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The vestibular sensory epithelium of humans and mice may degenerate into a layer of
flat cells, known as flat epithelium (FE), after a severe lesion. However, the pathogenesis
of vestibular FE remains unclear. To determine whether the epithelial–mesenchymal
transition (EMT) participates in the formation of vestibular FE, we used a well-established
mouse model in which FE was induced in the utricle by an injection of streptomycin into
the inner ear. The mesenchymal and epithelial cell markers and cell proliferation were
examined using immunofluorescence staining and quantitative reverse transcription
polymerase chain reaction (qRT-PCR). The function of the EMT was assessed through
transcriptome microarray analysis. The results demonstrated that mesenchymal cell
markers (α-SMA, S100A4, vimentin, and Fn1) were upregulated in vestibular FE
compared with the normal utricle. Robust cell proliferation, which was absent in the
normal status, was observed in the formation of FE. Microarray analysis identified
1,227 upregulated and 962 downregulated genes in vestibular FE. Gene Ontology (GO)
analysis revealed that differentially expressed genes (DEGs) were highly associated with
several EMT-related GO terms, such as cell adhesion, cell migration, and extracellular
matrix. Pathway enrichment analysis revealed that DEGs were enriched in the EMT-
related signaling pathways, including extracellular matrix (ECM)-receptor interaction,
focal adhesion, PI3K/Akt signaling pathway and cell adhesion molecule. Protein–protein
interaction networks screened 20 hub genes, which were Akt, Casp3, Col1a1, Col1a2,
Fn1, Hgf, Igf1,Il1b, Irs1, Itga2, Itga5, Jun, Mapk1, Myc, Nras, Pdgfrb, Tgfb1, Thbs1,
Trp53, and Col2a1. Most of these genes are reportedly involved in the EMT process
in various tissues. The mRNA expression level of hub genes was validated using qRT-
PCR. In conclusion, the present study indicates that EMT plays a significant role in the
formation of vestibular FE and provides an overview of transcriptome characteristics in
vestibular FE.

Keywords: epithelial–mesenchymal transition, vestibular, microarray, cell proliferation, hair cell, supporting cell

INTRODUCTION

Vestibular end organs, including the utricle, saccule, and cristae ampullae, are responsible for the
perception of linear acceleration and head rotation. Sensory epithelia of vestibular end-organs
consist of two kinds of highly differentiated cells: hair cells (HCs) and supporting cells (SCs). HCs
and SCs are alternatively arranged in a special mosaic structure required for normal vestibular

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 December 2021 | Volume 14 | Article 809878

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2021.809878
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnmol.2021.809878
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2021.809878&domain=pdf&date_stamp=2021-12-17
https://www.frontiersin.org/articles/10.3389/fnmol.2021.809878/full
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-14-809878 December 13, 2021 Time: 13:17 # 2

He et al. EMT in Vestibular Flat Epithelium

function. Various insults to the vestibular sensory epithelium
could lead to vestibular dysfunction (McCall et al., 2009; Wang
et al., 2015; Brosel et al., 2016; Isgrig et al., 2017; You et al., 2018;
Zhang et al., 2020; Fu et al., 2021). Severe lesions damage both
vestibular HCs and SCs and induce the sensory epithelium to
be replaced by a layer of flat cells, referred to as flat epithelium
(FE) (Wang et al., 2017). FE has been found in the inner ear
of patients with severe deafness and/or vestibular dysfunction
(Nadol and Eddington, 2006; Teufert et al., 2006; McCall et al.,
2009), suggesting that FE is an important pathological change
in patients with inner ear diseases. However, the pathogenesis
of vestibular FE remains unknown, and there is no biological
intervention for patients with FE in the inner ear. Elucidation of
the molecular mechanism underlying FE formation is significant
for designing therapeutic strategies for vestibular dysfunction.

