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ABSTRACT

As ”big data” has increasing influence on our daily life and research activities, it
poses significant challenges on various research areas. Some applications often
demand a fast solution of large, sparse eigenvalue and singular value problems;
In other applications, extracting knowledge from large-scale data requires many
techniques such as statistical calculations, data mining, and high performance
computing. In this dissertation, we develop efficient and robust iterative methods
and software for the computation of eigenvalue and singular values. We also
develop practical numerical and data mining techniques to estimate the trace of
a function of a large, sparse matrix and to detect in real-time blob-filaments in
fusion plasma on extremely large parallel computers.
In the first work, we propose a hybrid two stage SVD method for efficiently and
accurately computing a few extreme singular triplets, especially the ones
corresponding to the smallest singular values. The first stage achieves fast
convergence while the second achieves the final accuracy. Furthermore, we
develop a high-performance preconditioned SVD software based on the
proposed method on top of the state-of-the-art eigensolver PRIMME. The
method can be used with or without preconditioning, on parallel computers, and
is superior to other state-of-the-art SVD methods in both efficiency and
robustness.
In the second study, we provide insights and develop practical algorithms to
accomplish efficient and accurate computation of interior eigenpairs using
refined projection techniques in non-Krylov iterative methods. By analyzing
different implementations of the refined projection, we propose a new hybrid
method to efficiently find interior eigenpairs without compromising accuracy. Our
numerical experiments illustrate the efficiency and robustness of the proposed
method.
In the third work, we present a novel method to estimate the trace of matrix
inverse that exploits the pattern correlation between the diagonal of the inverse
of the matrix and that of some approximate inverse. We leverage various
sampling and fitting techniques to fit the diagonal of the approximation to that of
the inverse. Our method may serve as a standalone kernel for providing a fast
trace estimate or as a variance reduction method for Monte Carlo in some cases.
An extensive set of experiments demonstrate the potential of our method.
In the fourth study, we provide first results on applying outlier detection
techniques to effectively tackle the fusion blob detection problem on extremely
large parallel machines. We present a real-time region outlier detection algorithm
to efficiently find and track blobs in fusion experiments and simulations. Our
experiments demonstrated we can achieve linear time speedup up to 1024 MPI
processes and complete blob detection in two or three milliseconds.
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Chapter 1

Introduction

As ”big data” has increasing influence on our daily life and research activities, it poses

significant challenges on various research areas. Some applications often demand a

fast solution of large, sparse eigenvalue and singular value problems; In other applica-

tions, extracting knowledge from large-scale data requires many techniques such as sta-

tistical calculations, data mining, and high performance computing. In this dissertation,

we develop efficient and robust iterative methods and software for the computation of

eigenvalue and singular values. We also develop practical numerical and data mining

techniques to estimate the trace of a function of a large, sparse matrix and to detect in

real-time blob-filaments in fusion plasma on extremely large parallel computers.

The numerical solution of large, sparse, Hermitian or real symmetric eigenvalue prob-

lems is one of the most computationally intensive tasks in a variety of applications. Such

applications arise in a large number of areas such as structural engineering, quantum

chromodynamics, material science, dynamical systems, machine learning and data min-

ing [45, 105, 128, 122, 62, 53]. Depending on the application, one is interested in seek-

ing a few of the smallest or largest eigenpairs, or some eigenpairs in the interior of the

spectrum. When the size of the problem is relatively small (say order 103), dense matrix

methods such as the QR method can find all eigenvalues efficiently. In cutting edge re-

search and industry, eigenvalue problems involve matrices of size routinely more than a
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million and even of order of a billion [96]. Moreover, the matrices are often sparse, con-

taining a significant number of entries that are zeros. For such large, sparse matrices,

the dense matrix methods are usually intractable due to limited memory constraints and

computational costs. Also, these problems typically demand only a small portion of the

eigenvalues. Instead, iterative methods that rely on sparse matrix-vector operations are

the only means of addressing these large-scale problems.

Another ubiquitous computational kernel in science and engineering is the singular

value decomposition (SVD) of a matrix. The problem of computing the SVD can be for-

mulated as an equivalent Hermitian eigenvalue problem. Many applications require a few

of the largest singular values of a large, sparse matrix A and the associated left and right

singular vectors (all together we call them singular triplets). These applications are from

diverse areas, such as pattern recognition, social network analysis, image processing,

textual database searching, and control theory [45, 105, 128, 122]. A smaller, but in-

creasingly important set of applications require a few smallest singular triplets. Examples

include total least squares minimization problem, computation of pseudospectrum, de-

termination of range, null space and rank, and low rank approximation of matrix inverse

[45, 127, 44, 135, 136, 141]. The main focus of this research is to develop efficient and

robust iterative methods and software for solving difficult large, sparse eigenvalue and

singular value problems.

A significant amount of research has been devoted to developing numerical analysis

techniques for performing statistical calculations efficiently, in order to cope with chal-

lenges of big data arising in various areas such as social science and health informatics

[47, 56, 139, 137]. For instance, a common large graph mining task is to count the number

of triangles in a graph, which is very expensive with millions or billions of edges. Since

an exact count of triangles is not needed in many cases, randomized algorithms for ap-

proximating the number of triangles have been developed by employing some form of

Monte-Carlo simulation [6]. In this research, we focus on the need to estimate the trace

of a function of a large, sparse, square matrix where the function is computed implicitly
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through matrix vector products. These problems are common in many statistical applica-

tions, in image restoration [64], in uncertainty quantification [16], and in lattice quantum

chromodynamics [116]. We pursue practical numerical techniques to address this com-

putationally challenging task, specifically shedding light on computing the trace of the

inverse of a large, sparse matrix.

In the era of big data, data mining techniques and high-performance computing are

two key technologies for extracting knowledge from vary large volumes of a wide variety

of data. Furthermore, it is important to perform real-time analysis for providing immediate

feedback to the control system in many safety critical applications [61, 143, 142, 144].

Therefore, high-performance computing, grid computing and in-memory analytics are es-

sential to accelerate processing of the huge data sets. In our research, we explore data

mining techniques and high-performance computing to help physicists understand the

dynamics of fusion plasma in fusion experiments or numerical simulations by leveraging

extremely large parallel machines.

The research we are pursuing in this dissertation has led to several important contribu-

tions. Our first contribution is to develop a new SVDmethod, PHSVDS, which significantly

advances the current state-of-the-art in singular value problem solving. In addition, we

develop a high-performance software, PRIMME SVDS, that implements our PHSVDS

method based on the state-of-the-art eigensolver package PRIMME for both largest and

smallest singular values. The second contribution is to propose a new hybrid method for

implementing refined projection to accurately and efficiently seek a few interior eigenval-

ues in non-Krylov eigensolvers. The third contribution is to present a novel method to

estimate the trace of the matrix inverse by exploiting the pattern correlation between the

diagonal elements of the matrix inverse and some approximation. The fourth contribution

is a high-performance outlier detection and tracking method for finding blob-filaments in

real fusion experiments or numerical simulations by exploring an HPC cluster.
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1.1 A State-of-The-Art Preconditioned SVD Solver Software

Assume A ∈ ℜm×n is a large sparse matrix with full column rank and m ≥ n. The

(economy size) singular value decomposition of A can be written as:

A = UΣV T (1.1)

where Σ = diag(σ1, . . . ,σn) ∈ ℜn×n contains the singular values of A, 0‘σ1 ≤ . . . ≤ σn,

U = [u1, . . . , un] ∈ ℜm×n is an orthonormal set of the left singular vectors and V =

[v1, . . . , vn] ∈ ℜn×n is the unitary matrix of the right singular vectors. We will be looking

for the smallest k ≪ n singular triplets (σi, ui, vi), i = 1, . . . , k.

It is well known that the computation of the smallest singular triplets presents chal-

lenges both to the speed of convergence and the accuracy of iterative methods. In this

research, we compute extreme singular triplets of a large, sparse matrix. Especially, we

focus on the most difficult problem of finding the smallest singular triplets.

There are two approaches to compute the singular triplets (σi, ui, vi) by using a Her-

mitian eigensolver. Using MATLAB notation, the first approach seeks eigenpairs of the

augmented matrix B = [0 AT ;A 0] ∈ ℜ(m+n)×(m+n), which has eigenvalues ±σi with cor-

responding eigenvectors ([vi;ui], [−vi;ui]), as well asm−n zero eigenvalues [42, 43, 26].

The main advantage of this approach is that iterative methods can potentially compute

the smallest singular values accurately, i.e., with residual norm close to O(∥A∥ϵmach).

However, convergence of eigenvalue iterative methods is slow since it is a highly inte-

rior eigenvalue problem, and even the use of iterative refinement or inverse iteration in-

volves a maximally indefinite matrix [99]. For restarted iterative methods convergence is

even slower, irregular, and often the required eigenvalues are missed since the Rayleigh-

Ritz projection method does not effectively extract the appropriate information for interior

eigenvectors [91, 92, 65].

The second approach computes eigenpairs of the normal equationsmatrixC = ATA ∈
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ℜn×n which has eigenvalues σ2
i and associated eigenvectors vi. If σi ̸= 0, the correspond-

ing left singular vectors are obtained as ui = 1
σi
Avi. C is implicitly accessed through suc-

cessive matrix-vector multiplications. The squaring of the singular values works in favor

of this approach with Krylov methods, especially with largest singular values since their

relative separations increase. Although the separations of the smallest singular values

become smaller, we show in this thesis that this approach still is faster than Krylov meth-

ods on B because it avoids indefiniteness. On the other hand, squaring the matrix limits

the accuracy at which smallest singular triplets can be obtained. Therefore, this approach

is typically followed by a second stage of iterative refinement for each needed singular

triplet [100, 32, 19]. However, this one-by-one refinement does not exploit information

from other singular vectors and thus it is not as efficient as an eigensolver applied on B

with the estimates of the first stage [140, 141, 137].

In this work, we propose a novel SVD approach that can take advantage of precondi-

tioning and of any well designed eigensolver to compute both largest and smallest singular

triplets. Accuracy and efficiency is achieved through a hybrid, two-stage meta-method,

PHSVDS. In the first stage, PHSVDS solves the normal equations up to the best achiev-

able accuracy. If further accuracy is required, the method switches automatically to an

eigenvalue problem with the augmented matrix. Thus it combines the advantages of the

two stages, faster convergence and accuracy, respectively. For the augmented matrix,

solving the interior eigenvalue is facilitated by a proper use of the good initial guesses

from the first stage and an efficient implementation of the refined projection method. We

also discuss how to precondition PHSVDS and to cope with some issues that arise.

In addition, we present a high-performance software, PRIMME_SVDS, that imple-

ments our hybrid method based on the state-of-the-art eigensolver package PRIMME

for both largest and smallest singular values. PRIMME_SVDS fills a gap in production

level software for computing the partial SVD, especially with preconditioning. The numer-

ical experiments demonstrate its superior performance compared to other state-of-the-art

methods and its good parallel performance under strong and weak scaling.
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1.2 Efficient Computation of Interior Eigenvalue Problem

The standard symmetric eigenvalue problem is to find an eigenpair (λ, x) (with x ̸= 0) that

satisfies

Ax = λx, (1.2)

where A is a n × n symmetric matrix. Here λ is an eigenvalue, and x is the associated

eigenvector. In this research, we are interested in seeking a few interior eigenpairs. These

interior eigenvalues are far enough toward the middle of the spectrum and we assume

that it is impossible to factorize the matrix due to its large size and limited memory. This

is a very difficult problem.

The Rayleigh-Ritz (RR) method is the best-known method for extracting the approxi-

mate eigenvectors from a subspace. This method is optimal in terms of seeking extreme

eigenpairs [99], but it may give poor approximations of interior eigenvectors even in the

symmetric case [91, 92, 112]. When applying the RR method for interior eigenpairs, the

convergence of an iterative method can be very irregular, which makes it difficult to se-

lect appropriate vectors to approximate the interior eigenvalues [99]. Moreover, spurious

approximate eigenvalues can occur when the selected vector is a combination of nearby

eigenvectors. In order to circumvent these difficulties, the refined and harmonic projection

methods are two alternatives for the interior eigenvalue problems [91, 65].

In this research, we provide insights and develop practical algorithms to accomplish ef-

ficient and accurate computation of interior eigenpairs using refined projection techniques

in non-Krylov methods. We firstly compare different implementations of the refined pro-

jection, and analyze their numerical accuracy and computational costs. Based on the

advantages of different approaches, we propose a new hybrid method to effectively find

interior eigenpairs without compromising accuracy. We also provide more insights by in-

vestigating the effects of single and multiple user shifts for robustly seeking more than

one eigenvalues. Our numerical experiments illustrate the efficiency and robustness of

the proposed method.
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1.3 A Novel Trace Estimator of Large Implicit Matrix

Computing the trace of a matrix A that is given explicitly is a straightforward operation.

However, for numerous applications we need to compute the trace of a matrix that is

given implicitly by its action on a vector x, i.e., Ax. Specifically, many applications are

interested in computing the trace of a function of a matrix f(A). The matrix A is large,

and often sparse, so its action f(A)x is typically computed through iterative methods.

Because it is challenging to compute f(A) explicitly, the Monte Carlo (MC) approach

has become the standard method for computing the trace [6, 12]. The original method is

due to Hutchinson [64] and this method has been improved in many ways over the last

two decades [12, 50, 129, 17, 90, 6, 116]. Given a matrix A along with an associated

function f(.), the sought quantity is estimated by

Tr(f(A)) ≈ 1

s

s∑

j=1

zTj f(A)zj , (1.3)

where zj is a Z2 random vector whose entries are independent and identically distributed

Rademacher random variables with Pr(zj(i) = ±1) = 1/2. The zTj f(A)zj is an unbiased

estimator of Tr(f(A)), which is an important property required in some applications [116,

140]. The convergence of the estimator is determined by the standard deviation of Monte

Carlo, which is often large and only decreases with the square root of the number of

samples s.

In this research, we present a novel method to estimate the trace of the matrix inverse

by exploiting the pattern correlation between the diagonal of the inverse of the matrix and

the diagonal of some approximate inverse that can be computed inexpensively. We begin

by considering a number of inexpensively computed approximations and then leverage

various sampling and fitting techniques to fit the diagonal of the approximation to the

diagonal of the inverse. Depending on the quality of the approximate inverse, our method

may serve as a standalone kernel for providing a fast trace estimate with a small number
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of samples. Furthermore, the method can be used as a variance reduction method for

Monte Carlo in some cases. This is decided dynamically by our algorithm. An extensive

set of experiments with various technique combinations on several matrices from some

real applications demonstrate the potential of our method.

1.4 A Fast and Scalable Outlier Detection Method

To extract knowledge from the massive amounts of data available, data mining techniques

are frequently used. Many traditional data mining techniques attempt to find patterns

occurring frequently in the data. In this work, we explore outlier detection approaches

to discover patterns occurring infrequently. Outlier detection is employed in a variety of

applications such as fraud detection, time-series monitoring, medical care, and public

security [61, 23, 53]. A well-known definition of “outlier” is given in [53]: “a data object

that deviates significantly from the rest of the objects, as if it were generated by a different

mechanism”. In some cases, outliers are treated as errors or noise to be eliminated; while

in many other cases, outliers can lead to the discovery of important information in the data.

Outlier detection is an important task in many safety critical environments since the

outlier indicates abnormal running conditions from which significant performance degra-

dation may well result. An outlier in these applications demands to be detected in real-

time and a suitable feedback is provided to alarm the control system. Moreover, the size

of ever increasing amounts of data sets dictates the needs for fast and scalable outlier

detection methods. In this research, we apply the outlier detection techniques to effec-

tively tackle the fusion blob detection problem on extremely large parallel machines. The

blob-filaments are detected as outliers by constantly monitoring specific features of the

experimental or simulation data and comparing the real-time data with these features.

With increased global energy needs, magnetic fusion could be a viable future energy

that is inexhaustible, clean, and safe. The success of magnetically-confined fusion re-

actors, like the International Thermonuclear Experimental Reactor (ITER) [7], demand
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steady-state plasma confinement which is challenged by the blob-filaments driven by the

edge turbulence. A blob-filament (or blob) is a magnetic-field-aligned plasma structure

that appears near the edge of the confined plasma, and has significantly higher density

and temperature than the surrounding plasma [35]. Blobs are particularly important to

study since they convect filaments of plasma outwards towards the containment wall,

which results in substantial heat loss, degradation of the magnetic confinement, and ero-

sion of the containment wall. By identifying and tracking these blob-filaments from fusion

plasma data streams, physicists can improve their understanding of the dynamics and

interactions of such coherent structures (blobs) with edge turbulence [143, 142, 144].

In this research, we provide first results on applying outlier detection techniques to

effectively tackle the fusion blob detection problem on extremely large parallel machines.

We present a real-time region outlier detection algorithm to efficiently find blobs in fusion

experiments and simulations. In addition, we propose an efficient scheme to track the

movement of region outliers over time. We have implemented our algorithms with hybrid

MPI/OpenMP and demonstrated the effectiveness and efficiency of the proposed blob

detection and tracking methods with a set of fusion simulation data. Our tests illustrate

that we can achieve linear time speedup up to 1024 MPI processes and complete blob

detection in two or three milliseconds using Edison, a Cray XC30 system at NERSC.

1.5 Contributions

We list the specific contributions of our research. The contributions of our SVD research

are as follows:

• We present a novel preconditioned two-stage method, PHSVDS, to compute both

largest and smallest singular triplets of large sparse matrices accurately and effi-

ciently.

• We propose a dynamic scheme to automatically switch between either stage of
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PHSVD for preconditioning by measuring the run-time performance based on the

normal equations approach and the augmented approach to achieve optimal per-

formance.

• We present our development in PRIMME in order to provide a state-of-the-art ro-

bust, high performance SVD solver supporting accurate computation of extreme

singular triplets, for both square and rectangular matrices, with or without precondi-

tioning. In particular, we show that, our SVD solver can take advantage of a good

preconditioner, if present, in order to effectively tackle very large-scale real-world

problems.

• Our extensive numerical experiments show that PHSVDS can be considerably more

efficient than existing state-of-the-art methods when computing a few of the smallest

singular triplets, even without a preconditioner. With a good preconditioner, the

PHSVDS method can be much more efficient and more robust than current best

methods. In addition, we demonstrate the good scalability of our SVD software,

PRIMME_SVDS, for solving large-scale problems in various real applications under

different parameter settings.

Our research on the efficient computation of the interior eigenpairs is promising and

we summarize our main findings and contributions as follows:

• We first analyze different implementations of the refined projection method and

present a new efficient hybrid method to compute interior eigenvalues accurately

in non-Krylov methods. We illustrate the efficiency and robustness of the proposed

hybrid method through an extensive set of experiments. To the best of our knowl-

edge, this is the first implementation of an efficient and accurate method for refined

projection in non-Krylov iterative methods.

• We further investigate the effect of single and multiple shifts in the refined procedure

to compare their convergence behaviors when computing several interior eigenval-
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ues. In addition, a new shifting strategy for selecting the appropriate approximate

eigenvalue is presented.

Our research on estimating the trace of the inverse of a large matrix has yielded sev-

eral important findings. We summarize them below:

• We present a novel method to estimate the trace of the matrix inverse by exploiting

the pattern correlation between the diagonal elements of the inverse of the matrix

and some approximation.

• Based on a dynamic evaluation of variances of different MC methods, the proposed

method can be viewed as a preprocessing variance reduction method followed by

MC in cases when the variance reduces sufficiently.

• The presented method may serve as a standalone kernel for providing a fast trace

estimation of the matrix inverse with a small number of samples when a relative low

accuracy is demanded.

• Our extensive experiments show that we typically obtain trace estimates with much

better accuracy than other competing methods, and in some cases the variance is

sufficiently reduced to allow for further improvements through an MC.

Our work for a real-time outlier detection method in the fusion blob detection problem

has resulted in the following contributions:

• We formulate the blob detection and tracking problems as identifying different spatial

region outliers over time in terms of the spatial-temporal fusion plasma data streams.

• We propose a two-phase region outlier detection method for finding blob-filaments.

In the first phase, we apply a distribution-based outlier detection scheme to identify

blob candidate points. In the second phase, we adopt a fast two-pass connected

component labeling (CCL) algorithm from [131] to find different region outliers on an

irregular mesh.
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• We develop a high-performance blob detection approach tomeet real-time feedback

requirements by exploiting many-core architectures in a large cluster system. This

is the first work to achieve real-time blob detection in only a few milliseconds.

• We propose a scheme to efficiently track the movement of region outliers by linking

the centers of the region outlier over consecutive frames.

• We have implemented our blob detection algorithm with hybrid MPI/OpenMP, and

demonstrated the effectiveness and efficiency of our implementation with a set of

data from the XGC1 fusion simulations. Our tests show that we can achieve lin-

ear time speedup and complete blob detection in two or three milliseconds using a

cluster at NERSC. In addition, we demonstrate that our method is more robust than

recently developed state-of-the-art blob detection methods in [29, 94].

1.6 Organization

This proposal is organized as follows. Chapter 2 describes the motivation of our state-

of-the-art SVD solver, developments, enhancements and extensive experimental results.

In Chapter 3, we present our research results for analyzing the refined projection meth-

ods in non-Krylov eigenmethods. In Chapter 4, we present our new trace estimator for

approximating the trace of large matrix inverse. In Chapter 5, we present our real-time

blob detection method to efficiently find and track blob-filaments in fusion experiments

and numerical simulations. Chapter 6 summarizes our research work and gives future

work.
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Chapter 2

A Start-of-The-Art Singular Value

Solver Software

2.1 Introduction

The Lanczos bidiagonalization (LBD) method [45, 42] is accepted as an accurate and

more efficient method for seeking singular triplets (especially smallest), and numerous

variants have been proposed [78, 68, 74, 8, 9, 10, 69]. LBD builds the same subspace as

Lanczos on matrix C, but since it works on A directly, it avoids the numerical problems of

squaring. However, the Ritz vectors often exhibit slow, irregular convergence when the

smallest singular values are clustered. To address this problem, harmonic projection [74,

8], refined projection [68], and their combinations [69] have been applied to LBD. Despite

remarkable algorithmic progress, current LBD methods are still in development, with only

few existing MATLAB implementations that serve mainly as a testbed for mathematical

research. We show that a two stage approach based on a well designed eigenvalue code

can be more robust and efficient for a few singular triplets. Most importantly, our approach

can use preconditioning through the eigensolver, which is not directly possible with LBD

but becomes crucial because of the difficulty of the problem even for mediummatrix sizes.

The Jacobi-Davidson type SVD method, JDSVD [59, 60], is based on an inner-outer
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iteration and can also use preconditioning. It obtains the left and right singular vectors

directly from a projection of B on two subspaces and, although it avoids the numerical

limitations of matrixC, it needs a harmonic [91, 98, 112] or a refined projection method [65,

122] to avoid irregular Rayleigh-Ritz convergence. JDSVD often has difficulty computing

the smallest singular values of a rectangular matrix, especially without preconditioning,

due to the presence of zero eigenvalues of B.

SVDIFP is a recent extension to the inverse free preconditioned Krylov subspace

method, [46], for the singular value problem [80]. The implementation includes the robust

incomplete factorization (RIF) [18] for the normal equations matrix, but other precondi-

tioners can also be used. To circumvent the intrinsic difficulties of filtering out the zero

eigenvalues of B, the method works with the normal equations matrix C, but computes

directly the smallest singular values of A and not the eigenvalues of C. Thus good nu-

merical accuracy can be achieved but, as we show later, at the expense of efficiency.

Moreover, the design of SVDIFP is based on restarting with a single vector, which is not

effective when seeking more than one singular values.

In this research we present a preconditioned hybrid two-stage method, PHSVDS, that

achieves both efficiency and accuracy for both largest and smallest singular values un-

der limited memory. In the first stage, the proposed method PHSVDS solves an extreme

eigenvalue problem on C up to the user required accuracy or up to the accuracy achiev-

able by the normal equations. If further accuracy is required, PHSVDS switches to a

second stage where it utilizes the eigenvectors and eigenvalues from C as initial guesses

to a Jacobi-Davidson method on B, which has been enhanced by a refined projection

method. The appropriate choices for tolerances, transitions, selection of target shifts, and

initial guesses are handled automatically by the method. We also discuss how to precon-

dition PHSVDS and to cope with possible issues that can arise. Our extensive numerical

experiments show that PHSVDS, implemented on top of the eigensolver PRIMME [118],

can be considerably more efficient than all other methods when computing a few of the

smallest singular triplets, even without a preconditioner. With a good preconditioner, the
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PHSVDS method can be much more efficient and robust than the JDSVD and SVDIFP

methods.

In addition, we present a high-performance software, PRIMME_SVDS, that imple-

ments our hybrid method based on the state-of-the-art eigensolver package PRIMME

for both largest and smallest singular values. PRIMME_SVDS fills a gap in production

level software for computing the partial SVD, especially with preconditioning. The numer-

ical experiments demonstrate its superior performance compared to other state-of-the-art

methods and its good parallel performance under strong and weak scaling.

In Section 2.2 we motivate the two stage SVD method based on the convergence

of other Krylov methods to the smallest magnitude eigenvalue of B and C. In Section

2.3, we develop the components of the two stage SVD method. In Section 2.4, we de-

scribe how to precondition PRIMME_SVDS, and how to dynamically inspect the quality

of preconditioning at the two different stages. In Section 2.5, we present extensive ex-

periments that corroborate our conclusions. In Section 2.6, we present our development

of PRIMME_SVDS on top of PRIMME. In Section 2.7, we demonstrate the performance

of our PRIMME_SVDS software in parallel settings. Section 2.8 concludes and gives our

future work.

We denote by ∥.∥ the 2-norm of a vector or a matrix, byAT the transpose ofA, by I the

identity matrix, κ(A) = σn
σ1
, and byKm(A, v) = span{v,Av, . . . , Am−1v} them-dimensional

Krylov subspace generated by A and the initial vector v.

2.2 Motivation for a two stage strategy

We first introduce some basic iterative methods for SVD, and discuss some of the features

in PRIMME that facilitate the development of a flexible SVD solver. Then, we study both

the asymptotic convergence of unpreconditioned Krylov methods applied onC andB, and

the quality of the subspaces built by different methods. Even without taking into account

the way we extract information from the subspaces, we arrive at the conclusion that a
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hybrid strategy should be preferred.

We first need to understand whether an eigensolver onC or onB is preferable in terms

of convergence and accuracy to iterative solvers that solve the SVD directly. To address

this, we introduce the basic SVD iterative methods and study the asymptotic convergence

and the quality of the Krylov subspaces built by different methods. We conclude that

an appropriate choice of eigensolvers and eigenvalue problem yields methods that are

faster and equally accurate as the best SVDmethods, especially in the presence of limited

memory.

2.2.1 The LBD, JDSVD, and SVDIFP methods

The LBD method, [42, 43], starts with unit vectors p1 and q1 and after k steps produces

the following decomposition as a partial Lanczos bidiagonalization of A:

APk = QkBk,

ATQk = PkB
T
k + rke

T
k ,

(2.1)

where the rk is the residual vector at k-th step, ek the k−th orthocanonical vector,

Bk =

⎛

⎜⎜⎜⎝

α1 β1

α2
. . .
. . . βk−1

αk

⎞

⎟⎟⎟⎠
= QT

kAPk,

and Qk and Pk are orthonormal bases of the Krylov subspaces Kk(AAT , q1), and

Kk(ATA, p1) respectively. With properly chosen starting vectors, LBD produces mathe-

matically the same space as the symmetric Lanczos method on B or C [69, 74].

To approximate singular triplets of A, LBD solves the small singular value problem

on Bk, and uses the corresponding Ritz approximations from Qk and Pk as left and right

singular vectors. To address the rapid loss of orthogonality of the columns of Qk and Pk

in finite precision arithmetic, full [43], partial [78], or one-sided reorthogonalization [8, 69]
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strategies have been applied to variants of LBD. With appropriate implementation, these

can result in a backward stable algorithm for both singular values and vectors [15, 69].

Because, all these solutions become expensive when k is large, restarted LBD versions

have been studied [74, 8, 68, 78]. The goal is twofold: restart with sufficient subspace

information to maintain a good convergence, and identify the appropriate Ritz information

to restart with. The former problem is tackled with implicit or thick restarting [120]. The

latter problem is tackled with combinations of harmonic and refined projection methods.

For example, IRLBA [9] uses a thick restarted block LBD with harmonic projection, while

IRRHLB [69] first computes harmonic Ritz vectors, and then uses their Rayleigh quotients

in a refined projection to extract refined Ritz vectors from Pk and Qk.

The JDSVDmethod [59] extends the Jacobi-Davidsonmethod and its correction equa-

tion for singular value problems by exploiting the special structure of the augmentedmatrix

B. Similarly to LBD, JDSVD computes singular values, not eigenvalues, of the projection

matrix, and the left and right singular vectors from separate spaces. Because good qual-

ity approximations are important not only for restarting but also in the correction equation,

various projection methods can benefit JDSVD. We introduce only the standard choice

where the test and search space are the same.

Let U and V be the bases of the left and right search spaces. Computing a singular

triplet (θ, c, d) ofH = UTAV yields (θ, Uc, V d) as the Ritz approximation of a correspond-

ing singular triplet of A. Alternatively, the u = Uc and v = V c can be computed as

harmonic or refined singular triplets. Then JDSVD obtains corrections s and t for u and v

by solving (approximately) the following correction equation:

(
Pu 0
0 Pv

)(
−θIm A
AT −θIn

)(
Pu 0
0 Pv

)(
s
t

)
=

(
Av − θu
ATu− θv

)
(2.2)

where Pv = In − vvT , Pu = Im − uuT . The left and right corrections s, t are then orthog-

onalized against and appended to U and V respectively. JDSVD uses thick restarting

[120, 132] but retains also Ritz vectors from the previous iteration, similarly to the locally
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optimal Conjugate Gradient recurrence [115]. Most importantly, the JDSVD method can

take advantage of preconditioning when solving (2.2).

The SVDIFP method [80] extends the EIGIFP method [46]. Given an approximation

(xi, ρi) at the i-th step of the outer method, it builds a Krylov space V = Kk(M(C−ρiI), xi),

where M is a preconditioner for C. To avoid the numerical problems of projecting on C,

SVDIFP computes the smallest singular values of AV, by using a two sided projection

similarly to the LBD. Because the method focuses only the right singular vector, the left

singular vectors can be quite inaccurate.

2.2.2 Asymptotic convergence of Krylov methods on C and B

When seeking largest singular values, it is accepted that Krylov methods on C are faster

than on B [59, 74, 80, 19]. The argument is straightforward.

Theorem 2.1 Let γB = σn−σn−1

σn−1+σn
and γC =

σ2
n−σ2

n−1

σ2
n−1−σ2

1
be the gap ratios of the largest eigen-

value of matrices B and C, respectively. Then, for the largest eigenvalue, the asymptotic

convergence of Lanczos on C is 2 times faster than Lanczos on B.

Proof: The asymptotic convergence rate is the square root of the gap ratio. Then:

γC =
(σn − σn−1)(σn + σn−1)2

(σn + σn−1)(σ2
n−1 − σ2

1)
= γB

(σn + σn−1)2

(σ2
n−1 − σ2

1)
> γB

4σ2
n−1

(σ2
n−1 − σ2

1)
=

4γB
1− ( σ1

σn−1
)2
.

