
CSS 503 
Program 2: The Sleeping-Barbers Problem 

Professor: Munehiro Fukuda 
Due date: see the syllabus 

 
1. Purpose 
In this programming assignment, we will extend the original so-called sleeping-barber problem to a 
multiple sleeping barbers problem where many customers visit a barbershop and receive a haircut service 
from any one available among barbers in the shop. 
 
2. Sleeping-Barber Problem 
The original problem description from our textbook is: 
A barbershop consists of a waiting room with n chairs and a barber room with one barber chair. If there 
are no customers to be served, the barber goes to sleep. If a customer enters the barbershop and all chairs 
are occupied, then the customer leaves the shop. If the barber is busy but chairs are available, then the 
customer sits in one of the free chairs. If the barber is asleep, the customer wakes up the barber. 
 
3. Our Extended Sleeping-Barbers Problem 
We will change the original description as follows: 
A barbershop consists of a waiting room with n chairs and a barber room with m barber chairs. If there are 
no customers to be served, all the barbers go to sleep. If a customer enters the barbershop and all chairs 
are occupied, then the customer leaves the shop. If all the barbers are busy but chairs are available, then 
the customer sits in one of the free chairs. If the barbers are asleep, the customer wakes up one of the 
barbers. 
 
4. Main Program: driver.cpp 
The driver.cpp (found under ~css503/programming/prog2/) is a driver program that tests your sleeping-
barbers problem: 

(1) Receives parameters such as: 
argv[1] nBarbers The number of barbers working in your barbershop 
argv[2] nChairs The number of chairs available for customers to wait on 
argv[3] nCustomers The number of customers who need a haircut service 
argv[4] serviceTime Each barber’s service time (in µ seconds). 

 
(2) Instantiates shop, an object from the Shop class that you will implement. 
(3) Spawns the nBarbers of barber threads as passing to a pointer to the shop object, the identifier (i.e. 

0 ~ nBarbers – 1), and serviceTime. 
(4) With a Random interval in µ seconds, (i.e., usleep( rand( ) % 1000 )), spawns one after another 

customer thread as passing a pointer to the shop object and the identifier (i.e., 1 ~ nCustomers). 
(5) Waits until all the customer threads are service and terminated. 
(6) Terminates all the barber threads. 

 
 
 
 
 
 
 



5. Barber Thread 
Barber threads are created in main( ). Each barber thread calls the following function (no need to modify): 
 
// the barber thread function                                                                             
void *barber( void *arg ) { 
 
  // extract parameters                                                                                   
  ThreadParam &param = *(ThreadParam *)arg; 
  Shop &shop = *(param.shop); 
  int id = param.id; 
  int serviceTime = param.serviceTime; 
  delete &param; 
 
  // keep working until being terminated by the main                                                      
  while( true ) { 
    shop.helloCustomer( id );  // pick up a new customer                                                  
    usleep( serviceTime );     // spend a service time                                                    
    shop.byeCustomer( id );    // release the customer                                                    
  } 
} 

 
6. Customer Thread 
Customer threads are created in main( ). Each customer thread calls the following function (no need to 
modify). 
 
// the customer thread function                                                                           
void *customer( void *arg ) { 
 
  // extract parameters                                                                                   
  ThreadParam &param = *(ThreadParam *)arg; 
  Shop &shop = *(param.shop); 
  int id = param.id; 
  delete &param; 
 
  int barber = -1; 
  if ( ( barber = shop.visitShop( id ) ) != -1 ) // am I assigned to barber i or no barber (-1)? 
    shop.leaveShop( id, barber );                // wait until my service is finished                     
} 

 
7. Shop Class 
This is the class that you have to design. The template is as follows: 
 
#ifndef _SHOP_H_ 
#define _SHOP_H_ 
#include <pthread.h> // the header file for the pthread library 
#include <queue> // the STL library: queue 
 
using namespace std; 
 
#define DEFAULT_CHAIRS 3 // the default number of chairs for waiting = 3 
#define DEFAULT_BARBERS 1 // the default number of barbers = 1 
 
class Shop { 
 public: 
  Shop( int nBarbers, int nChairs ); // initialize a Shop object with nBarbers and nChairs 
  Shop( );    // initialize a Shop object with 1 barber and 3 chairs 
 
  int visitShop( int id );   // return a non-negative number only when a customer got a service           
  void leaveShop( int customerId, int barberId ); 
  void helloCustomer( int id  ); 
  void byeCustomer( int id ); 
  int nDropsOff;              // the number of customers dropped off                                      
 
 private: 
  string int2string( int i ); 
  void print( int person, string message ); 
}; 
#endif 

 



Note that this is only a template. You must add some private variables such as pthread_mutex_t and 
pthread_cond_t, etc. to implement this Shop class as a monitor. You may use two private helper methods 
int2string( ) and print( ) whose implementations are given below. (If you want to use them, please copy 
and paste the following code into your Shop.cpp.) 
 
string Shop::int2string( int i ) { 
  stringstream out; 
  out << i; 
  return out.str( ); 
} 
 
void Shop::print( int person, string message ) { 
  cout << ( ( person > 0 ) ? "customer[" : "barber  [" ) 
       << abs( person ) << "]: " << message << endl; 
} 
 
If you call print( 5, “was served” ), it will print out “customer[5] was served”. If you call print( –2, “cuts a 
customer’s hair.” ), it will print out “barber[2] cuts a customer’s hair cut.” In other words, the print 
method distinguishes a barber from customers with the negative of the barber’s id.  
 
