
Calhoun: The NPS Institutional Archive
DSpace Repository

Faculty and Researchers Faculty and Researchers' Publications

2017

Energy-efficient Load-balanced
Heterogeneous Mobile Cloud

Chen, Chien-An; Stoleru, Radu; Xie, Geoffrey G.
IEEE

Chen, Chien-An, Radu Stoleru, and Geoffery G. Xie. "Energy-Efficient Load-Balanced
Heterogeneous Mobile Cloud." Computer Communication and Networks (ICCCN),
2017 26th International Conference on. IEEE, 2017.
http://hdl.handle.net/10945/61024

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Energy-efficient Load-balanced Heterogeneous
Mobile Cloud

Chien-An Chen, Radu Stoleru†, Geoffrey G Xie‡

Accenture Technology Lab
†Department of Computer Science and Engineering, Texas A&M University

‡Department of Computer Science, Naval Postgraduate School
jay.chen@accenture.com, stoleru@cse.tamu.edu, xie@nps.edu

Abstract—Today’s integration of mobile technologies and tra-
ditional cloud computing exploits the abundant computation
and storage resources in the cloud, to enhance the capabilities
of end-user mobile devices. The designs that rely on remote
cloud services, however, sometimes overlook the abundant re-
sources (e.g., storage, communication, and computation) on
mobile devices. In particular, when the remote cloud services
are unavailable (due to service downtime or network issues),
these smart devices can no longer function. We propose a
Heterogeneous Mobile Cloud (HMC) computing design that
efficiently utilizes the communication and computation resources
to support data storage and data processing services in a
group of mobile devices. Each mobile device may have different
energy, communication and computation capabilities, but our
Mobile Storage & Processing System (MSPS) ensures that: i) the
communication and computation tasks are executed in an energy-
efficient manner, ii) task allocation considers device heterogeneity
and achieves system-wide load balancing, and iii) the stored
data are fault-tolerant. Through extensive simulations and real
hardware implementations on Android devices, we demonstrate
the performance and feasibility of deploying MSPS in a real
heterogeneous mobile environment.

I. INTRODUCTION

Due to the popularity of smart devices and the rapid advance
in mobile technologies, Mobile Cloud Computing (MCC) has
attracted enormous interest from industry, academia, and even
military. Mobile cloud is defined as an integration of cloud
computing with mobile devices that makes mobile devices
more resourceful in terms of energy, computation and context
awareness. Depending on the application, environment, and
requirement, the scale of a mobile cloud can range from
several mobile devices in a local area network to millions of
mobile devices in the internet. In this paper, we consider a
mobile cloud deployed in restricted areas where the internet
is unavailable and the cloud is self-organized by a collection
of mobile devices. Nodes may have various hardware specifi-
cations and their communication and computation capabilities
may also be different. We refer to this type of cloud as a
Heterogeneous Mobile Cloud (HMC). HMC is of particular
interest for military tactical cloud systems [1] and civilian use
cases such as disaster relief or mining operations in remote
areas [2] where the network is dynamic and the internet is
unavailable.

Many existing works have considered data storage and
data processing in mobile clouds. The Remote Cloud Server

architecture offloads data and computation to remote data
centers, e.g, Google Drive and iCloud; these cloud services
rely on stable and constantly available internet connection.
The Virtual Resource Cloud architecture creates a computing
platform on a collection of mobile devices [3] [4] [5] [6] [7];
these solutions use mobile devices for job execution or data
storage; in particular, [8] and [9] optimize energy and re-
liability for data storage and data processing in an ad-hoc
mobile cloud. However, most existing virtual resource cloud
solutions can neither scale up to larger network nor adapt in
HMC environments. In a heterogeneous setting where nodes
have various hardware specifications, i.e., different energy
capacity, processing speed, and communication interfaces, it
is difficult to efficiently utilize and allocate resources con-
sidering the various capabilities of each node. In this paper,
we study an energy-efficient, load-balanced, and fault-tolerant
distributed data storage and data processing middleware for
HMC. We propose a distributed algorithm that allocates data,
computation, and communication resources adaptively in a
heterogeneous network. Energy efficiency ensures that the
middleware minimizes the system-wide energy consumption,
fault tolerance ensures that the stored data are resilient to node
failures, and load balancing ensures that each node is allocated
proper workload according to its available resources. We refer
to this Mobile Storage & Processing System as MSPS.

MSPS greedily minimizes the standardized energy con-
sumption for executing each operation while upholding the
system-wide load imbalance. Standardized energy is a value
in (0,1) defined as the ratio between the consumed energy and
the energy capacity on each node. Consumed energy is the total
energy used for wireless communication or CPU processing
since MSPS starts; energy capacity is the amount of energy that
the mobile device can store. When measuring the energy that
a node has contributed to MSPS, standardized energy quantify
the contribution based on the capability of each node. As an
example, when a car powered tablet and a battery powered
tablet both process a same task, although they consume the
same amount of absolute energy, MSPS considers that the
car powered tablet consumes less standardized energy due to
its high energy capacity. MSPS tries to dissipate energy of
each node at approximately the same rate such that no node
runs out of energy much earlier than others and the system
maintains the maximum number of active nodes at any time.

 978-1-5090-2991-4/17/$31.00 ©2017 IEEE

The load of a node is defined as the standardized energy
consumption within a period of time, and the load imbalance
of the network measures how uneven the load of each node is.
Any communication or computation task executing on a node
directly affects the node’s load. MSPS heuristically reduces
the load imbalance to prolong the system operational time.
The contribution of this paper is as follows: i) we propose a
scalable distributed algorithm for data storage & processing in
heterogeneous mobile clouds; ii) the load balancing algorithm
effectively and efficiently reduces system-wide load imbalance
and prolongs the system operational time; iii) the agent-based
search algorithm efficiently explores and discovers computa-
tion and storage resources in the network; iv) the proposed
algorithm is evaluated extensively in a network simulator and
in a real-world hardware implementation on Android devices.

