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Explicit feedback and implicit feedback are two important types of heterogeneous data for constructing a recommendation
system. -e combination of the two can effectively improve the performance of the recommendation system. However, most of
the current deep learning recommendation models fail to fully exploit the complementary advantages of two types of data
combined and usually only use binary implicit feedback data. -us, this paper proposes a neural matrix factorization rec-
ommendation algorithm (EINMF) based on explicit-implicit feedback. First, neural network is used to learn nonlinear feature of
explicit-implicit feedback of user-item interaction. Second, combined with the traditional matrix factorization, explicit feedback is
used to accurately reflect the explicit preference and the potential preferences of users to build a recommendation model; a new
loss function is designed based on explicit-implicit feedback to obtain the best parameters through the neural network training to
predict the preference of users for items; finally, according to prediction results, personalized recommendation list is pushed to the
user. -e feasibility, validity, and robustness are fully demonstrated in comparison with multiple baseline models on two
real datasets.

1. Introduction

-e rapid development of the Internet has caused infor-
mation overload, and how to gain the required information
from the massive data to provide users with accurate per-
sonalized services is an urgent problem for every Internet-
related industry. Recommendation system is one of the
effective methods to solve these problems, which can ef-
fectively improve the loyalty of website users and is a must-
consider function for every website and APP today. Per-
sonalized recommendation systems generally construct
recommendationmodels from the historical interaction data
generated when users browse websites. -e data are mainly
divided into two types: explicit feedback data and implicit
feedback data. Explicit feedback data are generally ratings,
which can accurately reflect user preferences; implicit
feedback data are primarily clicks, favorites, and other user
browsing behaviors, which can be converted into binary

data, although they cannot accurately distinguish the degree
of user preferences but can reflect the user’s potential in-
terest preferences. -e recommendation model constructed
by simple user implicit feedback or explicit feedback has
poor performance and cannot satisfy the demands of rich
scenarios in real applications, while the recommendation
model constructed by combining two types of heteroge-
neous feedback data, which are complementary, can effec-
tively improve the recommendation quality [1], but most
recommendation models are constructed by using only one
type of data, and the complementary benefits of combining
the two are not fully exploited.

-e collaborative filtering (CF) algorithm is the most
widely used personalized recommendation method [2–4],
which is mainly divided into neighborhood-based approaches
and model-based approaches. Neighbor-based approach such
as Item-KNN [5] is the most widely applied in industry; it
calculates the similarity between items based on user-item
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history interactions and then generates the list of the user’s
top-N recommended items accordingly. Although the
neighborhood-based approach is highly interpretable, it is less
scalable and flexible than the model-based recommendation
approach and has low recommendation relevance. Model-
based approachesmainly construct a user preferencemodel to
predict user-item latent preferences, among which matrix
factorization (MF) recommendation is the most popular and
effective model-based recommendation method [3, 6] with
high scalability and low complexity. It uses latent factor
vectors to characterize users and items, maps users and items
to a joint low-dimensional latent space, and formulates the
recommendation as a user preference prediction problem for
items based on the inner product of the corresponding user
and item latent factor vectors. Early applications of matrix
factorization techniques in recommender systems mainly
focused on explicit feedback rating prediction [6, 7], which
utilizes explicit user ratings of items for user preference
prediction. However, subsequent researchers have found that
this approach of modeling only a few observed positive
feedback data resulted in poor performance of realistic top-N
recommendation systems [8]. -erefore, some researchers
have subsequently proposed matrix factorization algorithms
based on implicit feedback like user clicks and favorites [3, 9],
such as BPR-MF [10], which learns from implicit feedback
with paired ranking targets and uses Bayesian personalized
ranking objective function for optimization of matrix fac-
torization model parameters; but implicit feedback is usually
binary positive sample data, missing negative samples data,
and improper acquisition of negative feedback data will affect
the performance of the recommendation system. -e SVD-
based recommendation model, SVD++ [11], combines ex-
plicit feedback and implicit feedback. First, obtaining the
implicit user factor matrix from the implicit feedback data
combines it with the explicit user factor matrix, and then the
linear inner product of the user factor matrix and the explicit
item factor matrix are used to predict users’ preferences for
items.

-e traditional matrix factorization model uses the dot
product of user and item vectors to model the linear in-
teraction between users-items, which cannot model the
complex nonlinear deep feature representation between
users-items well [12]. In recent years, with the rapid de-
velopment and application of deep learning technology,
some researchers have proposed using deep learning-based
recommendation methods to model complex nonlinear
interactions between users-items and achieve high quality
recommendation effects. However, most of the current deep
learning-based recommendation algorithms are used for
modeling user-item interactions based on one type of the
explicit-implicit feedback data to predict the user’s prefer-
ences. For example, the NCF model proposed by He et al.
[13] uses the binary implicit feedback data to model the
latent factor vectors of users and items in a nonlinear
method using a multilayer perceptron (MLP) instead of the
traditional linear inner product of matrix factorization to
predict the user-item interactions’ preferences through
neural networks; the DeepFM model proposed by Guo et al.
[14] uses FM to obtain the low-order user-item cross features

while acquiring the higher-order representation of features
and enhance the generalization ability of the model by
combining higher-order features with lower-order features.
-e experimental results demonstrate the effectiveness of
neural networks for recommender system performance
improvement, but most deep learning recommendation
models are built based on easily trained binary implicit
feedback data, overlooking the effect of explicit rating data to
accurately reflect users’ interest preferences. Moreover, for
other types of websites, such as movie, video, music, and
other rating categories, explicit feedback data are more
important than implicit feedback data for predicting user
preferences in recommendation systems.-erefore, building
a deep learning recommendation model combining explicit
feedback has strong practical significance.

