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Abstract. Ordinal analysis of theories is a core area of proof theory whose origins can be traced
back to Hilbert’s programme – the aim of which was to lay to rest all worries about the foundations
of mathematics once and for all by securing mathematics via an absolute proof of consistency.
Ordinal-theoretic proof theory came into existence in 1936, springing forth from Gentzen’s head
in the course of his consistency proof of arithmetic. The central theme of ordinal analysis is the
classification of theories by means of transfinite ordinals that measure their ‘consistency strength’
and ‘computational power’. The so-called proof-theoretic ordinal of a theory also serves to
characterize its provably recursive functions and can yield both conservation and combinatorial
independence results.

This paper intends to survey the development of “ordinally informative” proof theory from
the work of Gentzen up to more recent advances in determining the proof-theoretic ordinals of
strong subsystems of second order arithmetic.
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1. Introduction

Ordinal analysis of theories is a core area of proof theory. The origins of proof
theory can be traced back to the second problem on Hilbert’s famous list of problems
(presented at the Second International Congress in Paris on August 8, 1900), which
called for a proof of consistency of the arithmetical axioms of the reals. Hilbert’s
work on axiomatic geometry marked the beginning of his live-long interest in the
axiomatic method. For geometry, he solved the problem of consistency by furnishing
arithmetical-analytical interpretations of the axioms, thereby reducing the question
of consistency to the consistency of the axioms for real numbers. The consistency of
the latter system of axioms is therefore the ultimate problem for the foundations of
mathematics.

Which axioms for real numbers Hilbert had in mind in his problem was made
precise only when he took up logic full scale in the 1920s and proposed a research
programme with the aim of providing mathematics with a secure foundation. This
was to be accomplished by first formalizing logic and mathematics in their entirety,
and then showing that these formalizations are consistent, that is to say free of contra-
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dictions. Strong restrictions were placed on the methods to be applied in consistency
proofs of axiom systems for mathematics: namely, these methods were to be com-
pletely finitistic in character. The proposal to obtain finitistic consistency proofs of
axiom systems for mathematics came to be called Hilbert’s Programme.

Hilbert’s Programme is a reductive enterprise with the aim of showing that when-
ever a ‘real’ proposition can be proved by ‘ideal’ means, it can also be proved by ‘real’,
finitistic means. However, Hilbert’s so-called formalism was not intended to elimi-
nate nonconstructive existence proofs in the practice of mathematics, but to vindicate
them.

In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert’s Programme,
were working on consistency proofs for arithmetical systems. Ackermann’s 1924
dissertation gives a consistency proof for a second-order version of primitive recur-
sive arithmetic which explicitly uses a finitistic version of transfinite induction up to
the ordinal ωω

ω
. The employment of transfinite induction on ordinals in consistency

proofs came explicitly to the fore in Gentzen’s 1936 consistency proof for Peano arith-
metic, PA. This proof led to the assignment of a proof-theoretic ordinal to a theory.
This so-called ordinal analysis of theories allows one to classify theories by means
of transfinite ordinals that measure their ‘consistency strength’ and ‘computational
power’.

The subject of this paper is the development of ordinal analysis from the work
of Gentzen up to very recent advances in determining the proof-theoretic ordinals of
strong subsystems of second order arithmetic.

1.1. Gentzen’s result. The most important structure in mathematics is arguably
the structure of the natural numbers N = (

N; 0N, 1N,+N,×N, EN,<N
)
, where 0N

denotes zero, 1N denotes the number one, +N, ×N,EN denote the successor, addition,
multiplication, and exponentiation function, respectively, and<N stands for the less-
than relation on the natural numbers. In particular, EN(n,m) = nm.

Many of the famous theorems and problems of mathematics such as Fermat’s and
Goldbach’s conjecture, the Twin Prime conjecture, and Riemann’s hypothesis can be
formalized as sentences of the language of N and thus concern questions about the
structure N.

Definition 1.1. A theory designed with the intent of axiomatizing the structure N

is Peano arithmetic, PA. The language of PA has the predicate symbols =, <,
the function symbols +, ×, E (for addition, multiplication, exponentiation) and the
constant symbols 0 and 1. The Axioms of PA comprise the usual equations and laws
for addition, multiplication, exponentiation, and the less-than relation. In addition,
PA has the Induction Scheme

(IND) ϕ(0) ∧ ∀x[ϕ(x) → ϕ(x + 1)] → ∀xϕ(x)
for all formulae ϕ of the language of PA.
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Gentzen showed that transfinite induction up to the ordinal

ε0 = sup{ω,ωω, ωωω, . . . } = least α. ωα = α

suffices to prove the consistency of PA. To appreciate Gentzen’s result it is pivotal
to note that he applied transfinite induction up to ε0 solely to elementary computable
predicates and besides that his proof used only finitistically justified means. Hence,
a more precise rendering of Gentzen’s result is

F + EC-TI(ε0) � Con(PA); (1)

here F signifies a theory that embodies only finitistically acceptable means, EC-TI(ε0)

stands for transfinite induction up to ε0 for elementary computable predicates, and
Con(PA) expresses the consistency of PA. Gentzen also showed that his result was the
best possible in that PA proves transfinite induction up to α for arithmetic predicates
for any α < ε0. The compelling picture conjured up by the above is that the non-
finitist part of PA is encapsulated in EC-TI(ε0) and therefore “measured” by ε0,
thereby tempting one to adopt the following definition of proof-theoretic ordinal of a
theory T :

|T |Con = least α. F + EC-TI(α) � Con(T ). (2)

In the above, many notions were left unexplained. We will now consider them one
by one. The elementary computable functions are exactly the Kalmar elementary
functions, i.e. the class of functions which contains the successor, projection, zero,
addition, multiplication, and modified subtraction functions and is closed under com-
position and bounded sums and products. A predicate is elementary computable if its
characteristic function is elementary computable.

According to an influential analysis of finitism due to W.W. Tait, finististic reason-
ing coincides with a system known as primitive recursive arithmetic. For the purposes
of ordinal analysis, however, it suffices to identify F with an even more restricted the-
ory known as Elementary Recursive Arithmetic, ERA. ERA is a weak subsystem of
PA having the same defining axioms for +, ×, E, < but with induction restricted to
elementary computable predicates.

In order to formalize EC-TI(α) in the language of arithmetic we should first discuss
ordinals and the representation of particular ordinals α as relations on N.

Definition 1.2. A setA equipped with a total ordering≺ (i.e.≺ is transitive, irreflexive,
and ∀x, y ∈ A [x ≺ y ∨ x = y ∨ y ≺ x]) is a wellordering if every non-empty
subset X of A contains a ≺-least element, i.e. (∃u ∈ X)(∀y ∈ X)[u ≺ y ∨ u = y].

An ordinal is a transitive set wellordered by the elementhood relation ∈.

