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Abstract: Aquatic nitrogen pollution is one of the most urgent environmental issues requiring
prevention and mitigation. Large quantities of high-ammonium wastewaters are generated by several
industrial sectors, such as fertilizer and anaerobic-digestion plants. Nitrification of these wastewaters
is commonly carried out, either to remove nitrogen or produce liquid fertilizers. Standard control
methodologies for the efficient nitrification of high-ammonium wastewaters to produce liquid
fertilizers have not yet been established and are still within their early stages of development.
In this paper, novel pH-based control algorithms are presented that maintain operation at the
microbial maximum reaction rate (υmax) in batch and continuous reactors. Complete conversion of
ammonium to nitrate was achieved in a batch setup, and a conversion of 93% (±1%) was achieved in
a continuously-stirred-tank-reactor. The unparalleled performance and affordability of the control
schemes proposed offer a steppingstone to the future of sustainable fertilizer production.

Keywords: ammonium; nitrate; proton; hydroponic; wastewater

1. Introduction

The explosion of the world-population in the 20th century was made possible by
the advent of the Haber–Bosch process. For the first time, nitrogen fertilizer (ammonia)
could be produced at relatively low cost, allowing a several-fold increase in agricultural
food production [1]. However, this high input of synthetic nitrogen has caused exten-
sive environmental damage. Nitrogen is the limiting nutrient in most ecosystems and
excess nitrogen results in far-reaching consequences. These include eutrophication, air
pollution, biodiversity loss, climate change, and stratospheric ozone depletion [2]. Nu-
merous investigations and regulations have since aimed to reduce this hazardous use
of nitrogen [3–7].

One way to reduce the influx of synthetic nitrogen is to identify points along the
production line at which nitrogen can be recycled. One such recovery point is ammonium
rich wastewaters. Ammonium is a common pollutant found in both domestic and industrial
wastewaters [8]. Plants most-prefer ammonium as nitrogen source and thus these wastewaters
have been proposed as fertilizers. Most commonly, the wastewater from the anaerobic-
digestion process has been proposed as a nutrient solution for hydroponic systems [9–14].

Hydroponics will likely play a key role in the future of sustainable food production
given their pollution control capabilities [15,16]. Unlike conventional agriculture, however,
high ammonium applications can be detrimental to hydroponic crops [11,13,17,18]. A large
fraction of the ammonium must therefore be converted to nitrate, which is the nitrogen
source traditionally supplied to hydroponic crops [19]. This can readily be accomplished
via microbial nitrification, yielding a nitrate rich nutrient solution [20].

The use of these wastewaters as fertilizers in hydroponic systems is a relatively
new research field [21]. Large scale processes for the nitrification of high-ammonium
wastewaters for fertilizer production have not yet been adequately documented and
standard control methodologies are yet to be established. The aim of this study was to
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develop a control scheme for the efficient nitrification of high-ammonia wastewaters. The
objectives were: (1) affordability, (2) operation at the microbial maximum nitrification
rate (υmax), (3) high conversion of ammonia to nitrate, and (4) controller adaptability (to
accommodate variations in microbial activity).

The conversion of ammonia to nitrate involves two main microbial processes [22].
The first is ammonia oxidation to form nitrite, which is carried out by ammonia oxidizing
bacteria. The second step is performed by a complementary microbial population which
converts the nitrite to nitrate. The second step is usually much faster (but depends on
variables such as temperature and pH), and therefore nitrite is typically present in minute
quantities [22]. The overall reaction is highly acidic and hydroxide dosing (or other alkaline
species) is required to maintain the pH at habitable conditions for the nitrifying bacteria
(unless ammonia concentrations are relatively low). Approximately 1 mol of protons are
released per mol of ammonia oxidized to nitrite and the conversion of nitrite to nitrate
is pH neutral [23]. Therefore, the pH characteristics of the system can be used to infer
nitrification activity. Since pH control systems are relatively cheap, affordable nitrification
control can be achieved through innovative use of this variable. The successful use of
such a pH-based control strategy would satisfy the objective of affordability (objective 1,
as mentioned above). As such, pH-based control systems were designed to satisfy the
remaining objectives, which are to maximize nitrification rates and achieve high conversion
under adaptable control.