II. BACKGROUND AND RELATED WORK

Several distributed data processing frameworks for mobile
cloud have been developed. In 2009, Marinelli introduced
a Hadoop based platform Hyrax [10] for distributed data
processing on smartphones. In particular, the Hadoop Task-
Tracker and DataNode processes were ported to Android
phones. Later, Huerta-Canepa and Lee proposed a virtual cloud
computing framework [11] targeting an ad-hoc network of
mobile phones. The framework detects nearby nodes that have
the same movement pattern, and creates a virtual resource
provider on the fly among these nearby nodes. Meanwhile,
MobiCloud [12] and the work of Huang et al. [7] focused
on security issues unique to ad-hoc mobile cloud, such as
trust and risk management, private data isolation, and secure
routing. Finally, Scavenger [13] is a cyber-foraging system that
eases the development of distributed processing applications in
a mobile cloud setting. It intelligently schedules and allocates
tasks considering data locality, device capability, and task
complexity. Different from most of the existing works, we
study the energy efficiency, load balancing, and fault tolerance
in an integrated manner in mobile clouds.

Huchton et al. [14] were the first to introduce the concept of
k-out-of-n reliability to a mobile cloud setting while aiming
primarily for military operations. Chen et al. [8] [15] later
proposed several generalizations to the concept and a new
resource allocation scheme to improve energy efficiency. They
formulated an optimal resource allocation problem and solved
the problem in a centralized manner. Several assumptions such
as file request pattern and homogeneous network were made.
[16] proposed a caching framework for k-out-of-n data storage
that selects data fragments and caching locations based on
each file’s popularity. None of these prior efforts, however,
targets large scale heterogeneous networks. Table I compares
the pros and cons of the centralized solutions in [8] [15] [16]
and the distributed solution proposed in this work. Overall,
our distributed solution is scalable to larger network, has
lower time and space complexity, and adapts in heterogeneous
network. The centralized solution, under certain assumptions
(e.g., homogeneous network and file request pattern), can
obtain better solution, but it can hardly scale up to larger

Scalability Complexity Quality Hetero
Centralized Low High High No
Distributed High Low Medium Yes

TABLE I
CENTRALIZED VS DISTRIBUTED MOBILE CLOUD SOLUTIONS

network or heterogeneous network due to the complexity of
the solver.

III. SYSTEM ARCHITECTURE AND PROBLEM
FORMULATION

LTE

Ad-Hoc Routing LTE Routing

Data
Creation

Data
Retrieval

Data
Processing

MSPS

Applications
App1 App2 App3 Hadoop

Load Balance

Energy
Estimation

Wi-Fi

Reliability
Estimation

Request
Dissemination

Fig. 1. MSPS System Architecture

We consider a
heterogeneous mobile
cloud where each
node may have
different hardware
specification or
energy capacity.
Nodes can
communicate with
each other using any
available wireless
interface. MSPS supports three major data operations: data
creation, data retrieval, and data processing. When creating a
new file, the file creator encodes the file using Reed-Solomon
code in which a file is encoded into n data fragments,
and any subset of k data fragments together can recover
the original file; data fragments are then sent to a set of
storage nodes. When another node needs to read the file,
it searches and retrieves k of the n data fragments from
the network to recover the original file. (k, n) is referred as
storage parameter. This coding scheme ensures the stored
data is fault-tolerant. Any node can submit a job to process a
subset of stored files. A processing job consists of multiple
independent tasks where each task corresponds to processing
a single file on a selected processor node.

We make the following assumptions when designing MSPS.
Nodes are mobile, and can depart or join the network freely.
Each node’s hardware capability is profiled so that the data
transferring and data processing power are known. All pro-
cessing functions (tasks) are profiled so that the number
of instructions of each task can be estimated. A system-
wide distributed directory service allows nodes to know the
available files. Files stored in MSPS are shared by all nodes
in the network, and any node can retrieve or process the stored
files. Files are immutable – once created, they can be deleted,
but can not be modified.

Fig. 1 illustrates the system architecture. MSPS serves as
a middleware that provides applications data storage and data
processing services. MSPS accesses routing information and
link quality information from network layer and MAC layer.
The three major data operations, data creation, data retrieval,
and data processing, access this cross-layer information (e.g.,
routing table and link quality) when allocating communication
and processing tasks. As a proof of concept, Wi-Fi and LTE
are the only two communication interfaces considered in our
experiment. The Energy Estimation component estimates the

Xopt = argmin
X⊂X̂

∑
∀xi∈X

Estd
xi

(task, t) (1)

Subject to:
Lxi(t)

Lµ̄(t)
− 1 ≤ SLI ∀xi ∈ X (2)

U
comj
xi (t) ≤ Scom ∀xi ∈ X (3)

Ucpu
xi

(t) ≤ Scpu ∀xi ∈ X (4)

energy for transferring data or processing tasks based on the
information such as file size, available wireless interfaces,
routing table, link quality, and device profile. The Reliability
Estimation component estimates the reliability of a node
based on its remaining energy, connectivity, and application-
dependent factors. The reliability of a node is the probability
that the node remains accessible by all other nodes from the
current time t to time t + Trel where Trel is he period in
which the reliability is concerned. The reliability estimation
procedure can be found in [8]. The Load balancing component
monitors the utilization rate of communication, CPU, and
energy resources on each node and tries to maintain a low
system-wide load imbalance. The Request Dissemination com-
ponent uses agent-based search algorithm to discover storage
nodes, file fragments, or processor nodes in the network when
performing a data operation. The detail of each component
will be explained in the next section.

We now formulate MSPS as an abstract optimization prob-
lem in Eqs. 1–4. The energy load Lxi(t) of node xi at time t is
defined as the standardized energy consumed during time [t−
TLB , t). TLB is the time period in which the load is of interest.

LI(t) =
L1̄5(t)

Lµ̄(t)
− 1 (5)

The Load Imbalance LI(t) at time
t is defined in Eq.5 where L1̄5(t))
is the mean load of top 15% of the
nodes, and Lµ̄(t) is the mean load of all nodes. The objective is
to minimize the standardized energy consumption constrained
on the utilization rate of energy, communication, and CPU
resources. This optimization problem is solved for each data
operation.