Fact 1.3. Every wellordering (A,≺) is order isomorphic to an ordinal (α,∈).
Ordinals are traditionally denoted by lower case Greek letters α, β, γ, δ, . . . and

the relation ∈ on ordinals is notated simply by <. The operations of addition, mul-
tiplication, and exponentiation can be defined on all ordinals, however, addition and
multiplication are in general not commutative.
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We are interested in representing specific ordinals α as relations on N. In essence
Cantor [10] defined the first ordinal representation system in 1897. Natural ordinal
representation systems are frequently derived from structures of the form

A = 〈α, f1, . . . , fn,<α〉 (3)

where α is an ordinal, <α is the ordering of ordinals restricted to elements of α and
the fi are functions

fi : α × · · · × α︸ ︷︷ ︸
ki times

−→ α

for some natural number ki .

A = 〈A, g1, . . . , gn,≺〉 (4)

is a computable (or recursive) representation of A if the following conditions hold:

1. A ⊆ N and A is a computable set.

2. ≺ is a computable total ordering on A and the functions gi are computable.

3. A ∼= A, i.e. the two structures are isomorphic.

Theorem 1.4 (Cantor, 1897). For every ordinal β > 0 there exist unique ordinals
β0 ≥ β1 ≥ · · · ≥ βn such that

β = ωβ0 + · · · + ωβn. (5)

The representation of β in (5) is called the Cantor normal form. We shall write
β =

CNF
ωβ1 + · · · + ωβn to convey that β0 ≥ β1 ≥ · · · ≥ βk .

ε0 denotes the least ordinal α > 0 such that (∀β < α)ωβ < α. ε0 can also be
described as the least ordinal α such that ωα = α.

Ordinals β < ε0 have a Cantor normal form with exponents βi < β and these
exponents have Cantor normal forms with yet again smaller exponents. As this process
must terminate, ordinals< ε0 can be coded by natural numbers. For instance a coding
function

� . � : ε0 −→ N

could be defined as follows:

�α� =
{

0 if α = 0,

〈�α1�, . . . , �αn�〉 if α =
CNF

ωα1 + · · · + ωαn

where 〈k1, . . . , kn〉 := 2k1+1 . . . p
kn+1
n with pi being the ith prime number (or any

other coding of tuples). Further define:

A0 := range of �.�, �α� ≺ �β� :⇔ α < β

�α� +̂ �β� := �α + β�, �α� ·̂ �β� := �α · β�, ω̂�α� := �ωα�.
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Then
〈ε0,+, ·, δ �→ ωδ,<〉 ∼= 〈A0, +̂, ·̂, x �→ ω̂x,≺〉.

A0, +̂, ·̂, x �→ ω̂x , ≺ are computable (recursive), in point of fact, they are all elemen-
tary computable.

Finally, we can spell out the scheme EC-TI(ε0) in the language of PA:

∀x [∀y (y ≺ x → P(y)) → P(x)] → ∀x P (x)
for all elementary computable predicates P .

1.2. Cut Elimination: Gentzen’s Hauptsatz. In the consistency proof, Gentzen
used his sequent calculus and employed the technique of cut elimination. As this is a
tool of utmost importance in proof theory and ordinal analysis, a rough outline of the
underlying ideas will be discussed next.

The most common logical calculi are Hilbert-style systems. They are specified by
delineating a collection of schematic logical axioms and some inference rules. The
choice of axioms and rules is more or less arbitrary, only subject to the desire to obtain
a complete system (in the sense of Gödel’s completeness theorem). In model theory
it is usually enough to know that there is a complete calculus for first order logic as
this already entails the compactness theorem.

There are, however, proof calculi without this arbitrariness of axioms and rules.
The natural deduction calculus and the sequent calculus were both invented by
Gentzen. Both calculi are pretty illustrations of the symmetries of logic. The se-
quent calculus since is a central tool in ordinal analysis and allows for generalizations
to so-called infinitary logics. Gentzen’s main theorem about the sequent calculus is
the Hauptsatz, i.e. the cut elimination theorem.

A sequent is an expression	 ⇒ 
where	 and
 are finite sequences of formulae
A1, . . . , An and B1, . . . , Bm, respectively. We also allow for the possibility that 	 or

 (or both) are empty. The empty sequence will be denoted by ∅. 	 ⇒ 
 is read,
informally, as 	 yields 
 or, rather, the conjunction of the Ai yields the disjunction
of the Bj . In particular, we have:

• If 	 is empty, the sequent asserts the disjunction of the Bj .

• If 
 is empty, it asserts the negation of the conjunction of the Ai .

• if 	 and 
 are both empty, it asserts the impossible, i.e. a contradiction.

We use upper case Greek letters 	,
,�,�,
 . . . to range over finite sequences
of formulae. 	 ⊆ 
 means that every formula of 	 is also a formula of 
.

Next we list the axioms and rules of the sequent calculus.

• Identity Axiom:
A ⇒ A

where A is any formula. In point of fact, one could limit this axiom to the case
of atomic formulae A.
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• Cut Rule:
	 ⇒ 
,A A,� ⇒ �

Cut
	,� ⇒ 
,�

The formula A is called the cut formula of the inference.

• Structural Rules:

	 ⇒ 


	′ ⇒ 
′ if 	 ⊆ 	′, 
 ⊆ 
′.

A special case of the structural rule, known as contraction, occurs when the
lower sequent has fewer occurrences of a formula than the upper sequent. For
instance, A,	 ⇒ 
,B follows structurally from A,A,	 ⇒ 
,B,B.

• Rules for Logical Operations:

Left Right

	 ⇒ 
,A

¬A,	 ⇒ 


B,	 ⇒ 


	 ⇒ 
,¬B
	 ⇒ 
,A B,� ⇒ �

A → B,	,� ⇒ 
,�

A,	 ⇒ 
,B

	 ⇒ 
,A → B

A,	 ⇒ 


A ∧ B,	 ⇒ 


B,	 ⇒ 


A ∧ B,	 ⇒ 


	 ⇒ 
,A 	 ⇒ 
,B

	 ⇒ 
,A ∧ B
A,	 ⇒ 
 B,	 ⇒ 


A ∨ B,	 ⇒ 


	 ⇒ 
,A

	 ⇒ 
,A ∨ B
	 ⇒ 
,B

	 ⇒ 
,A ∨ B
F(t), 	 ⇒ 
 ∀ L∀x F(x), 	 ⇒ 


	 ⇒ 
,F(a) ∀ R
	 ⇒ 
,∀x F(x)

F (a), 	 ⇒ 
 ∃ L∃x F(x), 	 ⇒ 


	 ⇒ 
,F(t) ∃ R
	 ⇒ 
, ∃x F(x)

In ∀L and ∃R, t is an arbitrary term. The variable a in ∀R and ∃L is an eigenvariable
of the respective inference, i.e. a is not to occur in the lower sequent.

In the rules for logical operations, the formulae highlighted in the premisses are
called the minor formulae of that inference, while the formula highlighted in the
conclusion is the principal formula of that inference. The other formulae of an
inference are called side formulae.

A proof (also known as deduction or derivation) D is a tree of sequents satisfying
the following conditions:

• The topmost sequents of D are identity axioms.
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• Every sequent in D except the lowest one is an upper sequent of an inference
whose lower sequent is also in D .

A sequent 	 ⇒ 
 is deducible if there is a proof having 	 ⇒ 
 as its the bottom
sequent.