The epithelial–mesenchymal transition (EMT) is a
biological process (BP) that allows epithelial cells to acquire
a mesenchymal cell phenotype, including migratory capacity,
invasiveness, resistance to apoptosis, and increased production
of extracellular matrix (ECM) components (Kalluri and
Weinberg, 2009). The EMT is integral in development and
wound healing, and contributes pathologically to fibrosis
and cancer progression (Lamouille et al., 2014). In addition,
the EMT participates in inner ear development and damage
repair (Simonneau et al., 2003; Kobayashi et al., 2008; Johnen
et al., 2012; Wu and Kelley, 2012). The EMT is involved in
the formation of cochlear FE, which is characterized by a
robust proliferative response, upregulation of mesenchymal
cell markers, and cell migration (Kim and Raphael, 2007;
Ladrech et al., 2017). Because the two components of
the inner ear, cochlea and vestibular end-organs, share
common embryonic origins and biological features, we
hypothesize that the EMT also participates in the process of
vestibular FE formation.

The EMT is characterized by a change in cell phenotype
from epithelial to mesenchymal cells with upregulation
of mesenchymal cell markers (vimentin, α-SMA, S100A4,
fibronectin, N-cadherin, etc.) and downregulation of epithelial
cell markers (E-cadherin, cytokeratin, and ZO-1, etc.). Thus,
these factors are usually used as biomarkers to define the
involvement of EMT (Kalluri and Weinberg, 2009). Recently,
high-throughput screening, such as microarray and RNA-seq
technologies, has enabled researchers to identify gene expression
profiles in various diseases, rendering exploration of the
underlying molecular mechanisms less difficult. The role of the
EMT in diseases and the specific genes or signaling pathways
involved have been explored using these techniques in the past
decades (Puram et al., 2018). However, whether EMT participates
in the inner flattening process of vestibular sensory epithelium
has not been identified.

To determine the role of the EMT in the formation of
vestibular FE, a high dose of streptomycin was inoculated
into the mouse inner ear to induce FE in the utricle (Wang
et al., 2017). Mesenchymal and epithelial cell markers and cell
proliferation were assessed in normal utricle and vestibular
FE using immunofluorescence staining. Then, the mRNA
expression profile was examined using microarray analysis.

Bioinformatics analysis was used to further analyze the biological
functions of differentially expressed genes (DEGs). Finally, the
representative DEGs were validated using quantitative reverse
transcription polymerase chain reaction (qRT-PCR). In the
present study, the role of EMT in vestibular FE formation
was investigated, and the potential mechanisms underlying this
process were explored.

RESULTS

Expression of Mesenchymal and
Epithelial Cell Markers in Utricular Flat
Epithelium
To determine the potential mechanisms underlying FE formation
after the loss of nearly all original epithelial cells, the
expression of mesenchymal and epithelial cell markers was
examined using immunofluorescence staining and qRT-PCR
in the normal utricle and utricular FE samples. As shown in
Figures 1A–D′′, mesenchymal cell markers α-SMA and S100A4
were poorly expressed in normal utricle but highly expressed
in FE. In contrast, epithelial cell marker ZO-1 was significantly
expressed in the normal samples but weakly expressed in FE
(Figures 1E–F′′). Furthermore, the mRNA expression levels
of mesenchymal cell markers, S100A4, α-SMA, vimentin, and
fibronectin 1 (Fn1) were significantly higher in FE than in
the normal utricle (Figure 1G). The expression of epithelial
cell markers (E-cadherin, ZO-1, keratin 5, and keratin 8) was
not significantly different between the normal utricle and
FE (Figure 1H).

Robust Mitosis in Adult Mouse Utricle
After Severe Damage
To evaluate if the utricular sensory epithelium possesses
proliferation capacity during FE formation, the normal utricle
and FE were stained with EdU to observe mitosis in the cells
and with the epithelial cell marker E-cadherin to label the
actin cytoskeleton. At 3 days after streptomycin injection, a few
EdU-positive cells were observed (Figures 2A–A′). At 7 days
after the lesion, the number of EdU-positive cells was increased
(Figures 2B–B′). At 11 days after the lesion, most of the original
sensory epithelium areas expressed E-cadherin, and EdU-positive
cells were extensively distributed throughout the FE, indicating
robust cell proliferation in the utricular FE during the early
period of FE formation (Figures 2C–C′,E–E′′′). At 22 days after
the lesion, the epithelial cytoskeleton was completely formed, and
the number of EdU-positive cells was dramatically decreased in
the epithelial layer (Figures 2D–D′).

