
Assessing the quality of Web via
semi-supervised methods

Dávid Siklósi

Supervisor: András Benczúr Ph.D.

Eötvös Loránd University
Faculty of Informatics

Ph.D. School of Computer Science
Erzsébet Csuhaj-Varjú D.Sc.

Ph.D. Program of Basics and methodology of Informatics
János Demetrovics D.Sc.

Budapest, 2016.





Acknowledgments

I would like to express my gratitude to my supervisor András Benczúr who

supplied me with guidance and infinite amount of help during my researches.

I also would like to thank the members of the Data Mining and Search Group

of MTA SZTAKI for providing such an inspiring environment. Special thanks

for the contribution of those whom I worked together on the experiments of this

thesis: Károly Csalogány, Bálint Daróczy, András Garzó and Tamás Kiss.

Special thanks for friends and relatives who spent time with reading my dis-

sertation and helped improving its quality: Júlia Biró, István Siklósi, Adrienn

Szabó, Bálint Daróczy, Shailvi Wakhlu, Cucu.

i





Contents

Acknowledgments i

Contents vi

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 4

2.1 Content-based ranking . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Okapi BM25 . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.3 Location based term weighting . . . . . . . . . . . . . . 6

2.2 Link-based ranking . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Personalized PageRank . . . . . . . . . . . . . . . . . . 9

2.2.3 HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Link-based similarity . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Co-citation, Jaccard and cosine . . . . . . . . . . . . . . 12

2.3.2 SimRank . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Base learners . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Ensemble learning . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Feature selection . . . . . . . . . . . . . . . . . . . . . 17

2.5 Classification quality measures . . . . . . . . . . . . . . . . . . 18

2.5.1 Precision and Recall . . . . . . . . . . . . . . . . . . . 18

2.5.2 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 NDCG . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.4 MAE, RMSE . . . . . . . . . . . . . . . . . . . . . . . 21

iii



iv CONTENTS

2.6 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Centroid based clustering . . . . . . . . . . . . . . . . . 22

2.6.2 Hierarchical clustering . . . . . . . . . . . . . . . . . . 22

2.6.3 Density-based clustering . . . . . . . . . . . . . . . . . 23

2.6.4 Distribution based clustering . . . . . . . . . . . . . . . 23

2.7 Information theory . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.2 Mutual Information . . . . . . . . . . . . . . . . . . . . 24

2.7.3 Kullback-Leibler divergence . . . . . . . . . . . . . . . 24

2.7.4 Jensen-Shannon divergence . . . . . . . . . . . . . . . 24

2.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Web Quality 26

3.1 Spam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Types of Web spam . . . . . . . . . . . . . . . . . . . . 27

3.2 The Open Directory Project: DMOZ . . . . . . . . . . . . . . . 29

3.2.1 Maintenance . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Category hierarchy . . . . . . . . . . . . . . . . . . . . 30

3.3 Other aspects of quality . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Assessing the quality of Web . . . . . . . . . . . . . . . . . . . 31

3.4.1 Feature sets . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Classification methods . . . . . . . . . . . . . . . . . . 35

4 Graph stacking 37

4.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 The stacked graphical learning framework . . . . . . . . . . . . 39

4.2.1 Feature generation . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Direction of propagation . . . . . . . . . . . . . . . . . 40

4.2.3 Multi-step propagation . . . . . . . . . . . . . . . . . . 41

4.2.4 Co-citation, Jaccard and cosine . . . . . . . . . . . . . . 41

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Data sets and methods . . . . . . . . . . . . . . . . . . 42

4.3.2 Classification results . . . . . . . . . . . . . . . . . . . 43

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Sonar stacking 46

5.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Machine learning by sonar stacking . . . . . . . . . . . . . . . 47

5.2.1 The “Connectivity Sonar” Features . . . . . . . . . . . 47



CONTENTS v

5.2.2 Sonar Stacking: The New Features . . . . . . . . . . . . 50

5.2.3 Graph stacking, Edge Weights, and Aggregation . . . . 51

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.2 Baseline Features and Classifiers . . . . . . . . . . . . . 53

5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Cross-lingual text classification 60

6.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2.1 Features: Content . . . . . . . . . . . . . . . . . . . . . 63

6.2.2 Features: Linkage . . . . . . . . . . . . . . . . . . . . 64

6.2.3 Features: Bag-of-Words . . . . . . . . . . . . . . . . . 64

6.2.4 Semi-supervised cross-lingual learning based on multi-

lingual Web sites . . . . . . . . . . . . . . . . . . . . . 65

6.2.5 Classification Framework . . . . . . . . . . . . . . . . 68

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.3.1 Feature distributions . . . . . . . . . . . . . . . . . . . 70

6.3.2 Computational Resources . . . . . . . . . . . . . . . . 70

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Text classification via bi-clustering 76

7.1 Related results . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.2 Information theoretic bi-clustering . . . . . . . . . . . . . . . . 79

7.2.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Classification Framework . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Bi-clustering . . . . . . . . . . . . . . . . . . . . . . . 81

7.3.2 Kernel methods . . . . . . . . . . . . . . . . . . . . . . 82

7.3.3 Gradient Boosted Trees and Matrix factorization . . . . 85

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . 89

7.4.3 Results over the DC2010 data set . . . . . . . . . . . . 93

7.4.4 Results over the C3 data set . . . . . . . . . . . . . . . 97

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.6 My contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 101



vi CONTENTS

Bibliography 101



List of Figures

2.1 Bow-tie structure of the web . . . . . . . . . . . . . . . . . . . 8

2.2 Example when Jaccard similarity performs poorly. . . . . . . . 13

2.3 Precision and recall example . . . . . . . . . . . . . . . . . . . 20

2.4 ROC curve example . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Main categories of DMOZ. . . . . . . . . . . . . . . . . . . . . 31

5.1 Schematic drawings of (a) search engines, (b) directories, (c)

corporate sites and (d) virtual hosting services . . . . . . . . . . 48

5.2 AUC measures for the WEBSPAM-UK2007 data set with dif-

ferent sets of features used along the baseline classifiers. Here

Combination denotes all non-stacked features (text, PPR and

Sonar); HStack is the host-level (non-Sonar) stacking; PStack is

the page-level (Sonar) stacking over text, PPR, and Sonar; while

CStack is the combination of all. . . . . . . . . . . . . . . . . . 54

5.3 The distribution of stacked feature values for representative top-

ical categories of the UK2007-WEBSPAM data set. . . . . . . . 56

5.4 Sample distribution in- and outlink level from same and different

categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Portion of a mixed language machine generated spam page. . . . 61

6.2 Three methods for classifying mixed language content based on

a monolingual training set. . . . . . . . . . . . . . . . . . . . . 66

6.3 Statistics for the language distribution of most frequent terms in

Web hosts over the .pt domain, with the 257,000 English-only

hosts removed. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.4 Distribution of the title length of the home page over the ClueWeb09

(top) and the Portuguese data (bottom), separate for spam and

normal hosts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vii



viii LIST OF FIGURES

6.5 Predicted spamicity (vertical) as a function of the language dis-

tribution of most frequent terms (horizontal) in Web hosts over

the .pt domain, separate for spam and normal hosts. For nor-

mal hosts we show a 20% random sample. . . . . . . . . . . . . 73

7.1 Overlap of the quality flags, shown as percentage of all hosts. . . 88

7.2 The distribution of the scores for the five evaluation dimensions. 90

7.3 The distribution of the number of evaluations given by the same

evaluator (top) and for the same site (bottom). . . . . . . . . . 91

7.4 The number of pairs of ratings given by different assessors for

the same aspect of the same page. . . . . . . . . . . . . . . . . 92

7.5 The number of pages with the given crawl status. . . . . . . . . 92

7.6 Average NDCG for the three quality labels, as the function of

the number of document clusters and size of the vocabulary. . . 95

7.7 NDCG for the three quality labels, as the function of the number

of document clusters. . . . . . . . . . . . . . . . . . . . . . . . 95

7.8 NDCG for the three quality labels, as the function of the vocab-

ulary size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



List of Tables

3.1 Comparison of the distribution of spam/non-spam labels on dif-

ferent data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 F-measure for different data sets and edge weights. . . . . . . . 44

4.2 F-measure for different data weights, feature generation and top

list size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 The distribution of hosts over the top-level ODP categories with

total and evaluation sample counts, allowing for multiple labels

per host. The AUC column contains the absolute increase ob-

tained by using page-level stacking with binary classifiers for

each ODP topic and the last column shows the corresponding

best performing method. . . . . . . . . . . . . . . . . . . . . . 52

6.1 The number of positive host instances in each category and the

host and page count for the two data sets. . . . . . . . . . . . . 69

6.2 AUC of the main classification methods over the Portuguese test

data. In the two variants of the content based features, we give

results of the ensemble selection in the first and a single Logit-

Boost in the second column. . . . . . . . . . . . . . . . . . . . 72

6.3 AUC of the main classification methods crossvalidated over the

ClueWeb09 data. . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.4 The results of the combined methods for Spam in AUC. . . . . . 74

7.1 Example term clusters found by our bi-clustering algorithm with-

out term weighting. . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2 Term clusters with emphasis on terms more frequent over qual-

ity flagged hosts. First few terms shown ordered by decreasing

weight for some clusters of high correlation with the category. . 83

ix



x LIST OF TABLES

7.3 Kernel functions and parameters. . . . . . . . . . . . . . . . . . 83

7.4 Distribution of assessor labels in the DC2010 data set. . . . . . . 87

7.5 Distribution of quality flags by genre in the DC2010 data set.

Discussion spaces are not flagged for bias; the starred cell (∗)

consists of hosts where assessors disagreed in genre and some

assessors labeled Discussion while others labeled biased non-

Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.6 Performance summary of the best methods over the DC2010 la-

bels in terms of AUC and NDCG as in equation (7.8). . . . . . . 94

7.7 Performance of the three different term weighting schemes and

the baseline, in terms of AUC. . . . . . . . . . . . . . . . . . . 96

7.8 Performance of the bi-cluster kernels in terms of NDCG. . . . . 98

7.9 Detailed performance over the C3 labels in terms of AUC . . . . 99

7.10 Detailed performance over the C3 labels in terms of RMSE and

MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



List of Algorithms

1 Algorithm for translating Portuguese term counts for evaluation

by an English model . . . . . . . . . . . . . . . . . . . . . . . 65

2 Stacked classification of mixed-language hosts based on an En-

glish model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Co-clustering algorithm . . . . . . . . . . . . . . . . . . . . . . 80

xi



Chapter 1
Introduction

In the last decades, Web has grown to be a central part of our lives and sub-

stantially changed the way we share information. Users of the Web are not

only gathering information from different sources, but also actively editing it

via wikis, blogs, forums, social networks and they are commenting, reviewing,

tagging and giving opinions on existing content. The immense and continuously

growing size of the Web combined with such diversity of information sources

makes it nearly impossible to find relevant information without the help of search

engines, Web archives and Web directories.

Search engines index billions of Web pages and provide an interface for users

to find relevant documents by keyword search. The main task of a search engine

is to rank relevant documents in a way that the users have to run through only

the first few hits of the result list to find the desired information. In order to

retrieve a “good quality” result list, search engines apply sophisticated ranking

algorithms based on the keywords the user typed in, the textual content of the

Web pages and the Web graph.

In the mid 90’s, owners of Web pages started to realize that appearing in the

top results of search engines translates into financial benefits. Thus they started

to optimize their pages to influence the ranking algorithms of search engines and

attract more and more visitors. While some of these activities help improving

the quality of Web pages, a number of shifty webmasters started to stuff their

pages with very popular query words and use other techniques to increase their

ranking scores for query words that are not even relevant to the content of their

Web pages. These pages are called Web spam pages. Since spamming activities

deteriorate the quality of search results, it became a top priority goal for search

engines to recognize and filter spam.

Besides filtering useless content, search engines also invest huge effort in

personalizing their search results. Consider the case when a user types the query:

1



2 CHAPTER 1. INTRODUCTION

crane. It can refer to an animal, a machinery for lifting heavy weights or the

American novelist, Stephen Crane. To decide which topic could be the most

favorable for the user, search engines categorize the pages of the Web and create

profiles of their users’ category preferences based on the queries they typed in

and the pages they visited earlier.

In this thesis I survey the existing results and introduce new techniques for

automatically identifying spam pages and for classifying the topic of Web pages.

I also introduce new aspects of Web quality, which could help assessing Web

pages along more dimensions than spam and topical genre.

1.1 Thesis Outline

After this introduction, we continue with a chapter that contains all the funda-

mental knowledge needed to understand this thesis. I give a brief overview of

basic methods, notions and algorithms in the topics of search engine ranking

methods, graph similarities, machine learning, clustering algorithms and infor-

mation theory.

Chapter 3 gives a discussion about different aspects of Web quality. I give

a detailed description of what is Web spam and its typology. I introduce the

DMOZ web directory and its huge role in assessing Web quality. I also introduce

some relatively new aspects of quality such as trustworthiness, factuality and

bias. I give a short overview of the baseline methods for classifying Web pages.

In Chapter 4 we compare a wide range of semi-supervised learning tech-

niques both for Web spam filtering and telephone user churn classification [2].

Semi-supervised learning makes the assumption that the label of a node in a

graph is similar to those of its neighbors. Our experiments demonstrated that

stacked graphical learning in combination with graph similarity methods im-

proves classification accuracy over the baseline methods.

In Chapter 5 we extend and compare the graph stacking features introduced

in Chapter 4, with new graph stacking features that characterize the internal

link structure of pages within a host. The motivation behind constructing new

features is that certain types of web hosts, such as corporate sites, web directories

and content hosting services have characteristic internal structures, as captured

through features such as the depth of the link graph within the host, the number

of pages at various levels, and the distribution of internal and external links from

and to the levels. We use our methods both for Web spam filtering and DMOZ

topical category classification. We observed that the extra information of internal

site structure improves our results by 1-4% in AUC.

In chapter 6 we introduce a new semi-supervised technique for cross-lingual

Web classification [4]. While English language training data exists for several



1.1. THESIS OUTLINE 3

Web classification tasks, most notably for Web spam, we face an expensive hu-

man labeling procedure if we want to classify Web hosts in a language different

from English. We overview how existing content- and link-based classification

techniques work, how models can be translated from English into another lan-

guage, and how language-dependent and language-independent methods com-

bine. We describe our experiments both for Web spam filtering and DMOZ

category classification.

In chapter 7 we analyze the results of the ECML/PKDD Discovery Chal-

lenge 2010, especially the results on the newly introduced quality categories:

trust, factuality and bias [5]. As it turned out, these categories are very hard

to automatically classify with the methods that work really well for Web spam

and DMOZ category classification. We propose a new text classification method

based on extracting features via bi-clustering documents. We obtained the first

results convincingly above 0.6 in AUC for the new categories, which is compa-

rable to the first results of Web spam filtering about a decade ago. Beside the

DC2010 data set we also evaluate our new methods on the Web Quality 2015

Data Challenger data set.



Chapter 2
Preliminaries

2.1 Content-based ranking

Content-based ranking is the component of search engines that stems from clas-

sical Information Retrieval, the multidisciplinary field of investigating models

for selecting and ranking documents that match the given keywords. Search

engines assign relevance scores to each document that express relevance of the

document to the query. Both the documents and the queries are treated as a

sequence of words. The query fed to the ranking algorithm sometimes differs

from the original query typed by the user. Some words may be omitted, and

other words may be added to the query. For example very frequent words (the,

a, and etc.) are often removed from the query, since they are not discriminative

enough and may cause noise in ranking. On the other hand, related words such

as synonyms or inflections may be added to the query in order to find documents

that contain other forms of the query word.

In the following Sections we describe the two most known content-based

ranking schemes: TFIDF and Okapi BM25. In both schemes each document is

represented by a sparse vector where each entry corresponds to a word. Only

the entries corresponding to the words in the document are nonzero. Similarly,

the queries are represented as a sparse vector, and the relevance is defined by the

similarity between the query and the document vectors. The difference between

the two schemes is how we define the value of a word in a document vector to

express the importance of the corresponding word.

2.1.1 TF-IDF

First let us assume that the query contains a single term t. How can we measure

the relevance of a document d for this query? The first obvious idea is to use

4



2.1. CONTENT-BASED RANKING 5

the number of occurrences of t. However this approach is satisfactory only if

all documents have similar size. If a short and a long document both contain

t the same number of times, then one can feel that the shorter one is likely

more relevant than the longer one because the longer one may contain additional

unrelated content.

By the above reasoning, we define term frequency as the number of occur-

rences normalized with the total number of words in the document. Let Nt,d be

the number of times term t appears in document d. The term frequency of t in d
is

TFt,d =
Nt,d

∑

i∈d Ni,d

. (2.1)

Now let us turn to multi-term queries. Assume that our query is “The Big

Apple” and we use the sum of the three term frequencies as relevance score.

It is obvious that the three terms in the query are not equally important. A

document that contains words “The” and “Big” many times but “Apple” only

once may be less relevant than the document containing “Apple” many times

but with possibly less occurrences of “The” and “Big”. Terms that appear in

many documents represent less information about the topic of the documents

they appear in. Rare terms are much more useful to express a specific subject.

Let us define the document frequency of term t as the fraction of the docu-

ments that contain t at least once. Let Nt be the document frequency of term t,
let D be the set of documents and |D| be the number of documents. Then we

can express the importance of a query term by inverse document frequency as

follows:

IDFt = log
|D|

Nt

. (2.2)

Finally, the TF-IDF score of document d for query q is the combination of

the term frequency and the inverse document frequency:

TF-IDFd,q =
∑

t∈d,t∈q

TFt,d · IDFt. (2.3)

2.1.2 Okapi BM25

BM25 is very similar to TF-IDF but it computes both the TF and the IDF part

in a slightly different way. For IDF, IDF okapi gives smaller weights to popular

words than IDF , moreover it can be negative if a term appears in more than half

of the documents:

IDF okapi
t = log

|D| −Nt + 0.5

Nt + 0.5
. (2.4)



6 CHAPTER 2. PRELIMINARIES

To avoid negative weights, the IDF okapi function can be given a floor of 0,

or if we don’t want completely remove popular words, a floor of a constant ǫ.

In BM25, the term frequency measure is also changed to a bounded function

that gives decreasing importance to additional occurrences of a term if it already

appears several times in the document. Let avgdl be the average length of doc-

uments in the corpus and |d| be the length of document d. Then we define the

BM25 relevance score of the query q to document d as:

BM25d,q =
∑

t∈d,t∈q

IDF okapi
t ·

Nt,d · (k1 + 1)

Nt,d + k1 · (1− b+ b · |d|
avgdl

)
, (2.5)

where usually k1 ∈ [1.2, 2.0] and b = 0.75.

Contrary to TF-IDF, here we use the number of occurrences of t instead of

TF in the following formula:

Nt,d · (k1 + 1)

Nt,d + k1
. (2.6)

This means that in BM25, the number of occurrences of a term has higher weight

in relevance, but its maximum value depends on k1, since the above function

converges to k1 + 1. With parameter b, we can set the reward of the shorter and

the penalty of the longer documents.

2.1.3 Location based term weighting

Different parts of the documents may have different importance, hence to com-

pute the relevance of a query term, one may also take the location (title, URL,

file name, keywords section) or the type (font size, boldface) of the occurrence

into account. It may be reasonable to assign higher scores for query terms that

appear in the title than for terms that only appear in the body. Higher weight can

applied for words written in larger font size or words appearing at the beginning

of the document.

Web pages have a special feature of key importance in Web information

retrieval: Hyperlinks on the Web pages are usually have an associated anchor

text, which is only few words long. This short text usually contains characteristic

information about the pointed (and not the containing) page. Web search engines

include the text of the hyperlinks into the content of the target page, not just the

page that contains the link. Even more, the weight at the target page is much

higher in general.



2.2. LINK-BASED RANKING 7

2.2 Link-based ranking

The link structure of the Web can be represented as a directed graph G = (V,E)
where V is the set of Web pages and E is the set of hyperlinks between pages:

(u, v) ∈ E if page u links to page v. From now on let d−(u) denote the in-

degree and d+(u) the out-degree of node u, i.e. the number of pages that link to

or pointed by node u.

2.2.1 PageRank

PageRank was invented by Brin and Page [75] and it is probably the best known

link-based ranking algorithm. In this section we will define PageRank. The

discussion starts with the description of simpler ranking algorithms in order to

highlight the considerations that lead to the invention of PageRank.

Link-based ranking algorithms compute scores to the pages based on the

intuition that the existence of an edge (u; v) implies that the author of page

u votes for the quality of v. A straightforward implementation of the above

intuition is to rank the pages by their in-degree d−(v), the number of pages

linking to v. This simple method has several drawbacks:

• All links are treated equally, thus one can easily create lots of dummy

pages that link to a target page in order to increase its in-degree. In other

words, in-degree is easily spammable.

• A single link from a popular page such as cnn.com should carry more

value than even several links from low quality pages, i.e. the contribution

of good pages should be higher.

• Pages with high out-degree have higher impact on the rank of other pages.

Thus, the contribution of link from page u should be proportional to 1/d+(u).

These considerations lead to the following recursive definition of page quality:

p(v) =
∑

u:(u,v)∈E

p(u)/d+(u), (2.7)

i.e. a page is of high quality if it is pointed to by high quality pages.

However we still have some problems with the above equation. To reveal

these problems, we consider the so-called bow-tie structure of the Web [15]

shown in figure 2.1. We can differentiate the following types of Web compo-

nents:

• Strongly Connected Component (SCC): the largest strongly connected sub-

graph of the Web.



8 CHAPTER 2. PRELIMINARIES

Figure 2.1: The bow-tie structure of the web.

• The IN component: consisting of nodes that can reach the SCC by follow-

ing links, but are not reachable from the SCC.

• The OUT component: consisting of nodes from which the SCC is unreach-

able, but which themselves are reachable from the SCC.

• Other smaller parts that are not connected directly to the SCC: tendrils,

tubes, disconnected components.

It is relatively easy to see that if we apply the recursive algorithm of Equation

(2.7), the PageRank value of in-tendrils, the IN component and the SCC will all

converge to 0, while the out-tendrils and the OUT component will sink all the

available PageRank scores.

In order to overcome these difficulties, we add a complete graph with very

small edge weights to the Web graph. We define the PageRank vector p with

p(i) ≥ 0 and |p|1 = 1 as the solution of the following set of modified equations

p(v) = c · r(v) + (1− c) ·
∑

u:(u,v)∈E

p(u)/d+(u), (2.8)

where r = (r(v1), . . . , r(vn))
T is the so-called teleportation or personalization

vector with r(vi) ≥ 0, |r|1 = 1 and c is the teleportation probability with a

typical value of c ≈ 0.15. If r is uniform, i.e. r(v) = 1/n for all v, then p is the

PageRank (PR).



2.2. LINK-BASED RANKING 9

In matrix notation, let A denote the adjacency matrix of the Web graph with

normalized rows:

A(u,v) =

{

1/d+ (u) if page u points to v

0 otherwise.
(2.9)

Then equation (2.8) gives us

p = cr + (1− c)ATp = MTp. (2.10)

In order to make Equation (2.10) meaningful, we have to ensure that there

exists a unique solution. Notice that M describes the state transition matrix of a

homogeneous Markov chain corresponding to the uniform independent random

walk on the extended Web graph and p is the limit distribution of the Markov

chain. It is a well-known fact from the theory of Markov chains that there exist

a unique stationary distribution and thus a unique solution for the above system

of equations, if the Markov chain is irreducible and aperiodic [68]. Moreover,

the unique solution p is a probability distribution.

The matrix M is aperiodic, since nodes with r(v) > 0 have length one cycles

with positive transition probability M(vv) > 0. If r(v) > 0 for all v in G, then

all nodes are reachable from all nodes so all nodes form one single SCC, hence

M is irreducible.

The idea of PageRank can explained through the random surfer model as

well. The random surfer models a user who navigates through Web pages. He

can perform two kinds of actions. Either he follows one of the hyperlinks of the

current page or directly goes to a random page. He chooses the first and second

action with probability 1 − c and c. If he decided to follow one of the links,

the link is chosen uniformly at random. In the other case, the target page v is

selected with probability r(v).

2.2.2 Personalized PageRank

If the teleportation probability vector r is uniform, we refer to it as uniform

PageRank, otherwise as personalized PageRank. Unless otherwise stated, Page-

Rank stands for uniform PageRank. To avoid misunderstanding, we will denote

uniform PageRank by p and personalized PageRank by PPR(r) where r is the

personalization vector. Uniform PageRank shows a general measure of goodness

for each page. Personalized PageRank can introduce a bias towards a specific

type of pages: e.g. r can be chosen such that r(v) is positive for well known

sports pages and 0 otherwise. This means that our random surfer will go to a

random sports page if he gets bored with following the links. Pages that are

reachable in a few steps from sports pages will get higher score. Other pages



10 CHAPTER 2. PRELIMINARIES

that are not reachable in a few steps are unlikely related to sports and will get

lower PageRank.