The Cut rule differs from the other rules in an important respect. With the rules
for introduction of a connective on the left or the right, one sees that every formula
that occurs above the line occurs below the line either directly, or as a subformula of
a formula below the line, and that is also true for the structural rules. (Here A(t) is
counted as a subformula, in a slightly extended sense, of both ∃xA(x) and ∀xA(x).)
But in the case of the Cut rule, the cut formulaA vanishes. Gentzen showed that such
“vanishing rules” can be eliminated.

Theorem 1.5 (Gentzen’s Hauptsatz). If a sequent 	 ⇒ 
 is provable, then it is
provable without use of the Cut Rule (called a cut-free proof ).

The secret to Gentzen’s Hauptsatz is the symmetry of left and right rules for the
logical connectives. The proof of the cut elimination theorem is rather intricate as
the process of removing cuts interferes with the structural rules. The possibility of
contraction accounts for the high cost of eliminating cuts. Let |D | be the height of
the deduction D . Also, let rank(D) be supremum of the lengths of cut formulae
occurring in D . Turning D into a cut-free deduction of the same end sequent results,
in the worst case, in a deduction of height H(rank(D), |D |) where H(0, n) = n and
H(k + 1, n) = 4H(k,n), yielding hyper-exponential growth.

The Hauptsatz has an important corollary which explains its crucial role in ob-
taining consistency proofs.

Corollary 1.6 (The Subformula Property). If a sequent 	 ⇒ 
 is provable, then it
has a deduction all of whose formulae are subformulae of the formulae of 	 and 
.

Corollary 1.7. A contradiction, i.e. the empty sequent ∅ ⇒ ∅, is not deducible.

Proof. According to the Hauptsatz, if the empty sequent were deducible it would have
a deduction without cuts. In a cut-free deduction of the empty sequent only empty
sequents can occur. But such a deduction does not exist. ��

While mathematics is based on logic, it cannot be developed solely on the basis
of pure logic. What is needed in addition are axioms that assert the existence of
mathematical objects and their properties. Logic plus axioms gives rise to (formal)
theories such as Peano arithmetic or the axioms of Zermelo–Fraenkel set theory.
What happens when we try to apply the procedure of cut elimination to theories?
Well, axioms are poisonous to this procedure. It breaks down because the symmetry
of the sequent calculus is lost. In general, we cannot remove cuts from deductions
in a theory T when the cut formula is an axiom of T . However, sometimes the
axioms of a theory are of bounded syntactic complexity. Then the procedure applies
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partially in that one can remove all cuts that exceed the complexity of the axioms
of T . This gives rise to partial cut elimination. It is a very important tool in proof
theory. For example, it works very well if the axioms of a theory can be presented as
atomic intuitionistic sequents (also called Horn clauses), yielding the completeness
of Robinsons resolution method. Partial cut elimination also pays off in the case of
fragments of PA and set theory with restricted induction schemes, be it induction on
natural numbers or sets. This method can be used to extract bounds from proofs of
�0

2 statements in such fragments.
Full arithmetic (i.e. PA), though, does not even allow for partial cut elimination

since the induction axioms have unbounded complexity. However, one can remove
the obstacle to cut elimination in a drastic way by going infinite. The so-called ω-rule
consists of the two types of infinitary inferences:

	 ⇒ 
,F(0); 	 ⇒ 
,F(1); . . . ;	 ⇒ 
,F(n); . . .
ωR

	 ⇒ 
,∀x F(x)
F (0), 	 ⇒ 
; F(1), 	 ⇒ 
; . . . ;F(n), 	 ⇒ 
; . . .

ωL∃x F(x), 	 ⇒ 


The price to pay will be that deductions become infinite objects, i.e. infinite well-
founded trees.

The sequent-style version of Peano arithmetic with theω-rule will be termed PAω.
PAω has no use for free variables. Thus free variables are discarded and all terms
will be closed. All formulae of this system are therefore closed, too. The numerals
are the terms n, where 0̄ = 0 and n+ 1 = Sn. We shall identify n with the natural
number n. All terms t of PAω evaluate to a numeral n.

PAω has all the inference rules of the sequent calculus except for ∀R and ∃L. In
their stead, PAω has theωR andωL inferences. The Axioms of PAω are the following:
(i) ∅ ⇒ A if A is a true atomic sentence; (ii) B ⇒ ∅ if B is a false atomic sentence;
(iii) F(s1, . . . , sn) ⇒ F(t1, . . . , tn) if F(s1, . . . , sn) is an atomic sentence and si
and ti evaluate to the same numeral.

With the aid of theω-rule, each instance of the induction scheme becomes logically
deducible, albeit the price to pay will be that the proof tree becomes infinite. To
describe the cost of cut elimination for PAω, we introduce the measures of height and
cut rank of a PAω deduction D . We will notate this by

D
α

k
	 ⇒ 
 .

The above relation is defined inductively following the buildup of the deduction D .
For the cut rank we need the definition of the length, |A| of a formula: |A| = 0 if A
is atomic; |¬A0| = |A0| + 1; |A0�A1| = max(|A0, A1|)+ 1 where � = ∧,∨,→;
|∃x F(x)| = |∀x F(x)| = |F(0)| + 1.

Now suppose the last inference of D is of the form

D0
	0 ⇒ 
0

. . .
Dn

	n ⇒ 
n
. . . n < τ

I
	 ⇒ 
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where τ = 1, 2, ω and the Dn are the immediate subdeductions of D . If

Dn
αn

k
	n ⇒ 
n

and αn < α for all n < τ then

D
α

k
	 ⇒ 


providing that in the case of I being a cut with cut formulaAwe also have |A| < k. We
will write PAω

α

k
	 ⇒ 
 to convey that there exists a PAω-deductionD

α

k
	 ⇒ 
 .

The ordinal analysis of PA proceeds by first unfolding any PA-deduction into a PAω-
deduction:

If PA � 	 ⇒ 
, then PAω
ω+m
k

	 ⇒ 
 (6)

for some m, k < ω. The next step is to get rid of the cuts. It turns out that the cost of
lowering the cut rank from k + 1 to k is an exponential with base ω.

Theorem 1.8 (Cut Elimination for PAω).

If PAω
α

k+1
	 ⇒ 
 , then PAω

ωα

k
	 ⇒ 
 .

As a result, if PAω
α

n
	 ⇒ 
 , we may apply the previous theorem n times to

arrive at a cut-free deduction PAω
ρ

0
	 ⇒ 
 with ρ = ωω

..
.ω
α

, where the stack
has height n. Combining this with the result from (6), it follows that every sequent
	 ⇒ 
 deducible in PA has a cut-free deduction in PAω of length< ε0. Ruminating
on the details of how this result was achieved yields a consistency proof for PA from
transfinite induction up to ε0 for elementary decidable predicates on the basis of
finitistic reasoning (as described in (1)).

Deductions in PAω being well-founded infinite trees, they have a natural associated
ordinal length, namely: the height of the tree as an ordinal. Thus the passage from
finite deductions in PA to infinite cut-free deductions in PAω provides an explanation
of how the ordinal ε0 is connected with PA.

Gentzen, however, did not consider infinite proof trees. The infinitary version of
PA with the ω-rule was introduced by Schütte in [35]. Incidentally, the ω-rule had
already been proposed by Hilbert [18]. Gentzen worked with finite deductions in the
sequent calculus version of PA, devising an ingenious method of assigning ordinals
to purported derivations of the empty sequent (inconsistency). It turns out in recent
work by Buchholz [9] that in fact there is a much closer intrinsic connection between
the way Gentzen assigned ordinals to deductions in PA and the way that ordinals are
assigned to infinite deductions in PAω.