The expression levels of proliferation markers Ki-67 and
MCM2 (Chow et al., 2016; Yousef et al., 2017), as well as
the cell cycle inhibitor p27kip1 (Kim and Raphael, 2007), were
evaluated and compared between the normal utricle and the
utricular FE at 14 days after streptomycin injection. As shown in
Figure 2F, the mRNA level of Ki-67 was significantly increased
and that of p27kip1 decreased in FE compared with the control
groups (Figure 2F).
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FIGURE 1 | Expression of epithelial and mesenchymal cell markers in the normal utricle and flat epithelium (FE). Immunofluorescence staining of α-SMA (A–B′′),
S100A4 (C–D′′), and ZO-1 (E–F′′) showing the expression of α-SMA and S100A4 is upregulated and ZO-1 expression is downregulated in FE. High magnification
images of square areas in (B,D,F) are shown in (B′–B′′,D′–D′′,F′–F′′), respectively. Scale bars: (A) (applies to B–D,F), 50 µm; (B′) (applies to B′′,D′,D′′,E,F′, F′′ ),
20 µm. (G) qRT-PCR results revealing that the mRNA expression levels of mesenchymal cell markers (α-SMA, S100A4, vimentin, and Fn1) are significantly increased
in FE compared with the normal utricle. (H) mRNA expression levels of epithelial cell markers (E-cadherin, ZO-1, keratin 5, and keratin 8) are not significantly different
between FE and normal utricle. ∗P < 0.05 and ∗∗P < 0.01 according to Student’s t-test.
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FIGURE 2 | Cell division at different timepoints after severe damage to the utricular sensory epithelium. (A–A′) At 3 days after the lesion, the actin cytoskeleton
disappeared in most areas of the epithelial layer, with a few cells labeled by EdU. (B–B′) The number of EdU-positive cells increased at 7 days. (C–C′) Robust
proliferation of EdU-positive cells was detected in flat epithelium (FE) at 11 days. (D–D′) EdU-positive cells were not observed in the epithelial layer at 22 days.
(E–E′′′) High-magnification view of the square area in (C) showing EdU labeling of the nuclei of FE cells. Scale bars: (A) (applies to A′–D′ ), 50 µm; (E) (applies to
E′–E′′′ ), 20 µm. (F) qRT-PCR results revealing that the mRNA expression levels of the cell proliferation marker Ki-67 were significantly increased in FE compared with
the normal utricle, and the p27kip1 expression level was decreased at 14 days after damage. ∗P < 0.05 and ∗∗∗P < 0.001 according to Student’s t-test.
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Microarray Analysis
To further determine the characteristics of FE transcriptomes
and how the EMT is involved in the repair process of utricular
sensory epithelium after severe damage, microarray analysis
was performed using the Affymetrix mouse Clariom S array to
analyze the transcriptomic differences between the normal utricle
and FE. A total of 22,206 genes were extracted from each sample.
When comparing transcripts between the normal utricle and
FE, 2,189 transcripts differentially expressed (fold change > 2,
P < 0.05) in FE were identified. Figures 3A,B show a volcano
plot and hierarchical cluster analysis of the DEGs between the
two groups; 1,227 upregulated and 962 downregulated genes
were detected in FE samples, and heatmap analysis showed
distinct differences in the mRNA expression profiles of the
normal utricle and FE.

To characterize the genes most significantly differentially
expressed between FE and normal utricle, the top 100 upregulated
and downregulated genes were selected and are listed in
Figures 3C,D. Among the DEGs, those previously reported to
be associated with EMT were labeled with the # symbol; Ibsp,
Fn1, Gdf10, Lcn2, Loxl2, Htra1, C3, Lox, Postn, Aspn, Ncf4, Bmp5,
Slpi, Anxa3, Mir675, Nkd2, Cd36, Timp1, Sulf2, Acp5, Csf1r, and
Tgfb1 were upregulated in FE, whereas Bdnf and Wdr66 were
downregulated in FE.