Therefore, for σ1 ≈ 0, the asymptotic convergence rate √
γC > 2

√
γB. In the less inter-

esting case σ1 → σn−1, Lanczos on C is arbitrarily faster than on B. !

For smallest singular values the literature is less clear, although methods that work on

C have been avoided for numerical reasons. In previous experiments we have observed

much faster convergence with approaches onC than onB [135]. To obtain some intuition,

we perform a basic asymptotic convergence analysis of Krylov methods working on C or

on B trying to compute the smallest magnitude eigenvalue.
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Lemma 2.1 Let the union of two intervals: K = [−a,−b] ∪ [c, d], −b < 0 < c, and pk(x)

the optimal degree k polynomial that is as small as possible on K and pk(0) = 1. Let

ϵk = maxx∈K |pk(x)|, and ρ = limk→∞ ϵ1/kk . Then asymptotically:

ρ ≃ 1−
√

bc

da
.

Proof: This is an application of Theorem 5 in [110]. !

This ρ translates to an upper bound for the asymptotic convergence rate of any Krylov

solver applied to an indefinite matrix whose spectrum lies in the interval K. Thus it can

also be used for the convergence rate to the smallest positive eigenvalue of the aug-

mented matrix B. Assume σ1 is a simple eigenvalue of B and thus σ2
1 is a simple eigen-

value of C. Define its gap ratio in C as, γ =
σ2
2−σ2

1
σ2
n−σ2

2
, and assume γ ≪ 1.

Theorem 2.2 Consider the spectrum of the matrixB−σ1I, which lies (except for the zero

eigenvalue) in the two intervals: K = [−σn−σ1,−2σ1]∪ [σ2−σ1,σn−σ1]. The asymptotic

convergence rate for any Krylov solver that finds σ1 is bounded by:

ρ = 1−

√

γ
2σ1

σ2 + σ1

σ2
n − σ2

2

σ2
n − σ2

1

.

Proof: Clearly, the optimal polynomial pk(x) of Lemma 2.1 is the best polynomial for

finding σ1. Applying the Lemma for the specific bounds for this interval we get:

bc

ad
=

2σ1(σ2 − σ1)

(σn + σ1)(σn − σ1)
=

2σ1
σ2 + σ1

σ2
2 − σ2

1

σ2
n − σ2

1

=
2σ1

σ2 + σ1

σ2
2 − σ2

1

σ2
n − σ2

2

σ2
n − σ2

2

σ2
n − σ2

1

.

!

Lemma 2.2 The bound of the asymptotic convergence rate to σ2
1 of Lanczos on C is

approximately: q = 1− 2
√
γ.

Proof: The bound on the rate of convergence of Lanczos for σ2
1 is approximated as e−2

√
γ
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[99, p. 280]. Taking the first order approximation from Taylor series around 0, we obtain

e−2
√
γ = 1− 2

√
γ +O(γ). !

Theorem 2.3 A Krylov method on C that computes σ2
1 has always faster asymptotic con-

vergence rate than a Krylov method on B that finds σ1, by a factor of

τ =
1−√

γ

√
2σ1

σ2+σ1

σ2
n−σ2

2
σ2
n−σ2

1

1− 2
√
γ

. (2.3)

Proof: For the method on C to be faster it must hold τ > 1 or 2σ1
σ2+σ1

σ2
n−σ2

2
σ2
n−σ2

1
< 4. Basic

manipulations lead to the condition (4 − 2
σ2
n−σ2

2
σ2
n−σ2

1
)σ1 >= −4σ2. Since

σ2
n−σ2

2
σ2
n−σ2

1
< 1 and all

σi > 0, the above condition always holds. !

First, we observe that if σ1 is very close to 0, the normal equations approach becomes

arbitrarily faster than the augmented one, as long as σ2 remains bounded away from

0. Second, it is not hard to see that τ = 1 + O(
√
σ2 − σ1), which means that the two

approaches become similar with highly clustered eigenvalues. In that case, however,

using a block method would increase the gap ratios and the gains from the approach on

C would be larger again.

Most importantly, the above asymptotic convergence rates reflect optimal methods

applied to C and B and an extraction of the best information from the subspaces. In

practice, memory and computational requirements necessitate the restarting of iterative

methods, which results in significant convergence slow down. For extremal eigenvalues,

combinations of thick restarting with the locally optimal conjugate gradient directions have

been shown to almost fully restore the convergence of the unrestarted Lanczos method.

The GD+k and extensions to LOBPCG are such nearly-optimal methods [120, 115]. For

interior eigenvalues, practical Krylov methods not only have a hard time achieving this

convergence, but also have problems extracting the best eigenvectors from the subspace.

Therefore, we expect in practice the normal equations to be significantly faster than any

approach based on B.
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2.2.3 Comparison of subspaces from Lanczos, LBD and JDSVD

We extend the discussion on Lanczos to include two native SVD methods, and infer the

relative differences between their convergence by studying the subspace they build. A

higher dimensional Krylov subspace implies faster convergence, assuming eigenvec-

tor approximations can be extracted effectively from the subspace. We compare LBD,

JDSVD, and Lanczos (or equivalently unpreconditioned GD) on C and on B.

Suppose u1, v1 are left and right initial guesses. After k iterations (2k matvecs), Lanc-

zos working on the normal equations matrix C builds:

Vk = Kk(A
TA, v1). (2.4)

The LBD method builds both left and right Krylov spaces [8]:

Uk = Kk(AA
T , Av1), Vk = Kk(A

TA, v1). (2.5)

The JDSVD method also builds two subspaces, each being a direct sum of two Krylov

spaces of half the dimension [59]:

Uk = K k
2
(AAT , u1)⊕K k

2
(AAT , Av1), Vk = K k

2
(ATA, v1)⊕K k

2
(ATA,ATu1) (2.6)

Lanczos working on B builds Kk(B, [v1;u1]) which does not correspond exactly to the

spaces above in general. In the special case of u1 = 0, the subspace is given below:

(
Uk
Vk

)
=

(
0

K k
2
(ATA, v1)

)
⊕
(

K k
2
(AAT , Av1)

0

)
. (2.7)

Clearly, Lanczos working on C and LBD build the same Krylov subspace for right sin-

gular vectors. The LBD method also builds the Krylov subspace for left singular vectors,

and while that helps generate the bidiagonal projection, it does not improve convergence

over Lanczos on C. On the other hand, Lanczos on B and JDSVD build a k vector sub-
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space, but this comes from a direct sum of Krylov spaces of k/2 dimension. Thus, they

are expected to take twice the number of iterations of LBD in the worst case. The JDSVD

subspace can be richer than that of Lanczos on B because JDSVD handles the left and

right search spaces independently for arbitrary initial guesses.
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Figure 2.1: Comparing convergence speed of eigenmethods on C, B, LBD, and JDSVD in both
unrestarted and restarted case for matrix pde2961. LANSVD implements LBD without restarting
[78] while IRRHLB is currently the most advanced LBD method with implicit restarting [69].

Figure 2.1(a) demonstrates the relative convergence behavior of these unrestarted

methods seeking the smallest singular value of a sample matrix. Only the outer iteration

of JDSVD is used (inner iterations = 0). The results agree with the above analysis. The

convergence speed of LBD is the same as GD on C. JDSVD is slower than LBD or GD

but faster than GD on B which is about twice as slow as LBD.

These methods will inevitably be used with restarting. Because LBD, JDSVD, and

GD on B extract interior spectral information from the subspaces, critical directions may

be dropped during restarting, causing significant convergence slow downs and irregular

behavior. The use of harmonic or refined Ritz projections during restart help ameliorate

this problem up to a point. However, the problem is still an interior one. In contrast, GD+k

on C should see a far smaller effect on its convergence.

Figure 2.1(b) reflects the above and the advantage of solving an extreme eigenprob-

lem with GD+k. The only disadvantage is the limited accuracy because of the squared
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conditioning ofC. Thus, a natural idea is to apply another phase to refine the accuracy un-

til user requirements are satisfied. Instead of iterative refinement, we claim that a second

stage eigensolver on B is more efficient.

2.2.4 Necessary eigensolver features

Our goal is to develop a method that solves large, sparse singular value problems with

unprecedented efficiency, robustness, and accuracy. This requires eigensolvers with a

certain set of features. First, the eigensolver should be able to use preconditioning be-

cause very slow convergence is a limiting factor for seeking smallest singular triplets.

Second, large problem size suggests the use of advanced restarting techniques so that

limiting memory does not impede convergence. Third, the eigensolver of the second

stage should be able to exploit the good quality of the several singular vectors and sin-

gular values computed in the first stage. Fourth, the eigensolver on B can benefit from

refined or Harmonic Ritz procedures for computing interior eigenvalues.

The state-of-the-art package PRIMME (PReconditioned Iterative MultiMethod Eigen-

solver) [118] implements the GD+k and JDQMR methods that satisfy most of the above

requirements and provides a host of additional features. With a fewmodifications we have

developed our method on top of PRIMME. However, appropriate eigensolvers from other

packages could also be used.

2.3 Developing The Two Stage Strategy

We develop PHSVDS, a two-stage SVD meta-method that first gets a fast solution of the

eigenvalue problem on C to the best accuracy possible, and then resolves the remain-

ing accuracy with an eigensolver on B. We discuss and automate issues of accuracy,

convergence tolerance, initial guesses, and interior eigenvalues of B.
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2.3.1 The first stage of PHSVDS

Although an eigensolver on C can be much faster than other methods, the residual norms

of the eigenvalues involve ∥C∥ = ∥A∥2. Thus achieving the required numerical accuracy

may not be possible.

Let (σ, u, v) be a targeted singular triplet of A and (σ̃2, ṽ) the approximating Ritz pair

from an eigenmethod working on C. Using the approximation ũ = Aṽ/σ̃, we can write the

following four residuals:

rv = Aṽ − σ̃ũ, ru = AT ũ− σ̃ṽ, rC = Cṽ − σ̃2ṽ, rB = B

[
ṽ
ũ

]
− σ̃

[
ṽ
ũ

]
. (2.8)

Typically a singular triplet is considered converged when ∥rv∥ and ∥ru∥ are less than a

given tolerance. Since our eigenvalue methods work on C and B we need to relate the

above quantities. First, it is easy to see that rC = AT (Aṽ) − σ̃2ṽ = σ̃AT ũ − σ̃2ṽ = σ̃ru.

To relate to the norm of the residual of the second stage note that ∥rB∥2 = (∥rv∥2 +

∥ru∥2)/(∥ṽ∥2 + ∥ũ∥2). If the Ritz vector is normalized, ∥ṽ∥ = 1, we also obtain ∥ũ∥ =

∥Aṽ/σ̃∥ = 1 and rv = 0. Bringing it all together (see also [135, 80]),

∥ru∥ =
∥rC∥
σ̃

= ∥rB∥
√
2. (2.9)

Given a user requirement ∥ru∥ < δ ∥A∥, the normal equations and the augmented

methods should be stopped when ∥rC∥ < δ σ̃ ∥A∥ and ∥rB∥ < δ ∥A∥/
√
2 respectively. A

common stopping criterion for eigensolvers is ∥rC∥ < δC∥C∥, so we must provide δC =

δ σ̃/∥A∥. In floating point arithmetic this may not be achievable since ∥rC∥ can only be

guaranteed to achieve O(∥C∥ϵmach) [99]. Thus, we use

δC = max (δ σ̃/∥A∥, ϵmach) (2.10)

as the criterion for the normal equations.
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First, note that for the largest σn, δC = δ and thus full residual accuracy is achievable

with the normal equations. Since σ ≈ σ̃, based on the Bauer-Fike bound, |σ2 − σ̃2| ≈

|σ − σ̃|(2σ̃) ≤ ∥rC∥ < δC∥A∥2 = σ̃δ∥A∥ and thus |σ − σ̃| ≤ δ∥A∥/2 so the singular values

are as accurate as can be expected.

This does not hold for smaller, and in particular the smallest few, eigenvalues. Thus,

if the user requires δ < ∥A∥ϵmach/σ̃, PHSVDS first makes full use of the first stage and

then switches to the second stage working on B to resolve the remaining accuracy of

O(σ̃/∥A∥) < κ(A)−1. For not too ill conditioned matrices, most of the time is then spent

on the more efficient first stage.

A second, more subtle issue involves the accuracy of the Ritz vectors from C which

are used as initial guesses toB. We have observed that even though their residual norms

are below the desired tolerance, the convergence of the interior eigenvalues inB is some-

times (but not often) irregular, with long plateaus, and might not be able to reach machine

precision. This occurs when the eigenvalues are highly clustered. On the other hand, it

does not occur when only one eigenvalue is sought, which implies that it has to do with

the sensitivity of interior eigenvalues to the nearby eigenvectors that we pass as initial

guesses [92]. Therefore, before we start stage two, we perform a complete Rayleigh Ritz

procedure with the converged eigenvectors of C. Providing the new Ritz vectors as initial

guesses completely cures this problem.

To understand the problem as well as the solution, consider the decomposition of the

smallest Ritz vector ũ1 on the exact eigenvectors of C, ũ1 = c1u1 +
∑n

i=2 ciui. On exit

from the first stage, its residual satisfies ∥rũ1∥ < ∥C∥δC , and from Bauer-Fike it also holds,
√
1− c21 < ∥C∥δC and ci ≤ ∥C∥δC . Therefore, if we omit second and higher order terms,

the Rayleigh quotient and the residual of ũ1 can be written as:

µ =
ũT1 Aũ1
ũT1 ũ1

= λ1 +
n∑

i=2

(
ci
c1
)2λi, rũ1 = Aũ1 − µũ1 ≈

n∑

i=2

ci(λi − λ1)ui. (2.11)

As a result of the convergence behavior of iterative methods, the ci tend to be larger
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for nearby eigenpairs, and fall drastically as i increases. Then, from (2.11), the accu-

racy of µ is dominated by nearby (ci/c1)2. The post-processing Rayleigh-Ritz uses the k

nearby converged Ritz vectors, recomputes the projection with less floating point errors,

and rearranges the directions to produce smaller ci, i = 2, . . . , k, and thus better Ritz val-

ues. Of course, the additional Rayleigh-Ritz cannot improve the residual norms without

the incorporation of new information in the basis. Even in floating point arithmetic, the

improvements are minimal. This is evident also in (2.11) where rũ1 depends on the ci

linearly, so the effect of improving the nearby ci is small. Figure 2.2 shows these effects

on a matrix that presented the original problem.
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1 ui, i = 2, . . . , 19) between the smallest exact eigen-

vectors and the smallest Ritz vector before and after pre-processing. The table compares the
accuracy of the Rayleigh quotient and the residual norm for ũ1 before and post-processing for
matrix jagmesh8.

In the second stage, the improvements on ci translate to a starting search space of

better quality, and thus better Ritz (or harmonic Ritz) pairs for the interior eigenvalue

problem. Algorithm 1 summarizes the interaction with the first stage eigensolver.

Algorithm 1 PHSVDS first stage
1: Call an eigesolver on C to compute the required (σ̃2

i , ṽi) eigenpairs
2: Eigensolver convergence test uses dynamic tolerance δC = max

(
δuser

σ̃i
σ̃n

, ϵmach

)
,

where σ̃n and σ̃i are its current largest and targeted Ritz values
3: If requested, perform Rayleigh-Ritz on the returned Ritz vector basis
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2.3.2 The second stage of PHSVDS

An eigensolver such as GD+k can be used also to compute interior eigenvalues ofB close

to a given set of shifts. However, the availability of accurate initial guesses and shifts from

the first phase suggest that an inner-outer iterative eigenmethod, such as JDQMR, might

be preferable.

We argue that solving an eigenvalue problem on matrix B with an approximate

eigenspace as initial guess is a better approach than iterative refinement [32, 19]. First,

with iterative refinement, eigenvectors are improved one by one without any synergy from

the nearby subspace information. In contrast, a subspace eigensolver provides global

convergence to all desired pairs. Second, an inner-outer eigensolver such as JDQMR

stops the inner linear solver dynamically and near-optimally to avoid exiting too early

(which increases the number of outer iterations) or iterating too long (which increases the

number of inner iterations). We are not familiar with similar implementations for iterative

refinement. Third, iterative refinement for clustered interior eigenvalues may not be able

to converge to the desired high accuracy due to the lack of proper deflation strategies [4],

both at the linear solver and at the outer iteration. Naturally, a well designed eigensolver

that employs locking and blocking techniques is more robust to address these problems.

Finally, we point out that the correction equation of the Jacobi-Davidson method applied

on BT ,

(I − wwT )(BT − µI)(I − wwT )t̃ = σ̃w −BTw, (2.12)

wherewT =
[
uT vT

]
is equivalent to the iterative refinement proposed in [32] ([59]). There-

fore, JDQMR enjoys the benefits of both eigensolvers and iterative refinement.

Using the eigenvector approximations ṽi, ũi = Aṽi/σ̃i from the first stage, we form

initial guesses to insert in the search space of the JDQMR on B. If the guesses are

less than the minimum restart size, we fill the rest of the positions with a Lanczos space

from the first targeted eigenvector. In addition, we provide the eigenvalue approximations

from the first stage, which are typically very accurate because of Hermiticity, as shifts
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to JDQMR. However, the problems with seeking interior eigenvalues are accentuated in

the maximally indefinite case of SVD problems. Spurious Ritz values can cause Ritz

vectors to fail to converge [122] or to have a detrimental effect during restart when major

eigenvector components may be discarded and need to be recovered [91, 92, 112]. We

have addressed these problems as follows.

First, we observed that sometimes eigenvector approximations that are introduced

initially in the search space but have not been targeted yet may degrade in quality or

even be displaced. Thus, when an eigenvector converges and is locked out of the search

space, we re-introduce the initial guess of the next vector to be targeted. This resulted in

significant improvement in robustness and often in convergence speed.

Second, we introduced an efficient implementation of the refined projection that mini-

mizes the residual ∥BV y−σ̃V y∥ for a given σ̃ over the search space V [65, 122]. Because

the shifts σ̃ are accurate, a harmonic Ritz procedure is not necessary, and the refined one

is expected to give the best approximation for the targeted eigenpair. Our refined projec-

tion is similar to the one in [60, 91] which produces refined Ritz vectors for all required

eigenvectors (not just the closest to σ̃). Since σ̃ remains constant, there is no need to

perform a QR factorization of BV − σ̃V at every step. Instead, as part of Gram-Schmidt,

we update the factorization matrices Q and R with a new column. A full QR factoriza-

tion is only needed at restart. Then, following [122], we compute the refined Ritz vectors

by solving the small SVD problem with R, and replace the targeted Ritz value with the

Rayleigh quotient of the first refined Ritz vector.

Solving the small SVD problem in each iteration for only the targeted shift reduces the

cost of the refined procedure considerably, making it similar to the cost of computing the

Ritz vectors. However, the quality of non-targeted refined Ritz vectors reduces with the

distance of their Rayleigh quotient from σ̃, so they may not be as effective in a block algo-

rithm. Yet, these approximations have the desirable property of monotonic convergence

as claimed in [60, 91] and also observed in our experiments. This added robustness for

JDQMRmore than justifies the small additional cost. Algorithm 2 summarizes the second
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Algorithm 2 PHSVDS second stage: necessary enhancements in Jacobi-Davidson
1: Initial shifts σ̃i, initial vectors [ṽi ;Aṽi/σ̃i], i = 1, ..., k, qr_full = 1, j = s+ 1
2: Build an orthonormal basis V of [Ks−k(B, ṽ1), ṽi]. Set t as the Lanczos residual
3: while all k eigenvalues have not converged do
4: Orthonormalize t against V . Update vj = t, wj = Bvj , H:,j = V Twj

5: if qr_full == 1 then
6: W − σ̃1V = QR, qr_full = 0
7: else
8: During orthogonalization update QR by one-column
9: end if
10: Compute eigendecomposition H = SΘST with θj ordered by closeness to σ̃1
11: Compute SVD decomposition of R = UΣST , Rayleigh quotient θ1 = sT1 Hs1
12: If (σi, [vi;ui]) converged, lock, and re-introduce [ṽi+1 ;Aṽi+1/σ̃i+1] into V
13: If restarting, set qr_full = 1
14: Obtain the next vector t = Prec(r) (e.g., by solving the correction equation)
15: end while

stage modifications in the context of JD.

2.3.3 Outline of the implementation

We have implemented the PHSVDS meta-method as a MATLAB function on top of

PRIMME. This allowed us flexibility for algorithmically tuning the two stages and exper-

imenting with various eigensolvers. We first developed a MATLAB MEX interface for

PRIMME, which exposes its full functionality to a broader class of users, who can now

take advantage of MATLAB’s built-in matrix times block-of-vectors operators and precon-

ditioners. Its user interface is similar to MATLAB and it is fully tunable. Many of

the enhancements, such as the refined projection method or a user provided stopping

criterion, were implemented directly in PRIMME and will be part of its next release. We

are currently working on a native C implementation of PHSVDS in PRIMME.

PHSVDS expects an input matrix A, or a matrix function that performs matrix-vector

operations with A and AT , or directly with B and/or C. Then, it sets up the matrix-

vector functions and calls Algorithm 1. The returned approximations are provided as initial

guesses to Algorithm 2. One exception is when the singular value is extremely small or

30



zero, so the first stage yields no accuracy for ũi. In this extreme case, it is better to choose

ũi as a random vector. For tiny and highly clustered singular values, eigensolvers with

locking and block features are preferable.

2.4 Preconditioning in PHSVDS

The shift-invert technique is sometimes thought of as a form of preconditioning. If a fac-

torization of A,C or B is possible, this is often the method of choice for highly clustered

or indefinite eigenproblems. For smallest singular values, MATLAB relies solely

on shift-invert ARPACK [79] using the LU factorization of B. PROPACK [77, 78] uses

a QR factorization of C. However, for rectangular matrices often converges to the

zero eigenvalues of B rather than the smallest singular value (see [80]). Our method

can also be used in shift-invert mode, assuming the user provides the inverted operator

as a matrix-vector. For large matrices, however, preconditioners become a necessary

alternative.

JDSVD accepts a preconditioner for a square matrixA or, ifA is rectangular, leverages

a preconditioner for B−τI [59]. SVDIFP includes by default the robust incomplete factor-

ization (RIF) method [18] to provide a preconditioner directly for C− τI without forming C

[80]. The advantage is that it works seamlessly for both square and rectangular matrices,

but RIF may not be the best choice of preconditioner.

PHSVDSaccepts any user-provided preconditioning operator that the underlying eigen-

solver allows. In the most general form, any preconditioner directly for C or B can be

used. When M ≈ A is available (e.g., the incomplete LU factorization of a square ma-

trix), PHSVDS forms M−1M−T and [0 M−1;M−T 0] as the preconditioning operators for

the different stages. Moreover, if a preconditioner such as RIF is given,M ≈ C−1, we can

build preconditioners for the second stage as [0 AM ;MAT 0]. It is not clear in general

how to form a preconditioner for C from a preconditioner of B.
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2.4.1 A dynamic two stage method with preconditioning

The analysis in Sections 2.2.2 and 2.2.3 holds for Krylov methods but it is less meaning-

ful with preconditioners. Clearly, if two different preconditioners are provided for C and

B their relative strengths are not known by PHSVDS. But we have also noticed cases

where the first stage benefits less than the second stage when a less powerful precondi-

tioner M for A is used to form preconditioners for both C and B. If M is ill-conditioned

but its near-kernel space does not correspond well to that of A, it may work for B, but

taking MTM produces an unstable preconditioner for C [106]. On the other hand, with

a sufficiently good preconditioner, both methods enjoy similar benefits on convergence.

If the relative strengths of the provided preconditioner are known, users can choose the

two-stage approach or only one of the stages (e.g., the second one). For the general

case, we present a method that, based on runtime measurements, switches dynamically

between the normal equations and the augmented approach to identify the most effective

one for the given preconditioning. This is shown in Algorithm 3.

To estimate the convergence of the two approaches, we run a set of initial tests alter-

nating between running on C and on B. Because JDQMR relies on good initial guesses

which are not available initially, the dynamic algorithm uses only the GD+k method. Once

the algorithm decides on the approach, any eigenmethod that allows for preconditioning

can be used. Without loss of generality, we only consider GD+k for our dynamic PHSVDS

experiments. The approximations obtained from one run are passed as initial guesses to

the next run.

We estimate the convergence rate by measuring the average reduction per iteration of

the residual norm. To capture the convergence at different phases of the iterative method,

we must switch between the two approaches several times. However, switching too fre-

quently incurs a lot of overhead (rebuilding the initial basis, performing extra Rayleigh-Ritz

procedures, and possibly convergence loss from restarting the search space). Switching

too infrequently may be wasteful when the preconditioner for C does not work well. Thus,
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we control the maximum number of iterations for the next GD+k run,maxIter. This num-

ber is always larger than initIter which is a reasonably small number, i.e., 50. If the same

approach is chosen in two successive runs, maxIter doubles. If the approach should be

switched,maxIter is reduced more aggressively for the next run (Step 12) to avoid wast-

ing too much time on the wrong approach. If one eigenvalue converges in the initial tests

or at least two eigenvalues converge later, we stop the dynamic switching and choose

the currently faster approach. If the faster approach is the normal equations, a two-stage

method might be necessary to get to full accuracy. Although two or three switches typi-

cally suffice to distinguish between approaches, we also limit the number of switches.

Algorithm 3 Dynamic switching between stages for preconditioned PHSVDS
1: Set initIter, maxSwitch
2: numSwitch = numConverged = j = 0,maxIter = initIter, Undecided = true
3: Run initIter iterations of an eigensolver (such as GD+k) on C and on B and collect

initial average convergence rate of both approaches.
4: while (numSwitch < maxSwitch and Undecided) do
5: Choose estimated faster approach (C or B) for next call
6: if (numSwitch == 0 and numConverged > 0) or numConverged > 1 then
7: undecided = false (Choose faster approach and no more switching)
8: else
9: if Same approach is chosen again then
10: j = j + 1; maxIter = initIter ∗ 2j
11: else if Different approach is chosen then
12: j = floor(j/2); maxIter = initIter ∗ 2j
13: end if
14: end if
15: numSwitch = numSwitch+ 1
16: Call the eigensolver with maxIter and current chosen approach
17: end while
18: if All desired singular triplets are found on B then
19: Return final singular triplets to users
20: else if All desired singular triplets are found on C then
21: Return resulting singular triplets to augmented approach
22: else if Faster approach is on C then
23: Proceed with the two-stage approach
24: else if Faster approach is on B then
25: Continue only with the augmented approach
26: end if
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2.5 Numerical Experiments

Our first two experiments use diagonal matrices to demonstrate the principle of the two

stage method and that the method can compute artificially clustered tiny singular values

to full accuracy. Then, we conduct an extensive set of experiments for finding the smallest

singular values of several matrices. Large singular values are also computed under the

shift-invert setting. The matrix set is chosen to overlap with those in other researchs in the

literature. We compare against several state-of-the-art SVD methods: JDSVD [59, 60],

SVDIFP [80], IRRHLB [69], IRLBA [8], lansvd [78], and MATLAB’s . All methods

are implemented in MATLAB. First, we compute a few of the smallest singular triplets on

both square and rectangular matrices without a preconditioner. Then we show show the

effect of the dynamic PHSVDS for different quality of preconditioners, and demonstrate

that PHSVDS provides faster convergence over other methods on these test matrices as

well as on some large scale problems.

All computations are carried out on a DELL dual socket with Intel Xeon processors at

2.93GHz for a total of 16 cores and 50 GB of memory running the SUSE Linux operating

system. We use MATLAB 2013a with machine precision ϵ = 2.2 × 10−16 and PRIMME

is linked to the BLAS and LAPACK libraries available in MATLAB. Our stopping criterion

requires that the left and right residuals satisfy,

√
∥ru∥2 + ∥rv∥2 < ∥A∥δuser. (2.13)

For JDSVD we use the refined projection method as it performed best in our experi-

ments, which is also consistent with [59]. We choose the default for all parameters except

for setting ’krylov = 0’ to avoid occasional convergence problems for smallest singular

values. For SVDIFP the maximum number of inner iterations can be chosen as fixed or

adaptive. We run with both choices and report the best result. Also, we modify slightly the

code to use singular triplet residuals as the stopping criterion for SVDIFP instead of the
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default residual of the normal equations. For IRLBA and IRRHLB, we choose all default

parameters as suggested in the code.

All methods start with the same initial guess, , except for matrix

lshp3025 for which a random guess is necessary. We set the maximum number of restarts

to 5000 for IRRHLB and IRLBA and to 10000 for JDSVD and PHSVDS. Since SVDIFP

can only set a maximum number of iterations for each targeted singular triplet, we report

that SVDIFP cannot converge to all desired singular values if its overall number of matrix-

vector operations is larger than (maxBasisSize−k)∗5000. For PHSVDS, we set maxBa-

sisSize=35, minRestartSize=21 and experiment with two δ tolerances, 1E-8 and 1E-14.

For δ =1E-8, PHSVDS does not need to enter the second stage for any of our tests. For

the first stage of PHSVDS we use the GD_Olsen_PlusK method. For the second stage,

we run experiments with both GD_PlusK and JDQMR. Since our implementation is mainly

in C, we compare the number of matrix-vector operations as the primary measurement of

the performance. However, we also report execution times which is relevant since matrix-

vector, preconditioner, and all BLAS/LAPACK operations are performed by the MATLAB

libraries.

Since the numbers of matrix-vector products with A and AT are the same, the tables

report as “MV” the number of products with A only. “Sec” is the run time in seconds, and

“–” means the method cannot converge to all desired singular values or that the code

breaks down. Bargraphs report the ratio of matvecs and time of each method over the

PHSVDS method that uses the first stage only or JDQMR in stage two. Ratio values are

truncated to less than 10, and empty bar means the same as “–” in the tables.

2.5.1 PHSVDS for clustered tiny singular values

We illustrate first how our two-stage method works in a seamless manner. We con-

sider a diagonal matrix A = diag([1:10,1000:100:1E6]) and the preconditioner M = A +

diag(rand(1,10000)*1E4). In Figure 2.3, the green and black lines show the convergence
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behaviors of GD+k on B and C respectively. Indeed, the convergence on B is very slow

due to a highly indefinite problem while the accuracy on C stagnates when reaching its

limit. The two stage PHSVDS combines the benefits of the two methods, and determines

the smallest singular value efficiently and accurately as the magenta line shows.
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Figure 2.3: Two stages of PHSVDS working seamlessly to find smallest singular values accu-
rately.

Next we show how PHSVDS can determine several clustered tiny singular values.

Consider the matrix A = diag([1E-14, 1E-12, 1E-8:1E-8:4E-8, 1E-3:1E-3:1]) with identity

matrix as a preconditioner. Although locking may be able to determine clustered or mul-

tiple singular values, we increase robustness by using a block size of two for the first

stage only. We set the user tolerance δuser = 1E-15 to examine the ultimate accuracy

of PHSVDS. As shown in Table 2.1, PHSVDS is capable of computing all the desired

clustered, tiny singular values accurately.

Table 2.1: Computation of 10 clustered smallest singular values by PHSVDS with block size 2.