In the 1950s infinitary proof theory flourished in the hands of Schütte. He extended
his approach to PA to systems of ramified analysis and brought this technique to per-
fection in his monograph “Beweistheorie” [36]. The ordinal representation systems
necessary for Schütte’s work will be reviewed in the next subsection.
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1.3. A brief history of ordinal representation systems: 1904–1950. Ordinals as-
signed as lengths to deductions to keep track of the cost of operations such as cut
elimination render ordinal analyses of theories particularly transparent. In the case
of PA, Gentzen could rely on Cantor’s normal form for a supply of ordinal represen-
tations. For stronger theories, though, segments larger than ε0 have to be employed.
Ordinal representation systems utilized by proof theorists in the 1960s arose in a
purely set-theoretic context. This subsection will present some of the underlying
ideas as progress in ordinal-theoretic proof theory also hinges on the development of
sufficiently strong and transparent ordinal representation systems.

In 1904, Hardy [17] wanted to “construct” a subset of R of size ℵ1. His method was
to represent countable ordinals via increasing sequence of natural numbers and then
to correlate a decimal expansion with each such sequence. Hardy used two processes
on sequences: (i) Removing the first element to represent the successor; (ii) Diag-
onalizing at limits. E.g., if the sequence 1, 2, 3, . . . represents the ordinal 1, then
2, 3, 4, . . . represents the ordinal 2 and 3, 4, 5, . . . represents the ordinal 3 etc., while
the ‘diagonal’1, 3, 5, . . . provides a representation ofω. In general, if λ = limn∈N λn
is a limit ordinal with bn1, bn2, bn3, . . . representing λn < λ, then b11, b22, b33, . . .

represents λ. This representation, however, depends on the sequence chosen with
limit λ. A sequence (λn)n∈N with λn < λ and limn∈N λn = λ is called a funda-
mental sequence for λ. Hardy’s two operations give explicit representations for all
ordinals < ω2.

Veblen [44] extended the initial segment of the countable for which fundamental
sequences can be given effectively. The new tools he devised were the operations
of derivation and transfinite iteration applied to continuous increasing functions on
ordinals.

Definition 1.9. Let ON be the class of ordinals. A (class) function f : ON → ON
is said to be increasing if α < β implies f (α) < f (β) and continuous (in the order
topology on ON) if

f (lim
ξ<λ

αξ ) = lim
ξ<λ

f (αξ )

holds for every limit ordinal λ and increasing sequence (αξ )ξ<λ. f is called normal
if it is increasing and continuous.

The function β �→ ω+β is normal while β �→ β+ω is not continuous at ω since
limξ<ω(ξ + ω) = ω but (limξ<ω ξ)+ ω = ω + ω.

Definition 1.10. The derivative f ′ of a function f : ON → ON is the function which
enumerates in increasing order the solutions of the equation f (α) = α, also called
the fixed points of f .

If f is a normal function, {α : f (α) = α} is a proper class and f ′ will be a normal
function, too.
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Definition 1.11. Now, given a normal function f : ON → ON , define a hierarchy of
normal functions as follows:

f0 = f, fα+1 = f ′
α,

fλ(ξ) = ξ th element of
⋂
α<λ

(Range of fα) for λ a limit ordinal.

In this way, from the normal function f we get a two-place function, ϕf (α, β) :=
fα(β). Veblen then discusses the hierarchy when f = �, where �(α) = 1 + α.

The least ordinal γ > 0 closed under ϕ�, i.e. the least ordinal > 0 satisfying
(∀α, β < γ ) ϕ�(α, β) < γ is the famous ordinal 	0 which Feferman [13] and
Schütte [37], [38] determined to be the least ordinal ‘unreachable’ by predicative
means.

Veblen extended this idea first to arbitrary finite numbers of arguments, but then
also to transfinite numbers of arguments, with the proviso that in, for example
�f (α0, α1, . . . , αη), only a finite number of the arguments αν may be non-zero.
Finally, Veblen singled out the ordinal E(0), where E(0) is the least ordinal δ > 0
which cannot be named in terms of functions ��(α0, α1, . . . , αη) with η < δ, and
each αγ < δ.

Though the “great Veblen number” (as E(0) is sometimes called) is quite an
impressive ordinal it does not furnish an ordinal representation sufficient for the task
of analyzing a theory as strong as �1

1 comprehension. Of course, it is possible to
go beyond E(0) and initiate a new hierarchy based on the function ξ �→ E(ξ) or
even consider hierarchies utilizing finite type functionals over the ordinals. Still all
these further steps amount to rather mundane progress over Veblen’s methods. In
1950 Bachmann [3] presented a new kind of operation on ordinals which dwarfs all
hierarchies obtained by iterating Veblen’s methods. Bachmann builds on Veblen’s
work but his novel idea was the systematic use of uncountable ordinals to keep track
of the functions defined by diagonalization. Let � be the first uncountable ordinal.
Bachmann defines a set of ordinals B closed under successor such that with each limit
λ ∈ B is associated an increasing sequence 〈λ[ξ ] : ξ < τλ〉 of ordinals λ[ξ ] ∈ B

of length τλ ∈ B and limξ<τλ λ[ξ ] = λ. A hierarchy of functions (ϕB
α )α∈B is then

obtained as follows:

ϕB
0 (β) = 1 + β, ϕB

α+1 = (
ϕB
α

)′
,

ϕB
λ enumerates

⋂
ξ<τλ

(Range of ϕB
λ[ξ ]) if λ is a limit with τλ < �,

ϕB
λ enumerates {β < � : ϕB

λ[β](0) = β} if λ is a limit with τλ = �.

(7)

After the work of Bachmann, the story of ordinal representations becomes very com-
plicated. Significant papers (by Isles, Bridge, Pfeiffer, Schütte, Gerber to mention
a few) involve quite horrendous computations to keep track of the fundamental se-
quences. Also Bachmann’s approach was combined with uses of higher type func-
tionals by Aczel and Weyhrauch. Feferman proposed an entirely different method for
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generating a Bachmann-type hierarchy of normal functions which does not involve
fundamental sequences. Buchholz further simplified the systems and proved their
recursivity. For details we recommend the preface to [7].

2. Ordinal analyses of systems of second order arithmetic and set
theory

Ordinal analysis is concerned with theories serving as frameworks for formalising
significant parts of mathematics. It is known that virtually all of ordinary mathematics
can be formalized in Zermelo–Fraenkel set theory with the axiom of choice, ZFC.
Hilbert and Bernays [19] showed that large chunks of mathematics can already be
formalized in second order arithmetic. Owing to these observations, proof theory has
been focusing on set theories and subsystems of second order arithmetic. Further
scrutiny revealed that a small fragment is sufficient. Under the rubric of Reverse
Mathematics a research programme has been initiated by Harvey Friedman some
thirty years ago. The idea is to ask whether, given a theorem, one can prove its
equivalence to some axiomatic system, with the aim of determining what proof-
theoretical resources are necessary for the theorems of mathematics. More precisely,
the objective of reverse mathematics is to investigate the role of set existence axioms
in ordinary mathematics. The main question can be stated as follows:

Given a specific theorem τ of ordinary mathematics, which set existence
axioms are needed in order to prove τ?