In view of the issues and deficiencies in the above work,
we propose a neural matrix factorization user preference
prediction algorithm suitable for explicit-implicit feedback,
based on the concepts of implicit feedback-based deep matrix
factorization model and traditional matrix factorization
recommendation model, to make it adaptable to the evalu-
ation classification scene, improve the accuracy of the rec-
ommendation system in predicting the user’s preference for
items, and show the personalized project recommendation list
for users. In the algorithm, to utilize both explicit ratings and
implicit feedback, this paper proposes a deep neural network
latent factorization model for gaining deep feature repre-
sentations of users and items. In the algorithm, using explicit
and implicit feedback data as input, the user and item latent
factor vectors are mapped to a nonlinear low-dimensional
space. According to the matrix decomposition principle and
the training of neural network, the best latent factor vectors of
users and items are fitted to achieve user preference pre-
diction. In the algorithm, a new loss function is also designed
to fully consider both explicit feedback and implicit feedback
to better optimize the parameters. Comparative experimental
results demonstrate that the proposed algorithm can effec-
tively model the nonlinear information of explicit feedback
and implicit feedback of user-item interactions and improve
the accuracy of the recommendation system in predicting
user preferences (ratings). -e main contributions of this
paper are as follows:

(1) A neural matrix factorization algorithm based on
explicit-implicit feedback is EINMF, which learns
the deep latent factor features of users and items, as
well as the linear and nonlinear features of explicit-
implicit feedback of user-item interactions, so that
they are closely combined to jointly optimize the
objective function and reach the goal of improving
the accuracy of personalized recommendation

(2) A new loss function is constructed which fully uti-
lizes the information in the explicit feedback and
implicit feedback from user interactions for the
optimization and updating of model parameters

(3) Based on the ranking evaluation (top-N), the rec-
ommendation performance of the EINMF algorithm
is compared and analyzed with other baseline models
for datasets of different sizes and sparsity, showing that
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EINMF always produces the best performance; in
addition, the performances of the recommendation
algorithmwith different parameters are also compared
and analyzed to prove its effectiveness and rationality

2. Related Work

2.1. Traditional Matrix Factorization Recommended Models.
Matrix factorization is the most widely used model-based
recommendation algorithm, which is popular among re-
searchers for its scalability and fast prediction speed.
-erefore, many enhanced MF algorithms based on matrix
factorization have been deployed. -e basic matrix factor-
ization recommendation model mainly predicts users’ pref-
erences (ratings) for items by reducing the dimension of the
original user-item rating matrix; that is, it uses the product of
two low-dimensional dense matrix to represent the user-item
explicit rating matrix approximately; it is later extended to a
matrix factorization recommendation model based on im-
plicit user-item feedback. -e basic matrix factorization
model recommendation model is generally represented as

R ≈ U
T

· V. (1)

R represents the original or binary implicit feedback rating
matrix of m users and n items, represented by the product of
two low-rank dense matrices U ∈ Rm×f and V ∈ Rn×f; U

represents the user latent feature matrix, V represents the item
latent featurematrix, andf represents the dimension of the user
latent factor vector and the item latent factor vector after di-
mension reduction (f≪ min m, n{ }). -e user preference
prediction function f(u, i) is generally used to indicate pref-
erence of user u for item i, and the ratings of the user preference
prediction obtained by regression building simulation are
􏽢rui � f(u, i). -erefore, in matrix factorization model, a user’s
preference prediction score for an item can be expressed as

Prefercence(u, i) � 􏽢rui � f u, i|pu, qi( 􏼁 � p
T
u qi � 􏽘

F

f�1
pu,fqf,i.

(2)

pu represents the latent factor feature vector of user u, qi

represents the latent factor feature vector of item i, and
rating rui by user u for item i is approximated by the dot
product of the two vectors. At this point, there is an error
between the predicted preference and the user’s true pref-
erence: eui � rui − 􏽢rui; in order to get a more accurate pre-
dicted value of the user’s preference, a matrix factorization
recommendation model is thus established with a point-by-
point loss function (objective optimization function), which
is generally the square of the error:

L rui, p, q( 􏼁 � min
p∗,q∗

􏽘
(u,i)∈K

rui − p
T
u qi􏼐 􏼑

2
+ λ pu

����
����
2

+ qi

����
����
2

􏼒 􏼓.

(3)

In the above Formula, K denotes the set of user-item
pairs with known true ratings in the training set, and the
optimization of the objective function using stochastic
gradient descent (SGD) or alternating least squares (ALS)

[3, 6, 9, 11] can find the local minimum of the above ob-
jective function, so as to update the user latent feature vector
pu and the item latent feature vector qi to obtain the op-
timum feature vector. -e update formula is as follows,
where α is the learning rate, which is used to control the
update rate of the feature vector.

pu,f � pu,f + α eui · qf,i − λ · pu,f􏼐 􏼑

qf,i � qf,i + α eui · pu,f − λ · qf,i􏼐 􏼑

⎧⎪⎨

⎪⎩
· (4)

In addition, Rendle et al. proposed a pairwise Bayesian
personalized ranking learning method BPR-MF [10] based on
implicit feedback and MF techniques, which treats top-N
recommendations as a ranking issue and optimizes Bayesian
pairwise ranking, theMaximumAPosteriori (MAP) estimation
of users’ pairwise preferences between interacted and non-
interacted items, and is a sampling-based approach that uses a
pairwise loss objective optimization function to optimize the
model depending on the relative preferences of user-item pairs.

