
Chapter 9

Multilevel security

Most high assurance work has been done in the area of kinetic
devices and infernal machines that are controlled by stupid

robots. As information processing technology becomes more
important to society, these concerns spread to
areas previously thought inherently harmless,

like operating systems.
– EARL BOEBERT

The password on the government phone always seemed to drop, and
I couldn’t get into it

– US diplomat and former CIA o�cer KURT VOLKER, explaining
why he texted from his personal phone

I brief;
you leak;

he/she commits a criminal o↵ence
by divulging classified information.

– BRITISH CIVIL SERVICE VERB

9.1 Introduction

In the next few chapters I’m going to explore the concept of a security policy
using case studies. A security policy is a succinct description of what we’re trying
to achieve; it’s driven by an understanding of the bad outcomes we wish to avoid
and in turn drives the engineering. After I’ve fleshed out these ideas a little,
I’ll spend the rest of this chapter exploring the multilevel security (MLS) policy
model used in many military and intelligence systems, which hold information
at di↵erent levels of classification (Confidential, Secret, Top Secret, ...), and
have to ensure that data can be read only by a principal whose clearance level
is at least as high. Such policies are increasingly also known as information flow
control (IFC).
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9.2. WHAT IS A SECURITY POLICY MODEL?

They are important for a number of reasons, even if you’re never planning
to work for a government contractor:

1. from about 1980 to about 2005, the US Department of Defense spent
several billion dollars funding research into multilevel security. So the
model was worked out in great detail, and we got to understand the second-
order e↵ects of pursuing a single policy goal with great zeal;

2. the mandatory access control (MAC) systems used to implement it have
now appeared in all major operating systems such as Android, iOS and
Windows to protect core components against tampering by malware, as I
described in chapter 6;

3. although multilevel security concepts were originally developed to support
confidentiality in military systems, many commercial systems now use
multilevel integrity policies. For example, safety-critical systems use a
number of safety integrity levels1.

The poet Archilochus famously noted that a fox knows many little things,
while a hedgehog knows one big thing. Security engineering is usually in fox
territory, but multilevel security is an example of the hedgehog approach.

9.2 What is a Security Policy Model?

Where a top-down approach to security engineering is possible, it will typically
take the form of threat model – security policy – security mechanisms. The
critical, and often neglected, part of this process is the security policy.

By a security policy, we mean a document that expresses clearly and con-
cisely what the protection mechanisms are to achieve. It is driven by our un-
derstanding of threats, and in turn drives our system design. It will often take
the form of statements about which users may access which data. It plays the
same role in specifying the system’s protection requirements, and evaluating
whether they have been met, that the system specification does for functional-
ity and the safety case for safety. Like the specification, its primary function is
to communicate.

Many organizations use the phrase ‘security policy’ to mean a collection of
vapid statements, as in Figure 9.1:

1Beware though that terminology varies between di↵erent safety-engineering disciplines.
The safety integrity levels in electricity generation are similar to Biba, while automotive safety
integrity levels are set in ISO 26262 as a hazard/risk metric that depends on the likelihood
that a fault will cause an accident, together with the expected severity and controllability
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Megacorp Inc security policy

1. This policy is approved by Management.

2. All sta↵ shall obey this security policy.

3. Data shall be available only to those with a “need-to-know”.

4. All breaches of this policy shall be reported at once to Security.

Figure 9.1 – typical corporate policy language

This sort of language is common, but useless – at least to the security engi-
neer. It dodges the central issue, namely ‘Who determines “need-to-know” and
how?’ Second, it mixes statements at di↵erent levels (organizational approval
of a policy should logically not be part of the policy itself). Third, there is a
mechanism but it’s implied rather than explicit: ‘sta↵ shall obey’ – but what
does this mean they actually have to do? Must the obedience be enforced by the
system, or are users ‘on their honour’? Fourth, how are breaches to be detected
and who has a specific duty to report them?

When you think about it, this is political language. A politician’s job is to
resolve the tensions in society, and this often requires vague language on which
di↵erent factions can project their own wishes; corporate executives are often
operating politically, to balance di↵erent factions within a company2.

Because the term ‘security policy’ is often abused to mean using security for
politics, more precise terms have come into use by security engineers.

A security policy model is a succinct statement of the protection properties
that a system must have. Its key points can typically be written down in a
page or less. It is the document in which the protection goals of the system are
agreed with an entire community, or with the top management of a customer.
It may also be the basis of formal mathematical analysis.

A security target is a more detailed description of the protection mechanisms
that a specific implementation provides, and how they relate to a list of con-
trol objectives (some but not all of which are typically derived from the policy
model). The security target forms the basis for testing and evaluation of a
product.

A protection profile is like a security target but expressed in an implementation-
independent way to enable comparable evaluations across products and versions.
This can involve the use of a semi-formal language, or at least of suitable se-
curity jargon. A protection profile is a requirement for products that are to be
evaluated under the Common Criteria [1396]. (I discuss the Common Criteria in
Part III; they are used by many governments for mutual recognition of security
evaluations of defense information systems.)

When I don’t have to be so precise, I may use the phrase ‘security policy’ to
refer to either a security policy model or a security target. I will never use it to
refer to a collection of platitudes.

2Big projects often fail in companies when the specification becomes political, and they
fail even more often when run by governments – issues I’ll discuss further in Part 3.
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Sometimes, we’re confronted with a completely new application and have
to design a security policy model from scratch. More commonly, there already
exists a model; we just have to choose the right one, and develop it into a
security target. Neither of these steps is easy. In this section of the book, I
provide a number of security policy models, describe them in the context of real
systems, and examine the engineering mechanisms (and associated constraints)
which a security target can use to meet them.

9.3 Multilevel Security Policy

On March 22, 1940, President Roosevelt signed Executive Order 8381, enabling
certain types of information to be classified Restricted, Confidential or Se-
cret [978]. President Truman later added a higher level of Top Secret. This
developed into a common protective marking scheme for the sensitivity of doc-
uments, and was adopted by NATO governments too in the Cold War. Classi-
fications are labels, which run upwards from Unclassified through Confidential,
Secret and Top Secret (see Figure 9.2). The original idea was that informa-
tion whose compromise could cost lives was marked ‘Secret’ while information
whose compromise could cost many lives was ‘Top Secret’. Government employ-
ees and contractors have clearances depending on the care with which they’ve
been vetted; in the USA, for example, a ‘Secret’ clearance involves checking FBI
fingerprint files, while ‘Top Secret’ also involves background checks for the pre-
vious five to fifteen years’ employment plus an interview and often a polygraph
test [548]. Candidates have to disclose all their sexual partners in recent years
and all material that might be used to blackmail them, such as teenage drug
use or gay a↵airs3.