σi PHSVDS σ̃i ∥rB∥
1E-14 9.952750930151887E-15 4.9E-16
1E-12 1.000014102726476E-12 8.9E-16
1E-8 1.000000003582006E-08 6.5E-16
2E-8 2.000000002073312E-08 9.2E-16
3E-8 3.000000000893043E-08 9.0E-16

σi PHSVDS σ̃i ∥rB∥
4E-8 4.000000001929591E-08 9.2E-16
1E-3 1.000000000000025E-03 9.7E-16
2E-3 1.999999999999956E-03 8.1E-16
3E-3 2.999999999999997E-03 9.1E-16
4E-3 3.999999999999958E-03 9.8E-16
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2.5.2 Without preconditioning

We compare two variants of PHSVDS with four methods, JDSVD, SVDIFP, IRRHLB, and

IRLBA on both square and rectangular matrices without preconditioning. Since a good

preconditioner is usually not easy to obtain for SVD problems, it is important to exam-

ine the effectiveness of a method in this case. We compute k = 1, 10 smallest singular

triplets (see [136] for a more detailed and extensive set of results). In order to speed up

the convergence of , IRRHLB and IRLBA, we compute k + 3 eigenvalues when k

eigenvalues are required. For PHSVDS, we found this is not necessary.

Table 2.2: Properties of the test matrices. γm(k) = minki=1(gap(σi)), and gap(σi) = minj ̸=i|σi −
σj |.

Matrix pde2961 dw2048 fidap4 jagmesh8 wang3 lshp3025
order 2961 2048 1601 1141 26064 3025
nnz(A) 14585 10114 31837 7465 77168 120833
κ(A) 9.5E+2 5.3E+3 5.2E+3 5.9E+4 1.1E+4 2.2E+5
∥A∥2 1.0E+1 1.0E+0 1.6E+0 6.8E+0 2.7E-1 7.0E+0
γm(1) 8.2E-3 2.6E-3 1.5E-3 1.7E-3 7.4E-5 1.8E-3
γm(5) 2.4E-3 2.9E-4 2.5E-4 4.8E-5 1.9E-5 1.8E-4
γm(10) 7.0E-4 1.6E-4 2.5E-4 4.8E-5 6.6E-6 2.2E-5

Matrix well1850 lp_ganges deter4 plddb ch lp_bnl2
rows m: 1850 1309 3235 3049 3700 2324
cols n: 712 1706 9133 5069 8291 4486
nnz(A) 8755 6937 19231 10839 24102 14996
κ(A) 1.1E+2 2.1E+4 3.7E+2 1.2E+4 2.8E+3 7.8E+3
∥A∥2 1.8E+0 4.0E+0 1.0E+1 1.4E+2 7.6E+2 2.1E+2
γm(1) 3.0E-3 1.1E-1 1.1E-1 4.2E-3 1.6E-3 7.1E-3
γm(5) 3.0E-3 2.4E-3 8.9E-5 5.1E-5 3.6E-4 1.1E-3
γm(10) 2.6E-3 8.0E-5 8.9E-5 2.0E-5 4.0E-5 1.1E-3

We select six square and six rectangular matrices from other research researchs [69,

80] and the University of Florida Sparse Matrix Collections [28]. Table 2.2 lists these

matrices along with some of their basic properties. Among them, the matrices pde2961,

dw2048, well1850 and lp_ganges have relative larger gap ratios and smaller condition

number, and thereby are easy ones. Matrices fidap4, jagmesh8, wang3, deter4, and

37



plddb are hard cases, and matrices lshp3025, ch, and lp_bnl2 are very hard ones. We

expect all methods to perform well for solving easy problems. Harder problems tend to

magnify the difference between methods.
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Figure 2.4: Matvec and time ratios over PHSVDS(1st stage only) when seeking 1 and 10 smallest
singular triplets of square matrices with user tolerance 1E-8.

Figures 2.4, 2.5, 2.6 and 2.7 show that PHSVDS variants converge faster and more

robustly than all other methods on both square and rectangular matrices. Specifically,

Figure 2.4 shows that for moderate accuracy the normal equations solved with GD+k

are significantly faster. For instance, PHSVDS is at least two or three times faster than

other methods when solving hard problems for any number of smallest singular values. In

fact, we have noticed that even for moderate accuracy, all other methods are challenged

by hard problems, where they are often inefficient or even fail to converge to all desired
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Figure 2.5: Matvec and time ratios over PHSVDS(JDQMR) when seeking 1 and 10 smallest
singular triplets of square matrices with user tolerance 1E-14. The PHSVDS(GD+k) variant uses
the GD+k eigenmethod in the second stage.

singular values. When solving easy problems, still PHSVDS is faster than other methods

and only IRRHLB can be competitive when seeking 10 singular values. This better global

convergence for many eigenvalues is typical of the Lanczos method. The superiority of

PHSVDS is a result of using a near-optimal eigenmethod.

Figure 2.5 shows that the PHSVDS(GD+k) variant is comparable in terms of matvecs

to PHSVDS(JDQMR), which is the base of the ratios, but the JDQMR typically requires

less time if the matrix is sparse enough. It also shows that despite the slower convergence

on the augmented matrix in stage two, the higher accuracy requirement does not help

the rest of the methods. For computing 10 eigenpairs, IRRHLB shows a small edge in

the number of iterations for two easy cases. However, PHSVDS method never misses
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Figure 2.6: Matvec and time ratios over PHSVDS(1st stage only) when seeking 1 and 10 smallest
singular triplets of rectangular matrices with user tolerance 1E-8.

eigenvalues, is consistently much faster than all other methods, and significantly faster

than IRRHLB in hard cases. SVDIFP is also not competitive, partly due to its inefficient

restarting strategy. Interestingly, not only does PHSVDS enjoy better robustness but also

its execution time is ten times faster than IRRHLB for the cases where IRRHLB takes

fewer matvecs.

Figures 2.6 and 2.7 show that the advantage of PHSVDS is even more significant

on rectangular matrices. For example, except for the two easy problems well1850 and

lp_ganges, PHSVDS is often five or ten times faster than the other methods. The reason

is the beneficial use of the first stage, but also because PHSVDS works on C with di-

mension min(m,n), which saves memory and computational costs. SVDIFP also shares
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Figure 2.7: Matvec and time ratios over PHSVDS(JDQMR) when seeking 1 and 10 smallest
singular triplets of rectangular matrices with user tolerance 1E-14. The PHSVDS(GD+k) variant
uses the GD+k eigenmethod in the second stage.

this advantage. Interestingly, JDQMR converges much faster than GD+k on some hard

problems such as plddb, ch and lp_bnl2 in Figure 2.7. The reason is the availability of

excellent shifts from the first stage. We conclude that PHSVDS is the fastest method and

sometimes the only method that converges for hard problems without preconditioning.

2.5.3 With preconditioning

The previous figures show the remarkable difficulty of solving for the smallest singular

values. Preconditioning is a prerequisite for practical problems, which limits our choice to

PHSVDS, JDSVD and SVDIFP.

We first compare our two stage method and our dynamic two-stage method for two dif-
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ferent quality preconditioners. We chooseM = LU , the factorization obtained from MAT-

LAB’s ILU function on a square matrix A with parameters , ,

and varying or . Given these two M , we form the pre-

conditioners for PHSVDS as M−1M−T and [0 M−1;M−T 0]. Without loss of generality,

PHSVDS chooses GD+k for both stages. We seek ten smallest singular values with tol-

erance 1E-14.

As shown in Table 2.3, both variants of PHSVDS can solve the problems effectively

with a good preconditioner ( ). In this case, the static two stage method

is always better than the dynamic one because of the overhead incurred by switching

between the two methods. On the other hand, when using the preconditioner with

, the two stage PHSVDS is slower than the dynamic in some cases, and

in the case of lshp3025, much slower. The reason is the inefficiency of the precondi-

tioner in the normal equations. Our dynamic PHSVDS can detect the convergence rate

difference and choose the faster method to accomplish the remaining computations. Of

course, if this issue is known beforehand, users can bypass the dynamic heuristic and

call directly the second stage.

Table 2.3: Dynamic stage switching PHSVDS (D) vs two stage PHSVDS (P) with two precondi-
tioners: (H)igh quality ILU(1e-3) and (L)ow quality ILU(1E-2). We seek 10 smallest triplets with
δ =1E-14.

MV Sec MV Sec MV Sec MV Sec MV Sec MV Sec
H P 166 0.4 211 0.7 210 1.3 163 0.5 306 5.5 209 3.0
H D 242 0.4 283 0.7 286 1.4 223 0.6 396 5.5 273 3.6
L P 258 0.5 673 1.6 813 3.2 990 3.1 736 8.9 7631 132
L D 307 0.5 668 1.5 1043 3.7 547 1.6 1038 9.6 696 10

Next, we compare the two stage PHSVDS with JDSVD and SVDIFP with a good qual-

ity preconditioner. Except for preconditioning, all other parameters remain as before. For

the first preconditioner we use MATLAB’s ILU on a square matrix A. For the second pre-

conditioner we use the RIF MEX function provided in [80] on a rectangular matrix with
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. The resulting RIF factors LDLT ≈ ATA, where D is diagonal matrix

with 0 and 1 elements, are used to construct the pseudoinversesM−1 = L−TL−1AT and

M−T = AL−TL−1 for preconditioning the second stage of PHSVDS and JDSVD. To ob-

tain uniform behavior across methods, we disable in SVDIFP the parameter ’COLAMD’,

which computes an approximate minimum degree column permutation to obtain sparser

LU factors. For JDSVD, we try both enabling and disabling the initial Krylov subspace

and report the best result.

Table 2.4: Seeking 1 and 10 smallest singular triplets with ILU, droptol = 1E-3. We report results
from both PHSVDS variants: PHSVDS(GD+k) and PHSVDS(JDQMR). We report separately the
time for generating the preconditioner and the time for running each method.

δ = 1E-8 Matrix:
ILU Time:

k Method MV Sec MV Sec MV Sec MV Sec
1 PHSVDS(1st stage only) 15 0.1 13 0.1 46 2.5 19 0.3
1 JDSVD 67 0.7 34 0.3 45 2.0 56 1.5
1 SVDIFP 58 0.4 51 0.2 132 5.7 82 1.7
10 PHSVDS(1st stage only) 117 0.6 91 0.2 185 2.5 122 1.7
10 JDSVD 342 3.1 287 1.4 320 15.7 364 10.5
10 SVDIFP 691 3.0 561 1.2 1179 29.1 1187 21.9

δ = 1E-14 Matrix:
ILU Time:

1 PHSVDS(GD+k) 62 0.6 52 0.1 102 1.8 66 0.5
1 PHSVDS(JDQMR) 64 0.3 55 0.1 106 1.1 68 0.5
1 JDSVD 78 1.5 45 0.3 67 3.0 79 1.2
1 SVDIFP 98 0.6 100 0.3 235 8.3 159 2.3
10 PHSVDS(GD+k) 210 1.3 163 0.5 306 5.5 209 3.0
10 PHSVDS(JDQMR) 251 1.2 215 0.5 402 5.0 265 3.5
10 JDSVD 573 5.5 408 1.9 518 14.6 606 26.9
10 SVDIFP 1152 5.4 981 1.9 1991 51.4 1897 29.1

Tables 2.4 and 2.5 show that a good preconditioner makes the problems tractable,

with all three methods solving the problems effectively. Still, in most cases PHSVDS

provides much faster convergence and execution time on both square and rectangular

matrices. We see that when seeking one smallest singular value with high accuracy,

JDSVD takes less iterations for one square matrix (wang3), and SVDIFP is competitive
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Table 2.5: Seeking 1 and 10 smallest singular triplets with RIF, droptol = 1E-3. We report results
from both PHSVDS variants: PHSVDS(GD+k) and PHSVDS(JDQMR). We report separately the
time for generating the preconditioner and the time for running each method.

δ = 1E-8 Matrix:
RIF Time:

k Method MV Sec MV Sec MV Sec MV Sec MV Sec
1 PHSVDS 291 0.4 119 0.1 27 0.2 10 0.1 15 0.1
1 JDSVD 1729 8.9 1311 3.6 122 3.8 67 0.3 89 0.5
1 SVDIFP 513 1.4 622 0.9 142 2.1 29 0.1 49 0.1
10 PHSVDS 1224 1.8 307 0.5 405 2.4 52 0.1 74 0.1
10 JDSVD 8131 39.5 2356 5.7 – – – – – –
10 SVDIFP 4359 10.3 3118 4.2 2278 45.4 390 1.0 453 1.0

δ = 1E-14 Matrix:
RIF Time:

k Method MV Sec MV Sec MV Sec MV Sec MV Sec
1 p(GD+k) 521 1.0 207 0.3 82 0.5 45 0.1 66 0.1
1 p(JDQMR) 544 1.0 229 0.2 87 0.4 45 0.1 69 0.1
1 JDSVD 2037 10.5 1410 3.6 188 5.5 122 0.5 134 0.6
1 SVDIFP 843 2.1 990 1.3 221 4.3 48 0.1 63 0.1
10 p(GD+k) 2074 3.2 562 0.8 769 2.5 152 0.5 192 0.5
10 p(JDQMR) 2604 4.9 641 0.9 877 5.3 247 0.5 242 0.5
10 JDSVD – – 12057 28.2 – – – – – –
10 SVDIFP 7470 15.1 5024 6.1 3705 64.5 748 1.0 862 1.0
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in two rectangular cases (plddb and lp_bnl2). This is because these cases require very

few iterations, and the first stage of PHSVDS forces a Rayleigh-Ritz with 21 extra matrix-

vector operations. This robust step is not necessary for this quality of preconditioning.

If we are allowed to tune some of its parameters (as we did with JDSVD and SVDIFP)

PHSVDS does require fewer iterations even in these cases.

2.5.4 With the shift-invert technique

We report results on seeking 10 smallest eigenvalues with PHSVDS, SVDIFP, , and

. Because shift-invert turns an interior to a largest eigenvalue problem, PHSVDS

does not need the second stage. uses the augmented matrix B for the shift-invert

operator, while computes a QR factorization of A. For PHSVDS and SVDIFP we

use two different factorizations, an LU and a QR factorization of A. All methods get the

same basis size of 40, except for which is an unrestarted LBD code. Thus,

represents an optimal method in terms of convergence, albeit expensive in terms of mem-

ory and computation per step. We disable the ’COLAMD’ option in SVDIFP and ,

set the SVDIFP shifts to zero, and give a shift 1E-8 to . We have instrumented the

code to return the number of iterations. To facilitate comparisons, we include the

LU and QR factorization times in the running times of all methods, but also report them

separately. The tolerance is δ = 1E-10.

Table 2.6 shows that PHSVDS is faster than both in convergence and execution

time, partly because it works on C which is smaller in size and allows for faster conver-

gence. Note that does not work well on rectangular matrices because B becomes

singular and cannot be inverted, and if instead a small shift is used, it finds the zero eigen-

values of B first. SVDIFP’s strategy to use an inverted operator as preconditioner does

not seem to be as effective. PHSVDS seems to follow closely the optimal convergence of

, although there is high variability in execution times. We believe this is a function

not only of the cost of the iterative method but also of the different factorizations used by
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Table 2.6: Seeking 10 smallest singular triplets using shift-invert. LU(A) and QR(A) are the times
for LU and QR factorizations of A. The time of each method includes the associated factorization
time.

δ = 1E-10
Method MV Sec MV Sec MV Sec MV Sec MV Sec
LU(A) time – 0.02 – 0.01 – 0.01 – 0.01 – 0.01
PHSVDS 31 0.10 26 0.07 167 14.4 47 0.28 35 1.01
SVDIFP 380 0.90 316 0.31 1177 168.4 418 1.92 432 9.3
QR(A) time – 0.02 – 0.01 – 0.53 – 0.01 – 0.10
PHSVDS 31 0.29 26 0.08 166 9.1 27 0.08 36 0.48
SVDIFP 383 2.24 316 0.37 1177 55.4 418 0.55 432 3.13

73 0.33 61 0.23 – – – – – –
31 0.37 26 0.24 133 3.3 28 0.23 34 0.43

the two algorithms.

2.5.5 On large scale problems

Weuse PHSVDS, SVDIFP, and JDSVD to compute the smallest singular triplet of matrices

of order larger than 1 million. Information on these matrices appears in Table 2.7. We

apply the two-stage PHSVDS on all test matrices except thermal2, which is solved with

dynamic PHSVDS. The preconditioners are applied similar to our previous experiments

with the exception that ILU uses , and . The tolerance is δ =

1E − 12. The symbol “*” means the method returns results that either did not satisfy the

desired accuracy or did not converge to the smallest singular triplet.

Table 2.7: Basic information of some large scale matrices

Matrix debr cage14 thermal2 sls Rucci1
rows m: 1048576 1505785 1228045 1748122 1977885
cols n: 1048576 1505785 1228045 62729 109900
nnz(A) 4194298 27130349 8580313 6804304 7791168
σ1 1.11E-20 9.52E-2 1.61E-6 9.99E-1 1.04E-3

κ(A) 3.60E+20 1.01E+1 7.48E+6 1.30E+3 6.74E+3
Application undirected directed thermal Least Least

graph graph Squares Squares
Preconditioner No ILU(0) ILU(1E-3) RIF(1E-3) RIF(1E-3)
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Table 2.8 shows the results without or with various preconditioners. Debr is a numer-

ically singular square matrix. PHSVDS is capable of resolving this more efficiently than

JDSVD, while SVDIFP returns early when it detects that it is not likely to converge to the

desired accuracy for left singular vector [80]. All methods easily solve problem cage14

with ILU(0), but PHSVDS is much faster. Thermal2 is an ill-conditioned matrix, whose

preconditioner turns out to be less effective for C than for B. Therefore, SVDIFP has

much slower convergence than JDSVD. Thanks to the dynamic scheme, PHSVDS rec-

ognizes this deficiency and converges without too many additional iterations, and with the

same execution time as JDSVD. However, if we had prior knowledge about the precon-

ditioner’s performance, running only at the second stage gives almost exactly the same

matrix-vectors as JDSVD and much lower time. Reducing further the overhead of the

dynamic heuristic is part of our current research. JDSVD often fails to converge to the

smallest singular value for rectangular matrices since it has difficulty to distinguish them

from zero eigenvalues of B, as shown in the cases sls and Rucci1. For matrix sls, SVD-

IFP misconverges to the wrong singular triplet while PHSVDS is successful in finding the

correct one. SVDIFP and PHSVDS have similar performance for solving problem Rucci1.

In summary, PHSVDS is far more robust and more efficient than either of the other two

methods for large problems.

Table 2.8: Seeking the smallest singular triplet for large scale problems. We report the time of
each method including their running time and associated factorization time (PRtime) separately.

δ = 1E-12
Matrix PRtime MV Sec RES MV Sec RES MV Sec RES

debr — 539 84 3E-12 403* 246* 2E-1 1971 474.6 2E-12
cage14 2E+0 19 11 4E-13 33 28 6E-13 111 185 7E-14

thermal2 3E+3 419 506 7E-12 – – 4E-9 309 535 4E-12
sls 3E+3 1779 170 1E-09 408* 328* 1E-9 – – 2E-0

Rucci1 6E+4 4728 1087 7E-12 4649 6464 6E-12 – – 5E-3

47



2.6 PRIMME_SVDS: A High-Performance Preconditioned SVD

Software in PRIMME

Our goal is to provide a high quality, state-of-the-art SVD solver software that enables

practitioners to solve a variety of large, sparse singular value problems with unprece-

dented efficiency, robustness, and accuracy. In this section we firstly describe the cur-

rent state-of-the-art SVD software and then discuss our preconditioned two-stage meta-

method proposed in [138] for effectively and accurately computing both largest and small-

est singular values. Next we illustrate in detail the parallel implementation of

PRIMME_SVDS as well as various characteristics of our high-performance SVD software.

2.6.1 Current SVD Software

Given the availability of several SVD algorithms, it is surprising that there is a lack of cor-

responding good quality software, especially with preconditioning. Table 2.9 summarizes

the state-of-the-art dedicated SVD software. For each software, we show the methods

it implements, its programming language, its parallel computing and preconditioning ca-

pabilities, whether it can obtain a fully accurate approximation efficiently, and the main

interfaces to these libraries. The top four are high performance libraries, while the rest

are MATLAB research codes.

SVDPACK [19] and PROPACK [77] implement variants of Lanczos or LBDmethods. In

addition, PROPACK implements an implicitly restarted LBD method. Both methods work

well for computing a few largest, well separated singular values, which in most cases is an

easy problem. The computation of smallest singular triplets is not supported in SVDPACK

and it is not efficient in PROPACK which only implements the Rayleigh-Ritz projection

[69]. In addition, neither library can use preconditioning or support message passing

parallelism, although PROPACK does support shared memory multithreading. These are

severe limitations for large-scale problems that need to run on supercomputers and that
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often converge too slowly without preconditioning.

SLEPc offers an LBD method with thick restarting [57], which has similar algorithmic

limitations to PROPACK for computing smallest singular values. In addition, this particular

SVD solver cannot be directly used with preconditioning. However, the SLEPc LBD has

an efficient parallel implementation.

Despite accuracy limitations, eigenvalue iterativemethods based onC are widely used

for computing the largest eigenpairs where the loss of accuracy is limited and even for

low accuracy computations of the smallest singular values. For example, two popular

packages in machine learning, scikit-learn1 and Spark’s library MLib2, use a wrapper for

the popular software ARPACK (implicit restarting Arnoldi method) [79]. However other

solvers for standard Hermitian eigenvalue problems can be used. Table 2.10 lists themost

widely used eigensolver libraries with high-performance computing implementations.

Our hybrid PHSVDS method can leverage these eigensolver libraries to solve the

partial SVD problem in full accuracy. However, to optimize for efficiency and robustness

several modifications and code additions are required that were not all available in previ-

ous eigensolvers. For example, Anasazi features a robust, high performance computing

implementation but does not provide the near-optimal eigenmethods that are critical for

fast convergence. SLEPc relies on PETSc for basic linear algebra kernels with support

for various high-performance standards for shared and distributed memory machines and

GPU. It also provides the appropriate preconditioned eigensolvers [58]. However, these

are not tuned to deal with the high accuracy requirements of the first stage of PHSVDS or

the need for refined projection methods for the highly interior problem in the second stage.

PRIMME is designed to take advantage of all special properties of the Hermitian eigen-

value problem and therefore is a natural candidate that only required minor extensions,

as described later in this paper. The goal is to produce a high quality, general purpose

SVD software that can solve large-scale problems with high accuracy, using parallelism
1

2
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Table 2.9: Dedicated SVD solver software for computing the partial SVD. The first four libraries
have high performance implementations. The rest are MATLAB research codes. M, S, G stand
for MPI, SMP and GPU, respectively. Fort, Mat, Py, and R stand for Fortran, Matlab, Python, and
R programming languages, respectively.

HPC library Method Lang Parallel Precon. Fast Full Acc. Main Bindings
PRIMME PHSVDS C M S Y Y Fort, Mat, Py, R
PROPACK IRLBD Fort S N N Mat
SLEPc TRLBD/KS C M S G N N Fort, Mat, Py
SLEPc JD/GD+k C M S G Y N Fort, Mat, Py

SVDPACK Lanczos Fort – N N –
– IRRHLB Mat S N Y –
– IRLBA Mat S N Y –
– JDSVD Mat S Y Y –
– SVDIFP Mat S Y Y –

Table 2.10: Eigenvalue solver software available for computing partial SVD by solving an equiv-
alent Hermitian eigenvalue problems on B and C. M, S, G stand for MPI, SMP and GPU, re-
spectively. Fort, Mat, Py, R, and Jul stand for Fortran, Matlab, Python, R and Julia programming
languages, respectively.

Software Method Lang Parallel Precon. Main Bindings
Anasazi KS/GD/LOBPCG C++ M S G Y Py

(P)ARPACK Arnoldi Fort M S N Mat, Py, R, Jul
BLOPEX LOBPCG C M S G Y Mat
FEAST CIRR Fort M S Y –
MAGMA LOBPCG C++ S G Y –
PRIMME JD(QMR)/GD+k/LOBPCG C M S Y Fort, Mat, Py, R
Pysparse JD Py S Y –
SciPy LOBPCG Py S Y –
SLEPc KD/JD/GD+k C M S G Y Fort, Mat, Py
SPRAL Block C S G N Fort

and preconditioning, and with as close to a black-box interface as possible.

We mention that in some applications (for example in data mining) the required accu-

racy is so low or the rank of the matrix is so small that the use of the power method [81]

or the block power method (see Randomized PCA in [52]) is sufficient. These methods

cannot be considered general purpose SVD software and thus they are beyond the scope

of this paper.
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2.6.2 Method for Efficient and Accurate Computation

The PHSVDS approach [138] relies on eigensolvers that work on the equivalent eigen-

value formulations C and B, switching from one to the other to obtain the best perfor-

mance. The PHSVDS method starts on C because without preconditioning the conver-

gence in terms of iterations is much faster than that on B. Furthermore, the cost per

iteration (computation of residual vectors, orthogonalization, etc.) on C is up to two times

cheaper than on B (because of dimension n versus n + m). We refer to the computa-

tions on C as the first stage of the method. If further accuracy is required, the method

switches to a second stage where the eigensolver is reconfigured to work on B, but with

initial guesses from the first stage. We do not consider eigensolvers such as Lanczos

that accept only one initial guess. Such methods would have to work for each needed

singular triplet independently which is usually not as efficient as using all the good quality

initial guesses from the first stage in one search space.

The singular value solver is configured to stop when the residual norm of the required

singular triplets is less than the requested tolerance ∥A∥2δuser, or

∥r̃i∥2 =
√

∥Aṽi − σ̃iũi∥22 + ∥AT ũi − σ̃iṽi∥22 < ∥A∥2δuser. (2.14)

Let (λ̃C
i , x̃

C
i ) be the eigenpair approximation from the eigensolver on C. Considering that

σ̃i will be set as ∥Ax̃Ci ∥2, ṽi as x̃Ci and ũi as Ax̃Ci σ̃
−1
i , the above is translated into a

convergence criterion for the eigensolver on C as

∥r̃Ci ∥ = ∥Cx̃Ci − λ̃C
i x̃

C
i ∥2 <

√
|λ̃C

i |∥C∥2δuser.

The eigensolver returns when all requested triplets satisfy the convergence criterion.

However the eigensolver may reach its maximum achievable accuracy before the residual

norm reduces below the above convergence tolerance. Setting this limit properly is a crit-

ical point in the robustness and efficiency of the method. If the tolerance is set below this

51



limit the eigensolver may stagnate. If the limit is overestimated, then the iterations of the

second stage will increase, making the whole solver more expensive. Selecting this limit

depends on the numerical properties of the eigensolver, so we discuss it in Section 2.6.3.

In the second stage, the vectors [ṽi; ũi] are set as initial guesses of the eigensolver.

The convergence criterion directly checks (2.14) with σ̃i set as |λ̃B
i | and ṽi and ũi set as the

normalized subvectors x̃Bi (1 : n) and x̃Bi (n+1 : n+m). Because this computation requires

extra reduction operations, it is only checked after an eigenvalue residual condition is

satisfied,

∥r̃Bi ∥ = ∥Bx̃Bi − λ̃B
i x̃

B
i ∥2 ≈

√
2∥r̃i∥ <

√
2∥B∥2δuser. (2.15)

The above is derived by assuming that ∥x̃Bi (1 : n)∥2 ≈ ∥x̃Bi (n + 1 : n + m)∥2. If the

eigenvector x̃Bi corresponds to a singular triplet, then this assumption is satisfied near

convergence. It is possible, however, that after (2.15) is satisfied to have ∥x̃Bi (1 : n)∥2 ≪

∥x̃Bi (n + 1 : n + m)∥2. This is the case when x̃Bi has large components in the (m − n)-

dimensional null space of B, and therefore it does not correspond to a singular triplet.

Checking our second level criterion (2.14) avoids this problem. We have observed this

situation when computing the smallest singular values in problems with condition number

larger than 108.

If the smallest singular values are wanted, the eigensolver on B must compute interior

eigenvalues. Then, it is important that we specify where the eigensolver should look

for them. First, we want only the non-negative eigenvalues of B. Second, if m ̸= n

and the required singular values are very small, asking for the eigenvalues closest to

zero will make the eigensolver to keep trying to converge on the unwanted null space.

Therefore, we should only try to find eigenvalues on the right of some positive number.

Third, because this number should be a lower bound to the singular value we seek, we can

use the perturbation bounds of the approximations of the first stage. Specifically, we know

that σi ∈ [σ̃i−∥r̃Ci ∥σ̃
−1
i

√
2, σ̃i], where σ̃i = (λ̃C

i )
1
2 [138]. Because the augmented approach

cannot distinguish eigenvalues smaller than ∥A∥mach, we configure the eigensolver to
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find the smallest eigenvalue σi that is greater than max(σ̃i−∥r̃Ci ∥σ̃
−1
i

√
2, ∥A∥mach). This

heuristic is also used in [60].

For interior eigenproblems, alternatives to the Rayleigh-Ritz extraction are recom-

mended, such as the harmonic or the refined variants. As described in the next section,

we employ a variant of the refined extraction. For each eigenvalue, the shift for the re-

fined extraction is the corresponding singular value lower bound. In PRIMME, these lower

bounds are also used as shifts in the Jacobi-Davidson correction equation. If the shifts

are close enough to the exact eigenvalues, they accelerate the convergence of Jacobi-

Davidson.

Algorithm 4 shows the specific functionality needed for the two stages of PHSVDS.

2.6.3 Descriptions of changes in PRIMME

To support PRIMME_SVDS, we have implemented many enhancements to PRIMME,

including a user defined convergence criterion, improved numerical quality of converged

eigenvectors, improved robustness to achieve convergence near machine precision, a

simplified refined projection method, a different locking scheme for interior eigenvalues,

a new scheme for initializing the search space, and finally a new two-stage meta-method

interface.

To achieve the required accuracy at the first stage, we have to adjust the conver-

gence tolerance at every step based on the value of the current eigenvalue. This was

not possible in the original PRIMME implementation in which δuser was set as a user input

parameter. In the new version, we have added a function pointer into PRIMME main data

structure to allow the user to provide their own convergence test function. Our top level

SVD interface provides line 2 of Algorithm 4 as the default convergence test function.

When PRIMME uses soft locking (i.e., no locking), before exiting it now performs an

additional Rayleigh-Ritz on the converged Ritz vectors to adjust the angles of the desired

Ritz vectors. The resulting Ritz vectors have improved quality that has proved helpful in
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Algorithm 4 PHSVDS: a preconditioned hybrid two-stage method for SVD
Input: matrix-vector products Ax and AT x, preconditioner function, global summa-
tion reduction, number of singular triplets seeking k, tolerance δuser
Output: Converged desired singular triplets {σ̃i, ũi, ṽi}, i = 1, . . . , k

First-stage on C:
1: Set eigensolver matrix-vector as C = ATA or AAT

2: Set eigensolver convergence criterion as ∥r̃i∥2 ≤ max(
√
|λ̃C

i |∥C∥2δuser,mach∥C∥2)
3: Run eigensolver seeking largest/smallest eigenvalues of C
4: Perform Rayleigh-Ritz on the returned vector basis
5: Set σ̃i = |λ̃C

i |
1
2 , ṽi = x̃Ci and ũi = Aṽiσ̃

−1
i

6: if all triplets converged with tolerance ∥A∥2δuser then
7: Return {σ̃i, ũi, ṽi}, for i = 1, . . . , k
8: end if

Second-stage on B:
9: Set eigensolver initial guesses as

√
2[V ;U ]

10: if finding the largest singular values then
11: Set eigensolver extraction method as standard Rayleigh-Ritz
12: Set eigensolver to find the largest eigenvalues
13: else
14: Set eigensolver extraction method as simplified refined projection
15: Set eigensolver to find the eigenvalues closest to but greater than

max(σ̃i − ∥r̃Ci ∥2σ̃
−1
i

√
2, ∥A∥2mach).