Gene Ontology Analysis
Gene Ontology (GO) enrichment analysis was performed based
on the DEGs. Among the upregulated genes, 616 significant
BP, 121 cellular component (CC), and 153 molecular function
(MF) GO categories were detected (P < 0.01; Supplementary
Table 1). According to the BP category results, the DEGs were
significantly associated with cell adhesion and migration. In the
CC category, DEGs were mainly associated with extracellular
components. Among the downregulated genes, 129 significant
BP, 59 CC, and 36 MF categories were detected (P < 0.01;
Supplementary Table 2). In the BP category, DEGs were mostly
associated with inner ear development and function. In the CC
category, DEGs were associated with membrane, cilium, and
synapse. The top 20 upregulated and the top 20 downregulated
GO terms are shown in Figure 4. Among these GO terms, 34 were
associated with EMT.

Pathway Enrichment Analysis and
Pathway Interaction Network Analysis
Pathway enrichment analysis was performed based on the KEGG
(Kyoto Encyclopedia of Genes and Genomes) database. Based on
the upregulated and downregulated genes, 98 and 34 signaling
pathways were detected, respectively (P < 0.05; Supplementary
Tables 3, 4). Among the top 40 significantly enriched signaling
pathways (Figures 5A,B), 4 were associated with the EMT,
including ECM–receptor interaction (mmu04512) (Gonzalez and
Medici, 2014), focal adhesion (mmu04510) (Ji et al., 2019),
PI3K/Akt signaling pathway (mmu04151) (Xu et al., 2015), and
cell adhesion molecules (mmu04514) (Keller et al., 2019).

Next, pathway interaction network analysis was performed
to generate an interaction network encompassing 44

significantly altered pathways; each pathway in the network
was measured by counting the upstream and downstream
pathways (Supplementary Table 5). A group of EMT-related
signaling pathways was found to be closely associated with other
pathways, including the MAPK signaling pathway (degree = 54),
PI3K/Akt signaling pathway (degree = 41), TGF-β signaling
pathway (degree = 17), NF-κB signaling pathway (degree = 16),
regulation of actin cytoskeleton (degree = 16), and focal adhesion
(degree = 16) (Figure 5C).

Construction of the Protein–Protein
Interaction Network and Screening of
Hub Genes
The Search Tool for the Retrieval of Interacting Genes (STRING)
database was used to construct a protein–protein interaction
(PPI) network of selected genes. Genes involved in EMT-related
signaling pathways (Figure 5) were selected to build a network
using Cytoscape (v3.7.2). All the nodes and edges were mapped
in the PPI network, as shown in Figure 6A. To screen hub genes
from the entire PPI network, the Cytoscape plugin cytoHubba
was used. A total of 20 hub genes were screened using the
maximum neighborhood component (MNC) algorithm: Akt,
Casp3, Col1a1, Col1a2, Fn1, Hgf, Igf1, Il1b, Irs1, Itga2, Itga5,
Jun, Mapk1, Myc, Nras, Pdgfrb, Tgfb1, Thbs1, Trp53, and Col2a1
(Figure 6B). Among those genes, 19 have been shown to
participate in the EMT process in other tissues; however, an
association of Col2a1 with EMT has not been reported (Table 1).

Quantitative Reverse Transcription
Polymerase Chain Reaction Validation
The gene expression levels of the 20 hub genes were examined
between FE and normal utricle using qRT-PCR. Compared
with normal utricle, mRNA expression levels of Casp3, Col1a1,
Col1a2, Col2a1, Fn1, Igf1, Irs1, Itga5, Mapk1, Myc, Pdgfrb, Tgfb1,
and Thbs1 were significantly upregulated in FE (Figure 7).
The expression levels of the rest genes showed no significant
differences in FE compared with normal utricle.

DISCUSSION

The present study results revealed that mesenchymal cell markers
(α-SMA, S100A4, vimentin, and Fn1) were upregulated, and
robust cell proliferation was detected, during the formation
of vestibular FE. Furthermore, microarray analysis further
confirmed that multiple EMT-related pathways and genes
were involved in this process. These findings demonstrated
that EMT participated in the epithelial reorganization of
vestibular sensory epithelium after severe damage induced by
aminoglycoside antibiotics.