2.2. Deep Learning Recommended Models. Recently, due to
the powerful representational learning capability, deep
learning methods have been successfully applied in various
fields, including computer vision, audio recognition, and
natural language processing. Compared to traditional col-
laborative filtering algorithms, the application of deep
learning in collaborative filtering algorithms has improved the
richness of recommendations [12]. -e deep learning col-
laborative filtering recommendation model takes the explicit
rating feature vector or implicit feedback feature vector of
users and items as the input of the neural network model,
utilizes the deep learning model to learn the deep nonlinear
features of users and items, similar to the matrix factorization
recommendation model, constructs the objective optimiza-
tion function with point-by-point loss or pairwise loss and so
forth, learns and optimizes the best latent feature vectors of
users and items, calculates the degree of user preference for
items, and completes item recommendation.

In this paper, we utilize the neural collaborative filtering
(NCF) [13] recommendation algorithm to construct a
nonlinear neural network recommendation model, which
exploits the nonlinear fitting ability of multilayer perceptron
(MLP) to continuous functions to mine the explicit and
implicit feedback data of user-item interactions and learn to
gain explicit feedback user latent feature vectors and explicit
feedback item latent feature vectors. NCF uses a multilayer
perceptron machine to model bidirectional interactions
between users and items, which aims to capture the non-
linear relationship between users and items, and its user
preference prediction is defined as follows:

􏽢yui � f P
T
v

U
u , Q

T
v

I
i |P, Q,Θf􏼐 􏼑, (5)

􏽢yui � f P
T
v

U
u , Q

T
v

I
i􏼐 􏼑 � ϕout ϕX . . .ϕ2 ϕ1 P

T
v

U
u , Q

T
v

I
i􏼐 􏼑􏼐 􏼑 . . .􏼐 􏼑􏼐 􏼑.

(6)

However, most of the current deep learning collab-
orative filtering recommendation models construct
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recommendation models by implicit feedback data, such
as the NCF [13] and ENMF [15] recommendation algo-
rithms, which use multilayer perceptron (MLP) instead of
dot product to learn latent feature vectors of users and
items in implicit feedback. In contrast, ConvNCF [16]
uses convolutional neural networks (CNNs) to learn
higher-order correlations between user and item em-
bedding dimensions based on implicit user-item inter-
action data. All of the above models utilize only the
implicit feedback data of user-item interactions to obtain
the fuzzy latent feature representations of users and items,
ignoring the effects of explicit feedback to reflect users’
precise preferences.

2.3. Explicit and Implicit Feedback for Recommendation.
Many researchers have proposed model-based recom-
mendation algorithms that simultaneously use both types
of feedback data based on the respective characteristics of
explicit and implicit feedback and the complementary
advantages of combining the two. Koren fused explicit and
implicit feedback data to obtain the item explicit factor
matrix and implicit factor matrix, combined the item
implicit factor matrix with the user explicit factor matrix as
the user latent factor matrix, based on the matrix fac-
torization algorithm, and proposed the SVD++ recom-
mendation algorithm; Liu et al. considered the
heterogeneity of explicit and implicit feedback, normalized
the explicit ratings and binarized the implicit feedback,
which mapped the data to the [0,1] interval uniformly, and
proposed the matrix factorization model corating based on
rating prediction [1]. Chen et al. proposed an EIFCF
collaborative filtering recommendation algorithm [17],
which processes implicit feedback data according to the
weighted matrix factorization algorithm (GALS) to obtain
latent implicit feature vectors of users and items, which are
fused with explicit user and item latent feature vectors to
jointly form user latent feature vectors and item latent
feature vectors, to use explicit ratings and predict user
preferences. Zhang et al. [18] established user and item
feature matrices distinguishing positive feedback and
negative feedback in explicit and implicit feedback data
and then designed a novel rating prediction collaborative
filtering recommendation algorithm, PNF-SVD++. Sun
et al. proposed an EifSVD differential privacy collaborative
filtering recommendation algorithm [19], according to the
characteristics of the explicit-implicit feedback data, based
on the SVD factorization recommendation algorithm, with
the user-item rating matrix as input and the implicit
features as a supplement to the explicit features, and
adopted the gradient descent method to predict the user
rating of item.

-e studies of the above-mentioned explicit-implicit-
feedback-based recommendation algorithms mostly use
matrix factorization technique and its enhancement algo-
rithm SVD++ as the base algorithm to learn the shallow
linear features of users and items. On the other hand, the
EINMF algorithm proposed in this paper combines the
characteristics of explicit feedback data accurately reflecting

users’ preferences and implicit feedback data reflecting
users’ latent fuzzy preferences and utilizes matrix factor-
ization algorithm to obtain shallow linear features and
multilayer perceptron (MLP) to obtain deep nonlinear
features of explicit and implicit feedback to construct a
neural network matrix factorization user preference pre-
diction recommendation model based on explicit and im-
plicit feedback.

