
Chapter 28

Assurance and
Sustainability

There are two ways of constructing a software design. One way is to
make it so simple that there are obviously no deficiencies.

And the other way is to make it so complicated that
there are no obvious deficiences.

– Tony Hoare

Security engineers are the litigation lawyers of tech.
We only get paid when something is wrong
and we can always find something wrong.

– Dave Weston

To improve is to change; to be perfect is to change often.
– Winston Churchill

28.1 Introduction

I’ve covered a lot of material in this book, some of it quite tricky. But I’ve left
the hardest parts to the last. These are the questions of assurance – whether
the system will work; its cousin compliance – how you satisfy other people about
this; and sustainability – how long it will keep on working. How do you decide to
ship the product? How do you sell the security and safety case to your insurers?
How long are you going to have to maintain it, and at what cost?

What’s new in 2020 is sustainability. In the 2008 edition, I called this chapter
‘Evaluation and Assurance’, and ended up by remarking that sound processes for
vulnerability disclosure and product update were beginning to be as important
as pre-market testing. The emphasis back then was on testing and evaluation
schemes like the Common Criteria. That world is now moribund: the idea that
a device should be secure because someone spent $100,000 getting an evalua-
tion lab to test it five years ago would strike most people nowadays as quaint.

911

28.1. INTRODUCTION

Assurance is no longer static.

Ten years ago, we knew how to make two types of secure system. We had
things like phones and laptops, which contained software and were online, but
were sort-of secure because the software got patched once a month. And we
had things like cars and medical devices, which contained software but were not
online; you tested them to death before they were put on sale, and then hoped
for the best, as patching meant a physical recall. Now we’ve started to put cars
and medical devices online, so they have to be patched online too.

The number of vulnerabilities reported in common platforms is so great that
we have to automate the process. As we described in the previous chapter,
the software development lifecycle has become DevOps and then DevSecOps;
the online components of systems are maintained using continuous integration,
while components in the field need regular upgrades.

With a new product, assurance can be measured roughly by whether capable
motivated people have beat up on the system enough. But how do you define
‘enough’? And how do you define the ‘system’? How do you deal with people
who protect the wrong thing? And how do you deal with usability? Too many
systems are designed for use by alert experienced professionals, but are too
tricky for ordinary folk or are intolerant of error. Once they get fielded, the
injury claims or fraud disputes start to roll in.

In the security engineering of a decade ago, we often talked of assurance
in terms of evaluation, which was about how you assembled the evidence to
convince your boss, your clients, and (if need be) a jury, that it did indeed work
(or that it did work at some particular time in the past). As we’ve seen again
and again, things often fail because one principal carries the cost of protection
while another carries the risk of failure. Third-party evaluation schemes such
as the Common Criteria were supposed to make these risks more transparent
and mitigate them, but ended up acting as a liability shield – particularly in the
public sector and in regulated industries such as banking. Systems protecting
classified information were subjected to extensive compliance requirements and
had to use evaluated products at the attack surface; much the same held, with
di↵erent details, for payment systems. Evaluation was driven by compliance.

Compliance is still the main driver of security design and investment, but
it places much less emphasis on requiring evaluated products at specific trust
boundaries. The details vary from one industry to another. When we look at
medical systems, cars or aircraft we find regulatory regimes driven by safety that
are starting to incorporate security. General business systems have policy set
by the Big Four audit firms, and payment systems by PCI. We have touched on
some of their specific requirements in previous chapters; there are some broader
issues and principles that we’ll try to pull together here.

Right at the start of this book, in Figure 1.1, I presented a framework for
security engineering based on incentives, policy, mechanism and assurance.

• Incentives are critical, as we’ve seen time and again. They often fall outside
a formal assurance process, but are the most critical part of the environ-
ment within which the security policy has to be defined.

• Policy is often neglected, as we’ve seen: people often end up protecting

Security Engineering 912 Ross Anderson

28.1. INTRODUCTION

the wrong things, or protecting the right things in the wrong way. We
spent much of Part II of the book exploring security policies for di↵erent
applications.

• Mechanisms may be independent of policy, but can interact with it by
making some policy options easier to implement.

• Assurance is our estimate of the likelihood that a system will not fail in a
particular way. This estimate can be based on a number of factors, such
as the process used to develop and maintain it; the people who develop
and maintain it; and specific technical assessments, such as the statistics
of failure rates, bug reports, breach reports and insurance claims. It was
traditionally about evaluation – whether, given the agreed security policy
and strength of mechanisms, a product had been implemented correctly.
Had the bugs been found and fixed? Could you quantify the mean time to
failure? Nowadays it’s increasingly about the vendor’s future commitment.
For how long, and how diligently, will the system be patched?

By the second edition of this book in 2008, I noted that the big missing
factor was usability. Most system failures have a significant human component.
Usability is a cross-cutting issue in the above framework: if done properly, it has
a subtle e↵ect on policy, a large e↵ect on choice of mechanisms, and a huge e↵ect
on how systems are tested. It cuts across individual products: a common reason
for accidents is that di↵erent products have di↵erent user interfaces, an issue to
which we’ll return later. However, designers often saw assurance simply as an
absence of obvious bugs, and designed technical protection mechanisms without
stopping to consider human frailty. (There are some exceptions: bookkeeping
systems are designed to cope with both error and fraud.)

Usability is not purely a matter for end-users, but for developers too. Many
vulnerabilities arise because security mechanisms are too hard to understand or
too fiddly to use. Developers often didn’t use operating-system access controls,
but just ran their code with administrator privilege instead; when mobile phones
didn’t allow this, they kept demanding too many permissions for their apps;
and cryptography often uses ECB mode as it’s the default with many crypto
libraries.

Customers and vendors want di↵erent things at multiple points in the value
chain. Regulation doesn’t always help, because governments have multiple agen-
das of their own, often in conflict: intelligence agencies, safety regulators and
competition authorities pull in di↵erent directions. It’s in this treacherous land-
scape that the assurance game is played.

Assurance is thus a political and economic process. It is also a dynamic
process, just like the development of code or of documents. Just as you have
bugs in your code, and in your specification, you will also have things wrong
with your security and safety policies, leading to omissions and errors in your
test suite. So assurance is steadily turning from something done as a one-o↵
project to another aspect of continuous evolution.

With that warning, it’s helpful to start with the classic problem of evaluating
a static product that is built in a single project.

Security Engineering 913 Ross Anderson

28.2. EVALUATION

28.2 Evaluation

Product evaluation tackles the problem of the lemons market we discussed in
section 8.3.3: when customers can’t measure quality, bad products drive out
good ones. Security has been a lemons market for generations. An 1853 book
on locksmithing justified disclosing the ‘secrets’ of the trade on the grounds
that the burglars knew them already; it was just the locksmiths’ customers
who were ignorant [1895]. Modern consumer-grade products, from anti-virus
software to mobile phone apps, are way beyond the ability of most consumers
to assess technically. If they are just going to rely on the brand name, the vendor
may as well buy ads rather than hiring security engineers. As for professional
products, the tech majors may employ enough PhDs to do an assessment, but
banks don’t – not even money-centre banks1. In earlier chapters, we discussed a
number of examples of static security standards against which various products
get evaluated and certified. Banks and governments are among the keenest
purchasers of certified security products.

That may have been where computer security got started fifty years ago, but
as computers end up everywhere, we have to look at other industries too. Dozens
of industries have their own safety standards, with which security mechanisms
are increasingly intertwined. We already talked about electricity transmission
and distribution in section 23.8.1. Safety standards for software in road vehicles
have developed over decades; we talked about trucks in 14.3.3. Now that both
trucks and cars have multiple systems for assisted driving and are connected
to the Internet, they have critical security as well as safety requirements. The
same is happening for medical equipment and much else.

I’ll explore this via a number of case studies. Two important questions are
whether the evaluation is conducted by the relying party or by a third party,
and whether the standards are static or dynamic.

28.2.1 Alarms and locks

The US insurance industry set up a joint testing lab in 1894, alarmed at the
fire risks from electric lightbulbs; it was incorporated in 1901 as Underwriters’
Laboratories, a nonprofit that develops fire safety and other standards, and
started approving security products in 1913 [1916]. Other countries have similar
bodies. An evaluator spends a fixed budget of e↵ort looking for flaws and writes
a report, after which the lab either approves a device, turns it down or demands
some changes.

As the insurance industry bears much of the cost of fires and burglaries,
incentives are somewhat aligned, although in practice these labs get much of
their income from testing fees. One risk is inertia: the standards may not keep
up with progress. In the case of high-security locks, a lab in 2000 might have
demanded ten minutes’ resistance to picking and say nothing about bumping.
We described in section 13.2.4 how bumping tools had improved enough to be

1In my late 20s and early 30s I worked in banking, and when I went to an interbank security
standards committee there were only about four of us in the room who knew what we were
talking about – of whom one was from IBM. Fintech has become an order of magnitude more
complex since then.

Security Engineering 914 Ross Anderson

28.2. EVALUATION

a major threat by 2010, and picks have got better too. We also described in
section 13.2.3 how bank vaults certified to resist attack for ten minutes can be
defeated in much less by a modern angle grinder or a burning bar. Insurance
labs in some countries, such as Germany, have been prepared to withdraw cer-
tifications as attacks got better; in the USA, they appear reluctant to, perhaps
for fear of being sued. The willingness of an industry to tolerate changing stan-
dards may depend on its structure: a mature industry with a handful of large
players can drag its feet a lot more than a growing competitive one.

28.2.2 Safety evaluation regimes

Safety standards tend to emerge one industry at a time in response to major
accidents or scandals. The safety of drugs and medical devices is regulated in
the USA by the FDA, set up in 1906 by President Theodore Roosevelt after
journalists exposed abuses in the patent medicine industry. It turned out that
the top-selling medicine in America was just a dilute solution of sulphuric acid
and turpentine – really cheap to manufacture, yet tasting nasty enough that
people could believe it was good for them [2050]. As for air safety, the first
step was in 1931, when America’s top football coach Knute Rockne died in a
plane crash caused by structural failure, causing a public outcry that led to the
establishment of the National Transportation Safety Board. The FAA was set
up later by President Eisenhower after a 1956 crash between two airliners over
the Grand Canyon killed all 128 people aboard the two planes [684]. As for the
car industry, it managed to disclaim liability for safety for decades. Vendors
competed to decorate cars with chromium rather than fit them with seat belts,
until Ralph Nader’s book ‘Unsafe at Any Speed’ spurred Congress to set up
National Highway Tra�c Safety Administration (NHTSA) in 1970; its power
and influence grew with successive safety scandals.

Europe harmonised a patchwork of national laws into the Product Liability
Directive in 1985, adding further regulations and safety agencies by industry
sector. Since then, the European Union has developed into the world’s lead
safety regulator, with its agencies setting safety standards in industries from
aviation through railway signals to toys [1148]. With cars, for example, Europe
generally requires safety testing by independent labs2, while America doesn’t;
but most US vendors have their US models tested independently too, as Europe
created the ‘industry norm’ by which US courts assess tort cases when things
go wrong. In this sense, Europe has become a ‘regulatory superpower’.

The EU’s overall safety strategy is to evolve a set of standards by negotiation
with industry working groups and lobbyists and update them every seven to
ten years. Many products that cause serious harm, such as cars, have to get
explicit approval, typically following testing in an independent laboratory. Less
dangerous goods such as toys require self-certification: the vendor places a ‘CE’
mark on the product to assert that it complies with all relevant standards.
This removes some of the excuses that vendors might use when non-compliant

2Europe delegates type approval to Member States, most of which have a Type Approval
Authority which delegates testing to a specialist lab. In Germany, that’s TÜV. Some smaller
countries have a TAA that allows the manufacturer to do its own testing, with a TAA inspector
present.

Security Engineering 915 Ross Anderson

28.2. EVALUATION

products cause accidents; it’s also used for a wide range of components from car
brakes to industrial pressure valves.

28.2.3 Medical device safety

Safety regulation is a complex ecosystem, imperfect in many ways. For example,
there has long been controversy in both America and Europe over medical device
safety. This came to prominence in the 1980s when bugs in the Therac 25
medical accelerator caused the death of three patients and injured three more.
The cause was a software bug that surfaced as a usability issue: if the operator
edited the machine’s parameters too quickly, they could get the machine into a
dangerous state where it delivered far too much radiation to the patient. The
case study is set reading for my software engineering students even today [1149].

Figure 28.1: – two infusion pumps that are apparently of the same model (photo
courtesy of Harold Thimbleby)

The most lethal medical devices nowadays are probably infusion pumps, used
to administer intravenous drugs and other fluids to patients in hospital. Many
of the fatal accidents are usability failures. Just look at Figure 28.1: each of
these claims to be a ‘BodyGuard 545’ yet to increase the dose on the machine
on the left, you press ‘2’ while on the right you press ‘5’. An emergency room
might have equipment from half-a-dozen di↵erent vendors, all with di↵erent user
interfaces. Doctors and nurses occasionally press the wrong button, the wrong
dose gets administered, or the dose for an eight-hour transfusion is given all in
one bolus – and patients die. Infusion pumps kill about as many people as cars
do, with the body count being in the low thousands in the UK and the low tens
of thousands in the USA [1878].

