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Abstract: A synthetic review of the application of multi-objective optimization models to the design of
climate-responsive buildings and neighbourhoods is carried out. The review focused on the software
utilized during both simulation and optimization stages, as well as on the objective functions and
the design variables. The hereby work aims at identifying knowledge gaps and future trends in
the research field of automation in the design of buildings. Around 140 scientific journal articles,
published between 2014 and 2021, were selected from Scopus and Web of Science databases. A
three-step selection process was applied to refine the search terms and to discard works investigating
mechanical, structural, and seismic topics. Meta-analysis of the results highlighted that multi-
objective optimization models are widely exploited for (i) enhancing building’s energy efficiency,
(ii) improving thermal and (iii) visual comfort, minimizing (iv) life-cycle costs, and (v) emissions.
Reviewed workflows demonstrated to be suitable for exploring different design alternatives for
building envelope, systems layout, and occupancy patterns. Nonetheless, there are still some aspects
that need to be further enhanced to fully enable their potential such as the ability to operate at multiple
temporal and spatial scales and the possibility of exploring strategies based on sector coupling to
improve a building’s energy efficiency.

Keywords: multi-objective optimization; genetic algorithm; parametric modelling; integrated building
design

1. Introduction

Construction of buildings and infrastructure is a significant contributor to global
warming, due to the high involvement of machineries, land use change, and material
consumption. More than six tenths of the global energy consumption and around four
tenths of greenhouse gases (GHG) emissions can be attributed to the building sector [1].
Following this, several countries such as Japan, Norway, and Sweden have adopted zero-
energy building (ZEB) goals and policies, whereas many others such as Morocco, Germany,
and Italy have established thermal regulations for buildings that identify minimum en-
ergy performance levels for new constructions [2]. Within this framework, the building
energy efficiency topic has aroused the interest of several researchers around the world.
Strategies to improve the energy performance of buildings have been proposed which
apply passive (i.e., building shape and orientation, envelope properties, natural ventilation)
or active systems and technologies (i.e., heating, ventilation and air conditioning system,
photovoltaic systems). However, building performance covers many targets in addition
to energy efficiency such as indoor visual and thermal comfort, and environmental and
economic sustainability. When improving building performance, these aspects can conflict
with each other [3] and it is necessary to seek a balance among them. Exploring all the
alternatives to find an efficient design is a time-consuming task; therefore, many authors
developed simulation-based optimization workflows which couple building performance
simulation (BPS) tools with optimization algorithms [4]. Since multiple variables and
objectives occur in complex optimization problems such as the integrated building design,
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non-gradient-based algorithms such as genetic algorithms (GAs) are exploited to solve
these discontinuous objective functions [5]. Such multi-objective optimization (MOO)
models are mostly applied during the early stage of the design process when even the less
accurate analysis (building components and materials properties are not defined in detail
at this stage) can have a significant impact.

Building performance optimization (BPO) can be considered as a MOO problem and
the solution consists of the trade-off between the different identified objectives. How-
ever, when it comes to mutually conflicting objectives, a set of non-dominated solutions
results, which constitute the Pareto front. The Pareto front grouped the optimal Pareto
solutions, and it is n-dimensional, where n is the number of objective functions evaluated.
Evolutionary optimization algorithms such as multi-objective particle-swarm optimiza-
tion (MOPSO), strength Pareto evolutionary algorithm (SPEA2), and non-sorting genetic
algorithm (NSGA-II) are widely used to solve multi-objective problems. In particular, the
NSGA-II turned out to be the most appreciated when it comes to BPO due to its efficient
sorting of non-dominated solutions which ease the convergence, and also its capability of
well distributing Pareto-optimal solutions along the Pareto front [6,7].

Despite the proven advantages of using GAs, the optimization process tends to be dif-
ficult when BPS requires a lot of time (a large building or too many objective functions are
considered). To overcome this issue, metamodels were introduced to predict building per-
formance, after being appositely trained, with a lower computational time [8]. Metamodels
consist of, literally, a model of a model which permits studying correlations between inputs
and outputs observed in a more complex model [9]. When applied to BPS, the artificial
neural network (ANN) metamodels are trained on the basis of a representative sample of
results from building performance analyses (outputs) for various sets of design variables
(inputs). Then, ANN metamodels are generally coupled to GAs in order to conduct BPO.

The integrated building design has been widely investigated over the last decades. The
introduction of metamodels enabled solving more complex MOO problems characterized
by numerous objective functions or large building case studies, with a relatively low
computational time [10,11]. Within this framework, the present work aims at reviewing
the state of the art concerning MOO models applied to the integrated building design for
identifying knowledge gaps and future trends in this research field. The review study
focuses on (i) exploited optimization tools and the respective programming languages,
(ii) objective functions and their combinations, (iii) explored design variables, and (iv) the
capability of evaluating long-term impacts. Outcomes will provide a background for future
research works dealing with BPO by contributing to the definition of the most effective
MOO workflow to be followed.

The paper is arranged into four sections: an introductive section (Section 1), which
provides the background about the topic of this synthetic review; the Method (Section 2), in
which the methodology followed is outlined; the Results and discussion (Section 3) which
is divided into three Sections about the general description of the selected journal articles
(Section 3.1), reviewed MOO models (Section 3.2), and identified knowledge gaps and
future trends (Section 3.3); the conclusive section (Section 4), where the main achievements
are reported in brief.

