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Each complex number can be expressed as a single number
in positional notation using certain complex bases, just

as the positive real numbers can be expressed as decimal
expansions. These representations yield some intriguing
geometric patterns in the complex plane, whose bound-
aries are fractal curves. One of these curves is known from
the investigation of dragon curves; the others are new ex-
amples of fractals.

Bases for Complex Numbers

The positive integers can be represented in any integer
base b > 1 using digits 0,1, 2, ...,b — 1; the decimal
and binary systems are of course the most familiar. Both
positive and negative integers can be represented (without
using a sign prefix), in any negative base b < —1 using the
digits from O to [b| — 1.

The concept of base, or radix representation, can be
extended to the complex numbers. A Gaussian integer,
z =x + iy where x and y are real integers, is said to be ex-
pressed in the complex base b if it is written in the form

k

z= X a,b", where the numbers a, are called the digits

r=0
of the representation. We denote such a representation
by (@xaj_, . .. ayaq)p- The standard algorithm for con-
verting a number into a given integer base can be extend-
ed to these complex bases if the allowable digits form a
complete residue system modulo the base.

In this paper we will only allow natural numbers as
digits since this is the most straightforward generaliza-
tion of the familiar systems, The number of elements
in a complete residue system modulo a complex number
b=n+imisn® + m*. Now Gauss showed that if » and
m are relatively prime then the natural numbers
0,1,2,...,n% +m? — 1 forma complete residue system
modulo b = n +im. Moreover, if n and m have a common
factor, then any complete residue system modulo b must
contain some numbers with nonzero imaginary parts. A
further necessary condition for the base b =n +im to re-
present all the Gaussian integers, using natural numbers
as digits, is that m = +1, since all the powers of the base
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(n + im)" have their imaginary parts divisible by m. There-
fore we only consider bases of the form n + i with digits
0,152 000

One such example is the base b = —1 + i, which pro-
vides a binary representation of all the complex numbers.
This system has been known for a number of years by
computer scientists; see Knuth [6; § 4.1] for its history.
For example, 5 — 3i =(101110)_; ; since (—1 + i)* +
(—1+i)P+(=1+i +(-1+i)=5—-3i,and 9=
(111000001)_y4;.
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Gaussian Integer Representations in the Complex Plane

The representations of the Gaussian integers in the base
b =n * i can be visualized in the complex plane as fol-
lows. Divide up the plane into unit squares correspond-
ing to the Gaussian integers and then shade those squares
that can be written in the base b using the digits

o) N RS )

The number & will be a *‘good” base if each Gaussian
integer can be uniquely represented using b as base; that
is, if every-square in the plane is eventually shaded. The
uniqueness of the representation follows from the fact
that the allowable digits form a complete residue sys-
tem modulo b.

What are some examples of bases with small norms?
The numbers i are not suitable as bases because they
have norm 1 and so any complete residue system modulo
i contains only one element. Therefore we first consider
bases with norm 2.

In Figure 1 all the squares have been shaded which
correspond to numbers that have a base 1 — i representa-
tion using the binary digits 0 and 1. Different shadings
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Figure 1. Spiral jigsaw puzzle derived from
the base 1 — i. Each shaded square depictsa
Gaussian integer representable in the base

b =1 — i. The different shadings correspond
to representations of different lengths. Note
that the unshaded region is precisely the
same shape as the shaded spiral but is turned
through one half of a revolution.

have been used to indicate the length of the expansion.
The origin is the central black square. The only other
number with a base 1 — i expansion of length one is
(1);_; = 1. There are two numbers with expansions of
length two, namely (10), _;=1—iand (11),_;=2 —1;
these are both given the same shading, In general, the 2’ num-
bers(la,_ .. .a;ay), _; with expansions of length r + 1,
have the same shading. Since (1¢,_, . . .@ya0);—i=(1 — )"
+(@y_1 . . .a1a0);— i, this number can be written as (1 —i)”
plus a number requiring » or fewer digits. Therefore the shad-
ed region consisting of the 2" squares corresponding to the
Gaussian integers requiring r + 1 digits can be obtained by
translating the union of all the smaller regions along the
vector (1 — §)". In this way we obtain an infinite jigsaw
puzzle with one piece corresponding to each power of

two and an extra black piece for the origin. If this jigsaw
puzzle eventually fills the plane, then every Gaussian
integer can be expressed in base 1 —i.