The access control policy was simple: you can read a document only if your
clearance is at least as high as the document’s classification. So an o�cial
cleared to ‘Top Secret’ could read a ‘Secret’ document, but not vice versa. So
information may only flow upwards, from confidential to secret to top secret,
but never downwards – unless an authorized person takes a deliberate decision
to declassify it.

TOP SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

Figure 9.2 – multilevel security

The system rapidly became more complicated. The damage criteria for
classifying documents were expanded from possible military consequences to

3In June 2015, the clearance review data of about 20m Americans was stolen from the
O�ce of Personnel Management by the Chinese intelligence services. By then, about a million
Americans had a Top Secret clearance; the OPM data also covered former employees and job
applicants, as well as their relatives and sexual partners. With hindsight, collecting all the
dirt on all the citizens with a sensitive job may not have been a great idea.
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economic harm and even political embarrassment. Information that is neither
classified nor public is known as ‘Controlled Unclassified Information’ (CUI) in
the USA while Britain uses ‘O�cial’4.

There is also a system of codewords whereby information, especially at Se-
cret and above, can be restricted further. For example, information that might
reveal intelligence sources or methods – such as the identities of agents or de-
cryption capabilities – is typically classified ‘Top Secret Special Compartmented
Intelligence’ or TS/SCI, which means that so-called need to know restrictions
are imposed as well, with one or more codewords attached to a file. Some code-
words relate to a particular military operation or intelligence source and are
available only to a group of named users. To read a document, a user must have
all the codewords that are attached to it. A classification label, plus a set of
codewords, makes up a security category or (if there’s at least one codeword)
a compartment, which is a set of records with the same access control policy.
Compartmentation is typically implemented nowadays using discretionary ac-
cess control mechanisms; I’ll discuss it in the next chapter.

There are also descriptors, caveats and IDO markings. Descriptors are words
such as ‘Management’, ‘Budget’, and ‘Appointments’: they do not invoke any
special handling requirements, so we can deal with a file marked ‘Confidential –
Management’ as if it were simply marked ‘Confidential’. Caveats are warnings
such as “UK Eyes Only”, or the US equivalent, “NOFORN”; they do create
restrictions. There are also International Defence Organisation markings such as
NATO5. The lack of obvious di↵erences between codewords, descriptors, caveats
and IDO marking helps make the system confusing. A more detailed explanation
can be found in [1562].

9.3.1 The Anderson report

In the 1960s, when computers started being widely used, the classification sys-
tem caused serious friction. Paul Karger, who worked for the USAF then,
described having to log o↵ from a Confidential system, walk across the yard
to a di↵erent hut, show a pass to an armed guard, then go in and log on to a
Secret system – over a dozen times a day. People soon realised they needed a
way to deal with information at di↵erent levels at the same desk, but how could
this be done without secrets leaking? As soon as one operating system bug was
fixed, some other vulnerability would be discovered. The NSA hired an eminent
computer scientist, Willis Ware, to its scientific advisory board, and in 1967
he brought the extent of the computer security problem to o�cial and public
attention [1985]. There was the constant worry that even unskilled users would

4Prior to adopting the CUI system, the United States had more than 50 di↵erent mark-
ings for data that was controlled but not classified, including For O�cial Use Only (FOUO),
Law Enforcement Sensitive (LES), Proprietary (PROPIN), Federal Tax Information (FTI),
Sensitive but Unclassified (SBU), and many, many others. Some agencies made up their own
labels, without any coordination. Further problems arose when civilian documents marked
Confidential ended up at the National Archives and Records Administration, where CONFI-
DENTIAL was a national security classification. Moving from this menagerie of markings to
a single centrally-managed government-wide system has taken more than a decade and is still
ongoing. The UK has its own post-Cold-War simplification story.

5Curiously, in the UK ‘NATO Secret’ is less secret than ‘Secret’, so it’s a kind of anti-
codeword that moves the content down the lattice rather than up.
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discover loopholes and use them opportunistically; there was also a keen and
growing awareness of the threat from malicious code. (Viruses were not invented
until the 1980s; the 70’s concern was Trojans.) There was then a serious scare
when it was discovered that the Pentagon’s World Wide Military Command and
Control System (WWMCCS) was vulnerable to Trojan Horse attacks; this had
the e↵ect of restricting its use to people with a ‘Top Secret’ clearance, which
was inconvenient.

The next step was a 1972 study by James Anderson for the US government
which concluded that a secure system should do one or two things well; and
that these protection properties should be enforced by mechanisms which were
simple enough to verify and that would change only rarely [51]. It introduced the
concept of a reference monitor – a component of the operating system which
would mediate access control decisions and be small enough to be subject to
analysis and tests, the completeness of which could be assured. In modern
parlance, such components – together with their associated operating procedures
– make up the Trusted Computing Base (TCB). More formally, the TCB is
defined as the set of components (hardware, software, human, ...) whose correct
functioning is su�cient to ensure that the security policy is enforced, or, more
vividly, whose failure could cause a breach of the security policy. The Anderson
report’s goal was to make the security policy simple enough for the TCB to be
amenable to careful verification.

9.3.2 The Bell-LaPadula model

The multilevel security policy model that gained wide acceptance was proposed
by Dave Bell and Len LaPadula in 1973 [210]. Its basic property is that infor-
mation cannot flow downwards. More formally, the Bell-LaPadula (BLP) model
enforces two properties:

• The simple security property: no process may read data at a higher level.
This is also known as no read up (NRU);

• The *-property: no process may write data to a lower level. This is also
known as no write down (NWD).

The *-property was Bell and LaPadula’s critical innovation. It was driven
by the WWMCCS debacle and the more general fear of Trojan-horse attacks.
An uncleared user might write a Trojan and leave it around where a system
administrator cleared to ‘Secret’ might execute it; it could then copy itself into
the ‘Secret’ part of the system, read the data there and try to signal it down
somehow. It’s also quite possible that an enemy agent could get a job at a com-
mercial software house and embed some code in a product that would look for
secret documents to copy. If it could then write them down to where its creator
could read them, the security policy would have been violated. Information
might also be leaked as a result of a bug, if applications could write down.

Vulnerabilities such as malicious and buggy code are assumed to be given.
It is also assumed that most sta↵ are careless, and some are dishonest; exten-
sive operational security measures have long been used, especially in defence
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environments, to prevent people leaking paper documents. So the pre-existing
culture assumed that security policy was enforced independently of user actions;
Bell-LaPadula sets out to enforce it not just independently of users’ direct ac-
tions, but of their indirect actions (such as the actions taken by programs they
run).