2. Method

A synthetic review was conducted to investigate the applications of MOO models
to integrated building design. Scientific journal articles that focused on the optimization
of building and neighbourhoods’ performances (i.e., energy and environmental impact,
thermal and visual comfort, solar accessibility) were reviewed. Two databases were consid-
ered as the sources to find these journal articles: Scopus and Web of Science (WoS). These
were chosen as they return literature from highly reliable sources with wide geographic
coverage. Identical search terms were used in both the databases, whereas the research
to acquire relevant journal articles was conducted in three steps. Initially, the “building”,
“multiobjective” and “optim*” terms were searched in titles, abstracts, and keywords from
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papers collected in the two databases (step one). The Boolean Operator “and” was used
to connect the search fields in all databases to ensure consistency of searches. The chosen
search terms were found in around 2690 and 4180 journal articles in Scopus and WoS,
respectively. The order of the terms within a search field was found to not alter the re-
turned literature: for example, “building multiobjective optimization” and “multiobjective
optimization building” returned the same publications. However, this search was deemed
ineffective as it returned a wide range of literature with topics not pertaining to the ex-
ploitation of MOO models in the integrated building design. To narrow the results, the
terms “design” and “architectur*” were used together with “building”, “multiobjective”,
and “optimiz*” to acquire a focused set of literature for reviewing (step two). Search terms
were refined with the help of the VOS Visualizer tool with the aim of providing a view
of how MOO models are used throughout the building design process with an emphasis
on architectural applications. Indeed, this machine learning-based tool ranks the words
in the titles, abstracts, and authors’ keywords of the collected scientific journal articles
and then applies clustering models to classify the most used words in groups (Figure 1).
The consequent density visualization provided a quick overview of the main areas in the
bibliometric network highlighting the presence of journal articles about optimization of
mechanical components of systems and plants (i.e., turbines, engines, compressors). To
further narrow the results, the typology of the scientific journal articles to be included in
the present review was defined as “article”, thus excluding conference proceedings, books,
and other review studies (step three).
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The term “multiobjective” was chosen to capture the optimization studies which
handle more than one objective function in their approaches. The use of “building design”
returned more specific literature when compared with the results from the “building”
search term, thus the former was used for this study. The “optim*” search term was
chosen to capture “optimization”, “optimized”, and “optimizing” in relevant articles. The
review includes articles published and available online between 2014 and the end of 2021.
The search returned 367 unique journal articles, which went through a further screening
process. The abstracts of all downloaded papers were reviewed to assess whether the
papers had a “structural and seismic”, “energy and comfort”, “environment and economy”
or “other” focus. Papers classified as “structural and seismic” discussed the optimization
of structural properties and seismic resistance of buildings; “energy and comfort” focused
on minimizing energy demand while enhancing visual and thermal comfort; “environment
and economy” focused on life-cycle analyses concerning building’s carbon intensity and
costs; and “other” did not focus on the built environment or had a scope not relevant to
the other categories such as systems and plant sizing. Following the screening process,
141 journal articles that were classified with “energy and comfort” and “environment and
economy” focuses were reviewed in detail.

3. Results and Discussion
3.1. General Description of the Selected Journal Articles

A tabular review is reported in the Appendix A section (Table A1) in which the year
of publication, the case study location, the investigated building typology, the objective
functions, the temporal horizon of the impact assessment, the exploited simulation engine,
the applied optimization method, and the optimization variables are reported for each
reviewed journal article.

The temporal distribution of the reviewed research studies is reported in Figure 2.
The number of published journal articles concerning the application of MOO model to
integrated building design was increased by ten times over the last seven years, from
3 journal articles in 2014 to 37 journal articles in 2021.
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Figure 2. Temporal distribution of the reviewed journal articles.

Most of the investigated case studies were located in China (26), Italy (12), and Iran (10)
(Figure 3). Alongside these, up to 11 journal articles evaluated the effectiveness of the
proposed MOO models at various latitudes through comparative analyses (“miscellaneous”
category). Less than 10 publications were found for the other locations.

In the reviewed journal articles, the MOO models were exploited to BPO at various
scales ranging from the neighborhood scale (3) to the test room scale (7) (Figure 4). How-
ever, such workflows were mainly applied to design highly effective configurations of
residential (62), office (36), and educational buildings (17). Fewer studies focus on commer-
cial (2), sport (2), and miscellaneous buildings (3), whereas up to nine publications dealt
with other building typologies such as tourist centers and community spaces.
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Figure 3. Spatial distribution of the case studies investigated in the reviewed journal articles. Studies
applying the MOO workflow to various latitudes are clustered in the “miscellaneous” category.
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Figure 4. Case study typologies assessed in the reviewed journal articles. The “other” category
includes other building typologies such as public buildings and tourist centers.

Implemented GAs were mostly used for solving optimization problems with two
(92) and three objective functions (43). Only six publications proposed the simultaneous
optimization of more than four variables. Enhancing building’s energy performance
levels (EN category in Figure 5) was included among the research goals of more than
one hundred studies (115), whereas guaranteeing adequate thermal and visual comfort
conditions (THERM and DAYL categories in Figure 5) was searched by authors of 73 and
57 journal articles, respectively (Figure 5). Finally, up to 53 studies aimed at minimizing
life-cycle costs and other economical parameters (LCC category in Figure 5), whereas only
25 studies evaluated life-cycle emissions (LCA category in Figure 5).
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Figure 5. Objective functions evaluated in the reviewed journal articles. A larger area corresponds to
a higher number of works that optimized that function.

The analysis of the possible combinations of two objective functions (Table 1) high-
lighted that the minimization of energy consumption was carried out along with thermal
comfort optimization in 60 studies, and with visual comfort optimization in 45 studies.
Furthermore, energy-related objective functions were solved together with life-cycle cost
minimization in 37 studies.
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Table 1. The number of publications per each couple of objective functions. Color transparency is
inversely proportional to the number of publications. The white color corresponds to zero, whereas
the red color corresponds to the highest amount (60).