Figure 1 suggests that the jigsaw puzzle will never cov-
er the whole plane but will keep on spiraling outwards.
In fact the number —1 is the white region and, applying
the standard algorithm for converting a number to a
given base;




—l=(=1=i)(1—i)+1
—1—i=(=)(1-0+0

—i =(=)(1-D+1

—i=(=N(1-i+1, etc.

the algorithm never terminates, but cycles indefinitely.
Consequently, —1 cannot be represented in the base

1 —i. In a similar way, the base 1 + { yields a spiral jig-
saw which is the reflection in the real axis of the jigsaw
obtained from 1 — i. Neither 1 — i/ nor 1 +iis a good
base.

Figure 2 shows the result of applying the same tech-
nique using the base —1 + i. The pieces of size 2" are
exactly the same shape as those derived from the base
1 — i, but now they fit together in a different way to
exactly fill the plane. It follows that —1 +iis a good
base for the complex numbers and, of course, so is its
conjugate —1 —i.

The Gaussian integers 2 — 7 and —2 + i have norm §,
so the digits 0, 1, 2, 3 and 4 are required when using
these as bases. The numbers representable in base 2 —i
are shown in Figure 3. In this case there are 4(5)" num-
bers which have a base 2 — i expansion of lengthr + 1.
They are of the form (g,a,_; . . .aya9)3_;=a,(2 —iy +

Figure 2. Jigsaw puzzle derived from the
base b = —1 + i. The pieces are the same as
those in the spiral derived from the base

1 — i. However they exactly fill the plane,
which shows that every Gaussian integer
can be represented in base —1 + i

(@p_y...aya9)p_i wherea, =1, 2, 3 or 4. Hence each
shaded piece is obtained from the union of all the smal-
ler pieces by translation along the vectors (2 — i)",

2(2 —i)",3(2 — )" and 4(2 — §)". The jigsaws obtained
from the bases 2 — i and —2 + i show a similar pattern
to those obtained from 1 — 7 and — 1 +#. The one ob-
tained from the base —2 + i, shown in Figure 4, is built
up from the same pieces as those used in Figure 3, How-
ever the jigsaw puzzle derived from the base 2 — i forms
a large spiral while that derived from —2 + i fills the
plane, The illustrations suggest that —2 + i is a good
base and 2 — 7 is not good.

The natural conjectures one might make from these
diagrams have been confirmed by Katai and Szabo [5].
They proved, by algebraic means, that the only Gaus-
sian integers that can be used as a base for all the com-
plex numbers, using natural numbers as digits, are
—n +iand —n — i, where n is a positive integer. The
digits used in these representations are 0,1, 2, ... ,n>.
The most common representations for the real num-
bers in use today are the decimal and binary systems. It
is an interesting coincidence that the complex numbers
also have decimal and binary representations using the
bases —3 + i and —1 + i respectively. For example
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Figure 3, Spiral jigsaw puzzle derived from
the base b = 2 — i. The origin is the single
black square. The other pieces contain 4.5"
squares. Since they do not fill the plane,

2 — i is not a good base for the complex
numbers.

Figure 4. Jigsaw puzzle derived from the
good base b = —2 + i, The pieces are the
same as those derived from the base 2 — §,
but this time they fill the plane.
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(326)_34; represents 3(—3 + i) + 2(-3+i)+ 6=
24 — 16i while (1543)_5; represents (—3 + i3+
5(-3+i)2+4(-3+i)+3=13.

The Representation of All Complex Numbers

These representations of the Gaussian integers using base
—n + i (or —n —i) can be extended to cover all the com-
plex numbers in the same way that the decimal or binary
systems can be extended to all positive real numbers. Geo-
metrically these bases lead to some bizarre patterns in the
plane.

We say that a complex number is represented in base
b when it is written in the form Z¥___, a,b", with each a,
an allowable digit for the base b. We denote this infinite
expansion by (@gax_; ...a@ 8- a_ya_5 . .. )p- The digits
to the left of the radix point define a Gaussian integer
(@agay_y . ..ayaq)p, called the integer part of the expan-
sion. For example, if b =—1 +i,thenb™! =(—=1 —)/2
andb=2=if2s01/2=1+b"1 +b~2 =(1.11)_, 4;, with
integer part one. As in the decimal system, most numbers
cannot be written using a terminating expansion.