Central to the above is the reference to what is called ‘ordinary mathematics’. This
concept, of course, doesn’t have a precise definition. Roughly speaking, by ordinary
mathematics we mean main-stream, non-set-theoretic mathematics, i.e. the core areas
of mathematics which make no essential use of the concepts and methods of set theory
and do not essentially depend on the theory of uncountable cardinal numbers.

2.1. Subsystems of second order arithmetic. The framework chosen for studying
set existence in reverse mathematics, though, is second order arithmetic rather than
set theory. Second order arithmetic, Z2, is a two-sorted formal system with one sort
of variables x, y, z, . . . ranging over natural numbers and the other sort X, Y,Z, . . .
ranging over sets of natural numbers. The language L2 of second-order arithmetic
also contains the symbols of PA, and in addition has a binary relation symbol ∈ for
elementhood. Formulae are built from the prime formulae s = t , s < t , and s ∈ X
(where s, t are numerical terms, i.e. terms of PA) by closing off under the connectives
∧, ∨, →, ¬, numerical quantifiers ∀x, ∃x, and set quantifiers ∀X, ∃X.

The basic arithmetical axioms in all theories of second-order arithmetic are the
defining axioms for 0, 1, +, ×, E, < (as for PA) and the induction axiom

∀X(0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X) → ∀x(x ∈ X)).



The art of ordinal analysis 57

We consider the axiom schema of C-comprehension for formula classes C which is
given by

C-CA ∃X∀u(u ∈ X ↔ F(u))

for all formulae F ∈ C in which X does not occur. Natural formula classes are the
arithmetical formulae, consisting of all formulae without second order quantifiers
∀X and ∃X, and the �1

n-formulae, where a �1
n-formula is a formula of the form

∀X1 . . .QXn A(X1, . . . , Xn) with ∀X1 . . .QXn being a string of n alternating set
quantifiers, commencing with a universal one, followed by an arithmetical formula
A(X1, . . . , Xn).

For each axiom scheme Ax we denote by (Ax)0 the theory consisting of the basic
arithmetical axioms plus the scheme Ax. By contrast, (Ax) stands for the theory
(Ax)0 augmented by the scheme of induction for all L2-formulae.

An example for these notations is the theory (�1
1-CA)0 which has the comprehen-

sion schema for �1
1-formulae.

In PA one can define an elementary injective pairing function on numbers, e.g
(n,m) := 2n × 3m. With the help of this function an infinite sequence of sets of
natural numbers can be coded as a single set of natural numbers. The nth section of
set of natural numbers U is defined by Un := {m : (n,m) ∈ U}. Using this coding,
we can formulate the axiom of choice for formulae F in C by

C-AC ∀x∃YF(x, Y ) → ∃Y∀xF(x, Yx).
For many mathematical theorems τ , there is a weakest natural subsystem S(τ) of Z2
such that S(τ) proves τ . Very often, if a theorem of ordinary mathematics is proved
from the weakest possible set existence axioms, the statement of that theorem will
turn out to be provably equivalent to those axioms over a still weaker base theory.
This theme is referred to as Reverse Mathematics. Moreover, it has turned out that
S(τ) often belongs to a small list of specific subsystems of Z2 dubbed RCA0, WKL0,
ACA0, ATR0 and (�1

1-CA)0, respectively. The systems are enumerated in increas-
ing strength. The main set existence axioms of RCA0, WKL0, ACA0, ATR0, and
(�1

1-CA)0 are recursive comprehension, weak König’s lemma, arithmetical com-
prehension, arithmetical transfinite recursion, and �1

1-comprehension, respectively.
For exact definitions of all these systems and their role in reverse mathematics see
[40]. The proof-theoretic strength of RCA0 is weaker than that of PA while ACA0
has the same strength as PA. Let |T | = |T |Con. To get a sense of scale, the
strengths of the first four theories are best expressed via their proof-theoretic or-
dinals: |RCA0| = |WKL0| = ωω, |ACA0| = ε0, |ATR0| = 	0. |(�1

1-CA)0|,
however, eludes expression in the ordinal representations introduced so far. �1

1-CA
involves a so-called impredicative definition. An impredicative definition of an object
refers to a presumed totality of which the object being defined is itself to be a member.
For example, to define a set of natural numbers X as X = {n∈N : ∀Y ⊆ N F(n, Y )}
is impredicative since it involves the quantified variable ‘Y ’ ranging over arbitrary
subsets of the natural numbers N, of which the set X being defined is one member.
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Determining whether ∀Y ⊆ N F(n, Y ) holds involves an apparent circle since we
shall have to know in particular whether F(n,X) holds – but that cannot be set-
tled until X itself is determined. Impredicative set definitions permeate the fabric of
Zermelo–Fraenkel set theory in the guise of the separation and replacement axioms
as well as the powerset axiom.

A major breakthrough was made by Takeuti in 1967, who for the first time obtained
an ordinal analysis of an impredicative theory. In [41] he gave an ordinal analysis of
(�1

1-CA), extended in 1973 to (�1
1-AC) in [43] jointly with Yasugi. For this Takeuti

returned to Gentzen’s method of assigning ordinals (ordinal diagrams, to be precise)
to purported derivations of the empty sequent (inconsistency).

The next wave of results, which concerned theories of iterated inductive defi-
nitions, were obtained by Buchholz, Pohlers, and Sieg in the late 1970s (see [7]).
Takeuti’s methods of reducing derivations of the empty sequent (“the inconsistency”)
were extremely difficult to follow, and therefore a more perspicuous treatment was
to be hoped for. Since the use of the infinitary ω-rule had greatly facilitated the or-
dinal analysis of number theory, new infinitary rules were sought. In 1977 (see [5])
Buchholz introduced such rules, dubbed �-rules to stress the analogy. They led to a
proof-theoretic treatment of a wide variety of systems, as exemplified in the mono-
graph [8] by Buchholz and Schütte. Yet simpler infinitary rules were put forward a
few years later by Pohlers, leading to the method of local predicativity, which proved
to be a very versatile tool (see [23]).

2.2. Set theories. With the work of Jäger and Pohlers (see [20], [21]) the forum of
ordinal analysis then switched from the realm of second-order arithmetic to set theory,
shaping what is now called admissible proof theory, after the models of Kripke–Platek
set theory, KP. Their work culminated in the analysis of the system �1

1-AC plus an
induction principle called Bar Induction BI which is a scheme asserting that transfinite
induction along well-founded relations holds for arbitrary formulae (see [21]).