An important property of personalized PageRank is its linearity [59]. For

any positive constants α1, α2 such that α1 + α2 = 1,

PPR(α1r1 + α2r2) = α1PPR(r1) + α2PPR(r2).

In an important special case, r consists of all 0 except for a single node v. Any

personalized PageRank vector can be expressed as a linear combination of such

1-node personalized PageRank vectors:

PPRi(r) =
∑

j

rj · PPRi(χj), (2.11)

where χj is the personalization vector consisting of all 0 except for node j where

χj(j) = 1.

In particular, uniform PageRank is the sum of n 1-node personalized Page-

Rank vectors:

pi =
1

N

∑

j

PPRi(χj) (2.12)

By equation (2.12) we may say that the PageRank of page i arises as the

contribution of personalization over certain pages v where PPRi(χv) is high. We

say that page v supports i to the above extent.

As noticed independently by [38, 59], the (personalized) PageRank of a ver-

tex is equal to the probability of a random walk terminating at the given vertex

where the length is from a geometric distribution: we terminate in step t with

probability c · (1 − c)t. To justify, notice that PageRank can be rewritten as a

power series

PPR(r) = c ·

∞
∑

t=0

(1− c)tr · At. (2.13)

By personalized PageRank, ranking can be tuned towards specific user in-

terests. However, it is not easy to implement it in practice. Since the personal-

ization vector can differ for each query, it would be very expensive to compute

PageRank at query time.

2.2.3 HITS

Kleinberg [20] introduced an iterative ranking algorithm referred as Kleinberg’s

algorithm or HITS. HITS ranking is query-dependent, which implies that the

computation must be fast as it is performed at query time. HITS computation is

based on a topically focused small subgraph generated by the following steps:



2.2. LINK-BASED RANKING 11

• Acquire a seed set of search results Sq which are assumed to be relevant

to the given query q. This could be the top n results of an existing search

engine using text based ranking.

• Extend this seed set with other results that are likely to be relevant to the

topic. Usually pages that are linked from Sq and pages that point to Sq are

added. For high in-degree nodes, sampling can be applied to avoid adding

too many pages.

• Build the vicinity graph Gq, the subgraph spanned by the extended seed

set S ′
q.

HITS computes two scores for each node in Gn. The authority score a(v) re-

flects the relevance of the content of v to the query. The hub score h(v) measures

the quality of v as a link collection considering the given topic. The algorithm

is based on the intuition that good hubs likely link to good authorities and good

authorities appear in good hub pages. Thus, good hubs and authorities mutually

reinforce each other.

In the iterative algorithm, let h(k) and a(k) denote the vectors of hub and

authority scores. The first hub vector h(0) may contain arbitrary positive values.

The (k+1)-th authority score of v is computed from the previous hub vector

h(k) as the sum of the current hub scores of nodes pointing to v:

a(k+1)(v) =
∑

(u,v)∈Eq

h(k)(u) (2.14)

Similarly, the (k+1)-th hub score of v is the sum of the current authority scores

of nodes pointed by v:

h(k+1)(u) =
∑

(u,v)∈Eq

a(k+1)(v). (2.15)

If Aq is the adjacency graph of Gq then the above equations can expressed in

matrix form:

a(k+1) = AT
q h

(k),

h(k+1) = Aqa
(k+1),

whence

a(k+1) = AT
q Aqa

(k),

h(k+1) = AqA
T
q h

(k).



12 CHAPTER 2. PRELIMINARIES

It is shown in [20] that h(k) and a(k) can be normalized to converge to a

unique h and a, the principal eigenvectors of ATA and AAT , respectively. In

practice, no more than a few hundred iterations suffice for convergence.

Unfortunately, HITS computation should be performed at query time, a dis-

advantage compared to PageRank. The computation includes fast subgraph con-

struction, which requires random access to the Web graph.

2.3 Link-based similarity

The link-based similarity of nodes u and v in the Web graph is based on the

neighboring link structure, usually the incoming links of u and v. One may

assume that if two pages are pointed by similar other pages, then these two

pages may be topically related.

2.3.1 Co-citation, Jaccard and cosine

The simplest and often the most effective link based similarity measure is co-

citation, coc(u, v) defined as the number of common in-neighbors of u and v.

Co-citation may have directed and undirected variants. Co-citation is very easy

to compute, but, similar to in-degree, it is vulnerable to spam. The Co-citation

of any two pages, even if one is a page of high reputation and the other is a spam

page, can be easily increased by creating pages that link to both of these pages.

The Jaccard coefficient is another metric that has the strength of emphasiz-

ing important connections and ignoring “accidental” unimportant connections.

The Jaccard coefficient Jac(u, v) is the ratio of common neighbors within all

neighbors. The Jaccard coefficient has variants that use the reversed or undi-

rected graphs. For a weighted graph we may divide the total weight to common

neighbors by the total weight of edges from u and v. The measure performs

poorly in the situation showed in Figure 2.2. Edges ux and vy have very high

weights while uy and vx have low weights, since the Jaccard coefficient is high,

while the actual similarity is very low.

Cosine similarity fixes the above problem of the Jaccard coefficient. Let us

denote the row of the adjacency matrix corresponding to node u as vector u. The

cosine similarity of nodes u and v is simply

cos(u, v) =
uTv

||u|| · ||v||
.

It has also transposed and undirected variants. Without normalization, cosine

similarity would simply fall back to co-citation.



2.4. MACHINE LEARNING 13

Figure 2.2: Example when Jaccard similarity performs poorly.

2.3.2 SimRank

SimRank was suggested by Jeh and Widom [58] as a measure of link-based

similarity of two nodes in the graph. The basic idea is that two nodes are similar

if they are pointed by similar nodes. SimRank is the iterative generalization of

co-citation in the same way as PageRank generalizes in-degree.

SimRank is defined by the following equation: Initially

Sim(0)(u1, u2) =

{

1 if u1 = u2

0 otherwise;
(2.16)

then

Sim(i)(u1, u2) =

{

(1− c) ·
∑

Sim
(i−1)

(v1,v2)
d−(u1)·d−(u2)

if u1 6= u2,

1 if u1 = u2.
(2.17)

where the summation is for all pairs (v1, u1) ∈ E, (v2, u2) ∈ E.

SimRank power iterations as in (2.17) are infeasible since they require quadratic

space. We may use the algorithm of Sarlós et. al. from [89] instead.

2.4 Machine Learning

Machine learning is the field of designing and developing algorithms that “learn”.

In this case “learning” means that for a given task (which usually involves infer-

ence from data) the algorithm can improve its performance over time by using

more data.

More formally, machine learning can be viewed as searching for some model

that is a good approximation of an unknown function characterizing the system

in question. We assume that there is a true function y = f(x) which maps input

x to output y. We do not know the real f but we have observations on the input



14 CHAPTER 2. PRELIMINARIES

and sometimes on the output, the training data as well. Learning is the process

of searching for an f ′ that matches the observations as good as possible. The

function f ′ is often referred as the model and the set of functions F from which

it is selected as the hypothesis space.

Machine learning methods can be categorized into three types based on the

nature and the usage of the training data.

• In supervised learning, a set of examples with the “right” answer is given.

For each input x in the training data, we know the correct output y = f(x).
The task is to predict the answer for future input. The model is finalized

after processing the training data and not modified during the prediction

for unseen data.

• In unsupervised learning, no “right” answer is given. The task is to ex-

plain the data in terms of a few classes or parameters. The algorithm has

to discover how the data is organized and identify the classes. The best

known form of unsupervised learning is clustering (see Section 2.6).

• Semi-supervised learning is the hybrid of supervised and unsupervised

learning. A large set of data is given but the “right” answer is known

for only a small fraction of them. The methods usually identifies certain

regularity in the unlabeled data and uses the labeled data to leverage on

that. Results show that using the unlabeled data can improve the learning

accuracy. By using semi-supervised learning, the expensive production of

labeled data can be reduced.

We shortly overview the machine learning techniques used in this thesis.

2.4.1 Base learners

Naive Bayes

The Naive Bayes classifier [56] is a generative approach based on Bayesian in-

ference. Given a sample xk = (x1
k, ..., x

m
k ) and a class Hi, the Naive Bayes

method computes the posterior probability of xk belonging to Hi as

P (Hi|x
1
k, ..., x

m
k ) =

P (x1
k, ..., x

m
k |Hi)P (Hi)

P (x1
k, ..., x

m
k )

. (2.18)

Now for each xi we want to determine the class Hi with the highest probability:

P (Hi|xk) > P (Hl|xk) for all i : j, i 6= j. (2.19)



2.4. MACHINE LEARNING 15

Since the denominator in Equation (2.18) is constant, this reduces to

P (Hi|x
1
k, ..., x

m
k ) = Z · P (x1

k, ..., x
m
k |Hi)P (Hi), (2.20)

where Z is a constant independent of Hi.

Naive Bayes assumes all the features x1
k, ..., x

m
k are independent, so the con-

ditional distribution can be computed as

P (Hi|x
1
k, ..., x

m
k ) = Z · P (Hi)

∏

j=1

P (xj
k|Hi). (2.21)

A class label H∗ = Hi is assigned to each sample xk with a decision rule that

picks the most probable hypothesis:

i = argmaxP (Hi)
∏

j=1

P (xj
k|Hi). (2.22)

Naive Bayes is a quite simple and fast method. The model can be built in

time linear in the size of the the training set. It works quite well for classifying

text documents using words as features.

Decision Trees

Decision Trees are classifiers [84] presented in the form of binary trees where

each node corresponds to a variable and edges represent possible realization of

that variable. Given a sample xk = (x1
k, ..., x

m
k ), leaf nodes correspond to a

possible class H . The main goal of a Decision Tree is to build class hypothe-

ses based on the observed attributes of the training data. The output dichotomic

decision tree can be used to determine the class label of an unclassified sam-

ple by considering its descriptive attribute realizations. Building a decision tree

model from a training data set involves two phases. In the first phase, a splitting

attribute and a split index are chosen. The second phase involves splitting the

records among the child nodes based on the decision made in the first phase.

This process is recursively continued until a stopping criterion is satisfied. Clas-

sification quality depends on the choice of the variable ordering (from the root

to the leaf) and the values for the splitting rule. Two of the most widely used

indexes for evaluating whether a node should be split or not are the Gini Index

and the Entropy. Given a node j with hypothetical realizations t, the Gini Index

is defined as

IG = 1−
∑

t

f(j, t)2,

while the Entropy is defined as

IE = −
∑

t

f(j, t) log f(j, t),



16 CHAPTER 2. PRELIMINARIES

where f(j, t) represents the frequency of value t in node j.

Support Vector Machines

Support Vector Machines (SVM) [27] are linear learning techniques aimed at de-

termining the optimal hyperplane that discriminates samples of different classes.

SVM classifiers are in general considered especially effective for text classifica-

tion.

Given a training set defined over the input space X and binary class labels Y
defined by

(x1, y1), ..., (xl, yl) ∈ (X × Y ),

Support Vector Machines find the optimal hyperplane O = {x ∈ Rn : wTx+b =
0} with the maximum margin, i.e. with the maximum distance between class

samples. When samples are not linearly separable, features are transformed into

a higher dimensional space by a kernel function Φ that allow the samples to be

separated.

The optimal hyperplane O is defined by learning two parameters from the

data: the weight vector w and the bias b. Let S1 and S2 be two disjoint subsets

of samples defined over the feature space F , where samples (xk, yk) ∈ S1 have

yk = −1 and samples (xp, yp) ∈ S2 have yp = +1. For any sample xt, since the

maximum margin depends on w, the classification problem can be formulated

as

min
1

2
||w||2 such that yt(w

Txt + b)− 1 ≥ 0.

Linear regression

In linear regression we assume that the hypothesis space is linear. In contrast

to the previous methods, linear regression does not classify the elements, but

predicts or forecasts the value of the output.

Let our training set be X ∈ Rn×k and the output value for the training ele-

ments be y ∈ Rk. We are looking for the vector w ∈ Rn and the bias w0 ∈ Rk

that approximates the training data the best by the formula

XTw + w0 = y.

2.4.2 Ensemble learning

An ensemble learner [66] consists of multiple base learners to obtain stronger

predictive performance than any of the individual algorithms.



2.4. MACHINE LEARNING 17

Bagging

Bagging is designed to improve stability and accuracy of the base learner(s).

It reduces variance and overfitting. Given a standard training set D, bagging

generates new training sets Di by taking a sample with uniform probability and

with replacement from D. For each new training set Di, a model is built by the

base learner(s). The predictions of the models are averaged on the test set. As

an example, the Random Forest algorithm [14] combines random decision trees

with bagging.

Boosting

Boosting algorithms apply base learners iteratively. Every time a base learner

is added, the elements of the training set are re-weighted. Elements that are

misclassified gain weight and elements that are classified correctly lose weight.

Thus, next base learners focus more on previously misclassified elements. Dif-

ferent types of boosting algorithms use different re-weighting schemes. The

most popular boosting algorithms are AdaBoost [41] and LogitBoost [42].

Ensemble Selection

Bagging and Boosting techniques modify the training data. In contrast, Ensem-

ble Selection methods weight the base learners used in the ensemble, based on

their performance on the training set (cross-validation) or on a validation set.

Various methods exist for defining the weight of the learning algorithms, includ-

ing Bucket of models, Stacking, and Bayesian model combination. The follow-

ing procedure is implemented in the Weka classification framework [101]: for

initializing the ensemble, we choose the best k learning algorithms on the val-

idation set. Then in every step, we choose the learning algorithm that adds the

most to the current ensemble in performance on the validation set. Every learn-

ing algorithm can be chosen several times and performance can be evaluated by

an arbitrary predefined quality measure.

2.4.3 Feature selection

Feature selection or attribute selection is a method to select a subset of features

that are used for model building. Feature selection can filter redundant and ir-

relevant features. At the same time, it reduces both training time and overfitting.

Feature selection techniques can be divided into two main groups: feature rank-

ing and feature subset selection. The former tries to rank and select attributes

based on their individual predictive power evaluated on the training set by statis-

tical or information theoretic measures like correlation. The latter tries to select



18 CHAPTER 2. PRELIMINARIES

a subset of attributes that together have good predictive power. These methods

are usually initialized with an empty set of attributes or with all of the attributes

and they are iteratively add or remove attributes, based on some heuristics.

2.5 Classification quality measures

In this section we describe the evaluation measures used in this thesis.

2.5.1 Precision and Recall

Assume we have a classifier C and a test set of documents D. Classifier C
computes a label for each document d ∈ D. Let C(d) denote the classified label

(1 or 0) and O(p) the original label. Let S ⊂ D and N ⊂ D denote the set of

pages with original label 1 and 0, respectively (S ∪ N = D). Let SC and NC

denote the set of pages that are labeled as 1 and 0 by the classifier. In summary,

S = {p ∈ D|O(p) = 1},

N = {p ∈ D|O(p) = 0},

SC = {p ∈ D|C(p) = 1},

NC = {p ∈ D|C(p) = 0}.

Let us define the following metrics:

• True positives are the correctly detected documents where O(d) = 1,

TPC = S ∩ SC .

• True negatives are the correctly detected documents where O(d) = 0,

TNC = N ∩NC .

• False positives are the incorrectly detected documents where O(d) = 0
and C(d) = 1, FPC = N ∩ SC .

• False negatives are the incorrectly detected documents where O(d) = 1
and C(d) = 0, FNC = S ∩NC .

The two-by-two matrix of these values forms the confusion matrix:
predicted positive predicted negative

positive true positives true negatives

negative false positives false negatives



2.5. CLASSIFICATION QUALITY MEASURES 19

Precision is the fraction of correctly detected documents in the set of docu-

ments where C(d) = 1:

P =
TPC

TPC + FPC

.

Recall is the fraction of correctly detected documents in the set of documents

where O(d) = 1:

R =
TPC

TPC + FPC

.

The F-measure is a frequently used combination of precision and recall as

their harmonic mean,

F =
2PCRC

PC +RC

.

In most cases the classifier output is not binary but a predicted value or a

probability. In this case we can apply a threshold on this value and label a page

1 if its value is higher than the threshold and 0 otherwise. Let us denote such an

algorithm by CΘ:

CΘ(p) =

{

1 if C(d) > Θ,

0 otherwise.

For different Θ, the performance of the algorithm will be different.

Assume that 0 < C(d) ≤ 1 for all d ∈ D and there is only one q ∈ D with

C(q) = 1. In the extreme case of Θ = 0, C0 will label every document 1, so its

precision is PC0 = |S|/|D| and its recall is RC0 = 1.

In the other extreme case, C1 will classify document q as 1 and all others 0.

If q ∈ S, then precision is PC1 = 1 and recall is RC1 = 1/|S|.
The reasonable value of Θ is somewhere between these two cases. However,

it is not clear which Θ is the best. We can select the one where the corresponding

F-measure is the highest, but we may prefer higher precision to higher recall or

vice versa based on our needs. For example in case of a Web search engine a

typical user would prefer every result to be relevant on the first page but isn’t

interested in all the relevant documents of the Web, therefor precision is more

important than recall. On the other hand, in medical diagnostic applications a

false negative result can have severe consequences meanwhile a false positive

result only entail some unnecessary examinations, so in this case recall is more

important than precision.

2.5.2 ROC curve

Besides the precision-recall curve of the previous subsection, another way to vi-

sualize the threshold-depended performance is the ROC curve. The name ROC



20 CHAPTER 2. PRELIMINARIES

Figure 2.3: Precision and recall of two example algorithms.

originated in signal detection theory and it stands for “Receiver Operating Char-

acteristic”. The ROC curve depicts the false positive rate, FPRC = FPC/N ,

as the function of recall (also called true positive rate or sensitivity). Figure 2.4

shows the ROC-curves of the algorithms of Figure 2.3.

The area under the ROC-curve (AUC) is a frequently used classifier per-

formance indicator. Obviously 0 ≤ AUC ≤ 1. If AUC = 1, then the al-

gorithm works perfectly for all possible thresholds. For the random algorithm,

AUCR = 0.5. If AUC ≤ 0.5, the curve is below the random line and the al-

gorithm can be improved to reach at least 0.5 − AUC by inverting its decision.

It is shown in [35] that for randomly selected p ∈ S and q ∈ N , AUCC is the

probability of classifier C output a pair of predictions with C(p) > C(q).

2.5.3 NDCG

Normalized Discounted Cumulative Gain [57] is a commonly used measurement

in information retrieval to evaluate the quality of search engines ranking based

on the graded relevance of the ranked documents. NDCG makes the assumption

that highly relevant documents are more useful when appearing earlier in the



2.5. CLASSIFICATION QUALITY MEASURES 21

Figure 2.4: ROC curve of the two example algorithms.

result list and that the beginning of the result list is more important than the end:

DCGp =

p
∑

i=1

2reli − 1

log2(i+ 1)
,

where reli is the graded relevance value of the ith ranked document. It is easy

to see that the maximum value of DCG can be achieved by sorting the docu-

ments by their graded relevance value. The maximum DCG is called Ideal DCG

(IDCG). If we want to compare the DCG value of result lists with different length

or for different queries, normalization is needed:

NDCGp =
DCGp

IDCGp

.

2.5.4 MAE, RMSE

The most common measures for evaluating regression methods is the Mean Ab-

solute Error and the Root Mean Square Error. Let the predicted values for our



22 CHAPTER 2. PRELIMINARIES

test set be fi and the original values be yi. Then

MAE =
1

n

n
∑

i=1

|fi − yi|

and

RMSE =

√

√

√

√

1

n

n
∑

i=1

(fi − yi)2

We can see that RMSE gives more penalty for larger errors than MAE.

2.6 Clustering

Clustering is an unsupervised machine learning technique that aims to group

a set of objects in such a way that objects in the similar cluster (group) are

more similar in some sense to each other than to those in other clusters. There

is no unique definition for the notion of a cluster, which is one of the reasons

why there are so many clustering algorithms. However the different clustering

algorithms can be grouped into cluster models. In this thesis we use only one

type of clustering algorithms described in Section 7.2. Here we tangibly describe

the most prominent clustering models [104].

2.6.1 Centroid based clustering

The centroid method starts with a given number of clusters, which could be

random or generated by some heuristics. Then it refines the clusters iteratively

based on an objective function. In every iteration it recomputes the centroid of

the clusters and moves every element into the cluster with the closest centroid.

The centroid models always find a local optimum. They are sensible for the

initial cluster assignment. The most well known centroid algorithms are k-means

and k-medoids.

2.6.2 Hierarchical clustering

The hierarchical methods represent clusters in a hierarchical tree structure called

dendrogram. We can differentiate two types of hierarchical clustering: agglom-

erative (bottom-up) and divisive (top-down). The agglomerative models start

with every element in a separate cluster and in every iteration they merge the

two closest clusters until every element is in one cluster. In contrast, the divi-

sive models start with every element in the same cluster and split recursively as



2.7. INFORMATION THEORY 23

they move down the hierarchy. The most well known hierarchical algorithms are

SLINK and CLINK.

2.6.3 Density-based clustering

Density-based algorithms define clusters as areas of density higher than the areas

between the clusters. The most common density-based algorithm is DBSCAN.

DBSCAN requires two parameters: ǫ and minPts. DBSCAN finds clusters

where every point in the cluster has at least minPts number of points in an ǫ ra-

dius. The advantage of DBSCAN is that it is deterministic and does not depend

on the initial configurations. The drawback is that DBSCAN assumes clusters

of similar density. This problem is solved by the OPTICS algorithm, a gener-

alization of DBSCAN. However both algorithms have problems with separating

nearby clusters.

2.6.4 Distribution based clustering

The most popular distribution based clustering method is the Gaussian mixture

model. This algorithm starts with a fixed number of Gaussian distributions. In

every iteration, for every pair of elements and distributions, we compute the

probability that the element is from the given distribution. Finally we refine the

parameters of every distribution to fit better to the elements that are likely to

come from the given distribution.

2.7 Information theory

Information theory was developed by Claude E. Shannon [92] to find funda-

mental limits on signal processing operations such as compressing, storing and

communicating data. Since its inception, information theory has been applied to

many other fields including linguistics, cryptography, and physics.

2.7.1 Entropy

A key measure of information is entropy, the amount of information in a random

variable. It indicates how easily a message can be compressed or in other words,

it expresses the average number of bits needed to store or communicate one

symbol in a message. For example, specifying the outcome of a coin flip has

lower entropy than specifying the outcome from a roll of a die. Let X denote a



24 CHAPTER 2. PRELIMINARIES

random discrete variable. Then the entropy of X is computed as

H(X) = −
∑

x∈X

p(x) · log(p(x)). (2.23)

2.7.2 Mutual Information

Mutual information measures the amount of information that can be obtained

about one random variable by observing another. Let X and Y denote random

discrete variables. Then mutual information of X and Y is computed as

I(X, Y ) =
∑

x∈X,y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
. (2.24)

2.7.3 Kullback-Leibler divergence

Kullback-Leibler divergence (KL) is an asymmetric measure of the difference

of two probability distributions. The KL of two probability distributions p and q
is

KL(P ‖ Q) =
∑

x

P (x)log
P (x)

Q(x)
. (2.25)

The above formula is invalid if Q(x) = 0. The definition of KL is extended

to the cases when Q(x) = 0 implies P (x) = 0. In this case, the expression

0 · log(0) is interpreted as 0, since limx→0 xlog(x) = 0.

It is easy to prove the following equation:

KL(P ‖ Q) =
∑

x

P (x)logP (x)−
∑

x

P (x)logQ(x) = H(P,Q)−H(P ).

(2.26)

In other words, the Kullback-Leibler divergence measures the loss of informa-

tion if we approximate P with Q.

2.7.4 Jensen-Shannon divergence

Jensen-Shannon divergence is the symmetric, smoothed version of Kullback-

Leibler divergence, also known as total divergence to the average.

JS(P ‖ Q) =
1

2

(

KL(P ‖ M) +KL(Q ‖ M)
)

, (2.27)

where

M =
1

2
(P +Q).

In contrast to KL divergence, JS is a metric, hence it makes more sense to use it

as a distance measure.



2.8. NOTES 25

2.8 Notes

A part of this chapter incorporates the basis of joint works with Károly Csa-

logány in the papers [9] [2]. He summarized the terminology in his thesis “Meth-

ods for Web Spam Filtering”. I extended part of his descriptions for the specific

needs of my results; for more information we refer the reader to his thesis1.

