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+is study develops an algorithm to detect the risk of collision between trucks (i.e., yard tractors) and pedestrians (i.e., workers) in
the connected environment of the port. +e algorithm consists of linear regression-based movable coordinate predictions and
vertical distance and angle judgments considering the moving characteristics of objects. Time-to-collision for port workers
(TTCP) is developed to reflect the characteristics of the port using the predictive coordinates. +is study assumes the connected
environment in which yard tractors and workers can share coordinates of each object in real time using the Internet of +ings
(IoT) network. By utilizing microtraffic simulations, a port network is implemented, and the algorithm is verified using data from
simulated workers and yard trucks in the connected environment. +e risk detection algorithm is validated using confusion
matrix. Validation results show that the true-positive rate (TPR) is 61.5∼98.0%, the false-positive rate (FPR) is 79.6∼85.9%, and the
accuracy is 72.2∼88.8%.+is result implies that the metric scores improve as the data collection cycle increases.+is is expected to
be useful for sustainable transportation industry sites, particularly IoT-based safety management plans, designed to ensure the
safety of pedestrians from crash risk by heavy vehicles (such as yard tractors).

1. Introduction

Technologies, educational programs, and policies designed
to prevent industrial accidents have been widely imple-
mented, and accidents are on the decline in various in-
dustrial sectors. However, accidents are still common at
ports. According to the Korea Maritime Institute, the ac-
cident rate for port workers stood at 9.46 per thousand as of
2017, double the average of 4.84 for all Korean industries.
+is is 1.5 times greater than the rate in the transportation
sector, in which traffic accidents occur more frequently. Port
activities involve manual tasks associated with binding and,
depending on the type of cargo, loading and unloading, and
storage methods. Collisions, falling objects, and falling ac-
cidents occur frequently in ports [1]. +e severity of an
accident is higher compared to those in the industrial sector
in general because heavy equipment is involved. +e most
frequent and accidental accident is collision. At a port, most

heavy equipment emits a warning sound to prevent colli-
sions in advance. +is makes it difficult for the operator to
recognize access equipment (such as yard tractors), and
accidents in these circumstances can be fatal. In the yard area
of a port, there are two main cases of collision that can occur
between workers and trucks (Table 1).

Collisions between workers and equipment in port yards
are similar to pedestrian-vehicle crashes on roads, which
constitute a leading concern in traffic safety. Multiple al-
gorithm-based technologies have been developed to avoid
collisions, including the forward crash warning system
[2–5]. +e concept of time-to-collision (TTC), which is used
frequently in these algorithms, is defined in relation to the
preceding and following vehicles [6]. +e following equation
[7, 8] provides a mathematical description of the concept:

TTC �
h − L

VF − VP

, (1)
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where h is the space headway and L is the length of the
preceding vehicle. VF and VP refer to the speeds of the
following and preceding vehicles, respectively. +e TTC
assumes that the preceding vehicle maintains a constant
speed. As a result, traditional TTCs are limited in their
ability of expressing dynamic situations in which speed
changes rapidly on real roads. To address this shortcoming,
researchers have developed complementary algorithms such
as inverse TTC, time-exposed TTC, and time-integrated
TTC, for use in collision-risk detection technologies [9–13].

TTC is used not only in detection algorithms as an
indicator of real-time collisions, but also in assessing safety
levels based on trajectory [14]. TTC is a representative in-
dicator for the assessment of safety, and indicators such as
postencroachment time (PET) and the deceleration rate to
avoid a crash are used for analysis [15, 16]. In 2003, Yang
et al. developed a hydraulically based system for use in a
rear-end collision warning and avoidance [17]. In the car-
following situation, the warning system was designed with a
condition-space-based approach. In 2018, Wu et al. devel-
oped an algorithm to determine the risk of a rear-end
collision using real-time data. Unlike previous research, the
Wu et al. study developed collision-prevention algorithms
by processing real-time data that can be used in connected
vehicle environments [18]. In 2019, Wu et al. used PETas an
indicator for a safety analysis of the conflicting section
between the bicycle road and the vehicle driveway. +e
authors analyzed the mechanical behavior between bicycles
and vehicles to develop an algorithm that estimated crash
risks and triggered a warning alarm [19]. In 2006, Oh et al.
proposed a method of determining the risk of rear-end
crashes using loop-detector data and applying the concept of
a safe stopping distance. +e relationship between the
preceding and following vehicles in a collision can be
expressed mathematically [20]. In 2016, Lee and Yeo de-
veloped a collision-warning algorithm based on a multilayer
perceptron neural network. An algorithm was proposed to
provide collision-warning information by predicting the
right of influence and deceleration of passage time and

