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Risk scores in real-time:
the untapped potential of mobile health
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Abstract

Risk scores are used throughout medical care to guide treatments, allocate resources, and control outbreaks
of disease. Though valuable, most risk scores are limited by their basis in aging datasets and their use with
patients in single, time-constrained consultations. Mobile health could collect longitudinal or even continuous
data on patient health. Automated, dynamic, and real-time risk profiles could trigger earlier interventions, improve
clinical outcomes, guide resource distribution, and preempt outbreaks. Dynamic risk profiles hold enormous
potential for global health, and smartphones are now uniquely equipped and positioned to unlock that potential.
We identify cough, an information-rich and readily monitored syndrome, as the symptom that will pioneer 'smart
risk profiling’ systems, prove their value in alleviating the global burden of respiratory disease, and usher in a

new era of proactive mobile health.
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Managing risk: proactive healthcare

A common goal across all stages of healthcare is to under-
stand and minimize risk [1]. Assessments of risk during
regular consultations allow physicians to guide preventative
care [2-5]. In treating illnesses, the return to low-risk status is
often an explicit treatment goal [2, 6-8], and in public health,
minimizing risk across a population is the typical means of
controlling disease [9—14]. It is the focus on identifying and
minimizing risk that drives the difference between reactive
and proactive approaches to care [1-5].

Health risk profiling saves lives and reduces the global
burden of disease [15, 16]. Generating risk scores for spe-
cific illnesses help clinicians identify vulnerable populations
[17], advise patients in lifestyle decisions [18], trigger early
interventions [16, 19], preempt the exacerbation of symptoms
[14], improve clinical outcomes [14, 15, 20], allocate limited
resources in triage scenarios [21-23], and reduce the finan-
cial burden of care [24]. For these reasons, risk scores are
ubiquitous in strategies for the prevention and treatment of
cardiovascular disease [25-33], Chagas’ heart disease [34],
chest pain [16], stroke [19, 35], dementia [36], diabetes [18],
kidney disease [37], childhood metabolic risk [38], asthma
[14, 39, 40], oral cancer [41], lung cancer [42—46], tuber-
culosis (TB) [15], HIV-TB interactions [17], mental health
disorders [47], repeat hospital admissions [24], acute care in
emergency rooms and intensive care units [21-23], and, most
recently, COVID-19 [16, 20].

Risk scores use past trials to predict future outcomes
based upon a patient’s preexisting and current conditions.
These inputs typically include patient disabilities and comor-

bidities (e.g., [14, 43]), demographic factors (e.g., [38]), sim-
ple measurable features such as weight or blood pressure (e.g.,
[17, 38], electronic medical records [43], and, most recently,
genomics (e.g., [48]). These patient characteristics are then
fed to an algorithm, which is based upon a collection of past
cases in which patient characteristics have been paired with
disease diagnoses or treatment outcomes [49], and returns a
risk score. These risk scores may be a continuous score, usu-
ally between 0 and 1, or a stratified score (low, moderate, or
high risk), which are tied to recommendations for treatment,
referral, and reassessment [14, 49-52] (see Box 1 at end).

While generally effective [15, 16], such risk scores are
inherently limited. First, most scores are based upon archival
datasets whose relevance to present-day health risks grows
increasingly antiquated [28, 51]. Second, many risk scores are
commercialized and distributed as products whose underlying
algorithms remain proprietary and therefore difficult to eval-
uate [51]. Third, these scores are built for specific illnesses,
making them unable to account for the interaction of multiple
comorbidities [49]. Finally - and most problematically - these
risk algorithms are typically applied to patients using data
drawn from a single, time-constrained clinical consultation
[51].

Risk scores are rarely applied to patients based upon
long-term patient monitoring. Risk score algorithms are
developed using the analysis of longitudinal data, in which
patients are checked repeatedly throughout time to identify
trends [36, 47, 53-55], but this is not how risk scores are
applied. Patients are scored according to spot-sampled data,
not trends from longitudinal observations, despite the latter



providing a richer picture of a patient’s condition [56]. But as
medical technologies advance, longitudinal data have become
increasingly integral to patient monitoring, particularly for
patients with cardiovascular disorders [57-61], respiratory
disease [62, 63], or obstructive sleep apnea [64]. Remote
sensors within pacemakers and electrocardiograph patches,
for example, provide a rich time series of data that can be used
to develop risk scores in near-real-time [58, 60]. These studies
have demonstrated that trends in the patient’s own health can
be a valuable predictor of long-term risk. Longitudinal risk
inputs could detect symptom exacerbations earlier, reduce
clinical visits, and improve quality of life [59, 65, 66].