LC
C

LC
A

EN

D
A

Y
L

W
IN

D

T
H

ER
M

53 18 37 9 0 26 LCC
25 13 5 0 10 LCA

115 45 0 60 EN
57 0 24 DAYL

1 0 WIND
73 THERM

To solve the aforementioned objective functions, the main simulation engines which
were found to be used in BPS are TRNSYS and EnergyPlus for thermal and energy analyses,
and Radiance for daylight and solar radiation assessment. These were utilized through
different tools such as DIVA, Ladybug and Honeybee for Grasshopper, DesignBuilder, and
Autodesk REVIT. Moreover, life-cycle cost (LCC) analyses were conducted through numeri-
cal models implemented in Visual Basic for Applications (VBA) and MATLAB environment,
whereas life-cycle assessment (LCA) was mainly performed by SimaPro software.

Python, MATLAB, and Java were the most utilized programming languages to develop
optimization algorithms (Figure 6). Python-based tools such as Opossum, Galapagos,
Colibrì, and Octopus were utilized within the Grasshopper environment. Similarly, jEPlus
and Optimo (both programmed in Python) were coupled to EnergyPlus and Dynamo,
respectively. MATLAB was exploited to perform optimization analyses together with
TRNSYS, ANSYS, and EnergyPlus software, in 38 studies. Finally, GenOpt tool from Java
was integrated with TRNSYS and EnergyPlus in 5 studies. Despite the programming
language, the NSGA-II was the GA applied by almost all of the authors.
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Almost the totality of the reviewed studies performed multi-objective optimization
analyses over short-term temporal horizons. It is worth highlighting that the authors of
three studies carried out BPS analyses throughout the building’s life cycle, thus taking into
account both current and future climate scenarios.

When it comes to the optimization variables, the reviewed MOO models were capable
of exploring different design solutions or strategies for the building’s orientation (40),
window-to-wall ratio (WWR) (71), window typologies (84), building’s shape (21), insulation
properties of the building envelope (86), infiltration rate (18), heating system layout (34),
shading devices (40), exploitation of natural ventilation (20), exploitation of renewable
energy sources (RESs) (19), lighting appliances (10), and occupancy pattern (8) (Table 2).
Most of the studies optimized from one to five independent variables (125), whereas only
16 studies were handling more than five variables. In particular, geometrical and physical
properties of the building envelope such as orientation, shape, the extension of the glazed
surface, shading solutions, and thermal insulation level of both opaque and transparent
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components were optimized together. Among these, the window typology was generally
optimized along with the insulation properties of the outer walls/rooftop (68) or the WWR
(57), whereas the WWR was mostly optimized together with the envelope insulation (52).

Table 2. The number of publications per each couple of optimization variables (i.e., there are
32 journal articles that optimize WWR and orientation at the same time). Color transparency is
inversely proportional to the number of publications. The white color corresponds to zero, whereas
the red color corresponds to the highest amount (68).
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dimension/shape

86 18 25 27 11 14 9 5 Envelope insulation
18 4 5 3 1 2 2 Infiltration rate

34 8 7 7 6 4 Heating system
40 9 2 3 0 Shading device

20 0 4 0 Natural ventilation
19 0 0 RES

10 3 Lighting appliances
8 Occupancy pattern

3.2. Multi-Objective Optimization Workflows
3.2.1. Python-Based Workflows

Python programming language was found to be the most utilized in the reviewed jour-
nal articles. Python libraries such as Numpy and Pandas exist, which enable solving MOO
problems [12]. Moreover, some Python-based optimization tools can be easily coupled to
simulation engines such as Radiance and EnergyPlus. Numerous studies included Octo-
pus [13–15] and other optimization tools from Grasshopper such as Galapagos [16,17] and
Colibrì [3,18] into their workflows (Figure 7). Zhuang et al. [19] proposed a performance-
integrated BIM framework for building life-cycle energy efficiency and carbon optimization
(Table 3). Ladybug and Honeybee were coupled to Octopus to improve indoor environ-
mental quality and reduce LCCs of an education building case study. Similar approaches
were followed by Zani et al. [20] for designing an educational building in Italy, by Lobac-
caro et al. [21] for achieving the zero-emission target in a residential building in Norway,
and by Pilechiha et al. [22] for exploring highly energy effective configurations of an office
building in Iran (Table 3). Through its plug-ins, Grasshopper allowed for investigating
different aspects of buildings, thus enabling a high number of objective functions. For
instance, the GA from Negendahl and Nielsen [23] was capable to handle up to four
objective functions: building energy use, capital cost, daylight distribution, and thermal
indoor environment.

Several research studies developed Python-based algorithms linking EnergyPlus and
TRNSYS simulation tools with jEPlus and Multi-Objective Building Optimization (MOBO)
plug-ins, respectively [24–26]. In particular, Pajek and Košir [26] aimed at outlining the
implications of passive design measures on the energy use of single-family residential
buildings under European representative climates. Results demonstrated that it is difficult
to neutralise the projected climate change effects on buildings’ energy use, even when
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applying the best performing combination of passive design measures. In the findings
of Abdou et al. [2], the MOBO tool was applied to the exploration of design alternatives
for retrofitting of an existing residential building, with the overall goal of meeting the
zero-energy balance. The workflow permitted us to achieve significant energy savings in
different Moroccan regions.
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Figure 7. Number of publications for each optimization engine exploited in the MOO models.

