other MM & Hybrid 152*

DT (R,S) MH 159, 164

(R,s,S) MM & Hybrid 124

(r,Q) MH 88

other SPO 51

ST other STA 30

Infinite NG (r,Q) MH 97

DT (R,S) other 142

(r,Q) MH 39

MH & Hybrid 76

(s,S) Hybrid 47

ST (R,S) other 153

(S-1,S) MH 89

MC 120

other Hybrid 163

Finite/Infinite NG (R,S) STA 75

Multi Single IR NV MH 131

Finite DT (R,s,S) MM 122

(r,Q) MH 133

Hybrid 15*

Infinite NG (R,S) MH 132

DT (R,S) MH 62

STA 11

(r,Q) MH 72

(s,nQ)/(s,S) MH 85

ST (r,Q) MH 134

(S-1,S) MM 13

other other 87

Dual Single Infinite DT→DT/ST (S-1,S)→(S-1,S) Hybrid 12

ST→ST (r,Q)→(r,Q) other 29

Multi Finite DT→DT (R,S)/other→(R,S)/other MH 129

Infinite ST→ST (r,Q)/(s,S)→(r,Q)/(s,S) MH 48

Multi Single Finite NG→ · · ·NG other→ · · · other other 115

Multi Infinite DT→ · · ·DT (s,S)→ · · · (s,S) MC 112, 113

*Note: The entries with asterisk are stochastically constrained.
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Table 8: Categorization of methodology focused articles, according to the inventory problem
characteristics

Topic Echelons Items Horizon Lead time Policy Sim-opt References

Substitution Single Multi Single IR NV MH 155

Other Single Single IR IR other Hybrid 116

Finite NG (R,s,S) STA 99

R&S 34, 41, 42

ST R&S 33

Infinite NG (R,s,S) MH & Hybrid 35, 36

MM 154

STA & Hybrid 73, 74

Hybrid 1, 111

(r,Q) MM 44*, 45*

DT (r,Q) MH 98

ST (R,s,S) MH 2

MM 7*, 32*

MM & Hybrid 82*

STA 19*

(r,Q) MH 90

MM 61

(s,S) MH 22

MM &
83*

STA & Hybrid

Other STA 102

NG/ST (r,Q) other 118

Multi Single IR NV SPO 93

Infinite DT (R,s,S) MH 151

ST (S-1,S) other 94

NS NS Hybrid 160

Single/Multi Infinite NG/ST (R,s,S)/(S-1,S) MH & Hybrid 66

Dual Single Infinite DT→DT other→other MH 123

Multi Single Infinite DT→ (S-1,S)→ MH 91

· · ·DT · · · (S-1,S)

Multi Infinite ST→ (S-1,S)→ MM & STA 143

· · · ST · · · (S-1,S)

*Note: The entries with asterisk are stochastically constrained.
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Table 9: Details of transshipment papers

Type Pooling Number of

depots

Non-identical

depots

Transshipment

lead time

Ordering cost References

Preventive
Partial N X X X 43

complete 2 X X X 161

Emergency

Partial

N 23

N X 106

N X X X 65

Complete

N 23

N X 63, 107, 162

2 X 137

N X X X 65, 141

maintenance actions reflect the condition of the machine (which implies condition monitoring

is necessary) [71]. Although the combination of spare parts and transshipment problems is rel-

evant (given the high cost associated with spare parts stock-out, the ability to transship spare

parts from other locations with short lead times often is highly valuable), only Van Utterbeeck

et al. [141] study this problem. As shown in Table 10, condition-based preventive maintenance

has been studied relatively rarely.

Table 10: Details of spare parts inventory management articles

Maintenance Repairable items Multi-item References

Corrective

121, 141

X 24, 144

X X 69, 100, 139*

Time-based preventive
121

X X 69, 100

Condition-based preventive X 144

*Note: The entries with asterisk are stochastically constrained.