1http://www.inf.elte.hu/karunkrol/szolgaltatasok/konyvtar/Lists/

Doktori%20disszertcik%20adatbzisa/Attachments/74/Csalogany Karoly Ertekezes.pdf



Chapter 3
Web Quality

In the following sections I introduce the 3 main Web quality categories that this

thesis examines and I discuss why we think these categories are considered to

have an important role in assessing the quality of Web pages. I also give a brief

overview of the common methods that are used for Web classification. Since the

basis of Web classification is supervised machine learning and creating a good

quality training set for quality classification is very expensive, here I collect and

compare the few data sets that are commonly used for experiments in this field.

3.1 Spam

In the last decades, Web has grown to be a central part of our lives. Every day,

millions of people use the Web for finding information, socializing, shopping

goods, booking hotels or flights, etc. Due to the immense size of the Web, users

generally locate the desired Web pages through search engines, which practically

means that a very large portion of web traffic can be originated from search

engines.

For many Web pages, increased traffic translates to increased profit. Accord-

ing to the statistics of eMarketer1, an independent market research company, on-

line business-to-consumer sales grew 21.1% and reached $1 trillion in 2012. In

order to increase web traffic, it is essential for commercial web pages to appear

in the top results of search engines. To acquire these top positions, webmasters

design the content and link structure of their pages in a way to influence the

ranking algorithms of search engines for certain queries. These techniques are

called Search Engine Optimization (SEO).

1http://www.emarketer.com

26



3.1. SPAM 27

We can distinguish white-hat SEO and black-hat SEO. White-hat SEO im-

proves the quality of the content and the structure of the Web site and it is useful

for the users. On the other hand black-hat SEO decreases the quality of search

engines and misleads users by putting irrelevant pages in top positions for cer-

tain query terms. Pages created by black-hat SEO are also called Web spam

pages. Due to the large and ever increasing financial gains resulting from top

search engine positions, it is not surprising that spammers are devoting a huge

effort to influence the ranking algorithms of search engines.

3.1.1 Types of Web spam

We can categorize Web spamming techniques based on which component of the

search engine ranking algorithms are they targeting. Content spam manipulates

the textual content of web pages, meanwhile link spam is the creation of special

link structures between pages.

Content spam

Content based ranking methods apply the simple idea that a page is relevant to a

query if it contains the terms of the query. The more the query terms occur, the

more relevant the page is (see Section 2.1). This motivates spammers to create

pages with a large number of different terms or to repeat specific popular query

terms several times. According to Gyöngyi et al. [52], the most common content

spamming techniques are:

• Repetition of specific terms. This way spammers increase the relevance of

the document for a small number of specific query terms.

• Dumping a large number of unrelated terms. Sometimes spammers copy

whole dictionaries to get a certain amount of relevance to many different

queries.

• Weaving of spam terms into copied content. Spammers can copy high

quality content available on the Web and insert spam terms at random

positions. It is effective when the topic of the original text is so rare that

only a few relevant pages exist.

• Phrase stitching. This technique is very similar to weaving but text is

copied from different sources, which makes the page relevant to more

queries while at the same time making detection more difficult.

We can also distinguish different types of content spam based on the location in

the Web page:



28 CHAPTER 3. WEB QUALITY

• Title, meta, URL spam. Search engines usually give higher weights for

terms that appear in the title and meta tags or in the URL of an HTML

page. So it makes sense for spammers to put spam terms in the title or to

create very long URLs.

• Anchor spam. Anchor text is the visible, clickable text in a hyperlink. Just

like title text, anchor text also gets higher weights but contrary to title and

URL, anchor text increases the relevance of the target page of the link,

since it is usually a short summary of the referred page. Therefore, spam

terms are sometimes included in the anchor text of referring pages.

Link spam

Beside content based ranking algorithms, search engines also use link based al-

gorithms like PageRank and HITS (see Section 3.1.1) to evaluate the importance

of Web pages. Hence, spammers often try to influence the relevance scores of

their pages by creating special link structures between them. We can differen-

tiate three types of Web pages from the aspect of a black hat SEO targeting at

spamming the Web link structure:

1. Inaccessible. These are pages that cannot be controlled by spammers,

however they can still insert links on their own pages pointing to inacces-

sible pages.

2. Accessible pages. These pages are owned by others but it is still possible

to modify the content of them. For example a spammer can modify and

insert some links on a wiki page, in a comment on a blog page, in a review

on a webshop page, etc.

3. Own pages. These pages are maintained by the spammer and hence, has

full control over the content of these pages.

Link spammers have two choices to increase the importance of their pages. The

first one is adding outgoing links to popular Web pages to increase the hub score

in the HITS algorithm. This strategy is quite easy, since spammers have full

control over their own pages. The second possibility is gathering incoming links

from popular Web pages, which can increase both HITS authority and PageRank

scores. This is a little bit trickier but feasible with the help of accessible pages

and other sophisticated methods. According to Gyöngyi et al. [52], the most

wide-spread link spamming techniques are:

• Directory cloning. An easy way to place a huge number of outgoing links

on a Web site is to copy large existing directories from the Web like Yahoo!

Directory dir.yahoo.com or the Open Directory Project dmoz.org.



3.2. THE OPEN DIRECTORY PROJECT: DMOZ 29

• Honey pot. A honey pot is a collection of pages with high quality content

that links to spam pages. Useful looking content perhaps copied from au-

thoritative sources can mislead users and can gather some incoming links

from inaccessible pages. Note that the previously mentioned directory

cloning is a good technique for creating honey pots.

• Social spam. As mentioned before, spammers can easily insert links into

blog comments, wiki pages, product reviews, guest books that point to

their own pages. Even if the social media site is moderated, sometimes it

is quite hard to identify a well placed spam link.

• Expired domains. Spammers can buy expired domains and steal some

PageRank from inaccessible pages through the still living incoming links

to the expired domain.

• Link farms. Since these days maintaining a Web site is very affordable,

spammers can control a large number of sites for a very low budget. They

can combine all the above techniques and create a massive link struc-

ture between their sites to boost the relevance for only a number of target

pages.

3.2 The Open Directory Project: DMOZ

A web directory or link directory is a special directory on the Web that lists

Web sites organized into categories based on their topic. The purpose of web

directories is to filter the Web from useless content and to maintain a listing of

high quality Web sites. Most of the web directories allow site owners to submit

their sites with a limited number of suggested categories. These submissions are

reviewed and evaluated by the editors of the directory. Users of web directories

can query the categories of a web site or they can browse the categories and find

a list of web sites with a very specific topic.

The largest and most well known web directory is the Open Directory Project,

also known as the DMOZ (directory.mozilla.org) web directory. Submitting

a site to DMOZ or downloading their data set is publicly available and free.

DMOZ is owned by AOL but it is maintained by a community of 90 thousand

volunteer editors. The DMOZ database contains more than 4 million sites in

different languages and about 1 million categories.



30 CHAPTER 3. WEB QUALITY

3.2.1 Maintenance

The majority of editors are maintaining only a few number of categories. All

new editors who join the community edit only one category. As they get some

editing experience, they can apply for editing additional categories. Editors are

evaluating new submissions as well as checking the status of already listed sites.

Editors have a very thorough and detailed guideline to evaluate the categories

of submitted sites and to decide whether its content fits the quality expectations

of DMOZ. Editors have a bunch of automatic tools which helps them in the

evaluation process like link and spell checkers and the Robozilla Web crawler

which periodically check the status of listed sites. The activity of editors is

reviewed by meta editors. They are the managers of the community. They review

new editor applications, new category requests, complains against editors.

3.2.2 Category hierarchy

DMOZ uses a hierarchical ontology scheme for organizing site listings. In most

cases, sites are grouped together based on their topics, but language and regional

categories are also exist. If a category contains too many sites, then it is divided

into smaller subcategories. However DMOZ ontology is more complex than

a simple tree. Some categories can be subdivided based on multiple criteria.

The business category for example has subcategories based on the types of the

organizations (cooperatives, small businesses, major companies, etc) and also

based on business areas (automotive, health care, telecom, etc). Furthermore a

site can appear in more than one category and categories can have various types

of cross-reference links between them and even cycles are present. In this thesis

we focus only on the largest top level categories (see Figure 3.1).

3.3 Other aspects of quality

In Section 3.1 we showed that we can categorize the web pages by their spamic-

ity. However just because a web page is not spam does not mean that it has high

quality content. Web quality has various factors. Some of them are objective,

like spamicity and how well designed the content of a web page is, but some

of them are very subjective, like the importance of the topic of the web page.

Assessing the quality of web pages is more like prioritizing different factors de-

pending on the person or organization who collects information from the Web.

For example, if we are gathering news from the web, then we are not interested

in educational or commercial sites. Moreover we are probably not interested in

satire and fake news either. However satire news sites are not spam sites, and if



3.4. ASSESSING THE QUALITY OF WEB 31

Figure 3.1: Main categories of DMOZ.

the content is well designed, they can be listed in the DMOZ web directory in

the news category.

From the above example we can see that more factors are needed beyond

spam and genre to determine the quality of web pages. In the Discovery Chal-

lenge 2010 (see Section 3.4.2), three new quality measures were introduced

which are orthogonal to genre:

• Trustworthiness. How authoritative is the source of the Web site.

• Neutrality. Neutrality or factuality is based on the ratio of facts and opin-

ions.

• Biased. The definition was adapted from Wikipedia. Flame, assault and

dishonest opinion without facts were flagged as Biased.

3.4 Assessing the quality of Web

Large scale Web classification techniques are based on supervised machine learn-

ing algorithms (Section 2.4). Thus we can divide the basic classification methods

into three steps:



32 CHAPTER 3. WEB QUALITY

1. Extract features from Web pages.

2. Compile a large manually labeled training set.

3. Use the features and the labeled training set as an input for a suitable

machine learning method.

In the following sections we briefly overview the basic feature sets (Section 3.4.1),

the existing labeled data sets (Section 3.4.2) and also the most effective machine

learning methods for web classification (Section 3.4.3).

3.4.1 Feature sets

For baseline we can use the so called “public feature set” that can be originated

from early Web spam filtering techniques. In [37], Fetterly et al. propose that

certain kind of spam pages can be identified through statistical analysis. They

examined several features generated from the content and linkage of Web pages

and found that the outliers in the statistical distributions tend to be spam pages.

Later on several authors [6, 16, 72] suggested additional link and content features

that can be used as an input for machine learning methods. Most of these fea-

tures were included in the WEBSPAM-UK-2006 data set and were made public

for the Web Spam challenge [18] and for the Discovery challenge contests [10]

where several teams used these feature sets as an input for different classification

methods. We can differentiate three types of feature set: content, link and term

features. In the next sections we will give a short overview of these features.

Content features

1. Number of words in the page, in the title.

2. Average length of words.

3. Fraction of anchor text.

4. Fraction of visible text.

5. Compression rate.

6. Corpus precision, recall. Precision and recall of the words of the page to

the top 100, 200, 500, 1000 most popular words in the corpus.

7. Query precision, recall. Precision and recall of the words of the page to

the top 100, 200, 500, 1000 most globally popular words. Usually a query

log is used to determine the most globally popular words.



3.4. ASSESSING THE QUALITY OF WEB 33

8. Entropy of n-grams. Where an n-gram is n consecutive words. Usually n
is set to 3.

9. Independent n-gram likelihoods. It is defined as − 1
|N |

∑

t∈N logP (n)

where N is the set of n-grams and P (n) is the probability of n in the

page.

Link features

1. In-degree, out-degree.

2. Average in-degree, average out-degree.

3. Assortativity. The ratio of the degree of the page and the average degree

of its neighbors.

4. Average in-degree of out-neighbors, average out-degree of in-neighbors.

5. Number of neighbors and supporters at distance 2, 3, 4.

6. PageRank. See Section 2.2.1

7. Standard deviation of the PageRank of in-neighbors.

8. Truncated PageRank at distance 1, 2, 3, 4.

9. TrustRank. Personalized PageRank from a trusted set of seed. See Section

2.2.2.

10. Numeric transformations of the above features. These transformations

were found to work better for classification in practice than the raw link-

based features. This includes mostly ratios between features such as in-

degree/PageRank or TrustRank/PageRank, and the logarithm of several

features.

Bag of words features

A well-known method for document classification is to use term frequencies as

a feature vector. The method consists of three steps:

1. Feature selection. We throw away unimportant words from the corpus,

usually those that appear in nearly all of the documents (stop words) and

those that appear only in a few of the documents.



34 CHAPTER 3. WEB QUALITY

2. Weighting. The weight of a word is intended to reflect its importance to a

document in the given corpus. For this purpose, usually a TF-IDF based

weighting is used (see Section 2.1).

3. Classification. The feature vectors are used as input to machine learning

algorithms.

3.4.2 Data sets

WEBSPAM-UK data sets

The WEBSPAM-UK2006 and WEBSPAM-UK2007 data sets were compiled by

Castillo et al. [18] for the Web Spam Challenges. These data sets are based on

crawls of the .uk Web domain done in May 2006 and May 2007 [13]. The first

crawl consists of 77.9 million pages and over 3 billion links from 11400 hosts,

the second crawl includes 105.9 million pages and over 3.7 billion links from

114529 hosts. The hosts were labeled as spam, non-spam and borderline by

volunteers who work in the areas of Web mining or information retrieval. In our

experiments we used only the subset of the labels where there was agreement

between the raters and we extended the training set with non-spam domains

using the DMOZ directory. Table 3.1 shows the distribution of spam hosts over

the labeled hosts.

ClueWeb09 data set

The ClueWeb09 data set was created by the Language Technology Institute at

Carnegie Mellon University to support research on information retrieval. The

data set consists of 1 billion web pages in 10 languages, collected in January

and February 2009. The English corpus consists of 20 million domains and

500 million pages. Spam labels were provided as part of the Waterloo Spam

Rankings [25].

Portuguese data set

The .pt data set was crawled and labeled by the Portuguese Web Archive in

2009. The data set consists of 600 thousand domains and 70 million pages.

The original labels include only positive instances of spam hosts that we have

extended with negative instances from the DMOZ web directory.



3.4. ASSESSING THE QUALITY OF WEB 35

UK2006 UK2007 ClueWeb09 .pt DC2010

hosts 11400 114529 500000 600000 190000

pages 77.9M 105.9M 1B 70M 23M

spam 124 439 439 124 423

non-spam 3375 8421 8421 3375 4982

Table 3.1: Comparison of the distribution of spam/non-spam labels on different

data sets.

DC2010 data set

The Discovery Challenge 2010 data set is a multilingual corpus from the .eu do-

main crawled by the Internet Memory Foundation in 2010 and annotated by the

Hungarian Academy of Sciences (English documents), Internet Memory Foun-

dation (French) and L3S Hannover (German) [10]. The data set consists of 190

thousand hosts and 23 million pages. In addition to labeling hosts as spam and

non-spam, DC2010 includes additional five categories based on genre: Editorial,

Commercial, Educational, Discussion and Personal; as well as three new qual-

ity categories: trust, factuality and bias. For more details about the additional

categories, see Section 7.4.1.

C3 data set

The C3 data set was released as part of the Web Quality 2015 Data Challenger.

The data set was created in the Reconcile2 project and contains 22325 evalua-

tions (five dimensions, among them credibility) of 5704 pages given by 2499

people. It also contains some additional information about website characteris-

tics and basic demographic features of users.

3.4.3 Classification methods

The area of the Adversarial Information Retrieval attracted a large number of

researchers for yearly workshops and a number of data challenges. The AIRWeb

workshop series ran for five years [36], and evaluation campaigns included the

Web Spam Challenges [17] and the ECML/PKDD Discovery Challenge 2010

[34]. While Web Spam Challenges focused only on detecting Web spam, the

Discovery Challenge extended the scope by introducing labels for genre and

quality. The baseline classification methods can be collected by analyzing the

results [24, 1, 43] of these challenges.

2http://reconcile.pjwstk.edu.pl/



36 CHAPTER 3. WEB QUALITY

A key ingredient of the Web Spam Challenge 2008 best result [43] was en-

semble undersampling. They extended the “public” content- and link-features

by custom host-graph features based on PageRank, TrustRank and Truncated

PageRank. To handle class imbalances, they used bagging with Ensemble Ran-

dom Under-Sampling Strategy (ERUS) over a C4.5 decision tree. Other strong

results were achieved by using a semi-supervised version of SVM [1] or random

forest [96] (see Section 2.4). Best results either used bag of words representa-

tions or the “public” features sets or both.

The Discovery Challenge 2010 best results show that variants of bag of

words representation are very strong and in contrary to Web Spam Challenges

there is only a little use of content- and link-based features. A possible reason

is that the DC2010 training and test set were constructed in such a way that no

IP and domain was allowed to be split between them. Best results applied a

wide selection of classification techniques including decision trees, random for-

est, SVM, boosting, bagging, oversampling, ensemble selection. It also turned

out that in categories with high class imbalance feature selection methods like

Fisher, Wilcoxon, Information Gain, works very well [47, 4, 71].

The other lesson learned from DC2010 is the hardness of the new quality

tasks (neutrality, bias, trust). While the best results achieved an average AUC of

0.8 on genre categories and 0.83 on spam they produced nearly random results

on quality categories.



Chapter 4
Graph stacking

Semi-supervised learning, a class of machine learning surveyed e.g. in [106],

also exploits information from unlabeled besides labeled data during the learn-

ing phase. We focus on the applicability of classifying Web spam and telephone

churn, i.e. users who cancel their telephone line subscription. Both Web hosts

and telephone users can be represented as a graph (see Section 2.2), where in

case of Web the nodes are the hosts and the edges are links between the hosts,

while in the case of telephone churn the nodes are the users and the edges are

the calls between users. Our assumption is that the label (spam and churn, re-

spectively) of a node in this graph is similar to those of its neighbors.

We compare various means of stacked graphical learning, a meta-learning

scheme in which a base learner is augmented by expanding the features of one

node with predictions on other related nodes in a graph. This class of algorithms

is introduced by Kou and Cohen in [61]. The methodology is used with success

for Web spam detection in [16]: they use the average label of the neighbors as a

new feature for the classifier.

We run our tests on the WEBSPAM-UK2006 data set. The baseline decision

tree utilized all graph based features related to a node (i.e. features related to the

“home page” or the “maximum PageRank node within site” are not computed)

[16] and a Naive Bayes classifier of the machine learning toolkit Weka [101]

over the content based features of the Web Spam Challenge 2006 Phases I and

II data. The Web Spam Challenge 2006 evaluation target was the F-measure.

Depending on the data set, the best forms of graph stacking improve the F-

measure by 1-10%, as shown in Section 4.3.2.

Beside the spam data set we also test our graph labeling methods on a tele-

phone call graph, a data type that appears less in the publications of the data

mining community. Closely related to our work are the churn prediction results

by machine learning methods on real data [100, 5, etc.]; these results however

37



38 CHAPTER 4. GRAPH STACKING

do not exploit neighborhood information embedded in the call graph.

The telephone call graph is formed from the call detail record, a log of all

calls within a time period including caller and callee id, duration, cost and time

stamp. The vertex set consists of all nodes that appear at least once as caller or

callee; over this set calls form directed edges from caller to callee.

Churn classification uses customer information (price package, time since in

service etc.) as well as traffic aggregates in various call zones and directions.

We use one year call detail record and all customer information up to a given

time. The classification target consists of users who leave service in the fourth

month “in future” (in a time period with no information available for the clas-

sifier). Due to the sparsity of positive instances (below 1% churn in a month)

and a large amount of churn explained by external reasons, such as the customer

moves, churn classification is a hard task. Baseline reaches F = 0.08 and this

is improved to 0.1 by stacked graphical learning. In the industrial practice the

goodness of the churn classification is measured by the recall of the top list of

10% of the customers, i.e. they are willing to involve a maximum of 10% of

their customers in direct marketing campaigns and want to maximize the poten-

tial churn reached. In this sense our baseline classification has a recall of 40.8%,

improved to 47% by stacked graphical learning.

In this chapter we concentrate on spreading trust (or no churn) and distrust

(churn) information from known nodes with the help of hyperlink based similar-

ity measures. Our main goal is to identify those graph based similarity features

that can be used to classify unknown pages. We propose a set of spam and churn

classification methods that combine graph based similarity to labeled nodes [9]

with trust and distrust propagation methods, both backward and forward. For

example given a link farm alliance [50] with one known target labeled as spam,

similarity based features will automatically label other targets as spam as well.

Our stacked graphical learning algorithms generate features by averaging

known and predicted labels for similar nodes of the graph by the measures

in Section 4.2.1. We compare various similarity measures, including simple

and multi-step neighborhood, co-citation, cosine and Jaccard similarity of the

neighborhood as well as their multi-step variants [39] described in detail in Sec-

tion 4.2. For the purposes of evaluation we consider these algorithms separately,

by performing one classification experiment for each feature.

4.1 Related results

Several results has appeared that apply rank propagation to extend initial trust

or distrust judgments over a small set of seed pages or sites to the entire web,

such as trust [53, 103], distrust [81, 32] propagation in the neighborhood or



4.2. THE STACKED GRAPHICAL LEARNING FRAMEWORK 39

their combination [102] as well as graph based similarity measures [9]. These

methods are either based on propagating trust forward or distrust backwards

along the hyperlinks based on the idea that honest pages predominantly point

to honest ones, or, stated the other way, spam pages are pointed by spam pages.

Trust and distrust propagation originates from Guha et al. [48] for trust networks.

Wu et al. [102] is the first to show its applicability for Web spam classification.

Trust and distrust propagation are in fact forms of semi-supervised learning

surveyed by Zhu [106], a methodology to exploit unlabeled instances in super-

vised classification. Stacked graphical learning introduced by Kou and Cohen

[61] is a simple implementation that outperforms the computationally expensive

variants [61, 16].

Identifying spam pages is somewhat analogous to classifying web docu-

ments into multiple topics. Several results [83, and the references] demonstrate

that classification accuracy can be significantly increased by taking into account

the class labels assigned to neighboring nodes. In accordance with [9], Qi and

Davison [83] found that most of the improvement comes from the neighborhood

defined by co-citation.

Several link-based algorithms were designed to evaluate node-to-node sim-

ilarities in networks that can be used to give alternate, similarity based weights

to node pairs. We refer to [62] for an exhaustive list of the available methods

ranging from co-citation to more complex measures such as max-flow/min-cut-

based similarities of [65] in the vicinity graph of the query. Co-citation is in fact

used in [48] as an elementary step of trust propagation. Another method [67]

penalizes the biconnected component of a spam page in a subgraph obtained by

backward distrust propagation.

Finally we mention the first example that gives anecdotal evidence for the

usability of similarities in hyperlink structure to identify spam. Amitay et al.

[2] extracted features based on the linkage patterns of web sites and trained

a decision tree and a Bayesian classifier to classify each site to one of the 8

predefined functional categories. A cosine metric based clustering of the feature

space produced a decent amount clusters whose members appeared to belong to

the same spam ring. As it was not the original goal of their research, no results

were published on classifying sites as spam or non-spam.

4.2 The stacked graphical learning framework

4.2.1 Feature generation

For a given unknown node u and edge weight function w (that may be in or out-

degree, co-citation, PageRank etc.), our algorithm selects the k largest weight



40 CHAPTER 4. GRAPH STACKING

neighbors of u to generate a new feature based on the known spam and honest

hosts in this set. As in [9] we extract four different features from this set of

size k or possibly less if u has less than k neighbors. Each neighbor v is either

classified as spam with weight p(v), or else labeled spam or non-spam; in these

cases we let p(v) be 0 and 1, respectively. Let s and h be the sum of p(v) and

1 − p(v) in the set of neighbors; remember s + h < k is possible. We define a

weighted version s∗ and h∗ as the sum of w(uv) · p(v) and w(uv) · (1− p(v)).
In principle the value of k is a free parameter. In fact this value is fixed in

most cases by the properties of the implementation. In our implementation the

parameter k is not fixed beforehand, instead all nodes with non-zero similarity

are taken into account.

We define our features as follows.

• Spam Ratio (SR): fraction of the number of spam within labeled spam and

honest pages, s/(s+ h).

• Spam over non-spam (SON): number of spam divided by number of hon-

est pages in the top list, s/h.

• Spam Value Ratio (SVR): sum of the similarity values of spam pages di-

vided by the total similarity value of labeled spam and honest pages under

the appropriate similarity function, s∗/(s∗ + h∗).

• Spam Value over non-spam Value (SVONV): similarity value sum for

spam divided by same for honest, s∗/h∗.

In most of the experiments we use SVR that also performed best in [9]; a small

comparison is made in Section 4.3.2.