3. EINMF

3.1. Problem Formulation and Notation. In the EINMF
model proposed in this paper, user-item ratings data are
used as input to construct a recommendation model based
on top-N recommendation. -e numbers of users and items
in the dataset are denoted using m and n. -e set of users is
U � u1, u2, . . . , um􏼈 􏼉, and the set of items is V � v1, v2,􏼈

. . . , vn}. According to the literature [13, 20], the known user
ratings of items are marked as implicit feedback interactions
as 1, and the unknown ratings are considered as implicit
feedback and they are marked as 0. -e task of top-N
recommendation is to recommend a list with a set of items
that are most interesting to a unique user in order to
maximize the user satisfaction. When the top-N recom-
mendation task is being conducted, the validity and accuracy
of the recommendation are generally related to the final
correct item ranking and less concerned with the exact rating
[8]; therefore, all missing values in the user rating matrix are
generally considered as 0, and the ratings are used to ex-
plicitly represent the different degrees of user preference for
the items. Constructions of the user-item explicit rating
matrix R � [rui]m×n and implicit feedback matrix
IR � [irui]m×n are shown in formulae (7) and (8). In this
paper, we firstly construct a recommendation EINMFmodel
with two types of feedback matrices to get the best user and
item latent feature vectors; then, the user’s preference for
noninteracted items is predicted; finally, the noninteracted
items are ranked according to their predicted preference
values, the N items are got with the highest predicted
preference values for the user, and they are recommended to
the user in the form of a list or other forms to realize
personalized recommendation.

IRui �
1, if interaction (user u, item v) is observed,

0, un − interaction(user u, item v),
􏼨 (7)

Rui �
rui, if rating(user u, item v)is observed,

0, rating is unknow(user u, item v).
􏼨 (8)

-e main symbols used in this paper are defined as
shown in Table 1.

3.2. EINMF Model. -e design idea of the EINMF is as
follows: the explicit rating matrix and the implicit feedback
matrix of the users-items one-hot encoding processed by
formulae (7) and (8) are used as the input of the neural
matrix factorization model. Embedding is initialized with
normal stochasticity to get the explicit-implicit feedback
latent feature vectors p(E)

u and p(I)
u of users and the explicit-
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implicit feedback latent feature vectors q
(E)
i and q

(I)
i of

items, and the explicit-implicit feedback vectors are added
to complement each other to obtain the latent feature
vectors P � [p

(E)
i ⊕p

(I)
i ] of the user and the latent feature

vectors Q � [q
(E)
i ⊕ q

(I)
i ] of the item, as the input of the

training layer of the hybrid model of the EINMF algorithm.
-rough the training of the hybrid model layer, the output
gets the shallow linear features of user preferences and the
deep nonlinear features of user preferences and connects
the two vectors to predict the degree of user preferences for
noninteracted items and utilizes a new loss function based
on explicit and implicit feedback proposed in this paper
and the forward and backward propagation of the neural
network model to update the relevant parameters of the
EINMF model. Finally, the user’s top-N personalized item
recommendation list is gained by predicting the user’s
preference value for the item that is most similar to the
actual preference based on the optimal parameters. -e
overall framework of the EINMF model is shown in
Figure 1.

-rough the hybrid model layer, based on the matrix
decomposition concept, with the user and item latent feature
vectors as inputs, the shallow linear preference features of
the user are obtained using the dot product operation, as
shown in formula (9), where symbol ⊙ refers to the product
of the corresponding elements of the two vectors (i.e., dot
product):

ϕdotEI Pu, Qi( 􏼁 � Pu ⊙Qi. (9)

In the neural network model, the user latent feature
vector and the item latent feature vector are connected
together, utilizing the hidden layer of the multilayer
perceptron (MLP) to obtain the deep nonlinear preference
features of the user and the item to model the complex
relationship between the user and the item; to obtain the
multilayer nonlinear projection of the user-item inter-
action, the multilayer complex user preference features in
the hybrid model layer of EINMF are defined as follows:

zEI �
Pu

Qi

􏼢 􏼣

φ1
EI zEI( 􏼁 � a

1
EI W

1
EIzEI + b

1
EI􏼐 􏼑

φ2
EI z

1
EI􏼐 􏼑 � a

2
EI W

2
EIz

1
EI + b

2
EI􏼐 􏼑

⋮

φX
EI z

X−1
EI􏼐 􏼑 � a

X
EI W

X
EIz

X−1
EI + b

X
EI􏼐 􏼑

, (10)

where WX
EI, bX

EI, and aX
EI denote the weight matrix, bias

vector, and activation function of the X-th layer of the
multilayer perceptron, respectively. Here, we use ReLU as
the activation function because it has been shown to be more
expressive than other functions and can effectively handle
the gradient disappearance problem [13, 20]. X denotes the
number of layers in the multilayer perceptron (MLP).

-e output of the prediction layer of the EINMF model is
the preference prediction value of the interaction between user
u and item i based on explicit and implicit feedback, connecting
the user linear and nonlinear preference features, and the
preference prediction formula is defined as follows: hT denotes
the weight parameter of the user prediction layer and aout
denotes the activation function of the prediction layer, using
the Sigmoid function as the activation function of the output
layer, and the output prediction value is between 0 and 1, which
can well combine linear features and nonlinear features. -e
user preference prediction function is defined as follows:

􏽢y
(EI)
ui � aout h

T φdot
EI

φMLP
EI

⎡⎢⎣ ⎤⎥⎦⎛⎝ ⎞⎠. (11)

3.3. EINMF Model Loss Function. -e loss function is a
crucial part of recommendation model construction which
concerns the performance of the recommendation algo-
rithm. It is essentially an objective optimization function of
the recommendation model, which can be defined based on

Table 1: Symbol definition.