Finally, the Optimo tool was utilized within the Dynamo environment to perform opti-
mizations about energy demand, thermal and visual comfort, and solar accessibility [27–29].
Such workflows, which showed a lower number of variables if compared with the others,
were mainly exploited to identify high effective configurations of a building’s envelope.

As reported in Figure 8a, up to 50 publications describe MOO models capable of
optimizing the building energy performance, whereas only 18 and 12 publications minimize
life-cycle costs and emissions, respectively. Alongside these, solar accessibility (30) and
thermal comfort (30) were included among the objective functions of 60 publications.
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3.2.2. MATLAB-Based Workflows

Around 40 research studies presented workflows based on MATLAB. These were using
MATLAB’s functions such as gamultiobj to identify the Pareto front (Figure 7). EnergyPlus,
TRNSYS, and DAYSIM were the most exploited simulation engines to perform energy
and solar analysis as well as to evaluate thermal and visual comfort conditions [30–32].
Alongside these, SimaPro software was also integrated into the MOO model developed by
Islam et al. [33] to minimize life-cycle emissions and costs.
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Table 3. Tabular review of journal articles about Python-based MOO workflows.
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[27] 2015 x x N Optimo x x

[23] 2015 x x x N Octopus x

[24] 2016 x x x N jEPlus x

[20] 2017 x N Octopus x

[17] 2017 x x N Galapagos x x x

[25] 2018 x x N MOBO
tool x x x

[21] 2018 x x N Octopus x x x x

[16] 2020 x N Galapagos x x x x

[15] 2020 x x N Octopus x

[29] 2020 x x N Optimo x x

[28] 2020 x x N Optimo x

[22] 2020 x x N Octopus x x

[2] 2021 x x N MOBO x x x x x

[12] 2021 x x x N Python x x

[26] 2021 x Y jEPlus x x x x x

[18] 2021 x x N Colibrì,
Octopus x x

[19] 2021 x x N Octopus x x

[3] 2021 x x N Colibri x x x x x x

[14] 2021 x x N Octopus x

[13] 2021 x x N Octopus x x x

In particular, Yong et al. [34] proposed a multi-objective particle swarm algorithm cou-
pled to EnergyPlus to optimize the energy performance of residential buildings
(Table 4). Similarly, Ghaderian and Veysi [35] developed an optimization procedure based
on combining surrogate models linked to EnergyPlus engine with a GA. This was applied to
the enhancement of the building’s energy consumption and its occupants’ thermal comfort,
simultaneously. Pareto’s multi-objective approach is applied by Ascione et al. [36] to a
neighbourhood case study with the aim of achieving the ZEB standard while ensuring
cost-effectiveness.

The MOO models implemented in the MATLAB environment were demonstrated
to be suitable for handling a higher number of objective functions. Indeed, three out of
the six reviewed journal articles which describe optimization processes involving more
than three objective functions were implemented in the MATLAB environment [37–39].
Such workflows enable minimizing investment costs and carbon footprint while enhancing
thermal comfort level. Moreover, the approaches proposed by Ascione et al. [38] and
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Chang et al. [39] also improve energy efficiency, whereas the one presented by Karatas and
El-Rayes [37] permitted them to efficiently exploit daylight (Table 4).

The MATLAB programming language was also utilized for conducting BPS. The nu-
merical model implemented by Lin et al. [40] allowed of solving a cluster of thermodynamic
equations about energy performance and thermal comfort, whereas the numerical model
proposed by Ferreira et al. [41] focused on LCC and LCA analyses.

Finally, the three objective functions which were most investigated in MATLAB-based
MOO workflows were the energy performance (28), the LCC (22), and the thermal comfort
(20) (Figure 8b). In addition to these, only 16 publications evaluated life-cycle emissions (8)
and solar accessibility (8) in combination with other objective functions.

Table 4. Tabular review of journal articles about MATLAB-based MOO workflows.
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[37] 2015 x x x N MATLAB x x x x x x

[33] 2015 x x N LINDO x x

[30] 2016 x x N MATLAB x x

[31] 2017 x x N MATLAB x x x

[38] 2018 x x x N MATLAB x x x

[36] 2020 x x x N MATLAB x x x

[34] 2020 x x N MATLAB x x x x x x

[39] 2020 x x x N MATLAB x x x

[41] 2020 x x N MATLAB x x

[32] 2020 x x N MATLAB x

[35] 2021 x N MATLAB x x x x

[40] 2021 x x N MATLAB x x x x x

3.2.3. Java-Based Workflows

The core of the reviewed Java-based MOO models was represented by the GenOpt
tool from the Java GAs package (Figure 7). Such a tool was utilized in five research studies in
combination with EnergyPlus, Radiance, and TRNSYS simulation engines [42–44]. Objective
functions concern the building’s energy demand and solar accessibility, and also thermal
comfort and daylight exploitation (Table 5). When it comes to the optimization variables,
these workflows explored different envelope configurations by varying WWR, windows’
typology, thermal insulation of building envelope, and shading systems.

Carlucci et al. [7] implemented a procedure to support the design of a nearly zero-
energy house in order to minimize thermal and visual discomfort. The non-dominated
sorting genetic algorithm, implemented in the GenOpt optimization engine, was used to in-
struct the EnergyPlus simulation engine. Similarly, the approach proposed by Ameur et al. [43]
aimed at optimizing building thermal and lighting energy performance by coupling Ener-
gyPlus and GenOpt tools.
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Figure 8c shows that Java-based MOO workflows were not applied to the optimization
of life-cycle costs and emissions. On the contrary, solar accessibility, thermal comfort, and
energy performance were investigated in 3, 4, and 5 publications.