We add the new feature defined by either of the above to the existing ones

and repeat the classification process with the extended feature set. Since the fea-

tures are unstable if |N(u)|, the number of nodes in the neighborhood is small,

we also define versions SR’, SON’, SVR’, SVONV’ by regressing towards the

undecided 1/2 or 1 value:

SR′ = 1/2 + (SR − 1/2) · (1− 1/
√

|N(u)|);

SON′ = 1 + (SON − 1) · (1− 1/
√

|N(u)|).

4.2.2 Direction of propagation

We may use both the input directed graph, its transpose by changing the direction

of each edge, or the undirected version arising as the union of the previous two

graphs. We will refer to the three variants as directed, reversed and undirected



4.2. THE STACKED GRAPHICAL LEARNING FRAMEWORK 41

versions. For an edge weight function d : V ×V → R we use d−(u, v) = d(v, u)
for the reversed and d± = d + d− for the undirected version. We extend this

notion for an arbitrary similarity measure sim(u, v) computed over edge weights

d and compute sim−(u, v) over d− and sim±(u, v) over d±.

Performance of directed, reversed or undirected varies problem by problem:

the templatic nature of a Web spam farm is best characterized by similarity of

out-links (directed), honest pages have incoming links from honest ones (re-

versed) and finally similarity in a telephone call graph is best characterized by

the undirected graph since communication is typically bidirectional regardless

of the actual caller–callee direction.

4.2.3 Multi-step propagation

There are several variants of weighting neighbors at distance k. We may consider

reachability and exact reachability as dk(u, v)reach = 1 if v is reachable from u by

a walk over k edges, 0 otherwise, respectively dkexact(u, v) = 1 if v is reachable

from u in exactly k steps and over no shorter paths, 0 otherwise. We may take

the number and the weighted number of such walks: dknum(u, v) is the number

of walks over k edges that reach from u to v and dkwnum(u, v) is the probability

of reaching v when starting at u and at each step choosing a random neighbor

with probability proportional to the outgoing edge weights. The main multi-step

feature we use is PPR(u) (see Section 2.2.2), PageRank personalized to p(v),
the estimated spamicity of node v as in Section 4.2.1:

PPR(u) =
∑

k

c(1− c)k
∑

v

p(v) · dkwnum(u, v).

4.2.4 Co-citation, Jaccard and cosine

To compute the weight of edges in the Web graph we may use graph similarity

measures such as Co-citation, Jaccard and cosine similarities (see Section 2.3.1).

Co-citation turned out to be the most effective for Web spam classification in

[9]. By the notation of Section 4.2.2, coc−(u, v) denotes bibliographic coupling

(nodes pointed to by both u and v) and coc±(u, v) is the undirected co-citation.

We may also use co-citation down-weighted by degree, coc(u, v)/d(u) · d(v).
Similarly to the above notations, for Jaccard and cosine similarity we use the

notions jac−(u, v) and cos−(u, v) over the transposed graph and jac±(u, v) and

cos±(u, v) over the undirected graph.

Since filling a quadratic size matrix is infeasible, we calculate Jaccard and

cosine only for existing edges. The resulting scheme down-weights unimportant

edges but is unable to add “uncaught contacts” to the network. It is possible to



42 CHAPTER 4. GRAPH STACKING

find all pairs with a weight above a given threshold by fingerprinting techniques,

but in this thesis we omit the examination of this possibility.

4.3 Experiments

4.3.1 Data sets and methods

For Web spam classification we follow the same methodology as Castillo et al.

[16]. We use the Web Spam Challenge Phase I data set WEBSPAM-UK2006

[18] that consists of 71% of the hosts classified as normal, 25% as spam and the

remainder 4% as undecided as well as the Phase II data set WEBSPAM-LIP6-

2006. The feature set we are using for classification is the “public feature set”

(see Section 3.4.1) which is precalculated and included in the above data sets.

In this preliminary experiment we consider three tasks. First we use Phase I

data (the Domain Or Two Humans classification that introduces additional non-

spam domains and gives 10% spam among the 5,622 labeled sites) with the

publicly available features of [16] and then classify by the cost sensitive C4.5

implementation of the machine learning toolkit Weka [101] with bagging. Then

we use the Phase II data set features and use the Naive Bayes classifier of Weka.

Finally we compute all graph based features of [16] for the Phase II data graph

and classify by C4.5 again. We combined the text and graph classifiers by SVM.

For churn classification we use data from a small Hungarian landline tele-

phone service provider. We form features based on aggregated call cost duration

in different cost segments, including daytime and off-peak, weekday and week-

end as well as local and different long-distance call volumes. Part of the users

perform calls via an alternate provider by dialing a prefix; these calls are ag-

gregated similarly for each user. We also use the pricing package information

that also includes a distinction of company and family lines as well as the start

date of the service usage. For a time range of 12 months, after aggregating calls

between the same pairs of callers we obtained a graph with n = 66,000 nodes

and m = 1,360,000 directed edges.

We use the cost sensitive C4.5 implementation of the machine learning toolkit

Weka [101] with bagging. Since the running times on the full data set were

over 10 hours we also compiled a smaller data set where a random sample of

non-churned users were dropped, resulting in 7,151 users but we kept the entire

graph.



4.4. CONCLUSIONS 43

4.3.2 Classification results

In table 4.1 we can compare the performance of the different graph similarity

measures for 1 and 2 iterations in F-measure (see Section 2.5.1) for the best

selected settings, with the best results in bold. The column none shows the

baseline results when we are not using graph stacking. Column d shows the

results of graph stacking where edge weight is defined by the number of links

between two sites. For the Web spam data we measure over the testing labels

while for churn we use 10-fold crossvalidation. Since the text and link SVM-

combined Web Spam II experiment is computationally very expensive, we only

computed the base and the simple neighbor methods that give 0.738 and improve

to 0.748 for the small and 0.338 vs. 0.449 for the large graph.

In Table 4.2 we can see that the difference in F-measure between the feature

generation methods of Section 4.2.1 are minor and the length of the top list has

little effect in the range of k between 100 and 1000, although for cocitation the

very long and for others the very short lists deteriorate the performance.

4.4 Conclusions

We presented Web spam and landline telephone churn classification measure-

ments over the Web Spam Challenge Phase II and a small Hungarian land-

line telephone provider year 2005 data set. Our experiments demonstrated that

stacked graphical learning in combination with graph node similarity methods

improve classification accuracy in both cases. Due to the large number of pos-

sible feature generation methods the results are by no means complete but show

a very good performance of co-citation and little actual use of the neighborhood

beyond two steps in the graph.

4.5 My contribution

The results demonstrated in this chapter are joint work with András Benczúr,

Károly Csalogány and László Lukács and were published in [2]. My contribu-

tion is the implementation of the link feature generation methods, the definition

of graph similarity measures, and the identification of the best machine learning

methods available as part of the Weka machine learning toolkit. László Lukács

defined the aggregation methods for graph stacking and pre-processed the churn

dataset. Károly Csalogány calculated the TFIDF feature set and evaluated the

results.



4
4

C
H

A
P

T
E

R
4

.
G

R
A

P
H

S
T

A
C

K
IN

G

F-measure graph stacking

×1000 none d coc coc− coc± Jac Jac− Jac± cosine PPR

iterations 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Web Spam I 689 695 707 709 669 677 722 724 715 703 689 690 679 680 698 699 715 719

Web Spam II

small, text

592 589 601 605 598 599 599 601 590 590 592 594 593 595 600 601 599 600

Web Spam II

small, link

762 752 788 793 774 765 748 738 756 762 782 777 766 756 760 760 731 737

Web Spam II

large, link

939 962 983 984 987 988 983 984 984 985 975 976 961 953 982 982 958 960

Churn 086 102 063 052 079 088 102 083 067 065 059 066 097 089 084 065 092 087

Churn,

nonchurn

sampled

161 155 141 142 197 200 114 121 254 265 153 147 175 158 267 280 277 257

T
ab

le
4

.1
:

1
0

0
0

ti
m

es
th

e
F

-m
ea

su
re

sh
o
w

n
fo

r
d

if
fe

re
n

t
d

at
a

se
ts

an
d

ed
g

e

w
ei

g
h

ts
.



4.5. MY CONTRIBUTION 45

d coc coc± Jac Jac± cosine PPR

SON’ 602 615 602 600 599 599 599

SON 600 614 602 599 599 599 598

SR’ 603 618 609 611 606 610 608

SR 601 619 611 610 605 610 603

SVONV’ 602 607 602 598 596 597 599

SVONV 600 606 602 598 596 598 599

SVR’ 603 618 609 603 606 604 600

SVR 601 619 611 600 604 601 600

 0.6

 0.602

 0.604

 0.606

 0.608

 0.61

 0.612

 0.614

 0.616

 0.618

 0.62

 0  1000  2000  3000  4000  5000  6000

cocit
jaccard
cosine

Table 4.2: Top: 1000 times the F-measure shown for different data weights and

feature generation methods. Bottom: the effect of the top list size for SVR.

Results are shown for the text features of the small Phase II graph and single-

iteration stacked graphical classification.



Chapter 5
Sonar stacking

In this chapter we extend the stacked graphical learning results of the previous

chapter in a new combination with the so-called connectivity sonar features.

The connectivity sonar introduced by Amitay et al. in [2] describes the internal

structure of a Web site for use in web classification.

A key step of stacked graphical learning is turning the predicted labels of

the neighbors into new features of a node x. Traditionally the new features have

been simple aggregates, such as the majority or average [16] of the neighbor

labels. When it comes to host-level web classification, the use of such simple

aggregates means that the information about the internal link structure of host x,

the exact position of page-level in-links and out-links is lost.

In this chapter we introduce a refined set of features for x that combine the

predictions for the neighbors of x with information about the internal structure

of x, and the location of links to and from its labeled neighbors. Accordingly,

for a host x and some class label c, we extend the “connectivity sonar” features

proposed by Amitay et al. [2] by measuring

• the distribution of links to and from neighbor hosts with predicted label c;

• the average level (within the host internal link graph) of inlinks and out-

links labeled c; and

• the fraction of links labeled c at the top and leaf levels.

To assess the prediction power of the proposed features, we run experiments

on the WEBSPAM-UK2007 data set extended with topical category labels from

the DMOZ directory. Our techniques are evaluated along several alternatives

and yield a considerable improvement in terms of area-under-the-curve (AUC)

over earlier approaches.

46



5.1. RELATED RESULTS 47

5.1 Related results

Our new results are formed as a combination of graph stacking and Web site

structural characterization. For related results on stacked graphical learning, we

refer the reader to Chapter 4.

As the starting point of our investigation into Web site structure, Amitay

et al. [2] classify web hosts based on information about their internal linkage.

They define the depth of a page within a host as the number of slashes in the

corresponding URL and extract features such as

• the distribution of pages at different levels;

• the distribution of inlinks and outlinks at different levels;

• the fraction of links at the top and leaf levels; and

• comparisons of the distribution of external and internal up, down, and

cross links.

Gyöngyi et al. [49] compute personalized PageRank vectors with the per-

sonalization vector being one of the 14 Open Directory top-level topic indicator

vectors for each. This way they compute 14 features for each host and use simple

majority vote to derive the topic of initially unlabeled hosts.

5.2 Machine learning by sonar stacking

Our key idea for sonar stacking classification consists of the combination of

the internal and external link structure of pages on a host u with the label of

other hosts that are pointing to or pointed by u’s pages. The following two sub-

sections describe the pair of core preexisting ingredients: the “sonar” features

of [2], characterizing the host’s page-level link structure; and label propaga-

tion [49], edge similarity measures [9], and graph stacking [16] as used in web

host classification. Personalized PageRank, a special case of graph stacking, is

also presented separately in Section 2.2.2, since it is used in the baseline method

of [49]. Then in Section 5.2.2 we introduce our new feature set.

5.2.1 The “Connectivity Sonar” Features

The idea of the “Connectivity Sonar” of Amitay et al. [2] is that four main host

types (and several more derived types) are characterized by the structure of page



48 CHAPTER 5. SONAR STACKING

Figure 5.1: Schematic drawings of (a) search engines, (b) directories, (c) corpo-

rate sites and (d) virtual hosting services

levels within the host and their internal and external linkage. The main host

types shown in Figure 5.11 are as follows:

1. Search engines have a small number of pages and few outgoing links,

since most of their contents and links are generated dynamically through

the search interface. In contrast, they receive huge amounts of inlinks.

2. Directories form deep sites with navigation mainly in the up-down direc-

tion. The number of inlinks decreases as we move downwards while the

situation is quite the opposite for outlinks.

3. Corporate sites may be deep, but receive most of their inlinks at the top

level and feature only a few outgoing links. At the same time, such sites

have rich and meaningful intra-navigation structure, not just up and down

but also sidewise.

4. Virtual hosting services consists of small virtual sites that all link to the

main hosting site but otherwise act as independent sub-sites. External

linkage to the sub-sites may be more prevalent than to the main site.

The types of hosts, in the above sense, are strongly related to certain types of

content. For example, the Open Directory’s Business category consists mainly

of corporate sites, while the Science category contains university sites, which are

combinations of corporate and virtual hosting sites, as noted in [2]. Finally, the

Reference category contains several directories. While we will never encounter

an explicit labeling of hosts by type, type information is used implicitly when

host link features are incorporated in the topical classifier.

Sixteen link-based “Sonar” features are proposed [2]. In order to compute

the features of a host u, we consider the graph with the vertex set formed by

all pages within the host, plus a single node for each neighbor host. Within the

1The figure is copied from the original “Connectivity Sonar” paper [2]



5.2. MACHINE LEARNING BY SONAR STACKING 49

set of pages of host u, the level of a page is defined as the number of slashes in

the corresponding relative URL. In brief, the features are as follows (for more

details, see [2]):

F1 Average level of the page;

F2 Percentage of pages in the most populated level;

F3 Top level page expansion ratio: the number of pages in the second level

divided by the number of pages in the top-level;

F4 Inlinks per page;

F5 Outlinks per page;

F6 Outlinks per inlink;

F7 Top-level inlink portion;

F8 Outlinks per leaf page;

F9 Average level of inlinks;

F10 Average level of outlinks;

F11 The difference between F10 and F9;

F12 Percentage of inlinks to most popular level;

F13 Percentage of outlinks from most emitting level;

F14 Crosslinks per page;

F15 The ratio between internal up, down, and side-links vs. cross-links on levels

2–4;

F16 Top level internal inlinks per page.

We will use these features in part directly in our baseline classifiers and in

part as building blocks in our new feature set that also takes the labels of the

neighbor hosts into account.



50 CHAPTER 5. SONAR STACKING

5.2.2 Sonar Stacking: The New Features

By means of graph stacking, we may incorporate the predicted class of the neigh-

bors into the features that characterize the link structure at different levels of the

host in question.

To understand the idea, let us consider a host that is popular in general and

linked from other hosts belonging to various Open Directory categories. Such a

host may be a university site, an Arts page or an online store. The possible over-

all popularity of these hosts may deteriorate the performance of link-based clas-

sifiers such as PPR or graph stacking. However if we deeper explore the internal

page link structure, we may observe that hosts on the same topic “collaborate” or

“collude” by pointing deeper into one another, and implicitly use this observa-

tion to achieve better classification. As another example, Business hosts may be

competitive and even if they link to each other, the links may simply point to the

top-level page, not providing refined pointers inside the competitor’s host. Our

new features are designed so that they can distinguish linkage types and adjust

the label propagation in the graph stacking classification accordingly.

Our “Sonar Stacking” features are defined in the graph stacking framework

by first classifying all hosts based on features from the previous phase, and then

using the prediction p(u) for host u as a weight in the previously introduced

“Sonar” features. We define the Sonar Stacking features as a combination of the

following complementary pairs:

S Sum of p(u);

A Average of p(u);

I Inlinks;

O Outlinks;

T Top level;

L Leaf level.

We may choose and combine one option from each of the pairs SA, IO and

TL; for example, the choice SIT stands for the sum of weights p(u) for hosts

u pointing to the top level page. In addition to the eight possible combined

features, denoted from now on as S1–8, we use two additional ones,

S9 Average level of inlinks (F9) weighted by prediction; and

S10 Average level of outlinks (F10) weighted by prediction.



5.3. EXPERIMENTS 51

5.2.3 Graph stacking, Edge Weights, and Aggregation

In the previous chapter, we compared how graph stacking performs with several

different aggregation methods and graph similarity measures. In this chapter, we

use all the similarity measures and the following aggregation methods:

• The average of the weights p(u), as in [16];

• The sum of the weighted positive prediction sim(u, v) · p(v), which re-

places simple degree counts in sonar features F4–13.

• The Value Ratio (SVR, which performed best in [2]): the sum of the

weighted positive prediction sim(u, v) · p(v), divided by the sum of all

similarities sim(u, v). In order to ignore the effect of low similarity on

some instance u, we trim sim(u, v) to zero for all except the top 100 nodes

v most similar to u.

5.3 Experiments

5.3.1 Data set

We evaluate the performance of the proposed classification approach on the

WEBSPAM-UK2007 data set, but instead of classifying Spam, we labeled 38,415

hosts by top-level Open Directory (ODP) categories (using links extracted from

topic subtrees in the directory), out of which 32,960 received a unique label. The

task is to classify Web pages based on which ODP category are they belonging

to. We note that the main BBC site belongs to all 14 categories and over 20 sites

belong to at least 10 categories each. We discarded the labels of all hosts with

multiple labels. Also, since one of our baseline classifiers, SVM on TF-IDF re-

quired extensive CPU time, we took a random sample of 5,000 labeled hosts for

the ODP classification task. The resulting distribution of labels is shown in Ta-

ble 5.1. The table also contains a summary of our results, in the form of overall

improvement in classification performance reached by the sonar stacking; the

results are described in detail in Section 7.4.4.

Our classification procedure works as follows. We split features into related

sets and for each ODP category and for each set of features we use the best fitting

binary classifier, which we describe in the following subsection. These classi-

fiers are then combined by Logit-Boost, a method that, in our cross-validation

experiment, outperformed logistic regression suggested in [24]. All through-

out our experiments, we used the classifier implementations of the Weka [101]

machine learning toolkit.



52 CHAPTER 5. SONAR STACKING

category total sample AUC best

count count incr. method

AR (arts) 5076 537 .012 CStacking 1

BU (business) 7514 880 .008 CStacking 2

CO (computer) 3115 323 .022 PStacking 1

GA (games) 817 73 .009 PStacking 1

HE (health) 1353 132 .010 CStacking 1

HO (home) 499 43 Text+PPR+Sonar

KI (kids) 422 23 Text+PPR+Sonar

NE (news) 119 8 Sonar

RC (recreation) 3599 386 .019 CStacking 2

RE (reference) 1785 125 HStacking 1

SC (science) 2422 179 .024 CStacking 2

SH (shopping) 3311 392 .038 CStacking 2

SO (society) 4507 438 .002 CStacking 1

SP (sports) 3876 449 .011 CStacking 2

Table 5.1: The distribution of hosts over the top-level ODP categories with to-

tal and evaluation sample counts, allowing for multiple labels per host. The

AUC column contains the absolute increase obtained by using page-level stack-

ing with binary classifiers for each ODP topic and the last column shows the

corresponding best performing method.



5.3. EXPERIMENTS 53

5.3.2 Baseline Features and Classifiers

The most natural way to classify the topic of web sites is to use their text content.

Our first and often most powerful classifier is SVM over TF-IDF, averaged over

all pages of the host. We use the most frequent 20,000 terms. SVM is generally

believed to be one of the best performing text classifiers; for example for larger

web collections SVM performed better in the related experiment of [3].

Gyöngyi et al. [49] describe a method that relies solely on the fact that hosts

within the same category tend to be connected stronger than across different

categories. We implement their method that is based on personalized PageRank

as described in Section 2.2.2. For the 14 ODP categories we obtain 14 PPR

values as features for each host. Unlike in [49], where majority vote is used, we

train a C4.5 classifier over these features.

The original 16 “Sonar” features F1–16 from [2] are formed by defining the

level of a page within a host as the number of slashes in its URL. We duplicate

all of 16 features by also using the alternate definition of the level as the shortest

path from the root page of the host (breadth-first level). In addition, for each

of features F4–13, which rely on in- or outdegree counts, we form two separate

features for internal and external links, and a third aggregate feature. Altogether

this results in 68 features that we feed into a C4.5 classifier.

For the combination of different classifiers, we have tested several methods,

including C4.5, logistic regression (suggested for Web spam filtering by the best

performing Web Spam Challenge 2007 method [24]) and random forest; the

Logit-Boost classifier of the Weka machine learning toolkit performed best and

is hence used in the rest of our experiments.

Graph stacking, a method first used for web classification in the spam filter-

ing work of Castillo et al. [16], is also one of our baseline classifiers. We use

an extended version of it, described in [2], which compares various uses of edge

weights, as presented in Section 5.2.3. While the measured effects of various

weights lead to the conclusion that cocitation is superior, we use a many-feature

stacking method that in each stacking phase defines 10 new features, using all

of the following similarity measures: PPRu(v); plus undirected, directed, and

reversed versions of degree count, cocitation, and Jaccard. As a reminder, we

note that in all these methods we use Value Ratio (SVR in [2]) as defined in

Section 4.2.1, and that all features are classified by Logit-Boost.

5.3.3 Results

We show our results in terms of the AUC measure for the WEBSPAM-UK2007

data set in Table 5.2. In addition, Figure 5.3 presents the distribution of some

selected features that performed well in classification.



54 CHAPTER 5. SONAR STACKING

Figure 5.2: AUC measures for the WEBSPAM-UK2007 data set with different

sets of features used along the baseline classifiers. Here Combination denotes

all non-stacked features (text, PPR and Sonar); HStack is the host-level (non-

Sonar) stacking; PStack is the page-level (Sonar) stacking over text, PPR, and

Sonar; while CStack is the combination of all.



5.3. EXPERIMENTS 55

(a) Host-level stacked average prediction

over links for CO.

(b) Host-level stacked average prediction

over Jaccard similar hosts for CO.

(c) Same as (b) with two iterations. (d) Root average outlink prediction for CO.

(e) Leaf average outlink prediction for CO. (f) Average category of leaf inlinks, BU.

(g) Leaf average outlink prediction for RE.



56 CHAPTER 5. SONAR STACKING

(h) Host-level stacked average prediction

over personalized PageRank weighted links

for RE.

(i) Average level of inlinks for NE (no stack-

ing).

Figure 5.3: The distribution of stacked feature values for representative topical

categories of the UK2007-WEBSPAM data set.

For most ODP categories, page-level Sonar Stacking works similar to host-

level graph stacking: both top- and bottom-level, in- and out-averages yield dis-

tinctive features. The first interesting observation that we illustrate in Figure 5.3

is that links from and to same-category pages go more deeper within the hosts

than between different topics.

Next we investigate the stacked average prediction of root- and leaf-level

pages. We describe Computers (CO) in detail; for other hosts we only show dif-

ferences. For the host-level stacking of CO there is a peak (Figures 5.3a,b) in the

medium average prediction by all host similarity measures (linkage, cocitation

and Jaccard). While this peak is reduced in a second iteration of stacking, we

still observe it, for example, for the Jaccard measure (Figure 5.3c). In contrast,

page-level linkage has better predictability, in particular for leaf- and root-level

outgoing linkage (Figures 5.3d,e).

When we analyze the linkage from the same vs. different types of hosts

in more detail, we observe differences between the 10 categories where page-

level stacking yields improvement. While in general deeper linkage indicates

the same category, Business is an exception where the lack of leaf-level linkage

characterizes the hosts (Figure 5.3f).

A particularly interesting category is Reference (RE), where host-level stack-

ing outperforms our new method. Here we can still observe characteristic page-

level stacking features (Figure 5.3g), though the category is apparently so strongly

interlinked that host-level stacking (Figure 5.3h) cannot be further refined.

The categories HO, KI, and in particular NE show peculiar behavior. News

hosts are best (and, as seen in Figure 5.2, only) characterized by their internal

structure and thus are indistinguishable from non-News by the stacked features.



5.3. EXPERIMENTS 57

These hosts can be spotted by deep pages as well as out-links (Figure 5.3i). As

a word of caution, we note that the results concerning the inefficiency of graph

stacking may be inconclusive due to the small number of positive instances in

the sample.

Next we consider the average level of the in- and outlinks of different types

of hosts in Figure 5.4. We observe three types of behavior. Two large categories

HE (a) and HO, as well as the smaller KI and NE show no characteristic behav-

ior. In this sense, categories AR (b, c), BU, CO, RC, SH, SO, and SP are typical

in that there is no distinction between the level of linkage from same vs. differ-

ent categories. At the same time, there are peaks at integer values for inlinks

meaning that typically a given level of the host is in-linked. Finally for GA, RE,

and SC both the in- and outlink depths are distinctive, while the categories also

feature the peaks for integer values of inlinks (d, e, f).