Symbol Description
U Set of users
V Set of items
R � [rui]m×n User-item rating matrix
p(E)

u Explicit feedback feature vector of user u
q

(E)
i Explicit feedback feature vector of item i

IR � [irui]m×n User-item implicit interaction matrix
p(I)

u Implicit feedback feature vector of user u
q

(I)
i Implicit feedback feature vector of item i

Pu User’s latent factor vector matrix
Qi Item’s latent factor vector matrix
aX

EI Activation function of the X-th layer in the neural network
WX

EI Weight matrix of the X-th layer in the neural network
bXEI Deviation value of the X-th layer in the neural network
aout Activation function of the prediction layer
􏽢y(EI)

ui Preference prediction for the interaction between user u and item i
Θ Set of parameters related to the neural network
η Controlling the weight of explicit and implicit feedback in the loss calculation

Computational Intelligence and Neuroscience 5



both explicit and implicit feedback data of user-item in-
teraction. -is paper proposes a new loss function based on
the point-by-point loss function, that is, a hybrid explicit-
implicit feedback loss function, which aims to obtain ac-
curate ratings with a view to being more applicable to
predicting accurate user preferences. At present, the com-
monly used point-by-point loss functions in recommen-
dation algorithms are mainly the squared loss function and
the binary cross-entropy loss function.

-e square loss function has been applied in many
matrix factorization recommendation algorithms
[3, 6, 11, 17], but the square loss is used with the following
assumptions: the predicted values are generated from
Gaussian distribution, which is less consistent with the bi-
nary value distribution of the implicit feedback [4].
-erefore, the square loss function is better used in matrix
factorization recommendation algorithms based on explicit
feedback than matrix factorization recommendation algo-
rithms based on implicit feedback.-e basic definition of the
squared loss function is shown in the following formula:

Lsqu � 􏽘
u∈U

􏽘
i∈I

wui yui − 􏽢yui( 􏼁
2
. (12)

For the implicit feedback, based on the characteristics of
implicit feedback binarization, subsequent researchers
proposed a point-by-point loss function based on the binary
classification optimization task [13, 20], named the binary
cross-entropy loss function, which performs better than the

squared loss with the implicit feedback recommendation
algorithm. -e basic definition of the binary cross-entropy
loss function is shown in the following formula:

Llog � − 􏽘
u∈U

􏽘
i∈I

yuilog 􏽢yui + 1 − yui( 􏼁log 1 − 􏽢yui( 􏼁. (13)

DMF [20] applied the cross-entropy loss function to the
normalized explicit ratings and proved its effectiveness for
the optimization of the recommendation model parameters.
-erefore, in this paper, a new loss function is designed to
normalize the explicit ratings to values between 0 and 1,
which can be made suitable for the application of the cross-
entropy loss function. Since both explicit user rating data
and implicit feedback data reflect user preferences [1], we use
both explicit feedback and implicit feedback information
together in the objective optimization function to optimize
and update the recommendation model parameters. -e
explicit rating normalized loss function is defined as in
formula (14), and the implicit feedback binary loss function
is defined as in formula (15).

LE � − 􏽘
u∈UE

􏽘
i∈IE

rui

Max(R)
log 􏽢yui + 1 −

rui

Max(R)
􏼠 􏼡log 1 − 􏽢yui( 􏼁.

(14)

In formula (14), Max(R) represents the maximum ex-
plicit user rating of items in the training set, which is used in
this paper to normalize the user-item ratings; for example, in

user-item interaction history data

Input … … ……1 0 0 1 1 0 1 0 0 0 1 01 0 1 1

User-E User-I Item-E Item-I

Embedding

Embedding
layer 

++ +

Multi-Layer Perceptron 2

Multi-Layer Perceptron 1

…

Activation Dense

ActivationDense

EINMF-Layer

EINMF-Layer

Concatenation

·

Dense Sigmoid

Training
Loss

Hybrid model layers

Prediction layer
(EI)ŷ ui

(EI)y ui

Pm×k Qn×k

Multi-Layer
Perceptron X

pu
(E) pu

(I) qi
(E) qi

(I)

Figure 1: -e structure of the EINMF model.
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the 5-point rating dataset, if the user rating of items is 3 and
the maximum rating in the training set is 5, the normalized
rating value can be obtained as 3/5� 0.6. -us, different
rating values have different effects on the loss.

LI � − 􏽘
u∈UI

􏽘
i∈II

iruilog 􏽢yui + 1 − irui( 􏼁log 1 − 􏽢yui( 􏼁. (15)

In formula (15), irui denotes the binarized implicit rating
of the implicit feedback of user u to item i. Different types of
feedback data have their own suitable loss functions, and the
recommendation model in this paper utilizes two types of
data for model construction and training. -erefore, the two
loss functions are combined as the loss function of the
EINMF, and the loss function is defined as formula (16),
giving them different weights, making full use of the re-
spective characteristics of the explicit and implicit feedback
data. -is new loss function is named the explicit-implicit
feedback hybrid loss function, and η is used to control the
respective weights of the explicit-implicit feedback losses in
the loss function.