Table 5. Tabular review of journal articles about Java-based MOO workflows.
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[42] 2015 x x N GenOpt x x x x

[7] 2015 x N GenOpt x x x x

[44] 2018 x x N GenOpt x x x x

[43] 2020 x N GenOpt x x x x x

3.2.4. Other Workflows

In this section, all the MOO models which were developed in an unspecified environ-
ment or in an environment different from Python, MATLAB, and Java are reported.

The building performance optimization procedures carried out by Si et al. [45] and
Giouri et al. [46] were based on ModeFRONTIER software (Figure 7 and Table 6) and
they aim to implement integrated decision-making strategies to design high performing
buildings. However, Si et al. [45] also exploited a surrogate model developed by an ANN
metamodel to reduce the computing time.

A multi-criteria analysis of monocrystalline PV panels mounted on typical south-
facing shading devices of office buildings in the Mediterranean region was performed
through Visual PROMETHEE software by Stamatakis et al. [47]. A series of objective
functions which include PV panels’ energy production, buildings’ energy efficiency, and
users’ visual comfort were taken into account in this research study (Table 6).

When it comes to new methodologies, a multi-objective performance analysis (MOPA)
model for early design of cost-optimal zero-energy lightweight construction was developed
by Amer et al. [48]. Similarly to other MOO models, the MOPA workflow follows three
consecutive steps such as modelling setup, BPS, and outcomes evaluation and selection.
Alongside this, a VBA-based tool was implemented by Bayoumi and Fink [49] which
enables design exploration of building façades for enhancing energy saving and energy
generation. Such a tool was also capable of investigating the correlation between thermal
and visual comforts.

Several journal articles described optimization procedures that were performed manu-
ally [50–55] (Figure 7). These studies mostly propose workflows to select the best among
different pre-determined design alternatives through a comparative process. Design alter-
natives were not generated through GAs but implemented manually, thus reducing the
results’ reliability. Carriço de Lima Montenegro Duarte et al. [55] followed a similar ap-
proach when designing windows and shading devices in an educational building in Brazil
with the aim of minimizing energy demand while improving visual and thermal comfort.
Conversely, a multi-criteria methodology for optimization of residential buildings which
is based on sensitive analysis was presented in Croitoru et al. [56]. This work described a
parametric study regarding the impact on energy consumption with different factors and
the weighing associated.
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Finally, Figure 8d highlights that the energy performance was the most investigated
objective function (34), followed by thermal comfort (19), solar accessibility (14), and
life-cycle costs (13).

Table 6. Tabular review of journal articles about MOO workflows developed in an unspecified
environment or in an environment different from Python, MATLAB, and Java.

R
ef

.

Ye
ar

Optimized
Parameters

Lo
ng

-T
er

m
Ev

al
ua

ti
on

O
pt

im
iz

at
io

n
To

ol
(O

pt
im

iz
at

io
n

M
et

ho
d)

Parameters

LC
C

LC
A

En
er

gy
Pe

rf
or

m
an

ce

So
la

r
A

cc
es

si
bi

li
ty

T
he

rm
al

C
om

fo
rt

O
ri

en
ta

ti
on

W
W

R

W
in

do
w

s
Ty

po
lo

gy

B
ui

ld
in

g
D

im
en

si
on

s

En
ve

lo
pe

Pr
op

er
ti

es

In
fil

tr
at

io
n

R
at

e

H
ea

ti
ng

Sy
st

em

Sh
ad

in
g

D
ev

ic
e

N
at

ur
al

V
en

ti
la

ti
on

R
ES

Li
gh

ti
ng

A
pp

li
an

ce
s

O
cc

up
an

cy
Pa

tt
er

n

O
th

er

[49] 2014 x x N MS Excel x x x

[50] 2015 x x N Manually x

[56] 2016 x N Manually x x x

[47] 2016 x x N Visual
PROMETHEE x x

[51] 2016 x x N Manually x x

[52] 2016 x x N Manually x x x

[45] 2019 x N modeFRONTIER x x x

[53] 2020 x N Manually x

[48] 2020 x x N MOPA x x x

[54] 2020 x x N Manually x x

[46] 2020 x N modeFRONTIER x x x x x x

[55] 2021 x x N Manually x x x x

3.3. Knowledge Gaps and Future Trends

The review process of journal articles concerning MOO models for integrated building
design permitted us to identify the knowledge gaps which are described in the following
paragraphs. Firstly, almost the totality of the journal articles avoided taking into account
climate change effects in their MOO models. Statistical weather files, which are based on
mean values of climate variables calculated over the past 15 years, or monitored data were
used by leading to biased optimization outcomes. Such a bias was more evident when
the whole building life cycle was considered. In fact, the building lifetime is generally
considered to be as high as 60 years, and climate parameters such as the near-surface air
temperature and the radiative forcing are expected to change within this time interval.
Therefore, the effectiveness of optimized strategies and technologies for cooling might
be reduced throughout the building’s lifetime. Several research studies such as the ones
carried out by Allouhi [57] and Zou et al. [58] started filling such a knowledge gap by
proposing temporal dynamic optimization procedures which integrate BPO with medium-
and long-term impact assessment of climate change effects.

Secondly, the reviewed workflows were found to perform optimization at a single
scale such as neighbourhood, building, and room scale without linking them. A multi-scale
approach is necessary to consider inter-building effects and mutual influences between the
indoor and the outdoor environment. For example, the application of a highly reflective
coating on a building façade for passively cooling the indoor environment may also lead
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to an increase in the solar radiation impinging on near urban surfaces (i.e., buildings
envelopes, street surface, pedestrian areas) by worsening the thermal stress of pedestrians.
Therefore, it is necessary to establish MOO models operating at multiple spatial scales
which enable solving objective functions concerning different environments (i.e., the room
and the whole building, the building and the street environment, the building and the
neighbourhood) at the same time.