In summary we observe the following characteristic behavior of hosts:

Class 1: Strong collaboration. These hosts are linked in general deeper from

the same category; different categories also tend to link to these hosts, but

point mostly to the root page. There is strong collaboration within this

category, while external links simply indicate the existence of particular

hosts, without detailed inside pointers. We obtain the highest improve-

ment by page-level “Sonar” stacking here. This class contains Arts, Com-

puter, Games, Science and Shopping (AR, CO, GA, SC, and SH).

Class 2: Content defined. For these hosts, text content is so characteristic that

it can only slightly be improved upon by other features; the choice of

features varies within the class. Representatives are Computer and Kids

(CO, KI), and to a lesser extent Business, Reference, Shopping and Sports

(BU, RE, SH, SP) also belong here. While internal linkage within these

categories is not as strong as for Class 1, “Sonar” stacking often improves

for reasons either similar to Class 1, or, in contrast, as in the case of BU

(Figure 5.3f), due to the lack of deep links.

Class 3: Closed community. These hosts are in general less linked from differ-

ent categories. PPR and the stacked features are very strong in this class.

Representatives are Games, Health, Kids, Recreation and Sports (GA, HE,

KI, RC, SP). There is partial overlap with Class 2 and some similarity with

Class 1 in that for some categories page-level “Sonar” stacking improves

over host-level stacking.

The remaining categories are considered exceptional. Home (HO) fails all

attempts of stacking and its classification performance is the worst of all the

categories. News (NE) performs better than HO when classified by the “Sonar”



58 CHAPTER 5. SONAR STACKING

(a) Average level of outlinks, HE (b) Average level of inlinks, AR

(c) Average level of outlinks, AR (d) Average level of inlinks, GA

(e) Average level of outlinks, RE (f) Average level of inlinks, SC

Figure 5.4: Sample distribution in- and outlink level from same and different

categories.



5.4. CONCLUSIONS 59

features, but all other features perform and combine poorly. Note, however,

the small positive sample size of NE, which makes the results inconclusive. In

addition to HO and NE, Science (SC) is the third outlier category, with a poor

performance of the TF-IDF classifier. These three categories are diverse in text

content and thus the use of non-text classification features is an absolute must.

5.4 Conclusions

In this Chapter we have demonstrated the applicability of page-level linkage

analysis for Web host classification in a graph stacking framework. Our features

are stacked over a base classifier outcome and characterize the linkage predicted

from the target category, distinguished by the level within the given host. The

features work particularly well for hosts of general popularity, which receive

a large number of off-topic links, but where deeper analysis reveals topically

similar hosts that tend to refer to more details and link deeper within each other.

Page-level stacking improves even over a very strong baseline combination of

text, personalized PageRank, and stacked graphical classification for most top-

level Open Directory categories. Our experiments were conducted over more

than 30,000 hosts of the .uk domain which are listed in the Open Directory,

and the absolute improvement in AUC was between 1-4% for most categories.

5.5 My contribution

The results demonstrated in this chapter form an extended and greatly improved

version of the graph stacking results of Chapter 4 in joint work with András

Benczúr, Zoltán Gyöngyi and Miklós Kurucz. My main contribution was cre-

ating the new sonar stacking features, running all the experiments, comparing

different methods and combining the results of separate machine learning algo-

rithms. Zoltán Gyöngyi labeled the WEBSPAM-UK dataset with the DMOZ

categories. Miklós Kurucz computed the original sonar features for the baseline

methods.



Chapter 6
Cross-lingual text classification

It has already been known from the early results on text classification that “ob-

taining classification labels is expensive” [70]. This is especially true in multi-

lingual collections where either separate training labels have to be produced for

each language in question, or techniques of cross-lingual information retrieval

[31] or machine translation [73] has to be used.

While several results focus on cross-lingual classification of general text cor-

pora [7, 88, 98, and many more], we concentrate on the special and characteris-

tically different problem of Web classification. Our goals range from serving fo-

cused crawling of topically selected Web collections [19], prioritizing the crawl

for overall quality to filtering spam, porn, or illicit content [55].

In our methods scalability considerations play central role. We envision

users of limited resources or crawl-time filtering needs, e.g. prioritization or

stopping spam before they reach the archive. Hence, we prefer local methods and

features computable from a sample set of pages of a host instead of global ones,

such as PageRank that is expensive to update whenever a new host appears. For

the same reason we cannot rely on heavy Natural Language Processing (NLP)

methods that will likely not scale to the size of the Web.

Our results combine methods from two areas, cross-lingual information re-

trieval and Web classification. Traditional methods in cross-lingual informa-

tion retrieval use dictionaries, machine translation methods, and more recently

multilingual Wikipedia editions. Web classification on the other hand relies on

features of content and linkage [16], some of which are language independent

(see Section 3.4.1). However, even most of the language independent features

depend on the domain: PageRank and its variants may have different distribu-

tion for differing interconnectivity and the ratio of the “boundary”: the pages

not included but pointed to by another page in the domain, crawl, or language.

TrustRank (see Section 3.4.1) and query popularity based features depend on

60



61

Figure 6.1: Portion of a mixed language machine generated spam page.

the availability of a trusted seed set, typically hosts listed in the Open Directory

Project (see 3.2), and the coverage of search queries. Finally, the typical word

length and text entropy may also vary language by language.

In this chapter we experiment with a new combination of learning methods

and cross-lingual features for web classification. Our task is different from stan-

dard methods of cross-lingual text classification (see [98] and references therein)

in the following aspects:

• We classify hosts not individual pages. While arguably page-level clas-

sification would exploit the available information to a similar or better

degree, it is computationally much less feasible, often beyond practical

use. In addition, labeling a page or an entire host is almost the same effort

for a human and hence the ratio of training vs. testing size is favorable for

host level classification.

• Even if we consider a national domain, the actual language used in a host

can be mixed, especially for spam pages automatically generated from

chunks (see Fig. 6.1 as an example).

• We may exploit multilingualism by classifying a host based on its part

written in English.

In this chapter we investigate how much various classes of Web content and

linkage features, some requiring very high computational effort, add to the clas-

sification accuracy. As the bag of words representation turned out to describe

Web hosts best for most classification tasks of the Discovery Challenge [34], we

realized that new text classification methods are needed for our tasks.

Based on recent results in Web spam filtering, we also collect and handle a

large number of features and test a variety of machine learning techniques in-



62 CHAPTER 6. CROSS-LINGUAL TEXT CLASSIFICATION

cluding SVM, ensemble selection, LogitBoost and Random Forest (see Section

2.4). Our key findings are summarized next.

• Hosts that contain a mix of English and national language content, likely

translations, yield a very powerful resource for cross-lingual classification.

Some of our methods may even work without using dictionaries, not to

mention more complex tools of natural language processing.

• Similar to our previous English-only results, the bag-of-words representa-

tion together with appropriate machine learning techniques is the strongest

method for Web classification.

• The “public” spam features of Castillo et al. [16], especially the content-

based ones, depend heavily on the data collection and have little general-

izational power. For spam classification they require cross-corpus normal-

ization while for topical classification, the content based features do not

seem to be applicable.

To assess the prediction power of the proposed features, we run experiments

over the .pt domain [45, 46]. We perform topical classification into one of

selected 7 top-level categories of the Open Directory (http://dmoz.org).

Our techniques are evaluated along several alternatives and yield a considerable

improvement in terms of area-under-the-curve (AUC).

6.1 Related results

In this section, we review results related to cross-lingual classification. For gen-

eral results in the area of Web classification, see Section 3.4.

In general, cross-lingual classification either works by translating documents

[88, 63, 98], or terms only [7], or using an intermediate language-independent

representation of concepts [99]. For general results on cross-lingual text clas-

sification we refer to [7] which proposes linguistic resources such as dictionar-

ies similar to the ones used in cross-lingual information retrieval. As a broad

overview, we refer to the CLEF Ad Hoc tasks overview papers, e.g. [31] in the

latter area. We also note that several results exploit Wikipedia linkage and local

editions [94, 69, 44].

Several cross-language classification results work over “pseudo-English” doc-

uments, similar to ours, by translating key terms into English using dictionaries

[7] or using latent semantic analysis [33, 82]. The cross-lingual classification

results reported are however, unlike ours, much worse than the monolingual

baselines.



6.2. METHOD 63

Semi-supervised learning finds applications in cross-lingual classification

where, similar to our methods, the unlabeled part of the data is also used for

building the model. Expectation maximization is used in [88, 93] for cleans-

ing the classifier model from translation errors; others [86] exploit document

similarities over the unlabeled corpus. In [98] co-training of machine translated

Chinese and English test is used for sentiment analysis.

Closest to our goals is the method of [63] for classifying Chinese Web pages

using English training data, however, either because of the cultural differences

between Chinese and English content or the fact that they classified on the page

and not host level, they achieve accuracy metrics much weaker than for the

monolingual counterpart. We also note that they are aware of the existence of

multilingual content but they apparently do not exploit the full power of multi-

lingual hosts. Finally, a recent Web page classification method described in [99]

uses matrix tri-factorization for learning an auxiliary language, an approach that

we find computationally infeasible for classification in the scale of a top level

domain.

6.2 Method

Our Web host classification method applies a classifier ensemble consisting of

features based on content and linkage as well as various English, translated, and

semi-supervised Portuguese bag of words models. The following subsections

describe the core ingredients. We have already described the basic features in

sections 3.4.1, 3.4.1 and 3.4.1. Some of these features are language independent

but some of theme are not. In Sections 6.2.1 and 6.2.2 we describe how we can

use these features for cross-lingual classification.

6.2.1 Features: Content

1. Number of words in the page, in the title.

2. Average length of words.

3. Fraction of anchor text.

4. Fraction of visible text.

5. Compression rate.

6. Corpus precision, recall.

7. Query precision, recall.



64 CHAPTER 6. CROSS-LINGUAL TEXT CLASSIFICATION

8. Entropy.

9. Independent n-gram likelihoods.

Here feature classes 1–5 and 8–9 can be normalized by using the average

and standard deviation values over the two collections, although classs 3–4 are

likely domain- and language-independent.

Corpus precision and recall are defined over the k most frequent words in

the data set, excluding stopwords. Corpus precision is the fraction of words in

a page that appear in the set of popular terms while corpus recall is the fraction

of popular terms that appear in the page. This class of features is language

independent but rely on different lists of most frequent terms for the two data

sets.

Query precision and recall is based on frequencies from query logs that have

to be either compiled separately for each language or domain (questions from

Portugal likely have different distribution than from Brazil) or the English query

list has to be translated. Since we had no access to a query log in Portuguese,

we selected the second approach.

6.2.2 Features: Linkage

One of the strongest features among link features is TrustRank [54]. A PageRank

personalized on known honest (non-Spam) hosts. TrustRank however needs a

trusted seed set. Typically hosts that appear in the Open Directory Project (ODP)

are used as seed. Unfortunately ODP acts as our negative sample set as well,

hence in this chapter we have to omit TrustRank.

6.2.3 Features: Bag-of-Words

Bag of words features are the strongest features for Web classification [34]. The

bag of words representation of a Web host consists of the top 10,000 most fre-

quent terms after stop word removal.

In order to classify hosts in Portuguese, we translate the Portuguese terms to

construct an English bag of words representation of the host. The procedure is

described in Algorithm 1 with the following considerations:

• Short terms are not translated as they typically cause noise and often co-

incide between the languages.

• Multiple translation alternatives exist. We consider all translations, how-

ever split the term frequency value between them in order not to over-

weight terms with many translations. A smarter but more complex weight-

ing method is described in [93].



6.2. METHOD 65

• Multi-word translation such as Monday through Friday translated into Se-

gunda through Sexta feira could only be handled by counting frequencies

of expressions that we skip to simplify computations.

Algorithm 1 Algorithm for translating Portuguese term counts for evaluation by

an English model

for all English terms en do

count[en] = count of term en in host h

for all Portuguese terms pt of at least four letters do

count pt[pt] = count of term pt in host h

variants = number of single-term English translations of pt

for all single-term Portuguese translations en pf pt do

count[en]+ = count pt[pt]/variants

Classify h using term counts count[en]

Finally we note that we use the Okapi BM25 term weighting scheme (see

Section 2.4) that turned out to perform best in an earlier experiment [34]. As

optimal parameters, an exceptionally low value k = 1 and a large b = 0.5
turned out to perform best in preliminary experiments. Low k means very quick

saturation of the term frequency function while large b down-weights content

from very large Web hosts. We do not show extensive experiments on these

parameters.

6.2.4 Semi-supervised cross-lingual learning based on multi-

lingual Web sites

A large portion of national language Web content appears on the same host in

English version as seen in Fig. 6.3. This figure shows the proportion of the to-

tal frequency of the 10,000 most frequent Portuguese terms within the sum of

the Portuguese and English top 10,000 frequencies. This fact gives us rise of

several options to use English, Portuguese and mixed language text classifica-

tion. As summarized in Fig. 6.2, the simplest solution is to ignore non-English

content and simply use term frequencies of the most frequent English terms as

measured over the English part of ClueWeb09. Another solution, as described

in Section 6.2.3, is to translate all content term by term into English and use the

model trained over ClueWeb09 again.

We may however leverage on mixed language hosts to classify without us-

ing a dictionary in a semi-supervised procedure using these unlabeled hosts. In

Algorithm 2 we give a two-step stacked classification procedure summarized in

Fig. 6.2c. First we select hosts that contain an appropriate mix of English and



66 CHAPTER 6. CROSS-LINGUAL TEXT CLASSIFICATION

(a) Prediction by using the English terms only.

(b) Terms in the Portuguese testing data translated into English.

(c) After applying the method of Fig. 6.2a, strongest positive and negative predictions

are used for training a model in the target language.

Figure 6.2: Three methods for classifying mixed language content based on a

monolingual training set.



6.2. METHOD 67

Figure 6.3: Statistics for the language distribution of most frequent terms in Web

hosts over the .pt domain, with the 257,000 English-only hosts removed.

Portuguese terms, the middle range in Fig. 6.3 between threshold low = 0.4 and

threshold high = 0.6. Based on the English term frequencies of these hosts, we

give prediction using a model trained over the English part of ClueWeb09. Now

we turn to Portuguese term count based modeling. Since we have no labeled Por-

tuguese data, we use the outcome of the English model as training labels. More

precisely if a host has prediction less than pred low = 0.1, then we consider as

negative and if more than pred high = 0.9, then positive training instance.

Algorithm 2 Stacked classification of mixed-language hosts based on an English

model

for all hosts h do

ratio[h] = total frequency of top 10,000 Portuguese terms divided by total

frequency of top 10,000 Portuguese and English terms

if h is not testing and threshold low < ratio[h] < threshold high then

pred[h] = prediction for h based on the English model

if pred[h] < pred low then

Add h to negative training instances

if pred[h] > pred high then

Add h to positive training instances

Train a model based on Portuguese term counts using the positive and negative

instances h

Classify all testing h using the Portuguese only model

In our algorithm for selecting the the intermediate training set, the procedure

is made efficient by first running a MapReduce job only to count the dictionary



68 CHAPTER 6. CROSS-LINGUAL TEXT CLASSIFICATION

term distribution, and then compute features for the selected hosts only.

We also note that the procedure summarized by the scheme in Fig. 6.2c can

be used with any classifier and feature set. In addition to training using Por-

tuguese term frequencies, we also compute the public content based features

and compare models trained on ClueWeb09 vs. the semi-supervised “training”

set.

6.2.5 Classification Framework

In our classifier ensemble, we split features into related sets as described in Sec-

tions 6.2.1–6.2.3 and for each we use a collection of classifiers that fit the data

type and scale. These classifiers are then combined by ensemble selection. We

used the classifier implementations of the machine learning toolkit Weka [101].

We use a procedure similar to [34] that we summarize here.

In the context of combining classifiers for Web classification, to our best

knowledge, ensemble selection was only used by one previous result [34]. Be-

fore that, only simple methods that combine the predictions of SVM or decision

tree classifiers through logistic regression or random forest have been used [24].

We believe that the ability to combine a large number of classifiers while pre-

venting overfitting makes ensemble selection an ideal candidate for Web classi-

fication, since it allows us to use a large number of features and learn different

aspects of the training data at the same time. Instead of tuning various parame-

ters of different classifiers, we can concentrate on finding powerful features and

selecting the main classifier models which we believe to be able to capture the

differences between the classes to be distinguished.

We used the ensemble selection implementation of Weka [101] for perform-

ing the experiments. We allow Weka to use all available models in the library

for greedy sort initialization and use 5-fold embedded cross-validation during

ensemble training and building. We set AUC as the target metric to optimize for

and run 100 iterations of the hillclimbing algorithm.

We use the following model types for building the model library for ensem-

ble selection: bagged and boosted decision trees, logistic regression, LogitBoost,

naive Bayes and random forests. For most classes of features we use all clas-

sifiers and allow selection to choose the best ones. The exception is static term

vector based features where, due to the very large number of features, we use

SVM as described in Sections 6.2.3–6.2.4.



6.3. EXPERIMENTS 69

category .pt ClueWeb

count count

AR 362 97355

BU 308 193678

CO 366 66159

RC 205 65594

SC 234 43317

SO 385 122084

SP 42 54456

spam 124 439

non-spam 3375 8421

hosts 686443 19228332

pages 71656081 502368557

Table 6.1: The number of positive host instances in each category and the host

and page count for the two data sets.

6.3 Experiments

We evaluate the performance of the proposed classification approach on a 2009

crawl of the Portuguese Web Archive of more than 600,000 domains and 70M

pages. For training our English language models, we used the English part of

ClueWeb09 of approximately 20M domains and 500M pages. Web spam labels

were provided by the Portuguese Web Archive and the Waterloo Spam Rank-

ings [25], respectively. While the Waterloo Spam Rankings contain negative

training instances as well, for the Portuguese data we used pages from the Open

Directory Project (ODP) for this purpose.

We labeled hosts in both the .pt crawl and ClueWeb09 by top-level ODP

categories (using links extracted from topic subtrees in the directory). The fol-

lowing English top level categories had corresponding Portuguese categories

with sufficient number of labels in both collections: arts–Artes (AR), business–

Negócios (BU), computer–Informática (CO), recreation–Passatempos (RC), sci-

ence– Ciência (SC), society–Sociedade (SO) and sports–Desportos (SP). Out of

all labeled hosts, 1902 Portuguese and 642643 English received a unique la-

bel. We note that certain sites as e.g. bbc.co.uk may belong to even all 14

top level English categories. We discarded the labels of all hosts with multiple

labels. The resulting distribution of labels is shown in Table 6.1.

Just like in our previous experiments, we ran binary classifications for every

topic separately. We evaluate our classifiers by the area under the ROC curve

(AUC) [40] as used at Web Spam Challenge 2008 [17]. We do not give results



70 CHAPTER 6. CROSS-LINGUAL TEXT CLASSIFICATION

in terms of precision, recall, F-measure or any other measure that depends on the

selection of a threshold as these measures are sensitive to the threshold and do

not give stable comparison of two results. These measures, to our best knowl-

edge, were not used in Web classification evaluation campaigns since after Web

Spam Challenge 2007.

6.3.1 Feature distributions

As seen by the language distribution in Fig. 6.3, our Portuguese testing data

set consists of host with English to Portuguese ratio uniformly spread between

mostly English to fully Portuguese, with the exception of a large number of En-

glish only hosts. These latter hosts are however underrepresented in the labeled

set, hence we take no specific action to classify them.

Since most often web sites are topically classified based on the strong signals

derived from terms that appear on their pages, our first and often most powerful

classifier is SVM over bag of words representation, averaged over all pages of

the host. After stop word removal, we use the most frequent 10,000 terms both

in English and in Portuguese.

The distribution of content features differs significantly between ClueWeb09

and the Portuguese crawl. As an example, the relative behavior of spam com-

pared to normal hosts also significantly differs between ClueWeb09 and the Por-

tuguese data as seen in Fig. 6.4. Hence we may not expect content based features

to work well across models.

6.3.2 Computational Resources

For the experiments we used a 45-node Hadoop cluster of dual core machines

with 4GB RAM each as well as multi-core machines with over 100GB RAM.

Over this architecture we were able to compute all features, some of which

would require excessive resources either when used by a smaller archive or if

the collection is larger or if fast classification is required for newly discovered

sites during crawl time. Some of the most resource bound features involve the

multi-step neighborhood in the page level graph that already requires approxi-

mation techniques for WEBSPAM-UK2007 [16].

We use batch processing an entire collection is analyzed at once, a procedure

that is typically applied when training a model on a collection.

The first expensive step involves parsing to create terms and links. The time

requirement scales linearly with the number of pages. Since apparently a few

hundred page sample of each host suffices for feature generation, the running

time is also linear in the number of hosts.



6.3. EXPERIMENTS 71

Figure 6.4: Distribution of the title length of the home page over the ClueWeb09

(top) and the Portuguese data (bottom), separate for spam and normal hosts.



72 CHAPTER 6. CROSS-LINGUAL TEXT CLASSIFICATION

category content link English translate stacked translate+stacked

AR 0.490 0.477 0.572 0.543 0.692 0.700 0.704

BU 0.486 0.517 0.583 0.428 0.707 0.771 0.745

CO 0.494 0.545 0.484 0.516 0.669 0.690 0.688

RC 0.492 0.515 0.525 0.457 0.731 0.727 0.740

SC 0.529 0.457 0.508 0.448 0.731 0.736 0.754

SO 0.509 0.527 0.569 0.497 0.656 0.674 0.677

SP 0.503 0.639 0.532 0.598 0.825 0.845 0.857

spam 0.719 0.751 0.921 0.752 0.861 0.894 0.900

Table 6.2: AUC of the main classification methods over the Portuguese test data.

In the two variants of the content based features, we give results of the ensemble

selection in the first and a single LogitBoost in the second column.

We have to be more cautious when considering the memory requirement for

parsing. In order to compute term frequencies, we use Map-Reduce. Host level

aggregation allows us to proceed with a much smaller size data. However for

aggregation we need to store a large number of partial feature values for all

hosts unless we sort the entire collection by host, again by Map-Reduce.

After aggregation, host level features are inexpensive to compute. The fol-

lowing features however remain expensive and require distributed or compressed

graph algorithms:

• Page level PageRank. Note that this is required for all content features

involving the maximum PageRank page of the host.

• Page level features involving multi-step neighborhood such as neighbor-

hood size at distance k as well as graph similarity.

Training the classifier for a few 100,000 sites can be completed within a

day on a single CPU on a commodity machine with 4-16GB RAM; here costs

strongly depend on the classifier implementation. Our entire classifier ensemble

took a few hours to train.

6.3.3 Results

We show our results in terms of the AUC measure for the Portuguese Web data

set in Table 6.2. First we give results by using the public content and link based

features [16]. These features work relative well for spam, however our ensemble

selection results perform random for the ODP categories. Improved results are

obtained by using LogitBoost only, as given in the second and third column of

Table 6.2.



6.3. EXPERIMENTS 73

category content link

AR 0.677 0.561

BU 0.717 0.597

CO 0.615 0.589

RC 0.652 0.532

SC 0.711 0.614

SO 0.627 0.514

SP 0.654 0.511

spam 0.806 0.804

Table 6.3: AUC of the main classification methods crossvalidated over the

ClueWeb09 data.

Figure 6.5: Predicted spamicity (vertical) as a function of the language distri-

bution of most frequent terms (horizontal) in Web hosts over the .pt domain,

separate for spam and normal hosts. For normal hosts we show a 20% random

sample.



74 CHAPTER 6. CROSS-LINGUAL TEXT CLASSIFICATION

Method AUC

English and Translated 0.952

prediction average

Translated and Stacked 0.900

prediction average

English, Translated and Stacked 0.952

prediction average

Stacked and link based features classified with 0.964

LogitBoost, both predictions normalized

Table 6.4: The results of the combined methods for Spam in AUC.

In order to validate the weakness and the relative power of content and link

based features, we also give crossvalidation results over both the training and

the testing set in Table 6.3.

Next we give our results based on the bag of words representation. The trans-

lation model works reliably over all categories as well as for spam. The fully

English model performs near random overall. Somewhat surprisingly however

if we use the English only predictions in the stacked framework of Section 6.2.4,

we see significant improvement in all categories. The combination of the trans-

lated and stacked models obtained by averaging the predictions is the overall

best method.

