
CSS 503
Program 2: The Sleeping-Barbers Problem

Professor: Munehiro Fukuda
Due date: see the syllabus

1. Purpose
In this programming assignment, we will extend the original so-called sleeping-barber problem to a
multiple sleeping barbers problem where many customers visit a barbershop and receive a haircut service
from any one available among barbers in the shop.

2. Sleeping-Barber Problem
The original problem description from our textbook is:
A barbershop consists of a waiting room with n chairs and a barber room with one barber chair. If there
are no customers to be served, the barber goes to sleep. If a customer enters the barbershop and all chairs
are occupied, then the customer leaves the shop. If the barber is busy but chairs are available, then the
customer sits in one of the free chairs. If the barber is asleep, the customer wakes up the barber.

3. Our Extended Sleeping-Barbers Problem
We will change the original description as follows:
A barbershop consists of a waiting room with n chairs and a barber room with m barber chairs. If there are
no customers to be served, all the barbers go to sleep. If a customer enters the barbershop and all chairs
are occupied, then the customer leaves the shop. If all the barbers are busy but chairs are available, then
the customer sits in one of the free chairs. If the barbers are asleep, the customer wakes up one of the
barbers.

4. Main Program: driver.cpp
The driver.cpp (found under ~css503/programming/prog2/) is a driver program that tests your sleeping-
barbers problem:

(1) Receives parameters such as:
argv[1] nBarbers The number of barbers working in your barbershop
argv[2] nChairs The number of chairs available for customers to wait on
argv[3] nCustomers The number of customers who need a haircut service
argv[4] serviceTime Each barber’s service time (in µ seconds).

(2) Instantiates shop, an object from the Shop class that you will implement.
(3) Spawns the nBarbers of barber threads as passing to a pointer to the shop object, the identifier (i.e.

0 ~ nBarbers – 1), and serviceTime.
(4) With a Random interval in µ seconds, (i.e., usleep(rand() % 1000)), spawns one after another

customer thread as passing a pointer to the shop object and the identifier (i.e., 1 ~ nCustomers).
(5) Waits until all the customer threads are service and terminated.
(6) Terminates all the barber threads.

5. Barber Thread
Barber threads are created in main(). Each barber thread calls the following function (no need to modify):

// the barber thread function
void *barber(void *arg) {

 // extract parameters
 ThreadParam ¶m = *(ThreadParam *)arg;
 Shop &shop = *(param.shop);
 int id = param.id;
 int serviceTime = param.serviceTime;
 delete ¶m;

 // keep working until being terminated by the main
 while(true) {
 shop.helloCustomer(id); // pick up a new customer
 usleep(serviceTime); // spend a service time
 shop.byeCustomer(id); // release the customer
 }
}

6. Customer Thread
Customer threads are created in main(). Each customer thread calls the following function (no need to
modify).

// the customer thread function
void *customer(void *arg) {

 // extract parameters
 ThreadParam ¶m = *(ThreadParam *)arg;
 Shop &shop = *(param.shop);
 int id = param.id;
 delete ¶m;

 int barber = -1;
 if ((barber = shop.visitShop(id)) != -1) // am I assigned to barber i or no barber (-1)?
 shop.leaveShop(id, barber); // wait until my service is finished
}

7. Shop Class
This is the class that you have to design. The template is as follows:

#ifndef _SHOP_H_
#define _SHOP_H_
#include <pthread.h> // the header file for the pthread library
#include <queue> // the STL library: queue

using namespace std;

#define DEFAULT_CHAIRS 3 // the default number of chairs for waiting = 3
#define DEFAULT_BARBERS 1 // the default number of barbers = 1

class Shop {
 public:
 Shop(int nBarbers, int nChairs); // initialize a Shop object with nBarbers and nChairs
 Shop(); // initialize a Shop object with 1 barber and 3 chairs

 int visitShop(int id); // return a non-negative number only when a customer got a service
 void leaveShop(int customerId, int barberId);
 void helloCustomer(int id);
 void byeCustomer(int id);
 int nDropsOff; // the number of customers dropped off

 private:
 string int2string(int i);
 void print(int person, string message);
};
#endif

Note that this is only a template. You must add some private variables such as pthread_mutex_t and
pthread_cond_t, etc. to implement this Shop class as a monitor. You may use two private helper methods
int2string() and print() whose implementations are given below. (If you want to use them, please copy
and paste the following code into your Shop.cpp.)

string Shop::int2string(int i) {
 stringstream out;
 out << i;
 return out.str();
}

void Shop::print(int person, string message) {
 cout << ((person > 0) ? "customer[" : "barber [")
 << abs(person) << "]: " << message << endl;
}

If you call print(5, “was served”), it will print out “customer[5] was served”. If you call print(–2, “cuts a
customer’s hair.”), it will print out “barber[2] cuts a customer’s hair cut.” In other words, the print
method distinguishes a barber from customers with the negative of the barber’s id.