Tables 6 and 7 reveal that, surprisingly, the inventory structures studied in domain focused

papers in general remain relatively simple, with most of these articles assuming a single echelon

and deterministic (or even negligible) lead times. In terms of optimization methods, metaheuris-

tic, metamodel-based, and hybrid methods clearly dominate in domain focused papers (with

stochastically constrained problems being studied almost exclusively by hybrid methods).
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Table 8 reveals the (limited) use of stochastic approximation and sample path optimization

in the methodology focused papers; overall, metaheuristics, metamodelling, and hybrid methods

are also most prevalent here. In these papers, metamodelling techniques are most often used to

solve stochastically constrained settings. Some of the methodology focused articles have been

particularly influential: e.g., [19], [66] and [42] have been cited in more than 100 papers. Many

papers in Table 8 are related, either because they build on similar test problems or they extend

on similar approaches. Chick and Inoue [41] extend the influential R&S approach of Chick and

Inoue [42] for dependent simulation outputs (in the presence of common random numbers).

Several articles (e.g., [7, 22, 82, 83]) use an inventory setting similar to the (s, S) setting of [19].

Other popular test problems are the (R, s, S) problem of Fu and Healy [58] (see [35, 36, 73, 74,

154]; except [154], all these articles compare their sim-opt method with the hybrid method of

[58] which is a combination of sample path optimization and stochastic approximation) and the

(R, s, S) problem presented in Koenig and Law [86] (see [34, 41, 42, 66, 111]). Xu et al. [155]

modify the well-known sim-opt method of Hong and Nelson [66] (known as COMPASS) and

show that their technique is more efficient for high dimensional problems. Lejeune and Margot

[94] use the assemble-to-order problem of Hong and Nelson [66] to test their sim-opt technique.

Finally, we noticed a disconnect between domain and methodology focused articles: in spite

of the powerful and successful sim-opt methods developed in articles such as [19, 66], most of

the domain focused contributions rely on their own method for solving the inventory problem at

hand (e.g., Herer et al. [63] combine sample path optimization and stochastic approximation to

solve their transshipment problem and use this method in two subsequent articles, [106, 162]).

5 Categorization based on sim-opt method

Table 11 categorizes the articles according to the simulation optimization method, and whether

the replenishment decision variables are discrete (DI) versus continuous (CO). Articles that

compare different sim-opt methods [35, 36, 66, 73, 74, 76, 82, 83, 85, 90, 91, 124, 131, 132, 133,

134, 143, 146, 152, 159] appear at multiple instances in the table. Those that combine different

sim-opt techniques are hybrid methods. Some articles, such as [152] and [124] both compare

and combine sim-opt methods.

Table 11 reveals that metaheuristic methods are by far the most popular simulation opti-

mization technique, followed by hybrid approaches. Genetic algorithms are the most widely
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employed metaheuristic method. As Andradóttir [5] explains, genetic algorithms (and evolu-

tionary algorithms in general) are “readily adaptable to simulation optimization” because of

their ability to handle the simulation noise. Genetic algorithms also appear frequently in the

comparison of different sim-opt methods (7 out of 20 papers: [90, 91, 131, 132, 133, 146, 159]),

which underscores their importance. Moreover, they have been employed to address almost

all of the inventory topics in Table 6. NSGA-II, which is a variant of genetic algorithms for

multi-objective problems, appears in [48, 123]. Particle swarm optimization shows up as an-

other popular evolutionary method. Due to the high variety of metaheuristic methods, the

MH-O category contains many entries. As evident from Table 11, the commercial optimizer

OPTQUEST (http://www.opttek.com/OptQuest), which combines tabu search, scatter search,

and neural networks (see [92]) is relatively popular among the hybrid techniques. OPTQUEST

is the only commercial optimizer encountered in this survey. Unlike the other hybrid methods,

the exact details of the OPTQUEST algorithm have not been published [83]. Nevertheless, its

seamless integration into many popular simulation software packages (e.g., ARENA, Simul8,

and SIMIO), along with its user-friendly interface and powerful capabilities (e.g., to handle

stochastic constraints and/or multi-objective optimization), make OPTQUEST a popular tool

not only in domain-focused articles, but also in methodology-focused articles (see e.g., [82, 83])

where it is commonly used as a benchmark tool.