L � ηLI +(1 − η)LE. (16)

4. Experiments

Various experiments were designed on real-world open-
source MovieLens datasets to verify the feasibility, effec-
tiveness, and robustness of the EINMF user preference
prediction algorithm and the new loss function.

4.1. Dataset. We evaluate the EINMF model and the
baseline model with two widely adopted datasets in the field
of recommender systems, MovieLens-100K (ml-100k) and
MovieLens-1M (ml-1m); MovieLens contains multiple
rating datasets collected from the MovieLens website over
different time periods. MovieLens-100K (ml-100k) contains
100,000 ratings for 1682 movies from 943 users, and
MovieLens-1M (ml-1m) contains over 1 million ratings for
3706 movies from 6040 users. -e ml-100k dataset is not
preprocessed in this paper because it is already filtered.
Preprocessing is only done in the ml-1m dataset before the
experiment, and users with less than 10 ratings and items
with less than 10 ratings are filtered and removed to exclude
the interference of abnormal cold data.

Table 2 presents the specific statistics of the two datasets
after preprocessing.

4.2. Evaluation Methods. In this paper, the cross-validation
method [13, 15, 20], which is widely used in deep learning
recommendation models, is used to evaluate the perfor-
mance of the recommendation system. -e rating dataset is
split into training data, validation data, and test data with the
split ratio of [0.8, 0.1, 0.1]. First, the scoring dataset was
cross-sectioned into 10 sets of the same size, and then 8 sets
were used as training data for building the recommendation
model, 1 set was used as validation set for model parameter
tuning, and finally 1 set was used as test set for testing the
accuracy and robustness of the final model.

Most recommendation systems utilize error loss assess-
ment methods such as root mean square error (RMSE) and
mean absolute error (MAE) to assess the similarity between
users’ predicted preferences and true preferences, but top-N
based recommendation tasks, which recommend the top-N
list of most interesting items for users based on their ranking
of item preference predictions, use a ranking assessment
compared to error loss method which is more realistic [21].
-erefore, we adopt hit rate (HR) and normalized discounted
cumulative gain (NDCG) based on ranking performance
evaluation for deep learning recommendation model per-
formance [13, 20]. In this paper, the recommended item list
generated by the predicted ranking of user preferences is
defined as Reu � re1u, re2u, . . . , reN

u􏼈 􏼉, where N represents the
length of the recommendation list, that is, the number of
items in the recommendation list, and rei

u represents the i-th
position of the item ranked in the Reu list according to the
predicted preference value; the set of items interacted by user
u in the validation set and the test set is defined as Iu. For both
evaluation methods, larger values represent better perfor-
mance of the recommendation system, and the two evaluation
methods are calculated as follows.

Hit rate: it is used to evaluate the accuracy of the rec-
ommendation system, that is, whether the test items are
included in the top-N item recommendation list; the HR
calculation is shown in formula (17), where |U| indicates
the number of users in the validation set and the test set.

HR@N �
􏽐u Reu ∩ Iu

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

|U|
. (17)

Normalized discounted cumulative gain (NDCG): Used
to measure the ranking accuracy of the recommendation
system, that is, whether the test item is ranked at the top
of the top-N item recommendation list; the NDCG
calculation is shown in the following formula:

NDCG@N �
1
Z
DCG@N �

1
Z

1
|U|

􏽘

U

u

􏽘

N

i�1

2reliu − 1
log2(i + 1)

, (18)

where Z is the normalization constant and is the approxi-
mate maximum value of DCG@N. At this point, |U| denotes
the number of users in the validation set and the test set, and
i denotes the ranking of the item in the recommendation list.
reliu denotes the true relevance of user u to the item at the
i-th ranking position in the recommendation list, which is 1
if there is interaction between them; otherwise, it is 0.

4.3. Baselines and Experiment Parameters. In this paper, the
EINMF recommendation algorithm is compared with the
five following baseline algorithms:

Table 2: Statistics of the datasets.

Dataset Rating User Item Density Rating range
ml-100k 100,000 943 1,682 93.70% [1, 5]
ml-1m 1,000,209 6,040 3,260 94.93% [1, 5]
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Pop [2]: a typical recommendation method that ranks
items by their popularity based on the number of in-
teractions and is a nonpersonalized recommendation
method used as a baseline evaluation comparison for
personalized recommendation methods.
Item-KNN [5]: a standard item-based collaborative
filtering method for measuring the similarity among
items to achieve personalized recommendations as a
baseline approach.
BPR-MF [10]: a pairwise ranking method, which op-
timizes the recommendation method of MF model
based on implicit feedback by pairwise Bayesian per-
sonalized ranking loss function, in order to learn from
implicit feedback data, and is a common baseline for
personalized recommendation of items.
NCF [13]: an advanced neural network-based collab-
orative filtering method that uses a multilayer per-
ceptron to obtain nonlinear information about user-
item interactions and optimizes model parameters,
using binary cross-entropy loss. For a fair comparison,
the experiments use the same embedding size, number
of hidden layers, and predictor size for both NCF and
EINMF models.
DMF [20]: a deep learning recommendation method
using a multilayer perceptron for rating matrix fac-
torization, where the latent factors of users and items
are trained by a multilayer perceptron to obtain pre-
dicted values of user preferences which are most similar
to the true user-item ratings.