X̂ is the set of nodes discovered by the request dissemina-
tion procedure. Given a data operation, the objective function
(Eq. 1) finds a subset of nodes X = {x1, x2, ...} in X̂
to perform tasks of this operation such that the cumulative
standardized energy

∑
∀xi∈X Estd

xi
(task, t) for executing the

operation is minimized. Using the data creation task shown
in Fig. 2 as an example, node 11 selects nodes 2, 3, 9, 10,
and 11 to execute the data creation operation. The task for
each selected node is to transfer data or store data fragment.
Because MSPS does not assume global information, the opti-
mization problem is considered in a local sense, meaning that
the subset Xopt is selected only from the nodes discovered by
the request dissemination procedure.

The tasks of an operation may require the participating
nodes to transfer data, store data, or process data. SLI , Scom,
and Scpu are the predefined thresholds for energy, communica-
tion, and CPU utilization rates. Eq. 2 indicates that a selected
node should not have an energy load higher than the network
average by ratio of SLI . U comj

xi (t) in Eq. 3 is a value in [0, 1]
representing the average utilization rate of communication

interface j on node xi during time [t− TLB , t). The index j
may indicate Wi-Fi, LTE, or other possible wireless interfaces.
Similar to U

comj
xi (t), U cpu

xi
(t) represents the CPU average

utilization rate on node xi during time [t−TLB , t). Eqs. 3 and 4
ensure that a node should not be assigned more communication
or processing tasks that may overload its available bandwidth.

IV. MSPS DESIGN

This section presents the details of each data operation (i.e.,
data creation, data retrieval, and data processing) followed by
the load balancing algorithm. For simplicity, data operations
are first described without considering load balancing. Once
the load balancing algorithm is explained, we then show how
the load balancing component is integrated into each data
operation.

A. Data Creation

A node starts a Data Creation operation when it needs
to store or share a file in MSPS. We refer to this node as
File Creator. Based on the storage parameter (k, n) and the
reliability requirement rreq specified by the application, a file
is encoded into n data fragments and each fragment is sent to
one of the storage node. These storage nodes together ensure
that the reliability of the file is at least rreq . The file creator
first uses the request dissemination component to discover
nodes that can store data fragments. A node receiving the
request replies its routing table, reliability, and current energy
profile. The details of request dissemination procedure will be
explained in the next section.

Si =

(ni)∑
j=1

∏
l∈c

Rl

∏
m∈c̄

Qm (6)

where ∀c ⊂ X and |c| = i

R(k,n)(X) =
n∑

i=k

Si (7)

Data Reliability of a
file can be estimated from
the reliability of its stor-
age nodes. We consider
the probability that k
or more selected storage
nodes remain functional.
Suppose X is a set of n selected storage nodes and X ⊂ X̂
where X̂ is the nodes that the request dissemination compo-
nent discovers. c is the subset of functional nodes in X such
that k ≤ |c| ≤ n and c̄ = X\ c is the subset of malfunctioning
nodes in X . For each size of |c|, there are

(
n
|c|

)
combinations

that need to be considered. Eq. 6 calculates the probability of
exactly i functioning nodes and (n− i) malfunctioning nodes
in X; Rl is the reliability of the lth node in c; Qm is the
failure probability of the mth node in c̄. Eq. 7 calculates the
probability of k or more functioning nodes in X , i.e., the data
reliability of a file stored in X . Note that the time parameter
t is omitted for clarity.

Using the information collected from request dissemi-
nation, file creator can estimate the required standardized
energy for delivering a fragment to a potential storage
node. When a node is reachable through multiple wire-
less interfaces, the interface that consumes the least stan-
dardized energy for transmitting data is chosen. Suppose
Estd

creator(xi) gives the minimal standardized energy for send-
ing a data fragment from the file creator to node xi,

Xopt = argmin
X⊂X̂

∑
∀xi∈X

Estd
creator(xi) (8)

s.t.: R(k,n)(X) ≥ rreq , ∥X∥ = n (9)

Eq. 8 describes
a simplified op-
timization prob-
lem for data cre-
ation without considering the load balancing constraints
(Eqs. 2–4). The additional constraint in Eq. 9 ensures that the
reliability of the selected storage nodes meet the reliability
requirement rreq .

Solving this problem, however, is computation-intensive due
to the complexity of reliability estimation R(k,n)(X). The
combination term in Eq. 6 makes its time complexity O(n!).
In order to quickly find a feasible solution, we design a
heuristic solver to approximate Xopt. Instead of exhaustively
searching for all possible subset X ⊂ X̂ and evaluating its
data reliability R(k,n)(X), we consider only the nodes with
reliability at least rmin such that any subset of n nodes
guarantees to satisfy the reliability constraint (Eq. 9). rmin

enforces a minimal reliability to each selected storage node
and effectively eliminates the reliability constraint.

To determine rmin, we solve the equation R(k,n)(X) =
rreq . In R(k,n)(X), the reliability of each node Rl(·) is re-
placed by rmin, and the failure probability of each node Qm(·)
is replaced by (1-rmin). rmin thus becomes the only unknown
in the polynomial equation and it can be solved efficiently
using root-finding methods such as bisection, interpolation, or
Newton’s method. Since R(k,n)(X) is a continuous function
that monotonically increases with rmin, any subset X with all
nodes’ reliability no less than rmin must have R(k,n)(X) ≥
rreq . The data creation procedure can now be simplified to
these three steps: 1) Solve R(k,n)(X) = rreq . 2) Find all xi

such that Rxi ≥ rmin. 3) Sort all nodes found in step 2 in
increasing order with respect to Estd

creator(xi). The first n nodes
are then selected as the storage nodes.

B. Data Retrieval

A node needs k data fragments of a file in order to
decode and recover the original file. Although any subset
of k fragments can recover the file, the file requester tries
to minimize the standardized energy for retrieving k data
fragments. The Request Dissemination component discovers
the available data fragments and collects information from
nearby nodes. Nodes receiving the request reply information
about the fragments they carry, the routing tables, and their
energy profiles. Similar to data creation, the file requester uses
the collected information to estimate the standardized energy
for retrieving data fragments from each discovered storage
node. Each participating node may use any available wireless
interface to transfer data, but the file requester chooses the
interface with the minimal standardized energy. Estd

request(xi)
gives the minimal standardized energy for the file requester
to download a data fragment from node xi. F̂ = {f1, f2, ...}
represents a set of data fragments that the request dissemina-
tion component discovers, and xsto(f) gives the storage node
of fragment f . Eq. 10 describes a simplified data retrieval
optimization problem without the load balancing constraints.