Table 11 shows that metamodel-based methods are also relatively common, in particular

in methodology focused contributions. Furthermore, RSM is the most popular metamodel-

based method, adopted in several domain focused papers; in contrast, kriging only has arisen in

methodology focused papers thus far. Some authors have recently extended deterministic kriging

to explicitly account for the noise in the outcomes of stochastic simulation (e.g., [10, 157]); this

extension has been employed only once in [116].

Gradient-based approaches have been used in several articles: stochastic approximation is

mainly employed in methodology focused and older contributions (8 out of 11 articles that use

stochastic approximation are older than 2007) while sample path optimization has been used

mostly in domain focused papers, though usually as a component in hybrid methods. Ranking

and Selection mostly appears as a component in hybrid methods, and it is almost exclusively

employed by methodology focused articles. Multiple comparisons are rare; ordinal optimization

has not been employed at all. As is evident from Table 11, continuous sim-opt techniques

have been employed at times for the discrete case, whether by assuming the decision variables
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are continuous and rounding the final solution to get integer values (e.g., [13, 31, 85]) or by

modifying the continuous simulation optimization technique (e.g., [82, 99, 139]).

Finally, Table 11 confirms that stochastically constrained problems are often solved using

metamodel-based methods or hybrid techniques (in particular OPTQUEST). Kleijnen et al.

[82], Kleijnen and Wan [83], and Wong et al. [152] compare the performance of several sim-opt

methods for solving such problems.

A limited number of contributions (see Table 12) employed robust simulation optimization,

implying that they seek solutions that are robust to the uncertainties inherent in stochastic

simulation [46]. Although different types of uncertainties may exist (see [26, 46]), almost all

of the articles in Table 12 focus on parameter uncertainty, implying that the decision maker is

unsure about the main parameters that influence the inventory system (e.g., the demand rate).

The only exception is Xu and Albin [154], which consider the uncertainty in the estimated

coefficients of the fitted metamodel.

In general, robust simulation optimization techniques rely on two main approaches: we refer

to the first approach as the worst case approach and the second approach is known as mean-

variance trade-off approach. In a minimization problem, the worst-case approach first tries to

find the value of the stochastic parameters that corresponds to the worst performance (i.e., it

maximizes the performance with respect to the stochastic parameters). Then it minimizes the

obtained maximum in terms of the decision variables (for a novel solution method, see [25]).

The mean-variance trade-off approach accounts for the variance of the objective function when

minimizing the mean in Equation (2) [46]. For example, it might entail combining the mean and

variance of the performance measure into a single measure (which then can be optimized to find

robust solutions). An example of this approach is the Taguchi method, which combines the mean

and variance of the performance measure into the signal to noise ratio (SNR) [46]. Alternatively,

the mean and variance of the simulation outcome can be considered separately, which is referred

to as the dual response surface approach. Usually, the mean would be minimized, with the

requirement that the variance must be below some threshold (e.g., [45]), or else both the mean

and the variance are included in the objective of the minimization problem (e.g., [102]).

Table 12 reveals that though the dual response surface approach has received more attention

than other techniques, it has been employed only in methodology focused papers. Miranda and

del Castillo [102] extend the SPSA of [127] to obtain a robust solution. Dellino et al. [44] use

RSM to minimize the mean of a cost function, while also requiring its variance to be smaller
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Table 11: Categorization of reviewed articles, based on the simulation optimization method and
type of decision variables

Method Type Decision Methodology focused Domain focused

variables

MH

GA
DI 91, 123 43, 48, 69, 72, 84, 89, 100, 131, 132, 133, 144

(41)

CO 90 65, 97, 126, 129, 146, 159

PSO
DI 85, 101, 131, 132, 133, 134

CO 146

SA DI 2, 66, 91, 151 131

MH-O
DI 22, 66, 91, 98, 155 37, 50, 62, 85, 88, 131, 133, 134, 141

CO 35, 36, 90 38, 39, 76, 140, 159, 164

MM

NN
DI 23

CO 32*

(16)

RSM
DI 31

CO 7*, 44*, 61, 83*, 154 24, 122, 124, 152*

KR
DI 82*

CO 45*

MM-O
DI 13

CO 32*, 143

STA (11)
DI 99

CO 19*, 73, 74, 83*, 102, 143 11, 30, 75, 117

SPO (2) CO 93 51

R&S (4) DI 33, 34, 41, 42

MC (4) DI 14, 112, 113, 120

Other (9)
DI 94 29, 121

CO 118 87, 115, 142, 145, 153

Hybrid

OPTQUEST
DI 66, 82* 12, 15*, 161, 163

(27)