4.3.1. Experiment Parameters Setting. -e experiments in
this paper are based on Python 3.7, Keras 2.4.3, and PyTorch
1.7.1 to complete the comparison experiments among
EINMF and other baselines. Relevant parameters are set as
follows: the maximum number of model training iterations
is set to 100, and the training is stopped early when the
evaluation value of the validation set no longer has growth at
10 iterations. For the neural network, we used a Gaussian
distribution (mean of 0 and standard deviation of 0.01) to
randomly initialize the model parameters; a small-batch
Adam optimizer was used for optimization of the model
parameters with a training batch size of 1024. -e learning
rate of BPR-MF was set to 0.001 and the number of negative
samples was 4.

For the deep learning baselines NCF and DMF, the
learning rate of NCF model is set to 0.001 and the negative
sampling value is set to 4 according to the optimal results
described in literature [13, 20] and the actual result; the
learning rate of DMF model is set to 0.001 when training on
the ml-100k dataset and 0.0005 when training on the ml-1m
dataset, and the negative sampling values are both set to 2.
-e learning rate of the EINMF is set to 0.0001, and the
discard rate parameter is also added [22], which randomly
discards some neurons during the training of the neural
network, for preventing the model overfitting during
training, thus causing a large deviation between the test set
evaluation results and the validation set evaluation results

that increase the generalizability of the model, with a discard
rate of 0.2. -e comparison of the EINMF explicit and
implicit loss function weight parameter and the influence of
important parameters such as the number of neural network
layers on the performance of the EINMF model will be
specifically analyzed in the experiments.

4.4. Performance Comparison. Table 3 shows the results of
the comparative analysis of the five baselines and the EINMF
based on the performance evaluation metrics HR and
NDCG of the top-N task for ranked recommendations on
two datasets that have different sparsity and different sizes.
For a fair comparison, the embedding dimensions of both
users and items for the embedding-based methods, the BPR-
MF, NCF, DMF, and the EINMF, proposed in this paper are
set to 64. In addition, since the difference in the predicted
number of recommended items N also has an impact on the
performance of the recommendation system, the evaluation
metrics of each recommendation model with the number of
recommended items N ∈ 5, 10, 20{ } are tested to increase the
diversity of top-N task evaluation.

As shown in Table 3, the values of hit rate (HR) and
normalized discounted cumulative gain (NDCG) of the
EINMF and baselines gradually increase as the number N of
top-N task recommendation lists increases, which is con-
sistent with the actual recommendation requirements and
indicates that the recommendation algorithms are realistic.
On the ml-100k dataset, the hit rate (HR@N) of the EINMF
model improved by a minimum of 1.71%, a maximum of
8.05%, and an average of 4.87% compared to the best
baseline, while the NDCG@N improved by a minimum of
10%, a maximum of 18.38%, and an average of 14.41%
compared to the best baseline; on the ml-1m dataset, the hit
rate (HR@N) of the EINMFmodel improved by a minimum
of 4.23%, a maximum of 8.46%, and an average of 6.53%
compared to the best baseline, while the NDCG@N im-
proved by a minimum of 7.46%, a maximum of 11.88%, and
an average of 9.53% compared to the best baseline.

In summary, it is shown that the recommendation ac-
curacy of EINMF algorithm for different top-N tasks of two
datasets with different sparsity and data size is better than
those of the baselines and latest deep learning recommen-
dation algorithms, which effectively improves the accuracy
of recommendation system recommendations and corre-
sponds to the needs of real recommendation scenarios.

In the deep learning matrix factorization recom-
mendation algorithm, the size of embedding dimension is
one of the important factors affecting the performance of
the recommendation model, and the parameter embed-
ding-dim denotes the dimension of user vector and item
vector.

As the analysis in Figure 2 shows, for the two ranking
metrics HR@10 and NDCG@10, the EINMF proposed in
this paper outperforms other baselines in terms of evalu-
ation values on two datasets with different sparsity and size
as well as on different embedding dimensions. In addition,
as shown in Figure 2, the performance of the recom-
mendation system improves as the latent factor embedding
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Table 3: Performance of EINMF compared with other algorithms (embedding size� 64).