utilizing segment information collected by a roadside
communication unit [7]. In 2020, Yue et al. conducted a
study from the vehicle’s perspective using a pedestrian-to-
vehicle (P2V) driving simulator to predict and avoid pe-
destrians in pedestrian-vehicle collisions. Research has been
conducted to improve P2V technology from the driver’s
perspective, which differs from the pedestrian’s perspective,
to increase pedestrian safety [21]. In 2019, Wu et al. pro-
posed a system of risk assessment for pedestrian-vehicle
collisions. Using data collected from Lidar and other sensors,
they predicted pedestrian crossing intentions using a tra-
jectory prediction model and analyzed risks based on a
dynamic Bayesian network [22].

Other studies developed vehicle-to-vehicle communi-
cations systems that assume a smooth communications
environment and perform a rear-end collision-risk analysis
based on intervehicle information and collected commu-
nications [23–25]. Sensor-based studies that prioritize near-
field networks to determine accident risks are already being
used throughout the industry. However, research on long-
distance communication using global positioning satellite
(GPS) data is still being carried out with an eye to com-
mercialization as it requires technical improvements, such as
less battery maintenance and superior GPS reception. In
2017, Chen et al. calculated alternative safety indicators, such
as TTC and PET between vehicles and pedestrians, to assess
safety at intersections under specific conditions and times
[26]. +e study featured an analysis of traditional TTC
problems and P2V relationships by applying formulas. In
2019, Li et al. attempted to predict the maneuverability of
adjacent vehicles through inferences based on probability
methodologies such as Bayesian networks. +e resulting
dynamic features have been presented and are considered
significant advancements in terms of real-time risk man-
agement [27].

Most TTC-based algorithm technologies have been
approached from a vehicle perspective [7, 17, 21, 23,
26, 28, 29] and little relevant research has been conducted
to help pedestrians avoid collisions with vehicles [26, 30]. In

Table 1: Examples of collision-risk situations between pedestrian and truck.

No. Situation Visualization

1
+e worker is working or waiting in the yard.+e yard tractor is driving on the road
at normal speed and approaching the worker’s location. +e worker is not aware of

the approaching tractor.

2
+e worker is on the move. +e yard tractor is driving on the road at normal speed
and approaching the worker’s location. +e worker is not aware of the approaching

tractor.
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this study, a vehicle-collision avoidance algorithm is pro-
posed from the perspective of the pedestrian (worker). In a
port, devices can be distributed to workers to facilitate the
collection and management of data. +e device is developed
using IoT-based GPS technology and can determine the real-
time location of workers and equipment. +ese IoT-based
collision-risk detection technologies are expected to be
applied first in traffic environments that guarantee the safety
of pedestrians. +e algorithm technology described in this
study is expected to play an important role in planning
pedestrian traffic safety measures in future sustainable pe-
destrian-oriented traffic environments.

+e purpose of this study is to develop detection tech-
niques that can predict pedestrian collision risks using
connected technology under special conditions, such as low-
traffic ports or nonsignal intersections.+emovable objects of
the port terminal travel in a designated direction through a
designated road, but pedestrians cannot specify the direction
of progress due to their characteristics. Considering this, in
this study, the speed, direction, and location of the equipment
are defined by the change in relative distance as predictions. A
collision-risk detection algorithm is developed reflecting the
defined concept, which is validated using microtraffic sim-
ulations. With reference to the performance of the device that
can be applied to the field, a simulation scenario with different
data collection cycles is designed. Validation of the algorithm
was performed by considering differences in risk detection
accuracy on a collection cycle basis.

2. Methodologies

2.1. Prediction of Relative Space. In this study, risk indicators
were calculated based on traditional TTC concepts. Tradi-
tional TTCs are used not only for crash risk detection, but
also for conflict-based safety analysis at intersections and
certain other sections. +is study used a risk detection
methodology using latitude and longitude coordinates. +e
relative distance is then calculated to determine the risk as in
the following equation. Euclidean distances were used to
calculate the distance between coordinates:

lr �

�������������������

xp − xe􏼐 􏼑
2

+ yp − ye􏼐 􏼑
2

􏽲

, (2)

where lr is the distance between port worker and equipment
and (xp, yp) and (xe, ye) are the coordinates of the port
worker and equipment (based on geographical distances),
respectively. +is study produced a changing relative dis-
tance-based TTC between worker and equipment. Alter-
native safety indicators were then proposed to respond to
and avoid expected collisions. Considering the spatial
characteristics of the port, a general straight section pre-
dicted future coordinates using a linear regression model. In
many previous studies of collision-warning algorithms, the
perception reaction time (PRT) is assumed to be between 0
and 2.5 s [31–33]. In this study, response time is set in
consideration of the PRT by taking into account the vehicles,
the work of the port workers, and mobility characteristics.
+e movement of the equipment is predicted for more than
10 s from detection and recognition of, and response to,

collision risk, and verification of the researchmethodology is
carried out.