The potential of mobile health

Mobile health technology has made risk easier to assess
longitudinally. The use of mobile wireless technology for
public health — known as mHealth [67] — has been transform-
ing health services across the globe [67—-69]. Smartphones are
in the pockets and purses of nearly half the world population
[70], and there are more phones than people in some West-
ern developed nations [70, 71]. In high-income areas, up to
half of smartphone owners use their devices to manage their
health [72-74]. For individuals in remote settings and areas
of high deprivation, smartphones connect users to information
and care that were previously unavailable [75-77], and equip
frontline health workers with digital tools that compound
their local impact [33, 41]. MHealth is widely considered a
key pathway for reducing socioeconomic disparity in global
health [69, 78-81]. Though still in its infancy, mHealth has
already yielded benefits for patients with diabetes [82, 83],
obesity [84, 85], atrial fibrillation [78, 86], pregnancy compli-
cations [50], asthma [87-89], chronic obstructive pulmonary
disorder (COPD) [89], substance abuse issues [90], mental
health disorders [91-94], and cancer [95-97]. Messaging ser-
vices, client portals, self-reporting surveys, and reminders for
appointments and medications have all improved longitudinal
care [74, 83, 86, 87, 89, 91, 95, 98, 99].

Most importantly, smartphones bring continuous risk
monitoring within reach. These devices come with built-in
sensors and satellite links that allow for data collection of
unprecedented volume and dimensionality [100]. In principle,
smartphones are capable of monitoring health indicators on
a continuous longitudinal basis, without the need for clin-
ical outreach or proactive self-reporting on the part of the
patient. Moreover, the algorithms that generate these scores
no longer need to depend upon archived data; as more and
more real-time, high-resolution data are collected from the
population of users, risk scores can be continually improved
through machine learning techniques [49, 77, 101, 102]. If
risk scores were updated in real-time and increasingly person-
alized according to individual baselines, they would allow for
even earlier clinical interventions [52, 86], better prioritiza-
tion of diagnostic testing resources [52, 103], more effective
in-person consultations [19], rapid response to disease out-
breaks [104], and detailed outpatient monitoring throughout
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the course of illness [52].

That potential, however, remains largely untapped.
Most mHealth interventions have taken the form of SMS
messages or apps that provide appointment reminders [78, 86,
90, 95, 105], instructions for managing prescriptions [89, 106—
108], health education [89], guided self-care activities [77, 92,
109], daily logs (e.g., Blood Pressure Log), symptom surveys
[77], interactive tools for self-diagnosis [69, 73, 77, 109], and
encouragement towards exercise-, diet-, and addiction-related
goals [89, 106]. These services have facilitated and emulated
clinical care in important ways (see above), but mixed results
in several areas have underscored the fact that mHealth will
never replace in-person care [87, 110-113].

Smartphones: the key to dynamic risk profiling

But the value of smartphones in mHealth lies not in their
comparability to a doctor, but in the services they might
offer that no clinician ever could. Unlike doctors, smart-
phones are uniquely able (1) to follow patients wherever they
are carried, (2) to measure vital signs and other indicators of
health quantitatively in real-world scenarios, (3) to store long-
term time series of such data for review at a later date, and (4)
to integrate data across users to train dynamic models of risk
assessment — all on a continuous basis. This enormous po-
tential for mobile-device biosensing has been anticipated for
several years [77, 78, 87, 101, 102], and the concept has been
proven through various controlled and retrospective studies
(e.g., [43, 104, 114]).

No clinically validated mHealth service has yet to im-
plement dynamic risk profiling based upon continuous
syndromic monitoring. Several mHealth apps allow users
to interact with risk algorithms by manually entering data
[94, 115, 116], and others have used built-in or auxiliary sen-
sors to screen for risk during guided exercises (e.g., [50, 117]).
But the demand of mHealth for objective, quantitative, con-
tinuous risk profiling remains to be met [69, 86], even as the
global prevalence and severity of respiratory, cardiovascular,
and mental illnesses continue to increase [86, 118, 119].

Cough: the ideal syndrome to pioneer dynamic risk

Certain indicators of health, such as cough, are particu-
larly ideal for ‘smart risk profiling’. Unlike other diagnos-
tic signs such as blood pressure, body temperature, heart rate,
and blood oxygen levels, cough can be measured remotely
without specialized sensors [102, 120]. Coughs are a con-
spicuous and common symptom of many respiratory illnesses
that span the full range of prevalence, morbidity and lethality,
from asthma and COPD to COVID-19, lung cancer, and TB
[62, 63, 104]. Coughs have acoustic signatures that contain
important diagnostic information, and equally telling is the
frequency and severity of cough production [121-123]. All
of these attributes can readily be monitored using the micro-
phones that are built into smartphones [123]. For decades,
cough counting has been an important tool in the screening,



diagnostics, and monitoring of respiratory disease within clin-
ical settings [120, 122—128]. Now smartphones are poised
to scale the value of cough monitoring to entire populations
[123]. With phones as a platform, cough data can be readily
combined with other continuous sensors, e.g., accelerome-
try, as well as push surveys to improve risk score accuracy
and actionability. And, by integrating cough monitoring data
streams into medical records, primary care providers would
have access to a rich diagnostic picture of the patient’s condi-
tion [123]. Cough appears to be the biomarker of choice to
pioneer the age of dynamic, smartphone-based risk profiling.