Surely this could be fixed with standards? Well, there are standards. For
example, ‘litres’ is supposed to be marked with a capital ‘L’ so it’s not mistaken
for a ‘1’, but you can see on the right-hand image that although the ‘0L/h’
complies with this, the ‘500ml’ does not. So why is the standard not enforced?
Well, the FDA budget of engineering e↵ort is about half a day per device,
and vendors don’t give the engineers actual devices to play with. It’s just a
paperwork review3. In addition, usability falls outside the FDA’s scope. This

3By way of comparison, when colleagues and I helped to evaluate a burglar alarm designed
for low-consequence risks such as small shops and houses, our budget was two person-weeks.

Security Engineering 916 Ross Anderson

28.2. EVALUATION

is, I hear, a result of lobbying by the industry to ‘cut red tape’. The fact that
two di↵erent devices are marketed as the same product is a common strategy
to minimise compliance costs.

There has recently been international guidance for usability engineering of
medical devices in the form of ISO/IEC 62366-2, which took e↵ect in 2018.
This is a significant advance which covers a lot of ground, but usability is a huge
field. The new standard is very basic, and explains at length that manufacturers
should not just list hazards in a legal warning leaflet, or even highlight them
with notices on the equipment – they should actually try to mitigate them, and
in the process understand how their equipment is likely to be used and abused.
It describes a number of assessment techniques the engineer could use, but
“insu�cient experience with the type of medical device” is just one bullet point
on its list of factors that might contribute to use errors. Manufacturers will find
all this expensive, and will no doubt talk to their lawyers about how much really
has to be done. Safety in number entry alone is a complex field [1879]; every
vendor should probably train an expert in it, and in dozens of other techniques
too, but many will do as little as they think they can get away with. In the
end, a usability assessment will now be in the trolleyload of paperwork the
manufacturer presents to regulators, at least outside the USA. But it’s unclear
whether the confusion arising when nurses also use the di↵erent interfaces of
competitors’ equipment will be taken as seriously as it should be.

This is all teaching us that pre-market testing isn’t enough for medical de-
vice safety – you need diligent post-market surveillance too. This started to
be introduced throughout Europe in 2017 following a scandal about defective
breast implants [233]. In the UK, a further scandal about teratogenic drugs
and pelvic mesh implants let to an Independent Medicines and Medical De-
vices Safety Review, which in 2020 documented decades of indi↵erence to safety
and recommended among many other things that regulation ‘needs substantial
revision particularly in relation to adverse event reporting and medical device
regulation’ [503]. In May 2020, a new EU medical device regulation (2017/745)
was supposed to require post-market surveillance systems and a public database
of anonymised incident reports; implementation was postponed until May 2021.
And in June 2020, the UK Parliament passed a Medicines and Medical Devices
Act that will enable ministers to amend the existing regulations after Brexit.
The mood music there, however, is to make Britain a more attractive place
for drug companies and medical device makers, not a safer place for patients.
Within Britain’s National Health Service, it’s hard to make a career as a safety
specialist4.

Now here’s an interesting question. If infusion pumps kill as many people
as cars or – in the USA – as guns, why aren’t people more worked up, as they
are about road safety and gun control? Well, the harm is both low-key and
di↵use. At your local hospital, such accidents probably kill less than one person
a month, and many of them won’t be noticed, as people on infusion pumps tend
to be fairly sick anyway. When they are noticed, they are more likely to be
blamed on the nurse, rather than on the medical director who bought pumps

4The UK NHS has a Healthcare Safety Investigations Branch, established in 2016, but it
investigates what it’s told to, often has to keep its findings confidential, and doesn’t have or
seek enforcement powers to require other healthcare organisations to make changes [875].

Security Engineering 917 Ross Anderson

28.2. EVALUATION

from half a dozen di↵erent suppliers following nice lunches with the sales folks.
As a cause of death in the hospital, recorded safety usability failures don’t make
it into the top twenty, and so don’t get attention from politicians or the press.
(The exception is when a safety failure has a security angle, as people are very
sensitive indeed about hostile intent. I’ll discuss this in section 28.4.2 below.)

The standardisation of user interfaces is managed better in industries where
accidents and their causes are more visible. Road tra�c accidents are fairly
visible and most people drive, so car crashes and their causes are a topic of
conversation. The controls in cars are now fairly standard, with the accelerator
on the right, the brake in the middle and the clutch on the left. Things aren’t
perfect; if you’re in a hurry, you might get in a rental car, drive o↵ down the
freeway, then struggle to find the light switch as night falls. But it used to be
much worse. Some cars in the 1930s had the accelerator in the middle, while
the first mass-produced car, the Model T Ford, had a hand throttle and a pedal
gear-change, like a motorcycle. The average modern driver would have a hard
time getting such a car out of the rental lot.

28.2.4 Aviation safety

Aviation has much stronger safety incentives still: airliners are worth eight or
nine figures, crashes are front-page news, they cause pilots as well as passengers
to lose their lives and airline CEOs may even lose their bonuses. Pilots pay
attention to accident reports, and are required to train on each type of plane
they fly. This has led the vendors to standardise cockpit design, starting with
the Boeing 757 and 767, which were designed from the start to be so similar that
a pilot trained on one could fly the other. If nurses were similarly required to
get a type rating for each infusion pump, that would cost real money, hospital
executives would pay attention, the vendors would eventually follow Boeing,
and a lot of lives could be saved.

Yet we find regulatory failure in aviation too, and an example was exposed
with the Boeing 737Max crashes. Since Boeing had bought McDonnell Dou-
glas in 1997 and become the only US firm making large aircraft, the Federal
Aviation Administration had come to see its role as supporting Boeing. The
company’s engineers were allowed to take over much of the safety evaluation
and certification work that the FAA had done in the past. An even more toxic
e↵ect of the takeover was that McDonnell Douglas executives took over, the
company moved its headquarters from Seattle to Chicago, and was no longer
run by engineers but by finance people who had already destroyed one engi-
neering company and whose goal now was to milk the maximum profits from
the new monopoly. Boeing’s traditional engineering culture was sidelined and
corners were cut [729]. Two crashes followed, in Indonesia and Ethiopia, killing
346 people. The cause was reminiscent of the Therac case a generation earlier:
a design error in software that surfaced as a life-threatening usability failure.

In order to compete with the latest model of Airbus, Boeing needed to make
the 737 more fuel e�cient quickly, and this meant larger engines, which had to be
fitted further forward, or it would have required re-engineering the airframe to
the point that it would have been a new plane for regulatory purposes, and would
have taken much longer to certify. The new engine location made the aircraft

Security Engineering 918 Ross Anderson

28.2. EVALUATION

harder to trim at high speeds, so Boeing added software called the Maneuvering
Characteristics Augmentation System (MCAS) to the flight control computer
to compensate for this.

The MCAS software needed to know the aircraft’s angle of attack, and the
critical design error was to rely on one angle-of-attack sensor rather than two,
although these are often damaged by ground handlers and bird strikes. The
implementation error was that, with an incorrect angle-of-attack input, the plane
could get into a regime where the pilots needed to pull about 50kg on the yoke
to keep the plane level. This was compounded by an error in safety analysis:
the unintended activation of the MCAS software was not anticipated. As a
result, Boeing didn’t do a proper failure modes and e↵ects analysis and the
software’s behaviour was not even documented in the pilot manual. The pilots
were not trained how to diagnose the problem or switch MCAS o↵. Boeing
had become complacent about the ability of pilots to cope with the chaos of a
cockpit emergency with many alarms going o↵ at once [1055].

The company had also got away with bullying investigators over a similar
previous crash in the Netherlands in 2009, and initially hoped that the Indonesia
crash could be blamed on pilot error [857]. The FAA responded to the crash
by sending an emergency airworthiness directive to all known U.S. operators of
the airplane, which consisted of inserting a warning notice in the airplane flight
manual [665]. ; However, the warning light that alerted pilots to disagreement
between the two sensors had been made an airline option, like a sun roof in a
car, and the operation of the switch that could disable MCAS was changed to
make it less intuitive [155]. A number of U.S. pilots logged complaints, with one
describing the manual as ‘almost criminally insu�cient’ [139]; but the FAA saw
such complaints as only relevant to air carrier operations and did not analyse
them for global safety hazards [664].

After the second crash in Ethiopia, other countries’ regulators started ground-
ing the 737Max, and the FAA could no longer protect them. Boeing had lost
$18.7bn in sales by March 2020, when the coronavirus pandemic closed down
commercial aviation sales, as well as $60bn in market capitalisation. This was
by some distance the world’s biggest ever software failure, in terms of both lives
lost and economic damage. The fix, approved in August 2020, involves not just
a software change so that MCAS reads both angle-of-attack sensors and deploys
only once per flight and with limited stick force; but a procedural change so
that both sensors are checked pre-flight; an update to pilot training; and a reg-
ulatory change so that the FAA, rather than Boeing, checks each plane after
manufacture [592].

When analysing safety, it’s not enough to think of it as a technical test-
ing matter. Psychology, incentives, institutions and power matter too. The
power of lobbyists, and the risk that regulators will be captured by the in-
dustry they’re supposed to regulate, place real limits on what can be achieved
by testing regimes. Over time, measures designed for risk assessment and risk
reduction become industrialised and tend to become a matter of compliance,
which firms then seek to pass at minimum cost. It’s also important to stop
thinking of problems as ‘aerospace engineering’ versus ‘software engineering’,
or ‘safety engineering’ versus ‘security engineering’. If you want to be a good
engineer you need to try to understand every aspect of the whole system that

Security Engineering 919 Ross Anderson

28.2. EVALUATION

might be relevant.

28.2.5 The Orange Book

The first serious computer security testing regime was the Orange Book – the
Trusted Computer Systems Evaluation Criteria [544]. We touched on this in
section 9.4, where I described the multilevel security model that the US Depart-
ment of Defense was trying to promote through it. Orange Book evaluations
were done from 1985–2000 at the NSA on computer systems proposed for govern-
ment use and on security products such as cryptographic devices. In incentive
terms, it was a collective relying-party scheme, as with insurance.

The Orange Book and its supporting documents set out a number of eval-
uation classes, in three bands. C1 meant just that there was an access-control
system; C2 corresponded to carefully configured commercial systems. In the
next band, B1 meant mandatory access control; B2 added covert channel anal-
ysis, a trusted path to the TCB from the user, and severe penetration testing;
while B3 required the TCB had to be minimal, tamper-resistant, and subject
to formal analysis and testing. At the top band, A1 added a requirement for
formal verification. (Very few systems made it to that level.)

The evaluation class of a system determined what spread of information
could be processed on it. The example I gave in section 9.6.2 was that a system
evaluated to B3 could process information at Unclassified, Confidential and
Secret, or at Confidential, Secret and Top Secret.

When the Orange Book was written, the Department of Defense thought that
they paid high prices for high-assurance computers because the markets were
too small, and hoped that security standards would expand the market. But
Orange Book evaluations followed government work practices. A government
user would want some product evaluated; the NSA would allocate people to do
it; given traditional civil service caution and delay, this could take two or three
years; the product, if successful, would join the evaluated products list; and the
bill was picked up by the taxpayer. Evaluated products were always obsolete,
so the market stayed small, and prices stayed high5.

Other governments had similar ideas. European countries developed the
Information Technology Security Evaluation Criteria (ITSEC), a shared scheme
to help their defense contractors compete against US suppliers. This introduced
a pernicious innovation – that the evaluation was not arranged by the relying
party (the government) but by the vendor. Vendors started to shop around
for the lab that would give their product the easiest ride, whether by asking
fewer questions, charging less money, taking the least time, or all of the above.
Contractors could obtain approval as a commercial licensed evaluation facility
(CLEF), and in theory the CLEF might have its license withdrawn if it cut
corners. That never happened.

5To this day, most governments are hopeless at buying technology and pay several times
the market rate, if they make it work at all. The reasons are much broader and deeper than
standards. See for example section 10.4.4 on the £11bn failure of a project to modernise
Britain’s National Health Service, and section 23.5 for the $6bn failure of the Pentagon’s
Joint Tactical Radio System.

Security Engineering 920 Ross Anderson

28.2. EVALUATION

28.2.6 FIPS 140 and HSMs

The second evaluation scheme promoted by the US government in the 20th
century was NIST’s FIPS 140 scheme for assessing the tamper-resistance of
cryptographic processors. This was aimed at helping the banking industry as
well as the government, and as I described in section 18.4 it uses a number
of independent laboratories as contractors. Launched in 1994, it is still going
strong today, and is favoured by US customers of cryptographic equipment.