A criterion of 10 s for detecting accident risks is set given
the characteristics of the port container yards. A one-yard
block is compartmentalized so that it can accommodate 15
containers (20 ft) horizontally and six vertically. A block is
90m wide and 15m long. +e speed limit of moving
equipment (such as yard tractors) in the port is 30 km/h
(8.3m/s). +e maximum distance the equipment can travel
in 10 s is therefore 83m. Because the width of a one-yard
block is 90m, the time of 10 s in the algorithm is the
maximum prediction time to ensure that all movement up to
the next direction selection can be predicted. Because the
port is a difficult working environment to recognize
approaching equipment, collision accidents caused by low
speeds continue to occur. For example, if a yard tractor
moves at a speed of 5 km/h, it can travel 13.9m in 10 s. Due
to the reduction of the hazard radius and sudden acceler-
ation and deceleration behavior, it is necessary to select the
forecast range for the next 10 s. In this study, a comple-
mentary TTC is proposed based on predicting a minimum
collision distance with workers within 10 s. +e minimum
relative distance based on recursive algorithms can be found
in the following equation:

lr,t �

�����������������������

xp,t − xe,t􏼐 􏼑
2

+ yp,t − ye,t􏼐 􏼑
2

􏽲

, (0< t< 10 s), (3)

where lr,t is the relative distance between worker and
equipment at any time t and (xp,t, yp,t) and (xe,t, ye,t) are the
coordinates of port worker and equipment, respectively, at
any time t. +e collision risk is calculated based on the
minimum value among the relative distances calculated by
location information within 10 s of the future.

In order to use the collected position coordinates for
analysis, a transformation work is required. Because the
latitude and longitude coordinates used in this study are
spherical coordinates, they should be converted to Cartesian
coordinates to obtain relative distances. +e haversine
formula is used to convert orthogonal coordinates to the
Cartesian system, and the relative distance is calculated after
conversion. In this study, a regression model with recursive
concept is developed to predict location coordinates. In
other words, it is a method of using historical location in-
formation to produce future forecast information. In Fig-
ure 1, the recursive concept is illustrated.

When the current time is t0 and the historical coor-
dinates recorded before t seconds are supplied, a linear
regression model can be constructed with the slope de-
pendent on the amount of change and the regression co-
efficient and dependent variables as the predicted
coordinates. +e y-axis coordinates (latitude) and x-axis
coordinates (longitude) were predicted by building sepa-
rate equations as follows:

ypredicted,e,t �
ye,t − ye,t+1􏼐 􏼑

xe,t − xe,t+1􏼐 􏼑
· xpredicted,e,t + e

� f′(t) · xpredicted,e,t + e,

(4)

Journal of Advanced Transportation 3



where ypredicted,e,t and xpredicted,e,t are the predicted y-axis
(latitude) and x-axis (longitude) coordinates of equipment,
respectively. e is a residual, and f′(t) is the regression
coefficient of the prediction model, such that

dt �
axpredicted + bypredicted + c

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
������
a
2

+ b
2

􏽰

�
f′(t) · xpredicted,t − ypredicted,t + e

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
������������

f′(t)
2

+(− 1)
2

􏽱 ,

(5)

x �
−b ±

�������
b
2

− 4ac
􏽰

2a
θt � a sin

dt

lr
􏼠 􏼡 ×

180°

π
, (6)

where dt is the vertical distance between the predicted di-
rectional line of the moving equipment and the worker. θt is
the degree between the equipment and the worker (Figure 2).