So we must prevent programs running at ‘Secret’ from writing to files at ‘Un-
classified’. More generally we must prevent any process at High from signalling
to any object at Low. Systems that enforce a security policy independently of
user actions are described as having mandatory access control, as opposed to
the discretionary access control in systems like Unix where users can take their
own access decisions about their files.

The Bell-LaPadula model enabled designers to prove theorems. Given both
the simple security property (no read up), and the star property (no write down),
various results can be proved: in particular, if your starting state is secure, then
your system will remain so. To keep things simple, we will generally assume
from now on that the system has only two levels, High and Low.

9.3.3 The standard criticisms of Bell-LaPadula

The introduction of BLP caused a lot of excitement: here was a security policy
that did what the defence establishment thought it wanted, was intuitively clear,
yet still allowed people to prove theorems. Researchers started to beat up on it
and refine it.

The first big controversy was about John McLean’s System Z, which he
defined as a BLP system with the added feature that a user can ask the system
administrator to temporarily declassify any file from High to Low. In this way,
Low users can read any High file without breaking the BLP assumptions. Dave
Bell countered that System Z cheats by doing something his model doesn’t allow
(changing labels isn’t a valid operation on the state), and John McLean’s retort
was that it didn’t explicitly tell him so: so the BLP rules were not in themselves
enough. The issue is dealt with by introducing a tranquility property. Strong
tranquility says that security labels never change during system operation, while
weak tranquility says that labels never change in such a way as to violate a
defined security policy.

Why weak tranquility? In a real system we often want to observe the prin-
ciple of least privilege and start o↵ a process at the uncleared level, even if
the owner of the process were cleared to ‘Top Secret’. If they then access a
confidential email, their session is automatically upgraded to ‘Confidential’; in
general, a process is upgraded each time it accesses data at a higher level (the
high water mark principle). As subjects are usually an abstraction of the mem-
ory management sub-system and file handles, rather than processes, this means
that state changes when access rights change, rather than when data actually
moves.

The practical implication is that a process acquires the security labels of all
the files it reads, and these become the default label set of every file that it
writes. So a process which has read files at ‘Secret’ and ‘Crypto’ will thereafter
create files marked ‘Secret Crypto’. This will include temporary copies made of
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other files. If it then reads a file at ‘Secret Nuclear’ then all files it creates after
that will be labelled ‘Secret Crypto Nuclear’, and it will not be able to write to
any temporary files at ‘Secret Crypto’.

The e↵ect this has on applications is one of the serious complexities of mul-
tilevel security; most application software needs to be rewritten (or at least
modified) to run on MLS platforms. Real-time changes in security level mean
that access to resources can be revoked at any time, including in the middle of
a transaction. And as the revocation problem is generally unsolvable in mod-
ern operating systems, at least in any complete form, the applications have to
cope somehow. Unless you invest some care and e↵ort, you can easily find that
everything ends up in the highest compartment – or that the system fragments
into thousands of tiny compartments that don’t communicate at all with each
other. In order to prevent this, labels are now generally taken outside the MLS
machinery and dealt with using discretionary access control mechanisms (I’ll
discuss this in the next chapter).

Another problem with BLP, and indeed with all mandatory access control
systems, is that separating users and processes is the easy part; the hard part is
when some controlled interaction is needed. Most real applications need some
kind of trusted subject that can break the security policy; the classic example
was a trusted word processor that helps an intelligence analyst scrub a Top
Secret document when she’s editing it down to Secret [1270]. BLP is silent on
how the system should protect such an application. So it becomes part of the
Trusted Computing Base, but a part that can’t be verified using models based
solely on BLP.

Finally it’s worth noting that even with the high-water-mark refinement,
BLP still doesn’t deal with the creation or destruction of subjects or objects
(which is one of the hard problems of building a real MLS system).

9.3.4 The evolution of MLS policies

Multilevel security policies have evolved in parallel in both the practical and
research worlds.

The first multilevel security policy was a version of high water mark writ-
ten in 1967–8 for the ADEPT-50, a mandatory access control system developed
for the IBM S/360 mainframe [2006]. This used triples of level, compartment
and group, with the groups being files, users, terminals and jobs. As programs
(rather than processes) were subjects, it was vulnerable to Trojan horse compro-
mises. Nonetheless, it laid the foundation for BLP, and also led to the current
IBM S/390 mainframe hardware security architecture [940].

The next big step was Multics. This had started as an MIT project in
1965 and developed into a Honeywell product; it became the template and
inspirational example for ‘trusted systems’. The evaluation that was carried
out on it by Paul Karger and Roger Schell was hugely influential and was the
first appearance of the idea that malware could be hidden in the compiler [1019]
– and led to Ken Thompson’s famous paper ‘Reflections on Trusting Trust’
ten years later [1883]. Multics had a derivative system called SCOMP that I’ll
discuss in section 9.4.1 .
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The torrent of research money that poured into multilevel security from the
1980s led to a number of alternative formulations. Noninterference was intro-
duced by Joseph Goguen and Jose Meseguer in 1982 [773]. In a system with this
property, High’s actions have no e↵ect on what Low can see. Nondeducibility is
less restrictive and was introduced by David Sutherland in 1986 [1847] to model
applications such as a LAN on which there are machines at both Low and High,
with the High machines encrypting their LAN tra�c6. Nondeducibility turned
out to be too weak, as there’s nothing to stop Low making deductions about
High input with 99% certainty. Other theoretical models include Generalized
Noninterference and restrictiveness [1276]; the Harrison-Ruzzo-Ullman model
tackles the problem of how to deal with the creation and deletion of files, on
which BLP is silent [868]; and the Compartmented Mode Workstation (CMW)
policy attempted to model the classification of information using floating labels,
as in the high water mark policy [2040, 807].

Out of this wave of innovation, the model with the greatest impact on modern
systems is probably the type enforcement (TE) model, due to Earl Boebert
and Dick Kain [271], later extended by Lee Badger and others to Domain and
Type Enforcement (DTE) [153]. This assigns subjects to domains and objects
to types, with matrices defining permitted domain-domain and domain-type
interactions. This is used in SELinux, now a component of Android, which
simplifies it by putting both subjects and objects in types and having a matrix
of allowed type pairs [1187]. In e↵ect this is a second access-control matrix; in
addition to having a user ID and group ID, each process has a security ID (SID).
The Linux Security Modules framework provides pluggable security where you
can set rules that operate on SIDs.

DTE introduced a language for configuration (DTEL), and implicit typing of
files based on pathname; so all objects in a given subdirectory may be declared
to be in a given domain. DTE is more general than BLP, as it starts to deal with
integrity as well as confidentiality concerns. One of the early uses was to enforce
trusted pipelines: the idea is to confine a set of processes in a pipeline so that
each can only talk to the previous stage and the next stage. This can be used
to assemble guards and firewalls which cannot be bypassed unless at least two
stages are compromised [1430]. Type-enforcement mechanisms can be aware
of code versus data, and privileges can be bound to code; in consequence the
tranquility problem can be dealt with at execute time rather than as data are
read. This can make things much more tractable. They are used, for example,
in the Sidewinder firewall.