2. Materials and Methods
2.1. Experiments

In each experimental run, three independent nitrification reactors were operated in
parallel. Thus, each run represented a triplicate. Each system had a liquid capacity of 1.8 L
and was packed with biological filter media (Evolution Aqua Kaldnes® K1 Media). Each
system was equipped with two peristaltic dosing pumps and two dosing reservoirs of 0.2 M
(NH4)2SO4 (representing the wastewater) and 0.3 M KOH. A water addition and pump and
a drain pump were incorporated to each system to allow a continuous liquid throughput
(CSTR configuration). The nitrifying bacteria were cultivated for a period of four months
(prior to the first experiment) after inoculation with an activated sample (DoPhin® “14 in
1 nitrifying bacteria”). Air sparging at 240 L h−1, using air pumps (Regent® 9500), was
employed and the solution was replaced regularly. The nutrient solution used to cultivate
the nitrifying bacteria was composed of 6 mM (NH4)2SO4, 2 mM MgSO4·7H2O, 1 mM
KH2PO4, 6 mg L−1 NaOH, 7.5 mg L−1 Fe-EDTA, 0.05 mg L−1 Cu-EDTA, 2.9 mg L−1 H3BO3,
1.8 mg L−1 MnCl2·4H2O, 0.2 mg L−1 ZnSO4·7H2O, and 0.1 mg L−1 Na2MoO4·2H2O. For
each subsequent experiment, the same nutrient solution was used except for (NH4)2SO4,
which varied depending on the experimental objectives. All chemicals/nutrients were
purchased from Merck™ (BioXtra©, ≥99.0%).

Run 1 was performed to establish the relationship between ammonium oxidation and
hydroxide dosing required for pH homeostasis. The same nutrient solution (as above) was
used but with zero (NH4)2SO4 charged initially. Instead, ammonium was dosed from the
0.2 M (NH4)2SO4 reservoir at a rate of 0.56 mmol L−1 day−1 (1 mmol day–1 per reactor
volume of 1.8 L). The pH was controlled autonomously (at 6.5) by dosing hydroxide from
the 0.3 M KOH reservoir via proportional-integral control (from online pH measurements
taken every 30 min). Run 2 was the same as run 1 but instead, ammonium was dosed at a
rate of 3.92 mmol L−1 day−1 (7 times higher).

Run 3 involved nitrification control in a batch setup with a proposed control strategy
derived from the correlations obtained in runs 1 and 2 (discussed in Section 3). The same
nutrient solution was charged with 4 mM (NH4)2SO4 initially. No additional (NH4)2SO4
was dosed and the pH was controlled in the same fashion as in runs 1 and 2 (using
Proportional-Integral control).

Run 4 employed a different control strategy in a fed-batch system. The same nutrient
solution was supplied with zero (NH4)2SO4 initially. Ammonium was dosed at a calculated
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value according to the proposed control strategy (discussed in Section 3). The pH was also
controlled autonomously via PI control. Run 5 was near-identical to run 4, but instead, a
constant throughput of deionised water was employed at a dilution rate of 1 day−1 (thus,
operation in a continuously-stirred-tank-reactor (CSTR) instead of a fed-batch).

2.2. Apparatus and Instruments

An Arduino Mega 2560™ was employed as the controller platform which controlled
all three systems simultaneously. HAOSHI™ pH probes (“pH meter Pro”) were used
for online pH measurements. Kamoer© peristaltic pumps (“Precision Peristaltic Pump
+ Intelligent Stepper Controller”) were used for dosing (NH4)2SO4 and KOH. DFrobot™
peristaltic pumps (“digital peristaltic pump”) were used for automated water addition and
solution removal. The main recirculation pumps were purchased from Xylem™ (Flojet
Diaphragm Electric Operated Positive Displacement Pump, 3.8 L min−1, 2.5 bar, 12 V DC).
Four Gravity™ analog electrical conductivity sensor V2 were used for online EC measure-
ments. Nitrate, nitrite, and ammonium analysis was done using Merck™ photometric cell
tests (nitrate test: DMP 0.10–25.0 mg/l NO3-N, nitrite test: 0.002–1.00 mg/l NO2-N, and
ammonium test: 2.0–150 mg/l NH4-N Spectroquant®). The absorbance was measured in
a spectrophotometer (Agilent Technologies™, Cary 60 UV-Vis, G6860A) at 340, 525, and
690 nm for nitrate, nitrite, and ammonium, respectively.