16: end if
17: Set eigensolver convergence criterion as ∥r̃i∥2 ≤

√
2∥B∥2δuser

18: Run eigensolver on B
19: Set σ̃i = |λ̃B

i |, x̃Bi = [ṽi; ũi], normalize ũi and ṽi
20: Return {σ̃i, ũi, ṽi}, for i = 1, . . . , k
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the second stage [138]. This is mentioned in Line 4 of the algorithm.

As an iterative method based on matrix-vector multiplications by C, the maximum

accuracy that the eigensolver can obtain should be close to ∥C∥2mach. We observed that

in slow converging cases PRIMME eigensolvers may stagnate when the residual norm is

still 10 or 100 times above that limit. A brief analysis reveals that the major propagation

of error occurs when restarting the search space V and the precomputedW = AV as V y

and Wy respectively. Despite ∥V ∥2 = 1 = ∥y∥2, the operation occurs a number of times

equal to the number of restarts, and thus the expected accumulated error increases by a

factor of
√
restarts. This factor is more problematic for W where the accumulated error

becomes
√
restarts∥C∥2mach, thus preventing the residual to converge to full accuracy.

This was also confirmed experimantally. Our solution was to reset both matrices, by fully

reorthogonalizing V and computingW = AV directly, when ∥r̃Ci ∥ <
√
restarts∥C∥2mach,

where restarts is the number of restarts since last resetting. This change has returned

the stagnation level to less than 10∥C∥2mach facilitating a very accurate solution at the

first stage.

To address the interior eigenproblem of the second stage, we have implemented a

refined extraction procedure in PRIMME. The refined procedure computes an eigenvec-

tor approximation x̃i in the span of V that minimizes the norm of the residual ∥(B −

τI)x̃i∥/∥x̃i∥. In general, τ should be as close as possible to the eigenvalue so most

implementations set it as the Ritz or harmonic Ritz value from the current search space

at every iteration [65, 60, 91]. The minimization requires the QR factorization of the tall

skinny matrix BV − τV , for a step cost of O((m+ n)k2) flops and O(k) global reductions

per iteration, where k = dim(V ). In our case, the σ̃i from the first stage are very good

eigenvalue approximations (if κi < 108) so there is little gain to updating the shift at every

iteration. This leads to a simplified and much more efficient implementation of the refined

procedure. With constant τ , the cost of updating the QR factorization at every iteration is

O((m+ n)k), the same as the cost of orthogonalization. Also, Q and R can be restarted

without communications; if V is restarted as V Y , then we compute the QR factorization
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RY = Q̃R̃ and restart Q as QQ̃ and R as R̃. The factorization of R involves a matrix of

small dimension and can be replicated in every process.

In the second stage we force the PRIMME eigensolver to use locking. The earlier ver-

sion of PRIMME locked converged eigenvectors only at restart, allowing them to improve

for a few more steps in the basis. The new version of PRIMME changes this for interior

problems only. When an eigenvector converges we force a restart and lock it out. This

improves robustness with the Rayleigh-Ritz method since converged interior eigenvalues

may become unconverged causing the method to misconverge. The refined extraction

avoids this problem but it still benefits from the new change. When an eigenvector is

locked, the QR factorization for the refined extraction is recomputed with the new target

shift.

In PRIMME the search space is initialized as a block Krylov subspace starting from

any available initial guesses or random vectors. We have extended the library’s setup

options to allow for finer user control on the initialization step. Among other options, the

user can now deactivate the Krylov subspace. We have found this to be helpful because

of the good quality initial guesses in the second stage.

2.6.4 High performance characteristics of PRIMME_SVDS

Our library extension inherits the design philosophy of PRIMME with respect to perfor-

mance. This is summarized below and its effects on performance in Table 2.11.

• The user must provide as function pointers the matrix-vector product and, optionally,

the preconditioner application.

• PRIMME’s implementation works for both parallel and sequential runs. It follows the

SPMD parallelization model, so if the user has distributed the matrix by rows onto

processes, each process in PRIMME will hold the corresponding local rows of the

vectors. Small objects are replicated across processes. If the code is used in paral-
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Table 2.11: The parallel characteristics of PRIMME_SVDS operations in PRIMME.
Operations Kernels or Libs Cost per Iteration Scalability

Dense algebra: MV, MM, BLAS (eg, MKL, ESSL, O((m+n)*k) Good
Inner Prods, Scale OpenBlas, ACML)

Sparse algebra: SpMV, User defined (eg, PETSc, O(1) calls Application
SpMM, Preconditioner Trilinos, HYPRE, librsb) dependent

Global reduction User defined (eg, O(1) calls of size O(k) Machine
MPI_AllReduce) dependent

lel, in addition to parallel implementations of the matrix-vector and preconditioning

operators, the user must also provide an operator for the global sum reduction.

• PRIMME relies on third-party BLAS and LAPACK libraries to achieve single and

multi-threaded performance of operations with dense matrices and vectors within

each SPMD process.

• The required workspace is allocated internally or may be provided by the user as a

block of memory.

Some libraries, such as SLEPc and Anasazi, use an object oriented abstraction for

matrices and vectors, thus externalizing the control over the actual memory and the op-

erations on it. SLEPc is based on the structures of PETSc and Anasazi defines its own

structures with templates. The goal is to facilitate optimizations on different memory hi-

erarchies and heterogeneous architectures such as accelerators. However, this design

may increase overhead and induce unnecessarymemory copies to conformwith the given

abstraction.

PRIMME handles the vectors directly as a block of memory, which may allow for fewer

memory copies when thematrix-vector product and preconditioning operators receive and

return the corresponding local part of the vectors, but also in other places in the code.

Moreover, it displays better locality for cache performance as long as PRIMME orders

its functionality appropriately. All numerical operations are then performed through calls

to optimized BLAS and LAPACK which are compatible with this memory model. The

disadvantage is that with vectors residing in main memory, calls to accelerator enhanced
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BLAS/LAPACK libraries have to transfer their arguments during every call. PRIMME tries

to use the highest level BLAS when this is beneficial, e.g., the use of level 3 BLAS when

the block size is greater than one.

Following the SPMD model for parallel programming, only the largest data structures

in PRIMME are distributed; specifically the eigenvectors to be returned, the vectors in the

search space V , the auxiliary vectors W = AV , and, when refined extraction is used,

the array Q that holds the orthogonal matrix of the QR factorization of W − τV . The cost

of small matrix operations (such as solving the small projected eigenvalue problem) is

negligible and the operation is duplicated across all processes. Long vector updates are

performed locally with no communication. Inner products involve a global sum reduction

which is the only communication primitive required and is provided by the user. To reduce

latency, PRIMME blocks as many reductions together as possible without compromising

numerical stability.

Most, but not all, applications use PRIMME with the MPI framework that nowadays

can be used effectively even on shared memory machines. This avoids the need to store

the matrix or the preconditioner on each core. Similarly, pure shared memory parallelism

or optimized sequential execution is obtained by simply linking to the appropriate libraries.

The user-provided matrix-vector and preconditioning operators must be able to per-

form operations with both the matrix and its transpose and implement the desired parallel

distribution in each case. Note that the parallel behavior of the two stages might be very

different for rectangular matrices where n ≪ m. The PRIMME_SVDS interface also

allows the user to pass functions for performing matrix vector and preconditioning oper-

ations with B and C directly. This is useful as there are many optimizations that a user

can perform to optimize these operations (especially on B, see [114]). This feature is not

available in other software.
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2.6.5 Interfaces of PRIMME_SVDS

PRIMME_SVDS is part of PRIMME’s distribution with a native C interface. We provide

several driver programs with calling examples as part of the documentation, ranging from

a simple sequential version with a basic matrix-vector multiplication, to a fully parallel and

preconditioned version with such functionality provided by the PETSc library. In addition,

we offer interfaces to Matlab, Python, and R that can be used easily by both ordinary

and advanced users to integrate with domain specific codes or simply experiment in an

interactive environment. These interfaces expose the full functionality of PRIMME_SVDS

which, depending on the supporting libraries, can include parallelism and preconditioning.

Next, we describe the most important functionality and features of PRIMME_SVDS

using the C interface. Other interfaces are wrappers that call the C interface. The prob-

lem parameters and the specific method configuration are set in a C structure called

. The most important parameters are the following.

• and : the number of rows and columns of the problem matrix

• :

function pointer to the matrix-vector product with A. The result of the product is

stored in y. If is zero, the function should compute Ax, otherwise A∗y.

x and y are matrices with columns and leading dimensions and

respectively. is included to provide access to all

parameters.

• : (optional) pointer to user data for .

• : the number of desired singular triplets to find.

• : select which singular values to find: the smallest, the largest or the closest

to some value (not discussed in this paper).

• : the desired accuracy for wanted singular triplets, see (2.14).
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To run in parallel SPMD mode, the matrix-vector operator must be parallel, every pro-

cess should have the same values for , , and , and the following

parameters much be set.

• : the number of MPI processes (must be greater than 1).

• : the rank of the local process (e.g., the MPI rank).

• and : the number of rows and columns local to this process. In the

parallel , x and y address the corresponding local parts, with x having

rows and y having rows.

• : function pointer to the global sum reduction.

These parallel environment parameters are also required in other frameworks such as

PETSc (see Sec 3.1 in PETSc user manual [14]) and Tpetra (see class CsrMatrix [13]).

In shared memory environments, the user may choose to run a single process and link to

a threaded BLAS library such as OpenBLAS [146].

The following optional parameters may be used to accelerate convergence.

• :

function pointer to the preconditioning; the function applies the preconditioner to

x and stores it into y. indicates which operator is the preconditioner for: ATA

( ), AAT ( ) or [0 AT ;A 0]

( ).

• : pointer to user data for .

• : the maximum number of columns in the search space basis.

• : the maximum number of approximate eigenpairs to be corrected

at every iteration. Larger block size may be helpful for multiple or highly clustered

singular values and usually improves cache and communication performance.
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• : PRIMME parameter structure for first stage.

• : PRIMME parameter structure for second stage.

The default maximum basis dimension ( ) for the eigensolvers is 15 and the

dimension after restarting ( ) is 6 if finding less than 10 largest singular

values. Otherwise restarting parameters are set to 35 and 14 respectively. The default

block size is 1.

All parameters can be modified by the user. Furthermore the

user can tune individual eigensolver parameters in and for each

stage respectively. Currently, the default method for the first stage is the DYNAMIC

method of PRIMME which switches dynamically between GD+k and JDQMR attempting

to minimize time. The second stage defaults to the JDQMR method. Users can change

the default eigensolver methods by calling,

and can be any PRIMME preset method. With this func-

tion the user can also change the PHSVDS to a different SVDmethod, for example to per-

form only a single stage with the normal equations ( ) or

the augmented approach ( ). Future versions may include other

methods such as LBD and JDSVD.

Other advanced features include the following.

• : the number of singular vectors provided as initial guesses.

• : contains the values closest to which we should find singular values.

Only accessed if has been set to find interior singular values.

• : the number of values in .

• : number of singular vectors provided as external orthogonalization

constraints (see explanation below).
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• : specifies level for printing out information (0–5).

• : the output file descriptor.

• : the performance report of this run.

After specifying the required and optional fields in the structure, we can call the main

function:

The argument and are arrays at least of size to store the com-

puted singular values and the residual norms, computed as in (2.14). Both arrays are

filled by all processes. The argument is a dense matrix at least of dimension

( + ) × ( + ). On input the first

columns of size are the left constrain vectors, followed by the next ini-

tial left singular vector guesses. The following vectors are of size with the same

configuration corresponding to the constraints and the right singular vectors. On output,

the left and right constrain vectors remain unchanged in their po-

sition. They are followed respectively by the left and right converged singular

vectors. has been updated with the number of converged singular triplets.

Figure 2.8 illustrates the main parts of a simple example in C that computes the four

smallest singular values of a rectangular matrix.

Finally, we briefly discuss the MATLAB interface which is a MEX wrapper of

PRIMME_SVDS. It is similar to MATLAB’s , allowing it to be called by non-expert

users but also by experts that can adjust over 30 parameters.
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Figure 2.8: Simple sequential example code that computes the four smallest singular values of
a rectangle matrix of dimensions 1000× 100 with PRIMME. The matrix-vector multiplication code
and some details have been omitted. The full version can be found at under the
folder .

Like , users only need to provide the matrix A while PRIMME_SVDS sets a list of

expert defaults underneath. Users can tackle more advanced tasks incrementally by

specifying more parameters. For example, they can pass their own matrix-vector and

preconditioning operations, or they can simply take advantage of MATLAB’s built-in ma-

trix times block-of-vectors operators and preconditioners. Interfaces to the other scripting

languages are developed similarly.
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2.7 Numerical Experiments

In this section we report numerical results in order to access the performance of

PRIMME_SVDS software. To conduct a comprehensive performance analysis, we have

performed extensive experiments by evaluating different functionality of our SVD software

such as largest or smallest singular triplets, square or rectangular matrices, with precon-

ditioning or not, different application problems, and different supercomputer or clusters.

For our performance test we consider seeking small number of smallest and largest

singular triplets from various real applications including ill-conditioned least-squares prob-

lem, DNA electrophoresis, linear programming, and graph clustering. Among them, three

of matrices are rectangular while others are square. The size of test matrices ranges from

the order of 1E+6 to the order of 1E+7. To the best of our knowledge, we report for the first

time the experimental results on these large-scale size problems using high-performance

SVD software. The condition number of these matrices also varies from 1E+1 to 1E+16

which indicates the achievable accuracy and the hardness of the problems for seeking

smallest singular values. Basic information of matrices and parameter settings are listed

in Table 2.12.

Table 2.12: Properties of some real-world test matrices. L/S stands for seeking largest/smallest
singular values.

gaps
Matrix rows m cols n nnz(A) κ(A) larg. small.

atmosmodl 1,489,752 1,489,752 10,319,760 1.14E+3 5E-5 5E-5
Rucci1 1,977,885 109,900 7,791,168 6.74E+3 3E-3 5E-5

LargeRegFile 2,111,154 801,374 4,944,201 1.1E+4 1.2 3E-7
cont1_l 1,918,399 1,921,596 7,031,999 ∞ 6E-6 –
cage15 5,154,859 5,154,859 99,199,551 1.19E+1 6E-4 1E-3
sls 1,748,122 62,729 6,804,304 1.3E+3 4E-2 8E-7

relat9 12,360,060 549,336 7,791,168 ∞ 3E-3 –
delaunay_n24 16,777,216 16,777,216 50,331,601 ∞ –
Laplacian 8,000p 8,000p 55,760p ≈8.5E+2

We compare against several SVD methods that are implemented in SLEPc [58] and

PROPACK [77, 78]: Jacobi-Davidson (JD) onC, Generalized Davidson (GD) onC, Krylov

Schur (KS) onC, and thick-restart LBD in SLEPc, and implicit restarted LBD in PROPACK.
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First, we compared PRIMME_SVDS with SLEPc that leverages an eigensolver on C for

solving SVD problems with low accuracy when increasing number of MPI processes. We

demonstrate the advantages of our PHSVDSmethod over simple eigensolver on C. Then

we compute a few of the largest or smallest singular triplets on both square and rectan-

gular matrices with low and high user accuracy without a preconditioner using fixed 48

MPI processes. We show consistently better performance of PHSVDS implemented in

PRIMME_SVDS compared with LBD implemented in SLEPc when the hardness of prob-

lems increases. Second, we compare PRIMME_SVDS with PROPACK and SLEPc when

seeking a few of largest and smallest singular triplets on a shared memory system (us-

ing OpenMP). Finally, we present some numerical results to demonstrate good parallel

scalability of our SVD software on some very large-scale real-world problem under strong

and weak scaling.

All computations are carried out on the NERSC’s Edison and a cluster SciClone at

college of William and Mary. In Edison each compute node has two Intel “Ivy Bridge”

processors at 2.4 GHz for a total of 12 cores and 64 GB of memory, interconnected with

high-speed Cray Aries in Dragonfly topology. In SciClone, we use 36 Dell PowerEdge

R415 servers with AMD Opteron processors at 3.1 GHz for a total of 12 cores and 32 GB

of memory running the Red Hat Enterprise Linux operating system, interconnected by a

FDR InfiniBand communication network. All tests are conducted with machine precision

ϵ = 2.2× 10−16. PRIMME is linked to the BLAS and LAPACK libraries and PESTc library

[14] in a distributed memory system while to the OpenBLAS library [146] and the LIBRSB

library [89] in a shared memory system. Our stopping criterion is for the left and right

residuals to satisfy,

√
∥Aṽi − σ̃iũi∥22 + ∥AT ũi − σ̃iṽi∥22 < ∥A∥2δuser. (2.16)

All methods start with the same initial guess, with fixed random

seed. For PRIMME_SVDS, we set and most of experiments with two
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δ tolerances, 1e-6 and 1e-12. For δ =1e-6, PRIMME_SVDS does not need to enter

the second stage for any of our tests. For all methods in SLEPc and PROPACK, the

same maximum basis size 15 is set. PROPACK often has difficulty to seek the smallest

singular values without using shift and invert techniques so we report the best obtained

results. The tables report as “MV” the number of products with A and AT . “Sec” is the

run time in seconds, and “–” means the method cannot converge to all desired singular

values or that the code breaks down. For the first stage of PRIMME_SVDS we use ei-

ther GD_Olsen_PlusK or JDQMR methods. For the second stage, we run experiments

with default JDQMR method for interior eigenvalue problems. Although all software im-

plementation are written in different programming languages, these differences are subtle

since they are all implemented in efficient scientific computing languages (such as C, C++

and FORTRAN). Therefore, we compare not only execution times but also the number of

matrix-vector operations as the primary measurement of the performance.

2.7.1 Comparison with SLEPc LBD on a distributed memory system

We investigate the performance of various methods implemented in different SVD soft-

ware in a distributed memory system. The sparse matrix-vector operations are performed

using PETSc in both PRIMME and SLEPc.

We first compare two variants of PHSVDS with thick-restart LBD in SLEPc on both

square and rectangular matrices without preconditioning. It is important to examine the

effectiveness of a method in this scenario since a good preconditioner is usually not easy

to obtain for SVD problems. We compute 5 largest and smallest singular triplets using

48 MPI processes on three selected square and two rectangular matrices as shown in

Table 2.12. Among them, the matrices cage15 and atmosmodl have relative larger gap

ratios and smaller condition number, and thereby are easy ones. Matrices Rucci1 and

LargeRegFile are hard cases, and matrix cont1_l is a very hard one. We expect all soft-

ware to perform well for solving easy problems. But harder problems tend to magnify the
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Figure 2.9: Time ratio over PHSVDS(JDMQR) when computing 5 largest and smallest singular
values with user tolerance 10−6 and 10−12 without and with preconditioning using 48 MPI pro-
cesses in distributed memory. The sparse matrix-vector operations are performed using PETSc.
For seeking smallest singular values on matrix cont1_l, all methods fail to converge except
PHSVDS(JDMQR).

difference between methods.

Figures 2.9 and Table 2.13 show that PHSVDS variants converge faster and more

robustly than all other methods on both square and rectangular matrices. For instance,

even for largest singular problems, LBD performs as well as PHSVDS for relatively easy

problems but starts to converge slowly for hard problem. This is because significant more

iterations are needed to achieve the desired accuracy of singular triplets when the con-

dition number of the target singular values become larger. In addition, we illustrate that

PRIMME_SVDS can fully take advantage of preconditioning, which become more and

more important especially for hard smallest singular value problems as we have seen in

Table 2.13.
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Specifically, Figure 2.9 shows that for seeking smallest singular values PHSVDS are

significantly faster than LBD when the problems become harder. For instance, PHSVDS

is often one order of magnitude faster than LBD when solving hard problems with relative

low accuracy. It indicates that LBD is often inefficient or even fail to converge to the

desired singular values of hard problems. When solving easy problems, still PHSVDS

is competitive with LBD when seeking 5 singular values. The superiority of PHSVDS

is a result of using a near-optimal eigenmethod and a hybrid two-stage SVD method in

PRIMME.

Figure 2.9 also shows the performance comparison when computing 5 smallest singu-

lar values using a preconditioner. For cage15 and atmosmodl, a multigrid preconditioner

is constructed using HYPRE library while for LargRegFile, Rucci1and sls a simple yet eas-

ily constructed block-Jacobi preconditioner is built using the block-diagonal of C matrix.

It is not suprised that it is not easy to obtain a good preconditioner that can significantly

accelerate the convergence and runtime of a SVD problem. However, it is important that

a state-of-the-art SVD solver can fully take advantage of a good preconditioner if it is

available. For instance, for Rucci1 matrix, the convergence is significantly improved and

thereby the runtime performance. In practice, PRIMME_SVDS provides full flexibility for

users to operate on their preconditioning function that could be designed and constructed

for A and AT or directly for C and B.

2.7.2 Comparison with PROPACK on a shared memory system

We compare the performance of PRIMME_SVDS with PROPACK on a shared memory

system. Both solvers are provided with the multithreaded sparse matrix-vector operation

in librsb [89] and linked with a threaded version of BLAS, the AMD Core Math Library

(ACML). We use a single node of SciClone with a total of 12 threads.

Table 2.14 shows the results in terms of matrix-vector products and time. For

PRIMME_SVDS the results are qualitatively similar to the previous numerical experi-
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Table 2.13: Seeking 5 largest and smallest singular triplets with user tolerance 1e-6 and 1e-12
without preconditioning. We report both runtime and number of matrix-vector operations from
both PHSVDS variants: PHSVDS(GD+k) and PHSVDS(JDQMR) in PRIMME_SVDS and LBD in
SLEPc.

P(GD+k) P(JDQMR) LBD Prec
Matrix MV Sec MV Sec MV Sec MV Sec

the 5 largest singular values with tolerance 1E-6
cage15 1069 81.7 1379 85.9 744 48.8

atmosmodl 2077 25.3 2161 17.7 2264 26.0
Rucci1 285 1.3 463 2.0 184 1.4

LargeRegFile 109 0.9 167 1.2 84 1.3
sls 105 0.8 189 1.3 78 1.3

cont1_l 1521 21.1 2595 25.6 12408 201.4
the 5 largest singular values with tolerance 1E-12

cage15 2393 183.4 3559 219.0 1272 94.2
atmosmodl 6453 78.8 7711 61.8 8824 107.8
Rucci1 577 2.6 945 3.9 264 2.2

LargeRegFile 157 1.3 301 2.0 98 1.7
sls 177 1.3 357 2.4 88 1.4

cont1_l 15371 220.9 12203 111.4 35864 654.6
the 5 smallest singular values with tolerance 1E-6

cage15 1247 70.8 1411 87.8 874 92.4 375 52.5
atmosmodl 88459 1081.4 70873 569.2 21104 392.2 187 61.0
Rucci1 125067 520.7 91123 380.9 1118532 14914.2 11947 97.4

LargeRegFile 19391 160.5 12837 83.2 15056 411.2 363 3.6
sls 31551 211.2 22043 165.0 100956 3568.6 2755 23.0

the 5 smallest singular values with tolerance 1E-12
cage15 2691 203.4 3419 210.7 1124 119.1 711 101.7

atmosmodl 276305 3396.9 211471 1691.8 753886 14176.2 3205 1190.6
Rucci1 295439 1239.2 259681 1087.5 1669040 22554.3 27267 222.2

LargeRegFile 61149 522.9 29027 188.9 49906 1363.8 793 8.2
sls 198193 1610.2 48769 313.2 218134 7807.1 10969 75.9

ments, demonstrating a clear advantage in robustness and performance. PROPACK,

even with fine-tuned settings, has trouble converging to the largest singular values of the

most difficult case and to the smallest singular values of almost all cases. And when it

converges it is significantly slower than PRIMME_SVDS. It is also slower than the mathe-

matically equivalent LBDmethod in SLEPc, probably because of the use of partial instead

of full reorthogonalization.
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Table 2.14: Seeking 5 largest and smallest singular triplets with user tolerance 10−6 and 10−12

without preconditioning. We report both runtime and number of matrix-vector operations from both
PHSVDS variants: PHSVDS(GD+k) and PHSVDS(JDQMR) in PRIMME_SVDS and PROPACK.

P(GD+k) P(JDQMR) PROPACK
Matrix MV Sec MV Sec MV Sec

the 5 largest singular values with tolerance 10−6

cage15 872 532.9 1238 499.9 1640 741.7
atmosmodl 1824 233.3 2514 184.6 15308 1429.2
Rucci1 206 8.2 426 11.2 348 28.0

LargeRegFile 52 6.6 108 7.5 144 24.8
sls 50 3.3 154 5.4 144 11.9

cont1_l 1292 217.8 2990 210.8 – –
the 5 smallest singular values with tolerance 10−6

cage15 1054 652.7 1428 600.3 1368 659.3
atmosmodl 64082 8603.8 69292 5548.4 – –
Rucci1 86072 2290.5 103762 2394.1 – –

LargeRegFile 16464 1168.4 14434 530.8 – –
sls 20134 500.9 18122 390.5 – –

2.7.3 Strong and Weak Scalability

We investigate the parallel performance of various methods in PRIMME_SVDS and in

SLEPc on a distributed memory system. All methods use the parallel sparse matrix-vector

operation in PETSc.

In the first comparison, we report speedups in time of various methods over SLEPc’s

LBD method as we vary the number of processes from one to 100. The other methods

are the GD+k method in the first stage of PRIMME_SVDS, and GD+k, Jacobi-Davidson

(JD), and Krylov-Schur (KS) as implemented in SLEPc, all operating on C. The runs

were made on SciClone and the results are shown in Figure 2.10. While PHSVDS clearly

outperforms the rest of the solvers in terms of time, what is more relevant is that the ratio

for PHSVDS keeps almost constant with the number of processes. This is an indicator

that PRIMME_SVDS has similar parallel scalability with LBD, and better scalability than

other SLEPc solvers (including the similar GD+k). Notice that the matrix of the left plot,

delaunay_n24, is extremely sparse with only 3 elements per row, so this scalability study

reflects better the parallel efficiency of the solver and much less of the PETSc matvec.

To further study the parallel scalability of the code, we again use the delaunay_n24
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Figure 2.10: Speedup over SLEPc LBD computing 10 largest and smallest singular values on de-
launay_n24 (left) and relat9 (right) with user tolerance 10−6 without preconditioning when increas-
ing number of MPI processes on SciClone. The sparse matrix-vector operations are performed
using PETSc.

sparse matrix and also the two somewhat denser matrices, cage15 and relat9. The relat9

is rectangular with a small dimension of about half a million which is used as a stress

test for strong scalability. We also test the weak parallel scalability of the code using a

series of 3D Laplacian matrices, making one of its dimensions proportional to the number

of processes; each process maintains 8,000 rows when the number of the MPI processes

increases from 64 to 1000. The plots in Figures 2.11 show the scalability performance

of PRIMME_SVDS on Edison when seeking 10 extreme singular triplets with and without

preconditioning.

In Figure 2.11(a), PRIMME_SVDS can achieve near-ideal speedup until 256 pro-

cesses on relat9, despite the small size. With 512 processes, the speedup starts to level

off as each process has only about 1,000 rows of a very sparse matrix. In Figure 2.11(b),

we use the HYPRE boomerang multigrid preconditioner so the parallel efficiency is domi-

nated by this library function. Still, the speedup is good up to 512 processes implying that

good preconditioners should be used when available. Figure 2.11(c) illustrates the same

good scalability performance when seeking largest singular triplets without precondition-

ing. In Figure 2.11(d) the code demonstrates good performance under weak scaling of

the 3D Laplacian when adjusting the number of nodes from 80 to 200. The number of
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MPI processes increases accordingly so that the local matrix size in each MPI process is

kept fixed to 8000.
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Figure 2.11: Speedup and runtime seeking the 10 smallest singular triplets in relat9 without pre-
conditioning (a) and in cage15 with HYPRE boomeramg as preconditioner (b), and the 10 largest
in delaunay_n24 (c); parallel efficiency and runtime seeking the 50 largest singular values in 3D
Laplacian with dimension 8,000 times the number of precesses (d).

2.8 Conclusion and Future Work

In this research, we present a two stage meta-method, PHSVDS, that computes small-

est or largest singular triplets of large matrices. In the first stage PHSVDS solves the

eigenvalue problem on the normal equations as a fast way to get sufficiently accurate

approximations, and if further accuracy is needed, solves an interior eigenvalue problem

from the augmented matrix. We have presented an algorithm and several techniques re-
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quired both at the meta-method and at the eigenvalue solver level to allow for an efficient

solution of the problem. We have motivated the merit of this approach theoretically, and

confirmed its performance through an extensive set of experiments.

We also implemented PHSVDS on top of PRIMME to provide a state-of-the-art robust,

high performance SVD solver supporting accurate computation of extreme singular triplets

for both square and rectangular matrices, with or without preconditioning. In particular,

we show that our SVD solver can take advantage of a preconditioner, if present, in order

to effectively tackle very large-scale real-world problems. In addition, we demonstrate

the good scalability of our SVD software, PRIMME_SVDS, on parallel machines under

different parameter settings.
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Chapter 3

Efficient Computation of Interior

Eigenvalues

3.1 Introduction

We examine the problem of seeking a few interior eigenvalues of a real symmetric matrix

A. We assume that the user provides at least one shift τ or multiple shifts τ1, τ2, . . . , τk

near the eigenvalues of interest. We denote by ∥.∥ the 2-norm of a vector or a matrix, by

AT the transpose of A.

Iterative methods are often the only means for computing eigenpairs (λ, x) when A

is a large, sparse matrix. Well-known examples include the Lanczos method [99], the

Arnoldi method [79] and the (Jacobi-)Davidson type methods [27, 112]. Typically, most

of iterative methods approximate eigenvalues of a large sparse matrix A by constructing

a sequence of subspaces Vm that contain increasingly accurate approximations to the

desired eigenvectors. After building a subspace Vm, the second step is the use of a pro-

jection technique to find an eigenvector approximation from that subspace that is best in

some way. This step is critical for the convergence of the method because an approx-

imate eigenpair from the subspace is used to restart the method and often even in the

computation of a vector for expanding the subspace.
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The most commonly used method for extracting an approximation from a subspace is

the Rayleigh-Ritz method. For a symmetric matrix, the Rayleigh-Ritz method has some

optimality properties for extreme eigenvalues [99]. Unfortunately, for interior eigenvalues,

the Rayleigh-Ritz method could give poor eigenvector approximations even in the sym-

metric case [91, 122]. This is the result of the interlacing property of the Ritz values [99],

which makes Rayleigh-Ritz robust for eigenvalues at the boundary of the spectrum but

not in the interior of spectrum [91, 65, 113].