For spam classification, a single LogitBoost classifier over the link features

trained over the ClueWeb09 corpus performs best over the Portuguese test data,

even better than crossvalidated over the same data. This may be due to the

fact that labeled spam comes from a relative small number of link farms and

hence have a very characteristic link structure. Table 6.4 shows the results of the

combination of various spam classifiers.

Note that unlike for ODP categories, combinations with the English only

classifier improve spam classification. The best performing combination also

involves the link based classifier.

As an illustration of how predictions behave as a function of the language

distribution of the host, in Fig. 6.5 we show the predictions of the translated

spam model separate for spam and a sample non-spam hosts. We observe that

link based features work only for spam, just as for the Portuguese testing set.

Content based features are however much more powerful over the same data as

across data sets, as justified also by Fig. 6.4.



6.4. CONCLUSIONS 75

6.4 Conclusions

In this chapter we have demonstrated the applicability of cross-lingual Web host

classification for spam and top-level Open Directory categories. Our experi-

ments were tested over more than 600,000 hosts of the .pt domain by using the

near 20M host English part of the ClueWeb09 data sets. Our results open the

possibility for Web classification practice in national Internet archives who are

mainly concerned about their resources, require fast reacting methods, and have

very limited budget for human assessment.

By our experiments it has turned out that the strongest resource for cross-

lingual classification consist of multilingual Web sites that discuss the same topic

in both English and the local language. Note that these Web sites cannot be con-

sidered parallel corpora: we have no guarantee of exact translations, however, as

our experiments also indicate, their content in different languages are topically

identical. The use of dictionaries to transfer a bag of words based model also

works and combine well with other methods. The normalization of the “pub-

lic” Web spam content based features [16] across languages however seems to

fail; also these features perform weak for topical classification. Link based fea-

tures can however be used for language-independent Web spam classification,

regardless of their weakness identified in [34].

6.5 My contribution

The results demonstrated in this chapter are joint work with András Garzó,

Bálint Daróczy, Tamás Kiss and András Benczúr and extend the results pub-

lished in [4] by giving improved models and experimenting with ODP cate-

gories in addition to Web spam classification. My contribution is running the

classification methods on the link and content features, crawling and labeling

the Portuguese sites with the DMOZ categories. Tamás Kiss implemented a dis-

tributed framework for calculating the link features, András Garzó implemented

the hadoop jobs for calculating the content and BM25 features and he did the

word by word translation of Portuguese sites. Bálint Daróczy ran the SVM over

the BM25 features.



Chapter 7
Text classification via bi-clustering

Mining opinion from the Web and assessing its quality and trustworthiness be-

came a well-studied area [29]. Known results typically mine Web data on the

micro level, analyzing individual pages of blogs or even sections containing

comments and reviews.

Our aim is to address a slightly different task of assessing the overall trust

and neutrality of hosts, at Web scale. Instead of relying on the heavy machinery

of opinion mining and sentiment analysis [77], methods that will likely not scale

to the size of the Web, we analyze how a simple bag of words representation can

be extracted to represent quality aspects.

In this chapter we summarize the lessons learned in the ECML/PKDD Dis-

covery Challenge 2010 on Web Quality (DC2010) and present a first attempt

for automatically classifying overall quality aspects. DC2010 introduced the

tasks for assessing neutrality, bias and trustworthiness of Web hosts. Since these

attributes constitute key aspects of Web quality, our goal is to improve the clas-

sification techniques for these tasks.

Participants [47, 4, 71] found the new quality tasks particularly challenging

with AUC values, in all cases, below 0.6, typically even near the 0.5 value of

a completely random prediction. The results we present in this paper greatly

improve over those of the best participants, stable above the AUC value of 0.6,

and present the first result that may be practically useful for this task.

TF-IDF, content and linkage features (see Section 3.4) were precompiled for

the DC2010 participants and also in [34] but with little success for quality aspect

classification.

As the bag of words representation turned out to describe Web hosts best

for most classification tasks of the Discovery Challenge [34], we realized that

new text classification methods are needed particularly suited to the quality re-

lated tasks in question. Such classifiers are however computationally expensive

76



77

including SVM that is generally considered to work well for text classification.

For example [34] uses random forest, a suboptimal choice, since they were not

able to run more expensive classifiers.

In order to both improve the quality and reduce the size of the problem, our

motivation comes from image processing. Just as Web hosts consist of a col-

lection of individual pages represented by their bag of words, images consist of

regions or points of interest represented by high-dimensional image descriptors.

Best performing content based image classification systems are typically based

on the idea of soft clustering the set of regions and representing images by clus-

ter histograms [79], also called bag of “visual words”. The procedure, at the

same time, reduces the size of the problem and removes the noise induced by

individual outlier image regions.

Based on the above image classification motivation, we bi-cluster the host-

term matrix in order to represent hosts by bag of concepts instead of words.

As an additional advantage, the sparse bag of words data is turned to a dense

continuous representation of cluster distances, a type of data best suited for SVM

classifiers.

Finally for the SVM classification step, after our first discouraging experi-

ments with the document similarity kernel over the distance matrix produced,

we considered kernel selection methods [85] that also performed well for the

above image classification task [28]. Since the dimensionality of the data is low

and it turned out that the performance of various kernels can be measured over

a small holdout set, we were able to perform a full comparison of kernel fusion

methods from [85].

We compare our result over the ECML/PKDD Discovery Challenge 2010

data set, both with the best results of the participants [47, 4, 71] and with an ear-

lier result [34] of our research group focusing primarily on spam classification.

Our improvements in NDCG for bias is 20% over DC2010 best and 5% over

[34]. For distrust we gain 20% and 10%, respectively, while for non-neutrality

3%. The AUC values of our various methods are convincingly above 0.6, i.e. we

may say that we have reached the quality of the first results on Web spam a few

years ago.

As an additional illustration of our methods, we also evaluated our classifica-

tion techniques on the C3 data set of the WebQuality 2015 Data Challenge. The

data set was created in the Reconcile1 project and contains 22325 evaluations

(five dimensions, among them credibility) of 5704 pages given by 2499 people.

The mTurk platform were used for collecting evaluations.

While we are aware of no other results over the C3 data set, we collect ref-

erence methods from Web credibility research results. User and page-based

1http://reconcile.pjwstk.edu.pl/



78 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

collaborative filtering is suggested in [78] in combination with search engine

rankings. We reuse our RecSys Challenge 2014 second place winner solution

[76] to build a strong baseline method over the evaluator, site, evaluation triplets

including the evaluator and site side information.

Social media and network based features appear already for Web spam [18,

51]. In a collection designed similar to C3 [74], social and general popularity

and linkage were introduced and used for credibility assessment. Some of these

features, in particular social media popularity, are used by the RecSys Chal-

lenge 2014 [76] as well and hence we deploy the methods we used there.

Content statistics as a concise summary that may replace the actual terms in

the document were introduced first in the Web spam research [18]. The C3 data

set includes content quality and appearance features described among others in

[74].

Our best results reach the AUC of 0.74 for credibility, 0.81 for Presentation,

0.70 for Knowledge, 0.71 for Intentions and 0.70 for Completeness. We may

hence say that all results reach the level of practical usability.

7.1 Related results

Our baseline classification procedures are collected by analyzing the results of

the Web Spam Challenges and the ECML/PKDD Discovery Challenge 2010. A

key ingredient of the Web Spam Challenge 2008 best result [43] was ensem-

ble undersampling [23] while for earlier challenges, best performances were

achieved by a semi-supervised version of SVM [1] and text compression [24].

Best results either used bag of words vectors or the so-called “public” feature

sets of [18].

The Discovery Challenge 2010 best result [71] achieved an AUC of 0.62

for non-neutrality, 0.53 for bias and 0.506 for distrust classification while the

overall winner [47] was able to classify at an average AUC of 0.80 but their

results were below 0.52 for all the quality categories. As for the technologies,

bag of words representation variants proved to be very strong for the English

collection. For classification techniques, a wide selection including decision

trees, random forest, SVM, class-feature-centroid, boosting, bagging and over-

sampling in addition to feature selection (Fisher, Wilcoxon, Information Gain)

were used [47, 4, 71]. Note that the findings of the usability of feature selec-

tion in case of high class imbalance in [71] is similar to our present work. In

[34] Erdélyi et al. improved over the best results of the Challenge participants;

the best performing ingredient of their classifier ensemble was a random forest

classifier over a BM25 weighted bag of words representation of the hosts.

Linkage was considered to be of high importance in results for Web spam



7.2. INFORMATION THEORETIC BI-CLUSTERING 79

filtering [16]. The recent classification experiments over DC2010 [34] however

indicate little use of these features, whence we omit them in the present work.

As a possible reason of observing performance lower than for other collections,

the DC2010 training and test set was constructed by handling of hosts from the

same domain and IP. Since no IP and domain was allowed to be split between

training and testing, the simple and otherwise easy connections such as same

ownership do not show up in the DC2010 linkage.

If sufficiently many evaluators assess the same Web page, which is the case

with the C3 data set, one may consider evaluator and page-based collaborative

filtering [78] for credibility assessment. In this setting, we face a dyadic pre-

diction task where rich meta data is associated with both the evaluator and es-

pecially with the page. The Netflix Prize competition [11] put recommender

algorithms through a systematic evaluation on standard data [8]. The final best

results blended a very large number of methods whose reproduction is out of the

scope of this experiment. Among the basic recommender methods, we use ma-

trix factorization [60, 95]. In our experiments we use the factorization machine

[87] as a very general toolkit for expressing relations within side information.

Recently, the RecSys Challenge 2014 run a similar dyadic prediction task where

Gradient Boosted Trees [105] performed very well [76].

7.2 Information theoretic bi-clustering

Bi-clustering is a bidirectional clustering algorithm that is capable of clustering

along multiple aspects at the same time by switching between clustering along

the two axis. Bi-clustering explores a deeper connection between instances and

attributes than the usual one-directional clustering methods.

Our bi-clustering method is based on Dhillon’s information theoretic co-

clustering algorithm [30]. The basic idea is to consider the data as a joint

distribution. Now with the help of information theory we can reformulate the

clustering problem as follows: The optimal bi-clustering is the one where the

mutual information (see Section 2.7) of row and column clusters is the largest.

7.2.1 The algorithm

Let X and Y be discrete random variables that take values in the sets {rows} and

{columns} respectively. Let p(X, Y ) denote the joint probability distribution of

X and Y . Let the k clusters of X be {x̂1, x̂2, . . . , x̂k}, and let the ℓ clusters of Y



80 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

be {ŷ1, ŷ2, . . . , ŷℓ}. We are interested in finding partition functions CX and CY ,

CX : {x1, x2, . . . , xn} 7→ {x̂1, x̂2, . . . , x̂k},

CY : {y1, y2, . . . , ym} 7→ {ŷ1, ŷ2, . . . , ŷℓ}.

For brevity we write X̂ = CX(X) and Ŷ = CY (Y ), where X̂ and Ŷ are random

variables that are a deterministic function of X and Y , respectively. Finally

let KL(p ‖ q) denote the Kullback-Leibler divergence (see Section 2.7.3) of

probability distributions p and q.

Algorithm 3 Co-clustering algorithm

Let t = 0. Start with some random initial C
(0)
X and C

(0)
Y partition functions.

while condition do

for all x ∈ X do

find the new cluster of x as

C
(t+1)
X (x) = argminx̂ KL (p(Y | x)||p(Y | x̂))

Let C
(t+1)
Y = C

(t)
Y , let t = t+ 1

for all y ∈ Y do

find the new cluster of y as

C
(t+1)
Y (y) = argminŷ KL (p(X | y)||p(X | ŷ))

Let C
(t+1)
X = C

(t)
X , let t = t+ 1

Dhillon proves in [30] that the above algorithm never decreases the mutual

information of row and column clusters, hence it converges to a local maximum.

We apply Dhillon’s algorithm with one modification: we replace Kullback-

Leibler divergence by Jensen-Shannon, its symmetric version. It is easy to see

that the proves in Dhillon’s paper are also work with JS divergence. The mo-

tivation behind this modification is that the KL divergence of two documents

without any common words is zero. Meanwhile JS is capable to measure the

distance of such two documents. This capacity of JS divergence is very useful

when we have a sparse data. By our experience over several other data sets, this

slight modification greatly improves cluster quality.

7.3 Classification Framework

The key ingredients of our method are as follows:



7.3. CLASSIFICATION FRAMEWORK 81

• We compile around 500–3000 bag of concepts from words via bi-clustering

(see Section 7.2). This low dimensional representation allows compu-

tationally costly classifiers, in particular SVM, to be applied. Impor-

tant to note that unlike in the original bi-clustering method [30] that uses

Kullback-Leibler, we use Jensen-Shannon (see Section 2.7) divergence

that greatly improves the quality of the final prediction.

• We use simple feature selection and weighting based on frequencies in

the training set. Although insufficient in itself, the importance of feature

selection already pointed out by DC2010 participants [71]. Unlike for all

other categories of spam and genre, this method is particularly suited to

the highly imbalanced classes of non-neutrality, bias and distrust.

• Given the compact representation of hosts by cluster distances, we may

apply computationally expensive methods for classification. We use SVM

with several kernels and compare the use of early and late kernel fusion.

For SVM we use the libSVM implementation [21].

7.3.1 Bi-clustering

In our baseline term selection method, we selected the most frequent terms as

vocabulary. For efficiency considerations, we selected the top 20,000-40,000

terms, even lower than in the DC2010 official data. By our experiments the

vocabulary size of 30,000 performs well in the overall procedure.

Since Dhillon’s [30] method is based on information theoretic distances, the

raw TF values give best performance for bi-clustering. Normalized versions

such as TF-IDF or the BM25 weighting scheme performs significantly worse

and is omitted for further consideration.

We applied a simple supervised feature weighting over the same 30000 size

vocabulary by selecting terms with increased frequency in the positive instances

of the training set. This simple idea results in large gains for our three cate-

gories of interest while negligible improvement or even deterioration for spam

and genre. One reason could be the rarity of positive instances in these cate-

gories, even lower than in spam. Another reason could be that non-neutrality,

bias and distrust depends on special, less frequent terms since these concepts are

mostly independent of genre.

For feature selection we computed the ratio of overall TF and the TF of

the positive instances. For the highest weight terms, we used the category TF

multiplied by a constant as the new weight and united the terms for all categories.

Whenever one term is selected for more than one categories, we choose the lower

weight.

We optimized the parameters of bi-clustering over the same holdout data

set that was used for the Discovery Challenge to evaluate submissions before



82 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

yorkie adorable puppy teacup capuchin affectionate parrots maltese puppies lovely cute

serbia croatia bosnia albania montenegro macedonia herzegovina belarus moldova kosovo

welcome tel fax submit home please mail click contact reserved

plated earrings necklace pendants necklaces bracelets studs jewelry jewellery

google advertising real category

laptops cheap discount buy

yeah awesome folks wondering okay yes nice maybe pretty hello guys wow guess

tabs erectile erection pfizer impotence generic

shopping enlarge coupon price

cant lol reply thats btw xd alot logged offline dont pm smf

Table 7.1: Example term clusters found by our bi-clustering algorithm without

term weighting.

the final evaluation. We reached the best results with 1000 word-, and 1000

document-clusters. We used 20 iterations to typically reach a level of cluster

weight changes below 1%. Notice that we reduced the original 20 to 40 thousand

dimensions to a mere 1000, hence the possibilities for choosing classifiers is no

longer restricted by scalability as it is in the initial bag of words representation.

In our experience the term clusters carry clear meaning as summarized in

Table 7.1, especially the ones selected when weighting by increase of TF in the

three quality categories as in Table 7.2. We note that in addition we found quite a

few high weight single-word or few word clusters including eBay, image, friend,

lifestyle etc.

7.3.2 Kernel methods

While SVM is widely used for text classification, the aggregation of several

kernels forms the challenging and typically computationally expensive task of

Multiple Kernel Learning (MKL). Multiple kernels may arise not only by the

large choice for a single feature space, but also from different transformations

and feature subsets. Since we define several kernels based on the terms them-

selves, on the content features, and also on the distances from bi-cluster centers,

our learning procedure builds upon MKL procedures by also taking efficiency

into consideration.

We used a wide range of basic kernels over both the original term and the

cluster distance vectors. Our kernels include linear, polynomial and radial ba-

sis function with different parameters as seen in Table 7.3 with n denoting the

dimension, d ∈ {1, 2, 4}, and γ = 1
|D|

where D is the training set. For kernel

combination we applied various cost parameters for the linear kernel.



7.3. CLASSIFICATION FRAMEWORK 83

non-neutral buyer rumor guru undertake unreleased donkey medications psionic

catalyst imam dragon rabinic cleric blame preamble adviser lordship

domestication fortify memoir ritual dogma roma conservative

equivalence indemnity bombardier proletariat alien

biased mitigation affirmative schizophrenia aboriginal verdict

proprietary moose fiscal ashore monitor protagonist destiny

nursery whisky inert minor fault anarchist lufthansa subnational

extracellular chaos sahara bulldog bolshevik chew dispute

distrusted compound vomit mistaken bombay rain trust messianic petrochemical

skyscraper lakers admiralty sinus heroin panoramic genuine fix

standardize sussex bright methodist registered fia transport resign

Table 7.2: Term clusters with emphasis on terms more frequent over quality

flagged hosts. First few terms shown ordered by decreasing weight for some

clusters of high correlation with the category.

Kernel function

linear K(x, y) = x′ ∗ y
polynomial K(x, y) = ( 1

n
x′ ∗ y)d

radial basis function K(x, y) = e(−γ(x−y)2)

Table 7.3: Kernel functions and parameters.



84 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

Beside the original vectors we also transformed them into a common feature

space. Distance based feature transform for classification using the training set

is a well-known technique. In [90] it is shown that a class of kernels can be

represented as norm-based distances in Hilbert spaces. We can represent the

k-th feature vector of an instance x ∈ X as

Lk(x,D) = [simk(xk, Dk1), . . . , simk(xk, Dk|D|
)] (7.1)

where D is the set of the training instances with corresponding set of vectors Dk

and simk denotes the selected similarity measure on the k-th basic vector.

One of the main advantages of this representation is the fact that the dimen-

sion of the transformed feature space is independent from the dimension of the

original feature space. Using this property we can define a combined similarity

vector of an instance x ∈ X as

LR(x,D) =
1

ED[e−simR(x,D)]
[e−simR(x,D1), . . . , e−simR(x,D|D|)] (7.2)

where R is the set of basic representations, the normalization constant is the

expected value of the similarity values over the training set and the unnormalized

similarity to the i-th training instance is

simR(x,Di) =
∑

k∈R

βksimk(xk, Di). (7.3)

where
∑

βk = 1.

Next, given the variety of kernels at hand, we overview the notion and the

methods of Multiple Kernel Learning (MKL). The dual optimization problem of

the standard Support Vector Machine (SVM) [26] with kernel K(xi, xj) is

Maximize LDual(α) =

|D|
∑

i=1

αi −
1

2

|D|
∑

i=1

|D|
∑

j=1

αiαjyiyjK(xi, xj) (7.4)

subject to
∑m

i=1 yiαi = 0 for all i with αi ≥ 0.

With multiple kernels, the simplest method is to set aside a holdout set and

select the best performing kernel over the holdout. Late fusion is an improved

idea where we select the best linear combination weight of the SVM output over

the holdout, i.e.

predlate(x) =
N
∑

n=1

βn(

|D|
∑

i=1

αinKn(x, yi) + bn)



7.3. CLASSIFICATION FRAMEWORK 85

where Kn(x, y) is the n-th kernel function and αin and bn form the optimal

solution for the n-th SVM classifier as in (7.4).

Instead of late fusion, we may perform early fusion by combining the ker-

nels before optimizing (7.4). We obtain the Multiple Kernel Learning (MKL)

problem by linearly combining the kernels inside (7.4) with weight βn as

Maximize LDual(α, β) =

|D|
∑

i=1

−
1

2

|D|
∑

i=1

|D|
∑

j=1

αiαjyiyj

N
∑

n=1

βnKn(xi, xj) (7.5)

subject to
∑

yiαi = 0 for all i with αi ≥ 0 , where N is the number of the basic

kernels. In [85], a wrapper method is used for MKL where in each iteration they

solve a standard SVM dual problem and update the weights of the basic kernels.

Since they observe the high computational cost of the problem, they primarily

concentrate on reducing the number of kernels, i.e. gradually setting most of the

βn to 0.

Compared to the sparse wrapper method, we only have a few but comple-

mentary kernels that all contribute to the classification quality and our task is to

determine their relative weight βn.

To avoid the high computational costs of a wrapper method we used late

fusion to determine the weights of the basic kernels. In order to avoid overfit-

ting, we use only 0-1 weight combinations after normalizing the kernels by their

average value. We combine the kernels according to the ideal weight over the

holdout, and let the final prediction for test instance x be

predearly(x) =

|D|
∑

i=1

αi

N
∑

n=1

βnKn(x, yi) + b (7.6)

where Kn(x, y) is the nth kernel function and b is the bias.

7.3.3 Gradient Boosted Trees and Matrix factorization

We also compare our results with Gradient Boosting Trees [105] and matrix fac-

torization methods on the user and C3 data features. We used two different ma-

trix factorization techniques. The first one is a traditional matrix factorization

method [60], while the second one is a simplified version of Steffen Rendle’s

LibFM algorithm [87]. Both techniques use stochastic gradient descent to opti-

mize for mean-square error on the training set. LibFM is particularly designed

to use the side information of the evaluators and the pages.



86 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

7.4 Experiments

7.4.1 Data sets

In this chapter we use the DC2010 data set created for the ECML/PKDD Discov-

ery Challenge 2010 and the C3 data set of the WebQuality 2015 Data Challenge.

The DC2010 data set

The data set is described well in [34]; here we explore the important aspects with

respect to neutrality, trust and bias. We attempt to analyze how assessors flagged

the quality issues, show examples and the distribution of flags by genre.

DC2010 is a large collection of annotated Web hosts labeled by the Hun-

garian Academy of Sciences (English documents), Internet Memory Foundation

(French) and L3S Hannover (German). The base data is a set of 23M pages

in 190K hosts in the .eu domain crawled by the Internet Memory Foundation

early 2010.

The manually created labels included assessment for genre and quality. The

motivation behind the labeling procedure was the needs of a fictional Internet

archive that may or may not want to completely exclude spam but may prefer

certain type of content such as News-Editorial and Educational beyond Com-

mercial sites. Also they may give higher priority to trusted, factual and unbiased

content that combine to a utility score.

The DC2010 data set includes hosts labeled by several attributes, out of

which spam, trustworthiness, factuality, bias and five genre was selected to be

used for classification. While no further labeling is made for a spam host, other

properties and in particular the five genre News/Editorial, Commercial, Educa-

tional, Discussion and Personal are non-exclusive and hence define nine binary

classification problems. We consider no multi-class tasks in this work.

As a specific task of the ECML/PKDD Discovery Challenge, a special utility

was defined to measure the quality of the content as a combination of the specific

labels. Spam had zero utility, News/Editorial and Educational had highest utility,

followed by Discussion and then by Commercial and Personal. Hosts flagged for

bias, non-neutrality or distrust received a lower but still positive utility score. In

our experiments we also show improved results for ranking by the utility for

quality.

Next we summarize assessor instructions concentrating on the three labels

relevant for our present work. First, assessors were instructed to check some

obvious reasons why the host may not be included in the sample at all, including

adult, mixed, language misclassified sites, and then to assess spam. These hosts

were skipped for the remaining steps and in particular spam has no bias or trust



7.4. EXPERIMENTS 87

Label Yes Maybe No

spam 423 4 982

News/Editorial 191 4 791

Commercial 2 064 2 918

Educational 1 791 3 191

Discussion 259 4 724

Personal-Leisure 1 118 3 864

Non-Neutrality 19 216 3 778

Bias 62 3 880

Dis-Trustworthiness 26 201 3 786

Confidence 4 933 49

Table 7.4: Distribution of assessor labels in the DC2010 data set.

label.

Hosts were labeled by genre into five categories, news/editorial, commer-

cial, educational, discussion and personal. Important is that discussion spaces

are not assessed for bias, i.e., just as spam, skipped for both training and test-

ing. Discussion spaces include dedicated forums, chat spaces, blogs, etc., but

comment forms were excluded. We also introduced the distinct category of Per-

sonal/Leisure covering arts, music, home, family, kids, games, horoscopes etc.

A personal blog for example belongs both here and to “discussion” (and hence

not labeled for bias).

Finally, general properties related to trust, bias and factuality were labeled

along three scales:

1. Trustworthiness: I do not trust this—there are aspects of the site that make

me distrust this source. I trust this marginally—looks like an authoritative

source but its ownership is unclear. I trust this fully—this is a famous

authoritative source (a famous newspaper, company, organization).