In this programming assignment, you must implement the following six methods: the two Shop()
constructors, visitShop(), leaveShop(), helloCustomer(), and byeCustomer(). Their specifications are
summarized below:

(1) Shop(int nBarbers, int nChairs)
Initializes a Shop object with nBarabers and nChairs.

(2) Shop()

Initializes a Shop object with 1 barber and 3 chairs.

(3) int visitShop(int id)
Is called by a customer thread.

Enter the critical section.
If all chairs are full {

Print “id leaves the shop because of no available waiting chairs”.
 Increment nDropsOff.
 Leave the critical section.
 Return –1.
}
if all barbers are busy {
 Take a waiting char (or Push the customer in a waiting queue).
 Print “id takes a waiting chair. # waiting seats available = …”.
 Wait for a barber to wake me up.
 Pop me out from the queue.
}
Get my barber whose id is barberId.
Print “id moves to a service chair[barberId], # waiting seats available = …”.
Have barberId start my haircut.
Leave the critical section.
Return barberId.

(4) void leaveShop(int customerId, int barberId)
Is called by a customer thread.

Enter the critical section.
Print “customerId wait for barber[barberId] to be done with hair-cut.”
While barberId is cutting my hair,
 Wait.
Print “customerId says good-by to barber[]”.
Leave the critical section.

(5) void helloCustomer(int id)
Is called by a barber thread.

Enter the critical section.
If I have no customer and all the waiting chairs are empty {
 Print “ –id sleeps because of no customers.”

(Note that we display barber’s id from 0 to –(nBarbers – 1) in order to distinguish it from a
customer id (from 1 to nCustomers).)
wait until a customer wakes me up.

}
Print “–id starts a hair-cut service for customer[the customer thread id that woke me up].”
Leave the critical section.

(6) byeCustomer(int id)
Is called by a barber thread.

Enter the critical section.
Print “–id says he's done with a hair-cut service for customer[my customer thread id].”
Wakes up my customer.
Print ““–id calls in another customer.”
Wakes up another customer who is waiting on a waiting chair.
Leave the critical section.

8. Statement of Work
Follow through the six steps described below:

Step 1: Copy ~css503/prog2/driver.cpp to your directory; copy and paste the Shop.h template into
your own Shop.h; and copy and paste int2string() and print() functions into your own
Shop.cpp.

Step 2: Complete your Shop.h and Shop.cpp in accordance with the specifications of the Shop class.
Step 3: Compile with “g++ driver.cpp Shop.cpp –o sleepingBarbers –lpthread”
Step 4: Run your program with the following two scenarios:
 ./sleepingBarbers 1 1 10 1000
 ./sleepingBarbers 3 1 10 1000
 Compare your results with the following two files under ~css503/prog2/
 1barber_1chair_10customer_1000stime
 3barber_1chair_10customer_1000stime
 Since the program runs with usleep() that may have some clock skews, your results may not

be the same as these two files, but you can still check if your program runs correctly.
Step 5: Run your program with
 ./sleepingBarbers 1 chair 200 1000

 where chars should be 1 ~ 60. Approximately how many waiting chairs would be necessary
for all 200 customers to be served by 1 barber?

Step 6: Run your program with
 ./sleepingBarbers barbars 0 200 1000
 where barbers should be 1 ~ 3. Approximately how many barbers would be necessary for all

200 customers to be served without waiting?

9. What to Turn in
This programming assignment is due at the beginning of class on the due date. Please turn in the
following materials in a hard copy. No email submission is accepted.
Criteria Grade
Documentation of your Shop.cpp implementation including explanations and illustration in
one or two pages. (No more than two, otherwise – 2pts)

20pts

Source code that adheres good modularization, coding style, and an appropriate amount of
commends.

• 25pts: well-organized and correct code
• 23pts: messy yet working code or code with minor errors receives
• 20pts: code with major bugs or incomplete code receives

25pts

Execution output that verifies the correctness of your implementation and observes the
execution changes in Step 5 and Step 6.

• 25pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10
1000 that verify the correctness of your Shop.h and Shop.cpp as well as your answer
to Step 5 and Step 6 in Section 8. Statement of Work.

• 20pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10
1000 that verify the correctness of your Shop.h and Shop.cpp but no answers to Step 5
and Step 6 in Section 8. Statement of Work.

• 15pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10
1000 that however show some incorrectness of your Shop.h and Shop.cpp but your
answer to Step 5 and Step 6 in Section 8. Statement of Work.

• 10pts: Sample outputs with ./sleepingBarbers 1 1 10 1000 and ./sleepingBarbers 3 1 10
1000 that however show some incorrectness of your Shop.h and Shop.cpp and no
answers to Step 5 and Step 6 in Section 8. Statement of Work.

• 5pts: No results.

25pts

Discussions in one or two pages. (No more than two, otherwise – 2pts)
• Limitation and possible extension of your program (+15pts)
• Discussions on your answers to Step5 and Step6 (+10pts)

25pts

Lab Session 2 If you have not yet turned in a hard copy of your source code and output or
missed this session, please turn in together with program 2.

5pts

Total
Note that program 2 takes 11% of your final grade.

100pts