The number 1 — i is not good base for the Gaussian
integers but the set of all the complex numbers repre-
sentable in the base 1 — 7 takes on an interesting form.
(We investigate this base before — 1 +ibecause the base 1 —i
exposes the underlying geometric structure more clearly.)
Take Figure 1 and subdivide each integer square into four
squares; these smaller squares can be coordinatized by the
complex numbers x +fy, where x and y are multiples of 1/2.
Shading those squares corresponding to numbers that can be
represented in base 1 — i produces a similar spiral pattern
to Figure 1, but which has shrunk to one half its size and
has turned counter-clockwise through one quarter of a re-
volution, Subdivide these smaller squares into four and
repeat the process. Figure 5 shows the first three stages.
At the rth stage, the complex plane is divided into squares
of side 277, If a coordinate x + iy, with x and y multiples
of 277, has a base 1 — / representation, then it will be a
terminating expansion with at most 2 digits to the right
of the radix point,

In the limit this process yields a fascinating region,
shown in Figure 6, that I call a snowflake spiral. The
boundary of the figure is an example of a snowflake
curve. The distance along the boundary between any two
points is always infinite. The snowflake spiral consists of
a large spiral with smaller spirals coming off it. Each small
spiral has smaller spirals growing on its back and so on ad
infinitum. This snowflake spiral has the property that if
it is rotated counter-clockwise about the origin through
one quarter of a revolution and simultaneously shrunk to
one half its size then it remains unchanged! Notice that
the white area in Figure 6 is identical to the black area
when rotated through one half of a revolution. Hence
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Figure 5. Approximations in the construction of a snowflake spiral.
The squares in these three approximations are of size one, one
half and one quarter, respectively, and they depict complex num-
bers expressible in the base 1 — i using at most zero, two and four
negative powers of the base.

“one half” of all the complex numbers can be written
in the base 1 —i.

A similar process can be applied to the base —1 + 1.
Even though every complex number can be written in bi-
nary form using the base —1 + i, snowflake curves emerge




from this representation as boundaries of the regions of
complex numbers with a given integer part. An approxi-
mation to those regions is shown in Figure 7; the same
shading has been given to those complex numbers that
have the same integer part using eight places of binary
expansion in the base —1 +i. In the limit, the boundaries
of these shaded regions have infinite length but still en-
close a unit area.

All points on the boundary of any of these regions
will have two base —1 + i expansions with different inte-
ger parts. For example, the point (—1 + 2i)/5 lies on the
boundaries of the regions with integer parts 0 and i =
(11)_; 4 in fact, the two expansions are (—1 + 27)/5 =
(0.01)_y 4; =(11.10)_, 4, where the digits under the
bar are repeated indefinitely. This shows that the repre-
sentation of all the complex numbers in base —1 +i is
not unique, even though it is unique for the Gaussian
integers.

Because the plane is two dimensional, there must be
some points on the boundary of three of these regions.
These will correspond to points with three base —1 + i
expansions with differerit integer parts. For example,

(1 +30)/5 = (0.010)_y 4; = (11.001)_y.4; = (1110.T00)_; 4;
lies at the intersection of the regions with integer parts 0,
iand 1 +i. These three periodic expansions of length

three can be checked by evaluating them by the stand-
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Figure 6. The snowflake spiral consisting
of all the complex numbers expressible in
binary form using the base 1 — i. This is
the limiting region of the approximations
in Figure 5. The boundary is an example of
a fractal curve.

ard method of multiplying them by the cube of the base
and then substracting the original expansion.

Fractal Curves

The boundary of the snowflake spiral in Figure 6 has been
studied by Mandelbrot in his book on Fractals [7]. A sub-
set of a Euclidean space is called a fractal if its Hausdorff
dimension is strictly larger than its topological dimension.
This Hausdorff dimension, or fractal dimension as Man-
delbrot calls it, is a real metric invariant that can take non-
integral values. This dimension agrees with the standard
topological dimension for most usual sets and measures
the jaggedness of more pathological sets. A standard curve
would have fractal dimension one while a space-filling
curve would have dimension two. The boundary of the
snowflake spiral derived from the base 1 — i lies between
these extremes and Mandelbrot has calculated its fractal
dimension to be approximately 1.5236 ([7; p. 313]; see
[3] for details). The limit of the approximation shown in
Figure 7, consisting of regions of complex numbers with
a fixed integer part in base —1 + i, has boundaries which
are locally the same as that of Figure 6 and hence have
the same fractal dimension.