There are two main failure modes of FIPS 140. The first is that it covers the
cryptographic device’s hardware, not its software, and many FIPS 140 evaluated
devices (even at the highest levels) run applications with intrinsic vulnerabil-
ities. Weak algorithms, legacy modes of operation and vulnerable APIs are
mandated by bank standards bodies for backwards compatibility, as described
in section 20.5. The fix for this has been a growing emphasis on standards
set by PCI, the payment industry’s self-regulation scheme, which I describe in
section 12.5.2.

The second is that the FIPS 140-1 standard has a big gap between level 3
and level 4 for historical reasons I discussed in section 18.4. FIPS 140 level 3 is
easy to obtain (you just pot the circuit in epoxy to make it inaccessible to casual
probing) and some level-3 devices are not too hard to break (you just scrape o↵
the epoxy with a knife). Level 4 is really hard, and only a few devices ever made
that grade. So many vendors aim at what the industry calls, informally, ‘level
3.5’. As this doesn’t have any formal expression in the FIPS standard, firms
often rely on the Common Criteria instead when talking to customers outside
the USA.

28.2.7 The Common Criteria

This sets the stage for the Common Criteria. Following the collapse of the
Soviet Union in 1989, military budgets were cut, and it wasn’t clear where the
opponents of the future would come from. Eventually the US and its allies
agreed to scrap their national schemes and replace them with a single standard
– the Common Criteria for Information Technology Security Evaluation [1396].

The work was substantially done in 1994–1995, and the European ITSEC
model won out over the Orange Book approach. Evaluations at all but the high-
est levels are done by CLEFs, are supposed to be recognised in all participating
countries, and vendors pay for them.

The innovation was support for multiple security policies. Rather than ex-
pecting all systems to conform to Bell-LaPadula, the Common Criteria evaluate
a product against a protection profile (PP), which is a set of security functional
requirements and assurance requirements for a class of product. You can think
of it as a detailed security policy, but oriented at products rather than systems,
and expanded into several dozen pages of detail. There are protection profiles for
operating systems, access control systems, boundary control devices, intrusion
detection systems, smartcards, key management systems, VPN clients, voting
machines, and even transponders that identify when a domestic waste bin was
last emptied. Anyone could propose a protection profile and have it evaluated

Security Engineering 921 Ross Anderson

28.2. EVALUATION

by the lab of their choice. It’s not that the defence community abandoned mul-
tilevel security, so much as tried to mainstream its own evaluation system by
getting commercial firms to use it for other purposes too. But an evaluation
depends entirely on what was measured and how. Some aspects of security were
explicitly excluded, including cryptography, emission security (as the NATO
standards were classified) and administrative procedures (which was bad news
for usability testing).

The Common Criteria have enjoyed some limited success. Its evaluations
are used in specialised markets, such as smartcards, hardware security modules,
TPMs and electronic signature devices, where sectoral due-diligence rules (such
as PCI) or regulation (such as electronic signature laws) create a compliance
requirement. Evaluations of such devices were kept honest for a while by an
informal cartel run by SOG-IS (the senior o�cials group – information security)
– a committee of representatives of the intelligence agencies of EU countries.
However the operation of the CC outside Europe has been a bit of a joke, and
even within Europe it has been undermined by both companies and countries
gaming the system. The UK withdrew in 2019.

28.2.7.1 The gory details

To discuss the Common Criteria in detail, we need some jargon. The product
under test is known as the target of evaluation (TOE). The rigor with which the
examination is carried out is the evaluation assurance level (EAL) and can range
from EAL1, for which functional testing is su�cient, all the way up to EAL7
which demands not only thorough testing but a formally verified design. The
highest evaluation level commonly obtained for commercial products is EAL4,
although in 2020 there are 85 products at EAL6 or above out of 1472 certified
under CC, and many smartcards are evaluated to EAL4+ which means EAL4
plus one or more of the requirements set at higher levels.

When devising something from scratch, the idea is to first work out a threat
model, then create a security policy, refine it to a protection profile (PP) and
evaluate it (if a suitable one doesn’t exist already), then do the same for the
security target, then finally evaluate the actual product. A protection profile
consists of security requirements, their rationale, and an EAL, all for a class
of products. It’s supposed to be expressed in an implementation-independent
way to enable comparable evaluations across products and versions. A security
target (ST) is a refinement of a protection profile for a specific product. One
can evaluate a PP to ensure that it’s complete, consistent and technically sound,
and an ST too. The evaluations are filed with the national authority, which is
typically the defensive arm of the local signals intelligence agency. The end
result is a registry of protection profiles and a catalogue of certified products.

There is a stylized way of writing a PP or ST. For example, FCO_NRO is a
functionality component (hence F) relating to communications (CO) and it refers
to non-repudiation of origin (NRO). Other classes include FAU (audit) and FCS
(crypto support).

There are also catalogues of

• threats, such as T.Load_Mal – “Data loading malfunction: an attacker

Security Engineering 922 Ross Anderson

28.2. EVALUATION

may maliciously generate errors in set-up data to compromise the security
functions of the TOE”

• assumptions, such as A.Role_Man – “Role management: management of
roles for the TOE is performed in a secure manner” (in other words, the
developers, operators and so on behave themselves)

• organizational policies, such as P.Crypt_Std – “Cryptographic standards:
cryptographic entities, data authentication, and approval functions must
be in accordance with ISO and associated industry or organizational stan-
dards”

• objectives, such as O.Flt_Ins – “Fault insertion: the TOE must be resis-
tant to repeated probing through insertion of erroneous data”

• assurance requirements, such as ADO_DEL.2 – “Detection of modification:
the developer shall document procedures for delivery of the TOE or parts
of it to the user”

A protection profile should now contain a rationale, which typically consists
of tables showing how each threat is controlled by one or more objectives, and
in the reverse direction how each objective is necessitated by some combination
of threats and environmental assumptions. It will also justify the selection of
an assurance level and requirements for strength of mechanism.

The fastest way to get the hang of this may be to read the core CC docu-
mentation itself, then a few profiles. The quality varies widely. For example, a
protection profile for automatic cash dispensers, written in management-speak
with clip art, ‘has elected not to include any security policy’ and misses many of
the problems that were well known when it was written in 1999 [340]. A profile
for voting machines from 2007 [563] was written more in politicians’ language,
but at least with reasonable clarity6.

Protection profiles for smartcards emphasise maintaining confidentiality of
the chip design by imposing NDAs on contractors, shredding waste and so
on [650], while in practice most attacks on smartcards used probing or power-
analysis attacks for which knowledge of the chip mask was irrelevant. This has
developed into a political row, as I discussed in section 18.6.4: the smartcard
vendors have pushed the evaluation labs into demanding that all cryptographic
products be secure against ‘advanced persistent threats’. The fight is over as-
surance requirement AVA_VAN.5 which essentially requires that the entire de-
velopment environment should be air-gapped, like the Top Secret systems at
an intelligence agency. An air gap in itself won’t stop a capable opponent, as
the Iranians found out with Stuxnet and the Americans with Snowden; but it
causes real inconvenience to normal IT companies who rely on Github and other
cloud-based systems. And that’s entirely the point: the smartcard firms don’t
want HSMs or enclaves encroaching on their markets.

6This appears designed to support French firms’ drive to export population registration
systems, and it is these rather than the actual voting machines that are often the real weak
point in elections – as I discussed in section 7.4.2.2.

Security Engineering 923 Ross Anderson

28.2. EVALUATION

28.2.7.2 What goes wrong with the Common Criteria

By the time the second edition of this book came out in 2008, industry people
had a lot of complaints about the Common Criteria, which I discussed there
and which I update more briefly here.

• The biggest complaint for years has been the cost and bureaucracy of the
process. A startup wanting to sell devices such as HSMs will nowadays
have to spend several million Euros and several years of e↵ort to navi-
gate the process. In practice the CC have become a moat that defends
established cartels.

• The next biggest is that, as well as avoiding ‘technical physical’ aspects
such as Emsec or crypto algorithms, the CC ignore administrative security
measures, which means in practice ignoring usability. In general, user
interfaces are considered to be somebody else’s problem.

• Protection profiles are designed by their sponsor firms to rig the market.
I mentioned above how the smartcard firms demand that HSM vendors
also use air-gapped systems to push their costs up. The gaming often
leads to insecure products: vendors write their PPs to cover the things
they can do easily. They might evaluate the boot code, but leave most of
the operating system outside the scope. Recall the API attacks on HSMs
described in section 20.5; some vulnerable HSMs were CC-certified, and
similar failures are seen in other CC-certified products too.

• Sometimes the protection profiles might be sound, but the way they’re
mapped to the application isn’t. In section 26.5.2 I discussed the Euro-
pean eIDAS regulation which requires businesses to recognise digital sig-
natures made using smartcards, and encouraged governments to demand
them for interactions such as filing tax returns. The main problem in this
application, as I discussed in section 18.6.1, is the lack of a trusted inter-
face. As that problem’s too hard, it’s excluded, and the end result is a
‘secure’ signature on whatever the virus or Trojan in your PC sent to your
smartcard. This hole was duly slathered with several layers of fudge. PPs
were written for a smartcard to function as a ‘Secure Signature-Creation
Device’; other PPs appeared for HSMs, and for the signature activation
module (SAM) – the server software that passes them digital objects to
be signed. The HSM plus the SAM are evaluated as a qualified signa-
ture creation device (QSCD) [29]. But the front-end server software used
by the service provider is only audited, not certified, and if you’re lucky
the app on your phone or tablet might have RASP on it as a malware
countermeasure, as I discussed in section 12.7.4. That is what lobbyists
can achieve: the whole certification machinery has been twisted to allow
services like Docusign inside the tent, so long as they use a CC certified
HSM to hold their signature keys.

• The CC claim not to assume any specific development methodology, but
in practice assume a waterfall approach. There’s a nod in the direction
of policy evolving in response to experience but re-evaluation of PPs or
products is declared to be outside the scope. So they’re unable to cope with

Security Engineering 924 Ross Anderson

28.2. EVALUATION

normal security development lifecycles, or with commercial products that
get monthly security patches. (The same goes for FIPS; of the available
standards, only PCI can cope with updates.)

• The Criteria are technology-driven, when in most applications it’s the
business processes that should drive protection decisions. We’re learning
the hard way that hand-marked paper ballots are way better than voting
machines for all sorts of reasons. Security is a property of systems, not of
products.

• The rigour of the evaluations varies widely between countries, with Ger-
many generally considered to be almost impossibly di�cult, the Nether-
lands in the middle, while Spain and Hungary let their CLEFs give spon-
sors an easy ride. Nobody within the system can actually say this in public
without causing a diplomatic incident, so it cannot be fixed. The costs
also vary, with an evaluation in Germany costing perhaps three times what
you pay in Hungary.

• The Common Criteria brand isn’t well defended. I described in sec-
tion 12.6.1.1 how PIN entry devices claimed by VISA to have been eval-
uated under the Common Criteria were insecure; GCHQ’s response was
that as the evaluation had not been registered with them, and the devices
were not claimed to be ‘CC certified’ it wasn’t their problem. So suppliers
are free to continue describing a defective terminal as ’CC evaluated’. A
business would not tolerate such abuse of its trademark.

• More generally, there’s nothing on liability: ‘The procedures for use of
evaluation results in accreditation are outside the scope of the CC’.

In the second edition of this book, I took the view that Common Criteria
evaluations were somewhat like a rubber crutch. Such a device has all sorts
of uses, from winning a judge’s sympathy through wheedling money out of a
gullible government to whacking people round the head. Just don’t try to put
serious weight on it.

28.2.7.3 Collaborative protection profiles

In an attempt to deal with these criticisms, collaborative protection profiles
(cPPs) started to appear in 2015. The idea was to move away from the EAL
levels towards a single protection profile for each class of secure device, and to
develop that profile as a collaborative e↵ort among firms in an industry, with
input from government and academics [462]. The hope was to stop security
evaluations being abused in strategic games between competitor firms. The
results of this can now be seen in 2020 by browsing the catalogue of evaluated
products on the CC website. Vendors in France and Germany still o↵er many
smartcards, and related products such as electronic signature creation devices,
with certificates at EAL4+ or EAL6; that’s the legacy of the SOG-IS cartel.

Outside Europe, though, the CC system has been completely captured by
vendor interests. American firms o↵er many firewalls, routers and other net-
working products, evaluated according to industry cPPs; and Japanese firms

Security Engineering 925 Ross Anderson

28.2. EVALUATION

o↵er a range of printers and fax machines. So what is a secure fax machine
– does it encrypt faxes? Not at all; it just behaves as you’d expect a fax ma-
chine to (if you’re old enough to remember them). In short, cPPs have become a
marketing mechanism, and are now undermining the traditional CC core. Firms
wanting to sell electronic signature systems can have them evaluated under a
cPP which is considered EAL4, and most customers can’t tell the di↵erence
between that and an EAL4+ evaluation done under the old rules.