Epithelial–mesenchymal transition is a physiological process
that enables epithelial cells to acquire a mesenchymal cell
phenotype (Kalluri and Weinberg, 2009). The expression changes
in specific markers are used to confirm EMT (Nieto et al., 2016).
Vimentin is a type of intermediate filament and a commonly
used marker of mesenchymal properties (Thiery et al., 2009).
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FIGURE 3 | Microarray analysis of the normal utricle and flat epithelium (FE). (A) Volcano plot representing the whole transcriptome changes in FE compared with the
normal utricle. (B) Hierarchical clustering showing the differentially expressed genes (DEGs). Each group has five replicates. Yellow represents the upregulated genes
and blue represents the downregulated genes. (C) Top 100 upregulated genes in FE compared with the normal utricle. (D) Top 100 downregulated genes in FE
compared with the normal utricle. The horizontal axis represents the expression value. The # symbol indicates genes associated with epithelial–mesenchymal
transition (EMT).

Vimentin is upregulated in several wound healing models (Cheng
and Eriksson, 2017). In the inner ear, vimentin is expressed
in the SCs of normal cochlea and might contribute to the
process of scar formation after HC loss (Oesterle et al., 1990;

Ladrech et al., 2017). Vimentin is also present in the cochlear FE
(Ladrech et al., 2017). In the present study, vimentin expression
was significantly upregulated in the vestibular FE compared with
the normal utricle (Figure 1G). In addition, α-SMA, S100A4,
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FIGURE 4 | Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) between the normal utricle and flat epithelium (FE). (A) Top 20
upregulated GO terms associated with the biological process (BP; red), cellular component (CC; yellow), and molecular function (MF; blue). (B) Top 20
downregulated GO terms. The # symbol indicates GO terms associated with the epithelial–mesenchymal transition (EMT).

and Fn1 are mesenchymal markers commonly used to evaluate
EMT (Kalluri and Weinberg, 2009). In the present study, α-SMA
and S100A4 were poorly expressed in the normal utricle, while
they showed evident expression in FE (Figures 1A–D′′). The
mRNA expression levels of α-SMA, S100A4, and Fn1 were
significantly increased in FE compared with normal utricle
(Figure 1G), indicating that expression of mesenchymal cell
markers is increased in the vestibular FE.

E-cadherin and cytokeratin are two commonly used markers
of epithelial properties (Nieto et al., 2016). In the present
study, immunostaining results showed that the epithelial markers
E-cadherin and ZO-1 were expressed in the vestibular FE
(Figures 1C–F′′). Furthermore, qRT-PCR revealed no significant
difference in the expression of epithelial cell markers (E-cadherin,

keratin 5, keratin 8, and ZO-1) between FE and normal
utricle (Figure 1H). In the cochlea, E-cadherin was strongly
expressed in both normal sensory epithelium and FE, although
a drastic downregulation was found after aminoglycoside
ototoxicity (Ladrech et al., 2017). These data indicate that
the inner ear FE possesses both epithelial and mesenchymal
phenotypes. The hybrid phenotype, which is involved in various
pathophysiological processes and diseases, is considered to be
resulted from partial EMT (Hahn et al., 2016; Nieto et al., 2016;
Ladrech et al., 2017; Takahashi et al., 2019). The hybrid phenotype
of FE cells may facilitate maintenance of the epithelial barrier
in the inner ear.

In the present study, robust cell proliferation was found
during the early stage of vestibular FE after the damage
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FIGURE 5 | Pathway enrichment analysis and pathway interaction network analysis. (A,B) Pathway enrichment analysis showing the top 20 upregulated and top 20
downregulated signaling pathways. The # symbol indicates pathways associated with the epithelial–mesenchymal transition (EMT). (C) Pathway interaction network
analysis. Nodes represent pathways, and the arrows represent an interaction target between pathways.