The downside of the greater flexibility and expressiveness of TE/DTE is
that it is not always straightforward to implement policies like BLP, because
of state explosion; when writing a security policy you have to consider all the
possible interactions between di↵erent types. Other mechanisms may be used
to manage policy complexity, such as running a prototype for a while to observe
what counts as normal behaviour; you can then turn on DTE and block all the
information flows not seen to date. But this doesn’t give much assurance that

6Quite a lot else is needed to do this right, such as padding the High tra�c with nulls so
that Low users can’t do tra�c analysis – see [1632] for an early example of such a system. You
may also need to think about Low tra�c over a High network, such as facilities for soldiers to
phone home.
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the policy you’ve derived is the right one.

In 1992, role-based access control (RBAC) was introduced by David Ferraiolo
and Richard Kuhn to manage policy complexity. It formalises rules that attach
primarily to roles rather than to individual users or machines [678, 679]. Trans-
actions that may be performed by holders of a given role are specified, then
mechanisms for granting membership of a role (including delegation). Roles, or
groups, had for years been the mechanism used in practice in organizations such
as banks to manage access control; the RBAC model started to formalize this.
It can be used to give finer-grained control, for example by granting di↵erent
access rights to ‘Ross as Professor’, ‘Ross as member of the Admissions Com-
mittee’ and ‘Ross reading private email’. A variant of it, aspect-based access
control (ABAC), adds context, so you can distinguish ‘Ross at his workstation
in the lab’ from ‘Ross on his phone somewhere on Earth’. Both have been
supported by Windows since Windows 8.

SELinux builds it on top of TE, so that users are mapped to roles at login
time, roles are authorized for domains and domains are given permissions to
types. On such a platform, RBAC can usefully deal with integrity issues as
well as confidentiality, by allowing role membership to be revised when certain
programs are invoked. Thus, for example, a process calling untrusted software
that had been downloaded from the net might lose the role membership required
to write to sensitive system files. I discuss SELinux in more detail at 9.5.2.

9.3.5 The Biba model

The incorporation into Windows 7 of a multilevel integrity model revived interest
in a security model devised in 1975 by Ken Biba [237], which deals with integrity
alone and ignores confidentiality. Biba’s observation was that confidentiality and
integrity are in some sense dual concepts – confidentiality is a constraint on who
can read a message, while integrity is a constraint on who can write or alter it.
So you can recycle BLP into an integrity policy by turning it upside down.

As a concrete application, an electronic medical device such as an ECG
may have two separate modes: calibration and use. Calibration data must be
protected from corruption, so normal users should be able to read it but not
write to it; when a normal user resets the device, it will lose its current user state
(i.e., any patient data in memory) but the calibration must remain unchanged.
Only an authorised technician should be able to redo the calibration.

To model such a system, we can use a multilevel integrity policy with the
rules that we can read data at higher levels (i.e., a user process can read the
calibration data) and write to lower levels (i.e., a calibration process can write
to a bu↵er in a user process); but we must never read down or write up, as
either could allow High integrity objects to become contaminated with Low –
i.e. potentially unreliable – data. The Biba model is often formulated in terms of
the low water mark principle, which is the dual of the high water mark principle
discussed above: the integrity of an object is the lowest level of all the objects
that contributed to its creation.

This was the first formal model of integrity. A surprisingly large number
of real systems work along Biba lines. For example, the passenger informa-
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tion system in a railroad may get information from the signalling system, but
shouldn’t be able to a↵ect it; and an electricity utility’s power dispatching sys-
tem will be able to see the safety systems’ state but not interfere with them.
The safety-critical systems community talks in terms of safety integrity levels,
which relate to the probability that a safety mechanism will fail and to the level
of risk reduction it is designed to give.

Windows, since version 6 (Vista), marks file objects with an integrity level,
which can be Low, Medium, High or System, and implements a default policy
of NoWriteUp. Critical files are at System and other objects are at Medium by
default – except for the browser which is at Low. So things downloaded using
IE can read most files in a Windows system, but cannot write to them. The
goal is to limit the damage that can be done by malware.

As you might expect, Biba has the same fundamental problems as Bell-
LaPadula. It cannot accommodate real-world operation very well without nu-
merous exceptions. For example, a real system will usually require trusted sub-
jects that can override the security model, but Biba on its own cannot protect
and confine them, any more than BLP can. For example, a car’s airbag is on a
less critical bus than the engine, but when it deploys you assume there’s a risk
of a fuel fire and switch the engine o↵. There are other real integrity goals that
Biba also cannot express, such as assured pipelines. In the case of Windows,
Microsoft even dropped the NoReadDown restriction and did not end up using
its integrity model to protect the base system from users, as this would have
required even more frequent user confirmation. In fact, the Type Enforcement
model was introduced by Boebert and Kain as an alternative to Biba. It is
unfortunate that Windows didn’t incorporate TE.

9.4 Historical Examples of MLS Systems

The second edition of this book had a much fuller history of MLS systems; since
these have largely gone out of fashion, and the MLS research programme has
been wound down, I give a shorter version here.

9.4.1 SCOMP

A key product was the secure communications processor (SCOMP), a derivative
of Multics launched in 1983 [710]. This was a no-expense-spared implementation
of what the US Department of Defense believed it wanted for handling messaging
at multiple levels of classification. It had formally verified hardware and soft-
ware, with a minimal kernel to keep things simple. Its operating system, STOP,
used Multics’ system of rings to maintain up to 32 separate compartments, and
to allow appropriate one-way information flows between them.

SCOMP was used in applications such as military mail guards. These are fire-
walls that allow mail to pass from Low to High but not vice versa [538]. (In gen-
eral, a device which supports one-way flow is known as a data diode.) SCOMP’s
successor, XTS-300, supported C2G, the Command and Control Guard. This
was used in the time phased force deployment data (TPFDD) system whose
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function was to plan US troop movements and associated logistics. SCOMP’s
most significant contribution was to serve as a model for the Orange Book [544]
– the US Trusted Computer Systems Evaluation Criteria. This was the first
systematic set of standards for secure computer systems, being introduced in
1985 and finally retired in December 2000. The Orange Book was enormously
influential not just in the USA but among allied powers; countries such as the
UK, Germany, and Canada based their own national standards on it, until these
national standards were finally subsumed into the Common Criteria [1396].