2.2. Time-to-Collision for Port Workers (TTCP). +e relative
distance (lr) from the current time to the predicted coor-
dinates after 10 s has been aggregated to define the time at
which lr is minimal, as seen in equation (7). In addition,
changes in lr and relative velocity (vr) between the forecast
coordinates for a worker and equipment can provide a real-
time rate of change (vl,Δt) of the current relative speed. +e
time-to-collision for port workers (TTCP) can be calculated
using the relationship between relative distance and real-
time rate of change:

TTCP � tmin − t0 �
lr,t

lr,t2
− lr,t1

􏼐 􏼑/ t2 − t1( 􏼁
�

lr,t

vr,Δt
, (7)

where tmin is the time at which the relative distance between
objects for the future 10 s is minimum. t0 is current time. lr,t

is relative distance, and vr,Δt is the relative distance reduction
rate at time t. TTCP is the time calculated for the rate at
which the relative distance and relative velocity can be
obtained through the prediction coordinates and the relative
velocity is reduced by the amount of change in this indicator.
It is the time taken to minimize lr,t from the worker, as-
suming that the worker’s presence is recognized within a
certain relative distance and that the worker moves in the
predicted direction at the current speed for 10 s. +e set 10 s
is the maximum value that can detect all accessible objects.
In this study, the TTCP threshold to determine the presence
or absence of a dangerous situation is set to 4 s. According to
Yue et al., given a brake reaction rate of 1.25 to 1.5 s (from
the previous study), a TTC of 2 s is considered a serious
precrash accident [21]. In addition, given a brake response
speed and the worker’s response speed of 2.5 s, a TTC of 4 s is

considered dangerous. +erefore, in this study, when the
proposed TTCP is 4 s, the situation is considered dangerous
(precrash situation). Because the maximum travel distance
for 4 s at a design speed of 30 km/h is approximately 33.3m,
this is almost consistent with the relative distance-based risk
assessment standard of 30m.

2.3. Development of a Crash Risk Detection Algorithm for Port
Workers. To detect accident risks in real time by combining
the proposed alternative safety indicators such as TTCP
requires defining and classifying various behaviors of
workers and equipment. In this study, given the basic
characteristics of accidents occurring within the port, di-
rectly relevant variables were derived and considered in the
algorithm. Factors judged important and reflected in the
development of algorithms are work status, location (place),
distance from objects (relative distance, lr), vertical distance
(dt), degree (θt, and approach direction (vr.

According to Layton and Dixon (2012), the stopping
sight distance is 31.2m at a design speed of 30 km/h, and the
typical emergency stopping distance is 14.2m on dry road
surfaces (with a response time of 2.5 s) [31]. By referring to
this standard, yard trucks within 30m of the worker and
approaching the worker’s direction were detected as dan-
gerous objects. In this study, an algorithm was developed by
largely dividing it into two stages based on these criteria.+e
first is the “risk situation judgement algorithm” that detects
objects approaching within a relative distance of 15m. +e
second is “collision-risk detection algorithm,” which de-
termines the designated TTCP criterion according to vertical
distance (dt) and angle (θt. Collision-risk detection algo-
rithm is performed only for objects determined to be
dangerous by risk situation judgement algorithm. +e de-
veloped algorithm is shown in Figure 3.

Figure 4 provides a diagram of the algorithm to deter-
mine the risk of collision at a port. It is the process of
calculating the indicators according to changes in the

(xt-3,yt-3) (xt-2,yt-2) (xt-1,yt-1) (xt+1,yt+1) (xt+2,yt+2) (xt+3,yt+3) (xt+...,yt+...)
Observed coordinates Predicted coordinates

t-3 t-2 t-1 t+1 t+2 t+3 t+...t
FuturePresent

(xt,yt)

Past

Prediction

Coordinates

Time

Figure 1: A recursive algorithm for predicting coordinates by time.

Figure 2: Illustration of the distance between the tractor’s pre-
dicted directional line and a worker.
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relative space between trucks and workers. +is figure ex-
presses a simple situation for understanding. In practice, the
change in speed of the object can be reflected to detect
changes in the TTC according to the speed.

2.4. Data Description. +is study assumes a situation in
which the real-time locations of workers and equipment are
collected using IoTdevices. +is allowed us to derive the risk
of a collision accident between workers and equipment in a
port yard in the form of a TTC-based risk index and de-
tection using the collected data. Technical research is cur-
rently being carried out at the port in anticipation of the
introduction of IoT devices. To implement and evaluate
accident-risk detection technologies in an IoT communi-
cation environment, a virtual environment is established
using microtraffic simulations. Previous studies used data
collected from actual roads [12, 34], where it is difficult to
ensure a fully controlled environment for experimentation
and implement the desired scenario. +us, in this study,
simulation analyses were performed that enabled the full
implementation of the planned risk scenario. In this study,
the risk of a collision within a port is divided into scenarios.