(Figure 2), which was similar to cell proliferation in the
formation of cochlear FE (Kim and Raphael, 2007). EMT
has been reported to induce stem cell properties, including
proliferation and self-renewal in various types of tissues (Jessen
and Arthur-Farraj, 2019; Wang and Unternaehrer, 2019). During
the cutaneous wound healing process, partial EMT induces
epithelial cells undergoing proliferation and migration (Haensel
and Dai, 2018). Complex mechanisms may underlie the activity
of EMT and proliferation. The PI3K/Akt pathway and Myc
gene are involved in this process (King et al., 2015; Yu
and Cui, 2016). PI3K/Akt signaling plays a key role in the
regulation of cell proliferation. Akt is the major downstream

target of PI3K. Akt overexpression decreases the level of
mitosis marker p27kip1 and results in enhanced proliferation
(Shen et al., 2020). In the present study, Akt1 upregulation
(Figure 6B) and p27kip1 downregulation (Figure 2F) were
detected at 14 days after the damage of the vestibular sensory
epithelium. In addition, Myc was significantly upregulated and
identified as one of the 20 hub genes (Figure 7 and Table 1).
A major role of Myc is control of cell proliferation (Bretones
et al., 2015), and Myc could lead to the proliferation of
mature SCs in adult mice (Shu et al., 2019). The role of
such key genes in cell proliferation in vestibular FE needs
further investigation.
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FIGURE 6 | Visualization of the protein–protein interaction (PPI) network and the candidate genes. (A) Entire PPI network. The edges indicate the PPIs in the Search
Tool for the Retrieval of Interacting Genes (STRING) database. (B) Identification of the candidate genes from the entire PPI network using the maximum
neighborhood component (MNC) algorithm. Edges represent the protein–protein associations. The orange nodes represent the genes that have been reported to be
associated with the epithelial–mesenchymal transition (EMT), and gray nodes represent genes that have not been reported previously.

A multi-step integrative bioinformatics analysis was
performed to explore the EMT function in vestibular FE.
Based on GO analysis, DEGs were significantly enriched in
GO terms associated with cell adhesion, cell migration, and
extracellular components. Changes in cell adhesion molecules
and acquisition of migratory ability are major characteristics of
the EMT process (Nieto et al., 2016). Based on KEGG pathway
enrichment analysis and pathway interaction network analysis,
the PI3K/Akt signaling pathway was among the core positions
in the pathway interaction network, indicating that this pathway
plays an important role in the formation of vestibular FE.
PI3K/Akt pathway, an important signaling pathway involved
in the EMT process, may directly induce EMT by regulating
transcription factors or other signaling pathways (Xu et al.,
2015). PI3K/Akt signaling accelerates EMT and wound healing
in epithelial tissue (Xiao et al., 2017).

In the present study, 19 of 20 hub genes selected using the
MNC algorithm have been reportedly involved in EMT in various
tissues (Figure 6B and Table 1). Among them, the expression
of 13 hub genes changed significantly by qRT-PCR (Figure 7).
Some of them are involved in the proliferation, development,
nerve regeneration and protection of the inner ear. Fn1 promotes
cell invasion and migration by regulating cell adhesion and ECM
proteins (Ritzenthaler et al., 2008; Sen et al., 2010). Fn1 may be
involved in EMT process during cochlear fibrosis (Jia et al., 2016).
The present study revealed that Fn1 was in the core position in
the PPI network (Figure 6B), indicating that Fn1 might be a key
regulator of the EMT process in vestibular FE. Igf1 is an activator

of EMT through several signaling pathways (Haisa, 2013). In
the developing inner ear, Igf1 is highly expressed during otic
development, and it could protect HCs from ototoxic damage
and increase the HC proliferation rate (Varela-Nieto et al., 2004).
Myc and Casp3 regulate cell proliferation and apoptosis in the
inner ear respectively (Van De Water et al., 2004; Hu et al., 2021).
Thbs1 promotes EMT through activation of TGF-β and plays an
important role in the development of cochlear afferent synapse
(Jayachandran et al., 2014; Mendus et al., 2014). Altogether, these
studies suggest that the hub genes relevant to the inner ear,
such as Fn1, Igf1, Myc, Casp3, and Thbs1, may play a significant
role during EMT process of vestibular FE. However, the exact
pathophysiological mechanisms need to be further explored.