To cope with interior eigenvalue problems, the best method is to apply the Rayleigh-

Ritz method to a shift and invert operator [108], (A − τI)−1. However, inverting the ma-

trix becomes intractable due to large size of the problem. The harmonic Rayleigh-Ritz

method, mainly due to the early work by Morgan [91] and formally introduced by Paige,

Parlett and Van der Vorst [98], performs Rayleigh-Ritz using the subspace (A− τI)V as

search space to avoid explicitly inverting the matrix (A−τI). The approximate eigenpairs

near τ can be computed more accurately from V once the approximate eigenvectors from

(A− τI)V are determined. In addition, when approximating interior eigenvalues, one can

achieve monotonic convergence of harmonic Ritz values compared to the irregular con-

vergence of Ritz values, which is certainly beneficial for restarting [92]. Therefore, it has

received considerable attention both for interior eigenvalue problems and singular value

problems [91, 92, 59, 60, 8, 69, 74]. Several efficient implementations are also proposed

in the context of the Krylov-Shur method [103] and the Jacobi-Davidson method in [11].

Another remedy for interior eigenvalues is the Refined Rayleigh-Ritz method proposed

by Jia [65]. The refined projection method seeks a unit length refined eigenvector approx-

imation from the subspace V that minimizes the corresponding residual norm with respect

to the shift τ and the subspace V . In the refined projection method, it is proposed to pick

τ as the currently best known approximation for the desired eigenvalue, such as the Ritz

value in the Rayleigh-Ritz method [70] or the Harmonic Ritz value in the Harmonic Pro-

jection method [67]. A more general choice has also been discussed in [111]. A number

of research efforts have been proposed to apply refined projection method to extract bet-
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ter eigenvector or singular vector approximations [68, 69, 66, 74, 60]. Although efficient

implementations of the refined Rayleigh-Ritz methods have been presented for Krylov

methods [65, 8], few studies [66, 39] have discussed how to efficiently carry out refined

projection for non-Krylov subspace methods such as the Generalized Davidson (GD) or

Jacobi-Davidson (JD) type methods.

In this paper, we provide insights and develop practical algorithms to accomplish effi-

cient and accurate computation of interior eigenpairs using refined projection techniques

for non-Krylov methods. We firstly compare different implementations of the refined pro-

jection and analyze their numerical accuracy and computational costs. Based on the

advantages of different approaches, we propose a new hybrid method to more efficiently

find interior eigenpairs without compromising accuracy. We also provide more insights by

investigating the effects of single and multiple user shifts for robustly seeking more than

one eigenvalues. Our numerical experiments illustrates the efficiency and robustness of

the proposed method.

The rest of this chapter is organized as follows: we briefly introduce the Rayleigh-Ritz

procedure and discuss why it may fail to converge in Section 3.2. In Section 3.3, we de-

scribe the refined Rayleigh-Ritz method, discuss the numerical issues and computational

costs of different implementations and present an accurate and more efficient approach.

In Section 3.4, we conclude this research and discuss future work.

3.2 The Rayleigh-Ritz Method

Let V ∈ ℜn×m be an orthonormal matrix, whose columns span an m dimensional sub-

space V. We are interested in iterative methods that only leverage the information about V

and AV to compute approximations for interior eigenvalues. Among them, the Rayleigh-

Ritz projection method is the most popular method.

The Rayleigh-Ritz approach extracts the approximate eigenpairs (θ, u) where u ∈ V
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by imposing the Galerkin condition

Au− θu ⊥ V (3.1)

where V are both a search space and a test space. However, a test space could be flexible

which generates different projection methods (such as Harmonic projection method [91]).

Algorithm 5 describes the Rayleigh-Ritz procedure in the simplest form.

Algorithm 5 The Rayleigh-Ritz Method
1: Given a subspace V of dimension m. Compute an orthonormal basis V , an n by m

orthonormal matrix for V.
2: Compute the m by m projected matrix Hm = V TAV based on (3.1).
3: Compute the eigenpairs (θi, gi) of Hm, i = 1, . . . ,m.
4: Order θi according to the user shift τ , and take (θi, ui) = (θi, V gi) as the approximate

eigenpairs.

Approximate eigenvectors ui = V gi are called Ritz vectors, and ∥ui∥ = 1. The eigen-

value approximations θi = ρ(ui) = gTi Hmgi are called Ritz values, the Rayleigh quotient

of the corresponding vectors ui. To monitor if the current Ritz pairs (θi, ui) approximating

the eigenpairs converged, the most common convergence criterion is shown below based

on a user defined tolerance δuser [105],

∥Aui − θiui∥
∥A∥ ≤ δuser. (3.2)

It is expected that if V contains an approximate eigenspace of A, there should be an

eigenpair (θi, gi) of H such that (θi, V gi) is an approximate eigenpair of A [122]. Jia and

Stewart [70] have shown that if the Ritz value θ converges to the simple eigenvalue λ

and the residual approaches to zero, then the convergence of the Ritz vector u to the

eigenvector x is guaranteed. However, the assumption that the desired eigenvalue is

well separated from the remaining eigenvalues may not hold, especially for interior eigen-

values.

As observed in [91, 92, 122, 70], there are two difficulties to ensure that the Ritz vector
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converges to the eigenvector when seeking interior eigenpairs. First, even though current

subspace contains good approximations for the desired eigenvector, Rayleigh-Ritz may

not extract good Ritz vectors from the subspace, if there are other Ritz values that are

close to the desired Ritz value [91, 92, 70]. Second, spurious Ritz values close to the

desired Ritz value may be produced for interior eigenvalues due to cancellations from

combinations of nearby eigenvectors, which have little to do with the desired eigenvector

x . More importantly, it is difficult to distinguish the right Ritz value from spurious ones

unless the residual norms were computed first, especially when the user shifts are not

close to the desired eigenvalues. In order to overcome the difficulties of the Rayleigh-

Ritz method when targeting interior eigenpairs, the refined projection method could be

leveraged.

3.3 The Refined Rayleigh-Ritz Method

As the subspace V contains an increasingly accurate approximation u to the eigenvector

x, the Ritz value θ can converge to the simple eigenvalue λ [122]. Therefore the problem

can be attacked by retaining the Ritz value and replacing the Ritz vector with a vector

û ∈ V such that ∥Aû− θû∥ is minimized over the subspace. Then the vector û is ensured

to converge to the eigenvector x. This suggests the following procedure proposed by Jia

[65] when we seek a number of k interior eigenvalues:

minimize ∥Aûi − θiûi∥

subject to ûi ∈ V, ∥ûi∥ = 1,
i = 1, 2, . . . , k. (3.3)

where ûi is called refined Ritz vector with respect to some approximate eigenvalue θi.

Since the refined Ritz vector is a better approximation than the Ritz vector in the sense of

smaller residual norm, the Rayleigh quotient θ̂i = ûTi Aûi can be used to replace the Ritz

value θi. The reason is that θ̂i minimizes the ∥Aûi− θ̂iûi∥ over all Ritz values and is likely

to yield a more accurate eigenvalue approximation [122].
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A closely related method is proposed by Morgan in [91], where a spectrum transfor-

mation is used so that the target interior eigenvalues are mapped to the boundary by

applying Rayleigh-Ritz to the operator (A− τI)2, which leads to

(A− τI)2ũ− θ̃ũ ⊥ V, (3.4)

where the smallest eigenpairs (θ̃i, g̃i) of V T (A−τI)2V are computed. The desired interior

eigenvalues θ̃ can be computed as Rayleigh quotients ρ(ũ), where ũ = V g̃i. However,

solving (3.4) directly is not numerically stable since the rounding-off errors could be as

large as ∥A∥2mach. A better way is to solve an optimization problem just like the refined

projection in (3.3),

minimize ∥Aũ− τ ũ∥

subject to ũ ∈ V, ∥ũ∥ = 1.
(3.5)

Compared (3.3) and (3.5), the only difference is that Jia uses updated shifts at each it-

eration while Morgan keeps the original user shifts. Due to this close relationship with

the Refined projection method, we call Morgan’s method, simplified Refined projection

method. Since τ is a fixed shift, an accurate computation using the stable QR factor-

ization and the singular value decomposition can be efficiently carried out in non-Krylov

methods as we will discuss later. In addition, a set of refined Ritz vectors are computed

once when solving (3.5). A similar strategy has also been discussed in [138, 60].

3.3.1 Analysis of computation and accuracy

Let the refined Ritz vector ûi associated with θi be represented by V ĝi, where ∥ĝi∥ = 1.

It is easy to see that:

min∥(A− θiI)ûi∥ = min∥(A− θiI)V ĝi∥

= σmin((A− θiI)V )
(3.6)
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To compute each refined Ritz vector, we have to solve the smallest singular value problem

for each different θi. However, if the refined projection method is applied to a Krylov

subspace such as the ones produced by the Lanczos or Arnoldi methods, the computation

of the refined Ritz vectors can be reduced to solving a set of small SVD problems with the

projected matrix Hm [65, 68, 69]. But in this work, we focus on addressing the general

case of a non-Krylov subspace such as in the GD/JD type methods.

In the first approach (we call it approach I), we compute the QR decomposition of

(A − θiI)V = QiRi, i = 1, 2, . . . , k, where Qi are n × m orthonormal matrices, and Ri

are m × m matrices. Then we solve a set of small SVD problems on each Ri and take

the corresponding right singular vector ĝi. The operation cost for these computations

requires O(knm2) per iteration [122]. Therefore, the total operations of the refined pro-

jection method are O(knm3) per restart in the GD/JD type methods. Compared to the

Rayleigh-Ritz method that required only O(nm2) operations to obtain k number of Ritz

vectors per restart [122], it becomes tremendously expensive taking longer time by a fac-

tor of at least km and needs additional memory for maintaining Qi. However, the merit of

this approach is that it can achieve the same accuracy of ∥A∥mach as the Rayleigh-Ritz

method, where mach is the machine precision. In addition, the QR factorization can take

advantage of BLAS level 3 kernels thereby it could be quite efficiently performed. Overall,

the first approach is a computationally expensive but numerically stable method when the

subspace V is not a Krylov subspace.

To reduce the cost of computing the refined Ritz vectors, the second approach (we

call it approach II) finds the smallest eigenpair for each eigenvalue approximation θi by

solving k small standard eigenvalue problems. The same strategy was also suggested in
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[66]. Specifically, from (3.6) it is easy to derive that:

min∥(A− θiI)ûi∥ = min∥(A− θiI)V ĝi∥

= min((A− θiI)V ĝi)
T ((A− θiI)V ĝi)

= min(ĝTi (V TATAV − 2θiV
TAV + θ2i I)ĝi)

= σmin(V
TATAV − 2θiV

TAV + θ2i I)

= σmin(W
TW − 2θiV

TW + θ2i I)

= σmin(G− 2θiH + θ2i I)

(3.7)

where W = AV , H = V TAV and G = W TW . If we store the G and H matrices and

keep updating them every iteration, the computation of k small eigenvalue problems is

O(km3) which is negligible compared to the overall cost per outer iteration. Compared

to computing the Rayleigh-Ritz vectors, it needs additional memory for storing G and an

additional O(nm2) operations to update it per restart. However, the serious problem with

this approach is its numerical accuracy issue. Since the norm of G is the square of the

norm of W , any operation involving G could be inaccurate since the error bound for the

matrix multiplication is ∥G∥mach. In addition, since the numerical error for forming G

could spread to the formation of (G − 2θiH + θ2i I), therefore the eigenpairs obtained by

solving this eigenvalue problem are either not numerically accurate either. As a result,

the computation of V andW could also accumulate numerical errors during each restart.

We design an approach (we call it approach III) to inherit the merit of the first approach,

good numerical stability, but compute the refined Ritz vectors inexpensively. We compute

a set of the smallest singular values and the right singular vectors of the (A−θI)V instead

of computing only one singular triplet every iteration like the simplified Refined projection

method in (3.5). However, we update the shift θ by the latest desired Ritz value every

iteration. Therefore, the computation of the refined Ritz vectors is reduced at the cost of

the effectiveness of the refined Ritz vectors ûi, i = 2, . . . , k. The similar strategy is also

suggested in [60] where the author only considers the special case when the shift θ = 0.
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We can see that the computation of the refined Ritz vectors requires O(nm2) operations

per iteration and O(nm3) operations per restart, which is still much higher than that of

computing the Ritz vectors. Although the effectiveness of other refined Ritz vectors is

reduced, these approximations have the desirable property of monotonic convergence to

targeted eigenvalues as claimed in [60, 138]. In addition, it may provide a better subspace

than the original refined projection method at the early stage of the convergence. The rea-

son is that the Ritz values θi could be very bad approximations of the actual eigenvalues

therefore the resulting refined Ritz vectors obtained by solving each SVD problem with

shift θi could be much worse than these obtained by solving only one SVD problem with

the target shift.

Another approach we propose (we call it approach IV) is similar to the second ap-

proach that solves the smallest eigenvalue problem rather than the smallest singular value

problem. In contrast, it follows the spirit of the third approach that solves only one smallest

eigenvalue problem to obtain all refined Ritz vectors. This approach may suffer from the

same numerical problems as the second approach but has the least computational cost

of only O(m3) per iteration. Also, it needs an additional O(nm2) operations to update G

per restart, which is similar to the Rayleigh-Ritz method.

The last approach (we call it approach V) is the reformulation of Morgan’s method

[91], the simplified Refined projection method as described in (3.5). It is similar to the

third approach but uses fixed user shifts. Therefore, it still inherits the features of good

numerical stability and overall convergence since it produces a set of refined Ritz vectors

with one shift in each iteration. In particular, its computational costs could be substantially

reduced toO(nm2) per restart, just like the fourth approach and the Rayleigh-Ritz method.

This is because there is no need to perform a full QR factorization of (3.5) at every iteration

since τ remains constant. Instead, as part of Gram-Schmidt, we add one more column

to the orthonormal matrix Q and to the matrix R and only a full QR factorization of R is

needed at restart.

However, there are two serious disadvantages for this approach. First, even though
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this approach can correctly select target interior eigenvalues and achieve monotonic con-

vergence in terms of residual norm, it may converge much slower than the other ap-

proaches. The reason is that solving (3.3) with updated shifts could generate the small-

est possible Lehmann interval [111] and therefore produce a better approximation to the

target eigenvalue λ than solving (3.5) with a fixed shift. Second, solving (3.5) with a fixed

shift tends to converge to the interior eigenvalues nearest to user shift first while solving

(3.3) with updated shift approximating target eigenvalue can be configured to converge

from one direction nearest to user shift. For instance, in some large-scale applications,

the target shift τ is placed slightly to the right of the origin in order to seek a few posi-

tive interior eigenvalues [149]. Although one can search all nearby eigenvalues to seek

desired direction of interior eigenvalues, it can be less efficient especially when a lot of

unwanted eigenvalues have to be computed firstly.

3.3.2 Comparisons between various approaches

In order to investigate the performance of these five approaches, we incorporate them

into the GD algorithm, a basic version of GD in [117], as shown in Algorithms 6 and 7.

We search for nev interior eigenpairs of the matrix NOS3 using these refined projection

approaches.

Figure 3.1 compares the convergence of five different approaches when seeking four

interior eigenvalues with single shift and multiple shifts. In order to make a fair comparison

of convergence, we set the tolerance to be achievable for all approaches. Also, we have

to mention that these user shifts are not used for computing refined Ritz vectors but used

to select the desired Ritz values in first four approaches. If a single shift is used, then it

will be used for targeting all desired number of interior eigenvalues; If multiple shifts are

used, then each shift is used for determining the interior eigenvalues after one eigenvalue

is found. For approach V, these shifts are used as τ in the computation of refined Ritz

vectors in (3.5).
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Algorithm 6 The Generalized Davidson(mmin,mmax) algorithm
1: start with starting vector v0 and user shifts τi, i = 0, . . . , nmv
2: t(0) = v0, l = m = 0, X = [ ]
3: while l < nev and nmv < max_num_matvecs do
4: Orthonormalize t(m) against vi, i = 1, . . . ,m, m = m+ 1, vm = t(m−1), wm = Avm
5: Hi,m = vTi wm for i = 1, . . . ,m
6: if (App == 2 ∥ App == 4) then
7: Gi,m = wT

i wm for i = 1, . . . ,m
8: end if
9: ĝi

old = ĝi, i = 1, . . . ,m
10: Compute eigendecomposition H = SΘST

11: Call algorithm 10 to obtain τ and sort Θ closest to τ w.r.t. target eigenvalues
12: if (App == Hybrid) then
13: Call Algorithm 9 with Θ for computing refined Ritz vectors ĝi
14: else
15: Call Algorithm 7 with Θ for computing refined Ritz vectors ĝi
16: end if
17: u(m) = V ĝ1, θ(m) = θ̂1 = ĝi

THĝi, w(m) = Wĝ1, r(m) = w(m) − θ(m)u(m)

18: while ∥r(m)∥ ≤ tol do
19: λl+1 = θ(m), X = [X,u(m)], l = l + 1, m = m− 1, H = 0
20: if l == nev then
21: Return all converged eigenpairs with desired accuracy
22: end if
23: if (App == 1 ∥ App == 2) then
24: Compute QR decomposition of ĝ and set ĝ = Q
25: end if
26: vi = V ĝi+1, wi = Wĝi+1, θi = θi+1, H = ĝTi+1Hĝi+1 for i = 1, . . . ,m
27: if (App == 2 ∥ App == 4) then
28: G = ĝTi+1Gĝi+1 for i = 1, . . . ,m
29: end if
30: u(m) = v1, θ(m) = θ1, r(m) = w1 − θ(m)u(m)

31: end while
32: if m ≥ mmax then
33: if (App == 1 ∥ App == 2) then
34: Compute QR decomposition of ĝ and set ĝ = Q
35: end if
36: Call algorithm 8 for a locally optimal restarting technique (+k)
37: m = mmin + k, vi = V ĝi, wi = Wĝi, H = ĝTi Hĝi for i = 1, . . . ,mmin

38: if (App == 2 ∥ App == 4) then
39: G = ĝTi Gĝi for i = 1, . . . ,mmin

40: end if
41: end if
42: Precondition the residual tm = Prec(rm)
43: end while
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Algorithm 7 Check different approaches for computing refined Ritz vectors
1: if App == 1 then
2: for i = 1 : k do
3: W − θiV = QiRi

4: compute smallest singular value σ1 and its right singular vector ĝ1 of Ri

5: end for
6: else if App == 2 then
7: for i = 1 : k do
8: G− 2θiH + θ2i I = QiRi

9: compute the smallest eigenpair (σ1, ĝ1) of Ri

10: end for
11: else if App == 3 then
12: W − θ1V = Q1R1

13: compute singular values R1 = UΣST with σ1 ≤ σ2 ≤ . . . ≤ σm
14: ĝ = S
15: else if App == 4 then
16: G− 2θiH + θ2i I = Q1R1

17: compute eigendecomposition R1 = SΣST with σ1 ≤ σ2 ≤ . . . ≤ σm
18: ĝ = S
19: else if App == 5 then
20: if m == mmin then
21: Perform full QR, W − τV = Q1R1

22: else
23: Perform one-column updating, W − τV = Q1R1

24: end if
25: compute singular values R1 = UΣST with σ1 ≤ σ2 ≤ . . . ≤ σm
26: ĝ = S
27: end if

Algorithm 8 Locally optimal restarting technique (+k) for GD
1: Orthogonalize soldi , i = 1, . . . , k against s
2: set s = [s1, . . . , smin, sold1 , . . . , soldk ]
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Figure 3.1: Compare the convergence of five different approaches on matrix NOS3 from the
Florida Sparse Matrix Collection [28] with single shift and multiple shifts, respectively. The largest
and smallest eigenvalues of matrix NOS3 are 689.9 and 0.018. The targeted interior eigenvalues
are 20, 20.1, 20.9, 21, respectively.

In both cases, the approaches III and IV converge faster than the approaches I and

II at the beginning and keep their advantages to the end despite being less expensive.

The reason is that these two approaches build better subspace than the approaches I

and II in the early stage. When the Ritz values are not good, the quality of refined Ritz

vectors computed with each Ritz value (approach I and II) may be worse than those with

only one target Ritz value (approach III and IV). These are indeed observed in Figure 3.1.

Theoretically, one may expect when the Ritz values are good approximations of the actual

eigenvalues, the subspace built by these refined Ritz vectors computed individually should

be better than these computed with only one target Ritz value. However, as revealed in

Figure 3.1, this strategy that computes a set of refined Ritz vectors with only one target

Ritz value seems also to improve the global convergence. On the other hand, we observe

that the approach V converges as fast as the approaches III and IV but much worse when

the Ritz value starts approximating the target eigenvalue well. It confirms our previous

discussion that as the Ritz value approximates the target eigenvalue better and better, the

benefits with more accurate shifts in (3.3) magnify in terms of the improvement of refined

Ritz vectors compared to the ones with a fixed shift (3.5) when the problem gets harder.
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This is also observed in our subsequent experiments.

3.3.3 An efficient and accurate hybrid method

Our preliminary experimental results reveal that approaches III and IV are not only com-

putationally less expensive than their counterparts but also display better convergence.

However, we have to make two comments. First, when the shift τ is a highly accurate

approximation to the desired eigenvalue, the approach V is expected to deliver the same

quality of refined Ritz vectors as other approaches with updated shifts since the difference

between τ and θ is negligible. See also discussions of the refined projection in [138, 149].

It implies that if the shift τ is very close to the desired eigenvalue, the approach V should

be the method of choice among these approaches because it is a numerically stable and

themost efficient one. In addition, approach II may not seem a good choice for the compu-

tation of the refined Ritz vectors in general, but one significant advantage of this approach

is that it enables inexpensive computation of refined Ritz vectors with multiple different

shifts. This could be used to select the right Ritz value to efficiently compute the refined

Ritz vectors when the spurious Ritz values appearing close to the target eigenvalue is

detected. Therefore, to fully take advantage of the merits of these approaches, we pro-

pose an efficient and accurate hybrid method for implementing the refined projection in

non-Krylov methods, as shown in Algorithm 9.

First, our hybrid approach takes advantage of the cheaper computation of approach

IV while the numerical errors that it introduces are below the residual norm of the ap-

proximations of the iterative solver. The main goal of this stage is to leverage its faster

convergence and inexpensive computation of the refined Ritz vectors. In addition, as long

as the condition number of the target interior eigenvalues is not too large (≤
√
mach), the

refined Ritz value θ̂ will converge to the target eigenvalue and could be much more accu-

rate than the corresponding refined Ritz vectors to the target eigenvector [66, 149]. If low

accuracy is required, this stage is expected to be sufficient. However, if high accuracy
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is demanded, a second stage is needed to continue refining the accuracy of the desired

eigenpairs, especially for improving the refined Ritz vectors.

Second, note that as the angle between the search space V and the deisred eigen-

vectors approaches to zero, it is known theoretically [70, 122] and empirically [91, 67] that

spurious Ritz values could frequently appear close to the desired eigenvalue, which can-

not be distinguished from the right Ritz pair without computing its residual norm. This case

would happen more frequently if the user shift τ is not close to the desired eigenvalues.

If such a spurious Ritz value is picked up, the corresponding computed eigenvector ap-

proximation may be poor [70], which not only leads to the irregular convergence but also

damages the convergence if the bad eigenvector approximations are chosen to restart

with [103]. Therefore, how to appropriately select the right Ritz value to compute refined

Ritz vectors is very important. We develop a new inexpensive scheme to dynamically

detect spurious eigenvalues in order to avoid misconvergence and reduce irregular con-

vergence by taking into account the merits of the approach II.

Third, when the residual norm approaches ∥A∥2mach (which can be monitored), we

switch to approach V which allows convergence to ∥A∥mach. In the same spirit as in the

development of our two stage SVD method [138], we perform one-column updating of

the QR factorization since the Ritz value is good enough and almost remains constant in

Rayleigh-Ritz. Since τ is set to be θ̂ computed from the last interation in the first stage and

remains constant, there is no need to perform a QR factorization ofAV −τV at every step.

Instead, as part of Gram-Schmidt, we update the factorization matrices Q and R with a

new column. A full QR factorization is only needed at restart. Then, following [122], we

compute the refined Ritz vectors by solving the small SVD problem with R, and replace

the targeted Ritz value with the Rayleigh quotient of the first refined Ritz vector û.

Approaches II and IV have similar cost to computing the Ritz vectors. Solving ap-

proach V with a fixed shift requires the same computational expense as the Rayleigh-Ritz

procedure. Therefore, the total computation of the proposed hybrid approach is as effi-

cient as the Rayleigh-Ritz method but with added robustness due to the monotonic con-
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Algorithm 9 A hybrid method for refined projection in line 14 of Algorithm 6
First-stage with Approaches IV:

1: if (∥(A− θ̂iI)ûi∥ ≤ ∥A∥2mach) then
2: while Criteria are not meet do
3: τ = θi, i = i+ 1
4: Set app = 4 and call Algorithm 7 with shift τ to compute refined Ritz vectors
5: end while
6: else

Second-stage with Approach V:
7: Set τ = θ̂ obtained in the last iteration of the first stage
8: Set app = 5 and call Algorithm 7 with shift τ to compute refined Ritz vectors
9: end if

vergence of the refined projection method in the context of interior eigenvalue problems.

In Figure 3.2, we compare our hybrid approach with approach III as well as Rayleigh-

Ritz for seeking a few interior eigenvalue greater than τ = 20. When seeking one interior

eigenvalue, our hybrid approach (denoted as red line) can dynamically switch from ap-

proach IV with automatically filtering out spurious Ritz values to approach V with efficient

QR updating. The switching tolerance is denoted as pink dashed line. Compared to

approach III (denoted as blue line), it achieves very close performance but with much

smaller computational costs. Rayleigh-Ritz converges very irregularly and slowly in this

case largely because of the effect of spurious Ritz value and restarting with much worse

eigenvector approximations. In addition, we see that when seeking several interior eigen-

values, the hybrid approach can still converge as efficiently as the approach III.

3.3.4 Effect of single user shift and multiple user shifts on seeking many

eigenvalues

In this section, we study a subtle issue involving the shift selection for determining the

order of the desired interior eigenvalues in the refined Rayleigh-Ritz procedure. We have

observed that the convergence of the interior eigenvalues that are farther away from the

given user shift in the refined Rayleigh-Ritz procedure is sometimes irregular, with long

plateaus, and sometimes may stagnate. It often happens when seeking several interior
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Figure 3.2: Sample example to show the convergence of hybrid approach for seeking one and
several interior eigenvalues respectively.

eigenvalues with only one user shift. When the user provides only one shift, the first inte-

rior eigenvalue usually has the desired property of monotonic convergence since the user

shift is closest to that interior eigenvalue. However, after the converged interior eigen-

value is locked out, the distance between the user shift and the next interior eigenvalue

becomes increasingly larger, which makes it easier for spurious eigenvalues to appear

and be selected as the targeted Ritz value. The refined Ritz vectors computed based on

these spurious Ritz values as shifts, build a less meaningful subspace thereby the refined

projection method often displays irregular convergence or even may not converge.

One possible solution to overcome this difficulty is to ask the user to provide many

shifts, each closest to a required eigenvalue. However, it may not be a practical solution

because the user may not have complete knowledge of where these desired eigenvalues

are located in the spectrum. We propose to use the previous converged interior eigen-

values to derive more tight shifts. In addition, based on the user target eigenvalues (GT:

greater than τ , or LT: smaller than τ , or closest to τ ), we can use the perturbation bounds

of the approximations of the eigenvalue value we seek. For instance, specifically for GT,

we know that λl ∈ [θ̂l, θ̂l + rl], where rl = ∥Aû − θ̂lû∥. It is easy to see the next target

eigenvalue must have λl+1 > θ̂l+ rl based on the interlacing Property theory [99]. There-
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fore, we can compare λl + rl with the next available shift τl+1 and choose the one that is

closer to the next desired interior eigenvalues. We show this strategy in Algorithm 10.

Algorithm 10 A new user shifts updating strategy
1: if (target == GT) and (l ≥ 1) and (X is not empty) then
2: τ = (τl+1,λl + rl)
3: else if (target == LT) and (l ≥ 1) and (X is not empty) then
4: τ = (τl+1,λl − rl)
5: else
6: τ = τl+1

7: end if

Figure 3.3 shows the comparison results between the new and old shifting strategy

for selecting the desired Ritz value given one user shift and multiple user shifts. First,

we see that the new shifting strategy and multiple shifts can deliver the convergence for

all four interior eigenvalues while the old shifting strategy fails to converge to the fourth

one. In addition, as the distance between the user shift and the interior eigenvalues in-

creases, the convergence of the old shifting strategy with one shift becomes more and

more irregular than that of the new shifting strategy also with one shift. The convergence

of the method with multiple shifts displays the least irregular convergence. This is ex-

pected since tighter shifts can significantly reduce the chance of spurious eigenvalues

appearing. Furthermore, the new shifting strategy offers faster convergence speed than

other two strategies.

3.4 Conclusion and Future Work

The computation of interior eigenvalues of large sparse matrices remains a challenging

problem. Compared to the Rayleigh-Ritz method, the refined and harmonic Rayleigh-Ritz

methods are more effective ways to extract Ritz pairs and achieve monotonic conver-

gence of the eigenvalues, but with a much higher computational cost in Davidson type

methods. In this work, we firstly analyze various different implementations of the refined

Rayleigh-Ritz, and present a new accurate and efficient approach when computing a few
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Figure 3.3: Sample example to show the difference between new and old shifting strategy with
one user shift and multiple user shifts.

interior eigenvalues for non-Krylov methods. We also propose a new scheme for picking

up the appropriate shift when only one user shift is available and compare its perfor-

mance with that has multiple user shifts for robustly seeking more than one eigenvalues.

Our numerical experiments demonstrate the effectiveness and accuracy of the presented

method.
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Chapter 4

A Novel Trace Estimator of Large

Matrix Inverse

4.1 Introduction

The need to estimate the trace of a matrix which is implicitly available through a function

arises in many applications. The main purpose of this research is to develop practical

numerical techniques to address the computation of the trace of the inverse of a large,

sparse matrix. But our technique can also be adapted to other functions such as the trace

of the logarithm (yielding the determinant) or the trace of the matrix exponential.

For small size problems, computing A−1 through a dense or sparse LDU decomposi-

tion is the most efficient and accurate approach [33]. This works well for discretizations

of differential operators in low dimensions but becomes intractable in high dimensional

discretizations. For larger size problems, domain decomposition and divide and conquer

strategies are more tractable but still expensive [125]. In many cases, however, a low ac-

curacy approximation is sufficient. Numerous methods have been presented to address

this need for estimating the trace of the inverse of symmetric positive definite matrices

through Gaussian quadratures [12, 50], modified moments [90, 21], and MC techniques

[12, 50, 129, 17, 90, 6].
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MC methods for computing the trace of a matrix are based on the structure of the

Hutchinsonmethod [64], which iteratively computes an average of matrix quadratures with

random vectors. Variants of MC estimators are mainly analyzed and compared based on

the variance of one sample [6, 104], which depends on the quality of the selected random

vectors. For real matrices, choosing random vectors having each element ±1 with equal

probability is known to minimize variance over all other choices of random vectors [64, 6]

and therefore has been widely used in many applications. For complex matrices, the

same result holds for vectors with ±1,±i elements. In [6], Avron and Toledo analyze the

quality of trace estimators through three different metrics such as trace variance, (ϵ, δ)-

approximation of the trace, and the number of random bits for different choices of random

vectors. In [104], Khorasani and Ascher improve the bounds of (ϵ, δ)-approximation for

the Hutchinson, Gaussian and unit vector estimators. However, the structure of the matrix

can also be exploited to accelerate the convergence of the Hutchinson method.

