
Taylor Osmun

Institute for Information Technology
National Research Council, Canada

Fredericton, NB, Canada

1

 WellnessRules Overview

 WellnessRules + Rule Responder

 PA & OA components of WellnessRules

 WellnessRules Ontology in N3

 Sample WellnessRules usage through N3 & Euler
 Sample Query

 Sample Result

 MyActivity Rule

2

 WellnessRules goal is to create an online-interactive wellness
community. This community would have the ability to:

 Create profiles about themselves containing their preferences for activities
and nutrition, their event days, and their fitness levels.

 Collaborate with others in the community to schedule group wellness
events.

 Track other participant’s progress and relate it to their own.

 Rules about wellness opportunities are created by participants in rule
languages such as Prolog and N3, and translated within a wellness
community using RuleML/XML.

3

 Rule Responder is an intelligent multi-agent infrastructure
for collaborative teams and virtual communities.

 Each Rule Responder instantiation uses three different
kinds of agents:

 Organizational Agent (OA)

 Personal Agents (PAs)

 External Agents (EAs)

 WellnessRules uses the OA, PAs, and EAs to create an
online-interactive wellness community.

4

 Contains all global knowledge in the WellnessRules
knowledge base.

 Knowledge Areas:

 Season
 Defines timeframe of the seasons.

 Forecast
 Describes the weather forecast within timeframes.

 Meetup
 Contains activity meet up locations for maps.

5

 Contains local knowledge which is unique to each participant in the
WellnessRules community.

 Knowledge Areas:
 Calendar

 Used for event planning. Allows for sharing of calendars between profiles.

 Map
 Links to Meetup locations. Allows for sharing of maps between profiles.

 Fitness
 Defines expected fitness level for specific a period of time.

(scale of 1-10)

 Event
 Possible/Planned/Performing/Past

 MyActivity
 Define user’s individual activity preferences

6

 The WellnessRules ontology
is broken into two topics,
Activity, and Nutrition.

 Each of these contain
multiple sub-topics (i.e.
Running).

 Our N3 representation uses
rdf:type and rdfs:subClassOf

7

@prefix : <wellnessRules#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

:Wellness rdf:type rdfs:Class.

:Activity rdf:type rdfs:Class;

rdfs:subClassOf :Wellness.

:Walking rdf:type rdfs:Class;

rdfs:subClassOf :Activity.

:Running rdf:type rdfs:Class;

rdfs:subClassOf :Activity.

:Swimming rdf:type rdfs:Class;

rdfs:subClassOf :Activity.

:Skating rdf:type rdfs:Class;

rdfs:subClassOf :Activity.

:Yoga rdf:type rdfs:Class;

rdfs:subClassOf :Activity.

:Hiking rdf:type rdfs:Class;

rdfs:subClassOf :Activity.

:Baseball rdf:type rdfs:Class;

rdfs:subClassOf :Activity.

 The following slides contain:

 Sample Query

 Sample Result

 MyActivity Rule

 The prefix ‘:’ represents the WellnessRules knowledge base:

 There are 3 things to look for:

 Query Constants – User’s preferences, ‘passed in’ to the
rule and conclusion.

 Variables – The variables that are ‘transported’ from
premise to conclusion.

 Profile Constraints – Profile’s preferences, used in the MyActivity
rule.

8

@prefix : <wellnessRules#>.

 Asks the WellnessRules
system if the user ‘p0001’
is interested in going for
an indoor run during the
given times.

 Query Constants:

 :MyActivity

 :p0001

 :Running

 :in

 “2009-06-15T10:15:00”

 “2009-06-15T11:15:00”

Query

@prefix : <wellnessRules#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

_:myActivity

rdf:type :MyActivity;

:profileID :p0001;

:activity :Running;

:inOut :in;

:minRSVP ?MinRSVP;

:maxRSVP ?MaxRSVP;

:startTime "2009-06-15T10:15:00";

:endTime "2009-06-15T11:15:00";

:location ?Place;

:duration ?Duration;

:fitnessLevel ?FitnessLevel.

9

 p0001 is interested in
running indoors within
this timeframe.