In this programming assignment, you must implement the following six methods: the two Shop( ) 
constructors, visitShop( ), leaveShop( ), helloCustomer( ), and byeCustomer( ). Their specifications are 
summarized below: 
 

(1) Shop( int nBarbers, int nChairs ) 
Initializes a Shop object with nBarabers and nChairs. 

 
(2) Shop( ) 

Initializes a Shop object with 1 barber and 3 chairs. 
 

(3) int visitShop( int id ) 
Is called by a customer thread. 
 
Enter the critical section. 
If all chairs are full { 

Print “id leaves the shop because of no available waiting chairs”. 
  Increment nDropsOff. 
 Leave the critical section. 
 Return –1. 
} 
if all barbers are busy { 
 Take a waiting char (or Push the customer in a waiting queue). 
 Print “id takes a waiting chair. # waiting seats available = …”. 
 Wait for a barber to wake me up. 
 Pop me out from the queue. 
} 
Get my barber whose id is barberId. 
Print “id moves to a service chair[barberId], # waiting seats available = …”. 
Have barberId start my haircut. 
Leave the critical section. 
Return barberId. 
 
 



(4) void leaveShop( int customerId, int barberId ) 
Is called by a customer thread. 
 
Enter the critical section. 
Print “customerId wait for barber[barberId] to be done with hair-cut.” 
While barberId is cutting my hair, 
 Wait. 
Print “customerId says good-by to barber[]”. 
Leave the critical section. 
 

(5) void helloCustomer( int id  ) 
Is called by a barber thread. 
 
Enter the critical section. 
If I have no customer and all the waiting chairs are empty { 
 Print “ –id sleeps because of no customers.” 

(Note that we display barber’s id from 0 to –(nBarbers – 1) in order to distinguish it from a 
customer id (from 1 to nCustomers).) 
wait until a customer wakes me up. 

} 
Print “–id starts a hair-cut service for customer[the customer thread id that woke me up].” 
Leave the critical section. 
 

(6) byeCustomer( int id ) 
Is called by a barber thread. 
 
Enter the critical section. 
Print “–id says he's done with a hair-cut service for customer[my customer thread id].” 
Wakes up my customer. 
Print ““–id calls in another customer.” 
Wakes up another customer who is waiting on a waiting chair. 
Leave the critical section. 
 

8. Statement of Work 
Follow through the six steps described below: 

Step 1:  Copy ~css503/prog2/driver.cpp to your directory; copy and paste the Shop.h template into 
your own Shop.h; and copy and paste int2string( ) and print( ) functions into your own 
Shop.cpp. 

Step 2:  Complete your Shop.h and Shop.cpp in accordance with the specifications of the Shop class. 
Step 3: Compile with “g++ driver.cpp Shop.cpp –o sleepingBarbers –lpthread” 
Step 4:  Run your program with the following two scenarios: 
 ./sleepingBarbers 1 1 10 1000 
 ./sleepingBarbers 3 1 10 1000 
 Compare your results with the following two files under ~css503/prog2/ 
 1barber_1chair_10customer_1000stime 
 3barber_1chair_10customer_1000stime 
 Since the program runs with usleep( ) that may have some clock skews, your results may not 

be the same as these two files, but you can still check if your program runs correctly. 
Step 5: Run your program with 
 ./sleepingBarbers 1 chair 200 1000 



 where chars should be 1 ~ 60.  Approximately how many waiting chairs would be necessary 
for all 200 customers to be served by 1 barber? 

Step 6:  Run your program with 
 ./sleepingBarbers barbars 0 200 1000 
 where barbers should be 1 ~ 3. Approximately how many barbers would be necessary for all 

200 customers to be served without waiting? 
 
9. What to Turn in 
This programming assignment is due at the beginning of class on the due date. Please turn in the 
following materials in a hard copy. No email submission is accepted. 
Criteria Grade 
Documentation of your Shop.cpp implementation including explanations and illustration in 
one or two pages. (No more than two, otherwise – 2pts) 

20pts  

Source code that adheres good modularization, coding style, and an appropriate amount of 
commends. 

• 25pts: well-organized and correct code 
• 23pts: messy yet working code or code with minor errors receives 
• 20pts: code with major bugs or incomplete code receives 

25pts  

Execution output that verifies the correctness of your implementation and observes the 
execution changes in Step 5 and Step 6.  

• 25pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10 
1000 that verify the correctness of  your Shop.h and Shop.cpp as well as your answer 
to Step 5 and Step 6 in Section 8. Statement of Work. 

• 20pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10 
1000 that verify the correctness of  your Shop.h and Shop.cpp but no answers to Step 5 
and Step 6 in Section 8. Statement of Work. 

• 15pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10 
1000 that however show some incorrectness of your Shop.h and Shop.cpp but your 
answer to Step 5 and Step 6 in Section 8. Statement of Work. 

• 10pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10 
1000 that however show some incorrectness of your Shop.h and Shop.cpp and no 
answers to Step 5 and Step 6 in Section 8. Statement of Work. 

• 5pts: No results. 

25pts  

Discussions in one or two pages. (No more than two, otherwise – 2pts) 
• Limitation and possible extension of your program (+15pts) 
• Discussions on your answers to Step5 and Step6 (+10pts) 

25pts  

Lab Session 2 If you have not yet turned in a hard copy of your source code and output or 
missed this session, please turn in together with program 2. 

5pts  

Total 
Note that program 2 takes 11% of your final grade. 

100pts  

 