28.2.8 The ‘Principle of Maximum Complacency’

There’s a substantial literature on the economics of standards, as there are
many contexts in which people have to choose between them. If you’re a bright
teenager, do you apply to a top university and risk getting a second-class degree,
or should you go to a local college and be a star? Should you worry about grade
inflation eroding the value of your degree in either case? If you’re raising money
for a startup, should you get your money from business angels or try to get a
big-name venture fund on board? An IT vendor wondering whether to go for
some kind of certification faces somewhat similar choices. And even nations
play certification games. The large service firms all have their EU headquarters
in Ireland as it has long been Dublin’s policy to have the most relaxed regime
of privacy regulation in Europe, as well as the lowest corporate taxes. What
options are there for dealing with such games?

The most influential model of such choices is a 2006 paper on forum shop-
ping by Josh Lerner and Jean Tirole7. Their model is a three-stage game in
which the sponsor selects a certifier, the certifier then studies the o↵ering and
perhaps demands some changes, and finally the end-users make decisions to
buy or not [1143]. The big question is whether competition between certifiers
will result in better standards, or in a race to the bottom. In most cases the
principle of maximum complacency wins out: owners seek endorsement from a
single certifier, and resist attempts to get them to improve the product. Only in
certain circumstances can competition improve quality. One example is where
NGOs compete to certify products as sustainable: there, the certifier cares more
about the users’ outcome than the sponsors do, and the desired property isn’t
strongly controlled by a single sponsor. Another is competition between elite
universities: students have no market power, and enough employers will pay a
premium for elite graduates that there’s plenty of incentive for Cambridge to
compete with Oxford, MIT and Berkeley.

Where there are more players than just the sponsor, the certifier and the
users, things get more complicated.

Certification games take place in a much larger ecosystem. A company in-
vents some new product and sells it to some customers. The customers then
want a standard, and some tests to satisfy their auditors. They may want the
inventor to license the product to their established suppliers, or at least to a
second supplier. Other inventors pile in, and all of a sudden there’s a patent
pool. The firms negotiate long and hard to get their patents in to maximise
their share of the royalties; this often results in horrible standards that are in-

7Tirole won the 2014 Nobel for this and much other work in market power and regulation.

Security Engineering 926 Ross Anderson

28.2. EVALUATION

secure and hard to fix (see section 14.2.4 on smart meters; there are many more
examples). The patent pools may become cartels that prevent new market en-
trants; this complaint has been made of the GSMA standards around 5G (see
section 22.2.4). The GSMA has also been criticised for its Network Equipment
Security Assurance Scheme (NESAS) where the vendor pays for a security as-
sessment that only takes a few days (and now allows remote audits because of
the pandemic). In short, industrial strategy doesn’t optimise for great products
so much as for monopolies or cartels.

Where a market is dominated by a monopoly, customer and political pressure
may eventually cause the monopolist to pay attention to security, and it can even
be rational for a monopolist to internalise some of the security externalities
(see the Microsoft case in section 27.5.3). But in the general case, of complex
supply chains with some steps dominated by cartels, it can be a lot harder.
The complexities in security certification are roughly (a) the relying parties –
those at risk if the thing gets hacked – may be customers, third parties such
as insurers, or the public (b) the sponsors may be vendors, customers, relying
parties or associations of any of these (c) the testers may compete on price
or on quality, and this means the lowest quality threshold they can get away
with subject to not losing a license from an accreditation body, which may be
a government entity or a trade association (d) there may be more than one
accreditation body, plus politics between them. So we can have multiple layers
of indirection and we occasionally even get competition about “who certifies the
certifiers”. To make sense of things we have to look at actual cases in detail.

In the case of CC evaluated products at EAL4 or above such as smartcards
and HSMs, suppose Alice’s company sells a product to Bob’s Bank and gets
Charlie the certifier to say it’s secure, after which Bob’s customer Dorothy
defrauds another customer Eve and absconds. How does the evaluation change
things when Eve now claims her money back from Bob in court? Bob will
argue he wasn’t negligent because he operated according to the standards of the
industry, so isn’t liable to reimburse Eve. This argument is even more powerful
if Charlie signed o↵ on his system. Charlie’s role is not so much a technical
authority as a liability shield. So Alice will work only as hard as she has to
to satisfy Charlie. Charlie will compete with his competitors and a race to the
bottom will ensue. The upshot in real life was that the payment card brands
set up PCI to take over Charlie’s role. We discussed in section 12.5.2 how
such standards shift liability in banking: they protect the bank more than the
merchant (surprise, surprise).

In the case of electronic signature devices, as we discussed in section 28.2.7.2
above, smartcard industry lobbying led Europe to pass signature laws that gives
special force to signatures created with certified products, even when these are
insecure. Lobbying by online service signature providers such as Docusign got
them on board too. The ultimate e↵ect is not security but a tax. (And to file
a tax return in some EU countries you have to get it signed by such a service,
adding an extra twenty Euros to your tax accountant’s fee.)

So should certification be voluntary? An interesting case study is by Ben
Edelman of the Trust-e scheme to certify websites. He discovered that certified
websites were more likely to attempt to load malware on to your computer,
rather than less. Adverse selection turned the scheme into a negative signal of

Security Engineering 927 Ross Anderson

28.2. EVALUATION

quality: the weaker vendors certified their websites, while well-known consumer
brands didn’t bother [612]. The reason for this was that Trust-e certification,
being voluntary, was cheap, and the technical barrier to certification was also
low.

But although industry lobbies like to talk of ‘cutting red tape’, how many
might be happy with the outright abolition of a government-backed safety or
security standard or agency? In practice, lobbyists seek to capture regulators
rather than abolish them. Many regulatory regimes function both as moats to
prevent incumbents being challenged too easily by startups and also as liability
shields. As an example, we discussed in section 17.3 how Amazon, Microsoft,
Google and IBM have restricted sales of face-recognition software – among the
most controversial of their products – until it’s regulated.

28.2.9 Next steps

Since Brexit, the UK and Europe have diverged. Europe passed a Cybersecu-
rity Act (regulation 2019/881) which strengthens the European Network and
Information Security Agency (ENISA) and places it at the centre of its strat-
egy. ENISA is to act as a centre of expertise and liaise with sectoral regulators
in banking, aviation, energy and telecomms, as well as the data protection au-
thorities. I expect this will be of major importance in the long run, as safety
and security regulation are coming together and will inevitably be managed on a
sectoral basis by the standards bodies for cars, aircraft, medical devices, railway
signals and so on. I will return to this later.

As for the certification of information security products, its approach might
be described as ‘one more heave’: it is setting up an EU Cybersecurity Cer-
tification Framework under ENISA which will take over as the top-level certi-
fier. It’s supposed to “help avoid the multiplication of conflicting or overlapping
national cybersecurity certification schemes and thus reduce costs for under-
takings operating in the digital single market” [655]. It will apply to services
and processes as well as products. As I write in 2020, the details are still
being worked out, but the intention is that sponsoring bodies of EU member
states will run certification at three levels, ranging from ‘basic’ which entails the
vendor self-assessing conformance with standards and assuming responsibility
for compliance, through ‘substantial’ which will involve verification of security
functionality, to ‘high’ which will involve ENISA taking over from SOG-IS the
supervision of the smartcard / HSM / e-signature kit currently evaluated at
EAL4 and above.

The UK government was concerned about certification for many years and
was involved in pushing cPPs in order to try to make certification more stan-
dardised. But by 2017 they had come to the conclusion that the Criteria were
neither necessary nor su�cient for security, and GCHQ withdrew as a sponsor
from 2019. It no longer licenses CLEFs or approves certifications, although UK
organisations may continue to use certifications created elsewhere8. It has long
had its own national product certification scheme, now known as commercial

8One of my spies in the Doughnut says ‘We absolutely recognise any CC certificate from
any producing nation as though it were our own and our assurance processes assign that
certificate precisely the weight it deserves :-)’

Security Engineering 928 Ross Anderson

28.2. EVALUATION

products assurance (CPA), but the only consumer product for which it currently
maintains CPA certification is the smart meter discussed in section 14.2.4. Fu-
ture legislation will require basic security for IoT devices, including a ban on
default passwords and a requirement for a software update mechanism; this is
being done in harness with ETSI, leading to a draft European standard ETSI
EN 303 645 V2.1 [646].

The direction of travel is now to look at process rather than product, both
for firms developing critical equipment for Britain’s national infrastructure, and
more generally. The general scheme, Cyber Essentials, is mandated for govern-
ment contractors supplying IT services or handling personal information.

There was already the ISO 27001 standard for security management, which
we mentioned in section 12.2.4: this is expensive, having been turned into an
income stream by the big accountancy firms, and about as useless as CC. Almost
all of the large security breaches happen at firms with ISO 27001 certification,
where the auditor said something was OK that wasn’t. The auditors have to
rely on what the firms tell them, and a firm that doesn’t know how to protect
its systems will just say ‘We have a great process for X’ when they don’t. Why
should a small business owner cough up tens of thousands for that, unless they
need it to bid for government contracts? And why should a government impose
such a tax? So the Cyber Essentials scheme focuses on the very basic stu↵
and costs only £300 for a validated self-certification. Its target was small and
medium enterprises, but the first firms to be actually certified under it were
large firms like banks and phone companies who wanted to add every single
tassel to their corporate due diligence.

As governments bicker, we’ve seen the emergence of a private sector stan-
dard, Bitsight. Recall how in the first chapter I remarked that in the corporate
world, a trusted system often means one acceptable to insurers. Recall also how
in section 2.2.1.6 we described how the NSA has a system called Mugshot that
crawls the Internet looking for vulnerable systems, and another called Xkeyscore
that enables cyber-warriors to find vulnerable systems near a target of interest?
Well, Bitsight does Mugshot for the private sector, but instead of attacking
companies’ systems it rates firms for cybersecurity risk by counting how many
of their servers are not patched up to date, and how many other indicators of
compromise are visible. They have come to dominate insurance market assess-
ments because they give a single numerical rating at a time when the insurance
industry, which is cyclical, is having its profits squeezed and can no longer get
clients to fill out long questionnaires about their cybersecurity practices. This
makes sense in the Lerner-Tirole model, as Bitsight is motivated to keep ahead
of possible competitors, just like an elite university. Their ratings are bringing
more honesty to the ecosystem than most of the schemes promoted by gov-
ernments and audit firms, but have some interesting side-e↵ects. For example,
service firms are now less willing to sponsor capture-the-flag competitions for
schools; if the Bitsight crawler sees a vulnerable system in your IP address space
that you set up as a target for such an exercise, it can cut your Bitsight rating
by more than 10%, which can cost you real business.

So much for certifying products and business processes. In the next section,
we look more closely at dependability metrics from the viewpoints of failure
analysis, bug tracking, cross-product dependencies, open-source software and

Security Engineering 929 Ross Anderson

28.3. METRICS AND DYNAMICS OF DEPENDABILITY

the development team.

28.3 Metrics and dynamics of dependability

As dependability becomes a lifetime property we need better ways of measuring
it. We know that it is often a function of the development team; we discussed
the capability maturity model in section 27.5.3. To get secure code, you need to
hire smart people with a suitable mix of skills and get them to work together on
shared projects so they learn to work together. In the process, you measure how
well they’re doing and improve it by giving feedback and constantly improving
the process and tools. But how do you do the measurement?

This has two main aspects: reliability growth, as systems become more
dependable over time with testing and bug fixing, and vulnerability disclosure,
as bugs are found and may or may not be fixed.

28.3.1 Reliability growth models

The growth of reliability as systems get more testing, both in the lab and in the
field, is of interest to many more people than just software engineers; nuclear,
electrical and aerospace engineers all depend on reliability models and metrics.

In the simplest possible case – where the tester is trying to find a single bug
in a system – a reasonable model is the Poisson distribution: the probability
p that the bug remains undetected after t statistically random tests is given
by p = e

�Et where E depends on the proportion of possible inputs that it
a↵ects [1175]. So where the reliability of a system is dominated by a single bug
– say when we’re looking for the first bug in a system, or the last one – reliability
growth can be exponential.

But extensive empirical investigations have shown that in large and complex
systems, the likelihood that the t-th test fails is not proportional to e

�Et but to
k/t for some constant k. So reliability grows very much more slowly. This was
first documented in the bug history of IBM mainframe operating systems [18],
and has been confirmed in many other studies [1198]. As a failure probability
of k/t means a mean time between failure (MTBF) of about t/k, reliability
grows linearly with testing time. This result is often stated by the safety critical
systems community as ‘If you want a mean time between failure of a million
hours, then you have to test for (at least) a million hours’ [355]. This has been
one of the main arguments against the development of complex, critical systems
that can’t be fully tested before use, such as President Reagan’s ‘Star Wars’
ballistic missile defence program.