Fopt =argmin
F⊂F̂

∑
∀f∈F

Estd
request(xsto(f)) (10)

s.t.: ∥F∥ = k

The objective
here is to find
a set of k frag-
ments F that minimizes the standardized data retrieval energy.
The problem can be solved by selecting the k fragments with
the lowest estimated retrieval energy. Once Fopt is found, the
nodes that carry these fragments are then selected to execute
the operation, i.e., Xopt=

∪
∀f∈Fopt

xsto(f).

C. Data Processing

Any node can submit a data processing job to pro-
cess/analyze a set of files. T = {τ1, τ2, ..., τM} represents a
job of M tasks where each task corresponds to a file to be
processed. A processor node assigned to process a task needs
to retrieve, recover, and then process the file. Similar to other
data operations, the job creator uses request dissemination
component to announce the job and discover the available
processor nodes. A node receiving the job request estimates
its standardized energy for retrieving and processing each task
and sends this information back to the job requester. If a node
has retrieved any file in this job before and it still has the
complete file, the estimated task retrieval energy for retrieving
this task is zero. Let Estd

proc(xi, τ) represent the minimal
standardized energy for node xi to retrieve and process task τ .

Xopt =argmin
X⊂X̂

M∑
i=1

Estd
proc(x ∈ X, τi) (11)

Eq. 11 describes
a simplified data
processing opti-
mization problem without the load balancing constraints. The
objective here is to find a set of processor nodes X and
assign each task to one of the processor node such that the
total standardized task processing energy is minimized. The
problem can be solved by first assigning each task τ to the
node xpro(τ) that has the minimal standardized processing
energy. The selected processor nodes can be described as
Xopt=

∪
∀τ∈T xpro(τ).

D. Load Balancing

To avoid overloading a small number of nodes or causing
performance bottleneck, MSPS considers load balancing when
performing data operations. The system-wide load imbalance
LI(t) is formally defined in Eq. 5. LI(t) = 0 if the system
is perfectly balanced, and LI(t) increases positively as the
system becomes more imbalanced. Our goal is to keep the load
of each node Lxi(t) as close to the system-wide mean load
Lµ̄(t) as possible. Specifically, MSPS avoids assigning more
tasks to a node if its current load is much greater than the
system mean load. The load balancing algorithm is integrated
into each data operation such that the decisions made not only
minimize the standardized energy, but also lower the system-
wide load imbalance.

The system-wide mean load Lµ̄(t), however, cannot be
calculated exactly because MSPS does not assume global
information. Instead, a sample mean load L̂µ̄(t) estimated
from local information is used to approximate the population
mean Lµ̄(t). L̂µ̄(t) is calculated for each data operation using
the information the search agents collected. Because nodes

Xopt = argmin
X⊂X̂

∑
∀xi∈X

Estd
xi

(task, t)× (1 + g(i, t)) (12)

g(i, t) = (L̃)e
α

|1−L̃| (H(L̃− SLI)−H(L̃− 1)) (13)

+ (Ũ1 − Scom)e
α

|1−Ũ1| (H(Ũ1 − Scom)−H(Ũ1 − 1))

+ (Ũ2 − Scpu)e
α

|1−Ũ2| (H(Ũ2 − Scpu)−H(Ũ2 − 1))

L̃ =
Lxi(t)− Lµ̄(t)

Lµ̄(t)
, Ũ1 = Ucom

xi
(t), Ũ2 = Ucpu

xi
(t)

can move freely and data operations can be initiated from any
region of the network, L̂µ̄(t) estimation is not biased to any
subset of nodes.

To solve the complete optimization problem with load
balancing constraints (Eqs. 1–4), we first transform the con-
strained optimization problem into an unconstrained optimiza-
tion problem using penalty method. The constraints are com-
bined into a penalty function g(i, t) shown in Eq. 13. It is mul-
tiplied to the original objective function (Eq. 1) to construct
the new unconstrained optimization problem (Eq. 12). The
characteristic of the penalty function is that it is zero if all the
constraints in Eqs. 2–4 are satisfied, and grows exponentially
if any constraint is violated. The level of load imbalance that
an application can tolerate and how fast MSPS moves towards
a balanced state are all controlled by the parameters in g(i, t).
SLI , Scom, and Scpu define the tolerance for load imbalance
and over-utilization rate; α is a positive real value that controls
how fast the penalty function grows; H(·) is Heaviside step
function that limits the domain of interest. As an example,
suppose the communication utilization and the CPU utilization
constraints are satisfied, but the load on node xi is slightly
higher than the mean load (Lxi(t) = 0.6, Lµ̄(t) = 0.5,
SLI = 1, α = 1). The objective function will be penalized by
a factor of 1 + 1

5e
5
4 .

Another benefit of this transformation is that it relaxes
the hard constraints and allows a solution to violate slightly
if the advantages (energy saving) of violation is consider-
ably higher than the disadvantage (load imbalance or over-
utilization) of violation. The tradeoff between energy con-
servation and load imbalance are reflected in the objective
function. When describing the data operations, we focused
only on minimizing the standardized energy and neglected
the load balancing constraints for simplicity. To integrate the
load balancing components into the data operations, we simply
multiply each objective function in Eqs. 8 – 11 by the penalty
function g(i, t). The new solution avoids assigning tasks to
nodes with overloaded utilization (energy, communication, or
processing), and gradually alleviates the load of nodes with
Lxi(t) > Lµ̄(t).

E. Energy Profile

Each node keeps an energy profile that tracks the node’s
energy capacity, remaining energy, and power consumption
of each wireless interface. When receiving a request, a node
estimates its standardized energy for transferring the requested
data using the energy model proposed in [17]. The power
of each wireless link, e.g., Bluetooth, Wi-Fi, 3G, or LTE, is

modeled by P = αutu + αdtd + β. tu and td are uplink
throughput (Mbps) and downlink throughput respectively; αu,
αd, and β are experimentally obtained fitting coefficients
(mW/Mbps). For processing energy, the CPU of each device
is profiled in advance so that the energy consumption for
processing a file can be estimated based on the processing
function and file size.