The Orange Book allowed systems to be evaluated at a number of levels
with A1 being the highest, and moving downwards through B3, B2, B1 and C2
to C1. SCOMP was the first system to be rated A1. It was also extensively
documented in the open literature. Being first, and being fairly public, it set a
target for the next generation of military systems.

MLS versions of Unix started to appear in the late 1980s, such as AT&T’s
System V/MLS [47]. This added security levels and labels, showing that MLS
properties could be introduced to a commercial operating system with minimal
changes to the system kernel. By this book’s second edition (2007), Sun’s Solaris
had emerged as the platform of choice for high-assurance server systems and for
many clients as well. Comparted Mode Workstations (CMWs) were an example
of the latter, allowing data at di↵erent levels to be viewed and modified at the
same time, so an intelligence analyst could read ‘Top Secret’ data in one window
and write reports at ‘Secret’ in another, without being able to accidentally copy
and paste text downwards [932]. For the engineering, see [635, 636].

9.4.2 Data diodes

It was soon realised that simple mail guards and crypto boxes were too restric-
tive, as more complex networked services were developed besides mail. First-
generation MLS mechanisms were ine�cient for real-time services.

HIGH

PUMP

LOW

Figure 9.3: – the NRL pump

The US Naval Research Laboratory (NRL) therefore developed the Pump –
a one-way data transfer device (a data diode) to allow secure one-way informa-
tion flow (Figure 9.3. The main problem is that while sending data from Low to
High is easy, the need for assured transmission reliability means that acknowl-

Security Engineering 310 Ross Anderson



9.4. HISTORICAL EXAMPLES OF MLS SYSTEMS

edgement messages must be sent back from High to Low. The Pump limits the
bandwidth of possible backward leakage using a number of mechanisms such
as bu↵ering and random timing of acknowledgements [1012, 1013, 1014]. The
attraction of this approach is that one can build MLS systems by using data
diodes to connect separate systems at di↵erent security levels. As these systems
don’t process data at more than one level – an architecture called system high
– they can be built from cheap commercial-o↵-the-shelf (COTS) components.
You don’t need to worry about applying MLS internally, merely protecting them
from external attack, whether physical or network-based. As the cost of hard-
ware has fallen, this has become the preferred option, and the world’s military
bases are now full of KVM switches (which let people switch their keyboard,
video display and mouse between Low and High systems) and data diodes (to
link Low and High networks). The pump’s story is told in [1015].

An early application was logistics. Some signals intelligence equipment is
‘Top Secret’, while things like jet fuel and bootlaces are not; but even such
simple commodities may become ‘Secret’ when their quantities or movements
might leak information about tactical intentions. The systems needed to manage
all this can be hard to build; MLS logistics projects in both the USA and UK
have ended up as expensive disasters. In the UK, the Royal Air Force’s Logistics
Information Technology System (LITS) was a 10 year (1989–99), £500m project
to provide a single stores management system for the RAF’s 80 bases [1386].
It was designed to operate on two levels: ‘Restricted’ for the jet fuel and boot
polish, and ‘Secret’ for special stores such as nuclear bombs. It was initially
implemented as two separate database systems connected by a pump to enforce
the MLS property. The project became a classic tale of escalating costs driven
by creeping changes in requirements. One of these changes was the easing of
classification rules with the end of the Cold War. As a result, it was found that
almost all the ‘Secret’ information was now static (e.g., operating manuals for
air-drop nuclear bombs that are now kept in strategic stockpiles rather than at
airbases). To save money, the ‘Secret’ information is now kept on a CD and
locked up in a safe.

Another major application of MLS is in wiretapping. The target of inves-
tigation should not know they are being wiretapped, so the third party must
be silent – and when phone companies started implementing wiretaps as silent
conference calls, the charge for the conference call had to go to the wiretapper,
not to the target. The modern requirement is a multilevel one: multiple agen-
cies at di↵erent levels may want to monitor a target, and each other, with the
police tapping a drug dealer, an anti-corruption unit watching the police, and
so on. Eliminating covert channels is harder than it looks; for a survey from
the mid-2000s, see [1707]; a pure MLS security policy is insu�cient, as suspects
can try to hack or confuse wiretapping equipment, which therefore needs to re-
sist online tampering. In one notorious case, a wiretap was discovered on the
mobile phones of the Greek Prime Minister and his senior colleagues during the
Athens olympics; the lawful intercept facility in the mobile phone company’s
switchgear was abused by unauthorised software, and was detected when the
buggers’ modifications caused some text messages not to be delivered [1550].
The phone company was fined 76 million Euros (almost $100m). The clean way
to manage wiretaps nowadays with modern VOIP systems may just be to write
everything to disk and extract what you need later.

Security Engineering 311 Ross Anderson



9.5. MAC: FROM MLS TO IFC AND INTEGRITY

There are many military embedded systems too. In submarines, speed, reac-
tor output and RPM are all Top Secret, as a history of these three measurements
would reveal the vessel’s performance – and that’s among the few pieces of in-
formation that even the USA and the UK don’t share. The engineering is made
more complex by the need for the instruments not to be Top Secret when the
vessel is in port, as that would complicate maintenance. And as for air combat,
some US radars won’t display the velocity of a US aircraft whose performance
is classified, unless the operator has the appropriate clearance. When you read
stories about F-16 pilots seeing an insanely fast UFO whose speed on their radar
didn’t make any sense, you can put two and two together. It will be interesting
to see what sort of other side-e↵ects follow when powerful actors try to bake
MAC policies into IoT infrastructure, and what sort of superstitious beliefs they
give rise to.

9.5 MAC: from MLS to IFC and integrity

In the first edition of this book, I noted a trend to use mandatory access controls
to prevent tampering and provide real-time performance guarantees [1313, 1018],
and ventured that “perhaps the real future of multilevel systems is not in confi-
dentiality, but integrity.” Government agencies had learned that MAC was what
it took to stop malware. By the second edition, multilevel integrity had hit the
mass market in Windows, which essentially uses the Biba model.

9.5.1 Windows

In Windows, all processes do, and all securable objects (including directories,
files and registry keys) may, have an integrity-level label. File objects are la-
belled ’Medium’ by default, while Internet Explorer (and everything downloaded
using it) is labelled ’Low’. User action is therefore needed to upgrade down-
loaded content before it can modify existing files. It’s also possible to implement
a crude BLP policy using Windows, as you can also set ‘NoReadUp’ and ‘NoEx-
ecuteUp’ policies. These are not installed as default; Microsoft was concerned
about malware installing itself in the system and then hiding. Keeping the
browser ‘Low’ makes installation harder, and allowing all processes (even Low
ones) to inspect the rest of the system makes hiding harder. But this integrity-
only approach to MAC does mean that malware running at Low can steal all
your data; so some users might care to set ‘NoReadUp’ for sensitive directories.
This is all discussed by Joanna Rutkowska in [1634]; she also describes some
interesting potential attacks based on virtualization.