The reason for the k/t behaviour emerged in [249] and was proved under
more general assumptions by observing that the Maxwell-Boltzmann statistics
developed to model ideal gases apply to statistically independent bugs too [312].
This model gives a number of other interesting results. If you can assume that
the bugs are statistically independent, then the k/t reliability growth is the best
possible: the rule that you need a million hours of testing to get a million hours
MTBF is inescapable, up to some constant multiple which depends on the initial

Security Engineering 930 Ross Anderson

28.3. METRICS AND DYNAMICS OF DEPENDABILITY

quality of the code and the scope of the testing. This can be seen as a version
of ‘Murphy’s Law’: that the number of defects which survive a selection process
is maximised.

These statistics give a neat link between evolutionary models of software and
the evolution of a biological species under selective pressure, where the ‘bugs’
are genes that reduce fitness. Just as software testing removes the minimum
possible number of bugs consistent with the tests applied, biological evolution
enables a species to adapt to a changed environment at a minimum cost in
early deaths while preserving as much diversity as possible to help the species
survive future environmental shocks. For example, if a population of rabbits
is preyed on by snakes, they will be selected for alertness rather than speed.
Their variability in speed will remain, so if foxes arrive in the neighbourhood
the rabbit population’s average running speed can rise sharply under selective
predation9.

The evolutionary model also points to fundamental limits on the reliability
gains to be had from reusable software components such as objects or libraries;
well-tested libraries simply mean that overall failure rates will be dominated by
new code. It also explains the safety-critical systems community’s observation
that test results are often a poor performance indicator [1175]. The failure time
measured by a tester depends only on the initial quality of the program, the
scope of the testing and the number of tests, so it gives virtually no further
information about the program’s likely performance in another environment.
There are also some results that are unexpected, but obvious in retrospect: for
example, each bug’s contribution to the overall failure rate is independent of
whether the code containing it is executed frequently or rarely – intuitively,
code that is executed less is also tested less. Finally, di↵erent testers should
work on a program in parallel rather than in series.

So complex systems only become reliable following prolonged testing by di-
verse testers. This gives the advantage to tried-and-tested designs for machinery,
as we gain statistical knowledge of how it fails. Mass-market software started
to be used at su�cient scale to enable thorough testing, especially once crash
reports started to be sent to the vendor. The use of regression testing by devel-
opment teams meant that billions of test cases can be exercised overnight with
each new build. Services that move to the cloud can be monitored for failure
all the time.

So what are the limits to reliability? First, new bugs are introduced by
the new code in new versions dictated by platform business models, and second,
adversarial action brings in a significant asymmetry between attack and defence.

Let’s take a simplified example. Suppose a product such as Windows has
1,000,000 bugs each with an MTBF of 1,000,000,000 hours. Suppose that Ahmed
works for the Iranian Revolutionary Guard to create tools to break into the US
Army’s network, while Brian is the NSA guy whose job is to stop Ahmed. So
he must learn of the bugs before Ahmed does.

Ahmed has only half a dozen people, so he can only do 10,000 hours of testing
a year. Brian has full Windows source code, dozens of PhDs, oversight of the

9More formally, the fundamental theorem of natural selection says that a species with a
high genic variance can adapt to a changing environment more quickly [695].

Security Engineering 931 Ross Anderson

28.3. METRICS AND DYNAMICS OF DEPENDABILITY

commercial evaluation labs, an inside track on CERT, an information sharing
deal with other Five Eyes member states, and also runs the government’s scheme
to send round consultants to critical industries such as power and telecomms
to find out how to hack them (pardon me, to advise them how to protect their
systems). This all adds up to the equivalent of 100,000,000 hours a year of
testing.

After a year, Ahmed finds 10 bugs, while Brian has found 100,000. But the
probability that Brian has found any one of Ahmed’s bugs is only 10%, and the
probability that he’ll have found them all is negligible. And Brian’s bug reports
will have become such a firehose that Microsoft will have found some excuse to
stop fixing them. In other words, the attacker has thermodynamics on his side.

In real life, vulnerabilities are correlated rather than independent; if 90% of
your vulnerabilities are stack overflows, and you introduce compiler technology
such as stack canaries and ASLR to trap them, then for modelling purposes there
was perhaps only a single vulnerability. However, it’s taken years to sort-of-not-
quite fix that one, and new ones come along all the time. So if you are actually
responsible for Army security, you can’t just rely on some commercial o↵-the-
shelf product you bought a few years ago. One way to escape the statistical trap
is simplicity – which, as we saw in Chapter 9, ends up meaning policies such as
mandatory access controls, architecture such as multilevel secure mail guards,
and much else besides. The more modern approach is a learning system that
observes what’s broken and fixes it quickly. That in turn means vigilant network
monitoring, breach reporting, vulnerability disclosure and rapid patching – as
we described in section 27.5.7.

28.3.2 Hostile review

When you really want a protection property to hold, it’s vital that the design
and implementation be subjected to hostile review. It will be eventually, and
it’s likely to be cheaper if it’s done before the system is fielded. As we’ve seen in
one case history after another, the motivation of the attacker is critical; friendly
reviews, by people who want the system to pass, are essentially useless compared
with contributions by people who are seriously trying to break it. That’s the
basic reason evaluations paid for by the vendor from one of a number of compet-
ing evaluators, as in the Common Criteria and ISO 27001, are fundamentally
broken. (Recall our discussion in section 12.2.6 of auditors’ chronic inability to
detect fraud by the executives who hired them. One hedge fund manager who
made $100M from shorting Wirecard, Jim Chanos, said, “When people ask us,
who were the auditors, I always say ‘Who cares?’ Almost every fraud has been
audited by a major accounting firm.” [30].)

To do hostile review, you can motivate attackers with either money or hon-
our. An example of the first was the Independent Validation and Verification
(IV&V) program used by NASA for manned space flight; contractors were hired
to trawl through the code and paid a bonus for every bug they found. An ex-
ample of the second was in the evaluation of nuclear command and control,
where Sandia National Laboratories and the NSA vied to find bugs in each
others’ designs. Another was at IBM, which maintained a leading position in
cryptography for years by having two teams, one in New York and the other in

Security Engineering 932 Ross Anderson

28.3. METRICS AND DYNAMICS OF DEPENDABILITY

North Carolina, who would try to break each others’ work, like Cambridge and
Oxford trying to win a boat race every year. Yet another is Google’s Project
Zero where the company devotes real engineering e↵ort to finding vulnerabilities
both in products that it relies on, such as Linux, and competitor products such
as iOS, and aggressively discloses them after 90 days’ notice in order to force
them to be fixed. This gets over 97% of them fixed [589].

Review by academics is, at its best, in this category. We academics win
our spurs by breaking stu↵, and get the highest accolades by inventing new
types of attack. We compete with each other – Cambridge against Berkeley
against CMU against the Weizmann. The established best practice, though, is
to motivate hostile review with money, and specifically via bug bounty programs
where vendors o↵er big rewards for reports of vulnerabilities. As we noted in
section 27.5.7 above, Apple o↵ers $1m for anyone who can hack the iOS kernel
without requiring any clicks by the user; this is one significant metric for iOS
security10.

One way to turbocharge either academic review or a bug bounty program is
to open your design and implementation, so all the world can look for bugs.

28.3.3 Free and open-source software

Should security mechanisms be open to scrutiny? The historical consensus is
that they should be. The first book in English on cryptography was written
in 1641 by Oliver Cromwell’s cryptographer John Wilkins. In ‘Mercury, or the
Secret and Swift Messenger’ he justified discussing cryptography with the re-
mark ‘If all those useful Inventions that are liable to abuse, should therefore
be concealed, there is not any Art or Science which might be lawfully profest’.
The first exposition of cryptographic engineering, Auguste Kerckho↵s ‘La Cryp-
tographie Militaire’ in 1883, recommended that cryptographic systems should
be designed in such a way that they are not compromised if the opponent learns
the technique being used: security must depend only on the key [1042]. In
Victorian times, the debate also touched on whether locksmiths should discuss
vulnerabilities in locks; as I noted in section 13.2.4, one book author pointed out
that both locksmiths and burglars knew how to pick locks and it was only the
customers who were ignorant. In section 15.8 I discussed the partial openness
found even in nuclear security.

The free and open-source software (FOSS) movement extends this philosophy
of openness from the algorithms and architecture to the implementation detail.
Many security products have publicly-available source code, of which the first
was probably the PGP email encryption program. The Linux and FreeBSD
operating systems and the Apache web server are also open-source and are
widely relied on: Android runs on Linux, which is also dominant in the world’s
data centres, while iOS is based on FreeBSD.

Open-source software is not entirely a recent invention; in the early days
of computing, most system software vendors published their source code. This
started to recede in the early 1980s when pressure of litigation led IBM to adopt

10On this metric the most secure system on earth might be bitcoin, as anyone who could
break the signature mechanism could steal billions.

Security Engineering 933 Ross Anderson

28.3. METRICS AND DYNAMICS OF DEPENDABILITY

an ‘object-code-only’ policy for its mainframe software, despite bitter criticism
from its users. The pendulum has swung back since 2000, and IBM is one of
the stalwarts of open source.

There are a number of strong arguments in favour of open software, and a
few against. First, while many closed systems are developed in structured ways
with waterfall or spiral models of the initial development and later upgrades, the
world is moving towards more agile development styles, a tension described by
Eric Raymond as “The Cathedral and the Bazaar” in an influential 1999 book
of that name [1584]. Second, systems are getting so complex and toolchains so
long that often the bug you’re trying to bust isn’t in the code you wrote but in
an operating system or even a compiler on which you rely, so you want to be
able to find bugs there quickly too, and either get them fixed or contribute a fix
yourself. Third, if everyone in the world can inspect and play with the software,
then bugs are more likely to be found and fixed; in Raymond’s famous phrase,
“To many eyes, all bugs are shallow”. Fourth, it may also be more di�cult to
insert backdoors into such a product (though people have been caught trying,
now that an exploit can sell for seven figures). Finally, for all these reasons,
open source is great for confidence.

The proprietary software industry argues that while openness helps the de-
fenders find bugs so they can fix them, it also helps the attackers find bugs so
they can exploit them. There may not be enough defenders for many open prod-
ucts, as the typical volunteer finds developing code more rewarding than bug
hunting (though bug bounties are starting to shift this). Second, as I noted in
section 28.3.4, di↵erent testers find di↵erent bugs as their test focus is di↵erent.
As volunteers will look at cool bits of code such as the crypto, smart spooks or
bug-bounty hunters will look at the boring bits such as the device drivers. In
practice, major vulnerabilities lurk for years. For example, a programming bug
in PGP versions 5 and 6 allowed an attacker to add an extra escrow key without
the key holder’s knowledge [1700].

So will the attackers or the defenders be helped more? Under the standard
model of reliability growth, we can show that openness helps attack and defence
equally [74]. Thus whether an open or proprietary approach works best in
a given application will depend on whether and how that application departs
from the standard assumptions, for example, of independent vulnerabilities. In
the end, you have to go out and collect the data; as an example, a study of
security bugs found in the OpenBSD operating system revealed that these bugs
were significantly correlated, which suggests that openness there was a good
thing [1488].

So where is the balance of benefit? Eric Raymond’s influential analysis of
the economics of open source software [1585] suggests five criteria for whether
a product would be likely to benefit from an open source approach: where it
is based on common engineering knowledge rather than trade secrets; where
it is sensitive to failure; where it needs peer review for verification; where it
is su�ciently business-critical that di↵erent users will cooperate in finding and
removing bugs; and where its economics include strong network e↵ects. Security
passes all these tests.

The law-and-economics scholar Peter Swire has explained why governments

Security Engineering 934 Ross Anderson

28.3. METRICS AND DYNAMICS OF DEPENDABILITY

are intrinsically less likely to embrace disclosure: although competitive forces
drove even Microsoft to open up a lot of its software for interoperability and
trust reasons, government agencies play di↵erent games, such as expanding their
budgets and avoiding embarrassment [1853]. Yet even there, the security argu-
ments have started to prevail: from tentative beginnings in about 1999, the US
Department of Defense has started to embrace open source, notably through
the SELinux project I discussed in section 9.5.2.

So while an open design is neither necessary nor su�cient, it is often going
to be helpful. The important first-order questions are how much e↵ort was ex-
pended by capable people in checking and testing what you built – and whether
they tell you everything they find. The prudent thing to do here is to have a
generous bug-bounty program. And there’s a second-order question of grow-
ing importance: if your business depends on Linux, shouldn’t at least a couple
of your engineers be engaged its its developer community, so you know what’s
going on?