Figure 7. The integer parts of the complex
numbers expressed in the base —1 +1{. Each
region is an approximation, using eight bi-

nary places, of the numbers with the indi-

cated integer part in base —1 +i

Figure 8, The fractal curve derived from
the base 2 — i The dark region represents
all the complex numbers expressible in
the base 2 — i using digits 0, 1, 2, 3 and 4.
The origin is at the tip of the top left pen-
insula.




The other representations of the complex numbers
using the bases n — i and —n + i, for n larger than one,
yield new examples of snowflake curves. The complex
numbers that can be written in base # — / form a spiral
snowflake region with the property that when rotated
counter-clockwise through an angle arctan (1/n) and
shrunk by a linear factor (n* + 1)'/? it remains unchang-
ed,

One of the chapters in Mandelbrot’s book [7] is enti-
tled “How long is the coast of Britain? ** and in it he
estimates the fractal dimension of the coast to be roughly
between 1.2 and 1.3. Part of the boundary of the region
derived from the base 2 — i, shown in Figure 8, has a
form remarkably like the British coast, but a calculation
shows that its fractal dimension is approximately 1.6087
[3]. This means that it is much too jagged to be a good
model of the coastline.

Dragon Curves

The snowflake spiral obtained from the base 1 — i has
another interesting interpretation as the limit of twin
space-filling dragon curves. The remarkable dragon cur-
ves were introduced in Martin Gardner’s Mathematical
Games column of the Scientific American [2]. One way
of constructing these curves is to repeatedly fold a sheet
of paper in half in the same direction, and then unfold
it so that all the creases are right angles. A dragon curve
is obtained by looking along the edge of the paper. A
dragon curve is said to be of order r if its construction
requires 7 folds. The curve of order r + 2 can be obtained
from the order r curve as follows. Start at one end and
systematically replace each L-shaped piece by the order
3 curve, whose sides are one half the length of the orig-
inal. This process can be continued indefinitely and the
limit yields an example of a space-filling curve. These
dragon curves have been studied and coordinatized using
complex bases by Chandler Davis and Donald Knuth [1].

Two dragon curves of the same size and order can be
connected by joining the head of each to the tail of the
other. Two such twin dragons of order  lie naturally in-
side the jigsaw piece containing 2" squares derived from
the base —1 +i. The process of replacing the twin drag-
ons of order r by ones of order r + 2, shown in Figure 9,
agrees with the construction of the jigsaw piece contain-
ing 27*2 smaller squares by increasing the base —1 +i
expansion by two binary places. The limit of these twin
dragon curves placed head to tail is precisely a jigsaw
piece consisting of those complex numbers that can be
written in the base —1 + 7 using numbers whose integer
parts have a given fixed length,

It is easily seen from the folding construction that a
dragon curve of order r + 1 consists of two copies of

Figure 9. Twin dragons joined head to tail. Two dragon curves
of order 7 lie naturally inside the jigsaw piece containing 2" squares
derived from the base —1 + i

order r curves. Therefore, by increasing r, it is possible

to define a dragon curve of infinite order whose initial
2" segments form the curve of order . Donald Knuth
has proved that four of these infinite order dragons
joined at their tails form an infinite grid that covers the
plane and that, as the length of the segments approaches
zero, the four resulting space-filling dragons fill the en-
tire plane. Figure 10 shows two such infinite dragon cur-
ves joined at their tails, one dragon being rotated through
90°. They lie naturally inside the jigsaw derived from the
base 1 — i. In the limit, as the length of the segment ap-
proaches zero, these twin space-filling dragons will yield
the snowflake spiral of Figure 6.

Conclusion

It is possible to investigate bases for other quadratic ex-
tensions of the rationals and for number fields of higher
degree [4]. These bases yield further examples of fractal
curves in the plane as well as higher dimensional fractal

surfaces.
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