Thirdly, coupling different building typologies such as office, commercial, and resi-
dential can be an effective strategy to further improve building energy management and it
might represent a relevant future trend in the integrated building design research field [59].
Several journal articles have already investigated how occupancy-related variables such
as occupancy pattern, indoor temperature set-point, and lighting conditions can impact
energy, users’ comfort, emissions, and costs [16,30,37,60,61]. Following this, future works
should consider combining different occupancy typologies to enhance buildings’ energy,
economic, and environmental sustainability.

Finally, around 15% of the reviewed journal articles performed LCA analyses, but they
mostly focused on the operational stage by avoiding investigating emissions embodied in
construction materials [62,63]. The building energy consumption is generally converted
into carbon emissions through the energy mix factor. It is worth highlighting that such a
knowledge gap has been partially filled by Azari et al. [64] and by Lobaccaro et al. [21], but
further investigations are needed to develop multi-criteria workflows including embodied
emissions assessment.

Following this, the future trends in designing a responsive built environment will
concern the implementation of a new generation of MOO models capable to operate at
multiple spatial and temporal scales with increased attention towards the minimization
of emissions embodied in construction materials. Such a holistic approach to building
and neighbourhood optimization will necessarily take advantage of benefits related to the
combination of different building typologies in order to further enhance the building’s
energy efficiency. All these aspects can now be taken into account thanks to the recent
implementation of metamodels which enable lower computational time for BPS.

4. Conclusions

A synthetic review of MOO models is carried out in order to design responsive
buildings and neighbourhoods. The review focused on the utilized software during both
simulation and optimization stages, as well as on the identified objective functions and
design variables. Results highlighted that MOO models are widely exploited for defining
a trade-off between building energy efficiency (i.e., minimization of energy demand for
heating and cooling, maximization of energy production from RES) and thermal and visual
comfort. In addition to that, some research studies demonstrated that such GAs are suitable
for minimizing construction costs as well as operational emissions. The reviewed MOO
models can only perform optimization at a single scale, mainly handling variables related
to characteristics of a building or a test room. Among the optimized design variables, the
commonest were the ones describing the building’s envelope, the glazed surfaces, and the
shading devices. The possibility of exploring different shape solutions for the building case
study was only implemented in a few works.

Automation for integrated building design has been improving significantly between
2014 and 2021 due to the implementation of numerous MOO models that rapidly substi-
tuted the previous single-objective optimization algorithms. Nonetheless, there are still
some aspects that need to be further enhanced to fully enable the potential of optimization
tools in the design of responsive building solutions, in particular, the capability of optimiz-
ing design variables and of solving objective functions at multiple scales by also taking
into account climate change effects. This is expected to be the future trend about such a
research topic together with the development of MOO models that can investigate sector
coupling solutions to achieve higher energy efficiency levels.
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When it comes to the limitations of the work, it is worth underlining that this review
study focused more on the methodology than on the results of the reviewed publications.
Therefore, a partial overview of the potentialities of MOO models is provided by neglecting
their effectiveness in designing responsive buildings. Following this, future developments
of this study must necessarily consider this aspect when reviewing MOO models.
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Nomenclature

GHG Greenhouse gases
ZEB Zero-energy building
BPS Building performance simulation
GA Genetic algorithm
MOO Multi-objective optimization
BPO Building performance optimization
MOPSO Multi-objective particle-swarm optimization
SPEA2 Strength Pareto evolutionary algorithm
NSGA-II Non-sorting genetic algorithm
ANN Artificial neural network
WoS Web of Science
LCC Life-cycle cost
VBA Visual Basic for Applications
LCA Life-cycle assessment
WWR Window-to-wall ratio
RES Renewable energy source
MOBO Multi-objective building optimization
MOPA Multi-objective performance analysis
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Appendix A

Table A1. Tabular review of the selected journal articles.
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[49] 2014 Saudi Arabia office building x x N MS Excel MS Excel x x x

[63] 2014 Germany office building x x x N MS Excel n.d. x x x x

[65] 2014 Netherlands office building x x N TRNSYS,
Radiance n.d. x x x

[27] 2015 UK residential building x x N Autodesk GBS Optimo x x

[50] 2015 Japan office building x x N Radiance,
EnergyPlus Manually x

[42] 2015 USA educational building x x N Radiance,
EnergyPlus GenOpt x x x x

[62] 2015 miscellaneous office building x N EnergyPlus Python x x x

[7] 2015 Italy residential building x N EnergyPlus GenOpt x x x x

[23] 2015 Denmark office building x x x N Radiance, Be10 Octopus x

[37] 2015 USA residential building x x x N EnergyPlus MATLAB x x x x x x

[66] 2015 miscellaneous commercial building x x N EnergyPlus n.d. x x x x x x

[67] 2015 Hong Kong office building x x N TRNSYS MATLAB x

[68] 2015 China residential building x N EnergyPlus MATLAB x x x x x

[33] 2015 Australia residential building x x N SimaPro LINDO x x

[56] 2016 Romania residential building x N DesignBuilder Manually x x x

[47] 2016 Greece office building x x N n.d. Visual PROMETHEE x x

[51] 2016 Serbia office building x x N Radiance,
EnergyPlus Manually x x

[69] 2016 Norway residential building x x N Ladybug, Honeybee Octopus x

[70] 2016 Argentina residential building x N EnergyPlus Python x x x x x x

[6] 2016 miscellaneous residential building x N DesignBuilder n.d. x x x x
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[24] 2016 Spain residential building x x x N EnergyPlus jEPlus x