There has been a number of efforts to combine the Hutchinson method with well-

designed vectors based on the structure of the matrix [129, 17, 126, 116]. In [17], they

use columns of the Hadamard matrix, rather than random vectors, to systematically cap-

ture certain diagonals of thematrix. Then, theMC iteration achieves the required accuracy

by continuously annihilating more diagonals with more Hadamard vectors. However, the

location of the nonzeros, or of the large elements of A−1, often does not coincide with

the diagonals annihilated by the Hadamard vectors. In [126], graph coloring and prob-

ing vectors are used to identify and exploit special structures, such as bandedness or

decaying properties in the elements of A−1, to annihilate the error contribution from the

largest elements. However, if the error for the chosen number of colors is large, all work

has to be discarded and the probing procedure repeated until the accuracy is satisfied.

In [116], the authors introduce hierarchical probing on lattices to avoid the previous prob-

lems and achieve the required accuracy in an incremental way. For all these approaches,

the approximation error comes from non-zero, off-diagonal elements that have not been

annihilated yet. Instead, this research looks only at the main diagonal of A−1.

94



Our motivation for focusing only on the main diagonal is that the trace of A−1 is simply

a summation of a discrete, 1-D signal of either the eigenvalues or the diagonal elements

of A−1. Although we cannot compute all the diagonal elements, we may have an ap-

proximation to the whole signal from the diagonal of an approximation of A−1 (e.g., of a

preconditioner). If the two diagonals have sufficiently correlated patterns, fitting methods

can be used to refine the approximation both for the diagonal and the trace. Therefore, the

proposed method may serve as a standalone kernel for providing a good trace estimate

with a small number of samples. But it can also be viewed as a preprocessing method

for stochastic variance reduction for MC in cases where the variance reduces sufficiently.

This can be monitored dynamically by our method.

We present several techniques that improve the robustness of our method and im-

plement dynamic error monitoring capabilities. Our extensive experiments show that we

typically obtain trace estimates with much better accuracy than other competing methods,

and in some cases the variance is sufficiently reduced to allow for further improvements

through an MC.

The remainder of this work is structured as follows. In Section 4.2, we review the

Hutchinson method and the unit vector estimator, discuss different means of computing

an approximation, describe the deflation techniques for reducing stochastic variance and

provide a brief comparison of different MC methods. Section 4.3 presents a number of

sampling strategies and illustrates two fitting models to exploit the pattern correlation be-

tween the diagonal of the approximation and the diagonal of the matrix inverse. In Section

4.4, we propose a dynamic evaluation framework for estimating the variance of different

MC methods and monitor the trace error within the fitting stage. In Section 4.5, we give

some numerical experiments to demonstrate the effectiveness of the proposed method.

Conclusions and further thoughts are gathered in Section 4.6.
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4.2 Preliminaries

We denote by ∥.∥ the 2-norm of a vector or a matrix, by N the order of A, by Z an approx-

imation of A, by D the diagonal elements of A−1, byM the diagonal elements of Z−1, by

Tr(f(A)) the trace of the matrix f(A), and by extension, Tr(D) the sum of the elements

of the vector D, by Tei(f(A)) the MC trace estimator of f(A) using unit (orthocanoni-

cal) vectors, by TZ2(f(A)) the MC trace estimator of f(A) using Rademacher vectors, by

diag(.) the diagonal operator of a matrix, and by V ar(.) the variance operator of a random

variable or a vector.

4.2.1 Hutchinson trace estimator and unit vector estimator

The standard MC method to estimate the trace of the matrix inverse is due to Hutchinson

[64]. It estimates the Tr(A−1) by averaging s quadratures with random vectors zj ∈ ZN
2 =

{z(i) = ±1 with probability 0.5},

TZ2(A
−1) =

1

s

s∑

j=1

zTj A
−1zj . (4.1)

The variance of this method is given by

V ar(TZ2(A
−1)) =

2

s
∥A−1∥2F − 2

s

N∑

i=1

∥Di∥2. (4.2)

The variance of this trace estimator is proven to be minimum over all vectors with real

entries [64]. The confidence interval of a MC method reduces as O(
√

V ar(TZ2(A
−1)))

for the given matrix.

The unit vector estimator uniformly samples s vectors from the orthocanonical basis

{e1, . . . , eN} [6],

Tei(A
−1) =

N

s

s∑

j=1

eTijA
−1eij , (4.3)

96



where ij are the random indices. The variance of the unit vector estimator is given by

V ar(Tei(A
−1)) =

N2

s
V ar(D). (4.4)

The variance of the Hutchinson method depends on the magnitude of the off-diagonal

elements. It converges in one step for diagonal matrices and rapidly if A−1 is highly

diagonal dominant. On the other hand, the variance of the unit vector estimator depends

only on the variance of the diagonal elements. It converges in one step if the diagonal

elements are all the same and rapidly if the diagonal elements are similar. Thus, the

method of choice depends on the particular matrix.

4.2.2 Reducing stochastic variance through matrix approximations

Given an approximation Z ≈ A, for which Z−1 and Tr(Z−1) are easily computable, we

can decompose

Tr(A−1) = Tr(Z−1) + Tr(E), (4.5)

where E = A−1 −Z−1. We hope that by applying the MC methods on E instead on A−1,

the variance of the underlying trace estimator, in (4.2) or (4.4), can be reduced, thereby

accelerating the convergence of MC. Among many ways to obtain a Z, we focus on the

following two.

The first approach is when Z−1 = (LU)−1, where the L, U matrices stem from an

incomplete LU (ILU) factorization of A, one of the most commonly used preconditioners.

If the ILU is sufficiently accurate, then M = diag(Z−1) may be a good approximation to

D. To obtain the vector M without computing the entire Z−1, we can use an algorithm

described in [37]. This algorithm requires the computation of only those entries Z−1
ij for

which Lij or Uij ̸= 0. If the L,U factors are sufficiently sparse or structured, this compu-

tation can be performed efficiently (see [82] for an example in the symmetric case).

The second approach is a low rank approximation Z−1 = V Λ−1UT , where Λ is a

diagonal matrix with the k ≪ N smallest singular values of A, and U and V are the cor-
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responding left and right singular vectors. Eigenvalues and eigenvectors can be used

instead but we do not consider it in this research. This subspace can be obtained directly

by an iterative eigensolver [135, 136] as a preprocessing step. The cost of this procedure

is relatively small since the singular space is not needed in high accuracy. Alternatively,

the space can be approximated by methods such as eigCG [119] or eigBiCG [1] while

solving linear systems of equations during the MC method. This incremental approach

adds only minimal overhead to the iterative linear solver but it cannot compute as many

and as good quality singular vectors as the first approach. The quality of the approxima-

tion ofA−1 by Z−1 depends on the separation of the computed singular space. Therefore,

depending on thematrix, more singular triplets may be needed for a good low rank approx-

imation. On the other hand, this space can also be used to deflate and thus accelerate

subsequent linear systems. Once the singular space is computed, each diagonal element

can be obtained with a single inner product of short vectors, Mi = V (i, :)TU(i, :)/λi, and

thus it is computationally inexpensive. Finally, the incremental SVD approach requires

some special algorithmic attention during our algorithm, which will be pointed out later.

A computationally inexpensive, albeit less accurate approach for computing an ap-

proximationM is based on variational bounds on the entries of A−1 [12, 102]. Upper and

lower bounds on the i-th diagonal entry A−1
ii are derived inexpensively since they only

depend on estimates of the smallest and largest algebraic eigenvalues, λ1,λN , and the

entries of A. The bounds apply to both symmetric and unsymmetric matrices. For the

case of a real symmetric A, we have [102],

1

λN
+

(λN −Aii)2

λN (λNAii − sii)
≤ (A−1)ii ≤

1

λ1
− (Aii − λ1)2

λ1(sii − λ1Aii)
, (4.6)

where sij =
∑n

k=1AikAkj . However the bounds in (4.6) will not be sharp especially the

upper bound [90] and the error in the approximation can be large.

In general, unless Z−1 is highly accurate, we do not expect Tr(M) to be close to

Tr(A−1). However, the patterns of M and D often show some correlation. We demon-
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strate this for two example matrices, delsq50 and orsreg2205, in Figures 4.1 and 4.2 using

ILU and SVD respectively. For matrix orsreg2205, both the ILU and SVD approaches re-

turn an approximate diagonal M which captures the pattern of D very well, with the M

returned by ILU being slightly better than the one from SVD. For matrix delsq50, SVD

clearly captures the pattern of D better than what ILU does. As in preconditioning for lin-

ear systems of equations, the appropriate approximation technique depends on the given

matrix.

0 500 1000 1500 2000
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Index

V
a
lu

e

 

 
M
D

(a) M does not captures pattern of D

0 500 1000 1500 2000 2500
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

Index

V
a
lu

e

 

 
M
D

(b) M quite close to D and captures pattern

Figure 4.1: The pattern correlation between the diagonals of A−1 and its approximation Z−1

computed by ILU(0) on matrices (a) delsq50 and (b) orsreg2205. delsq50 is created in MATLAB
by
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Figure 4.2: The pattern correlation between the diagonals of A−1 and its SVD approximation Z−1

computed from the 20 smallest singular triplets of A on matrices (a) delsq50 and (b) orsreg2205.
delsq50 is created in MATLAB by
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4.2.3 Comparison of different MC methods and discussion on importance

sampling

Based on (4.2–4.4), we express the variance of the trace estimators TZ2(E) and Tei(E)

as follows:

V ar(TZ2(E)) =
2

s
∥E∥2F − 2

s

N∑

i=1

∥diag(E)∥2, (4.7)

V ar(Tei(E)) =
N2

s
V ar(diag(E)). (4.8)

Figures 4.1 and 4.2 show there is potential for the variances of TZ2(E) or Tei(E) to be

smaller than those of TZ2(A
−1) and Tei(A

−1). However, for a given matrix, we must gauge

which MC method would be better, and whether the variances need further improvement.

The estimator Tei(E) has the interesting property that if M = D + c, where c is a

constant, then its variance in (4.8) is zero and we obtain the correct trace in one step.

Although we cannot expect this in practice, it means that the shift observed between M

and D in Figure 4.2(a) should not affect the effectiveness of Tei(E).

On the other hand, Tei(E) fails to identify correlations of the form M = cD. For such

cases, importance sampling is preferred, where M plays the role of a new distribution

simulating the distribution of D. Assume that both D and M have been shifted by the

same shift so that Mi > 0 if Di > 0, i = 1, . . . , N . To transform M into a probability

mass function, let G = 1
Tr(M)M . To obtain an estimator of the trace of D with importance

sampling, we replace the uniform sampling of Di values with sampling with probability Gi

[88]. Then, instead of (4.3), the importance sampling estimator is:

TIS(D) =
N

s

s∑

j=1

Dij

1
N

Gij
=

Tr(M)

s

s∑

j=1

Dij

Mij
. (4.9)

WhenM = cD, the variance of TIS(D) is zero and it finds the trace in one step. However,

it completely fails to identify shift correlations. In general D andM have a more complex

relationship that neither TIS(D) or Tei(E) can capture. This motivates our idea to explore

general fitting models to approximate D.
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4.3 Approximating The Trace of A Matrix Inverse

We seek to construct a function f , such that D ≈ f(M). Then we can decompose

Tr(A−1) = Tr(D − f(M)) + Tr(f(M)). (4.10)

Tr(f(M)) is trivially computed for a given f . A key difference between the approaches in

(4.10) and (4.5) is that it is easier to find a fitting of the two vectors M and D if a strong

pattern correlation exists between them than to fit the entire matrices A−1 and Z−1. If

Tr(f(M)) is a good approximation to Tr(A−1) and its accuracy can be evaluated easily,

we can directly use this quantity; Otherwise, we can apply the unit vector MC estimator

to compute Tr(Efit) = Tr(D − f(M)), provided that its variance

V ar(Tei(Efit)) =
N2

s
V ar(Efit) (4.11)

is smaller than the variances in (4.2), (4.3), (4.7) and (4.8).

Algorithm 11 Basic algorithm for approximating Tr(A−1)

Input : A ∈ Rn×n

Output : Tr(A−1) estimation and Z ∈ Rn×n

1: Compute M = diag(Z−1), where Z−1 is an approximation to A−1 (Section 4.2.2)
2: Compute fitting sample Sfit, a set of k indices (Section 4.3.1)
3: Solve linear systems Di = eTi A

−1ei, ∀i ∈ Sfit (Section 4.2.2)
4: Obtain a fitting model f(M) ≈ D by fitting f(M(Sfit)) to D(Sfit) (Section 4.3.2)
5: Compute refined trace approximation Tei(Efit) using (4.3)
6: Estimate the relative trace error and, if needed, the variances for different MCmethods

(Section 4.4)

The basic description of the proposed estimator is outlined in Algorithm 11. First, our

method computes an approximation M of D using one of the methods discussed in the

previous section. If that method is based on a preconditioner or a low rank approxima-

tion, that preconditioner Z−1 could also be used to speed up the solution of linear systems

in step 3. Second, it finds a fitting sample Sfit, a set of indices that should capture the
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important distribution characteristics of D. Since we have no information about D, Sec-

tion 4.3.1 discusses how to tackle this task by considering the distribution of M . Third,

it computes the values of D(Sfit) by solving the corresponding linear systems using a

preconditioned iterative solver. Since this is the computational bottleneck, the goal is to

obtain good accuracy with far fewer fitting points than the number of vectors needed in

MC. Fourth, it computes a fitting model that has sufficient predictive power to improve

the diagonal approximation. This critical task is discussed in Section 4.3.2. Finally, since

there are no a-posteriori bounds on the relative error of the trace, we use a combination

of statistical approaches and heuristics to estimate it incrementally at every step. If the

estimated error is not sufficiently small, our method can be followed by an MC method.

For this reason, the algorithm also estimates dynamically the variances of the two differ-

ent MC estimators (4.7) and (4.8) so that the one with the smallest variance is picked.

The dynamic evaluation of error and variances is discussed in Section 4.4.

4.3.1 Point Identification Algorithm

We need to identify a set of indices Sfit based on which we can compute a function f

that fits f(M(Sfit)) to D(Sfit) so that |Tr(f(M)) − Tr(D)| is minimized. It is helpful to

view Tr(D) as an integral of some hypothetical one dimensional function which takes the

valuesD(i) = Di on the discrete points i = 1, . . . , n. Our goal is to approximate
∫ n
0 D(x)dx

with far fewer points than n. Because it is one dimensional, it may be surprising that Monte

Carlo is the standard approach and not numerical integration. However, the effectiveness

of any numerical quadrature rule relies on the smoothness of the function to be integrated,

specifically on the magnitude of its higher order derivatives. In our case, our hypothetical

function may have no smoothness or bounded derivatives. More practically, we deal

with a set of discrete data points in D for which smoothness must be defined carefully.

A typical definition of smoothness for discrete data is based on the Lipschitz continuity,

i.e., |Di − Dj | < c|i − j| [121]. The lower the constant c, the smoother the set of data.
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Hence, for a continuous function, the larger the magnitude of its first derivative, the less

smooth its discretized points are. In the context of integrating an arbitraryD, the first order

divided difference (i.e., the discretized first derivative) Di −Di+1 may be arbitrarily large

in magnitude and therefore numerical integration may not work any better than random

averaging. Even for matrices that model physically smooth phenomena (e.g., in PDEs),

the matrix may be given in an ordering that does not preserve physical locality.

Consider a sorted permutation of the diagonal, D̂ = sort(D). Obviously Tr(D) =

Tr(D̂), but D̂ is monotonic and, based on the definition of Lipschitz discrete smoothness,

it is maximally smooth, i.e.,

|D̂(i)− D̂(j)| ≤ ∆|i− j|, (4.12)

for the smallest possible ∆ ∈ R+ among all permutations of D. Monotonicity implies

that, in the absence of any additional information about the data, a simple trapezoidal rule

minimizes the worst case integration error [72]. In addition, if we are allowed to choose the

integration points sequentially, based on the points computed so far, then a much better

average case error can be obtained [95, 124]. On the other hand, if bounds are known on

the discrete smoothness of D̂, better worst case error bounds can be established. Since

D, however, is not available, we turn to its approximation M .

A close pattern correlation between M and D means that the elements of M should

have a similar distribution as those of D, or that M̂ = sort(M) should be similar to D̂. Let

us assume for the moment, that the index that sorts D to D̂ sorts also M to M̂ . In other

words, we assume a complete correlation between the monotonic orderings of M and D

even though their values may differ. Then, we can work on the surrogate model M̂ for

which we can afford to identify the best quadrature points that yield the smallest error in

Tr(M̂). These will be the ideal points for computing the fitting function f .

Specifically, we need to select indices that capture the important distribution changes

in M̂ . For example, identifying minimum and maximum elements of M sets the range of

approximation for f and avoids extrapolation. We also look for entries in M̂ that deviate
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highly from their neighbors (where the first order divided difference of M̂ and hopefully of

D̂ has a large value). This strategy has three advantages. First, between such indices

the data is smooth so the integral Tr(M̂) should be captured well by the trapezoidal

rule. Second, and more important, we can obtain a more accurate fitting function f in a

piecewise manner in intervals where D̂ has similar behavior. Third, in this way we avoid

picking points with the same value M̂i = M̂j which can create problems in the fitting

function.

The proposed index selection method is shown in Algorithm 12. Initially the set of

sampled indices, Ŝfit, includes the indices of the extrema of M̂ , 1 and N . Then, for every

interval (i, j), with i, j consecutive indices in Ŝfit, we find the index t from i + 1 to j − 1

that minimizes the trapezoidal rule error for computing Tr(M̂(i : j)):

argmin
i<t<j, t∈Z

(|(M̂(i)−M̂(j))∗(i−j)−(M̂(i)−M̂(t))∗(i−t)−(M̂(t)−M̂(j))∗(t−j)|). (4.13)

The process continues until it reaches a maximum number of sampling points or until the

maximum error over all intervals decreases by a fixed value, say 0.001. The value of this

threshold depends on how close the patterns of M and D are correlated, a question we

had postponed and we discuss next.

The points selected by the previous algorithm minimize the error for computing Tr(M)

with only |Ŝfit| points. How good are these points for fitting M̂ to D̂ and thus obtaining a

small error in Tr(D)? Consider the M and D as discrete functions from {1, . . . , n} → R

and assume they are bijective in their ranges. Let G, J : {1, . . . , n} → {1, . . . , n} be

the two permutation functions that sort M to M̂ and D to D̂, i.e., M̂(i) = M(J(i)) and

D̂(i) = D(G(i)). Our method relies on the assumption that the distribution of M̂ captures

the distribution of D̂, or that there exists a smooth function f that can be approximated

well with a low degree polynomial that fits D̂(i) = f(M̂(i)). For any i, there are two indices
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m = G(i), k = J(i) with m ̸= k in general that satisfy,

D(m) = D(G(i)) = D̂(i) = f(M̂(i)) = f(M(J(i))) = f(M(k)).

Our algorithm first picks an index i for M̂ and derives the original index k = J(i) in M .

Since the permutation g is unknown, we do not know the D(m) that should be matched

with M(k). Thus, the algorithm makes the simplifying assumption that g = s and com-

putes D(k) instead. However, this corresponds to a different D̂(j), where G(j) = k.

Therefore, using (4.12), we can bound the error for this mismatch by

|D̂(i)− D̂(j)| ≤ ∆|i− j| = ∆|J−1(k)−G−1(k)|. (4.14)

This implies that as long as the permutations J and G are locally similar, or in other words

they do not shuffle the same index of M and D too far from each other, the error is small

and therefore the fitting should work well. On the other hand, ifM is a random permutation

of D, there is no good fitting, even though M̂ = D̂. This implies that the traces of f(M)

and D may be very close but not their individual elements. It also means that its variance

of Efit may not always be small (see the examples in the following section as well as in

Section 4.4.2).

In practice, since we do not know the permutation G, it is possible that some flat area

of M̂ is associated with important changes in D̂. To alleviate the effect of a possible

local pattern mismatch, we instead empirically insert the midpoint of the current largest

interval every k samples (we choose k = 5 in lines 11–14). Returning to the choice

of threshold in the algorithm, we see that going below a threshold helps the accuracy

of Tr(M) but not necessarily of Tr(D). The reason is that the greedy point selection

strategy becomes less effective in determining the local mismatching patterns. Therefore,

we terminate searching for a new index based on (4.13) if the maximum error is less

than 0.001. We found this threshold to be sufficient in our experiments. If the maximum
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required samples have not been generated, we continue by simply bisecting the largest

intervals until maxPts is reached (in lines 16–18). On exit, we compute Sfit which maps

Ŝfit to the original unsorted ordering.

Algorithm 12 Point identification algorithm based on the trapezoidal rule
Input : M ∈ Rn and maxPts
Output : Ŝfit: desired sampling index set

1: [M̂ , J ] = sort(M )
2: numSamples = 1, initErr = tempErr = |Tr(M̂)− (M̂(1) + M̂(N))N−1

2 |
3: Add 1, N into Ŝfit and push interval (1, N) and its tempErr in the queue Q including

interval and error
4: while numSamples < maxPts and tempErr > 0.001 ∗ initErr do
5: Pop interval (L,R) with largest error from Q
6: for k = L+ 1 : R− 1 do
7: Use (4.13) to find a bisecting index t
8: end for
9: Add t into Ŝfit, numSamples = numSamples+ 1
10: Push intervals (L, t) and (t, R) each with their corresponding tempErr in Q
11: if numSamples is a multiple of 5 then
12: Insert one midpoint index into largest interval in Ŝfit, numSamples =

numSamples+ 1
13: Insert its corresponding left and right intervals in Q
14: end if
15: end while
16: while numSamples < maxPts do
17: Insert middle index of the largest interval into S, numSamples = numSamples+ 1
18: end while
19: Return Sfit indices in original ordering, such that Ŝfit = J(Sfit)

A typical sampling result produced by our method is shown in Figure 4.3. The graph

on the left shows the diagonals M and D plotted in their original order. The pattern cor-

relation between them is clear, but it is less straightforward how to pick the fitting points.

Figure 4.3(b) shows both diagonals plotted with the order of indices that sorts M̂ , i.e.,

M(J), D(J). The points picked by our algorithm based on M̂ correspond to an almost

monotonic sequence of points in D(J). The associated indices can then be used to iden-

tify a suitable set of entries in D to perform the numerical integration.
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Figure 4.3: A typical example to show our sampling strategy based on the pattern correlation ofM
andD. M is computed by 20 singular vectors of matrix RDB5000. In the right figure, the magenta
and green circles denote the sample points associated with the sampling indices Sfit in M̂ andD.

4.3.2 Two Fitting Models

Next we construct a fitting model that minimizes ∥f(M(Sfit))−D(Sfit)∥. The fitting model

must have sufficient predictive power with only a small number of points and it should

avoid oscillating behavior since we work on the monotonic sequence M̂ which we assume

correlates well with D̂. Therefore, we consider a linear model and a piecewise polynomial

model.

The MC methods in (4.5) and (4.10) can resolve the trace when D = M + c while

importance sampling can resolve the trace whenD = cM . To combine these, we first use

a linear model, y = bM + c. We determine the parameters b, c by a least squares fitting,

argminb,c∈R∥D(Sfit)− (bM(Sfit) + c)∥2. The linear model may be simple but avoids the

large oscillations of higher degree polynomials, and in many cases it is quite effective in

improving the accuracy of the trace estimation and reducing the variance of the diagonal

elements of Efit. The linear fitting algorithm is described in Algorithm 13. Figure 4.4(a)

shows the fitting result on the example matrix of the previous section, in the original order

of D.

The linear model preserves the shape of M , and therefore relies exclusively on the

quality ofM . To take advantage of our premise that the distribution M̂ approximates well
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Algorithm 13 Linear least squares fitting model for approximating Tr(A−1).
Input : A ∈ Rn×n

Output : Tr(A−1) estimation: Tf

1: Compute M using ILU or Eigendecompostion or SVD on A
2: Call Algorithm 12 to compute sample set Sfit.
3: Find [b, c] = argmin∥D(Sfit)− (bM(Sfit) + c)∥2.
4: Compute trace approximation Tf =

∑N
i=1(b ∗M + c)

the distribution of D̂, our next fitting model is the Piecewise Cubic Hermite Spline Interpo-

lation (PCHIP). It was proposed in [40] to construct a visually pleasing monotone piece-

wise cubic interpolant to monotone data. The PCHIP interpolant is only affected locally by

changes in the data and, most importantly, it preserves the shape of the data and respects

monotonicity. Therefore, we work on M̂ and the indices Ŝfit = [1 = s1, s2, . . . , sk−1, sk =

N ] which are given in an order such that α = M̂(s1) ≤ M̂(s2) ≤ · · · ≤ M̂(sk) = β is a

partition of the interval [α,β]. An index si corresponds to the index J−1(si) in the original

ordering ofM , where J is from Algorithm 12 and J−1 denotes the inverse mapping of the

sorted list. Thus, for each si we compute D(J−1(si)), i = 1, . . . , k, and we use PCHIP to

construct a piecewise cubic function such that,

p(M̂(si)) = D(J−1(si)), i = 1, 2, . . . , k. (4.15)

Notice that p(x)will bemonotone in the subintervals where the fitting pointsD(J−1(si)) are

also monotone. Therefore, as long as M is close to D in the sense of (4.14), integration

of p(x) will be very accurate.

The PCHIP model is given in Algorithm 14. The first two steps are the same as in

Algorithm 13. In step 3, we apply the function unique to remove the duplicate elements

of M̂(Ŝfit)) to produce a sequence of unique values as required by PCHIP. This yields

a subset of the indices, Ŝ′
fit, which is mapped to original indices as I = J−1(Ŝ′

fit) to be

used in PCHIP.

Figure 4.4(b) shows the result of fitting on the RDB5000 example of the previous fig-
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Algorithm 14 PCHIP fitting model for approximating Tr(A−1).
Input : A ∈ Rn×n

Output : Tr(A−1) estimation: Tf

% Steps 1 and 2 are the same as in Algorithm 13
3: Remove duplicates: Ŝ′

fit = unique(M̂(Ŝfit)), I = J−1(Ŝ′
fit)

4: Apply PCHIP to fit p(M(I)) = D(I) and obtain a polynomial p(M) ≈ D
5: Compute trace approximation Tf =

∑N
i=1 p(M)
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Figure 4.4: Fitting results of the matrix RDB5000 in original order and sorted order with linear LS
model and PCHIP model.

ures. Table 4.1 compares the relative error for the trace, as well as the variances of D,

D − M and D − p(M) when using the linear LS and PCHIP models on two test matri-

ces, OLM5000 and KUU. In both cases, the two models can provide a trace estimate of

surprising relative accuracy O(1e − 2) with only 20 fitting points. In addition, for matrix

OLM5000, the standard deviation of MC on D − p(M) is reduced by a factor of 10 com-

pared to that of MC on D (a speedup of 100 in terms of samples). However, for matrix

KUU, the standard deviation of MC on D− p(M) does not improve much over MC on D.

This reflects the discussion in Section 4.3.1, and suggests that our method can serve as a

standalone kernel for giving a fast trace estimate. In addition, in some cases the method

can reduce the variance significantly to accelerate a second stage MC.
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Table 4.1: Comparing the trace relative error and variances in (4.4), (4.8) and (4.11) for matrices
OLM5000 and KUU, using the linear LS and PCHIP models with 20 fitting points each. The traces
of matrix OLM5000 and KUU are Tr(A−1) = −5.0848e+ 02 and 3.6187e+ 03, respectively.

Matrix
Model M LS PCHIP M LS PCHIP

Relative error 9.6e-01 2.2e-02 1.4e-02 5.8e-01 1.2e-02 1.4e-02
Std(Tei(A

−1)) 1.1e+02 1.1e+02 1.1e+02 2.8e+02 2.8e+02 2.8e+02
Std(Tei(D −M)) 1.1e+02 1.1e+02 1.1e+02 1.4e+02 1.4e+02 1.4e+02

Std(Tei(D − p(M))) – 2.0e+01 1.7e+01 – 1.6e+02 1.6e+02

4.4 Dynamic Evaluation of Variance and Relative Trace Error

Since there are no a-posteriori bounds for the accuracy of our results, we develop meth-

ods that use the information from the solution of the linear systems to incrementally esti-

mate the trace error and the variances of the resulting approximations. This approach is

also useful when M is updated with more left and right eigenvectors or singular vectors

obtained from the solution of additional linear systems.

4.4.1 Dynamic Variance Evaluation

To decide which MC method we should use after the fitting stage or even whether it is

beneficial to use the fitting process for variance reduction, we monitor incrementally the

variances V ar(Tei(A
−1)), V ar(Tei(Efit)), V ar(TZ2(A

−1)), and V ar(TZ2(E)), with the aid

of the cross-validation technique [54].

Our training set is the fitting sample set D(Sfit), while our test set D(Smc) is a small

random set which is independent of the fitting sample set. If we want to combine our

method with MC, eventually more samples need to be computed, and thus we can pre-

compute a certain number of them as the test set D(Smc). We have used the holdout

method [5], a single train-and-test experiment for some data splitting strategy since the

fitting sample set is fixed.

To computeD(Sfit) orD(Smc) , a linear system with multiple right hand sides is solved
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as follows:

A−1
ii = eTi xi, Axi = ei, ∀i ∈ Sfit ∪ Smc. (4.16)

The computed column vectors xi can be used to estimate the Frobenius norm of bothA−1

and E = A−1 − Z−1 [48, 71]. Then V ar(TZ2(A
−1)) and V ar(TZ2(E)) can be estimated

as follows:

V ar(TZ2(A
−1)) ≈ 2N

s2

∑

i

(∥xi∥2 − |Di|2), ∀i ∈ Sfit ∪ Smc, (4.17)

V ar(TZ2(E)) ≈ 2N

s2

∑

i

(∥E(:, i)∥2 − |E(i, i)|2), ∀i ∈ Sfit ∪ Smc, (4.18)

where E(:, i) = Eei. Simultaneously, based on the sampled diagonal elements A−1
ii , we

can also update the evaluation of V ar(Tei(Efit)), V ar(Tei(E)) and V ar(Tei(A
−1)). Here

we only show the computation of the unbiased variance estimation for V ar(Tei(Efit)) by:

V ar(Tei(Efit)) ≈
N2

s− 1
V ar(Efit(Smc)). (4.19)

Note that Sfit should not be used for estimating the variance of the unit vector MC

estimator since these sample points are exact roots of the PCHIP function.

Algorithm 15 Dynamic variance evaluation algorithm for estimating variances of different
MC methods

Input : A ∈ Rn×n

Output : Tr(A−1) estimation and variances estimations of various MC methods
1: Initialize maxPts, Sfit, Smc

2: if M is computed using ILU on A then
3: Compute the approximation M
4: end if
5: Generate random index set Smc without replacement and compute MC samples

D(Smc)
6: for i = 5 : 1 : maxPts do
7: if M is computed using Eigendecompostion or SVD on A then
8: Update M with 2 ∗ i number of left and right eigenpairs or singular triplets
9: end if
10: Call Algorithm 12 to find more indices so that Sfit has i fitting points
11: Call Algorithms 13 or 14 to update approximation of Tr(A−1)
12: Estimate variances of different MC methods based on (4.17), (4.18) and (4.19)
13: end for
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We implement the dynamic variance evaluation scheme in Algorithm 15. In lines 2-4

and 7-9, the approximationM can be computed using an ILU factorization at the beginning

of the procedure or be updated with increasing number of singular triplets or eigenpairs.