By and large, ordinal analyses for set theories are more uniform and transparent
than for subsystems of Z2. The axiom systems for set theories considered in this paper
are formulated in the usual language of set theory (called L∈ hereafter) containing ∈ as
the only non-logical symbol besides =. Formulae are built from prime formulae a ∈ b
and a = b by use of propositional connectives and quantifiers ∀x, ∃x. Quantifiers
of the forms ∀x ∈ a, ∃x ∈ a are called bounded. Bounded or 
0-formulae are
the formulae wherein all quantifiers are bounded; �1-formulae are those of the form
∃xϕ(x) where ϕ(a) is a
0-formula. For n > 0, �n-formulae (�n-formulae) are the
formulae with a prefix of n alternating unbounded quantifiers starting with a universal
(existential) one followed by a 
0-formula. The class of �-formulae is the smallest
class of formulae containing the 
0-formulae which is closed under ∧, ∨, bounded
quantification and unbounded existential quantification.

One of the set theories which is amenable to ordinal analysis is Kripke–Platek
set theory, KP. Its standard models are called admissible sets. One of the reasons
that this is an important theory is that a great deal of set theory requires only the
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axioms of KP. An even more important reason is that admissible sets have been a
major source of interaction between model theory, recursion theory and set theory (cf.
[4]). KP arises from ZF by completely omitting the power set axiom and restricting
separation and collection to bounded formulae. These alterations are suggested by
the informal notion of ‘predicative’. To be more precise, the axioms of KP consist of
Extensionality, Pair, Union, Infinity, Bounded Separation

∃x ∀u [u ∈ x ↔ (u ∈ a ∧ F(u))]

for all bounded formulae F(u), Bounded Collection

∀x ∈ a ∃y G(x, y) → ∃z ∀x ∈ a ∃y ∈ zG(x, y)
for all bounded formulae G(x, y), and Set Induction

∀x [(∀y ∈ x H(y)) → H(x)] → ∀x H(x)
for all formulae H(x).

A transitive set A such that (A,∈) is a model of KP is called an admissible
set. Of particular interest are the models of KP formed by segments of Gödel’s
constructible hierarchy L. The constructible hierarchy is obtained by iterating the
definable powerset operation through the ordinals

L0 = ∅,
Lλ =

⋃
{Lβ : β < λ} λ limit

Lβ+1 = {
X : X ⊆ Lβ; X definable over 〈Lβ,∈〉}.

So any element of L of level α is definable from elements of L with levels< α and the
parameter Lα . An ordinal α is admissible if the structure (Lα,∈) is a model of KP.

Formulae of L2 can be easily translated into the language of set theory. Some of
the subtheories of Z2 considered above have set-theoretic counterparts, characterized
by extensions of KP. KPi is an extension of KP via the axiom

(Lim) ∀x∃y[x∈y ∧ y is an admissible set].
KPl denotes the system KPi without Bounded Collection. It turns out that (�1

1-AC)+
BI proves the same L2-formulae as KPi, while (�1

1-CA) proves the same L2-
formulae as KPl.

2.3. Sketches of an ordinal analysis of KP. Serving as a miniature example of
an ordinal analysis of an impredicative system, the ordinal analysis of KP (see [20],
[6]) we will sketched in broad strokes. Bachmann’s system can be recast without
fundamental sequences as follows: Let � be a “big” ordinal, e.g. � = ℵ1. By
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recursion on α we define sets C�(α, β) and the ordinal ψ�(α) as follows:

C�(α, β) =

⎧⎪⎨
⎪⎩

closure of β ∪ {0, �} under:

+, (ξ �→ ωξ )

(ξ �−→ ψ�(ξ))ξ<α

(8)

ψ�(α) � min{ρ < � : C�(α, ρ) ∩� = ρ }. (9)

It can be shown that ψ�(α) is always defined and that ψ�(α) < �. Moreover,
[ψ�(α),�) ∩ C�(α,ψ�(α)) = ∅; thus the order-type of the ordinals below �

which belong to the set C�(α,ψ�(α)) is ψ�(α). ψ�(α) is also a countable ordinal.
In more pictorial terms, ψ�(α) is the αth collapse of �.

Let ε�+1 be the least ordinal α > � such that ωα = α. The set of ordinals
C�(ε�+1, 0) gives rise to an elementary computable ordinal representation system.
In what follows, C�(ε�+1, 0) will be abbreviated to T (�).

In the case of PA the addition of an infinitary rule restored the possibility of cut
elimination. In order to obtain a similar result for set theories like KP, one has to
work a bit harder. A peculiarity of PA is that every object n of the intended model has
a canonical name in the language, namely, the nth numeral. It is not clear, though,
how to bestow a canonical name to each element of the set-theoretic universe. This
is where Gödel’s constructible universe L comes in handy. As L is “made” from the
ordinals it is pretty obvious how to “name” sets in L once one has names for ordinals.
These will be taken from T (�). Henceforth, we shall restrict ourselves to ordinals
from T (�). The set terms and their ordinal levels are defined inductively. First,
for each α ∈ T (�) ∩ �, there will be a set term Lα . Its ordinal level is declared
to be α. If F(a, �b) is a set-theoretic formula (whose free variables are among the
indicated) and �s ≡ s1, . . . , sn are set terms with levels< α, then the formal expression
{x∈Lα : F(x, �s)Lα } is a set term of level α. Here F(x, �s)Lα results from F(x, �s) by
restricting all unbounded quantifiers to Lα .

The collection of set terms will serve as a formal universe for a theory KP∞ with
infinitary rules. The infinitary rule for the universal quantifier on the right takes the
form: From 	 ⇒ 
,F(t) for all RS�-terms t conclude 	 ⇒ 
,∀x F(x). There
are also rules for bounded universal quantifiers: From 	 ⇒ 
,F(t) for all RS�-
terms t with levels < α conclude 	 ⇒ 
, (∀x ∈ Lα) F (x). The corresponding
rule for introducing a universal quantifier bounded by a term of the form {x∈Lα :
F(x, �s)Lα } is slightly more complicated. With the help of these infinitary rules it
now possible to give logical deductions of all axioms of KP with the exception of
Bounded Collection. The latter can be deduced from the rule of �-Reflection: From
	 ⇒ 
,C conclude 	 ⇒ 
, ∃z Cz for every �-formula C. The class of �-
formulae is the smallest class of formulae containing the bounded formulae which is
closed under ∧, ∨, bounded quantification and unbounded existential quantification.
Cz is obtained from C by replacing all unbounded quantifiers ∃x in C by ∃x ∈ z.
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The length and cut ranks of KP∞-deductions will be measured by ordinals from
T (�). If

KP � F(u1, . . . , ur)

then KP∞ �·m
�+n B(s1, . . . , sr ) holds for some m, n and all set terms s1, . . . , sr ; m

and n depend only on the KP-derivation of B(�u).
The usual cut elimination procedure works unless the cut formulae have been

introduced by �-reflection rules. The obstacle to pushing cut elimination further is
exemplified by the following scenario:

δ

�
	 ⇒ 
,C

ξ

�
	 ⇒ 
, ∃z Cz

(�-Ref)
· · · ξs

�

,Cs ⇒ � · · · (|s |< �)

ξ

�

, ∃z Cz ⇒ �

(∃L)

α

�+1
	,
 ⇒ 
,�

(Cut)

In general, it won’t be possible to remove such an instance of the Cut Rule. However,
if the complexity of the side formulae is just right, the cut can be removed by a
technique called collapsing of deductions. This method applies when the formulae
in	 and
 are�-formulae and the formulae in
 and� are�-formulae. The class of
�-formulae is the smallest class of formulae containing the bounded formulae which
is closed under ∧, ∨, bounded quantification and unbounded universal quantification.