V. REQUEST DISSEMINATION

All three operations, data creation, data retrieval, and data
processing, send request messages to explore the network.
Data creation sends storage request to discover suitable storage
nodes, data retrieval sends file request to find fragments of a
file, and data processing sends job request to find processor
nodes to process a set of files. The simplest solution is to
broadcast the request through the LTE network, but it affects
all nodes in the network and is too costly. Another naive
solution is to flood a request through the Wi-Fi network.
However, flooding a message in a multi-hop Wi-Fi network
incurs traffic burst (broadcast storm problem) if messages
traverse too many hops, or may fail to find sufficient resources
(storage, fragments, or processors) if messages are not relayed
far enough. In this section, we propose an agent-based search
algorithm that explores resources using mobile agents such
that the desired resources can be found with high probability
without causing too much overhead.

A. Agent-based search

The goal of the search algorithm is to explore resources in
the network as well as collect information such as routing table
and energy profile from nearby nodes. Search Initiator is the
node that starts the search task; it dispatches one or multiple
agents that explore different regions of the network to discover
the desired resources. Each agent is assigned a target resource
value that indicates the quantity of the resource it needs to
find. When an agent finds sufficient resources or reaches a
node that has no more unexplored neighbors, the agent replies
its collected information back to the search initiator. One agent
can fork into multiple child agents that collaboratively share
the parent agent’s responsibility, i.e., parent’s target resource
is distributed to the child agents. Each child agent is then
dispatched to different regions to accomplish the parent agent’s
search task. The update function updates information on both
the search agent and the node that the agent visits; whenever
an agent visits a node, it tells the node the upstream nodes
that it has visited; the node also tells the agent its information
such as the data transferring energy or data processing energy
of the requested task. If a search agent needs to continue
(because the target resource has not been reached and there is
still unexplored neighbors), it forks into one or multiple child
agent and divides the remaining target resource to each child
agent. The number of the child agents created is determined
by the number of unexplored neighbor nodes. The agent-based
search procedure is described in Algorithm 1.

The search algorithm, however, does not guarantee to find
sufficient resources in one pass. If the network topology is

Algorithm 1: Agent-based Search
agent arrives node :
/* agent exchanges information with visited node */

agent.collectInfo(node)
node.collectInfo(agent)
if node.resource ≥ agent.targetRsc then

node.resource -= agent.targetRsc
agent.targetRsc = 0

else
agent.targetRsc -= node.resources
node.resource = 0

end
if TargetRsc == 0 ∥ node.unexploredNeib.isEmpty() then

reply(agent, requester)
else

agent.targetRsc = agent.targetRsc
unexploredNeib.size()

for n ∈ node.unexploredNeib do
send(agent, n)

end
end

sparse or the resources are not distributed uniformly, some
agents may terminate without finding enough target resource.
If the search initiator fails to find enough resources, it starts
another search iteration. Knowing the amount of deficient
resources and the boundary of the previous search (where
the search agents terminated), the search initiator simply
starts a new search from the boundary nodes. The search
continues until sufficient resources have been found or the
entire network has been explored. It is worth noting that it is
possible that a data operation can not be performed because
there is insufficient resource in the network. The procedure is
outlined in the following four steps: 1) Search initiator defines
a target resource and starts an agent-based search. 2) At each
node, a search agent either forks into multiple child agents
or terminates and replies. 3) The search procedure stops if the
search agents have found enough resources. 4) If the initiator’s
target resource is not reached and there is still unexplored
nodes, then restart step 1 at boundary nodes.

Using the storage request as an example, Fig. 2 shows
how the agent-based search is performed. Assume all nodes
are valid storage nodes. Node 11 is the file creator (search
initiator) that needs to find 7 storage nodes. It creates a search
agent with target resource 7. Since node 11 itself is also a
valid “resource” for storing fragments, the update function
immediately updates the target resource to 7−1 = 6, meaning
that one unit of the target resource has been found. The update
function than forks the agent into 4 child agents destined to
nodes 3, 4, 9 and 10 respectively; each child agent’s target
resource is set to 6/4. When the child agents reach their
destined nodes, the target resource of each agent is updated to
3/2 − 1 = 1/2, indicating nodes 3, 4, 9 and 10 are all valid
resources (storage nodes). At node 9, the agent again forks into
2 child agents with target resource set to 1/2

2 = 1/4; these two
child agents are sent to node 1 and node 13. Child agents at
node 3 and 10 proceed to node 2 and 8 respectively with their
updated target resource 1/2. The agent at node 4 terminates

Storage Req.

Data Distribution

Data Req.

Data Retrieval

1

2

3

4

7

6

17

10

9

8

5

11

18

16

19
20

12

13

1514

21

Fig. 2. Data Creation & Data Retrieval. Node 11 creates a file with
(k,n)=(3,5). After request dissemination completes, nodes 2, 3, 9, 10, 11 are
selected as storage nodes. Node 12 later requests to read the file. After request
dissemination completes, 2 fragments are retrieved through Wi-Fi network
from node 10 and 11, and 1 fragment is retrieved through LTE network from
node 9.

because it has no more new node to explore. When the child
agents reach nodes 1, 2, 8, and 13, their target resources are
updated to negative values, indicating that they have found
the desired target resources and can terminate. Therefore, the
search initiator successfully finds 9 resources (node 11, 3, 4,
9, 10, 2, 1, 13, 8), satisfying the initial target resource of 7.

We now describe in more detail how the agent-based search
is performed by storage discovery, file discovery and processor
discovery procedures.

Storage discovery: Given a file encoded with parameter
(k, n), the target resource is n storage nodes that satisfy the
reliability constraint rmin. When an agent arrives a node,
the collectInfo() function exchanges information between the
search agent and the visited node. In particular, the search
agent needs to know if the resource on this node has been
claimed by other agents of the same search request. The node
also learns from the search agent the upstream nodes that this
agent has visited. Other search agents arriving this node later
will not dispatch child agents to those visited nodes again.