28.3.4 Process assurance

In recent years less emphasis has come to be placed on assurance measures
focused on the product, such as testing, and more on process measures such as
who developed it and how. As anyone who’s done system development knows,
some programmers produce code with an order of magnitude fewer bugs than
others. There are also some organizations that produce much better code than
others. Capable firms try to hire good people, while good people prefer to work
for firms that value them and that hire kindred spirits.

While some of the di↵erences between high-quality and low-quality devel-
opers are down to talent, many are conditioned by work culture. In my own
experience, some IT departments are slow and bureaucratic while others are
lively. Leadership matters; just as replacing Boeing’s engineering leadership
with money men contributed to the 737Max disaster, I’ve seen an IT depart-
ment’s morale collapse when its CIO was replaced by a bureaucrat. Another
problem is that engineer quality has a tendency to decline over time. One fac-
tor is glamour: a lot of bright graduates want to work for startups rather than
the big tech firms, or for racy fintechs and hedge funds rather than boring old
money-centre banks. Another is demographics: the Microsoft of the early 1990s
was full of young engineers working long hours, but a decade later many had
cashed their stock options and left, while the rest had mostly acquired families
and worked o�ce hours. Once a company stops growing, promotion is slow;
there was a saying in IBM that ‘The only people who ever left were the good
ones11.’ Banks and government agencies have similar problems. Some firms
have tried to counter this by rating systems that require managers to fire the
least productive 10% or so of their team each year, but the damage this does
to morale is dreadful; people spend their time sucking up rather than writing
code. Maintaining a productive work culture is one of the really hard problems
and a surprising number of big-name firms are really bad at it. The capability
maturity model, which we discussed in section 27.5.3, is one of the tools that can
help good managers keep good teams together and improve them over time. But

11As a former IBM employee, I liked that one!

Security Engineering 935 Ross Anderson

28.3. METRICS AND DYNAMICS OF DEPENDABILITY

on its own it’s not enough. The whole corporate environment matters, from the
water-cooler chat to the top leadership. Is the mission to do great engineering,
or just to make money for Wall Street? Of course every firm pretends to have
a mission, but most are bogus and the sta↵ see through them instantly.

Some old-fashioned companies swear by the ISO 9001 standard, which re-
quires them to document their processes for design, development, testing, docu-
mentation, audit and management control generally. For more detail, see [1937];
a whole industry of consultants and auditors has got its snouts in this trough.
Like ISO 27001 which we discussed in section 28.2.9 above, it’s decorative rather
than e↵ective. At best it can provide a framework for incremental process im-
provement; but very often it’s an exercise in box-ticking that merely replaces
chaos by more bureaucratic chaos. Just as agile development methodologies
displaced waterfall approaches, so ISO 9001 is being displaced by the capabil-
ity maturity model. What that comes down to, in assurance terms, is trusted
suppliers.

But trusted suppliers are hard to certify. Government certifiers cannot be
seen to discriminate, so a program degenerates into box-ticking. Private certifi-
cation schemes have a tendency to reinforce cartels, or to race to the bottom, as
we discussed above in section 28.2.8. In both cases the consultancies and audit
firms industrialise the process to maximise their fee income, and we get back
to where we started. If you are good at your job, how do you get that across?
Small businesses who do high-quality work generally do better when they sell to
the most discriminating customers – to the few big players who’re smart enough
to appreciate what they do. In short, you usually have to be an expert yourself
to really understand who the quality providers are.

So what about the dynamics? If quality is hard to measure, and the in-
centives for quality are mixed, and improving quality is hard, then what can
usefully be said about the assurance level of evolving products? Will they be
like milk, or like wine [1488]? Will they get better with age, or go o↵?

The simple answer is that you have to do real measurements. The quality
of a system may improve, or decline. It may even find an equilibrium if the
rate at which new bugs are introduced by product enhancements equals the
rate at which old bugs are found and removed. There are several research
communities measuring reliability, availability and maintainability of systems
in various applications and contexts. Empirically, the reliability of new systems
often improves for a while as the more energetic bugs are found and fixed, then
stays in equilibrium for a number of years, and then deteriorates as the code
gets complex and more di�cult to maintain (which software engineers sometimes
even refer to as senescence). However, if the firms that maintain the code are
still making enough money from it, and are incentivised to care about quality,
they can fix this by rewriting the parts that have become too messy – a process
known as refactoring. In short, the real world is complicated. Models can take
you only so far, and you have to study how a system behaves in actual use.

Measurement brings its own problems. Some vendors collect and analyse
masses of data about how their products fail – examples being platform compa-
nies like Microsoft, Google and Apple – but make only selected data available
to outsiders, creating a market for specialist third-party evaluators, from the

Security Engineering 936 Ross Anderson

28.4. THE ENTANGLEMENT OF SAFETY AND SECURITY

tech press to academics. Other firms say much less, creating an opportunity for
rating firms such as Bitsight. The healthcare sector is notoriously cagey about
evidence of harm to patients, whose lawyers may have to work for years to build
a negligence case. But in applications such as medical devices, there is enough
of a public interest for regulators to intervene to increase transparency, and as
we noted in section 28.2.3 above, the EU recently changed the law on medical
device regulation to compel aftermarket surveillance. As most software nowa-
days is in applications rather than platforms, and very often in or supporting
devices, this brings us to consider the regulation of safety.

28.4 The Entanglement of Safety and Security

As we discussed in 28.2.2 governments regulate safety for many types of device
from cars to railway signals and from medical devices to toys. As software finds
its way into everything and everything gets connected to cloud services, the
nature of safety regulation is changing, from simple pre-market safety testing
to maintaining security and safety over a service lifetime of years during which
software will be patched regularly. We’ve already seen how this is becoming
entangled with security. We discussed smart grids in section 23.8.1, smart meters
in section 14.2 and building alarms in section 13.3.

I believe that the increasing entanglement of safety and security is so signif-
icant for our field that since 2017 we’ve merged teaching on safety and security
for our first-year undergraduates, as I mentioned in section 27.1. Safety is a
much more diverse subject than security. While security engineering is a fairly
coherent discipline, safety engineering has fragmented over time into separate
disciplines for aircraft, road vehicles, ships, medical devices, railway signals and
other applications. We can still learn a lot from safety engineers, as I discussed
in section 27.3, and safety engineers are starting to have to learn about security
too. This will be a long process. Thanks to the coronavirus lockdown, these
lectures are now publicly available on video [89]; I now wish I’d put my lectures
online years ago.

What spurred us to unite security and safety teaching was some work we
did for the European Union in 2015–6 looking at what will happen to safety
regulation once computers are embedded invisibly everywhere. The EU is the
leading safety regulator worldwide for dozens of industries, as it’s the largest
market and cares more about safety than the US government does. O�cials
wanted to know how this ecosystem would have to adapt to the ‘Internet of
Things’ where vulnerabilities (whether old or new) may be remotely exploited,
and at scale. Many regulators who previously thought only in terms of safety
will have to start thinking of security as well.

The problem facing the EU in 2015 was how to modernise safety regulation
across dozens of industries from cars and planes to medical devices, railway
signals and toys, and to introduce security regulation as appropriate. The reg-
ulatory goals are di↵erent. In this book, we have discussed how security fails in
a number of di↵erent sectors and the nature of the underlying market failure.
In di↵erent contexts, security regulators might want to drive up attackers’ costs
and reduce their income; to reduce the cost of defence; to reduce the impact of

Security Engineering 937 Ross Anderson

28.4. THE ENTANGLEMENT OF SAFETY AND SECURITY

security failure; to enable insurers to price cyber-risks e�ciently; and to reduce
both the social cost of attacks and social vulnerability to them.

Safety regulators seem to be more straightforward. They tend to ignore
the economic subtleties underlying each market failure and focus on injury and
death, then on direct property damage. For deaths, at least, you’d think we
have decent statistics, but priorities are modulated by public concern about
di↵erent types of harm. As we’ve discussed, the public are much more alarmed
at a hundred people dying all at once in a plane crash than a thousand people
dying one at a time in medical device accidents. However, when hackers showed
they could go in over wifi and change the dose delivered by several models
of Hospira Symbiq infusion pump to a potentially fatal level, the FDA issued a
safety advisory telling hospitals to stop using it [2066]. It did not issue advisories
about the 300+ models that merely su↵ered from the safety issues we discussed
in section 28.2.3. When you stop to think about it, that’s rather striking. A
safety regulator ignores a problem that kills several thousand Americans a year
while panicking at a safety-plus-security issue that has so far killed nobody.
Perhaps people intuitively grasp the principle we discussed in section 27.3.6:
that a one-in-a-million chance of a fatal accident happening by chance doesn’t
give much assurance if an opponent can engineer the combination of inputs
needed to trigger it.

The pattern continued the following year, when the FDA recalled 465,000
St Jude pacemakers in the USA for a firmware update after a report that the
device could be hacked. The update involves a hospital visit because of a small
risk of device failure. The report itself was controversial, as it was promoted by
an investment firm that had shorted St Jude’s stock [1838].

The EU already had work in progress on medical device safety and, the
following year, updated its Medical Device Directives to require that medical
device software be developed ‘in accordance with the state of the art taking into
account the principles of development life cycle, risk management, including in-
formation security, verification and validation’, and ‘designed and manufactured
in such a way as to protect, as far as possible, against unauthorised access that
could hamper the device from functioning as intended’ [653]. This text doesn’t
cover all the bases but is a useful first step; it comes into force in 2021.

28.4.1 The electronic safety and security of cars

Road safety helped drive interest in the convergence of security and safety in
the mid-2010s, thanks to the surge of interest in self-driving cars driven by
Google and Tesla, among others. Following the breakthrough in computer vision
using deep neural networks in 2012, there was rapid progress. The first news
of early accidents with experimental vehicles arrived around 2015 at the same
time as the breakthrough research on adversarial machine learning I described
in section 25.3 and the high-profile hack of the Jeep Cherokee, which I described
in section 25.2.4. Autonomous cars suddenly became a hot topic, not just for
stock-market investors and security researchers, but for safety. Could terrorists
hack them and drive them into crowds? Could they get the same result by
projecting deceptive images on a building? And if kids could use their phone
to hail a car home from school, could someone hack it to abduct them? And

Security Engineering 938 Ross Anderson

28.4. THE ENTANGLEMENT OF SAFETY AND SECURITY

what about the ethics – if a self-driving car was about to crash and could choose
between killing its one occupant or two pedestrians, what would it do? What
should it do? Let’s take the safety and assurance aspects one step at a time.

Road safety is a major success story for safety regulation. Following Ralph
Nader’s book ‘Unsafe at any speed’ [1370], the US Congress created the National
Highway Tra�c Safety Administration (NHTSA). It started from a belief that
crash testing of new models would be enough, but found it needed to force the
recall of vehicles that were discovered later to be unsafe12. The e↵ects can be
seen starkly in a Consumer Reports video of a crash test between a 2009 Chevy
Malibu and a 1959 Chevy Bel Air. The Bel Air’s passenger compartment is
crushed and the dummy driver impaled on the steering wheel; a human driver
would have been killed. Thanks to 50 years of progress, the passenger compart-
ment of the Malibu remains intact; the front crumple zone absorbs much of the
energy, the seatbelt and airbag hold the dummy driver, and a human driver
would have walked away [472]. I show this video to my first-year students to
emphasise that safety engineering is not just about making mistakes less likely,
but also about mitigating their e↵ects. The decades of progress that the video
illustrates involved not just engineering, lobbying and standard setting across
multiple countries, but many tussles between safety campaigners and the indus-
try. Within the industry, some carmakers tried to lead while others dragged their
heels. Car safety also involves driver training, laws against drink driving and
excessive driver working hours, changing social norms around such behaviour,
steady improvements to road junction design and much else. It has grown into
a large and complex ecosystem. This now has to evolve as cars become smarter
and more connected.

During the 2010s, cars were steadily acquiring more assistive technology,
from parking assist through adaptive cruise control to automatic emergency
braking and automatic lane keeping. I described in section 25.2 how compa-
nies like Google and Tesla drove a research program to join these systems up
together, giving autonomous driving. The assistive technology features them-
selves had various bugs; I discussed the blind spots of adaptive cruise control in
section 23.4.1. Some were also open to exploitation: Charlie Miller and Chris
Valasek had hacked the Jeep’s park-assist feature to drive it o↵ the road. Com-
panies that sold limited autonomous driving features, such as Tesla, experienced
accidents that began to undermine public confidence. I discussed some of the
security implications of autonomous vehicles in section 25.2. We discussed the
usability aspects of safety too. Tesla’s ‘Autopilot’ required the driver to pay
attention and keep a hand on the steering wheel, in order to remain in control
and avoid accidents. But as it drove adequately much of the time, many drivers
didn’t, with consequences that were occasionally both fatal and newsworthy.
Even in 2020, while the better autopilot systems can drive a car passably well
on the motorway, they can be flaky on smaller roads, getting confused at round-
abouts and running over grass verges. So how should we test their safety?