+e actual environment and working characteristics were
classified and analyzed to capture all possible situations
between workers and equipment in the simulation network,
and the risk of collision at the port is separated into four
distinct scenarios. Trace data on workers and equipment
were collected for each scenario using VISSIM, amicrotraffic
simulation program. +e simulation time is set to a total
length of 1,200 s for the collection of data, and analysis is
performed by dividing the collection cycle into three cate-
gories, considering the communication performance of an
actual IoT device.

+e period for the analysis is set to 1Hz, 2 Hz, or 10Hz.
To simulate the movement of equipment and yard tractors
in the port, movement at the actual port is analyzed and
the average speed is below 30 km/h. Network settlement
and verification efforts were not carried out because the
objective is to detect the risk of collision between workers
and equipment in certain situations without considering
intervehicle interactions and delays in traffic. +e spatial
background applied in this study is Busan Sinseondae Pier
(Figure 5). +e same spatial network is established using
Google and Kakao maps, and photos are taken at real-
world sites.

Space Relative
space

Time Time

TTCP TTCP

t1 t2 t1

lr,1

lr,2

t2

Δl

Δl
Δt

Δt

Figure 4: Risk detection algorithm with TTCP.
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judgement algorithm

with lr and vr

If lr<83 m
lr(e),t<83 m

If lr<15 m

If vr>0
If vr>0

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No
Adjacent

intersection or link?

Adjacent
intersection or link?

Dangerous object

Dangerous

Collision Risk
detection algorithm

with TTCP

θt < 10°

dt < 4.5 m
TTCP < 4 s,

Figure 3: Risk detection algorithm with TTCP.
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3. Results and Discussion

Algorithm verification is carried out to detect the risk of a
collision between a worker and equipment within the port
using trajectory data collected in the analysis network and
VISSIM. +e analysis is performed by dividing the data into
three scenarios according to the frequency of the infor-
mation collection. Simulation experiments were conducted
according to the information collection cycle. To evaluate
the risk detection performance of the algorithm, the risk
situation is defined as follows:

(1) If the relative distance is within 30m and the relative
distance is decreasing, the relative velocity (vr) is
positive and the mobile device is approaching

(2) Relative distance within 15m

In this study, the confusion matrix is used to evaluate the
detection performance of the algorithm. As a criterion for
determining the accuracy of the predicted value, the above
two situations were set as the actual class (Table 2). +e
confusion matrix is used to compare the number of true and
false predicted values and actual values. +e simulation
results of algorithm are classified into four categories to
evaluate detection accuracy as follows:

True positive (TP): the algorithm predicted that a
situation is dangerous, and it is true
False positive (FP): the algorithm predicted that a
situation is dangerous, and it is false
False negative (FN): the algorithm predicted that a
situation is normal, and it is false
True negative (TN): the algorithm predicted that a
situation is normal, and it is true

True positive rate (TPR) � recall(sensitivity)

�
TP

TP + FN
,

(8)

False positive rate (FPR) � 1 − specificity

�
FP

FP + TN
,

(9)

accuracy �
TP + TN

TP + FN + FP + TN
. (10)

True-positive rate (TPR), also called sensitivity, refers to
how accurately the algorithm classifies dangerous situations
(TP + FN), as seen in equation (8). False-positive rate (FPR)
indicates how accurately the algorithm classifies normal
situations (TN+FP), as seen in equation (9). Accuracy is an
indicator that considers both TP and TN, which can most
intuitively represent the performance of the algorithm [35],
as seen in equation (10).

+e numbers of samples according to the data collection
cycle were 12,811 (1Hz), 25,147 (2Hz), and 137,254 (10Hz),
respectively. +e confusion matrix and metric scores are
presented in Tables 3‒6. +e metric scores of 1Hz show
61.5%, 79.6%, and 72.2%. +is score is the smallest of three
data collection cycle scenarios. Compared to other cycles,
1Hz has a longer prediction unit. +erefore, this result is
seen as an increase in error within the prediction unit. For
2Hz, the data were every 0.5 s; the metric score shows 91.8%,
85.9%, and 87.5%. Finally, for 10Hz and the shortest col-
lection cycle, the metric score shows 98.0%, 85.4%, and
88.8%. It is obvious that the score of 10Hz has the greatest
accuracy among the cycles, which suggests that the shorter

Apron Container
Yard 

Figure 5: Study area (Sinseondae Pier, Busan Port Terminal).