[71] 2016 Hong Kong residential building x N EnergyPlus jEPlus x x x x x

[61] 2016 USA other x N DesignBuilder,
RSMeans, MySQL n.d. x x x x x

[72] 2016 Iran office building x x N EnergyPlus MATLAB x x x

[64] 2016 USA office building x x N eQuest, AthenaIE n.d. x x x

[73] 2016 China other x N Ladybug Octopus x

[74] 2016 Iran test room x N EnergyPlus jEPlus x x x x x

[75] 2016 Portugal residential building x N EnergyPlus n.d. x x x x

[30] 2016 Hong Kong office building x x N EnergyPlus MATLAB x x

[52] 2016 Indonesia office building x x N Radiance Manually x x x

[76] 2016 miscellaneous office building x x N Radiance,
EnergyPlus Octopus x x x x x

[20] 2017 Italy educational building x N Ladybug, Honeybee Octopus x

[31] 2017 France residential building x x N TRNSYS MATLAB x x x

[77] 2017 Argentina residential building x N EnergyPlus Python x x x x x x x

[17] 2017 Spain residential building x x N DIVA Galapagos x x x

[78] 2017 miscellaneous residential building x x N EnergyPlus, R jEPlus x x x x x

[38] 2018 Italy office building x x x N EnergyPlus MATLAB x x x

[79] 2018 Italy other x x x x N n.d. n.d. x

[25] 2018 miscellaneous residential building x x N TRNSYS MOBO tool x x x

[21] 2018 Norway residential building x x N Ladybug, Honeybee Octopus x x x x

[80] 2018 China residential building x N EnergyPlus MATLAB x x x x x x x

[44] 2018 Italy educational building x x N TRNSYS GenOpt x x x x

[81] 2018 Poland residential building x N EnergyPlus MATLAB x x x x x



Energies 2022, 15, 486 17 of 27

Table A1. Cont.

R
ef

.

Ye
ar

Lo
ca

ti
on

C
as

e
St

ud
y

Optimized Parameters

Lo
ng

-T
er

m
Ev

al
ua

ti
on

Si
m

ul
at

io
n

En
gi

ne

O
pt

im
iz

at
io

n
To

ol
(O

pt
im

iz
at

io
n

M
et

ho
d)

Parameters

LC
C

LC
A

En
er

gy
Pe

rf
or

m
an

ce

So
la

r
A

cc
es

si
bi

li
ty

T
he

rm
al

C
om

fo
rt

O
ri

en
ta

ti
on

W
W

R

W
in

do
w

s
Ty

po
lo

gy

B
ui

ld
in

g
D

im
en

si
on

s

En
ve

lo
pe

Pr
op

er
ti

es

In
fil

tr
at

io
n

R
at

e

H
ea

ti
ng

Sy
st

em

Sh
ad

in
g

D
ev

ic
e

N
at

ur
al

V
en

ti
la

ti
on

R
ES

Li
gh

ti
ng

A
pp

li
an

ce
s

O
cc

up
an

cy
Pa

tt
er

n

O
th

er

[82] 2018 China residential building x x N DesignBuilder n.d. x x x x x

[83] 2018 China residential building x N EnergyPlus jEPlus x x x x x

[84] 2018 miscellaneous residential building x x N TRNSYS MOBO tool x x x x

[85] 2018 China other x N DesignBuilder MATLAB x x

[86] 2018 China residential building x x N DesignBuilder MATLAB x x x

[87] 2018 Iran residential building x x N BCS19 n.d. x x x

[88] 2018 Singapore office building x x N python Python x x x

[89] 2018 China sport building x x N
Ladybug,
Honeybee,
Karamba

modeFRONTIER x x

[90] 2018 Japan office building x N StarCD n.d. x x x x

[60] 2019 Italy residential building x N EnergyPlus MATLAB x

[91] 2019 Spain educational building x x N thermodynamic
equations n.d. x x

[92] 2019 India other x N CFD n.d. x

[93] 2019 Canada residential building x x N TRNSYS Python x x x x x x

[94] 2019 Singapore residential building x x x N EnergyPlus jEPlus x x x x x x x x

[95] 2019 Norway test room x x N Ladybug, Honeybee Octopus x

[96] 2019 Mexico residential building x x N EnergyPlus Python x x x x x x x

[97] 2019 Switzerland office building x x N EnergyPlus Opossum x

[98] 2019 South Korea educational building x N EnergyPlus Python x x x

[99] 2019 Italy residential building x x N EnergyPlus MATLAB x x x x

[100] 2019 Italy office building x x N EnergyPlus MATLAB x x x x x x

[45] 2019 China other x N EnergyPlus modeFRONTIER x x x

[101] 2019 China test room x x N EnergyPlus n.d. x x x
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[102] 2019 Sweden residential building x N Honeybee Octopus x x x x

[103] 2020 China other x N n.d. n.d. x

[53] 2020 Turkey residential building x N Autodesk CFD,
eQUEST Manually x

[104] 2020 n.d. other x x N Data driven n.d. x x x

[105] 2020 miscellaneous residential building x x N Ladybug, Honeybee Octopus x x x x