Note that if M is obtained by a partial eigendecomposition or SVD, the updated M is dif-

ferent in two consecutive steps, and thus Algorithm 12 will return a slightly different index

set Sfit which may not be incremental. This may not provide a consistent improvement

of the relative trace error during the fitting progress. In line 10 of the algorithm, we force

the points to be incremental between steps i and i + 1 as follows; we generate the en-

tire set S(i+1)
fit and remove the indices that lie the closest to the previous index set S(i)

fit.

The remaining index set is incorporated into S(i)
fit. This simple scheme works quite well

experimentally.

Figure 4.5 shows how the actual and the estimated variances for three MC methods

match for the test matrix RDB5000. In addition, the relative difference between different

MC methods becomes clear after only a few points which facilitates not only the proper

choice of MC method but also an early decision to stop if further fitting is not beneficial.

In the numerical experiments section we show that these results are typical for matrices

from a wide variety of applications.
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Figure 4.5: Comparing estimated variances and actual variances of unit vector on Efit (denoted
as V ar(diag(E)_fit)) and Rademacher vector on A−1 (denoted as V ar(A−1)) and E (denoted as
V ar(E)) of the matrix RDB5000 with ILU and SVD respectively.
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4.4.2 Monitoring Relative Trace Error

As discussed in Section 4.3.1 and showed in Table 4.1, the variance of MC on the vector

Efit may not be reduced if the sorting permutations of M̂ and D̂ are dissimilar. Even in

such cases, however, our fitting method can provide a good trace estimation with only a

small number of samples. We further investigate this by comparing the elements ofD and

p(M) with different orderings. Figure 4.6(a) shows the elements of p(M(J)) and D(J),

i.e., with respect to the order of M̂ . It illustrates that although p(M) captures the pattern

of D, the order of its elements does not correspond exactly to that of D; hence the small

reduction in V ar(Tei(Efit)). However, Figure 4.6(b) reveals that the distributions of the

sorted p(M) and the sorted D almost coincide; hence, the two integrals Tr(p(M)) and

Tr(D) are very close.
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Figure 4.6: CompareD and p(M) of the matrix RDB5000 in different order whereM is computed
by ILU.

The main obstacle for using our method as a standalone kernel for trace estimation

is that there is no known way to measure or bound the relative trace error. Resorting to

the confidence interval computed by the variance of a MC estimator is pessimistic as our

results show (see also [6, 104]). We note the similarity to the much smaller error obtained

in the average case of integrating monotonic functions with adaptive quadratures versus

the worst case known bounds [72, 95].

113



Motivated by these previous research results, we show how to develop practical crite-

ria to monitor the relative trace error in our Algorithms. Suppose at each step of the fitting

process in Algorithm 15 we collect a sequence of trace estimates Ti, i ∈ [1,maxPts].

Consider the trace estimations in two successive steps,

|Ti − Ti+1|
|Ti+1|

=
|(Ti − Tr(D))− (Ti+1 − Tr(D))|

|Ti+1|
=

|Ei − Ei+1|
|Ti+1|

≤ 2max(|Ei|, |Ei+1|)
|Ti+1|

≈ 2max(|Ei|, |Ei+1|)
|Tr(D)| . (4.20)

As long as Ti converges with more fitting points, the relative difference of two successive

trace estimations can serve as an approximation to the relative error. However, when the

global pattern provided by M and p(M) is not fully matched to that of D, convergence of

Ti stagnates until enough points have been added to resolve the various local patterns. To

determine whether the current relative trace error estimation can be trusted, we present

our second heuristic by considering the error bound of our fitting models.

When approximating f(M̂) with p(M̂), the PCHIP Hermite cubic splines with k points

on the interval [α,β], the bound on the error E(M̂) = f(M̂)− p(M̂) is given by [87],

|E(M̂)| ≤ 1

384
h4∥f (4)∥∞,[α,β] , (4.21)

where h = β−α
k , and ∥f (4)∥∞,[α,β] denotes the maximum value of the fourth derivative of f

in the entire interval [α,β]. Since ∥f (4)∥∞,[α,β]/384 is a constant, in two successive fitting

steps we have,
|Ei(M̂)|
|Ei+1(M̂)|

≈ h4i
h4i+1

=
((β − α)/ki)4

((β − α)/ki+1)4
= (

ki+1

ki
)4, (4.22)

where ki and ki+1 are the number of fitting points in two consecutive steps. We can use

(4.22) to estimate the maximum possible improvement between two consecutive trace

errors. If the i+ 1 trace error estimate reduces over the i-th estimate by a factor of more

than (ki/ki+1)4, we do not trust it.

One caveat is that (4.21) may not be tight since the same bound holds for each subin-
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Algorithm 16 Dynamic relative trace error evaluation algorithm during the fitting process
Input : TraceF it from Alg. 15
Output : TraceErr estimation
% TraceErr(i) is defined only for i > 5 and we assume TraceErr(6) is well defined

1: if i == 6 then
2: TraceErr(6) = |TraceF it(6)− TraceF it(5)|/|TraceF it(5)|
3: end if
4: if i > 6 then
5: TempTraceErr = |TraceF it(i)− TraceF it(i− 1)|/|TraceF it(i)|
6: if (TempTraceErr/TraceErr(i− 1) ≥ ((i− 1)/i)4) then
7: TraceErr(i) = TempTraceErr
8: else
9: TraceErr(i) = TraceErr(i− 1) ∗ ((i− 1)/i)9/4

10: end if
11: end if

terval [M̂(sj), M̂(sj+1)]. This means that a high derivative in one subinterval might dom-

inate the bound in (4.21) but should not affect the error in other intervals. Therefore,

convergence might not be fully dictated by (4.22). In practice, we found that the improve-

ment ratio is between O(ki/ki+1) and O((ki/ki+1)4). Therefore, if the current relative

trace error estimate is determined not to be trusted, we may instead use |Ei+1(M̂)| =

(ki/ki+1)k|E1(M̂)|, k ∈ [1, 4]. The choice of k depends on the quality of M . In our ex-

periments, we use the geometric mean of the four rates, yielding k = 9/4. Recall that the

corresponding ratio in MC is O(
√

ki/ki+1), which is much slower than the proposed trace

estimation method.

Algorithm 16 combines the two heuristics in (4.20) and (4.22) to dynamically monitor

the relative trace error. It is called after step 12 of Algorithm 15. Figure 4.7 shows two

examples of how our dynamic method provides reasonable estimates of the relative trace

error.

4.5 Numerical Experiments

We run experiments on matrices that are sufficiently large to avoid problems of sampling

from small spaces but can still be inverted to obtain the exact trace error. We select
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Figure 4.7: Two examples of monitoring relative trace error of the matrix RDB5000 with ILU and
SVD respectively.

matrices RDB5000 and cfd1 from the University of Florida sparse matrix collection [28]

and generate three test matrices from applications that appear in [12]. The Heatflow160

matrix is from the discretization of the linear heat flow problem using the simplest im-

plicit finite difference method. The matrix Poisson150 is from 5-point central difference

discretization of the 2D Poisson’s equation on a square mesh. The VFH6 matrix is from

the transverse vibration of a Vicsek fractal that is constructed self-similarly. We also use

matrix matb5 which is a discretization of the Wilson Dirac operator on a 84 uniform lattice

with 12 degrees of freedom at each node, using a mass near to critical.

Table 4.2 lists thesematrices alongwith some of their basic properties. All experiments

are conducted using MATLAB 2013a. The number of fitting points increases as s =

5 : 100. The approximation M is computed by ILU with parameters and

, or as a low rank approximation of 2s smallest singular vectors with

accuracy (twice the number of fitting points at each step), or by the bounds on the

diagonal.

4.5.1 Effectiveness of the fitting models

In Figure 4.8, we divide the diagonal elements of the matrix RDB5000 into three contigu-

ous sets and zoom in the details. We see that despite a good M , the linear LS model
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Table 4.2: Basic information of the test matrices

Matrix Order nnz(A) κ(A) Application
RDB5000 5000 29600 1.7E3 computational fluid

cfd1 70656 1825580 1.8E7 computational fluid
Heatflow160 25600 127360 2.6E0 linear heat flow
Poisson150 22500 111900 1.3E4 computational fluid

VFH6 15625 46873 7.2E1 vicsek fractal
matb5 49152 2359296 8.2E4 lattice QCD

cannot scale the entireM ontoD. The more flexible piecewise approach of PCHIP results

in a much better fit.
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Figure 4.8: Comparing the linear LS model with the PCHIP model on RDB5000 matrix with M
from SVD.

In Figure 4.9, we look at three matrices withM generated using the SVD. The PCHIP

model typically has smaller relative trace error than the LS model. We also see that as

more fitting points are sampled, the relative trace error of both models decreases signif-

icantly at early stages and slowly after a certain point. This relates to the quality of M ,

not of the model. TypicallyM will approximate the global pattern of D and the two can be

matched well with only a few fitting points. But if the local patterns of M and D differ, a

large number of fitting points will be required. This can be seen in Figure 4.10. Using the

permutation of M̂ for each case, we plot M̂ , D, and p(M̂) using 100 fitting points. For the

Heatflow160 matrix, p(M) approximates D well everywhere except for the small leftmost

part of the plot, which allows the relative error to reach below 10−4 before convergence
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slows down (Figure 4.9). The behavior is similar for the Poisson150. The issue is more

pronounced on matrix VFH6, where M and p(M) capture the average location of D but

completely miss the local pattern, which is reflected by a very slowly improving error in

Figure 4.9.

We mention that the irregularity of the relative trace errors in Figure 4.9 relates to the

variability of successive updates ofM and of the sampling indices, especially whenM is

of lower quality.
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Figure 4.9: Comparing relative trace error between the LS model and the PCHIP model in three
typical cases with SVD.
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Figure 4.10: Fitting results of three typical cases with the PCHIP model and 100 fitting points
using SVD.

Figure 4.11 demonstrates that the PCHIP model has smaller actual variance for MC

on Efit than the LS model. Therefore, we only consider the PCHIP model in the rest of

experiments.
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4.5.2 Comparison between the fitting model and different MC methods

We address the question of whether the number of matrix inversions we spend on com-

puting the fitting could have been used more efficiently in an MC method, specifically the

Hutchinson method on A−1 and the Hutchinson method on E. In Table 4.3 we compare

the relative trace error of the PCHIP model with 20 fitting points against the relative errors

of the two MC methods as computed explicitly from their respective standard deviations

in (4.2) and (4.7), with s = 20, divided by the actual trace of D.

When M approximates D sufficiently well, the trace from the fitted diagonal is better,

and for the ILU approximations far better, than if we just use the Hutchinson method on

A−1 (the first column of results). AlthoughMC onE exploits the ILU or SVD approximation

of the entire matrix (not just the diagonal that our method uses), we see that it does not

always improve on MC on A−1, and in some cases (cfd1 with ILU) it is far worse. In

contrast, our diagonal fitting typically improves on MC on E. The last column shows that

even with an inexpensive diagonal approximation we obtain a similar or better error than

MC on A−1. The only exception is the matrix VFH6 where, as we saw earlier, M cannot

capture the pattern of D. Even then, its error is close to the errors from the MC methods

and, as we show next, the best method can be identified dynamically with only a small

number of samples.

Table 4.3: Relative trace error from our PCHIP model and from the MC method on A−1 and on
E (computed explicitly as the standard deviation with s = 20 from (4.2) and (4.7) divided by the
actual trace).

Matrix TZ2(A
−1) PCHIP TZ2(E) PCHIP TZ2(E) PCHIP

RDB5000 5.2E-2 8.1E-3 4.8E-2 4.1E-3 1.2E-2 5.3E-2
cfd1 1.3E-1 2.8E-2 8.2E+2 8.8E-3 1.8E-2 2.6E-2

Heatflow160 4.9E-4 1.6E-7 4.0E-5 2.0E-4 4.9E-4 3.5E-4
Poisson150 2.6E-2 2.3E-3 2.5E-2 1.4E-3 4.3E-3 8.3E-3

VFH6 3.2E-3 6.8E-5 3.1E-5 1.0E-2 3.2E-3 6.0E-2

If the user requires better trace accuracy than our fitting technique provides, we ex-
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plore the performance of the diagonal fitting as a variance reduction for MC with unit

vectors. We compute the actual values of V ar(Tei(Efit)), V ar(Tei(A
−1)), V ar(Tei(E)),

V ar(TZ2(A
−1)) and V ar(TZ2(E)) for every step s = 5 : 100 and show results for three

matrices in Figure 4.11. Note that the low rank approximation uses 2s singular vectors.

As before, for Heatflow160, MC on Efit performs much better than other MC methods,

achieving about two orders reduction in variance. For Poisson150, MC on Efit is slightly

better compared to the Hutchinson method on E. In contrast, for VFH6, MC with unit

vectors do not perform well regardless of the diagonal.
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Figure 4.11: Comparing actual variances of different MCmethods in three typical cases with SVD.

4.5.3 Dynamic evaluation of variance and relative trace error

The above results emphasize the importance of being able to assess quickly and accu-

rately the relative differences between the variances of different methods as well as the

trace error, so that we can decide whether to continue with fitting or which MC method

to switch to. First we show the effectiveness of the dynamic variance evaluation algo-

rithm for our fitting MC method on (D − p(M)) with unit vectors, and on A−1 and E with

Rademacher vectors. Then, we evaluate our algorithm for estimating the relative trace

error during the fitting process.

Figure 4.12 compares the estimated variances with the actual variances of the three

MC methods when increasing the number of fitting points from 5 to 100. The approxima-

tionM is computed by using ILU. We can see that the estimated values of V ar(TZ2(A
−1))
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and V ar(TZ2(E)) converge to the actual variances after only a few sample points. The

estimated value of V ar(Tei(Efit)) gets close to and captures the trend of the the actual

variance as the fitting samples increase. Nevertheless, the relative differences between

the variances of the various MC methods are apparent almost immediately.
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Figure 4.12: Comparing estimated variances and actual variances of three MC methods with ILU.

Figure 4.13 shows the same experiments when the approximation M is computed

by SVD. Since M is updated each step, V ar(TZ2(E)) and V ar(Tei(Efit)) change ac-

cordingly. As with ILU, V ar(TZ2(A
−1)) and V ar(TZ2(E) can be estimated very well in a

few steps. V ar(Tei(Efit)) could be underestimated but the relative variance difference

between these MC methods becomes clear when the fitting points increase beyond 20.

Thus we are able to determine whether the fitting process is beneficial as a variance re-

duction preprocessing and which is the best MC method to proceed with for the trace

estimation.
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Figure 4.13: Comparing estimated variances and actual variances of three MC methods with
SVD.
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Figure 4.14: Comparing estimated relative trace error with actual relative trace error with SVD.

Figure 4.14 compares the estimated relative trace error with the actual one in the

cases of Figure 4.13. We observe that the estimation is accurate as the fitting samples

increase, even for cases such as VFH6 where the fitting process is not as successful.

Moreover, because our algorithm is based on upper bounds on the error of a piecewise

cubic polynomial, the actual relative trace error could be lower than predicted.

4.5.4 A large QCD problem

The trace estimator presented in this research has the potential of improving a number of

LQCD calculations, where the trace of the Dirac matrix is related to an important property

of QCD called spontaneous chiral symmetry breaking [119]. In our previous work [116],

we presented the method of hierarchical probing that achieves almost optimal variance

reduction incrementally and inexpensively.

As shown in Figure 4.15(a), a low rank approximation with 200 singular vectors yields

a good approximation M and an excellent fit p(M). In Figure 4.15(b), we see that the

actual relative trace error decreases very fast to O(10−4) with increasing number of fitting

points and singular vectors, and can be monitored well by our dynamic trace estimation

algorithm. These singular vectors can be approximated while solving the linear systems

with eigCG. Interestingly, we can improve the relative trace error of hierarchical probing

by two orders of magnitude. In addition, the variances of different MC methods can be

estimated dynamically to allow us to continue with the best estimator if needed (Figure
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4.15(c)).
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Figure 4.15: Fitting results, dynamic evaluation of relative trace error and variances with SVD
on a large QCD matrix. In Figure 4.15(b), the green square denotes the relative trace error by
applying hierarchical probing technique on deflated matrix E in [116].

4.6 Conclusion and Future Work

A novel method has been presented to estimate the trace of the matrix inverse by exploit-

ing the pattern correlation between the diagonal of the inverse of the matrix and some

approximation. The key idea is to construct a good approximationM ≈ D through eigen-

vectors or some preconditioner, sample important patterns ofD by using the distribution of

the elements ofM , and use fitting techniques to obtain a better approximation p(M) ≈ D

from where we obtain a trace estimate. The proposed method can provide a fast trace

estimate with 2-3 digits relative accuracy given only a few samples while may or may not

improve the variance of MC. When the variance is reduced sufficiently, our method can be

also used as a diagonal estimator. We also propose an effective dynamic variance eval-

uation algorithm to determine the MC method with the smallest variance and a dynamic

relative trace error estimation algorithm without any additional costs. We demonstrated

the effectiveness of thesemethods through a set of experiments in some real applications.
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Chapter 5

High-Performance Outlier Detection

Method in Plasma

5.1 Introduction

During the last decade, there has been a significantly increasing need for knowledge dis-

covery in spatial-temporal databases. Classical multi-dimensional outlier detection tech-

niques are designed to detect global outliers. However, these techniques do not distin-

guish between non-spatial attributes and spatial attributes and do not consider apriori

information about the statistical distribution of the data [109]. Since spatial-temporal data

types have unique characteristics and their relations are more complicated than ordinary

data, dedicated outlier detection techniques are typically required to examine anomalies

in data across space and time [51]. In this study, we propose for the first time to formu-

late blob-filaments detection problem as region outlier detection problem in the domain of

fusion plasma. Then we consider outliers with respect to their spatial neighbors and track

them over time. A spatial outlier is a spatial object whose non-spatial attribute values are

sigfinicantly different from those of other spatial objects in its spatial neighborhood [109].

In fusion plasma data, we relate spatial outliers with blob-filaments, which do not happen

at a collection of scattered points but usually several groups of adjoining spatial points
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or regions. Detection and tracking of these multiple regions from a continuously arriving

stream is a challenging task due to various spatial scales and shapes of region outliers,

which could change signiciantly over time [150, 86].

Data Generation 
(Experiments or 
Simulations)

Data Hub

Blob Detection

Blob Detection

Blob Detection

Data Stream

Figure 5.1: A real-time data analysis frame for finding blob-filaments in fusion plasma data streams

This work is motivated by several considerations responding to extreme scale com-

puting and big data challenges in fusion energy. Fusion experiments and numerical sim-

ulations can easily generate massive amounts of data per run. During a magnetic fusion

device experiment (or ”shot”), terabytes of data are generated over short time periods (on

the order of hundreds of seconds). In the XGC1 fusion simulation [24, 75], a few tens

of terabytes can be generated per second. Timely access to this amount of data can

already be a challenge [30, 31], but analyzing all this data in real time is impractical. Cur-

rently, there are three types of analyses in most of fusion experiments: in-shot-analysis,

between-shot-analysis, and post-run-analysis. All existing blob detection methods ad-

dress post-run-analysis, but in this work, we focus on the more challenging first two cases

to provide a real-time analysis so that scientists can monitor the progress of fusion exper-

iments. Figure 5.1 presents a real-time analysis frame for finding blob-filaments in fusion

plasma data streams. To perform this data analysis in real time, we utilize effectively

modern supercomputers to address the high volume and velocity challenges arising from

fusion plasma big data.

To this end, this work has been integrated into the International Collaboration Frame-

work for Extreme Scale Experiments (ICEE), a wide-area in-transit data analysis frame-

work for near real-time scientific applications [25]. ICEE takes advantage of an efficient

IO solution ADIOS [83], and a cutting-edge indexing solution FastBit [130], to design and
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construct a real-time remote data processing framework over wide-area networks for in-

ternational collaborations such as ITER. In this system, a blob detection algorithm is used

to monitor the health of fusion experiments at the Korea Superconducting Tokamak Ad-

vanced Research (KSTAR). However, existing data analysis approaches are often single-

threaded, only for post-run analysis, and take a long time to produce results. Also, com-

pared to the simulation data, the resolution of the raw camera data may be coarse, but

interesting features can still be identified after normalization. In order to meet real-time

feedback requirement, we develop a real-time blob detection method, which can leverage

in-situ raw data in the ICEE server and find blob-filaments efficiently during fusion exper-

iments. Our blob detection algorithm is not limited to KSTAR only, and can be applied to

other fusion experiments and numerical simulations.

In this research, we exploit outlier detection techniques to effectively tackle the fusion

blob detection problem on extremely large parallel machines. To the best of our knowl-

edge, this is the first time the region outlier detection method has been used to detect

blob-filaments in fusion plasma. The blob-filaments are detected as outliers by constantly

monitoring specific features of the experimental or simulation data and comparing the

real-time data with these features.

We first propose a two-phase region outlier detectionmethod for finding blob-filaments.

In the first phase, we apply a distribution-based outlier detection scheme to identify blob

candidate points. In the second phase, we adopt a fast two-pass connected component

labeling (CCL) algorithm from [131] to find different region outliers on an irregular mesh.

Then we develop a high-performance blob detection approach to meet real-time feed-

back requirements by exploiting many-core architectures in a large cluster system. This

is the first work to achieve real-time blob detection in only a few milliseconds. In addition,

we propose a scheme to efficiently track the movement of region outliers by linking the

centers of the region outlier over consecutive frames. We have implemented our blob

detection algorithm with hybrid MPI/OpenMP, and demonstrated the effectiveness and

efficiency of our implementation with a set of data from the XGC1 fusion simulations. Our
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tests show that we can achieve linear time speedup and complete blob detection in two or

three milliseconds using a cluster at NERSC. In addition, we demonstrate that our method

is more robust than recently developed state-of-the-art blob detection methods in [29, 94].

The rest of research is organized as follows. In Section 5.2, we give the problem for-

mulation of the blob detection and discuss related work. In Section 5.3 we describe a two-

phase region outlier detection algorithm and a tracking scheme for identifying and tracking

blobs. We then present a real-time blob detection approach by leveraging MPI/OpenMP

parallelization in a large cluster in Section 5.4. The blob detection and tracking results

and its real time evaluation are shown in Section 5.5. We conclude the research, and

give our future plans in Section 5.6.

5.2 Problem Definition and Related Work

In this section, we introduce our problem definitions and discuss previous work related to

our study. For related work, we first discuss existing research work on outlier detection,

and then review previous work on blob detection in fusion plasma domain.

5.2.1 Problem Definition

In fusion plasma, the definition of a blob is varied in the literature depending on fusion

experiments or simulations as well as available diagnostic information for measurements

[35]. This makes blob detection a challenging task. Figure 5.2 plots local normalized

density distribution in the regions of interest in one time frame. We can observe that

there are two reddish spots located at the left portion of the figure, which are associated

with blob-filaments and are significantly different from their surrounding neighbors. It is

clear that a reddish spot is not a single point but a group of connected points or a region.

Therefore, we formulate the blob detection problem as a region outlier detection problem.

Similar to the spatial outlier [109], a region outlier is a group of spatial connected objects

whose non-spatial attribute values are significantly different from those of other spatial
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Figure 5.2: A contour plot of the local normalized density in the region of interests in one time
frame in fusion experiments or numerical simulations. A cross-section of the torus is called a
poloidal plane. R and Z are cylindrical coordinates and the major radius of the torus is denoted
by R.

surrounding objects in its spatial neighborhood. As shown in Figure 5.2, blobs are region

outliers. The number of region outliers detected is determined by pre-defined criteria

provided by domain experts.

The problem is to design an efficient and effective approach to detect and track differ-

ent shapes of region outliers simultaneously in fusion plasma data streams. By identifying

and monitoring these blob-filaments (region outliers), scientists can gain a better under-

standing about this phenomena. In addition, a data stream is an ordered sequence of

data that arrives continuously and has to be processed online. Due to the high arrival

rate of data, the blob detection must finish processing before the next data chunk arrives

[107]. Therefore, another critical problem is to develop a high-performance blob detection

approach in order to meet the real-time requirements.

5.2.2 Outlier Detection

The problem of outlier detection has been extensively studied and can be generally classi-

fied into four categories: distance-based, density-based, clustering-based, and distribution-

based approaches [61, 23].
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Distance-based methods [73] use a distance metric to measure the distances among

data points. If the number of data points within a certain distance from the given point is

less than pre-defined threshold, then this point is determined as an outlier. This approach

could be very useful with accurate pre-defined threshold. However, it may not be proper

to use a simple threshold if different densities in various regions of the data exhibit across

space or time.

Density-based methods [20] assign a local outlier factor (LOF) to each sample based

on their local density. The LOF determines the degree of outlierness, where samples

with high LOF value are identified as outliers. This approach does not require any prior

knowledge of underlying distribution of the data. However, it has a high computational

complexity since pair-wise distances have to be computed to obtain each local density

value.

Clustering-based methods [49, 55] conduct clustering-based techniques on the sam-

ple points of the data to characterize the local data behavior. Since this method does not

focus on outlier detection, the outliers are produced as by-products and it is not optimized

for outlier detection.

Distribution-based methods [38, 109] applies machine learning techniques to estimate

a probability distribution over the data and develop a statistical test to detect outliers.

These methods use all dimensions to define a neighborhood for comparison and typically

do not distinguish non-spatial attributes from spatial attributes.

In the context of data streams, a line of research has been devoted to develop efficient

outlier detection techniques [123, 101, 36, 3, 2, 107]. But their main focus is to solve the

problem of event detection in sensor network [123], query processing [3, 101], clustering

[36], and graph outliers [2]. Therefore, these methods cannot be easily generalized to

region outlier detection problems. In addition, the problem of blob detection presents a

special challenge, because the spatial-temporal attributes of the blob-filaments has to

be considered together to study their various characteristics including speed, direction,

movement, and size. More importantly, these methods are mostly single-threaded which
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cannot cope with real-time requirements in fusion plasma.

A number of distributed outlier detection methods have also been studied in [123, 34,

85, 97, 63]. Most of thesemethods are seeking an efficient way to parallelize classical out-

lier detection methods such as distance-based outliers [63, 85], distribution-based outliers

[123], density-based outliers [85], density-based outliers [97], and PCA-based techniques

[34]. However, there methods are not generally applicable to region outlier detection and

tracking. In particular, in order to tackle high volume and velocity challenges arising from

fusion plasma big data, specialized outlier detection scheme and suitable high perfor-

mance computing technique are demanded to complete blob detection in the order of

milliseconds.

In this work, we first apply distribution-based outlier detection to detect outlier points

by considering only non-spatial attributes and then leverage fast CCL to construct the

region outliers by taking into account spatial-attributes. We choose distribution-based

outlier detection since it can solve the problem of finding outliers efficiently if an accurate

approximation of a data distribution can be properly found [109, 123]. Normally the distri-

bution of the stream data may change over time [51]. However, this assumption may not

hold in fusion experiments since a fusion experiment lasts very short time period from a

few seconds to hundreds of seconds. Therefore, we can perform exploratory data analy-

sis to compute best fitted distribution parameters offline and then build an accurate online

distribution model.

5.2.3 Blob Detection in Fusion Plasma

Independently, fusion blob detection problems have been researched by the physics com-

munity in the context of coherent structures in fusion plasma [35]. Various post-run blob

detection methods have been proposed to identify and track these structures, to study the

impact of the size, movement and dynamics of blobs. A plasma blob is most commonly

determined by some threshold, computed statistically in the local plasma density signal
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[148, 41, 151, 93]. However, the exact criteria have varied from one experiment to an-

other, which reflects the intrinsic variability and complexity of the blob structures. In [148],

a conditional averaging approach is applied to analyze spatiotemporal fluctuation data

obtained from a two-dimensional probe array inside the last closed flux surface (LCFS) of

the HL-2A tokamak. When the vorticity is larger than one standard deviation at some time

frame, a blob is considered to be detected by the probe. In [41], the conditional averaging

technique is also used to study the evolution of the blob-filaments using Langmuir probes

and a fast camera. If a reference signal, with a certain sampling interval, has large fluctu-

ation amplitude greater than a specified trigger condition, a blob structure is declared at

that time frame.

Without using a conditional averaging technique, [151] searches for blob structures

can be done using local measurements of the 2D density data obtained from a 2D probe

array. Identification of a blob is based on the choices of several constraints such as the

threshold intensity level, the minimum distance of blob movement, and the maximum al-

lowed blob movement between successive frames. The trajectories of the different blobs

can be computed with the blob centers based on identification results in each time frame.

The seminal work by Zweben, et. al.[151] was the first attempt to take only individual

time frame data into account to detect blobs and track their movements, although the

process of identification of a blob was somewhat arbitrary and oversimplified. In [93], an

analysis method was presented in terms of object-related observables to allow a sound

probabilistic analysis. After preprocessing the signals from 2D imaging data to form signal

matrix, a threshold-segmentation approach is used to identify blob structures when the

local density is greater than an appropriately chosen threshold. Bounding polygons are

also employed to track blob movements and compute their trajectories.

Due to the emergence of fast cameras and beam emission spectroscopy in the last

decade, the situations of insufficient diagnostic access and limited spatial and temporal

resolution have been greatly improved. In [84], an image analysis for the identification

of blobs has been presented based on gas puff imaging (GPI) diagnostic images from
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an ultra-high speed, high resolution camera. The raw images are first processed to re-

move the noise spikes, followed by further smoothing using a Gaussian filter. The blobs

are identified by various image segmentation techniques after further processing which

removes the background intensity from the images. However, due to noise and lack of a

ground truth image, this approach can be sensitive to the setting of parameters, and it is

hard to use generic method for all images. In addition, the output from visualization is not

convenient to feed into other analysis [133]. The regions of interest computed from this

work can be more conveniently fed into other analyses. For instance, one can compute

blobs in the regions of interest very quickly and transmit these compact meta information

over internet to remote domain scientists for real-time analysis.

Recently, several researchers [29, 76, 94] have developed a blob-tracking algorithm

that uses raw fast camera data directly with GPI technique. In [29, 94], they leverage a

contouring method, database techniques and image analysis software to track the blob

motion and changes in the structure of blobs. After normalizing each frame by an average

frame created from roughly one thousand frames around the target time frame, the result-

ing images are contoured and the closed contours satisfying certain size constraints are

determined as blobs. Then, an ellipse is fitted to the contour midway between the smallest

level contours and the peak. All information about blobs are added into a SQL database

for more data analysis. This method is close to our approach but it can not be used for

real-time blob detection since they compute time-averaged intensity to normalize the local

intensity. Additionally, only closed contours are treated as blobs, which may miss blobs

at the edges of the regions of interest. Finally, these methods are still post-run-analysis,

which cannot provide real-time feedback in fusion experiments.