In conclusion, the present study results showed that
upregulation of mesenchymal cell markers, downregulation of
epithelial cell markers, and robust cell proliferation were detected
in vestibular FE. Furthermore, this is the first study in which the
transcriptome profile of vestibular FE was reported. Microarray
analysis showed a significant difference in the transcriptome
profiles between the normal utricle and FE, with many genes
associated with EMT. In addition, a group of GO terms
and pathways were associated with EMT. Altogether, these
findings demonstrated that the EMT plays a significant role
in the transition from normal vestibular sensory epithelium to
FE induced by aminoglycoside antibiotics. Additional research
is needed to determine the probable biological intervention
strategies of FE based on the transcriptome features identified in
the present study.
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FIGURE 7 | Quantitative reverse transcription polymerase chain reaction analysis of the 20 hub genes. ∗∗P < 0.01 and ∗∗∗P < 0.001 according to Student’s t-test.
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TABLE 1 | mRNAs involved in epithelial–mesenchymal transition (EMT) and their
associated diseases or potential mechanisms.

Gene
symbol

Description (disease/mechanisms) References

Akt1 Breast cancer Li et al., 2016

Casp3 Colon cancer cells Zhou et al., 2018

Col1a1 Colorectal cancer Zhang et al., 2018

Col1a2 Colon cancer Zhu et al., 2020

Fn1 ECM glycoprotein; enhances cell invasion and
migration

Ritzenthaler et al., 2008;
Sen et al., 2010

Hgf Activates downstream pathways including
MAPK and PI3K

Liu et al., 2017

Igf1 Activator of EMT in several types of cancer
through signaling pathways including JNK,
MAPK, and PI3K/Akt

Haisa, 2013

Il1b Epithelial and cancer cells Wang et al., 2018

Irs1 Regulates the expression of E-cadherin;
promotes Wnt-mediated EMT

Geng et al., 2014

Itga2 Prostate cancer Gaballa et al., 2020

Itga5 Oral squamous carcinoma Deng et al., 2019

Jun Human nasopharyngeal carcinoma cells Lin et al., 2018

Mapk1 Inhibits invasion and metastasis Li et al., 2015

Myc Breast cancer Yin et al., 2017

Nras Drives a switch in EMT transcriptional factor
expression

Caramel et al., 2013

Pdgfrb Tongue squamous carcinoma Zhang et al., 2016

Tgfb1 Regulates genes associated with ECM, cellular
motility, and tight junctions

Zarzynska, 2014

Thbs1 Major activator of TGF-β Murphy-Ullrich and
Poczatek, 2000

Trp53 Regulates specific miRNAs Chang et al., 2011

Col2a1 Not previously reported

MATERIALS AND METHODS

Animals and Surgery
FVB/N mice (4–5-week-old) were purchased from SPF
Biotechnology (Beijing, China) and housed in the Laboratory
Animal Department of Capital Medical University. All animal
experiments were approved by the Animal Care and Use
Committee of Capital Medical University of China.

When mice were 6 weeks old, 400 µg of streptomycin
(Sigma, St. Louis, MO, United States) dissolved in normal saline
(400 g/L, 1 µL), was inoculated into the inner ear through
the posterior semicircular canal to induce a severe lesion in
the mouse utricle. The surgery was performed as described
previously (Guo et al., 2018).

Immunofluorescence Staining
Mice were euthanized 2 weeks after the surgery. The temporal
bones were fixed in 4% paraformaldehyde in phosphate-
buffered saline (PBS) for 2 h. The utricles were dissected
out and treated with 0.3% Triton X-100 (Sigma) and 5%
normal goat serum (ZSGB-BIO, Beijing, China) in PBS for 2 h
at room temperature. Samples were incubated with primary
antibody at 4◦C overnight. We used the following primary
antibodies: mouse anti-α-SMA (diluted 1:300, Sigma), rabbit
anti-S100A4 (diluted 1:300, Sigma), E-cadherin (diluted 1:200,
BD Biosciences, San Jose, CA, United States), and ZO-1 (diluted
1:200, Invitrogen, Carlsbad, CA, United States). After rinsing in

PBS for three times, samples were incubated in fluorescence-
labeled secondary antibodies tagged with Alexa Fluor 568 or 647
(diluted 1:300, Invitrogen) for 2 h at room temperature. Alexa
Fluor 647-conjugated phalloidin (diluted 1:300, Invitrogen)
was used for F-actin labeling. Samples were incubated in the
DNA-binding fluorescent stain 4′,6-diamidino-2-phenylindole
(diluted 1:1000, AppliChem, Darmstadt, Germany) for 5 min
to label nuclei.