Testing an anti-lock braking system (ABS) is fairly straightforward as we
understand the physics of skidding and aquaplaning, and such systems have
been around long enough for us to have a long accident history. We next had
emergency brake assist (EBA), which applies full braking force if it thinks you’re

12The story is told in ‘The Struggle for Auto Safety’ [1235].

Security Engineering 939 Ross Anderson

28.4. THE ENTANGLEMENT OF SAFETY AND SECURITY

trying to do an emergency stop. The usual algorithm is that if you move your
foot from the accelerator to the brake in under 300ms and then apply at least
2kg of force, it activates and stops the car as quickly as possible. This is a
simple algorithm but is harder to evaluate, as it’s trying to infer the driver’s
intent. (I once triggered mine unintentionally and thankfully there wasn’t a car
close behind me.)

A recent addition is automatic emergency braking (AEB) which is supposed
to stop the car if a child or a dog runs in front of you. This is harder still,
as you’re trying to understand everything you see on the street ahead, with
complex processing that uses both traditional logic and machine-vision systems
based on deep neural networks. As we discussed in section 25.2, the current
products are both limited and of variable quality. Add lane keeping assist and
adaptive cruise control, and your car can pretty well drive itself on the freeway.
But how should you test that? And if we ever move to full autonomy, your risk
and threat analysis must include a lot of the bad things that happen in human
societies.

Tesla says in defence of its Autopilot feature that its cars are safer than
others; of the 135 fatalities in crashes involving its vehicles up to June 23 2020,
only 10 were attributed to Autopilot [1870]. The actual figures are controversial,
though. An insurance forensics company brought a lawsuit against NHTSA to
get the raw figures for accidents up till June 2016, studied them, and claimed
that the analysis o↵ered by Tesla and accepted by NHTSA had considered only
13% of the data. Rather than a 40% decrease in airbag deployments after the
Autosteer feature of the vehicle was activated, as Tesla had claimed, the full
data showed a 57% increase from 0.76 deployments per million miles of travel
to 1.21 [1565].

The insurance industry accumulates good data over time across all car mak-
ers and worries about the cost of claims. It was concerned at AEB, worrying
that if cars brake hard when a rabbit runs in front of them, there might be
more rear-end collisions. But once the data started to arrive in 2016, insurers
relaxed. When I check online how much it would cost me to insure a Tesla with
Autopilot versus a plug-in hybrid Mercedes of similar value, I get about the
same answer (though more insurers bid for the Mercedes).

But actuarial costs are not the only driver of public policy. Politicians started
to worry about truck drivers’ jobs. Philosophers started to worry about ethics:
given a choice between killing a pedestrian and the driver, would an autopilot
protect its driver? The industry worried about updates. Progress in machine
vision is so rapid that you can imagine having to sell a whole new vision unit
every five years, as the systems we have now won’t run on the hardware of five
years ago. Would the customers stand for having to pay several thousand Euros
every few years for a new autopilot?

People also worry more about security threats, as we have evolved to be
sensitive to adversarial activity. By 2020, we have a flurry of security stan-
dardisation, including the draft ISO 21434 standard on cybersecurity, which I
mentioned in section 27.3.5; proposed amendments to the regulations of the
UNECE13 to deal with cybersecurity and software updates for connected vehi-

13The UN Economic Commission for Europe was established by a 1958 treaty. It includes

Security Engineering 940 Ross Anderson

28.4. THE ENTANGLEMENT OF SAFETY AND SECURITY

cles [1921]; and in Japan, following cyber attacks on Toyota and Honda, baseline
requirements for the whole car industry supply chain [1243]. That’s all great,
but the target is moving faster all the time.

In Brussels, o�cials started to worry about how the regulatory ecosystem
could cope. Over 20 agencies are involved one way or another in vehicle safety
(unlike in the USA, where NHTSA covers everything from car design to speed
limits). Would each agency have to hire a security engineer? Some of them don’t
have any engineers at all, just lawyers and economists. How should the ecosys-
tem evolve to cope? O�cials were suddenly less willing to trust the industry’s
assurances after the Dieselgate emissions scandal in 2015, when it turned out
that Volkswagen had installed software in its cars to cheat on emissions tests.
The Volkswagen and Audi CEOs lost their jobs and face criminal charges, along
with about a dozen other executives; the companies paid billions in legal settle-
ments. The threat model was no longer just the external hacker, but included
the vendors themselves. Regulators wanted to get back in control. What did
they need to do?

28.4.2 Modernising safety and security regulation

Our brief was to consider the policy problem generally across all sectors. It
was clear that European institutions needed cybersecurity expertise to support
safety, privacy, consumer protection and competition. But what would this
mean in practice? In order to flesh this out, Éireann Leverett, Richard Clayton
and I studied three industries of which we had some knowledge: medical devices,
cars and electricity distribution. Our full report [157] was presented in 2016 and
published the following year, along with a summary version for academic audi-
ences [1148]. The full report has an extensive analysis of the existing patchwork
of safety / security standards for embedded devices from ISO, IEC, NIST and
others.

This exercise taught us a huge amount about subjects we didn’t expect would
be on the agenda. Usability is critical in a number of ways. The dominant safety
paradigm used to be to analyse how limited or erratic human performance could
degrade an otherwise well-designed system, and then work out how to mitigate
the consequences. Some countries demand that drivers over 67 get a medical
or re-sit their driving test, as well as insisting on seat belts and airbags. In
security, malice comes into the equation: you worry about the widow in her
eighties who’s called up and persuaded to install an ‘upgrade’ on her PC. Car
security is not just about whether a terrorist can take over your car remotely
and drive it into some pedestrians. If a child can use her mobile phone to direct
a car to take her to school, what new threats do we have to worry about? Might
she be abducted, whether by a stranger or (more likely) in a custody dispute?
And whose engineers need to worry about her safety – the car company’s, the
ride-hailing company’s, or the government’s?

The security engineer’s task is to enable even vulnerable users to enjoy rea-
sonable protection against a capable motivated opponent. How do you embed

the car-making countries in Europe and Africa plus Japan, Korea and Australasia and is
e↵ectively one of three standardisation zones for cars, the others being the Americas and
China.

Security Engineering 941 Ross Anderson

28.4. THE ENTANGLEMENT OF SAFETY AND SECURITY

good practice in industries that have never had to think of distant adversaries
before? That’s not just a matter of setting minimum standards but also of
embedding security thinking into standards bodies, regulatory agencies, testing
facilities and many other places in the ecosystem. That will be a long and ardu-
ous process, just as car safety was. Getting test engineers who work by checking
carefully whether the ‘British standard finger’ can be accidentally poked into
an electrical appliance to think in terms of creative malice instead will be hard.
Where do we start?

We came up with a number of recommendations. Some were considered by
the Commission to be in the ‘too hard’ category, including extending product
liability law to services, and requiring the reporting of breaches and vulnerabili-
ties not just to security agencies and privacy regulators but to other stakeholders
too. Eventually we’ll need laws regulating the use of car data in investigating
accidents, particularly if there are disputes over liability when car autopilots
cause fatal crashes. (At present the vendors hold the data close and it takes
vigorous litigation to get hold of it.) Without data we won’t be able to build a
learning system.

One of our recommendations was that vendors should have to self-certify, for
their CE mark, that products can be patched if need be. This looks set to be
partly achieved by means of a technical standard, ETSI EN 303 645 V2.1 [646],
as I discussed in section 28.2.9 above. ETSI is a membership organisation of
some 800 firms; it can move more quickly than governments but still has some
clout; for example, it set up the standards bodies for mobile telephony. Failure
to comply with an ETSI standard does not however empower a customs o�cer
in Rotterdam to send a container of toys back to China. For that, we need to
endow standards with the force of law.

28.4.3 The Cybersecurity Act 2019

Another recommendation was that Europe should create a European Security
Engineering Agency to support policymakers. Europe already had the European
Network and Information Security Agency (ENISA) which coordinated security
breach reporting among EU government agencies, but it had been exiled to
Crete as a result of lobbying by the UK and French intelligence agencies, who
did not want a peer competitor among the European institutions. The Brexit
vote shifted the politics and made it feasible for ENISA to open a proper Brussels
o�ce so it could take on the security engineering advisory role.

The Cybersecurity Act 2019 formalised this [655]. It empowered ENISA
to be the central agency for regulating security standards, as we described in
section 28.2.9, and also to be the main agency for cybersecurity advice to other
European bodies. It is to be hoped that ENISA will build its competence and
clout over time, and see to it that new safety standards pay appropriate attention
to security too, including at a minimum an appropriate development lifecycle
(which was another of our recommendations).

For a security technology to really work, functionality isn’t enough, and the
same goes for testing and even incentives for learning. The right people have to
trust it and it has to become embedded in social and organisational processes,

Security Engineering 942 Ross Anderson

28.5. SUSTAINABILITY

which means alignment with wider systems and stable persistence over a long
enough period of time. The implication is that regulators should shift from
the testing of products to the assurance of whole systems (this was our final
recommendation).

28.5 Sustainability

The problem our report identified as the most serious in the long term was that
products are becoming much less static. As security and safety vulnerabilities
are patched, regulators will have to deal with a moving target. Automobile
mechanisms will need security testing as well as safety testing, and also means
of dealing with updates. As we saw from the Volkswagen debacle, many legacy
manufacturers haven’t caught up with coordinated disclosure.

Most two-year old phones don’t get patched because the OEM and the mobile
network operator can’t get their act together. So how on earth are we going to
patch a 25-year-old Land Rover that spent 10 years in the Danish countryside
and was then exported to Romania? This kicked o↵ a political fight, as the car
industry did not want to be liable for software patching for more than six years.
(The typical European car dealer will sell you a 3-year lease on a new car if
you’re rich, and on an approved used car if you’re not quite so rich.) However,
the embedded carbon cost of a new car – the amount of CO2 emitted during
its manufacture – is about equal to its lifetime fuel burn. And it’s predictable
that, sooner or later, a car whose software isn’t up-to-date won’t be allowed on
the roads. At present, the average age of a car at scrappage is about 15 years;
if that were reduced to six, the environmental cost would be unacceptable. We
would not even save CO2 by moving from internal combustion engines to electric
vehicles, because of the higher embedded carbon cost of electric vehicles; the
whole energy transition is based on the assumption that they will last at least
as long as the 150,000km average of our legacy fleet [614].

We found a very ready audience in European institutions. A number of
other stakeholders had been complaining about the e↵ects of software on the
durability of consumer goods, with updates available only for a short period
of time or not at all. Right-to-repair activists were campaigning for consumer
electronic devices to be reusable in a circular economy, annoyed that tech firms
try to prevent repair using ‘security’ mechanisms, or even abuse them in an
attempt to make repair illegal. The self-regulation of the IoT market has been
largely unsuccessful, thanks to a complex interplay of economic incentives and
consumer expectations [1954]. Consumer-rights organisations were starting to
warn of the shockingly short lifespan of smart devices: you could spend extra on
a ‘smart fridge’ only to find that it turned into a frosty brick a year later when
the vendor stopped maintaining the server [933]. Planned obsolescence was
already a hot political topic as green parties increased their vote share across
Europe. Lightbulbs used to last longer; the bicentennial light has been burning
at Livermore since 1901. In 1924 a cartel of GE, Osram and Philips agreed
to reduce average bulb lifetimes from 2500h to 1000h, and this behaviour has
been followed by many industries since. Governments have pushed back; France
made it illegal to shorten product life in 2015, and after Apple admitted in 2017

Security Engineering 943 Ross Anderson

28.5. SUSTAINABILITY

that it had used a software update to slow down older iPhones, prompting users
to buy newer ones, it was prosecuted. In 2020 it received the highest-ever fine,
e1.2B, for anti-competitive practices, although this also related to its treatment
of its French distributors [1193]. (It settled a US class action for $500m [966].)

Security agencies were already warning us about the risks of the ‘Internet
of Things’, including network-connected devices with default passwords and
unpatchable software. In fact, I learned of the Mirai botnet taking down Twitter
as I was on the Eurostar train back to London from giving the first presentation
of our work, to an audience of about 100 security and IT policy people in
Brussels. We soon found out that it exploited Xiaomi CCTV cameras that had
default passwords and whose software could not be patched. It was a perfect
illustration of the need for action.

Over the ensuing three years there was more than one initiative to try to
create a legal means to push back on tech companies that failed like Xiaomi
to support their products by patching vulnerabilities (or even making patching
possible). The tech lobbyists blocked the first couple of attempts, but eventu-
ally in 2019 the European Parliament updated consumer law to cover software
maintenance.