2. Neutrality: Facts—I think these are mostly facts. Fact & Opinion—I think

these are opinions and facts; facts are included in the site or referenced

from external sources. Opinion—I think this is mostly an opinion that

may or may not be supported by facts, but little or no facts are included or

referenced.

3. Bias: We adapted the definition from Wikipedia2. We flagged flame, as-

saults, dishonest opinion without reference to facts.

The distribution of labels is given in Table 7.4. For Neutrality and Trust the

strong negative categories have low frequency and hence we fused them with the

2http://en.wikipedia.org/wiki/NPOV



88 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

Figure 7.1: Overlap of the quality flags, shown as percentage of all hosts.

intermediate negative (maybe) category for the training and testing labels. We

also remark that the assessors introduced subjectivity for judging trust: German

assessors gave the intermediate maybe as default and yes, no only occasionally.

For other assessors, yes was the default value as indicated in Table 7.4. We use

the labels of English sites only and thus avoid this bias.

We may also notice that the three types of quality flags are rare and non-

independent. In Fig. 7.1 we give the fraction of double and triple flagged hosts.

Although the three labels statistically dependent, the majority for each category

has a single flag, which shows weak correlation and makes the classification task

hard.

When considering the ratio of quality flagged content by genre, we observe

in Table 7.5 that non-neutral, biased and distrustful content is less likely among

commercial and educational sites but these quality flags are orthogonal to genre.

News and editorial sites often reflect one-sided opinion flagged as non-neutral

and biased. Less often, but educational sites may also cover topics of controversy

such as religion or environmental protection. Since multiple genre is allowed,

some of the biased educational sites are also labeled news/editorial. Some com-

mercial sites are also distrustful, such as a service for directing traffic towards

adult content. Since the site itself contained financial figures such as average



7.4. EXPERIMENTS 89

Label Non-Neutral Biased Distrust

News/Editorial 9% 6% 7.5%

Commercial 2.3% 2.3% 2.7%

Educational 2.2% 1% 1%

Discussion 5.3% ∗ 5.3% 1.5%

Personal-Leisure 8% 2.2% 1.8%

Table 7.5: Distribution of quality flags by genre in the DC2010 data set. Discus-

sion spaces are not flagged for bias; the starred cell (∗) consists of hosts where

assessors disagreed in genre and some assessors labeled Discussion while others

labeled biased non-Discussion.

click revenue and no explicit content, both assessors agreed that this is a non-

adult, commercial, yet distrustful site.

The C3 data set

The C3 data set consists of 22325 Web page evaluations in five dimensions (cred-

ibility, presentation, knowledge, intentions, completeness) of 5704 pages given

by 2499 people. Ratings are similar to the data set built by Microsoft for as-

sessing Web credibility [91], on a scale of four values 0-4, with 5 indicating no

rating. The distribution of the scores for the five evaluation dimensions can be

seen in Figure 7.2. Since multiple values may be assigned to the same page, we

aggregate the human evaluations over the pages.

Since earlier results [78] suggest the usage of collaborative filtering along

the page and evaluator dimensions, we measure the distribution of the number

of evaluations given by the same evaluator and also for the same site in Figure

7.3.

Distribution of the variance of the ratings is shown via a heatmap of all pairs

of ratings given for the same page and same dimension in Figure 7.4.

In order to perform text classification we crawled the pages listed in C3 data

set. Distribution of HTTP response statuses are shown in Figure 7.5. Note that

65% of the C3 URLs returned OK HTTP status but 7% of them could no longer

be crawled. Redirects reached over 20% that we followed and substituted for the

original page.

7.4.2 Evaluation metrics

The standard evaluation metrics since Web Spam Challenges [17] is the area

under the ROC curve (AUC) [40] described in Section 2.5.2. The ECML/PKDD



90 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

Figure 7.2: The distribution of the scores for the five evaluation dimensions.

Discovery Challenge used Normalized Discounted Cumulative Gain (NDCG,

see Section 2.5.3) for evaluation since some tasks used multi-level utility based

on spamicity, genre and other attributes. For the binary classification problems

we use 1 for a “yes”, 0 for a “no” label as utility. These measures perform very

similar, even numerically [34]. We describe the version of NDCG applied for

DC2010.

To emphasize performance over the entire list, the discount function is changed

from the common definition to be linear

1− i/N (7.7)

where N is the size of the testing set. To justify the discount function, note that

an Internet archive that may crawl 50% or even more of all the host seeds they

identify and spam may constitute 10-20% of all the hosts. Our final evaluation

formula is

NDCG =
DCG

Ideal DCG
, where (7.8)

DCG =
N
∑

rank=1

utility(rank) ·

(

1−
rank

N

)

,



7.4. EXPERIMENTS 91

Figure 7.3: The distribution of the number of evaluations given by the same

evaluator (top) and for the same site (bottom).



92 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

Figure 7.4: The number of pairs of ratings given by different assessors for the

same aspect of the same page.

Figure 7.5: The number of pages with the given crawl status.



7.4. EXPERIMENTS 93

and Ideal DCG is obtained with utility decreasing with rank. We computed

NDCG by the appropriate modification of the python script used by the Ya-

hoo! Learning to Rank Challenge 2010 [22]. We also note here that NDCG and

AUC produced numerically very close values on the Discovery Challenge bi-

nary problems. The reason may be that both measures show certain symmetry

over the value 0.5, although the NDCG for an order and its reverse does not

necessarily add up to one due to the normalization in NDCG.

Considering that on the C3 data set the translation of quality assessments into

binary values is not so obvious, in addition to AUC we also have our regression

methods evaluated by Mean Absolute Error (MAE) and Root Mean Squared

Error (RMSE) defined in Section 2.5.4.

7.4.3 Results over the DC2010 data set

In this section we describe our various SVM ensemble methods over the tradi-

tional bag of words as well as the cluster distance vector representations. We

measure the accuracy of various methods and their combinations. The summary

of the best performing methods is found in Table 7.6. Although we concentrate

on neutrality, bias, trust and overall quality, we give results for spam and genre

average for the Discovery Challenge 2010 categories to give a better comparison

of the techniques used.

For training and testing we use the official official DC2010 set as described

in Table 7.4. As it can be seen, the quality categories show considerable class

imbalance, which makes the classification problem harder. We solved the quality

task by a simple weighted linear combination of the nine individual classifiers

(spam, five genre, and three quality) as

quality = news + educational − commercial − personal − 3 · nonneutral

−3 · bias − 3 · distrust − 20 · spam.

Since the majority of the hosts have high utility, it is very easy to reach NDCG

scores near 1. By using the output of the spam filter only, one may reach an

NDCG 0.927, close to the Discovery Challenge winner result. The importance

of our gains is an improved list of low quality sites at the low utility end that

could have been better emphasized by a reverse order, blacklist utility. For com-

parability with the Discovery Challenge results, we score our results by the orig-

inal evaluation.

We have collected the best runs from all DC2010 participants in the first row

of Table 7.6. While genre and utility comes from the winners [47], the high

imbalance classes including both spam and quality, those of key importance for

us, were treated best by Wilcoxon feature selection [71]. From a previous result



94 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

sp
am

g
en

re
av

er
ag

e

(n
o
n
)n

eu
tr

al

b
ia

se
d

(d
is

)t
ru

st
ed

q
u

a
li

ty
a
v
er

a
g
e

q
u

a
li

ty

u
ti

li
ty

DC2010 best AUC 0.830 0.734 0.626 0.558 0.506 0.563 —

NDCG 0.833 0.740 0.620 0.553 0.510 0.561 0.936

best AUC 0.891 0.808 0.618 0.653 0.582 0.612 —

[34] NDCG 0.893 0.811 0.624 0.656 0.586 0.617 n/a

BM25 AUC 0.876 0.805 0.580 0.653 0.520 0.584 —

NDCG 0.879 0.834 0.587 0.656 0.524 0.589 0.931

weighted bi-cluster AUC 0.849 0.798 0.695 0.566 0.640 0.634 —

polynomial kernel NDCG 0.852 0.827 0.700 0.571 0.643 0.638 0.927

late fusion AUC 0.889 0.825 0.676 0.641 0.625 0.648 —

poly. and sim. kernel NDCG 0.891 0.851 0.681 0.645 0.629 0.652 0.939

early fusion AUC 0.880 0.836 0.595 0.642 0.545 0.594 —

polynomial kernel NDCG 0.882 0.860 0.601 0.646 0.549 0.599 0.931

early fusion AUC 0.892 0.811 0.689 0.667 0.626 0.661 —

similarity kernel NDCG 0.894 0.839 0.694 0.671 0.629 0.665 0.940

Table 7.6: Performance summary of the best methods over the DC2010 labels in

terms of AUC and NDCG as in equation (7.8).

[34], we show the best run for each category, as well as the result of the random

forest classifier over the BM25 weighted bag of words representation, a stable

well performing method.

Our best performing single method (weighted bi-cluster polynomial kernel in

Table 7.6) itself outperforms all earlier methods for non-neutrality, distrust and

average quality. For this method, first we selected the best bi-cluster parameters

(500 clusters, 30,000 terms), then we used the best term weighting scheme (tf

increase in the quality flagged categories), and finally the best of the three kernels

(polynomial as opposed to linear and similarity). The final best methods use

early or late fusion of the bi-cluster and BM25 kernels. The early fusion of

similarity kernels performs best for both spam and average quality. The single

kernel best method becomes overall best for non-neutrality and distrust, however

the combinations perform near as good and better for quality on average.

Effect of bi-cluster parameters

We tested how the accuracy of our predictions depend on the parameters of the

bi-clustering procedure. In Fig. 7.6 we show average performance for the three

quality flags (non-neutrality, bias, distrust) for 500, 1000, 2000 and 3000 clusters

of Web hosts by keeping the number of term clusters fixed to 1000. The number



7.4. EXPERIMENTS 95

Figure 7.6: Average NDCG for the three quality labels, as the function of the

number of document clusters and size of the vocabulary.

Figure 7.7: NDCG for the three quality labels, as the function of the number of

document clusters.



96 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

Figure 7.8: NDCG for the three quality labels, as the function of the vocabulary

size.

of words used (20, 30 and 40 thousand) is also shown. As it turns out, a low

number of clusters work best with a vocabulary of size 30,000.

We also note the fluctuation in the classification results for individual cate-

gories. In Fig. 7.7 we see that on average, performance decreases with increasing

the number of clusters with individual variance in the categories. Similarly in

Fig. 7.8 we observe that 30,000 words perform best on average because of the

distrust category with a general trend of degradation with increasing vocabulary

size.

sp
am

g
en

re
av

er
ag

e

(n
o
n
)n

eu
tr

al

b
ia

se
d

(d
is

)t
ru

st
ed

q
u

a
li

ty
a
v
er

a
g
e

unweighted 0.818 0.808 0.649 0.571 0.644 0.621

quality flagged 0.852 0.827 0.700 0.571 0.643 0.638

quality positive+negative 0.743 0.800 0.620 0.526 0.535 0.560

all labels 0.658 0.698 0.570 0.475 0.568 0.538

Table 7.7: Performance of the three different term weighting schemes and the

baseline, in terms of AUC.



7.4. EXPERIMENTS 97

In Table 7.7 we also compare different methods for supervised term weight-

ing as input to the bi-clustering algorithm. After selecting the best bi-cluster

parameters (30,000 terms and 500 clusters), we weighted terms by the ratio of

overall TF and the TF of selected hosts. We made three types of selection for

hosts: we selected the three quality flagged hosts, these hosts and a negative sam-

ple, finally all nine labeled categories. The best performing method is to select

terms that appear more frequently in the quality flagged classes. Surprisingly,

this holds not just for quality but also for spam and even genre. This means that

terms that appear frequently in distrusted, biased documents contribute a lot to

automatically identifying the topic and quality of Web hosts.

Performance of different kernels

Regarding kernel methods, first we experimented with single kernels over the

best bi-cluster output (500× 1000 clusters, 30,000 terms). In Table 7.8 we show

bi-cluster results both with terms unweighted and weighted with the three pos-

sible kernels. For weighting we use the best performing method using positive

instances for non-neutrality, bias and distrust. We observe large variance in these

results: different labels perform different. While unweighted methods occasion-

ally outperform the weighted ones, we consider these results noise since the

weighted counterparts perform near as good and better on average. Overall, we

expect the combination of the polynomial and similarity kernels perform best.

Finally, we blend different bi-cluster and BM25 kernels to obtain the best

results in Table 7.6. In order to avoid overfitting, we always combine two bi-

cluster and one BM25 kernels with equal weight, after normalizing the kernel

values between 0 and 1. Best overall methods are obtained by early fusion,

justifying the applicability of the multiple kernel learning theory.

7.4.4 Results over the C3 data set

The detailed results are in Table 7.9, in four groups. The first group gives the

baseline methods. Below, we show the results of the similarity kernel methods.

In the third group we combine multiple similarity kernel methods by early fusion

strategy. Finally, in the last group, we combine our methods by simply taking

the average of the predictions after standardization.

C3 data attributes

For user and item features we experiment with GraphLab Create3 [64] imple-

mentation of Gradient Boosted Tree and matrix factorization techniques. In case

3http://graphlab.com/products/create/



98 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

sp
am

g
en

re
av

er
ag

e

(n
o
n
)n

eu
tr

al

b
ia

se
d

(d
is

)t
ru

st
ed

q
u

a
li

ty
a
v
er

a
g
e

q
u

a
li

ty

u
ti

li
ty

bi-cluster linear

kernel

0.812 0.852 0.595 0.511 0.619 0.575 0.922

weighted bi-cluster

linear kernel

0.817 0.844 0.576 0.500 0.573 0.550 0.921

bi-cluster polyno-

mial kernel

0.818 0.808 0.649 0.571 0.644 0.621 0.923

weighted bi-cluster

polynomial kernel

0.852 0.827 0.700 0.571 0.643 0.638 0.927

bi-cluster similar-

ity kernel

0.864 0.787 0.658 0.592 0.644 0.631 0.935

weighted bi-cluster

similarity kernel

0.869 0.795 0.680 0.600 0.610 0.630 0.934

Table 7.8: Performance of the bi-cluster kernels in terms of NDCG.

of the gradient boosted tree algorithm (GBT) we set the maximum depth of

the trees to 4, and the maximum number of iterations to 18. To determine the

advantage of additional side information over the original matrix factorization

technique (MF) we use factorization machine (LibFM) for user and item feature

included collaborative filtering. As seen from the tables, matrix factorization

(MF) fails due to the low number of ratings by a user, but LibFM can already

take advantage of the website metadata with performance similar to GBT.

Linear kernel SVM

Our bag of words models use the top 30k stemmed terms. For TF, TF-IDF and

BM25, we show results for linear kernel SVM as it outperforms the radial basis

function and polynomial kernels. We use LibSVM [21] for classification, and

the Weka implementation of SMOReg [80] for regression.

Similarity kernel methods

The similarity kernel described in Section 7.3.2 gives the best results both for

classification and regression. For distance, we use L2 for the C3 attributes as

well as TF, TF-IDF and BM25. For the last three, we also use the Jensen–

Shannon divergence (J–S) as we suggested in [5]. While the similarity kernel

over the bi-cluster performs weak for classification, it is the most accurate single



7.4. EXPERIMENTS 99

Method Credi- Presen- Know- Inten- Complete- Avg

bility tation ledge tions ness

Gradient Boosted

Tree (GBT)

0.6492 0.6558 0.6179 0.6368 0.7845 0.6688

Factorization Ma-

chine (LibFM)

0.6563 0.6744 0.6452 0.6481 0.7234 0.6695

Matrix Factorization

(MF)

0.5687 0.5613 0.5966 0.5700 0.5854 0.5764

TF linear kernel 0.6484 0.6962 0.6239 0.6767 0.6205 0.6531

TF-IDF linear kernel 0.6571 0.7020 0.5935 0.6824 0.6128 0.6496

BM25 linear kernel

(Lin)

0.7236 0.7480 0.6278 0.6987 0.6633 0.6923

Bi-cluster linear ker-

nel

0.6402 0.7467 0.5796 0.6482 0.6382 0.6506

Bi-cluster Sim ker-

nel

0.6744 0.7718 0.6379 0.6830 0.6560 0.6846

C3 attributes Sim

kernel

0.6267 0.7706 0.6327 0.6408 0.6149 0.6571

TF J–S Sim kernel 0.6902 0.7404 0.6758 0.7047 0.6778 0.6978

TF L2 Sim kernel 0.6335 0.6882 0.6200 0.6585 0.6300 0.6460

TF-IDF J–S Sim

kernel

0.7006 0.7546 0.6552 0.7073 0.6791 0.6994

TF-IDF L2 Sim ker-

nel

0.6461 0.7152 0.6013 0.6902 0.6353 0.6576

BM25 J–S Sim ker-

nel

0.6956 0.7473 0.6351 0.6529 0.6222 0.6706

BM25 L2 Sim kernel 0.7268 0.7715 0.6741 0.7081 0.6898 0.7141

BM25 L2 & J–S Sim

kernel (BM25)

0.7313 0.7761 0.6926 0.7141 0.7003 0.7229

BM25 & C3 Sim

kernel

0.7449 0.8029 0.7009 0.7148 0.6993 0.7326

BM25 & Bi-cluster

& C3 (All) Sim ker-

nel

0.7457 0.8086 0.7063 0.7158 0.7052 0.7363

Lin + GBT 0.7296 0.8056 0.6589 0.6783 0.6939 0.7133

Lin + LibFM 0.7400 0.7769 0.6622 0.6733 0.6975 0.7100

All Sim kernel + Lin

+ GBT

0.7549 0.8179 0.6916 0.7098 0.7123 0.7373

Table 7.9: Detailed performance over the C3 labels in terms of AUC



100 CHAPTER 7. TEXT CLASSIFICATION VIA BI-CLUSTERING

Method Credi- Presen- Know- Inten- Complete- Avg

bility tation ledge tions ness

Gradient Boosted MAE 1.5146 1.3067 1.2250 1.2737 1.4438 1.3528

Tree (GBT) RMSE 1.6483 1.4510 1.3658 1.4132 1.6021 1.4961

Factorization MAE 1.5313 1.3213 1.2303 1.2632 1.4984 1.3689

Machine (LibFM) RMSE 1.6725 1.4745 1.3744 1.4073 1.6759 1.5209

Matrix Factorization MAE 1.7450 1.4093 1.3676 1.2905 1.5794 1.4784

(MF) RMSE 1.9174 1.5912 1.5540 1.4636 1.7583 1.6569

BM25 linear MAE 0.5562 0.7230 0.6052 0.5979 0.5896 0.6144

kernel (Lin) RMSE 0.7085 0.9072 0.7784 0.7910 0.7724 0.7915

BM25 L2 MAE 0.5678 0.7083 0.6228 0.5946 0.6045 0.6196

Sim kernel RMSE 0.7321 0.9307 0.8038 0.7878 0.7930 0.8095

Bi-cluster MAE 0.5340 0.6868 0.6039 0.5883 0.5813 0.5989

Sim kernel RMSE 0.6958 0.8906 0.7861 0.7778 0.7624 0.7825

BM25 & Bi-cluster MAE 0.5403 0.6324 0.5946 0.5952 0.5829 0.5891

& C3 All Sim kernel RMSE 0.7106 0.8357 0.7763 0.7879 0.7661 0.7753

Table 7.10: Detailed performance over the C3 labels in terms of RMSE and

MAE

method for regression.

In the similarity kernel, we may combine multiple distance measures by

Equation (7.6). The All Sim method fuses four representations: J–S and L2

over BM25 and L2 for C3 and the bi-cluster representation. By the linearity of

the similarity kernel, we may use LibSVM [21] for classification and SMOReg

[80] for regression.

Classifier ensembles

Without using the similarity kernel, the best method is the average of the linear

kernel over BM25 (Lin) and GBT. The performance is similar to the BM25

L2 similarity kernel. As a remarkable feature of the similarity kernel, we may

combine multiple distance functions in a single kernel. The best method (All

Sim) outperforms the best combination not using the similarity kernel (Lin +

GBT) by 3.2%. The difference is 7.2% for classifying “knowledge”. The same

method performs best for regression too.



7.5. CONCLUSIONS 101

7.5 Conclusions

Over the 190,000 host DC2010 data sets, we gave methods to classify Web

hosts for neutrality, bias, trust and overall quality. Over the C3 data sets, we

gave a large variety of methods to predict quality aspects of Web pages, includ-

ing collaborative filtering and methods that use evaluator and page meta data

as well as the content of the page. By our improved text classification method

we described perhaps the first attempt of a practically useful quality classifica-

tion over the DC2010 data set with AUC stable above 0.6 and we also achieved

very promising results on the C3 data set with AUC over 0.7 for all aspects. By

bi-clustering hosts and the top 30,000 most frequent terms, we reduce the term

space to groups of words and also represent hosts by their distances from cluster

centers. On top of our new host representation, we use multiple kernel learning

methods. Surprisingly, unlike for the more traditional tasks as spam or genre

classification where our new method gives marginal improvement, if any, for the

hard tasks of neutrality, bias and trust we obtain strong improvement over the

baseline of existing host-level classification methods. This fact indicates that

especially neutrality and trust behaves very different from the well-known tasks

of spam and genre classification.

We consider our results as first step with several technologies remaining open

to be explored. For example, unlike expected, the ECML/PKDD Discovery

Challenge 2010 participants did not deploy natural language processing based

features.

7.6 My contribution

The experiments on the DC2010 is a joint work with Bálint Daróczy and András

Benczúr and were published in [5]. The latter results were recently accepted at

the 5th International Workshop on Web Quality and will be published by ACM

within the WWW companion volume [3]. My main contribution is the design

and implementation of the bi-clustering algorithm that can be used for text clas-

sification. The code is available on github4. In addition, I crawled and parsed

the pages of the C3 data set, constructed the textual features and evaluated all

the results. Róbert Pálovics ran the matrix factorization and gradient boosted

tree baseline methods on the C3 data set. Bálint Daróczy experimented with the

multiple kernel methods.

4https://github.com/siklosid/co-cluster.git



Own references

[1] István Bı́ró, Dávid Siklósi, Jácint Szabó, and András A. Benczúr. Linked

latent dirichlet allocation in web spam filtering. In AIRWeb ’09: Proceedings

of the 5th international workshop on Adversarial information retrieval on

the web. ACM Press, 2009.

[2] Károly Csalogány, A.A. Benczúr, D. Siklósi, and L. Lukács. Semi-

Supervised Learning: A Comparative Study for Web Spam and Tele-

phone User Churn. In Graph Labeling Workshop in conjunction with

ECML/PKDD 2007, 2007.

[3] Balint Daroczy, David Siklois, Robert Palovics, and Andras A Benczur. Text

classification kernels for quality prediction over the c3 data set. In Pro-

ceedings of the 24th International Conference on World Wide Web Compan-

ion, pages 1441–1446. International World Wide Web Conferences Steering

Committee, 2015.

[4] András Garzó, Bálint Daróczy, Tamás Kiss, Dávid Siklósi, and András A

Benczúr. Cross-lingual web spam classification. In Proceedings of the 22nd

international conference on World Wide Web companion, pages 1149–1156.

International World Wide Web Conferences Steering Committee, 2013.

[5] D. Siklósi, B. Daróczy, and A.A. Benczúr. Content-based trust and bias clas-

sification via biclustering. In Proceedings of the 2nd Joint WICOW/AIRWeb

Workshop on Web Quality, pages 41–47. ACM, 2012.

102



Bibliography

[1] Jacob Abernethy, Olivier Chapelle, and Carlos Castillo. WITCH: A New

Approach to Web Spam Detection. In Proceedings of the 4th Interna-

tional Workshop on Adversarial Information Retrieval on the Web (AIR-

Web), 2008.

[2] Einat Amitay, David Carmel, Adam Darlow, Ronny Lempel, and Aya

Soffer. The Connectivity Sonar: Detecting site functionality by structural

patterns. In Proceedings of the 14th ACM Conference on Hypertext and

Hypermedia (HT), pages 38–47, Nottingham, United Kingdom, 2003.

[3] R. Angelova and G. Weikum. Graph-based text classification: learn from

your neighbors. Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, pages

485–492, 2006.

[4] Ludovic Denoyer Artem Sokolov, Tanguy Urvoy and Olivier Ricard.

Madspam consortium at the ecml/pkdd discovery challenge 2010. In Pro-

ceedings of the ECML/PKDD 2010 Discovery Challenge, 2010.

[5] Wai-Ho Au, Keith C. C. Chan, and Xin Yao. A novel evolutionary data

mining algorithm with applications to churn prediction. IEEE Trans. Evo-

lutionary Computation, 7(6):532–545, 2003.