Table 2: Confusion matrix.

Classification Actual class
Dangerous Normal

Prediction Dangerous True positive (TP) False positive (FP)
Normal False negative (FN) True negative (TN)
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the collection cycle, the better the performance of the
algorithm.

In summary, sensitivity analysis and comparative studies
have been conducted to verify the performance of the al-
gorithm. Sensitivity analysis shows the performance of al-
gorithms associated with data collection cycles, which means
that shorter collection cycles are better in terms of detection
accuracy of algorithms. Considering current technical level
such as battery and equipment size, it is difficult to supply
equipment with 10Hz. +erefore, it is necessary to establish
equipment and servers that can provide an appropriate data
collection cycle in consideration of the realistic conditions of
the industrial site.

4. Conclusions

+is study developed and verified an algorithm to detect the
risk of collision accidents between port workers and
equipment. A risk indicator represented by TTC is selected
to provide detection of the risk of collision due to equipment
in situations specified by various conditions in the port.

Traditional TTCs are the simplest collision-detection re-
placement safety indicators and only detect hazardous sit-
uations if certain conditions are met. Various studies have
suggested improving TTCs to compensate for these prob-
lems. +e purpose of this study is to develop an algorithm
that considers the characteristics of pedestrian behavior by
calculating the TTC between workers and equipment, not
TTCs, in the situation of the next lane.

As a result, the algorithm shows 61.5–98.0% TPR,
79.6–85.9% FPR, and 72.2–88.8% Accuracy depending on
the collection cycle.+e algorithm validation results indicate
that the metric scores increase as the collection cycle is
shortened. +is means that the better the performance of
individual IoT devices available in the field is, the better the
risk detection level of the algorithm can be. Based on these
analysis results, this study argues for the need to introduce
smart port equipment following technical improvements.
Because it is an algorithm developed considering the spatial
characteristics of ports, it is significant in terms of safety
improvement in industrial sites.

However, some limitations exist in this study. First, since
it is a simulation-based algorithm study assuming conditions
in the field, further verification using real-world field data is
required. Second, improvements are needed on the
threshold baseline setting of stopping sight distance and
TTC. In this study, the criteria for studies conducted in
general traffic flow environments were utilized. +erefore,
the stopping sight distance and TTC settings that are op-
timized for a port environment are needed [30, 36]. +ird,
the accuracy improvement of the algorithm can be per-
formed by utilizing various prediction and verification
methodologies. In this study, predictive method is used for
real-time contextual judgement and algorithm optimization.
However, since machine learning-based positional coordi-
nate prediction studies have been conducted, various pre-
diction methodologies need to be reviewed to improve the
accuracy of algorithms [37]. In addition, studies of collision-
prevention methodologies using similar techniques can be
applied to improvements [38–40]. Future research will be
considered verifying algorithms using device data collected
in the field and improving services after introduction. It is
expected to help prevent accidents between equipment and
pedestrians at ports and other industrial sites.

Data Availability

Some or all data, models, or code that support the findings of
this study are available from the corresponding author upon
reasonable request.

Disclosure

+is research was a part of the project titled “Development of
Port Risk Prediction and Intelligent Port SafetyManagement
Technologies”.

Conflicts of Interest

+e authors declare no conflicts of interest.

Table 3: Results (data acquisition cycle� 1Hz).

Classification Actual class
Dangerous Normal

Prediction Dangerous 3,220 1,545
Normal 2,013 6,032

True-positive rate (TPR)� 0.615; false-positive rate (FPR)� 0.796;
accuracy� 0.722.

Table 4: Results (data acquisition cycle� 2Hz).

Classification Actual class
Dangerous Normal

Prediction Dangerous 6,249 2,588
Normal 561 15,748

True-positive rate (TPR)� 0.918; false-positive rate (FPR)� 0.859;
accuracy� 0.875.

Table 5: Results (data acquisition cycle� 10Hz).

Classification Actual class
Dangerous Normal

Prediction Dangerous 35,967 14,661
Normal 724 85,901

True-positive rate (TPR)� 0.980; false-positive rate (FPR)� 0.854;
accuracy� 0.888.

Table 6: Metric scores for algorithm (data acquisition cycle� 1, 2,
10Hz).

Data acquisition cycle
(Hz)

True-positive
rate

False-positive
rate Accuracy

1 0.615 0.796 0.722
2 0.918 0.859 0.875
10 0.980 0.854 0.888
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