3. Results and Discussion
3.1. Determining the pH Characteristics of Nitrification

Since lower operating pH values are employed in hydroponic systems (around pH of
6), nitrification will also be conducted at lower pH levels (6.5) to yield a fertilizer product
that can be applied directly. At lower pH levels, ammonia will predominantly exist in
its protonated form, ammonium. As such, the reaction will henceforth be modelled as
if ammonium is oxidized [24]. Therefore, effectively 2 mols of protons are released per
mol of ammonium oxidized. Thus, if the pH is tightly controlled with hydroxide dosing,
the hydroxide dosing rate will be two times the ammonium oxidation rate, as shown in
Equations (1) and (2).

NH+
4 → NO−3 + 2H+ (1)

Therefore, if the pH is controlled:

DOH− = 2 rNH+
4

(2)

where rNH+
4

is the ammonium oxidation rate by the bacteria (molar) and DOH− is the
hydroxide dosing rate required for pH homeostasis.

This assumption was investigated in runs 1 and 2. A fed-batch setup was employed
in which ammonium ((NH4)2SO4) was fed at a constant rate and the pH was controlled
at 6.5 via feedback-PI-control. In run 1, ammonium was fed at 0.56 mmol-N L–1 day–1,
which was approximately 10 times less than the maximum ammonium oxidation rate of
the bacteria (estimated from trial runs). Run 2 was the same as run 1 except for feeding
ammonium 7 times faster (3.92 mmol-N L–1 day–1). The results from runs 1 and 2 are
reported in Figure 1. The measured nitrate concentrations and the cumulative amounts
of hydroxide dosed (resulting from the pH controller) are plotted against the cumulative
amounts of ammonium dosed (per litre solution). The ratio of the nitrate concentrations to
the cumulative amounts of ammonium dosed equals 1, as shown in Figure 1. Therefore,
all the ammonium dosed was converted to nitrate. The ratio of hydroxide to ammonium
dosed is equal to 2 and 2.17 for runs 1 and 2, respectively. The ratio for run 2 is higher than
the theoretical ratio of 2 (Equations (1) and (2)). This may be due to experimental error or
additional acidic effects produced by the bacteria.
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Figure 1. Results from runs 1 and 2 in which ammonium was dosed in a fed-batch system at 0.56 and 3.92 mmol-N L–1 day–1,
respectively. The pH was controlled at 6.5 via feedback-PI-control (independent of ammonium dosing). Shown are the
measured nitrate concentrations in solution, and the cumulative amounts of hydroxide dosed to control the pH.

3.2. Batch Systems

Nitrification can be carried out in various reactor types. The choice depends on process
specification. As such, control algorithms were designed for three common reactor types,
namely batch, fed-batch, and CSTR. Batch systems have the advantage of operating at
υmax (objective 2) since the substrate (ammonium) is consistently available in the bulk
solution. Moreover, complete conversion can be achieved (objective 3). To maintain high
production rates, draining and refilling of the batch system is required soon after complete
consumption of ammonium. This is also necessary to maintain the health (maintenance
energy) of the microbial community. If the reactor is devoid of ammonium for an extended
period, high death rates are to be expected. Therefore, control systems able to detect
ammonium extinction and quickly drain-and-replace the medium (or add additional
ammonium) are central to batch nitrification units.

Since the hydroxide dosing rates are an inferential measurement of the ammonium
oxidation rates, ammonium extinction will be accompanied by a cessation in hydroxide dos-
ing. This provides an online indication of ammonium extinction and enables the controller
to take immediate action. This is similar to an approach used in wastewater treatment
where a reduction in the rate of change of pH is used to infer ammonium extinction [25–27].
In these systems, however, the pH is not controlled at a set point and oscillates due to
alternating nitrification/denitrification processes. Relatively low ammonium concentra-
tions are dealt with (a few mM) and hence changes in pH are sufficiently small as not to
affect microbial performance. The target wastewaters (such as digestate), however, contain
high ammonium concentrations which would result in critically low pH levels well before
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complete ammonium conversion. Therefore, the pH must be controlled to achieve efficient
nitrification. The pH thus remains constant, and the hydroxide dosing rates (resulting
from the pH control system) must provide information regarding the ammonium oxidation
kinetics instead of changes in the measured pH values.