To detect cells entering the cell cycle at different time
points after streptomycin administration, EdU (20 mg/kg body
weight, Invitrogen) was given once intraperitoneally at 3, 7,
11, or 22 days after surgery. Mice were euthanized 24 h after
EdU administration. The Click-iT EdU Cell Proliferation Kit
(Invitrogen) was used to perform the click reaction. Samples
were then treated with primary and secondary antibodies as
described above.

Samples were mounted on glass slides with Fluoromount-
G (Southern Biotech, Birmingham, AL, United States)
and examined with a scanning confocal microscope (Leica
Camera AG, Solms, Hessen, Germany). Images were labeled
and spaced using Photoshop (Adobe Systems, San Jose,
CA, United States).

mRNA Microarray Analysis
The utricle tissues were collected for microarray analysis 2 weeks
after surgery. Total RNA was isolated using the Qiagen RNeasy
Mini Kit (Qiagen, Hilden, Germany). Each group contained
five samples, and each sample had three utricles. Microarray
analysis was performed by CapitalBio (Beijing, China). The
Affymetrix mouse Clariom S Array (Affymetrix, Santa Clara,
CA, United States) was used for hybridization. Student’s t-test
was applied for comparison of the two groups. Genes with
a fold change > 2 and a P-value < 0.05 were considered
significantly different. The dataset was submitted to Gene
Expression Omnibus (GSE179063).

Bioinformatics Analysis
Gene Ontology analysis was performed for the DEGs. The
distribution of genes in the three ontologies, including BP, CC,
and MF, reflects the effects of the particular genes. GO statistical
analysis was performed using Fisher’s exact test. A P-value < 0.01
was used as cutoff to select significantly enriched GO terms.

Pathway analysis was used to find significantly enriched
functional pathways according to the KEGG database. Fisher’s
exact test was used to identify the enriched pathways, and
P-value < 0.05 was used as cutoff to select significantly
enriched pathways.

A pathway interaction network was constructed based on the
KEGG analysis to determine the relationships between enriched
pathways. The degree represents the relationship between
one pathway and the pathways around it. Cytoscape (v3.7.2)
(Shannon et al., 2003) was used to draw the network diagram.

To better illustrate the interactions of the DEGs, the STRING1

database was used to predict the associations of the selected genes.
The parameter was set as interaction score≥0.5. The PPI network

1https://string-db.org/
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was constructed and visualized using Cytoscape (v3.7.2). The key
DEGs were selected using the MNC. The MNC of each node was
calculated using cytoHubba, a Cytoscape plugin, and the genes
with the top 20 MNC values were considered hub genes.

Quantitative Reverse Transcription
Polymerase Chain Reaction Analysis
Four independent RNA pools were prepared for each group,
and three utricles were dissected in RNAlater (Qiagen, Hilden,
Germany). TRIzol reagent (Life Technologies, Carlsbad, CA,
United States) was used to isolate total RNA. cDNA was
synthesized using FastQuant RT Super Mix reverse transcription
(Tiangen Biotech Co., Ltd.). qRT-PCR was performed using
FastStart Universal SYBR Green reagent (Bio-Rad Laboratories,
Hercules, CA, United States) and primers. The mouse
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was
used as a reference. The 2−11CT method was applied to calculate
changes in mRNA expression levels of the candidate genes.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8
(GraphPad Software, Inc., La Jolla, CA, United States). The
mRNA expression levels detected by qRT-PCR were expressed
as means ± SE and analyzed using unpaired Student’s t-test.
Differences were considered statistically significant at P < 0.05.
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