9.5.2 SELinux

The case of SELinux is somewhat similar to Windows in that the immediate
goal of mandatory access control mechanisms was also to limit the e↵ects of a
compromise. SELinux [1187] was implemented by the NSA, based on the Flask
security architecture [1811], which separates the policy from the enforcement
mechanism; a security context contains all of the security attributes associated
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with a subject or object in Flask, where one of those attributes includes the
Type Enforcement type attribute. A security identifier is a handle to a security
context, mapped by the security server. This is where policy decisions are made
and resides in the kernel for performance [819]. It has been mainstream since
Linux 2.6. The server provides a security API to the rest of the kernel, behind
which the security model is hidden. The server internally implements a general
constraints engine that can express RBAC, TE, and MLS. In typical Linux
distributions from the mid-2000s, it was used to separate various services, so
an attacker who takes over your web server does not thereby acquire your DNS
server as well. Its adoption by Android has made it part of the world’s most
popular operating system, as described in chapter 6.

9.5.3 Embedded systems

There are many fielded systems that implement some variant of the Biba model.
As well as the medical-device and railroad signalling applications I already men-
tioned, there are utilities. In an electricity utility, for example, there is typically
a hierarchy of safety systems, which operate completely independently at the
highest safety integrity level; these are visible to, but cannot be influenced by,
operational systems such as power dispatching; retail-level metering systems can
be observed by, but not influenced by, the billing system. Both retail meters
and the substation-level meters in the power-dispatching system feed informa-
tion into fraud detection, and finally there are the executive information sys-
tems, which can observe everything while having no direct e↵ect on operations.
In cars, most makes have separate CAN buses for the powertrain and for the
cabin, as you don’t want a malicious app on your radio to be able to operate
your brakes (though in 2010, security researchers found that the separation was
completely inadequate [1085]).

It’s also worth bearing in mind that simple integrity controls merely stop
malware taking over the machine – they don’t stop it infecting a Low compart-
ment and using that as a springboard from which to spread elsewhere, or to
issue instructions to other machines.

To sum up, many of the lessons learned in the early multilevel systems go
across to a number of applications of wider interest. So do a number of the
failure modes, which I’ll now discuss.

9.6 What Goes Wrong

Engineers learn more from the systems that fail than from those that succeed,
and here MLS systems have been an e↵ective teacher. The billions of dollars
spent on building systems to follow a simple policy with a high level of assurance
have clarified many second-order and third-order consequences of information
flow controls. I’ll start with the more theoretical and work through to the
business and engineering end.
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9.6.1 Composability

Consider a simple device that accepts two ‘High’ inputs H1 and H2; multiplexes
them; encrypts them by xor’ing them with a one-time pad (i.e., a random gen-
erator); outputs the other copy of the pad on H3; and outputs the ciphertext,
which being encrypted with a cipher system giving perfect secrecy, is considered
to be low (output L), as in Figure 9.4.

H1
-

H2
-

XOR

RAND -H3

XOR

•

-

-

-
L

Figure 9.4 – insecure composition of secure systems with feedback

In isolation, this device is provably secure. However, if feedback is permit-
ted, then the output from H3 can be fed back into H2, with the result that
the high input H1 now appears at the low output L. Timing inconsistencies
can also break the composition of two secure systems (noted by Daryl McCul-
lough [1260]).

In general, the composition problem – how to compose two or more secure
components into a secure system – is hard, even at the relatively uncluttered
level of proving results about ideal components [1430]. (Simple information flow
doesn’t compose; neither does noninterference or nondeducibility.) Most of the
low-level problems arise when some sort of feedback is introduced; without it,
composition can be achieved under a number of formal models [1277]. However,
in real life, feedback is pervasive, and composition of security properties can
be made even harder by interface issues, feature interactions and so on. For
example, one system might produce data at such a rate as to perform a service-
denial attack on another. And the composition of secure components is often
frustrated by higher-level incompatibilities. Components might have been de-
signed in accordance with two di↵erent security policies, or designed according
to inconsistent requirements.

9.6.2 The cascade problem

An example of the composition problem is given by the cascade problem (Fig-
ure 9.5). After the Orange book introduced a series of evaluation levels, this
led to span-limit rules about the number of levels at which a system can op-
erate [548]. For example, a system evaluated to B3 was in general allowed to

Security Engineering 314 Ross Anderson



9.6. WHAT GOES WRONG

process information at Unclassified, Confidential and Secret, or at Confidential,
Secret and Top Secret; there was no system permitted to process Unclassified
and Top Secret data simultaneously [548].

Top Secret

Secret Secret

Unclassified

Figure 9.5: – the cascade problem

As the diagram shows, it is straightforward to connect together two B3
systems in such a way that this policy is broken. The first system connects
together Unclassified and Secret, and its Secret level communicates with the
second system – which also processes Top Secret information [923]. This defeats
the span limit.

9.6.3 Covert channels

One of the reasons why span limits are imposed on multilevel systems emerges
from a famous – and extensively studied – problem: the covert channel. First
pointed out by Lampson in 1973 [1125], a covert channel is a mechanism that
was not designed for communication but which can nonetheless be abused to
allow information to be communicated down from High to Low.

A typical covert channel arises when a high process can signal to a low one
by a↵ecting some shared resource. In a modern multicore CPU, it could increase
the clock frequency of the CPU core it’s using at time ti to signal that the i-th
bit in a Top Secret file was a 1, and let it scale back to signal that the bit was a 0.
This gives a covert channel capacity of several tens of bits per second [35]. Since
2018, CPU designers have been struggling with a series of cover channels that
exploit the CPU microarchitecture; with names like Meltdown, Spectre, and
Foreshadow, they have provided not just ways for High to signal to Low but for
Low to circumvent access control and read memory at High. I will discuss these
in detail in the chapter on side channels.

The best that developers have been able to do consistently with confidential-
ity protection in regular operating systems is to limit it to 1 bit per second or
so. (That is a DoD target [545], and techniques for doing a systematic analysis
may be found in Kemmerer [1036].) One bit per second may be tolerable in
an environment where we wish to prevent large TS/SCI files – such as satellite

Security Engineering 315 Ross Anderson



9.6. WHAT GOES WRONG

photographs – leaking down from TS/SCI users to ‘Secret’ users. However, it’s
potentially a lethal threat to high-value cryptographic keys. This is one of the
reasons for the military and banking doctrine of doing crypto in special purpose
hardware.