Dataset
MovieLens-100k MovieLens-1m

HR@N NDCG@N HR@N NDCG@N
Model N� 5 N� 10 N� 20 N� 5 N� 10 N� 20 N� 5 N� 10 N� 20 N� 5 N� 10 N� 20
Pop [2] 0.2031 0.3712 0.4761 0.0718 0.0786 0.0863 0.2015 0.2983 0.4228 0.0718 0.0786 0.0863
Item-KNN [5] 0.3160 0.4730 0.5758 0.0976 0.1067 0.1185 0.2237 0.3371 0.4874 0.0677 0.0714 0.0817
BPR-MF [10] 0.2874 0.4380 0.5822 0.0971 0.1088 0.1277 0.3340 0.4804 0.6267 0.1135 0.1206 0.1409
NCF [13] 0.6002 0.7540 0.8367 0.2662 0.2641 0.2890 0.603 0.7278 0.8268 0.2608 0.2497 0.2525
DMF [20] 0.6458 0.7667 0.8738 0.2672 0.2692 0.2835 0.5892 0.7197 0.8257 0.2401 0.2354 0.2413
EINMF 0.6978 0.8038 0.8887 0.3163 0.3092 0.3179 0.6540 0.7781 0.8618 0.2880 0.2728 0.2825
MI (%) 8.05 4.84 1.71 18.38 14.86 10.00 8.46 6.91 4.23 7.46 9.25 11.88
“MI” indicates the smallest improvements of our EINMF over the corresponding baseline. -e optimal value of each metric of the baseline top-N task is
underlined in the table.
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Figure 2: Evaluation results of different embedding dimensions of each model. (a) MovieLens-100k-HR@10, (b)MovieLens-100k-NDCG@
10, (c) MovieLens-1m-HR@10, and (d) MovieLens-1m-NDCG@10.
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dimension increases, indicating that a larger dimension
captures more hidden information about users and items,
which helps to enhance the modeling capability. However,
as shown in Figures 2(c) and 2(d), the performance of the
recommendation system starts to degrade when the latent
factor embedding dimension is too large. -erefore,
choosing the appropriate embedding dimension based on
the characteristics of the dataset and so forth is critical to
the performance improvement and training prediction
speed effect of the recommendation system. As shown in
Figure 2, the evaluation results of all models on two
datasets, ml-100k and ml-1m, show that the recommen-
dation performance of the EINMF with latent factor em-
bedding dimension 16 is even higher than the best baseline
embedding dimension of 64, indicating that the EINMF is
very effective for the performance improvement of the
recommendation system. As shown in Figures 2(a) and
2(b), the evaluation comparison results of all models on the
ml-100k dataset show that the recommendation perfor-
mance of EINMF with latent factor embedding dimension
of 8 is better than optimal embedding dimension evalua-
tion metrics of the best baseline. -e above analysis shows
that the EINMF proposed in this paper greatly outperforms
both the classical model and the state-of-the-art deep
learning models NCF and DMF in recommendation per-
formance and stability, which proves the effectiveness of
the EINMF for top-N recommendation tasks.

4.5. Impact of Different Parameters. Negative sample
number, that is, a certain number of randomly selected
items from the items where users do not interact with the
items, is essential for the performance improvement of the
recommender system. To analyze the effect of negative
sample number on the performance of the recommen-
dation system, we set the number of negative samples,
neg-num ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9], on two datasets, and the
comparison of the experimental results is shown in
Figure 3.

From the analysis of Figure 3, we can see that the
performance of the recommendation system gradually
improves with the increase of the number of negative
samples, but the performance of the recommendation
system decreases when the number of negative samples is
too many. -e optimal number of negative samples for this
model is in the range of 4–8, but the increase in the number
of negative samples will lead to an increase of training
parameters, resulting in an increase in the time for one
training iteration, such as the average training time of the
EINMF model with the negative sample number 8 is 2.5
times higher than that with the negative sample number 4.
-e personalized recommendation system requires high
timeliness in large dataset training and needs to be adjusted
in time with the change of user preferences. -erefore, too
much time spent can cause a lag in the actual recommen-
dation which leads to inaccurate recommendation results.
From the results of the evaluation metrics of the above two
datasets, we can see that the optimal negative sampling range
of the EINMF is in the range of 4–6.

4.5.1. Different Loss Function Weight. For loss function
weight (η), in this paper, a new loss function is proposed in
which the explicit-implicit feedback is incorporated into
the loss function (i.e., the objective optimization function)
by different weights for the optimization of the EINMF, and
the values of the explicit-implicit feedback loss function
with different proportional weights may have different
effects on the recommended performance, and this paper
sets the range of η ∈ [0.1, 1.0] with a step size of 0.1. A
comparison of the evaluation results with different weights
is shown in Figure 4.

As shown by the explicit-implicit feedback hybrid loss
function formula (16), when weight η takes the value of 0, the
new objective optimization function proposed in this paper
is a pure explicit-feedback-based loss function, and when
weight η is 1, the new objective optimization function is a
pure implicit-feedback-based loss function. As can be seen
from Figure 4, when weight η is 0, the performance of the
recommendation effect should be the worst; with the in-
crease of weight η, the performance of the recommendation
system improves rapidly, and the performance of the rec-
ommendation system reaches the best between the weights
of 0.5–0.7; the change is generally, and after 0.7, all the
evaluation metrics start to decline rapidly. From the above
analysis, it can be seen that the EINMF model reaches the
best performance when the weight of the hybrid loss
function is about 0.6, and the new hybrid loss function
proposed in this paper is very effective in optimizing the
performance of the recommender system.

5. Summary and Outlook

To improve the accuracy of recommendation systems and
enhance user satisfaction, this paper proposes a user pref-
erence prediction neural matrix factorization algorithm
integrating explicit feedback and implicit feedback. -e
matrix factorization algorithm is used to mine the shallow
linear features of explicit-implicit feedback of user-project
interaction and the deep nonlinear features of explicit-im-
plicit feedback using neural networks, make full use of the
complementarity of explicit-implicit feedback, and solve the
defects of the current deep learning algorithm in training the
model using only one feedback data. In addition, according
to the construction requirements of the model integrating
explicit-implicit feedback for the neural matrix factorization
model, a hybrid loss function integrating explicit-implicit
feedback is proposed for the optimization of model pa-
rameters, which improves the accuracy of the recommen-
dation system for user preference prediction. -e
experimental results demonstrate the effectiveness and ro-
bustness of the EINMF algorithm. As a kind of collaborative
filtering algorithm, EINMF algorithm builds a recommen-
dation system based on user history data. In the future, it will
consider integrating user and project attribute data and
more types of explicit-implicit feedback data including
comments and clicks into the model or adopt a better ex-
plicit-implicit feedback data fusion method to further al-
leviate the sparse data and cold start problems of
collaborative filtering algorithm.
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