5.3 Our Proposed Approach

In this section, we provide a detailed description of our proposed approach to region

outlier detection for finding blobs. Given a fusion data stream, which consists of a time
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Figure 5.3: Two-phase region outlier detection for finding blobs

ordered sequence of sample frames that arrive continuously from fusion experiments or

numerical simulations through remote direct memory access protocols. Our data sets are

simulated electron density from the fusion simulation code XGC1 [24, 75]. In the present

data sets, simulation data is captured every 2.5 microseconds for a total time window of

2.5 milliseconds. Each point si ∈ S in a time frame t has a spatial attribute (r, z, t) which

defines its location in a triangulated measurement grid, and some non-spatial attributes

including all important plasma quantities such as electron density ne(r, z, t) as well as

connectivity information in a poloidal plane. The spatial neighborhoods are defined for

each point from the connectivity database in a triangulated grid. Formally, an region outlier

responding to a blob is defined as a spatial area in the regions of interest where a subset

Bi ⊆ S is a group of connected outlier points si.

Our overall goal is to develop an algorithm to detect and track spatial region outliers

(blobs) using a stream of fusion data. To achieve this, we propose a two-phase approach,

as shown in Figure 5.3. In the first phase, we apply a distribution-based outlier detection

algorithm to the fusion data stream in order to detect outlier points which have signifi-

cantly higher non-spatial attributes than other points. The outputs of this step are tuples

(si, ne(ri, zi, t)), the 2D spatial attributes, and non-spatial attributes such as electron den-

133



R (m)
1 1.2 1.4 1.6 1.8 2 2.2 2.4

Z
 (

m
)

-1.5

-1

-0.5

0

0.5

1

1.5
Magnetic Fields in Poloidal Plane

Poloidal Plane
Region of Interests

(a) Regions of interest

2.25 2.26 2.27 2.28 2.29 2.3 2.31 2.32
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

R (m)

Z
 (

m
)

 

 

Reinfed 
Original

(b) Refined mesh

Figure 5.4: An example of the regions of interest and the comparison between refined and original
triangular mesh vertices in the R (radial) direction and the Z (poloidal) direction.

sity. These tuples, as well as connectivity information, are used as input for the second

phase, where region outlier are detected by applying a fast CCL [131] to efficiently find

different connected components on the triangular mesh. The outputs of the CCL-based

region outlier detection algorithm are a set of connected components with outlier points

inside, which are associated with blobs if some criteria are satisfied.

Note that our approach consists of two orthogonal steps, therefore each of the two

phases can be replaced by other outlier detection methods. For example, one can lever-

age density-based outlier detection to find outlier points in the first phase. In addition,

edge detection with fuzzy classifier can be used to detect the boundary of region outlier

in the second phase [86].

In the following section, we describe the proposed two-phase region outlier detection

in detail.

5.3.1 Distribution-Based Outlier detection

The main task of this phase is to perform efficient outlier detection to determine outlier

points which form the region outliers associated with blobs. In this work, we propose

a two-step, distribution-based outlier detection algorithm based on the electron density
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with various criteria for fusion plasma data streams. We separate spatial attributes from

non-spatial attributes and consider the statistical distribution of the non-spatial attributes

to develop a test based on distribution properties, since it is more suitable for detecting

spatial outliers [109]. As claimed in [123], it is very efficient to find outliers by using a data

distribution approximation if we estimate the underlying distribution of data accurately.

Values for various criteria are determined by domain experts or subjectively by examining

the resulting plotting and adjusting them until satisfied.

The first step of the proposed outlier detection is to preprocess the sample frame to

compute needed quantities in the region of interests, as shown in Figure 5.4(a). Then it is

analyzed by normalizing the total electron density ne(r, z, t) (which includes fluctuations)

with respect to the initial background electron density, ne(r, z, 1) (if using real diagnostic

data from, e.g. GPI, actual emission intensity I(r, z, t) would be used instead of electron

density). Note that using the initial time frame as the benchmark is an important factor

to achieve real-time blob detection. The normalized electron density in the subsequent

time frames can be easily computed, especially compared to the time-average electron

density with a long time interval [94].

Algorithm 17 Triangular mesh refinement algorithm
Input/output:

triGrid: connectivity array of the triangular mesh
(r, z): spatial coordinate of each point
ne: normalized electron density of each point

1: Compute unique edges E and indices vector IE by sorting and removing duplicates
based on triGrid

2: Compute spatial coordinate of each new vertices in the middle of E based on (r, z)
3: Compute electron density of each new vertices onE by performing linear interpolation

based on ne

4: Compute indices for each new vertices by adding vector index IE with the number of
original points

5: Compute a new triangular mesh by assigning appropriate indices from each new and
old vertices

To obtain meaningful region outliers using the CCL method, it is necessary to have

fine grained connectivity information. This particular simulation mesh has coarse verti-
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Figure 5.5: An example of exploratory data analysis to analyze the underlying distribution of the
local normalized density over all poloidal planes and time frames.

cal resolution, so resolution enhancement techniques are applied to generate a higher

resolution triangular mesh based on the original triangulated mesh. As shown in Algo-

rithm 17, the resulting triangular mesh is refined to achieve four times better granularity.

We split each original triangle into four smaller ones by linking three middle points of the

original mesh edges in each triangle. The corresponding density of generated vertices

can be obtained using linear interpolation of the original triangular mesh. This step can

be applied recursively until the satisfactory resolution of the triangular mesh is computed.

Figure 5.4(b) shows the resulting triangular mesh vertices after applying the triangular

mesh refinement algorithm once.

In order to apply an appropriate predefined quantile in two-step distribution-based

outlier detection, it is advised to perform exploratory data analysis to exploit main charac-

teristics of the data sets. Figure 5.5 reveals that extreme value distribution and log normal

distribution are fitted best with one of our sample data sets (after comparing over sixteen

different common distributions). After analyzing the underlying distribution, a two-step

outlier detection is performed to determine outlier points in the regions of interest. The

basic idea of the proposed two-step outlier detection is motivated from the observations

that there are relatively high density areas (a half banded ellipse area with cyan color)
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in the edge and several significantly high density small regions (a few small areas with

reddish yellow color) in these relatively high density areas, as shown in Figure 5.2. The

proposed outlier detection method extends the previous approach that applies statistical

detection with conditional averaging intensity value [148, 41], and applies more intelligent

two-step outlier detection with only considering individual time frame data. Compared to

traditional single threshold segmentation approach, our approach is more generic, flexible

and easier to tune a satisfactory result.

In the first step, the standard deviation σ and the expected value µ are computed

over all sixteen poloidal planes in one time frame. Using the best fitted distribution, we

apply first step outlier detection to identify the relative high density areas with a specified

predefined quantile:

N(ri, zi, t)− µ > α ∗ σ, ∀(ri, zi) ∈ Γ (5.1)

where N is the normalized electron density, α is the multiple of σ associated to the spec-

ified predefined quantile and Γ is the domain in the region of interests. Once the rela-

tive high density regions are determined, we compute another standard deviation σ2 and

the expected value µ2 in these areas. Then we employ second step outlier detection to

identify the outlier points in the relative high density areas with an appropriately chosen

predefined quantile:

N(ri, zi, t)− µ2 > β ∗ σ2, ∀(ri, zi) ∈ Γ2 (5.2)

where β is the multiple of σ2 associated to the judiciously chosen confidence level and

Γ2 is the domain of blob candidates. In practice, α and β can be chosen to be same

or different, depending on the characteristics of blob-filaments. In our experience, the α

value is generally greater than β since the standard deviation σ over the region of interests

is much smaller than the standard deviation σ2 from the relative high density areas.

However, two-step outlier detection alone cannot be used to distinguish the blob can-

didates since identified blob candidates may actually have small density, which does not

satisfy traditional definition of blobs. Therefore, the density of the mesh points in the out-
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lier points smaller than a certain minimum absolute value criterion need to be filtered out.

On the other hand, it is also possible that the middle areas between surrounding plasmas

and outlier points have density higher than the given minimum absolute value criterion.

Thus, we also apply a minimum relative value criterion to remove these unwanted points.

To combine these two rules together, we have a more robust and flexible criterion:

N(ri, zi, t) > max(dma, (dmr ∗ µ2)), ∀(ri, zi) ∈ Γ3 (5.3)

where dma and dmr are minimum absolute value and minimum relative value respectively,

and Γ3 is the domain of good blob candidates.

5.3.2 CCL-Based Region Outlier Detection

The main task of the second phase is to apply an efficient connected component labeling

algorithm adopted from [131] on a refined triangular mesh to find different blob candidate

components. A connected component labeling algorithm generally considers the prob-

lem of labeling binary 2D images with either 4-connectedness or 8-connectedness. It

performs an efficient scanning technique, and fills the label array labels so that the neigh-

boring object pixels have the same label. Wu [131] presents an efficient two-pass labeling

algorithm that is much faster than other state-of-the-art methods and theoretically optimal.

However, since we process a refined triangular mesh rather than the traditional 2D im-

ages, we have modified their CCL algorithm to take the special features of a triangular

mesh into account. As shown in Algorithm 18, each triangle is scanned first rather than

a point. Since we know the three vertices in a triangle are connected, we can reduce

unnecessary memory accesses once any vertex in a triangle is found to be connected

with another vertex in a different triangle. Then we compute the current minimum parent

label in this triangle, and assign each vertex a parent label if its label has already filled or

a label if its label has not initialized yet. If all three vertices in a triangle are scanned for

the first time, then a new label number is issued and assigned to their labels and the as-
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sociated parent label. After the label array is filled full, we need flatten the union and find

tree. Finally, a second pass is performed to correct labels in the label array, and all blob

candidates components are found. Note that to perform efficient union-find operations,

the union-find data structure is implemented with a single array as suggested in [131].

Algorithm 18Connected component labeling algorithm on triangular mesh to find various
blob candidates components

Input:
triGrid: connectivity array of the triangular mesh

Output:
Bc: Region structure of each blob candidate

1: Initialize label, parentLabel, and labnum
2: for Scanning each triangle until the end of triGrid do
3: if label of three vertices are all zero then
4: Assign a new labnum to all three vertices
5: Update label and parentLabel with labnum
6: else
7: Find the minimum parentLabel of all three vertices
8: Update their label and parentLabel with this value
9: end if
10: end for
11: for Scanning until the end of parentLabel do
12: Update parentLabel by flattening union-find tree
13: end for
14: for Scanning until the end of Label do
15: Update Label with latest parentLabel
16: end for
17: Find each Bc of points with same parentLabel

After all blob candidates are determined, a blob is claimed to be found if the median of

a blob candidate component satisfies a certain minimum absolute median value criterion.

The reason we are setting this constraint to select the blobs is that the minimum value

criterion has to be a reasonably small value in order to produce more blob candidate

components. It is possible that if the minimum absolute median value criterion is too

large, it may also remove the blobs. On the other hand, it is also possible if this value

is too small, it does not have effect on filtering out unwanted components. Therefore,

with the same philosophy of measurement, a minimum relative median value criterion is
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also applied to determine the blobs. However, in order to protect the blobs from being

removed due to the extremely large mean value µ2, we also set the maximum absolute

median value criterion to limit the power of minimum relative median value criterion. We

unify these three rules to be one:

N(ri, zi, t) > max(d̂ma,min((d̂mr ∗ µ2), d̂xa)), ∀(ri, zi) ∈ Γ4 (5.4)

where d̂ma, d̂mr and d̂xa are minimum absolute and relative median values and maximum

absolute median value respectively and Γ4 is the domain of blobs.

5.3.3 Tracking Region Outliers

Another objective of this work is to track the direction and speed of the detected blobs over

time. The blob tracking algorithm has to cope with the problem of tracking multiple region

outliers simultaneously even when the blobs merge together or split into separated ones.

On the other hand, the blob tracking method should be simple and efficient to meet real-

time requirements. To achieve this goal, we propose an efficient blob tracking algorithm by

leveraging cues from changes of blobs area and distance of center of blobs. We compute

the correspondence between previously tracked blobs and currently detected blobs, and

then recover the trajectories of the tracked blobs.

To identify the location center of detected blob, we compute the density-weighted av-

erage of the spatial coordinates of each point inside a blob.

(rc, zc) =
1

M

n∑

i=1

(r, z)ne (5.5)

whereM is summation of ne of all points in a blob. The density-weighted average is used

to better capture the center of density of a blob. We track the movement of these detected

blobs by linking the centers in consecutive time frames. In order to obtain the boundary

of region outliers (blobs), we compute the convex hull [22] of a set of points in a blob. The
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area of a blob is computed by counting the number of points in a blob.

Algorithm 19 Efficient blob tracking algorithm
Input:

B: Current detected blobs
T : Previous blob tracks

Output:
T : Updated blob tracks with B appended

1: Initialize hull, cen, and area
2: hull = getBoundary(B)
3: cen = getCenter(B)
4: area = getArea(B)
5: for Scanning until the end of B do
6: cenDis = getCenterDis(B,T )
7: areaDif = getAreaDif(B,T )
8: if cenDis ≤ maxJump ∧ areaDif ≤ maxDif then
9: Find a blob track T with smallest cenDis
10: Append current blob into this blob track T
11: end if
12: end for
13: Update T with hull, cen, area, and computed speed

As shown in Algorithm 19, the input parameters are current detected blobs and the

previous blob tracks. The data structure of a blob track is composed of the track ID, the

length of track, the area of previous blob, the time-stamps, the center points, the boundary

points, and the velocity. There are two heuristics to verify whether a blob is associated

with an existing blob track. The first heuristic is based on the fact that the area of a

blob between consecutive time frames cannot decrease or increase significantly. The

second heuristic takes into account the distance of the centers of a blob does not change

dramatically over very short time period (microseconds). The proper thresholds for these

two heuristics are provided by domain experts. Since blobs can appear, disappear, merge

together or split, a greedy scheme is applied to find the best matching pair of blob and track

based on closest distance of the centers of current detected blob and the latest blob in a

blob track. Based on computed correspondence between a blob track and the currently

detected blobs, existing blob tracks are automatically processed through corresponding

operations such as adding a blob into a track, creating a new track, and a track ending.
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If the length of a track is smaller than 3 consecutive time frames, the track will be treated

an anomaly and deleted due to errors in data or inappropriate blob detection thresholds.

The speed and direction of the blobs can thus be computed from two consecutive center

points. Finally, we can recover the trajectories of the tracked blobs by monitoring the

movement of blob centers.

5.4 A Real-Time Blob Detection Approach

Existing blob detection approaches cannot tackle the two challenges of the large amount

of data produced in a shot and the real-time requirement. In addition, existing data analy-

sis approaches are often operated in a single thread, only for post-run analysis and often

take a few hours to generate the results [93]. In order to meet the real-time feedback

requirement, we address these challenges by developing a high performance blob detec-

tion approach, which can leverage in situ raw data and find blob-filaments efficiently in

fusion experiments or numerical simulations.

5.4.1 A hybrid MPI/OpenMP parallelization

The key idea is to exploit many cores in a large cluster system by running MPI to allocate

n processes to process the data in one or several time frames at the high level, and

by leveraging OpenMP to accelerate the computations using m threads at the low level.

Figure 5.6 shows our hybrid MPI/OpenMP parallelization for blob detection. Using this

approach, we can complete our blob detection in a fewmilliseconds with in situ evaluation.

In order to achieve blob detection in real time, the goal is to minimize data movements

in the memory and speed up computation. Ideally, the performance is optimal without any

communication if we can perform the job correctly. The proposed blob detection algorithm

in the previous section supports embarrassed parallel since we only need the initial time

frame and the target time frame to do the computation. This is an important difference

between our blob detection method and recently developed methods [29, 94] in terms
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Figure 5.6: Hybrid MPI/OpenMP parallelization

of real-time requirement. Furthermore, we explore many-core processor architectures to

speed up the computation of each MPI task by taking full advantage of multithreading in

the shared memory. Therefore, our real-time blob detection approach based on hybrid

MPI/OpenMP parallelization is a natural choice and is expected to provide the optimal

performance for fusion plasma data streams.

A practical interesting issue is how to tune the number of MPI processes and OpenMP

threads for the best performance by taking both analysis speed and memory size into ac-

count. As shown in Figure 5.7, we vary the number of MPI processes and OpenMP

threads but fix the total number to be 24 for investigating the performance when pro-

cessing the same amount of time frames data. A faster analysis speed is achieved when

increasing the number of MPI processes since more data frames can be processed simul-

taneously. On the other hand, the analysis speed remains constant with a few OpenMP

threads and degrades with more OpenMP threads due to lack of enough computation in

one time frame. However, more OpenMP threads could significantly reduce the mem-

ory demands. Therefore, in this study, we choose the number of OpenMP threads to be

four for each MPI task, to achieve a good trade off between analysis speed and memory

savings.
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tion.

5.4.2 Outline of the implementation

We implement our blob detection algorithm in C with a hybrid MPI/OpenMP paralleliza-

tion. Algorithm 20 summarizes the proposed blob detection algorithm without considering

OpenMP. Users can specify the regions of interest by (Rmin, Rmax, Zmin, Zmax), the

range of target time frames by (t_start, t_end), and the location of the data sets. How-

ever, with in situ evaluation, there is no need to specify the file location since all data are

already in memory. We use static scheduling to evenly divide the number of time frames

for each MPI task for efficiency. The n MPI processes are allocated to process one or

several time frames and m OpenMP threads are launched to accelerate the computation

in one time frame. Note that the MPI process is also the master thread in the runtime

environment. At the beginning, the initial time frame data is broadcasted to all MPI pro-

cesses so that normalization can be performed with new coming time frames. Then each

MPI process embarrassingly process the data in each time frame with multithreading in

the shared memory. Only detected blobs information are maintained and added into local

database. Since these local blobs information are very compact, they can be efficiently
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transmitted over internet to remote servers for real-time analysis by domain scientists.

Algorithm 20 A real-time blob detection approach
Input:
Rmin, Rmax, Zmin, Zmax: specify region of interest
t_start, t_end : start and end time frames
FileDir: location where data sets locate

Output:
B: Detected region outliers (blobs)

1: Apply static scheduling to assign equal amount of n time frames data to each MPI
process

2: Broadcast the initial time frame to all MPI processes
3: for t = 1 : n do
4: Process i loads raw data in one frame and computes normalized density ne(r, z, t)

in region of interest
5: Refine the triangular mesh. See Algorithm 17
6: Apply two-step distribution-based outlier detection to identify outliers with various

criteria
7: Apply CCL-based region outlier detection on a triangular mesh to find blob compo-

nents. See Algorithm 18
8: A blob is added into B if certain criteria is satisfied
9: end for

5.5 Experiments and Results

In this section we present experimental evaluations of our blob detection and tracking

algorithms, and report the performance of the real-time blob detection under both strong

and weak scaling. Before showing experimental results in the next section, we briefly

introduce our experimental environment, data sets, and parameters setting in our blob

detection and tracking algorithms. We have tested our implementation on the NERSC’s

newest supercomputer Edison, where each compute node has two Intel “Ivy Bridge” pro-

cessors (2.4GHz with 12 cores) and 64 GB of memory. Our data sets are small simulation

data sets (30GB) with 1024 time frames based on the XGC1 simulation [24][75] from the

Princeton Plasma Physics Laboratory, which last around 2.5 milliseconds. One of our

main goals is that we can control analysis speed by varying the number of processes to
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complete the blob detection on the entire data set in a time close to 2.5 milliseconds. It

would indicate that our algorithm could monitor fusion experiments in real time (neglect-

ing data transfer latency). If we consider internet transfer latency in real experiments or

numerical simulation, the system needs at least 1 to 25 milliseconds to transfer one time

frame data depending on size of data, which may give us more time for data analysis.

Another goal is to validate the effectiveness of the proposed algorithms. In Algorithm

20, we apply various criteria to identify the blobs. The parameters for blob detection and

tracking in our experiments are given in Table 5.1. One criterion we have not mentioned

in the previous section is parameter “minArea”. This parameter is used to decide how

many points a blob should have, which is used to remove impossibly small blobs. In our

experiment, this parameter is set to three since there are at least three vertices connected

as a 2D component in a triangular mesh. Another criteria are parameters “maxFrames”

and “minFrames”, which are used to control the length of a blob track and remove noisy

tracks. It is important to note that these parameters need to be tuned in order to achieve

optimal performance in different fusion experiments or numerical simulations. The rea-

sons for this uncertainty in the context of blob detection are from the intrinsic variability

and complexity of the blob structures observed in different experiments [35].

Table 5.1: Parameters setting for the proposed blob detection and tracking algorithms on XGC1
simulation data sets

minArea 3 maxAreaChange 25
minRden (dma) 1.2 maxJump 0.04

minAbsden (dmr) 2.05 maxFrames 100
maxAbsMden (d̂xa) 2.75 minFrames 3

minMden (d̂ma) 1.3
minAbsMden (d̂mr) 2.15
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5.5.1 Performance comparison

We first conduct experiments to compare our method with recently developed state-of-the-

art blob detection methods in [29, 94]. Since their methods are based on the contouring

methods and thresholding, we call their methods the contouring-basedmethods. We have

to point out that strictly quantitative comparisons are not possible since the blob itself is

not well-defined [35]. Due to this reason, there are rarely direct comparisons between any

new proposed method and existing ones in the literature in the domain of fusion plasma

[148, 41, 151, 93, 84, 29, 76, 94]. However, in order to demonstrate that our methods is

more robust than the contouring-based methods, we compare these two methods in two

typical cases to shed light on their performance in terms of the detection accuracy.

Figure 5.8 shows the comparison of the blob detection results between our region out-

lier detection method and the contouring-based methods in two different time frames. As

shown in Figures 5.8(a) and 5.8(b), we can see that our region outlier detection method

does not miss detecting the blob at the edge of the regions of interest while the contouring-

based methods fail the detection. The reason is that the contouring-based methods re-

quire the computed contours are closed, which do not exist at the edge of the regions of

interest. In Figures 5.8(c) and 5.8(d), we notice that our region outlier detection method

can accurately detect all blobs. However, the contouring-based methods either yield the

blobs with incorrect areas (much larger or smaller), or misdetect the wrong area as a blob.

This is because that it is hard to use one single threshold to identify the blobs for various

time frames even in the same experimental data. Our region outlier detection method

does not have such problem since we use more generic two-step distribution-based out-

lier detection.

5.5.2 More blob detection results

We perform more experiments to comprehensively examine the blob detection results in

five continuous time frames and four different poloidal planes as shown in Figure 5.9. As
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Figure 5.8: Two examples of comparing our region outlier detection method with the Contouring-
based methods in the R (radial) direction and the Z (poloidal) direction. The separatrix position is
shown by a white line and the different pink and blue circles denote blobs.

we can see from the figure, our region outlier detection method can provide consistently

good results in different situations. In addition, our method does not miss any blobs at the

edge of the regions of interest, as shown in subfigures 5.9(b), 5.9(g), 5.9(c) and 5.9(h). It is

interesting to see that large-scale blob structures are often generated, which could cause

substantial plasma transport [151]. As pointed out in [147], these large-scale structures

aremainly contributed by the low-frequency and long-wavelength fluctuating components,

whichmay be responsible for the observations of long-range correlations. We also noticed

that different poloidal planes may display significant diversity in edge turbulence, even in

the same time frame. We have shown that we are able to effectively detect the blobs

148



and reveal some interesting results to help physicists improve their understanding of the

characteristic of blobs and their correlation with other plasma properties.

5.5.3 Blob tracking results

We investigate the blob tracking results in two different situations. Figure 5.10(a) exhibits

a 2D trajectory of a blob. Again, the trajectory is generated by plotting the location of the

density peak of the detected blobs over five consecutive time frames. We can see that our

blob tracking algorithm can track two separate blobs simultaneously. The blob size can

grow when they move towards confined plasma in the right region of separatrix. Figure

5.10(b) shows a 3D trajectory for a detected blob over fifteen consecutive time frames.

In this case, the blob seems to maintain its size for a few time frames, then gradually

decreases, and eventually disappears. Through these interesting results, physicists may

be able to understand the characteristics of blobs better.

5.5.4 Real-time blob detection under strong scaling

We have illustrated the effectiveness and robustness of the proposed blob detection and

tracking methods. Next, we perform a set of experiments to demonstrate the performance

of our real-time blob detection approach under strong scaling and weak scaling.

Our most encouraging results are that we can complete blob detection on the simu-

lation data set described above in around 2 milliseconds with MPI/OpenMP using 4096

cores and in 3 milliseconds with MPI using 1024 cores. In Figure 5.11, we can achieve lin-

ear time speedup in blob detection time under strong scaling. TheMPI and theMPI/OpenMP

implementations accomplish 800 and 1200 times speedup respectively, when the number

of processes is scaled to 1024. Also, we can see that the hybrid MPI/OpenMP implemen-

tation is about two times faster than the MPI implementation when varying the number

of processes from 1 to 512. With 1024 processes, both of them achieve similar perfor-
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mance, but the MPI/OpenMP one is slightly better. This demonstrates that we are able to

control analysis speed by varying the number of processes to achieve real-time analysis.

5.5.5 Real-time blob detection under weak scaling

In this experiment, we evaluate the performance of our real-time blob detection under

weak scaling. We replicate existing data sets (30GB) in order to obtain adequate exper-

imental data sets (4.3TB). The basic unit data contains 128 time frames and the size of

data increases linearly with the number of processes. In Figure 5.12, the blob detection

time remains almost constant under weak scaling, which indicates that our implementa-

tions scale very well to solve much larger problems. Also, both MPI and MPI/OpenMP

implementations achieve high parallel efficiency as the number of processes increases

from 1 to 1024.

5.6 Conclusion and Future Work

Near real-time data analysis of the long-pulse fusion plasma experiments presents both

opportunities and challenges responding to extreme scale computing and big data in

fusion energy. In this research, we propose, for the first time, a real-time blob detec-

tion approach for finding blob-filaments in fusion experiments or numerical simulations.

The key idea of the proposed two-phase region outlier detection scheme is based on

distribution-based outlier detection with various criteria and a fast CCL method to find

blob components. In addition, an efficient blob tracking scheme is presented to recover

the trajectories of the motions of blobs. We have implemented our blob detection algo-

rithm with hybrid MPI/OpenMP and demonstrated the effectiveness and efficiency of our

implementation with a set of fusion plasma simulation data. Our tests show that we can

achieve linear time speedup and complete blob detection in two or three milliseconds

using a cluster at NERSC.
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We are currently working on integrating our blob detection algorithm into the ICEE

system for consuming fusion plasma data streams where the blob detection function is

used in a central data analysis component and the resulting detection results are moni-

tored and controlled from portable devices, such as an iPad. We plan to test the proposed

method in both numerical simulations and real fusion experiments.
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Figure 5.9: An example of the blob detection in five continuous time frames and four different
poloidal planes in the R (radial) direction and the Z (poloidal) direction. The separatrix position is
shown by a white line and the different blue circles denote blobs.
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(a) 2D trajectory for detected blobs

2.26

2.28

2.3

−0.2
−0.1

0
0.1

0.2

144

146

148

150

152

154

156

158

R value

Trajectory of region outlier (blobs)

Z value

T
im

e
 f

ra
m

e

(b) 3D trajectory for detected blobs

Figure 5.10: 2D and 3D center trajectories for detected blobs over consecutive time frames. The
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Figure 5.11: Blob detection time and speedup with MPI and MPI/OpenMP varying number of
processes under strong scaling
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Figure 5.12: Blob detection time and speedup with MPI and MPI/OpenMP varying number of
processes under weak scaling
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Chapter 6

Summary and Future Work

The goal of this thesis is to design new algorithms and develop high quality software

for solving difficult large-scale eigenvalue problems, singular value problems, and some

big data analysis applications. Specifically, we studied the computation of the smallest

singular triplets and interior eigenpairs, the trace estimation of an implicit matrix, and the

detection of blob-filaments in fusion plasma. We summarize the main results we have

achieved and the future work in each chapter:

• In Chapter 2, we have developed a full functionality, high quality SVD solver for a

few smallest or largest singular values of a large matrix. The key idea is a two stage

meta-method, PHSVDS, which firstly solves the normal equations efficiently to get

sufficiently accurate approximations, and continues solving an interior eigenvalue

problem on the augmented matrix if further accuracy is needed. Furthermore, an

efficient computation of the interior eigenproblem is allowed based on a simplified

refined projection due to the availability of good initial shifts and guesses from the

first stage. PHSVDS significantly advances current the state-of-the-art in singular

value methods.

We further develop a high-performance preconditioned SVD software to implement

the PHSVDS method on top of PRIMME. PRIMME_SVDS is an attempt to fill a

gap in high quality SVD software for efficiently and accurately solving both largest
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and smallest SVD problems. We have demonstrated its good parallel performance

up to 1024 MPI processes on the largest problems we have ever seen in the SVD

literature. More importantly, we have provided multiple popular user interfaces such

as Python, Matlab, R, and C to serve a broader class of users, especially these who

are not experts in SVD computations.

• In Chapter 3, we discuss different approaches to compute refined Ritz vectors for

interior eigenvalue problems and analyze their merits and drawbacks. Based on

these investigations, we propose a new hybrid approach for the efficient and ac-

curate computation of the refined Rayleigh-Ritz procedure in non-Krylov iterative

methods such as GD/JD type methods. We have shown that seeking even a small

number of interior eigenvalues is a really hard problem. With increasing size of

problems, a practical and efficient method for refined projection is highly demanded

for solving interior eigenvalue problems. We hope our method has shed some lights

towards developing a high-quality eigensolver software in this direction.

• In Chapter 4, we present a novel trace estimator for the trace of the matrix inverse

by exploiting the pattern correlation between the diagonal of the inverse of the ma-

trix and that of some approximation. We investigate a number of sparse matrix

decomposition techniques to compute a good approximation of A−1. In addition,

we study a sophisticated sampling method, a linear LS fitting and a PCHIP fitting

technique to build an effective piecewise polynomial model for estimating the trace.

Furthermore, we propose a dynamical variance evaluation algorithm to estimate the

variances of different MC methods, which can be used to choose appropriate MC

whose variance has been reduced sufficiently by our fitting model. Also, we present

a dynamical evaluation scheme to monitor the relative error of the estimated trace.

We implement a framework with various options of different techniques and demon-

strate the effectiveness of the proposed methods through a set of experiments.

An interesting future direction is to take all available information such as index num-
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bers and values of diagonal elements as input to an appropriate machine learning

technique such as kernel ridge regression [145, 134] to improve the accuracy of

predicted diagonal elements. Some new approaches, can be exploited to compute

a better approximation in order to further facilitate the improvement with these ma-

chine learning techniques.

• In Chapter 5, we present the first work to achieve a real-time blob-filaments de-

tection in fusion simulations and experiments. In order to tackle high volume and

velocity challenges arising from fusion plasma big data, we have designed a spe-

cialized outlier detection scheme and suitable high performance computing tech-

niques. The key components of the proposed algorithm are a two-step outlier de-

tection with various criteria and a fast connected component labeling method to find

blob components. We have implemented our blob detection algorithm in C with hy-

brid MPI/OpenMP and demonstrated parallel efficiency of our implementation with

a set of fusion plasma simulation data. Our tests show that we can achieve lin-

ear time speedup up to 1024 MPI processes and complete blob detection in two

or three milliseconds using supercomputer Edison at NERSC. We plan to conduct

more experiments on the data from a real Tokamak device.

Because most projects in this research are closely related, we expect a strong cross

fertilization of results. For example, our two stage SVDmethod depends on many aspects

of the proposed hybrid approach for the computation of the refined Ritz vectors. Also, our

SVD solver and eigensolver can be applied to construct low rank approximations for the

trace estimator.
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