This control hypothesis was investigated in run 3. Each of the three systems was
charged with 4 mM ammonium and the pH was controlled at 6.5 via feedback-PI-control.
The control algorithm is given in the Sequential-Function-Chart shown in Figure 2. The
degree of reduction in the hydroxide dosing rate (indication of ammonium extinction) was
determined by comparing the current dosing rate (average over the past 3 h to reduce noise)
to the maximum dosing rate (maximum of all past dosing rates), as shown in Figure 2.
Ammonium extinction was inferred from a 50% or larger reduction in the current dosing
rate compared to the maximum dosing rate, which upon detection, actuated additional
ammonium dosing.
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Figure 2. Sequential-Function-Chart of the batch control algorithm designed to infer ammonium
extinction from a 50% reduction in the hydroxide dosing rate. The pH controller is a feedback-PI-
controller. More specifically, hydroxide is constantly dosed to the system but the rate at which it
is dosed is adjusted (increased/decreased) by the pH controller every 30 min. This adjustment is
based on the error signal received by the controller (difference between the pH reading and the
setpoint pH). Note that DOH− ,max is the maximum DOH− value since the start of the run. To reduce
experimental noise, a six-point running average of the dosing rates were used (average over 3 h) in
the two “if” statements shown in the diamond boxes.

The results from run 3 are given in Figure 3 for each of the three setups. Sharp declines
in the hydroxide dosing rates (blue lines) are observed at ammonium extinction, which is
confirmed by ammonium concentration measurements (red dots). Vertical green dashed
lines indicate ammonium dosing instances, which were actuated when a 50% reduction in
the ammonium dosing rates occurred. Fast recovery (increase in the hydroxide dosing rates)
is observed after the ammonium dosing instances. Note that the dosing rates are running
averages over the past 3 h (six points), which was required to prevent false extinction
readings resulting from experimental noise. This however caused ammonium dosing to
occur in succession since the running average of the dosing rates took longer to increase
(recover) than the immediate dosing rates. The immediate dosing rates dropped to zero
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soon after ammonium extinction and returned to their original values equally soon after
additional ammonium was dosed.
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dosing rates (6 point running average). This was accomplished with the control algorithm presented in Figure 2. The
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vertical green dashed-lines (which occurred upon a 50% reduction in the hydroxide dosing rate). Ammonium extinction
was confirmed by measurement of the ammonium concentrations in solution (red dots). “Spot checks” were done for nitrite,
of which none was measured (<0.001 mM).

Maximum nitrification rates were maintained, and complete conversion was achieved
in the batch setup. Controller adaptability (objective 4) is not applicable since ammonium
is constantly available in the liquid and thus variations in microbial activity do not affect
controller performance. Although all objectives were satisfied, drawbacks to the batch
setup exist. One such drawback is a potential false alarm of ammonium extinction. For
example, if a drop in temperature occurred such that a 50% reduction in the nitrification
rates resulted, the controller would mistake this as ammonium extinction event. If large
variations in microbial activity are expected, the control strategy can be modified to guard
against this by comparing the current dosing rate (which is the average over a 3-h window)
against a longer running average (such as over a 12-h window), instead of comparing
the current dosing rate to the maxing dosing rate over the whole timespan. Inferring
ammonium extinction from a reduction in the more-recent dosing rate, compared to all
past dosing rates, will prevent false ammonium extinction readings if nitrification rates
decrease relatively slowly.

3.3. Fed-Batch Systems

Although the batch control system satisfied all the objectives laid out in Section 1, other
reactor configurations may be desired based on production specifications and drawbacks
associated with batch systems, such as substrate inhibition [28]. Thus, a control algorithm
was designed for fed-batch systems next. In Section 3.1 (runs 1 and 2), a fed-batch system
was employed where no ammonium was charged to the bulk medium and instead fed
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at a constant rate. Although complete conversion was achieved, these rates were below
the maximum microbial ammonium oxidation rates (υmax). To meet objective 2 (which is
to operate at υmax), a control strategy is required which feeds ammonium at υmax under
conditions in which υmax varies (objective 4 of adaptability). To understand the mechanism
of such a control strategy, consider Figure 4 which plots the ammonium dosing rates(

DNH+
4

)
against the corresponding hydroxide dosing rates (DOH−) required to control

the pH. The ‘kink’ in the curve is the point at which the ammonium dosing rate equals
υmax. Left of this point, ammonium is fed at a slower rate than υmax and thus the hydroxide
dosing rate is two times the ammonium feed rate (Equation (2)), since all ammonium is
consumed. To the right of this point, ammonium is fed at a faster rate than the bacteria can
consume it. Under these conditions, ammonium is still oxidized at υmax and the hydroxide
dosing rate remains constant at 2υmax, but excess ammonium is dosed which accumulates
in solution. Therefore, if the controller doses an arbitrary amount of ammonium, the
resulting hydroxide dosing rate provides information regarding the region of operation
(either to the left or right of the targeting operating point). Specifically, if DOH−/DNH+