[6] Luca Becchetti, Carlos Castillo, Debora Donato, Stefano Leonardi, and

Ricardo Baeza-Yates. Link-based characterization and detection of web

spam. In Proceedings of the 2nd International Workshop on Adversarial

Information Retrieval on the Web (AIRWeb), 2006.

[7] N. Bel, C. Koster, and M. Villegas. Cross-lingual text categorization.

Research and Advanced Technology for Digital Libraries, pages 126–139,

2003.

103



104 BIBLIOGRAPHY

[8] Robert M Bell and Yehuda Koren. Lessons from the netflix prize chal-

lenge. ACM SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[9] András A. Benczúr, Károly Csalogány, and Tamás Sarlós. Link-based

similarity search to fight web spam. In Proceedings of the 2nd Interna-

tional Workshop on Adversarial Information Retrieval on the Web (AIR-

Web), held in conjunction with SIGIR2006, 2006.

[10] András A. Benczúr, Carlos Castillo, Miklós Erdélyi, Zoltán Gyöngyi,

Julien Masanès, and Michael Matthews. ECML/PKDD 2010 Discovery

Challenge Data Set. Crawled by the European Archive Foundation.

[11] James Bennett and Stan Lanning. The netflix prize. In KDD Cup and

Workshop in conjunction with KDD 2007, 2007.

[12] D.M. Blei, A.Y. Ng, and M.I. Jordan. Latent Dirichlet allocation. Journal

of Machine Learning Research, 3(5):993–1022, 2003.

[13] Ilaria Bordino, Paolo Boldi, Debora Donato, Massimo Santini, and Sebas-

tiano Vigna. Temporal evolution of the uk web. In Workshop on Analysis

of Dynamic Networks (ICDM-ADN’08), 2008.

[14] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[15] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Srid-

har Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener.

Graph structure in the web. In Proceedings of the 9th World Wide

Web Conference (WWW), pages 309–320. North-Holland Publishing Co.,

2000.

[16] C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know

your neighbors: web spam detection using the web topology. Proceedings

of the 30th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 423–430, 2007.

[17] Carlos Castillo, Kumar Chellapilla, and Ludovic Denoyer. Web spam

challenge 2008. In Proceedings of the 4th International Workshop on

Adversarial Information Retrieval on the Web (AIRWeb), 2008.

[18] Carlos Castillo, Debora Donato, Luca Becchetti, Paolo Boldi, Stefano

Leonardi, Massimo Santini, and Sebastiano Vigna. A reference collection

for web spam. SIGIR Forum, 40(2):11–24, December 2006.



BIBLIOGRAPHY 105

[19] S. Chakrabarti, M. Van den Berg, and B. Dom. Focused crawling: a new

approach to topic-specific web resource discovery. Computer Networks,

31(11):1623–1640, 1999.

[20] Soumen Chakrabarti, Byron E. Dom, S. Ravi Kumar, Prabhakar Ragha-

van, Sridhar Rajagopalan, Andrew Tomkins, David Gibson, and Jon

Kleinberg. Mining the Web’s link structure. Computer, 32(8):60–67,

1999.

[21] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vec-

tor machines, 2001. Software available at http://www.csie.ntu.

edu.tw/˜cjlin/libsvm.

[22] O. Chapelle, Y. Chang, and T-Y Liu. The yahoo! learning to rank chal-

lenge, 2010.

[23] N.V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on

learning from imbalanced data sets. ACM SIGKDD Explorations Newslet-

ter, 6(1):1–6, 2004.

[24] G.V. Cormack. Content-based Web Spam Detection. In Proceedings of

the 3rd International Workshop on Adversarial Information Retrieval on

the Web (AIRWeb), 2007.

[25] G.V. Cormack, M.D. Smucker, and C.L.A. Clarke. Efficient and effec-

tive spam filtering and re-ranking for large web datasets. Information

retrieval, 14(5):441–465, 2011.

[26] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,

20, 1995.

[27] Nello Cristianini and John Shawe-Taylor. An introduction to support Vec-

tor Machines: and other kernel-based learning methods. Cambridge Uni-

versity Press, New York, NY, USA, 2000.

[28] B. Daróczy, A. Benczúr, and R. Pethes. Sztaki at imageclef 2011. Working

Notes of CLEF 2011, 2011.

[29] K. Dave, S. Lawrence, and D.M. Pennock. Mining the peanut gallery:

Opinion extraction and semantic classification of product reviews. In Pro-

ceedings of the 12th international conference on World Wide Web, pages

519–528. ACM, 2003.



106 BIBLIOGRAPHY

[30] I.S. Dhillon, S. Mallela, and D.S. Modha. Information-theoretic co-

clustering. Proceedings of the Ninth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 89–98, 2003.

[31] G. Di Nunzio, N. Ferro, T. Mandl, and C. Peters. Clef 2007: Ad hoc

track overview. Advances in Multilingual and Multimodal Information

Retrieval, pages 13–32, 2008.

[32] Isabel Drost and Tobias Scheffer. Thwarting the nigritude ultramarine:

Learning to identify link spam. In Proceedings of the 16th European

Conference on Machine Learning (ECML), volume 3720 of Lecture Notes

in Artificial Intelligence, pages 233–243, Porto, Portugal, 2005.

[33] S.T. Dumais, T.A. Letsche, M.L. Littman, and T.K. Landauer. Automatic

cross-language retrieval using latent semantic indexing. In AAAI spring

symposium on cross-language text and speech retrieval, volume 15,

page 21, 1997.

[34] Miklós Erdélyi, András Garzó, and András A. Benczúr. Web spam classi-

fication: a few features worth more. In Joint WICOW/AIRWeb Workshop

on Web Quality (WebQuality 2011) In conjunction with the 20th Inter-

national World Wide Web Conference in Hyderabad, India. ACM Press,

2011.

[35] Tom Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett.,

27(8):861–874, 2006.

[36] D. Fetterly and Z. Gyöngyi. Fifth international workshop on adversarial

information retrieval on the web (AIRWeb 2009). 2009.

[37] Denis Fetterly, Mark Manasse, and Marc Najork. Spam, damn spam,

and statistics – Using statistical analysis to locate spam web pages. In

Proceedings of the 7th International Workshop on the Web and Databases

(WebDB), pages 1–6, Paris, France, 2004.

[38] Dániel Fogaras. Where to start browsing the web? In Proceedings of the

3rd International Workshop on Innovative Internet Community Systems

(I2CS), volume 2877/2003 of Lecture Notes in Computer Science (LNCS),

pages 65–79, Leipzig, Germany, June 2003. Springer-Verlag.

[39] Dániel Fogaras and Balázs Rácz. Scaling link-based similarity search.

In Proceedings of the 14th World Wide Web Conference (WWW), pages

641–650, Chiba, Japan, 2005.



BIBLIOGRAPHY 107

[40] James Fogarty, Ryan S. Baker, and Scott E. Hudson. Case studies in

the use of roc curve analysis for sensor-based estimates in human com-

puter interaction. In Proceedings of Graphics Interface 2005, GI ’05,

pages 129–136, School of Computer Science, University of Waterloo,

Waterloo, Ontario, Canada, 2005. Canadian Human-Computer Commu-

nications Society.

[41] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting

algorithm. In ICML, volume 96, pages 148–156, 1996.

[42] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A

statistical view of boosting. Annals of statistics, pages 337–374, 2000.

[43] Guanggang Geng, Xiaobo Jin, and Chunheng Wang. CASIA at

WSC2008. In Proceedings of the 4th International Workshop on Adver-

sarial Information Retrieval on the Web (AIRWeb), 2008.

[44] J. Göbölös-Szabó, N. Prytkova, M. Spaniol, and G. Weikum. Cross-

lingual data quality for knowledge base acceleration across Wikipedia

editions. In Proc. QDB, 2012.

[45] D. Gomes, A. Nogueira, J. Miranda, and M. Costa. Introducing the por-

tuguese web archive initiative. 2009.

[46] Daniel Gomes, Jo?o Miranda, and Miguel Costa. A survey on web archiv-

ing initiatives. In Stefan Gradmann, Francesca Borri, Carlo Meghini, and

Heiko Schuldt, editors, Research and Advanced Technology for Digital

Libraries, volume 6966 of Lecture Notes in Computer Science, pages

408–420. Springer Berlin Heidelberg, 2011.

[47] Xin-Chang Zhang Guang-Gang Geng, Xiao-Bo Jin and Dexian Zhang.

Evaluating web content quality via multi-scale features. In Proceedings

of the ECML/PKDD 2010 Discovery Challenge, 2010.

[48] R. Guha, Ravi Kumar, Prabhakar Raghavan, and Andrew Tomkins. Prop-

agation of trust and distrust. In Proceedings of the 13th International

World Wide Web Conference (WWW), pages 403–412, 2004.

[49] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Web content categoriza-

tion using link information. Technical report, Technical report, Stanford

University, 2006.

[50] Zoltán Gyöngyi and Hector Garcia-Molina. Link spam alliances. In Pro-

ceedings of the 31st International Conference on Very Large Data Bases

(VLDB), Trondheim, Norway, 2005.



108 BIBLIOGRAPHY

[51] Zoltán Gyöngyi and Hector Garcia-Molina. Spam: It’s not just for in-

boxes anymore. IEEE Computer Magazine, 38(10):28–34, October 2005.

[52] Zoltán Gyöngyi and Hector Garcia-Molina. Web spam taxonomy. In

Proceedings of the 1st International Workshop on Adversarial Informa-

tion Retrieval on the Web (AIRWeb), Chiba, Japan, 2005.

[53] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating

web spam with TrustRank. In Proceedings of the 30th International

Conference on Very Large Data Bases (VLDB), pages 576–587, Toronto,

Canada, 2004.

[54] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. Combating

web spam with TrustRank. In Proceedings of the 30th International Con-

ference on Very Large Data Bases (VLDB), pages 576–587. Morgan Kauf-

mann, 2004.

[55] M. Hammami, Y. Chahir, and L. Chen. Webguard: A web filtering engine

combining textual, structural, and visual content-based analysis. Knowl-

edge and Data Engineering, IEEE Transactions on, 18(2):272–284, 2006.

[56] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements of

statistical learning: data mining, inference, and prediction: with 200 full-

color illustrations. New York: Springer-Verlag, 2001.

[57] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of

IR techniques. ACM Transactions on Information Systems (TOIS),

20(4):422–446, 2002.

[58] Glen Jeh and Jennifer Widom. SimRank: A measure of structural-context

similarity. In Proceedings of the 8th ACM International Conference

on Knowledge Discovery and Data Mining (SIGKDD), pages 538–543,

2002.

[59] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Pro-

ceedings of the 12th World Wide Web Conference (WWW), pages 271–

279. ACM Press, 2003.

[60] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization

techniques for recommender systems. Computer, 42(8):30–37, 2009.

[61] Zhenzhen Kou and William W Cohen. Stacked graphical models for effi-

cient inference in markov random fields. In SDM 07, 2007.



BIBLIOGRAPHY 109

[62] David Liben-Nowell and Jon Kleinberg. The link prediction problem for

social networks. In Proceedings of the 12th Conference on Information

and Knowledge Management (CIKM), pages 556–559, 2003.

[63] X. Ling, G.R. Xue, W. Dai, Y. Jiang, Q. Yang, and Y. Yu. Can chinese

web pages be classified with english data source? In Proceedings of the

17th international conference on World Wide Web, pages 969–978. ACM,

2008.

[64] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph M Hellerstein. Distributed graphlab: a framework for

machine learning and data mining in the cloud. Proceedings of the VLDB

Endowment, 5(8):716–727, 2012.

[65] Wangzhong Lu, Jeannette Janssen, Evangelos Milios, and Nathalie Jap-

kowicz. Node similarity in networked information spaces. In Proceedings

of the Conference of the Centre for Advanced Studies on Collaborative re-

search, page 11, 2001.

[66] Richard Maclin and David Opitz. Popular ensemble methods: An empir-

ical study. Journal of Artificial Intelligence Research, 1999.

[67] Panagiotis T. Metaxas and Joseph Destefano. Web spam, propaganda and

trust. In Proceedings of the First International Workshop on Adversarial

Information Retrieval on the Web, 2005.

[68] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.

Cambridge University Press, 1995.

[69] X. Ni, J.T. Sun, J. Hu, and Z. Chen. Cross lingual text classification by

mining multilingual topics from wikipedia. In Proceedings of the fourth

ACM international conference on Web search and data mining, pages

375–384. ACM, 2011.

[70] K. Nigam, A.K. McCallum, S. Thrun, and T. Mitchell. Text classifica-

tion from labeled and unlabeled documents using em. Machine learning,

39(2):103–134, 2000.

[71] Vladimir Nikulin. Web-mining with wilcoxon-based feature selec-

tion, ensembling and multiple binary classifiers. In Proceedings of the

ECML/PKDD 2010 Discovery Challenge, 2010.

[72] Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly.

Detecting spam web pages through content analysis. In Proceedings of



110 BIBLIOGRAPHY

the 15th International World Wide Web Conference (WWW), pages 83–92,

Edinburgh, Scotland, 2006.

[73] J. Olive, C. Christianson, and J. McCary. Handbook of natural lan-

guage processing and machine translation: DARPA global autonomous

language exploitation. Springer, 2011.

[74] Alexandra Olteanu, Stanislav Peshterliev, Xin Liu, and Karl Aberer. Web

credibility: Features exploration and credibility prediction. In Advances

in Information Retrieval, pages 557–568. Springer, 2013.

[75] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

PageRank citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford University, 1998.

[76] Róbert Pálovics, Frederick Ayala-Gómez, Balázs Csikota, Bálint

Daróczy, Levente Kocsis, Dominic Spadacene, and András A Benczúr.

Recsys challenge 2014: an ensemble of binary classifiers and matrix fac-

torization. In Proceedings of the 2014 Recommender Systems Challenge,

page 13. ACM, 2014.

[77] B. Pang and L. Lee. Opinion mining and sentiment analysis. Foundations

and Trends in Information Retrieval, 2(1-2):1–135, 2008.

[78] Thanasis G Papaioannou, Jean-Eudes Ranvier, Alexandra Olteanu, and

Karl Aberer. A decentralized recommender system for effective web cred-

ibility assessment. In Proceedings of the 21st ACM international confer-

ence on Information and knowledge management, pages 704–713. ACM,

2012.

[79] F. Perronnin, C. Dance, G. Csurka, and M. Bressan. Adapted vocabularies

for generic visual categorization. In Computer Vision–ECCV 2006, pages

464–475, 2006.

[80] John C. Platt. Sequential minimal optimization: A fast algorithm for train-

ing support vector machines. Technical report, ADVANCES IN KERNEL

METHODS - SUPPORT VECTOR LEARNING, 1998.

[81] PR10.info. BadRank as the opposite of PageRank, 2004.

http://en.pr10.info/pagerank0-badrank/ (visited June

27th, 2005).

[82] P. Prettenhofer and B. Stein. Cross-language text classification using

structural correspondence learning. In Proceedings of the 48th Annual



BIBLIOGRAPHY 111

Meeting of the Association for Computational Linguistics, pages 1118–

1127. Association for Computational Linguistics, 2010.

[83] Xiaoguang Qi and Brian D. Davison. Knowing a web page by the com-

pany it keeps. In Proceedings of the 15th Conference on Information and

Knowledge Management (CIKM), 2006.

[84] Ross J. Quinlan. C4.5: programs for machine learning. Morgan Kauf-

mann Publishers Inc., 1993.

[85] Alain Rakotomamonjy, Francis Bach, Stephane Canu, and Yves Grand-

valet. simplemkl. Journal of Machine Learning Research, 9:2491–2521,

2008.

[86] G. Ramı́rez-de-la Rosa, M. Montes-y Gómez, L. Villasenor-Pineda,

D. Pinto-Avendano, and T. Solorio. Using information from the target

language to improve crosslingual text classification. Advances in Natural

Language Processing, pages 305–313, 2010.

[87] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars

Schmidt-Thieme. Fast context-aware recommendations with factorization

machines. In Proceedings of the 34th international ACM SIGIR confer-

ence on Research and development in Information Retrieval, pages 635–

644. ACM, 2011.

[88] L. Rigutini, M. Maggini, and B. Liu. An em based training algorithm

for cross-language text categorization. In Web Intelligence, 2005. Pro-

ceedings. The 2005 IEEE/WIC/ACM International Conference on, pages

529–535. IEEE, 2005.

[89] Tamás Sarlós, András A. Benczúr, Károly Csalogány, Dániel Fogaras,

and Balázs Rácz. To randomize or not to randomize: Space optimal sum-

maries for hyperlink analysis. In Proceedings of the 15th International

World Wide Web Conference (WWW), pages 297–306, 2006.

[90] Bernard Schölkopf. The kernel trick for distances. MIT Press, pages

301–307, 2000.

[91] Julia Schwarz and Meredith Morris. Augmenting web pages and search

results to support credibility assessment. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 1245–1254.

ACM, 2011.



112 BIBLIOGRAPHY

[92] Claude Elwood Shannon. A mathematical theory of communication.

ACM SIGMOBILE Mobile Computing and Communications Review,

5(1):3–55, 2001.

[93] L. Shi, R. Mihalcea, and M. Tian. Cross language text classification by

model translation and semi-supervised learning. In Proceedings of the

2010 Conference on Empirical Methods in Natural Language Processing,

pages 1057–1067. Association for Computational Linguistics, 2010.

[94] P. Sorg and P. Cimiano. Enriching the crosslingual link structure of

wikipedia-a classification-based approach. In Proceedings of the AAAI

2008 Workshop on Wikipedia and Artifical Intelligence, pages 49–54,

2008.

[95] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Investigation of various

matrix factorization methods for large recommender systems. In Proceed-

ings of the 2nd KDD Workshop on Large-Scale Recommender Systems

and the Netflix Prize Competition, pages 1–8. ACM, 2008.

[96] Y. Tang, Y. He, S. Krasser, and P. Judge. Web Spam Challenge 2007

Track II Secure Computing Corporation Research. In Graph Labeling

Workshop in conjunction with ECML/PKDD 2007, 2007.

[97] William J Teahan and David J Harper. Using compression-based language

models for text categorization. In Language modeling for information

retrieval, pages 141–165. Springer, 2003.

[98] X. Wan. Co-training for cross-lingual sentiment classification. In Pro-

ceedings of the Joint Conference of the 47th Annual Meeting of the ACL

and the 4th International Joint Conference on Natural Language Process-

ing of the AFNLP: Volume 1-Volume 1, pages 235–243. Association for

Computational Linguistics, 2009.

[99] H. Wang, H. Huang, F. Nie, and C. Ding. Cross-language web page

classification via dual knowledge transfer using nonnegative matrix tri-

factorization. In Proceedings of the 34th international ACM SIGIR con-

ference on Research and development in Information Retrieval, pages

933–942. ACM, 2011.

[100] Chih-Ping Wei and I-Tang Chiu. Turning telecommunications call de-

tails to churn prediction: a data mining approach. Expert Syst. Appl.,

23(2):103–112, 2002.



BIBLIOGRAPHY 113

[101] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann Series in Data Management

Systems. Morgan Kaufmann, second edition, June 2005.

[102] Baoning Wu, Vinay Goel, and Brian D. Davison. Propagating trust and

distrust to demote web spam. In Workshop on Models of Trust for the

Web, Edinburgh, Scotland, 2006.

[103] Baoning Wu, Vinay Goel, and Brian D. Davison. Topical TrustRank:

Using topicality to combat web spam. In Proceedings of the 15th In-

ternational World Wide Web Conference (WWW), Edinburgh, Scotland,

2006.

[104] Rui Xu, Donald Wunsch, et al. Survey of clustering algorithms. Neural

Networks, IEEE Transactions on, 16(3):645–678, 2005.

[105] Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke

Chen, and Gordon Sun. A general boosting method and its application

to learning ranking functions for web search. In Advances in neural in-

formation processing systems, pages 1697–1704, 2008.

[106] Xiaojin Zhu. Semi-supervised learning literature survey. Technical Re-

port 1530, Computer Sciences, University of Wisconsin-Madison, 2005.



Summary

In this thesis we introduced different aspects of Web quality along three main

dimensions such as spam, genre and trustworthiness. We discussed the impor-

tance of these quality categories in search engines and Web archives, and we

described novel methods for assessing Web sites over these categories that scale

to the size of the Web.

In chapters 4 and 5 we showed the power of graph stacking methods in com-

bination with graph similarity measures for spam, topical and telephone user

churn classification. For future work we can test more complex multi-step vari-

ants of cocitation and the Jaccard coefficient. Jeh and Widom [58] define Sim-

Rank as a multi-step generalization of downweighted cocitation, however com-

puting the full SimRank matrix requires quadratic space, therefor we may use

the algorithm of [89] instead which applies fingerprinting techniques for opti-

mization.

In chapter 6 we discussed the difficulties of cross-lingual Web classification

and we introduced a new semi-supervised technique which takes advantage of

multi-lingual Web sites. We showed that our method outperforms dictionary

based methods and also combines very well with them. For future work it would

be interesting to validate our method on other languages, however it is very hard

to acquire good quality labeled data set for these experiments.

In chapter 7 we gave a new method for textual classification. The main idea

is to use bag of concepts representation instead of bag of words representation

via bi-clustering. With our method we obtained strong improvement for the

quality categories introduced at the Discovery Challenge 2010 over the baseline

of existing host-level classification methods. For future work it would be inter-

esting to investigate how much improvement we could achieve by adding other

text classification methods to our multiple kernel framework, like compression-

based methods [97] or Latent Dirichlet Allocation (LDA) [12]. In our previous

work [1] we already showed that we can obtain a slight improvement with LDA

for spam classification and similarly to bi-clustering LDA gives a bag of topic

representation of documents.





Összefoglalás

Disszertációmban Web-oldalak minőségének a különböző aspektusaival fog-

lalkoztam úgy mint spam, témakör és megbı́zhatóság. Megmutattam, hogy a

webes keresőmotorok és Web archı́vumok szempontjából miért fontosak ezek a

minőségi kategóriák és új, a Web méretéhez jól skálázódó módszereket adtam

ezen kategóriák automatikus klasszifikálására.

A 4. és 5. fejezetben láthattuk, hogy a graph stacking módszerét különböző

gráf-hasonlósági mértékekkel kombinálva nagyon jó eredményeket érhetünk el

spam, témakör és churn felismerésében. A jövőben érdemes lehet kipróbálni

komplexebb több-lépéses változatait a Jaccard és Kocitáció hasonlósági mérté-

keknek. Jeh és Widom az [58] munkájukban definiálják a SimRank-et, ami a

lesúlyozott Kocitációnak egy több-lépéses változata. Azonban a teljes SimRank

kiszámı́tásának négyzetes a tárigénye, ezért érdemes az algoritmusnak az [89]

munkában bemutatott fingerprint-ekkel optimalizált változatát használni.

A 6. fejezetben megismerkedhettünk a keresztnyelvű klasszifikáció nehéz-

ségeivel és mutattunk egy újszerű félig-felügyelt tanuló módszert a probléma

megoldására, ami a többnyelvű Web hosztokban rejlő lehetőségeket használja ki.

Megmutattuk, hogy módszerünkkel jobb eredményt lehet elérni, mint a szótárat

használó módszerekkel, ugyanakkor jól is kombinálható ezekkel. Érdekes lenne

a módszert további nyelveken is validálni, azonban nagyon nehéz jó minőségű

felcı́mkézett adathalmazt beszerezni.

A 7. fejezetben egy új tı́pusú szövegen alapuló klasszifikációs módszert mu-

tattunk be. Az alapötlet az, hogy bag of words reprezentáció helyett generáljunk

bag of concepts reprezentációt a dokumentumainkhoz bi-klaszterezés segı́tsé-

gével. Módszerünkkel lényeges javulást értünk el az alapmódszerekhez képest

a Discovery Challange 2010 versenyen bemutatott 3 új minőségi kategóriára.

Érdemes lehet kipróbálni, hogy további módszerekkel kombináljuk a bi-klaszteres

megoldásunkat a fejezetben bemutatott multi-kerneles módszer segı́tségével. I-

lyen módszerek lehetnek a tömörı́tésre alapuló szöveg klasszifikációs megoldások

[97] vagy például a Latent Dirichlet Allocation (LDA) [12]. Egy előző mun-

kánkban [1] már láttuk, hogy az LDA segı́tségéve lehet némi javulást elérni

spam klasszifikálásban. MIvel az LDA a bi-klaszterezéshez hasonlóan bag of

topics reprezentációt állı́t elő a dokumentumokhoz, ezért érdekes lehet, hogy

milyen eredmények ad az új minőségi kategóriákra.