The highest-bandwidth covert channel of which I’m aware occurs in large
early-warning radar systems, where High – the radar processor – controls hun-
dreds of antenna elements that illuminate Low – the target – with high speed
pulse trains, which are modulated with pseudorandom noise to make jamming
harder. In this case, the radar code must be trusted as the covert channel
bandwidth is many megabits per second.

9.6.4 The threat from malware

The defense computer community was shocked when Fred Cohen wrote the first
thesis on computer viruses, and used a virus to penetrate multilevel secure sys-
tems easily in 1983. In his first experiment, a file virus that took only eight
hours to write managed to penetrate a system previously believed to be multi-
level secure [450]. People had been thinking about malware since the 1960s and
had done various things to mitigate it, but their focus had been on Trojans.

There are many ways in which malicious code can be used to break access
controls. If the reference monitor (or other TCB components) can be corrupted,
then malware can deliver the entire system to the attacker, for example by
issuing an unauthorised clearance. For this reason, slightly looser rules apply
to so-called closed security environments which are defined to be those where
‘system applications are adequately protected against the insertion of malicious
logic’ [548], and this in turn created an incentive for vendors to tamper-proof
the TCB, using techniques such as TPMs. But even if the TCB remains intact,
malware could still copy itself up from Low to High (which BLP doesn’t prevent)
and use a covert channel to signal information down.

9.6.5 Polyinstantiation

Another problem that exercised the research community is polyinstantiation.
Suppose our High user has created a file named agents, and our Low user now
tries to do the same. If the MLS operating system prohibits him, it will have
leaked information – namely that there is a file called agents at High. But if it
lets him, it will now have two files with the same name.

Often we can solve the problem by a naming convention, such as giving Low
and High users di↵erent directories. But the problem remains a hard one for
databases [1649]. Suppose that a High user allocates a classified cargo to a ship.
The system will not divulge this information to a Low user, who might think
the ship is empty, and try to allocate it another cargo or even to change its
destination.

Here the US and UK practices diverge. The solution favoured in the USA
is that the High user allocates a Low cover story at the same time as the real
High cargo. Thus the underlying data will look something like Figure 9.6.
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Level Cargo Destination

Secret Missiles Iran
Restricted – –
Unclassified Engine spares Cyprus

Figure 9.6 – how the USA deals with classified data

In the UK, the theory is simpler – the system will automatically reply ‘clas-
sified’ to a Low user who tries to see or alter a High record. The two available
views would be as in Figure 9.7.

Level Cargo Destination

Secret Missiles Iran
Restricted Classified Classified
Unclassified – –

Figure 9.7 – how the UK deals with classified data

This makes the system engineering simpler. It also prevents the mistakes
and covert channels that can still arise with cover stories (e.g., a Low user tries
to add a container of ammunition for Cyprus). The drawback is that everyone
tends to need the highest available clearance in order to get their work done.
(In practice, cover stories still get used in order not to advertise the existence
of a covert mission any more than need be.)

9.6.6 Practical problems with MLS

Multilevel secure systems are surprisingly expensive and di�cult to build and
deploy. There are many sources of cost and confusion.

1. They are built in small volumes, and often to high standards of physi-
cal robustness, using elaborate documentation, testing and other quality
control measures driven by military purchasing bureaucracies.

2. MLS systems have idiosyncratic administration tools and procedures. A
trained Unix administrator can’t just take on an MLS installation without
significant further training; so many MLS systems are installed without
their features being used.

3. Many applications need to be rewritten or at least greatly modified to run
under MLS operating systems [1629].

4. Because processes are automatically upgraded as they see new labels, the
files they use have to be too. New files default to the highest label belong-
ing to any possible input. The result of all this is a chronic tendency for
things to be overclassified. There’s a particular problem when system com-
ponents accumulate all the labels they’ve seen, leading to label explosion
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where they acquire such a collection that no single principal can access
them any more. So they get put in the trusted computing base, which
ends up containing a quite uncomfortably large part of the operating sys-
tem (plus utilities, plus windowing system software, plus middleware such
as database software). This ‘TCB bloat’ constantly pushes up the cost of
evaluation and reduces assurance.

5. The classification of data can get complex:

• in the run-up to a conflict, the location of ‘innocuous’ stores such
as food could reveal tactical intentions, and so may be suddenly up-
graded;

• classifications are not always monotone. Equipment classified at ‘con-
fidential’ may easily contain components classified ‘secret’, and on the
flip side it’s hard to grant access at ‘secret’ to secret information in
a ‘top secret’ database;

• information may need to be downgraded. An intelligence analyst
might need to take a satellite photo classified at TS/SCI, and paste
it into an assessment for field commanders at ‘secret‘. In case infor-
mation was covertly hidden in the image by a virus, this may involve
special filters, lossy compression of images and so on. One option is
a ‘print-and-fax’ mechanism that turns a document into a bitmap,
and logs it for traceability.

• we may need to worry about the volume of information available
to an attacker. For example, we might be happy to declassify any
single satellite photo, but declassifying the whole collection would
reveal our surveillance capability and the history of our intelligence
priorities. (I will look at this aggregation problem in more detail in
section 11.2.)

• Similarly, the output of an unclassified program acting on unclas-
sified data may be classified, for example if standard data mining
techniques applied to an online forum throw up a list of terror sus-
pects.

6. Although MLS systems can prevent undesired things (such as information
leakage), they also prevent desired things too (such as building a search
engine to operate across all an agency’s Top Secret compartmented data).
So even in military environments, the benefits can be questionable. After
9/11, many of the rules were relaxed, and access controls above Top Secret
are typically discretionary, to allow information sharing. The cost of that,
of course, was the Snowden disclosures.

7. Finally, obsessive government secrecy is a chronic burden. The late Sen-
ator Daniel Moynihan wrote a critical study of its real purposes, and its
huge costs in US foreign and military a↵airs [1346]. For example, Presi-
dent Truman was never told of the Venona decrypts because the material
was considered ‘Army Property’. As he put it: “Departments and agen-
cies hoard information, and the government becomes a kind of market.
Secrets become organizational assets, never to be shared save in exchange
for another organization’s assets.”
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More recent examples of MLS doctrine impairing operational e↵ectiveness
include the use of unencrypted communications to drones in the Afghan
war (as the armed forces feared that if they got the NSA bureaucracy
involved, the drones would be unusable), and the use of the notoriously
insecure Zoom videoconferencing system for British government cabinet
meetings during the coronavirus crisis (the government’s encrypted video-
conferencing terminals are classified, so ministers aren’t allowed to take
them home). This brings to mind a quip from an exasperated British
general: “What’s the di↵erence between Jurassic Park and the Ministry of
Defence? One’s a theme park full of dinosaurs, and the other’s a movie!”