4
< 2 ,

the ammonium dosing rate is too large and must be reduced (operation is to the right of
the target operating point). Alternatively, if DOH−/DNH+

4
= 2 , ammonium dosing is less

than or equal to υmax. In the latter case, no information exists regarding how much lower
the ammonium dosing rate is than υmax and thus ammonium dosing should be increased
to prevent drifting away from the target operating point. This control strategy is conveyed
in Figure 5, in which the ammonium dosing rates are adjusted incrementally based on the
operating regime. Note that a specification of DOH−/DNH+

4
< 1.9 is employed instead of

DOH−/DNH+
4
< 2 . This is required to account for process errors, such as pump calibrations

or dosing solution concentrations. If, for example, this specified constant is larger than
the actual value (if 2.1 was specified, when the actual value is 2), the controller would
continue to decrease the ammonium dosing rates (resulting in a runaway situation) until
the ammonium dosing rates equal zero. Therefore, to safeguard against this, the specified
constant should be slightly below the calibrated value to allow for errors. Operation
will thus occur slightly to the right of the target operating point in Figure 4. This will
result in a slow accumulation of ammonium in solution, but it can be minimized through
accurate calibration.
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1.9 is specified (instead of 2) to account for calibration errors as discussed in the text.

Run 4 was conducted to test this control strategy in which the control algorithm
shown in Figure 5 was employed in a fed-batch system with zero ammonium initially. An
arbitrary amount of ammonium was dosed by the controller to “kick-start” the algorithm.
The results are shown in Figure 6 for each of the three systems. It can be seen that
the ammonium dosing rates (red lines) “follow” the hydroxide dosing rates (blue lines).
The slow accumulation of ammonium in solution occurred, indicating that operation
was maintained slightly to the right of the “Target operating point” shown in Figure 4
(ammonium dosing was slightly higher than υmax). The cumulative amounts of ammonium
dosed per litre solution (not shown) were around 10 times higher than the ammonium
concentrations in solution (thus, around 90% conversion was achieved). These results show
that nitrification can be accomplished at maximum production rates with 90% conversion
under adaptable control. Thus, all objectives were satisfied. However, the accumulation of
ammonium may become significant if the solution is not replaced regularly. To address
this problem, the same control strategy was employed in a CSTR setup.
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Figure 6. Results from the control strategy shown in Figure 5, employed in a fed-batch system. Hydroxide dosing rates are
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3.4. Continuous Systems

To eliminate ammonium accumulation, a dilution rate of 1 day–1 was employed
(using deionized water), thus converting the fed-batch reactor into a CSTR. Run 5 was
performed to test the control algorithm presented in Figure 5 in the CSTR. The results
are shown in Figure 7, reported in the same fashion as in Figure 6 but including the
nitrate concentrations in the reactor/effluent (measured via analysis of liquid samples).
Ammonium concentrations stabilized at values below 1 mM and nitrate concentrations at
around 7 mM. This corresponded to a conversion of 93% (±1%). The control algorithm
performed well to consistently feed ammonium at just above υmax under varying υmax
conditions (adaptable control).

The ammonium-to-nitrate ratio in solution has great agricultural significance and an
optimum ratio typically exists for each plant species [29]. This ratio is often around one
third molar, thus requiring a 75% conversion of ammonium to nitrate [30]. As such, if a
higher ammonium-to-nitrate ratio is desired, operation should occur further to the right of
the “Target operating point” shown in Figure 4. This can be accomplished by decreasing
the constant in the “if statement” of Figure 5 (currently equal to 1.9).

The CSTR setup requires knowledge of the ammonium concentration in the wastewa-
ter. If this concentration is unknown or varies during production, the batch control scheme
may be a better alternative. The solution in the batch system can be drained and replaced
immediately upon ammonium extinction, thus realizing a semi-continuous process.
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4. Conclusions

The objectives specified in Section 1, namely affordability, operation at υmax, high
conversion, and controller adaptability, were satisfied using the presented control schemes
in batch, fed-batch, and CSTR units. Although all the objectives were satisfied in all three
reactor configurations, the CSTR system appeared to be the most attractive method since
the seamless production of a high nitrate (93%) liquid-fertilizer was realized. Drawbacks of
each setup have been discussed and thus the choice of system will depend on process spec-
ifications. The presented control algorithms lend viability to the use of high-ammonium
wastewaters as liquid-fertilizers in hydroponic systems, thus providing an encouraging
alternative to synthetic fertilizers.
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