For the technique of collapsing one needs the functionα �→ ψ�(α) and, moreover,
it is necessary to ensure that the infinite deductions are of a very uniform character.
The details are rather finicky and took several years to work out. The upshot is that
every � sentence C deducible in KP has a cut-free deduction in KP∞ of length
ψ�(ε�+1), which entails that Lψ�(ε�+1) |= C. Moreover, the proof-theoretic ordinal
of KP is ψ�(ε�+1), also known as the Bachmann–Howard ordinal.

2.4. Admissible proof theory. KP is the weakest in a line of theories that were
analyzed by proof theorists of the Munich school in the late 1970s and 1980s. In
many respects, KP is a very special case. Several fascinating aspects of ordinal
analysis do not yet exhibit themselves at the level of KP.

Recall that KPl is the set-theoretic version of (�1
1-AC) + BI, while KPi is the

set-theoretic counterpart to (�1
1-AC)+ BI . The main axiom of KPl says that every

set is contained in an admissible set (one also says that the admissible sets are cofinal
in the universe) without requiring that the universe is also admissible, too. To get a
sense of scale for comparing KP, KPl, and KPi it is perhaps best to relate the large
cardinal assumptions that give rise to the pertaining ordinal representation systems.
In the case of KPl the assumptions is that there are infinitely many large ordinals
�1, �2, �3, . . . (where �n can be taken to be ℵn) each equipped with their own
‘collapsing’ function α �→ ψ�n(α). The ordinal system sufficient for KPi is built
using the much bolder assumption that there is an inaccessible cardinal I .

As the above set theories are based on the notion of admissible set it is suitable
to call the proof theory concerned with them ‘admissible proof theory’. The salient
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feature of admissible sets is that they are models of Bounded Collection and that that
principle is equivalent to � Reflection on the basis of the other axioms of KP (see
[4]). Furthermore, admissible sets of the form Lκ also satisfy �2 reflection, i.e., if
Lκ |= ∀x ∃y C(x, y, �a) with C(x, y) bounded and �a ∈ Lκ , then there exists ρ < κ

such that �a ∈ Lρ and Lρ |= ∀x ∃y C(x, y, �a).
In essence, admissible proof theory is a gathering of cut-elimination and collapsing

techniques that can handle infinitary calculi of set theory with� and/or�2 reflection
rules, and thus lends itself to ordinal analyses of theories of the form KP+ “there are
x many admissibles” or KP+ “there are many admissibles”.

A theory on the verge of admissible proof theory is KPM, designed to axiomatize
essential features of a recursively Mahlo universe of sets. An admissible ordinal κ
is said to be recursively Mahlo if it satisfies �2-reflection in the above sense but
with the extra condition that the reflecting set Lρ be admissible as well. The ordinal
representation [25] for KPM is built on the assumption that there exists a Mahlo
cardinal. The novel feature of over previous work is that there are two layers of
collapsing functions. The ordinal analysis for KPM was carried out in [26]. A
different approach to KPM using ordinal diagrams is due to Arai [1].

The means of admissible proof theory are too weak to deal with the next level of
reflection having three alternations of quantifiers, i.e. �3-reflection.

2.5. Rewards of ordinal analysis Results that have been achieved through ordi-
nal analysis mainly fall into four groups: (1) Consistency of subsystems of classical
second order arithmetic and set theory relative to constructive theories, (2) reductions
of theories formulated as conservation theorems, (3) combinatorial independence re-
sults, and (4) classifications of provable functions and ordinals. A detailed account
of these results has been given in [31], section 3. An example where ordinal rep-
resentation systems led to a new combinatorial result was Friedman’s extension of
Kruskal’s Theorem, EKT, which asserts that finite trees are well-quasi-ordered un-
der gap embeddability (see [39]). The gap condition imposed on the embeddings is
directly related to an ordinal notation system that was used for the analysis of �1

1
comprehension. The principle EKT played a crucial role in the proof of the graph
minor theorem of Robertson and Seymour (see [16]).

Theorem 2.1 (Robertson, Seymour). For any infinite sequence G0, G1, G2, . . . of
finite graphs there exist i < j so that Gi is isomorphic to a minor of Gj .

3. Beyond admissible proof theory

Gentzen fostered hopes that with sufficiently large constructive ordinals one could
establish the consistency of analysis, i.e., Z2. The purpose of this section is to report
on the next major step in analyzing fragments of Z2. This is obviously the ordinal
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analysis of the system (�1
2-CA).1 The strength of (�1

2-CA) dwarfs that of (�1
1-AC).

The treatment of�1
2 comprehension posed formidable technical challenges (see [30],

[32], [33]). Other approaches to ordinal analysis of systems above�1
1-AC are due to

Arai (see [1], [2]) who uses ordinal diagrams and finite deductions, and Carlson [11]
who employs patterns of resemblance.

In the following, we will gradually slice �1
2 comprehension into degrees of re-

flection to achieve a sense of scale. There is no way to describe this comprehension
simply in terms of admissibility except that on the set-theoretic side,�1

2 comprehen-
sion corresponds to �1 separation, i.e. the scheme of axioms

∃z(z = {x∈a : φ(x)})
for all �1 formulas φ. The precise relationship is as follows:

Theorem 3.1. KP +�1 separation and (�1
2-CA)+ BI prove the same sentences of

second order arithmetic.

The ordinals κ such that Lκ |= KP + �1-Separation are familiar from ordinal
recursion theory.

Definition 3.2. An admissible ordinal κ is said to be nonprojectible if there is no
total κ-recursive function mapping κ one-one into some β < κ , where a function
g : Lκ → Lκ is called κ-recursive if it is � definable in Lκ .

The key to the ‘largeness’ properties of nonprojectible ordinals is that for any
nonprojectible ordinal κ , Lκ is a limit of �1-elementary substructures, i.e. for every
β < κ there exists a β < ρ < κ such that Lρ is a �1-elementary substructure of Lκ ,
written Lρ ≺1 Lκ .

Such ordinals satisfying Lρ ≺1 Lκ have strong reflecting properties. For instance,
if Lρ |= C for some set-theoretic sentence C (containing parameters from Lρ),
then there exists a γ < ρ such that Lγ |= C. This is because Lρ |= C implies
Lκ |= ∃γ CLγ , hence Lρ |= ∃γ CLγ using Lρ ≺1 Lκ .

The last result makes it clear that an ordinal analysis of�1
2 comprehension would

necessarily involve a proof-theoretic treatment of reflections beyond those surfacing
in admissible proof theory. The notion of stability will be instrumental.

Definition 3.3. α is δ-stable if Lα ≺1 Lα+δ .

For our purposes we need refinements of this notion, the simplest being pro-
vided by:

Definition 3.4. α > 0 is said to be �n-reflecting if Lα |= �n-reflection. By �n-
reflection we mean the scheme C → ∃z[ Tran(z)∧ z �= ∅ ∧Cz], where C is�n, and
Tran(z) expresses that z is a transitive set.

1For more background information see [42], p. 259, [15], p. 362, [24], p. 374.
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�n-reflection for all n suffices to express one step in the ≺1 relation.