[48] 2020 Belgium other x x N Ladybug, Honeybee MOPA x x x

[36] 2020 Italy neighborhood x x x N EnergyPlus MATLAB x x x

[16] 2020 Iran educational building x N Ladybug, Honeybee Galapagos x x x x

[57] 2020 Morocco commercial building x x Y n.d. MATLAB x

[106] 2020 Poland residential building x Y EnergyPlus MATLAB x

[107] 2020 Denmark office building x N EnergyPlus MOBO x

[34] 2020 China residential building x x N EnergyPlus MATLAB x x x x x x

[39] 2020 Japan residential building x x x N Ladybug, Honeybee MATLAB x x x

[15] 2020 USA office building x x N Ladybug, Honeybee Octopus x

[108] 2020 Oman residential building x x N EnergyPlus MATLAB x x x x

[109] 2020 South Korea office building x N EnergyPlus MATLAB x

[54] 2020 Sweden neighborhood x x N Honeybee Manually x x

[29] 2020 Australia residential building x x N n.d. Optimo x x

[110] 2020 Portugal residential building x N EnergyPlus n.d. x x x x

[111] 2020 Mauritius residential building x x N EnergyPlus jEPlus x x x

[112] 2020 Iran residential building x x N EnergyPlus n.d. x x x

[28] 2020 Australia residential building x x N EnergyPlus Optimo x

[41] 2020 Portugal residential building x x N thermodynamic
equations MATLAB x x
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[113] 2020 Italy residential building x x x N EnergyPlus n.d. x x x x x x

[114] 2020 Hong Kong sport building x x N TRNSYS,
MATLAB n.d. x

[115] 2020 Turkey residential building x x N EnergyPlus GenOpt x

[116] 2020 China residential building x x N EnergyPlus,
Python Python x x x x x

[117] 2020 China educational building x x N Ladybug, Honeybee Octopus x x x x

[118] 2020 USA residential building x x N Ladybug, Honeybee Octopus x x x

[119] 2020 China office building x N DesignBuilder jEPlus x x x x

[120] 2020 Republic of Korea office building x N EnergyPlus MATLAB x x

[121] 2020 miscellaneous test room x x N Ladybug, Honeybee Octopus x

[43] 2020 Morocco residential building x N EnergyPlus GenOpt x x x x x

[122] 2020 China office building x x N EnergyPlus Python x x x x x x

[32] 2020 Brazil office building x x N Domus, Daysim MATLAB x

[22] 2020 Iran office building x x N Ladybug, Honeybee Octopus x x

[46] 2020 Greece office building x N Ladybug, Honeybee modeFRONTIER x x x x x x

[123] 2020 Iran office building x x N EnergyPlus jEPlus x

[124] 2020 Argentina residential building x N EnergyPlus Python x x x x x

[2] 2021 Morocco residential building x x N TRNSYS MOBO x x x x x

[12] 2021 Canada miscellaneous x x x N SimaPro,
HOT2000, HTAP Python x x

[125] 2021 Algeria educational building x x N Ladybug, Honeybee Octopus x x x x x

[55] 2021 Brazil educational building x x N Insight 360,
DesignBuilder Manually x x x x
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[126] 2021 China office building x x N

Dynamo, Radiance,
Daysim, Green
Building Studio,

MATLAB
(Self-Organizing

Mapping)

n.d. x x

[127] 2021 UK office building x x x N Data driven n.d. x x x

[128] 2021 China test room x x N Ladybug, Honeybee Octopus x

[58] 2021 China educational building x x Y Ladybug, Honeybee Python x x x x x x

[129] 2021 China residential building x x N EnergyPlus MATLAB x x x

[130] 2021 Malaysia test room x x N Ladybug, Honeybee Octopus x

[131] 2021 n.d. miscellaneous x N ANSYS MATLAB x x

[132] 2021 China educational building x N DesignBuilder Design-Expert x x x

[35] 2021 Iran office building x N EnergyPlus MATLAB x x x x

[26] 2021 miscellaneous residential building x Y EnergyPlus jEPlus x x x x x

[133] 2021 Italy neighbourhood x x N EnergyPlus MATLAB x x x x

[134] 2021 Turkey residential building x x N EnergyPlus MATLAB x x x x

[135] 2021 miscellaneous educational building x N
Ladybug,

ClimateStudio for
Rhino

Design Space Exploration x x

[18] 2021 Iran office building x x N

Ladybug,
Honeybee,

EnergyPlus,
OpenStudio,

Daysim

Colibrì, Octopus x x

[136] 2021 USA office building x x N Ladybug, Honeybee n.d. x

[137] 2021 China residential building x N QuVue, Eddy3d MATLAB x

[138] 2021 Serbia residential building x N DesignBuilder n.d. x x x x

[139] 2021 Shanghai residential building x N DesignBuilder n.d. x x x x x x
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[19] 2021 China educational building x x N Ladybug, Honeybee Octopus x x

[140] 2021 Australia test room x N CFStrace n.d. x

[141] 2021 Brazil residential building x N EnergyPlus MATLAB x x x

[142] 2021 Italy educational building x x x N Ladybug, Honeybee MATLAB x x x x x

[143] 2021 China educational building x N DesignBuilder MATLAB x x x

[144] 2021 Iran residential building x x N Ladybug,
Honeybee, Revit Octopus x x x

[145] 2021 Australia residential building x x N TRNSYS jEPlus x x x x

[146] 2021 Australia miscellaneous x x x N Revit, Insight AMPL x x x x

[3] 2021 China educational building x x N Ladybug, Honeybee Colibri x x x x x x

[147] 2021 South Korea residential building x x x N TRNSYS MATLAB x x x x x

[148] 2021 Sweden residential building x x N EnergyPlus Python x x

[8] 2021 China educational building x N EnergyPlus, Eppy MATLAB x x x x x

[14] 2021 Malaysia office building x x N Ladybug, Honeybee Octopus x

[40] 2021 Taiwan office building x x N Numerical model MATLAB x x x x x

[13] 2021 Japan residential building x x N Ladybug, Honeybee Octopus x x x
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