28.5.1 The Sales of Goods Directive

This Directive passed the European Parliament in May 2019 [656] and will take
e↵ect from 2021. Thereafter, firms selling goods ‘with digital elements’ must
maintain those elements for a reasonable service life. The wording is designed
to cover software in the goods themselves, online services to which the goods
are connected, and apps which may communicate with the goods either via the
services or directly. They must be maintained for a minimum of two years after
sale, and for a longer period if that is a reasonable expectation of the customer.
What might that mean in practice?

Existing regulations require vendors of durables such as cars and washing
machines to keep supplying spares for at least ten years, so we can hope that
the new regulatory regime will require at least as long. Indeed, the preamble to
the Directive notes that “A consumer would normally expect to receive updates
for at least as long as the period during which the seller is liable for a lack of
conformity, while in some cases the consumer’s reasonable expectation could
extend beyond that period, as might be the case particularly with regard to
security updates.” Given that in many countries cars have to pass an annual
roadworthiness test to remain in use, and that such a test is likely to include
a check that software is patched up to date in the foreseeable future, we could
well see a requirement for security patches to extend beyond ten years.

No doubt there will be all sorts of arguments as the lobbyists try to cut the
costs of this, but it’s a huge step in the right direction. American practice often
follows Europe on safety matters.

Security Engineering 944 Ross Anderson

28.5. SUSTAINABILITY

28.5.2 New research directions

Now that there is not just a clear social need for long-term maintenance of the
safety and security of software in durable goods, but a clear legal mandate, I urge
my fellow computer scientists to adopt this as a grand challenge for research.

Since the 1960s we have come to see computers almost as consumables,
thanks to Moore’s law. This has conditioned our thinking from the lowest level
of technical detail up to the highest levels of policy. We’ve crammed thou-
sands, and then millions, more transistors into chips to support more elaborate
pipelining and caching. We’ve put up with slow and ine�cient software in the
knowledge that next year’s PC will run it faster. We’ve shrugged o↵ monop-
olies, believing that the tech ten years from now will be quite di↵erent from
today’s, so we can replace competition in the market with competition for the
market. We’ve been like a cruise ship, happily throwing the trash overboard in
the expectation that we’ll leave it far behind us.

Moore’s law is now running out of steam. The analysis of CPU performance
by Hennessy and Paterson shows that while this grew by 25% per annum from
1978 to 1986 and a whopping 52% from 1986 to 2003, it slowed to 23% in
2003–11, 12% in 2013–15 and 3.5% after that [882]. As the party winds down,
we’ll have to start clearing up the trash. That extends from the side-channel
attacks like Spectre that were caused by the 12-stage CPU pipelines, through
the technical debt accumulated in our bloatware, right up to the monopolistic
business ecosystem that drives it all.

There is much, much more. The root certificates of a number of popular
CAs are starting to expire, and if these are embedded in devices such as TVs
whose software can’t be upgraded, then the devices are essentially bricked [117].
(The most popular, Letsencrypt, rolls over in 2021.) When CA root certs expire
you have to update clients, not servers, to fix them. In consumer devices, the
trend is towards shorter lifetimes, to make crypto updateable; as I discussed in
section 21.6, browsers such as Safari and Chrome are starting to enforce 398-day
certificate expiry, and that’s another strong incentive for frequent updates.

There are many environments with long-lived equipment where updates
aren’t usual, from petrochemical plants to electricity substations. Systems in
buildings and civil engineering projects are somewhat of a hybrid; some vendors
are working on versions of Linux that are expected to be as stable as possible
and maintained for 25 years, while others are pushing for more aggressive reg-
ular updating of whole systems and telling us to ‘put everything in the cloud’.
This latter approach is associated with the ‘smart buildings’ meme, but has
its own drawbacks. Once multiple contractors and subcontractors need online
access to systems that contain full engineering information on buildings – from
the electricity substations through the air-conditioning to the fire and burglar
alarms – there are obvious risks. Some of these contractors operate at interna-
tional scale, so a subverted employee or rooted machine there may have access
to the critical national infrastructure of dozens of countries. Are we comfortable
with that?

Adapting to the new normal will take years, as it will require behaviour
change by millions of stakeholders. I suspect that the tensions created by this

Security Engineering 945 Ross Anderson

28.5. SUSTAINABILITY

adaption will become significant in policy, entrepreneurship and research over
the next decade.

So what might sustainable security research look like? As a first pilot project,
Laurent Simon, David Chisnall and I tackled the maintenance of cryptography
software. As I mentioned in section 19.4.1, TLS was proven secure twenty
years ago but there’s been about one attack a year on it since, mostly via
side channels. One of the problems is that the crypto implementation, such as
OpenSSL, typically has code designed to perform cryptographic operations in
constant time, so that the key in use won’t leak to an outside observer, and also
to zeroise memory locations containing key material or other sensitive data,
so that the key can’t be deduced by other users of the same machine either.
But every so often, somebody improves a compiler so that it now understands
that certain instructions don’t do any real work. It optimises them away, and
all of a sudden millions of machines have insecure crypto software. This is
extremely annoying; you’re out there fighting the bad guys and all of a sudden
your compiler writer stabs you in the back, like a subversive fifth column in your
rear. Our toolsmiths should be our allies rather than our enemies, and so we
worked out what would be needed to fix this properly. Languages like C have no
way of expressing programmer intent, so we figured out how to do this by means
of code annotations. Getting a compiler to do constant-time code and secure
object deletion properly turns out to be surprisingly tricky, but we eventually
got a working proof of concept in the form of plugins for LLVM [1758].

Much, much more will be needed. Moving from the low level of compiler
internals to the medium level of safety systems, a big challenge facing the car
industry is getting accident data to the stakeholders who can learn from it. In
Europe, some fifty thousand people die in road tra�c accidents each year, and
another half a million are injured. Worldwide, there are something like a million
deaths a year. As cars are starting to log both control inputs and sensor data,
there are many megabytes of data about a typical accident, but at present these
are mostly not analysed. Increasingly, the data are on the vendors’ servers as
well as in the damaged vehicles. But when the police investigate major road
accidents, they do not at present have access to much information from data
recorders or to most of the 100-million-plus lines of software in the vehicle –
some of which will be from subsidiary suppliers, and of uncertain provenance,
version and patch status. Where there is a closely-fought lawsuit, data may be
demanded, but vendors are reluctant to share it and it typically takes a court
order.

What should happen? We should aim at a learning system. We keep hear-
ing reports of people getting killed by an autonomous car in a stupid accident
– as when an Uber killed Elaine Herzberg in Tempe, Arizona because she was
pushing a bike on the road and its software detected pedestrians only on or
near a crosswalk [1264]. We should expect to be able to push an update to stop
that happening again. So what would the patch cycle look like? In aviation,
accidents are monitored resulting in feedback not just to operators such as pi-
lots and air tra�c controllers but to the designers of aircraft and supporting
ground systems. Work is starting on systems for monitoring accidents involving
medical devices, though the vendors may well drag their feet. There, too, the
key is mandatory systems for monitoring adverse events and collecting data.

Security Engineering 946 Ross Anderson

28.6. SUMMARY

At present, we fix road junctions once there have been several accidents there;
that’s all the ‘patch cycle’ we have at present, because the only data available
to the highways department is the location and severity of each accident, plus
perhaps a couple of sentences in the report from the attending o�cer. A learn-
ing system for cars too is inevitable as vehicles become more autonomous, but
they won’t learn on their own.

Learning will involve analysing the causes of failures, accumulating engineer-
ing knowledge, and ultimately politics involving multiple stakeholder groups.
For starters, we’ll need the fine-grained data from what the cars sensed, what
they decided to do, and why. The task of writing the laws to get these data
from vendors to accident investigators, insurance assessors and other stakehold-
ers lies ahead. At present, EU Member States are responsible for post-market
surveillance of vehicle standards, so very little gets done, and there have been
proposals to give the European Commission a surveillance power in the wake of
Dieselgate. Then there will be the task of actually building these systems. They
will be large and complex, because of the need to deal with multiple conflicting
rights around safety, privacy and jurisdiction.

Moving still further up the stack to the level of policy, there’s a growing
consensus that tech needs to be better regulated. We could perhaps tolerate the
various harms to privacy and competition while the technology was changing
rapidly. If you didn’t like the IBM monopoly in the 1980s you just had to wait
until Microsoft came along; and by the time Microsoft had become the ‘evil
empire’ in the late 1990s, Larry and Sergey were starting Google. Was Google+
too clunky for you? No matter, try Facebook or Twitter. But as Moore’s law
runs out of steam, the dominant firms we have now may remain dominant for
some time – just like the railways dominated the second half of the nineteenth
century and the first third of the twentieth. And there are many other sectors
where technology has enabled some players to lock in market dominance; as I
write in 2020, Amazon is the world’s most valuable company. We need to refresh
our thinking on antitrust law. There are some signs that this is happening [1044].
What would you hope the law to look like twenty years from now? How should
the safety, security and antitrust pieces fit together?

28.6 Summary

In the old days, the big question in a security engineering project was how you
know when you’re done. All sorts of evaluation and assurance methodologies
were devised to help. Now the world is di↵erent. We’re never done, and nobody
who says they are done should be trusted.

Security evaluation and assurance schemes grew up in a number of di↵erent
ecosystems. The US military spawned the original Orange Book, and inspired
both the FIPS 140 standards for cryptographic modules and the Common Cri-
teria, both of which attempted to spread the gospel of trustworthy systems to
businesses and to other countries. Safety certification schemes evolved sepa-
rately in a number of industries – healthcare, aerospace and road vehicles to
name just three. Vendors game these systems all the time, and work to capture
the regulators where this is possible. Now that everything’s acquiring connec-

Security Engineering 947 Ross Anderson

28.6. SUMMARY

tivity, you can’t have safety without security, and these ecosystems are merging.

In both safety and security, the emphasis will move from pre-market testing
to monitoring and response, which will include updating both devices already
in the field and the services that support them. This will move beyond software
lifecycle standards towards the goal of a learning system that can recover quickly
even from novel hazards and attacks.

Things are improving, slowly. Back in the 20th century, many vendors never
got information security right. By 2010, the better ones were getting it more
or less right at the third or fourth attempt. In the future, everyone will be
expected to fix their products reasonably promptly when they break, and to do
so for a reasonable period of time.

But the cost of all this, the entanglement of security with safety in all sorts
of devices and services, and their interaction with issues from discrimination
to globalisation and trade conflict, will make these issues increasingly the stu↵
of global politics. The safety and security costs inflicted on us by tech, in its
broadest sense, will be in increasing tension with national ideas of sovereignty
and, at a more practical level, people’s ability to achieve by collective action
those goals that cannot be achieved through individual action or market forces.
Just as security economics was a hot topic in the 2000s and security psychology
in the 2010s, I expect that the politics of security will be a growth topic in the
2020s and beyond.

Research problems

In addition to the grand challenge of sustainable security I discuss in sec-
tion 28.5.2 above, there are many other open problems around assurance. We
really don’t know how to do assurance in complex ecosystems such as where
cars talk to online services and mobile phone apps. A second bundle of prob-
lems comes from the fact that as the worlds of safety and security are slowly
coming together, like a couple of galaxies slowly merging, we find that safety
engineers and security engineers don’t speak each others’ languages, have incom-
patible sets of standards and even incompatible approaches to standardisation.
Working this out in one industry after another will take years.

Another big opportunity may be for lightweight mechanisms to improve real
deployed systems. Too many researchers take the view that ‘If it’s not perfect,
it’s no good.’ We have large communities of academics writing papers about
provable security, formal methods and about obscure attacks that aren’t found
in the wild because they don’t scale. We have large numbers of real problems
arising from companies corner-cutting on development. If programmers are
going to steal as much code as they can from stackexchange, do we need a
public-interest e↵ort to clean up the examples there to get rid of the bu↵er
overflows? And do we have any chance of setting security usability standards
for tools such as crypto libraries and device permissions, so that (for example)
libraries that default to ECB would be forcibly retired, just like MD5 and SHA1?

Yet another is likely to be the testing of AI/ML systems, both before deploy-
ment and for continuous assessment. We already know, for example, that deep

Security Engineering 948 Ross Anderson

28.6. SUMMARY

neural networks and other ML mechanisms inhale prejudice along with their
training data; because machine-vision systems are mostly trained on photos of
white people, they are uniformly worse at spotting people with darker skin,
leading to the concern that autonomous vehicles could be more likely to kill
black pedestrians [2026]. What will a learning system look like when it touches
a contentious social issue? How do you do continuous safety in a world where
not all lives are valued equally? How do we ensure that the security, privacy
and safety engineering decisions that firms take are open to public scrutiny and
legal challenge?

Further Reading

There’s a whole industry devoted to promoting the security and safety assurance
business, supported by mountains of your tax dollars. Their enthusiasm can
even have the flavour of religion. Unfortunately, there are nowhere near enough
people writing heresy.

Security Engineering 949 Ross Anderson