Lemma 3.5 (cf. [34], 1.18). Lκ ≺1 Lκ+1 iff κ is �n-reflecting for all n.

The step of analyzing Kripke–Platek set theory augmented by�n-reflection rules
was taken in [29]; the ordinal representation system for �3-reflection employed a
weakly compact cardinal.

A further refinement of the notion of δ-stability will be addressed next.

Definition 3.6. κ is said to be δ-�n-reflecting if wheneverC(u, �x) is a set-theoretic�n
formula, a1, . . . , ar∈Lκ and Lκ+δ |= C[κ, a1, . . . , an], then there exists κ0, δ0 < κ

such that a1, . . . , ar∈Lκ0 and Lκ0+δ0 |= C[κ0, a1, . . . , an].
Putting the previous definition to work, one gets:

Corollary 3.7. If κ is δ + 1-�1-reflecting, then, for all n, κ is δ-�n-reflecting.

At this point let us return to proof theory to explain the need for even further
refinements of the preceding notions. Recall that the first nonprojectible ordinal ρ
is a limit of smaller ordinals ρn such that Lρn ≺1 Lρ . In the ordinal representation
system OR for �1

2-CA, there will be symbols En and Eω for ρn and ρ, respectively.
The associated infinitary proof system will have rules

(Ref�(LEn+δ))
	 ⇒ 
,C(�s)LEn+δ

	 ⇒ 
, (∃z∈LEn)(∃�x ∈ LEn)[Tran(z) ∧ C(�x)z] ,

where C(�x) is a � formula, �s are set terms of levels < En + δ, and δ < Eω. These
rules suffice to bring about the embedding KP + �1-Separation into the infinitary
proof system, but reflection rules galore will be needed to carry out cut-elimination.
For example, there will be “many” ordinals π, δ ∈ OR that play the role of δ-�n+1-
reflecting ordinals by virtue of corresponding reflection rules in the infinitary calculus.

4. A large cardinal notion

An important part of ordinal analysis is the development of ordinal representation
systems. Extensive ordinal representation systems are difficult to understand from a
purely syntactical point of view, often to such an extent that it makes no sense to present
an ordinal representation system without giving some kind of semantic interpretation.
Large cardinals have been used quite frequently in the definition procedure of strong
ordinal representation systems, and large cardinal notions have been an important
source of inspiration. In the end, they can be dispensed with, but they add an intriguing
twist to the relation between set theory and proof theory. The advantage of working
in a strong set-theoretic context is that we can build models without getting buried
under complexity considerations.
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Such systems are usually generated from collapsing functions. However, from
now on we prefer to call them projection functions since they will no longer bear any
resemblance to Mostowski’s collapsing function. In [33], the projection functions
needed for the ordinal analysis of �1

2 have been construed as inverses to certain
partial elementary embeddings. In this final section we shall indicate a model for the
projection functions, employing rather sweeping large cardinal axioms, in that we shall
presume the existence of certain cardinals, featuring a strong form of indescribability,
dubbed shrewdness.

To be able to eliminate reflections of the type described in Definition 3.6 requires
projection functions which can project intervals [κ, κ + δ] of ordinals down below κ .

Definition 4.1. Let V = ⋃
α∈ON Vα be the cumulative hierarchy of sets, i.e.

V0 = ∅, Vα+1 = {X : X ⊆ Vα}, Vλ =
⋃
ξ<λ

Vξ for limit ordinals λ.

Let η > 0. A cardinal κ is η-shrewd if for all P ⊆ Vκ and every set-theoretic
formula F(v0, v1), whenever

Vκ+η |= F [P, κ],
then there exist 0 < κ0, η0 < κ such that

Vκ0+η0 |= F [P ∩ Vκ0, κ0].
κ is shrewd if κ is η-shrewd for every η > 0.

Let F be a collection of formulae. A cardinal κ is η-F -shrewd if for all P ⊆ Vκ
and every F -formula H(v0, v1), whenever

Vκ+η |= H [P, κ],
then there exist 0 < κ0, η0 < κ such that

Vκ0+η0 |= H [P ∩ Vκ0, κ0].
We will also consider a notion of shrewdness with regard to a given class.
Let U be a fresh unary predicate symbol. Given a language L let L(U) denote its

extension by U. If A is a class we denote by 〈Vα; A〉 the structure 〈Vα; ∈; A ∩ Vα〉.
For an Lset(U)-sentence φ, let the meaning of “〈Vα; A〉 |= φ” be determined by

interpreting U(t) as t ∈ A ∩ Vα .

Definition 4.2. Assume that A is a class. Let η > 0. A cardinal κ is A-η-shrewd if
for all P ⊆ Vκ and every formula F(v0, v1) of Lset(U), whenever

〈Vκ+η; A〉 |= F [P, κ],
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then there exist 0 < κ0, η0 < κ such that

〈Vκ0+η0; A〉 |= F [P ∩ Vκ0, κ0].
κ is A-shrewd if κ is A-η-shrewd for every η > 0.

Likewise, for F a collection of formulae in a language L(U), we say that a cardinal
κ is A-η-F -shrewd if for all P ⊆ Vκ and every F -formula H(v0, v1), whenever

〈Vκ+η; A〉 |= H [P, κ],
then there exist 0 < κ0, η0 < κ such that

〈Vκ0+η0; A〉 |= H [P ∩ Vκ0, κ0].
Corollary 4.3. If κ is A-δ-shrewd and 0 < η < δ, then κ is A-η-shrewd.

There are similarities between the notions of η-shrewdness and η-indescribability
(see [12], Ch. 9, §4). However, it should be noted that if κ is η-indescribable and
ρ < η, it does not necessarily follow that κ is also ρ-indescribable (see [12], 9.4.6).

A reason for calling the above cardinals shrewd is that if there is a shrewd cardinal κ
in the universe, then, loosely speaking, for any notion of large cardinalN which does
not make reference to the totality of all ordinals, if there exists anN-cardinal then the
least such cardinal is below κ . So for instance, if there are measurable and shrewd
cardinals in the universe, then the least measurable is smaller than the least shrewd
cardinal.

To situate the notion of shrewdness with regard to consistency strength in the usual
hierarchy of large cardinals, we recall the notion of a subtle cardinal.

Definition 4.4. A cardinal κ is said to be subtle if for any sequence 〈Sα : α < κ〉 such
that Sα ⊆ α and C closed and unbounded in κ , there are β < δ both in C satisfying

Sδ ∩ β = Sβ.

Since subtle cardinals are not covered in many of the standard texts dealing with
large cardinals, we mention the following facts (see [22], §20):

Remark 4.5. Let κ(ω) denote the first ω-Erdös cardinal.

(i) {π < κ(ω) : π is subtle} is stationary in κ(ω).

(ii) ‘Subtlety’ relativises to L, i.e. if π is subtle, then L |= “π is subtle”.

Lemma 4.6. Assume that π is a subtle cardinal and that A ⊆ Vπ . Then for every
B ⊆ π closed and unbounded in π there exists κ ∈ B such that

〈Vπ ; A〉 |= “ κ is A-shrewd ”.

Corollary 4.7. Assume that π is a subtle cardinal. Then there exists a cardinal κ < π

such that κ is η-shrewd for all η < π .
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