File discovery: Given a file encoded with parameter (k, n),
the target resource is k data fragments. A node can provide a
fragment resource only if this node carries the requested file’s
fragment and the same fragment has not been discovered by
this or other search agents in the upstream nodes. Because
the same fragments may be cached on multiple nodes, each
unique fragment should only be counted once towards the
target resource.

Processor discovery: Given a job of M files to process, the
goal is to find one processor node for each task. A processor
node may process one or multiple files depending on its
capability and current load. The target resource is M , and
a node can provide a processing resource if it can retrieve
and process a task without overloading itself. Essentially, a
processor discovery tries to find the data fragments of M files
simultaneously. Each visited node tells the agent the fragments
it carries and the estimated energy for processing each file.

VI. PERFORMANCE EVALUATION

We evaluate MSPS through extensive simulations on
Jist/Swans [18] network simulator and real-world implemen-
tation on Android devices. In simulations, we are interested

Simulator
Phy. Interfaces:WiFi, LTE Comm. Range: WiFi(≤ 160m), LTE(≤ 1500m)
Mobility: Rnd Waypoint Moving Speed: 0-4m / sec. Size: 75 nodes
Routing: AODV File size: 2MB, (k,n)=(3,9) Field: 800m2

Hardware Implementation
Devices: Nexus 5, Nexus 7, HTC One, Note 2, Galaxy S3... Size: ≤12 nodes
Image file ≤ 3MB, Video file ≤ 30MB Field: 300m2

TABLE II
PERFORMANCE EVALUATION SETTINGS

in the energy efficiency, system-wide load imbalance, and
the system lifetime under various heterogeneous networks;
in hardware-based evaluation, we want to understand the
feasibility of our algorithm and how it performs on modern
smart devices. The default settings of the simulator and our
hardware are summarized in Table II.

We first look at the overall energy consumption of data
operations (creation, retrieval, and processing) for different
network sizes. The performance of MSPS is compared with
a Random allocation that selects storage nodes or processor
nodes in a random manner. We then show how MSPS saves
communication energy utilizing multiple wireless interfaces
(Wi-Fi and LTE). The load balancing algorithm is evaluated
under different heterogeneous networks that consist of nodes
with different processing capabilities and battery capacities.
The agent-based search algorithm is then benchmarked by
measuring the number of resources that the search agents
successfully explore and the number of packets the search
algorithm exchanges during the resource discovery procedure.
Finally, we demonstrate the feasibility of our algorithm by
implementing an Android application MediaShare based on
MSPS that shares and processes multimedia files (images
and videos) on a group of smart devices. We evaluated and
collected data of this application during 2015 Summer Institute
on Flooding exercise [19].

A. Energy consumption of data operations

We first look at the energy consumption of each data oper-
ation under different network sizes. The energy is measured
by the wireless interfaces on/off states in the MAC layer, so it
includes the overhead for the entire network stack. Each node
has two wireless interfaces Wi-Fi and LTE that can operate
alternatively but not simultaneously. Three types of nodes are
considered: the high performance nodes (HPC) that have the
largest battery capacity (10,000 mAh), CPU power (2 Watt),
and processing throughput (1 MB/sec); the low performance
nodes (LPC) that have the lowest battery capacity (2,100
mAh), CPU power (0.5 Watt), and processing throughput (0.75
MB/sec); and the medium performance nodes (MPC) that have
all the hardware capabilities in-between HPC and LPC. In
Fig. 3, the Y-axis shows the cumulative energy of all nodes in
the network for conducting a single data operation. Each 2MB
file is encoded with (k, n) = (3, 9), so a file creator needs
to find at least 9 storage nodes and a file requester needs to
find at least 3 data fragments in order to recover a file. Each
processing job processes 5 randomly selected files stored in
MSPS.

 0

 20

 40

 60

 80

 100

 120

 140

20 50 60 75

E
n

e
rg

y
(J

o
u

le
)

p
e

r
o

p
e

ra
ti
o

n

Network Size

creation

retrieval

processing

(a)

 0

 50

 100

 150

 200

20 50 60 75

E
n

e
rg

y
(J

o
u

le
)

p
e

r
o

p
e

ra
ti
o

n

Network Size

creation

retrieval

processing

(b)
Fig. 3. (a) Data operations in MSPS. (b) Data operation with random
allocation.

The energy consumption of data operations increases with
the network size due to the energy overhead from the addi-
tional nodes. When the network density increases, the radio
interference also causes lower throughput and thus higher
communication energy consumption. In general, data creation
consumes higher energy than data retrieval because each
creation distributes 9 fragments while each retrieval downloads
only 3 fragments. However, since data creator usually finds
storage nodes in its nearby neighbors while data requester may
retrieve fragments from storage nodes far away, their energy
consumption difference is much smaller than factor of 3. The
energy consumption of data processing is expected to be the
highest because each processing job involves retrieving and
processing 5 files. We observe that the energy consumption
of all three data operations increase almost linearly with the
network size, which demonstrates the scalability of MSPS in
larger networks. We also compare MSPS (Fig. 3a) with a
random allocation scheme (Fig. 3b) in which storage nodes
and processor nodes are selected in a random manner. MSPS
outperforms the random scheme by at least 40%.

B. Effects of communication interfaces

In this section, we evaluate the energy savings gained by
intelligently using multiple communication interfaces. Fig. 4
shows the communication energy of various job sizes when
using different communication interfaces. LTE consumes ap-
proximately 4 − 6 times higher power than Wi-Fi, but LTE
takes the advantages of longer communication range, more
stable links, and higher throughput. Since our primary ob-
jective is to minimize energy consumption, MSPS prioritizes
Wi-Fi when nodes are within short range. However, when
two nodes are multiple hops away, the cumulative energy
for sending, relaying, and receiving a packet in the Wi-Fi
network may exceed the energy of using LTE network. Fig. 4a
shows that on average, using only Wi-Fi is the least energy-
efficient option. It is because in a network of 50 nodes spread
across 800m2 area, the hop-count distance between two nodes
can be as high as 7 hops. It is also likely that the Wi-
Fi network disconnects temporarily and some nodes become
unreachable from others. Fig. 4b shows the breakdown of
energy consumption for processing a job. The fact that each
individual energy consumption increases almost linearly with
the job size shows that MSPS highly scalable.