There has been no shortage of internal strategic critique. A 2004 report by
Mitre’s JASON programme of the US system of classification concluded that it
was no longer fit for purpose [978]. There are many interesting reasons, including
the widely di↵erent risk/benefit calculations of the producer and consumer com-
munities; classification comes to be dominated by distribution channels rather
than by actual risk. The relative ease of attack has led government systems to be
too conservative and risk-averse. It noted many perverse outcomes; for example,
Predator imagery in Iraq is Unclassified, and was for some time transmitted in
clear, as the Army feared that crypto would involve the NSA bureaucracy in
key management and inhibit warfighting.

Mitre proposed instead that flexible compartments be set up for specific
purposes, particularly when getting perishable information to tactical compart-
ments; that intelligent use be made of technologies such as rights management
and virtualisation; and that lifetime trust in cleared individuals be replaced with
a system focused on transaction risk.

Anyway, one of the big changes since the second edition of this book is that
the huge DoD research programme on MLS has disappeared, MLS equipment
is no longer very actively promoted on the government-systems market, and
systems have remained fairly static for a decade. Most government systems
now operate system high – that is, entirely at O�cial, or at Secret, or at Top
Secret. The di�culties discussed in the above section, plus the falling cost of
hardware and the arrival of virtualisation, have undermined the incentive to
have di↵erent levels on the same machine. The deployed MLS systems thus
tend to be firewalls or mail guards between the di↵erent levels, and are often
referred to by a new acronym, MILS (for multiple independent levels of secu-
rity). The real separation is at the network level, between unclassified networks,
the Secret Internet Protocol Router Network (SIPRNet) which handles secret
data using essentially standard equipment behind crypto, and the Joint World-
wide Intelligence Communications System (JWICS) which handles Top Secret
material and whose systems are kept in Secure Compartmentalized Information
Facilities (SCIFs) – rooms shielded to prevent electronic eavesdropping, which
I’ll discuss later in the chapter on side channels.

There are occasional horrible workarounds such as ‘browse-down’ systems
that will let someone at High view a website at Low; they’re allowed to click on
buttons and links to navigate, just not to enter any text. Such ugly hacks have
clear potential for abuse; at best they can help keep honest people from careless
mistakes.

Security Engineering 319 Ross Anderson



9.7. SUMMARY

9.7 Summary

Mandatory access control was initially developed for military applications, where
it is still used in specialized firewalls (guards and data diodes). The main use of
MAC mechanisms nowadays, however, is in platforms such as Android, iOS and
Windows, where they protect the operating systems themselves from malware.
MAC mechanisms have been a major subject of computer security research since
the mid-1970’s, and the lessons learned in trying to use them for military mul-
tilevel security underlie many of the schemes used for security evaluation. It
is important for the practitioner to understand both their strengths and limi-
tations, so that you can draw on the research literature when it’s appropriate,
and avoid being dragged into overdesign when it’s not.

There are many problems which we need to be a ‘fox’ rather than a ‘hedge-
hog’ to solve. By trying to cast all security problems as hedgehog problems,
MLS often leads to inappropriate security goals, policies and mechanisms.

Research Problems

A standing challenge, sketched out by Earl Boebert in 2001 after the NSA
launched SELinux, is to adapt mandatory access control mechanisms to safety-
critical systems (see the quote at the head of this chapter, and [270]). As a tool
for building high-assurance, special-purpose devices where the consequences of
errors and failures can be limited, mechanisms such as type enforcement and
role-based access control should be useful outside the world of security. Will
we see them widely used in the Internet of Things? We’ve mentioned Biba-
type mechanisms in applications such as cars and electricity distribution; will
the MAC mechanisms in products such as SELinux, Windows and Android
enable designers to lock down information flows and reduce the likelihood of
unanticipated interactions?

The NSA continues to fund research on MLS, now under the label of IFC,
albeit at a lower level than in the past. Doing it properly in a modern smart-
phone is hard; for an example of such work, see the Weir system by Adwait
Nadkarni and colleagues [1372]. In addition to the greater intrinsic complexity
of modern operating systems, phones have a plethora of side-channels and their
apps are often useful only in communication with cloud services, where the real
heavy lifting has to be done. The commercial o↵ering for separate ‘low’ and
‘high’ phones consists of products such as Samsung’s Knox.

A separate set of research issues surround actual military opsec, where reality
falls far short of policy. All armed forces involved in recent conflicts, including
US and UK forces in Iraq and Afghanistan, have had security issues around their
personal mobile phones, with insurgents in some cases tracing their families back
home and harassing them with threats. The Royal Navy tried to ban phones in
2009, but too many sailors left. Tracking ships via Instagram is easy; a warship
consists of a few hundred young men and women, aged 18-24, with nothing much
else to do but put snaps on social media. Discipline tends to focus on immediate
operational threats, such as when a sailor is seen snapchatting on mine disposal:
there the issue is the risk of using a radio near a mine! Di↵erent navies have
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tried di↵erent things: the Norwegians have their own special network for sailors
and the USA is trying phones with MLS features. But NATO exercises have
shown that for one navy to hack another’s navigation is shockingly easy. And
even the Israelis have had issues with their soldiers using mobiles on the West
Bank and the Golan Heights.

Further Reading

The unclassified manuals for the UK government’s system of information clas-
sification, and the physical, logical and other protection mechanisms required
at the di↵erent levels, have been available publicly since 2013, with the latest
documents (at the time of writing) having been released in November 2018 on
the Government Security web page [802]. The report on the Walker spy ring is a
detailed account of a spectacular failure, and brings home the sheer complexity
of running a system in which maybe three million people have a clearance at
any one time, with a million applications being processed each year [876]. And
the classic on the abuse of the classification process to cover up waste, fraud
and mismanagement in the public sector is by Chapman [407].

On the technical side, textbooks such as Dieter Gollmann’s Computer Se-
curity [779] give an introduction to MLS systems, while many of the published
papers on actual MLS systems can be found in the proceedings of two confer-
ences: academics’ conference is the IEEE Symposium on Security & Privacy
(known in the trade as ‘Oakland’ as that’s where it used to be held), while the
NSA supplier community’s unclassified bash is the Computer Security Appli-
cations Conference (ACSAC) whose proceedings are (like Oakland’s) published
by the IEEE. Fred Cohen’s experiments on breaking MLS systems using viruses
are described in his book, ‘A Short Course on Computer Viruses’ [450]. Many
of the classic early papers in the field can be found at the NIST archive [1395];
NIST ran a conference series on multilevel security up till 1999. Finally, a his-
tory of the Orange Book was written by Steve Lipner [1171]; this also tells the
story of the USAF’s early involvement and what was learned from systems like
WWMCCS.
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