‘Smart risk profiling’ can address the growing global
burden of respiratory disease. Respiratory diseases account
for one-quarter of all deaths worldwide, and they are the lead-
ing cause of death in developing nations [129]. Hundreds
of millions endure chronic respiratory conditions that reduce
quality of life [129], and pandemic respiratory diseases have
depressed economies and exacerbated social inequalities glob-
ally [130, 131]. These diseases — and the cough syndromes
that come with them — will increase in the years to come
[130, 132]. But the growing relevance of cough has coin-
cided with the proliferation of smartphones [70], presenting
mHealth with an urgent opportunity. Dynamic risk profiles,
informed by smartphone-based cough monitoring, could alle-
viate the global burden of respiratory disease and lead mobile
health into a new era of proactive care.
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Box 1. Calculating risk scores

To review standard methods for constructing health risk scores, we reviewed a range of risk scores developed for various
diseases and medical outcomes, including asthma [14, 39], lung cancer [43], COVID-19 hospitalization/mortality [16], TB
[15, 17], cardiovascular disease [32, 49], chest pain [16], Chagas’ heard disease [34], diabetes [18], childhood metabolic
risk [38], and mortality probability upon admission to emergency rooms [22] and ICUs [23].

Risk scores are usually stratified using three-tiers: low-, intermediate-, and high-risk.
Continuous risk scores (i.e., a value between 0 and 1) are quite rare (e.g., [14]) compared to the strategy of risk
stratification (i.e., low-, intermediate-, and high-risk; e.g., [15-18, 20, 38, 49].

Most studies adhere to the same general procedure for risk score development.

1. Statistical models are fit to variables that may be predictive of a patient’s clinical outcomes.

2. The best-fit model is used to cull the set of variables to important predictors only.

3. Those predictors are assigned weighted points in proportion to their Beta correlation coefficients within the model
[16, 17, 22, 32, 34]. This is typically a linear transformation that is then scaled and rounded. For example, Nguyen
et al. [17] divided all coefficients by the smallest coefficient, multiplied by an arbitrary constant, then rounded
to the nearest integer. In another instance, Abdelbary et al. [15] rounded coefficients to the nearest 10th and
multiplied by 10.

4. Patients are given a score based on the sum total of their predictor variable weights.

. Patient scores are then sorted into deciles (quantile 0.0 — 0.09, 0.10 — 0.19, etc.) (e.g., [17, 18, 49]).
. These scores are then collapsed into terciles (deciles 0.0 — 0.3, 0.3 — 0.6, 0.7 — 1.0) to assign low-, medium-,
high-risk (e.g., [17, 18]).
7. Total performance for the algorithm is based upon the Area Under the Curve (AUC) for the pooled receiver
operating characteristic (ROC), which describes trade-offs between the sensitivity and specificity of the model
[15-17, 20, 34, 38, 43].

o O

Other methodologies include the following:

1. When only two risk strata are used (i.e., low- and high-risk), the risk score can be calibrated by finding the threshold
that maximizes the area under the curve [38]

2. Inclusion of other performance metrics such as positive predictive value, negative predictive value, the positive
probability ratio, and the negative probability ratio [22]. AUC confidence intervals have been assessed using
standard techniques such as leave-one-out cross-validation [16] and bootstrapping [18].

3. When presumptive risk indicators were used instead of outcomes (e.g., cardiovascular fitness), a patient’s risk
was assigned based on its sample quantile [38].

4. Three-tier risk profiles have also been based simply upon the number of known risk factors present (Low = 0,
Intermediate = 1 — 2, High = more than 2) [35]

5. Risk profiles have also been validated using the coefficient of correlation between predicted and observed
outcomes [14].

Most risk scores are based upon multivariate logistical models.

The vast majority of studies reviewed here based risk scores upon multivariate logistic regression models [14-17, 20, 23,
34, 39]. Less common methods include Kaplan-Meier survival curves [34, 49], Cox proportional hazard rate models
[18, 32], generalized linear mixed models [16], machine learning [43], and simple sums of questionnaires [40]. Nearly
all studies trained their models upon a ‘learning’ cohort or subsample of their data, then validated their model using a
testing cohort.

Data for most studies are drawn from retrospective longitudinal studies.

All of these risk score algorithms were developed using archival datasets in which patient characteristics were assessed
during a baseline period and then paired with known clinical outcomes at later dates, based upon either longitudinal
monitoring or the examination of medical records.

We were unable to find any studies pertaining to dynamic risk scores based on continuously collected data, e.g., from
mobile devices. However, recent studies have incorporated continuous data streams from mobile devices into correlations
with health outcomes such as influenza [114] and COVID-19 [104]. In these studies, predictor variables are derived from
data streams based upon anomalies. The mean value during a rolling window is compared to the overall mean value
for a user; if that rolling mean exceeds a threshold deviation from the overall mean (e.g, 1.5 standard deviations) for a
threshold period of time (e.g., 4 days), the time period is categorized as anomalous.