C. Performance of Load balancing algorithm

Fig. 5 shows how MSPS allocates communication and
processing tasks considering the energy capacities of each

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 20 30 40 50 60

C
o

m
m

u
n

ic
a

ti
o

n
 E

n
e

rg
y
 (

J
o

u
le

)

Job size

Wifi Only

LTE Only

Wifi+LTE

(a)

 0

 100

 200

 300

 400

 500

 600

 700

10 20 30 40 50 60

E
n

e
rg

y
 (

J
o

u
le

)

Job Size

Wifi

LTE

CPU

(b)
Fig. 4. (a) Comparison of using Wi-Fi only, LTE only, or both for data
processing.(b) Energy consumption of different components.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 40 60 80 100 120 140 160 180 200 220
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

T
o
ta

l
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
(J

o
u
le

)

N
u
m

b
e
r

o
f
d
a
ta

 o
p
e
ra

ti
o
n
s
 p

e
rf

o
rm

e
d

Time (min.)

high_cap_nodes

low_cap_nodes

high_cap_operation_count

low_cap_operation_count

(a)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 20 40 60 80 100 120 140 160 180 200 220
 0

 50

 100

 150

 200

 250

 300
T

o
ta

l
E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
(J

o
u
le

)

N
u
m

b
e
r

o
f
d
a
ta

 o
p
e
ra

ti
o
n
s
 p

e
rf

o
rm

e
d

Time (min.)

high_cap_nodes

low_capa_nodes

high_cap_operation_count

low_cap_operation_count

(b)
Fig. 5. (a) Energy consumption and tasks assigned to nodes with different
energy capacities. (b) Same as (a), but without using standardized energy.

node. 50 nodes of three different types HPC, MPC, and LPC
are deployed. Each node is assigned one of the three types
with equal probability. Fig. 5a shows the energy consumption
and the number of tasks (send/receive fragments or process
files) assigned to different types of nodes. The result shows
that HPC nodes receive about 2 times more tasks and con-
sume 3 − 4 times more energy than the LPC nodes during
the entire operation. This is our desired behavior as more
tasks are pushed to nodes with higher energy capacity or
processing resources. Fig. 5b shows the result of the same
experiment without using the standardized energy. This way,
MSPS neglects the differences of energy capacities and evenly
allocates tasks to each node based on the absolute energy
consumption. The load balancing algorithm ensures that each
node receives approximately the same workload regardless of
the remaining energy. This causes low energy capacity nodes
to die much earlier and impacts the overall performance, as
shown in Fig. 6.

Fig. 6 evaluates the performance of the load balancing
algorithm. When allocating a communication or processing
task, MSPS considers the energy load (Eq. 2), communication
utilization (Eq. 3), and CPU utilization (Eq. 4). A node should
not receive more tasks than it can handle, which causes system
bottleneck and high delay; neither should a node be much
busier than other nodes, which causes a network hotspot and
harms the system lifetime. Fig. 6a shows the load imbalance
of high performance nodes (HPC) and low performance nodes
(LPC) at different times. The thresholds SLI , Scom, and Scpu

values are all set to 0.5, meaning that MSPS tries to keep the
communication utilization and CPU utilization around 50%.
The load imbalance values of both HPC and LPC nodes stay
around 1 most of the times.

In Fig. 6b, we compare the load imbalance and the system
lifetime between enabling or disabling the load balancing
algorithm (set g(i, t) = 0 in Eq. 13). We declare a system

 0

 1

 2

 3

 4

 0 50 100 150 200
 0

 200

 400

 600

 800

 1000

L
o

a
d

 I
m

b
a

la
n

c
e

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
(J

o
u

le
)

time(min.)

HPC LI

LPC LI

HPC Energy

LPC Energy

(a)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 100 200 300 400 500 600
 0

 20

 40

 60

 80

 100

L
o
a
d
 I
m

b
a
la

n
c
e

%
 o

f
fu

n
c
ti
o
n
a
l
n
o
d
e
s

time(min.)

LI alg.

No LI alg.

Failure% with LI

Failure% without LI

(b)
Fig. 6. (a) Energy consumption and load imbalance of different types of
nodes. (b) Load Imbalance and percentage of functional nodes.

 5

 10

 15

 20

 25

 30

 35

 20 30 40 50 60

N
o
d
e
s
 V

is
it
e
d

Network Size

Creation-(k,n)=(3,6)

Retrieval-(k,n)=(3,6)

Creation-(k,n)=(6,12)

Retrieval-(k,n)=(6,12)

(a)

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60

U
n
ic

a
s
t
P

a
c
k
e
ts

 S
e
n
t

Network Size

Creation-(k,n)=(3,6)

Retrieval-(k,n)=(3,6)

Creation-(k,n)=(6,12)

Retrieval-(k,n)=(6,12)

(b)
Fig. 7. (a) Number of resources discovered by search agents. (b) Number of
packets sent during a search procedure.

failed when more than 50% nodes have failed due to depleted
energy. The figure shows that our load balancing algorithm
not only reduces the system-wide load imbalance by 30-50%,
but it also extends the system lifetime by 30%.

D. Performance of agent-base search algorithm

Agent-based search procedure disseminates data operation
requests and explores the storage nodes, data fragments, and
processor nodes. Although LTE broadcast can immediately
reach all nodes in the field, the purpose of the agent-based
search is to efficiently search for desired resources with
minimal network traffic and energy overhead. When (k, n) =
(3, 6), a storage discovery searches for at least 6 storages node
and a file discovery needs to find at least 3 data fragments. The
Y-axis of Fig. 7a shows the number of resources that search
agents found at the end of a searching procedure. For data
creation, the number of the discovered resources is about two
times of the n value because we set the target resource to
2n. This setting allows the creator to choose more reliable
storage nodes from a larger group of candidate nodes. Fig. 7b
shows the total number of unicast packets sent during a search
procedure, i.e., the number of search agents dispatched from
all nodes. Data creation induces much less traffic because
it simply discovers the nodes around the file creator. Data
retrieval agent, however, needs to explore further in order to
find the desired fragments. The result shows that the number
of packets sent is approximately linear to the network size,
which indicates the agent-base search algorithm is scalable to
larger or denser network.