CO 83* 21*, 76, 137

SPO

MH-O DI 49*

MH-O CO 107

STA CO 35, 36, 73, 74 63, 106, 162

R&S DI 139*

R&S

SA+MH-O DI 47

SA DI 1

NP DI 160

KR CO 116

MH-O DI 111

NN RSM+MH-O CO 152*

MM-O MH-O CO 124

*Note: Stochastically constrained papers are denoted by asterisk.
The numbers in the first column reflect the number of articles that applied the corresponding method.
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Table 12: Articles that employ robust simulation optimization

Approach Methodology focused Domain focused

Worst case 97

Taguchi 122, 124

Dual Response 44*, 45*, 102

Other 7*, 154 38

*Note: Entries with asterisk have stochastic constraints.

than a threshold; therefore, their work also belongs to the set of stochastically constrained

articles. Dellino et al. [45] take a similar approach but instead of RSM, they use kriging. These

two articles have two important limitations: (1) they do not take the randomness of stochastic

simulation into account but just focus on parameter uncertainty in deterministic simulation; a

limitation that is relaxed in [7], and (2) they use variance as a measure of robustness, which is

criticized by several authors (e.g., [7, 158]). Angün [7] also extends Dellino et al. [44] by using

average value at risk instead of variance and incorporating this measure into the objective

function. Cheng et al. [38] take a similar approach but they use the expected downside risk as a

robustness measure. Finally, despite the limitations of the Taguchi method (see [46]), Table 12

reveals that this method appears in two recent domain focused articles. It is worth mentioning

that most of the robust contributions (6 out of 9) employ metamodel-based approaches.

6 Conclusions and opportunities for research

In this paper, we have reviewed and categorized the articles published between 1998 and 2013

that used simulation optimization to solve inventory replenishment problems. We have shown

that this approach has become increasingly popular in domain focused articles; in different fields

within inventory management (such as transshipment and spare parts inventory management),

researchers have started using simulation optimization to solve practical problems that, without

simplifying assumptions, are far too complex for analytical techniques. In spite of this, we found

(somewhat surprisingly) that most of the solved inventory problems continue to be based on

relatively simple supply chain structures consisting of a single echelon, often with deterministic

(or even negligible) lead times. Since multi-echelon problems with stochastic lead times are

common in practice, this gap indicates an attractive area for further research.

Metaheuristic methods and especially genetic algorithms are the most popular simulation
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optimization methods. Genetic algorithms are perhaps the most mature metaheuristic methods

for simulation optimization in inventory management; they have been applied to different types

of inventory management problems and often are compared with other sim-opt methods in

terms of their performance. Metamodel-based methods appear less popular than metaheuristic

or hybrid methods though, such that they appear mainly in methodology focused texts. Yet they

also offer powerful means for solving robust sim-opt and stochastically constrained inventory

problems. Applying metamodel-based methods (especially kriging, as stochastic kriging opens

new opportunities to account for simulation noise) to practical inventory problems can be a

promising area for research.

Stochastically constrained problems also remain relatively unstudied, in particular in do-

main focused articles. A final promising area for research is robust simulation optimization.

Realizing the limitations of the Taguchi method, new robust sim-opt techniques have been

recently developed, but most of them have been tested only in theoretical settings thus far.

Applying these new techniques to more practical problems, and comparing their performance,

is an interesting area for additional research.
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[72] Kämpf, M. and Köchel, P. (2006). Simulation-based sequencing and lot size optimisation for a production-and-

inventory system with multiple items. International Journal of Production Economics, 104:191–200.

[73] Kao, C. and Chen, S.-P. (2006). A stochastic quasi-newton method for simulation response optimization. European

Journal of Operational Research, 173:30–46.

[74] Kao, C., Li, C.-C., and Chen, S.-P. (2003). Simulation response optimization via direct conjugate direction method.

Computers & Operations Research, 30:541–552.
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