 Variables:

 1

 2

 :joesGym

 “P10M”

 5

_:sk46

a :MyActivity;

:profileID :p0001;

:activity :Running;

:inOut :in;

:minRSVP 1;

:maxRSVP 2;

:startTime "2009-06-15T10:15:00”;

:endTime "2009-06-15T11:15:00”;

:location :joesGym;

:duration "P10M”;

:fitnessLevel 5.

10

rdf:type

Datetime format
for 10 minutes

Conclusion

Implies

Premise
{

…

}

=>

{

...

}.

 A rule consists of a
subgraph {... } of premises,

an ‘implies’ arrow =>
and a
subgraph {... } for the
conclusion.

 We will develop a rule,

showing its premises in
three parts, followed by its
conclusion.

11

{?calendar

rdf:type :Calendar;

:profileID :p0001;

:calendarID ?CalendarID.

?event

rdf:type :Event;

:calendarID ?CalendarID;

:aspect :Running;

:tense :possible;

:startTime ?StartTime;

:endTime ?EndTime.

?season

rdf:type :Season;

:startTime ?StartTime;

:value :summer.

?forecast

rdf:type :Forecast;

:startTime ?StartTime;

:aspect :temperature;

:value ?Temp.

?Temp math:notLessThan 30.

… }

 Using global and local
facts, the season and
temperature are retrieved.

 Profile Constraints:

 Has a possible event

 Season = Summer

 Temperature >= 30

12

Users may
be using
another

participant’s
calendar

{ …

?participation

rdf:type :Participation;

:profileID :p0001;

:activity :run;

:inOut :in;

:min ?MinRSVP;

:max ?MaxRSVP.

?map

rdf:type :Map;

:profileID :p0001;

:mapID ?MapID.

?meetup

rdf:type :Meetup;

:mapID ?MapID;

:activity :run;

:inOut :in;

:location ?Place.

… }

 Using global and local
facts, the min/max RSVP,
and location of the event
is determined.

 Profile Constraints:

 Has a possible event

 Season = Summer

 Temperature >= 30

13

{ …

?level

rdf:type :Level;

:profileID :p0001;

:activity :run;

:inOut :in;

:location ?Place;

:duration ?Duration;

:fitnessLevel ?FitnessLevel.

?fitness

rdf:type :Fitness;

:profileID :p0001;

:startTime ?StartTime;

:expectedFitness ?ExpectedFitness.

?ExpectedFitness math:notLessThan ?FitnessLevel.

}

 Using local facts, the level
of the activity, and the
user’s preferred level are
checked.

 Profile Constraints:

 Has a possible event

 Season = Summer

 Temperature >= 30

 Expected Fitness >=
Required Fitness

14

{ … }

=>

{

_:myActivity

rdf:type :MyActivity;

:profileID :p0001;

:activity :Running;

:inOut :in;

:minRSVP ?MinRSVP;

:maxRSVP ?MaxRSVP;

:startTime ?StartTime;

:endTime ?EndTime;

:location ?Place;

:duration ?Duration;

:fitnessLevel ?FitnessLevel.

}.

 The three key components,
Query Constants, Variables,
and Profile Constraints,
along with other facts in the
knowledge base, will be used
to fill this premise. This will
generate the previously seen
result.

 There can be many answers
to a single query.

15

Result:

Premise:

:MyActivity;

:p0001;

:Running;

:in;

1;

2;

"2009-06-15T10:15:00”;

"2009-06-15T11:15:00”;

:joesGym;

"P10M”;

5.

16

Query Constants:

 :MyActivity

 :p0001

 :Running

 :in

 “2009-06-10T10:15:00”

 “2009-06-10T11:15:00”

…

rdf:type :MyActivity;

:profileID :p0001;

:activity :Running;

:inOut :in;

:startTime "2009-06-15T10:15:00";

:endTime "2009-06-15T11:15:00";

…

Variables:

 1

 2

 :joesGym

 “P10M”

 5

…

:minRSVP 1;

:maxRSVP 2;

:location :joesGym;

:duration "P10M”;

:fitnessLevel 5.

…?Temp math:notLessThan 30.