E. Hardware Implementation

To understand the feasibility and performance of our algo-
rithm in real hardware, we implemented MSPS on Android
devices and created the MediaShare application that shares
and processes multimedia files stored on mobile devices. The
processing function of MediaShare extracts image frames from

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

(1,2) (2,4) (3,6) (4,8)

T
im

e
 (

s
e
c
.)

(k,n)

creation

retrieval

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

2 4 6 8

T
im

e
 (

s
e
c
.)

Network Size

retrieval

processing

(b)
Fig. 8. (a) Running time of data operations under different (k,n) settings. (b)
Data processing time in different network sizes.

Fig. 9. Screenshots of MediaShare Application. From left to right are Home
screen, Directory, and Job List pages

videos and pictures that contain human faces. The processing
function needs to decode video, extracts video frames, and
performs facial recognition on each frame. Each video is
sampled at 2Hz. The facial recognition library can process one
image frame in 0.5–1.5 seconds depending on the processor
speed and image complexity. The MSPS middleware and
MediaShare application each contains about 9,000 and 2,000
lines of Java code. The application is developed on Android
SDK 4.2.2. Some user interface of MediaShare is shown in
Fig. 9.

During Summer Institute on Flooding exercise [19], 10
participants used MediaShare App to share and process media
files in a controlled disaster environment. The App was
installed on at least 5 different types of Android devices as
listed in Table II. Fig. 8a shows the average time for creating
and retrieving a 3MB file using different (k, n) settings. As
expected, data creation takes longer than data retrieval because
a file creator needs to distribute more data fragments than a
file requester needs to retrieve. The resource discovery time of
agent-based search is small (<1%) compared to the actual data
transferring time and thus is not shown. Fig. 8b shows the data
retrieval time and CPU processing time for analyzing eleven
30 seconds 30MB video files. Note that the data retrieval
time is extremely low in 2 nodes network because each node
can simply recover the files directly from its local stored
fragment when (k, n) = (1, 2). The overall data processing
time reduces as more nodes join and provide more processing
resources. From the first responders’ positive feedback and the
performance results, we are confident that MSPS is efficient
and feasible on real hardware.

VII. CONCLUSIONS

This paper presents the design of MSPS - a distributed stor-
age and processing system for heterogeneous mobile clouds.

Envisioning the pervasiveness and diversity of mobile devices
in the near future, we study how a collection of mobile devices
with different hardware specifications can work together in
an energy-efficient and load-balanced manner. Our algorithm
considers the diverse characteristics of the communication
interfaces, processing capabilities, and energy capacities when
allocating resources. In particular, our distributed solution
adapts well in networks of heterogeneous device types and
is scalable to larger networks. From extensive simulations and
a real-world implementation, we show that MSPS achieves our
expected objectives and is practical on real hardware.

REFERENCES

[1] B. McGarry, “Army set to introduce smartphones into combat,”
http://www.military.com/, March 2013.

[2] S. M. George et. al., “Distressnet: a wireless ad hoc and sensor
network architecture for situation management in disaster response,”
Communications Magazine, IEEE, vol. 48, 2010.

[3] D. Neumann, C. Bodenstein, O. F. Rana, and R. Krishnaswamy,
“STACEE: enhancing storage clouds using edge devices,” in WACE,
2011.

[4] P. Stuedi, I. Mohomed, and D. Terry, “WhereStore: location-based data
storage for mobile devices interacting with the cloud,” in MCS, 2010.

[5] R. K. Panta, R. Jana, F. Cheng, and Y.-F. R. Chen, “Phoenix: Storage
using an autonomous mobile infrastructure,” TPDS, 2013.

[6] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among intermittently connected mobile
devices,” in MobiHoc, 2012.

[7] D. Huang, Z. Zhou, L. Xu, T. Xing, and Y. Zhong, “Secure data
processing framework for mobile cloud computing,” in INFOCOM
WKSHPS, 2011.

[8] C. Chen, M. Won, R. Stoleru, and G. Xie, “Energy-efficient fault-tolerant
data storage and processing in dynamic network,” in MobiHoc, 2013.

[9] J. George, C.-A. Chen, R. Stoleru, G. G. Xie, T. Sookoor, and D. Bruno,
“Hadoop mapreduce for tactical clouds,” in CloudNet. IEEE, 2014.

[10] E. E. Marinelli, “Hyrax: cloud computing on mobile devices using
mapreduce,” CMU DTIC Document, Tech. Rep., 2009.

[11] G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for
mobile devices,” in Proc. of the Workshop on MCS, 2010.

[12] D. Huang, X. Zhang, M. Kang, and J. Luo, “MobiCloud: Building secure
cloud framework for mobile computing and communication,” in SOSE,
2010.

[13] M. D. Kristensen, “Scavenger: Transparent development of efficient
cyber foraging applications,” in PerCom, 2010.

[14] S. Huchton, G. Xie, and R. Beverly, “Building and evaluating a k-
resilient mobile distributed file system resistant to device compromise,”
in MILCOM, 2011.

[15] C. Chen, M. Won, R. Stoleru, and G. Xie, “Resource allocation for
energy efficient k-out-of-n system in mobile ad hoc networks,” in Proc.
of ICCCN, 2013.

[16] Y. Feng, R. Stoleru, C.-A. Chen, and G. G. Xie, “Resource allocation
for energy efficient k-out-of-n system in mobile ad hoc networks,” in
Proc. of ICCCN, 2014.

[17] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of 4g
lte networks,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services. ACM, 2012, pp. 225–238.

[18] R. Barr, Z. J. Haas, and R. van Renesse, “Jist: An efficient approach to
simulation using virtual machines,” Software: Practice and Experience,
2005.

[19] CRASAR, “2015 summer institute on flooding,” hidden for blind review,
July 2015.