Profile Constraints:

 Has a possible event

 Season = Summer

 Temperature >= 30

 Expected Fitness >=
Required Fitness

?event

…

:tense :possible;

…

?season

…

:value :summer.

?ExpectedFitness math:notLessThan ?FitnessLevel.

 WellnessRules Overview and Rule Responder

 Local and Global components of WellnessRules

 WellnessRules Ontology in N3

 Sample WellnessRules usage through N3 & Euler
 Query Constants

 Variables

 Profile Constraints

 Coming up:
 Euler Eye Installation, Demo,

and Deep Taxonomy Benchmark

17

Taylor Osmun

Institute for Information Technology

National Research Council, Canada

Fredericton, NB, Canada

18

 Three test cases:

1. Linear Relationship

2. Single Additional Option

3. Two Additional Options

 Timed via Java JRE 1.6.0_13, using Euler Eye 5.1.3

 Timings are taken for increasing number of triples.
100, 1 000, 10 000, and 20 000.

 Final values are plotted in MATLAB and equation is
estimated.

19

1. Uses a single fact:

2. Query is issued so that it must
traverse all possible answers:

20

…

:Test rdf:type :A1

3. Using this format for
relations. Each rule counts
as a triple.

4. Produces the result:

…

_:Subject rdf:type :A2.

…

{?X rdf:type :A1} => {?X rdf:type :B1}.

{?X rdf:type :B1} => {?X rdf:type :C1}.

{?X rdf:type :C1} => {?X rdf:type :D1}.

{?X rdf:type :D1} => {?X rdf:type :E1}.

…

{?X rdf:type :Y1} => {?X rdf:type :A2}.

...

:Test a :A2.

rdf:type

Z is skipped so as
to return to the

beginning of the
alphabet, within

24 characters.

 Note the linear
growth of the
time taken, as
more triples
(linear rules) are
added.

21

 Single additional option:

22

• Two additional options:

…

{?X rdf:type :A1} => {?X rdf:type :B1}.

{?X rdf:type :A1} => {?X rdf:type :Node1}.

{?X rdf:type :B1} => {?X rdf:type :C1}.

{?X rdf:type :B1} => {?X rdf:type :Node2}.

…

…

{?X rdf:type :A1} => {?X rdf:type :B1}.

{?X rdf:type :A1} => {?X rdf:type :Node1}.

{?X rdf:type :A1} => {?X rdf:type :Node2}.

{?X rdf:type :B1} => {?X rdf:type :C1}.

{?X rdf:type :B1} => {?X rdf:type :Node3}.

{?X rdf:type :B1} => {?X rdf:type :Node4}.

…

 Regardless of the number of additional options, the growth of the
function will still be linear.

 Change in magnitude:

 Linear Relationship @ 20,000:

 2,265 sec

 One Additional Option @ 20,000:

 4,695 sec

 Two Additional Options @ 20,000:

 7,143 sec

 But again, a linear pattern is observed.

 Therefore, Euler EYE is extremely efficient with regards to overall time,
as well as increasing complexity of the knowledge base.

23

 Euler Eye Results:

 Linear Relationship @ 20,000

 2,265 sec = 37.75 min
24

 OO jDREW Results:

 Linear Relationship @ 20,000

 2.3*10^14ms = 750 years

 Euler Eye Results:

 Linear Relationship @ 20,000

 2,265 sec = 37.75 min
25

 jDREW Results:

 Linear Relationship @ 20,000

 2.7*10^11 = 316 days
(OO jDREW = 750 years)

 Euler EYE was set up for use in Eclipse.

 Small demo using WellnessRules was shown.

 Using the three test cases, benchmarking results were
analyzed for Euler EYE

 These results were then compared to OO jDREW and
jDREW, respectively.

26

 Euler:
 http://www.agfa.com/w3c/euler/

 Semantic Web Tutorial Using N3:
 http://www.w3.org/2000/10/swap/doc/

 WellnessRules – Rule Responder:
 http://ruleml.org/WellnessRules/RuleResponder/

27

http://www.agfa.com/w3c/euler/
http://www.w3.org/2000/10/swap/doc/
http://ruleml.org/WellnessRules/RuleResponder/

