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1These notes stem from many inspirations: (1) lecture notes associated with a
glaciololgy class (GEOSCI 352) taught at the University of Chicago (this class was

taught twice, improvements to the notes were made in Winter of 1995 with the
help of H. Paul Jacobson, C. Hulbe, C. Jackson and V. Rommelaere), (2) notes
from an ice-shelf modelling workshop held at the University of Chicago in July,
1992 (attended by Ed Waddington, Craig Lingle and David Schilling), (3) the
EISMINT model-intercomparison (level 1) exercises (designed by P. Huybrechts

and A. Payne), (4) an EISMINT workshop held at the Alfred Wegener Institut
in Bremerhaven, Germany in June 1994, (5) the aftermath of the Bremerhaven
EISMINT Workshop (where flaws in the ice-shelf code were found), (6) the 1994
MGM meeting at Ohio State University, (7) the 1995 EISMINT summer school
in Grindlewald, (8) the 1996 EISMINT meeting in Brussels, and (9) the visit by

Ralf Greve of THD Darmstadt to Chicago in 1994. These notes are in rough-draft
form and many of the computing results have not been checked. In addition, the
Matlab programs presented here reflect a progression of increasing programming
skill on my part; some of the early programs are very inefficient and inelegant by
today’s standards. The latest chapter was created with the help of Byron Parizek

who was on loan from Richard Alley’s group at Penn State University.
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Chapter 1

Level 1: Axisymmetric
Ice-Sheet Flowline Model vs.
Exact Solution

This chapter covers the finite-difference version of the ice-sheet model exercise
in which a flowline model of a azimuthally symmetric ice sheet of circular plan
form is compared with an exact, analytic solution. The main focus of this
chapter is on how to numerically treat the diffusive mass-balance evolution
equation of a grounded, frozen-bed ice sheet. The temperature profile of
such an ice sheet has a strong influence on the speed of ice flow, however, to
keep things simple, thermodynamics will be considered separately in Chapter
8. We will begin our analysis of grounded ice-sheet models by developing an
exact, analytic solution of the governing equations (in steady state) following
the early glaciological pioneers Nye and Vialov. We will use this analytic
solution as a performance test on a finite-difference solution which we shall
also develop. Here, our focus will be on one-dimensional flowline models of
an axially symmetric ice sheet of circular plan form. We will consider a more
general ice-sheet plan geometry, in particular a square geometry, in the next
chapter.
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1.1 Governing Equation

The steady-state mass balance equation [Huybrechts, 1992, ch. 4] for an
azimuthally symmetric ice-sheet under the assumption that the ice-sheet bed
is at a uniform elevation z = 0 is

∇ · q− a = 0 (1.1)

where a = 0.3 m/yr is the accumulation rate (assumed spatially uniform),
and q is the ice-transport vector due to internal ice deformation [Huybrechts,
1992, ch. 4]

q = −2(ρg)3 (∇zs · ∇zs)∇zs
zs∫

0

z∫

0

Ao (zs − z′)
3
dz ′dz (1.2)

where ρ = 910 kg/m3 is the mean density of ice, g = 9.81 m/s2 is the gravi-
tational acceleration, zs is the surface elevation (also assumed to be equal to
the ice thickness for these exercises), ∇ is the two-dimensional (plan view)
gradient operator, ∇· is the two-dimensional (plan view) divergence operator,
z is the vertical coordinate, and Ao = 10−16 Pa−3/yr is the assumed uniform
value of a temperature-dependent flow-law rate constant. The integral on
the right-hand side of Eqn. (1.2) may be evaluated as follows:

zs∫

0

z∫

0

Ao (zs − z′)
3
dz′dz = −Ao

zs∫

0

zs−z∫

zs

u3dudz

= −Ao

∫ zs

o

u4

4
|zs−zzs

dz

= −Ao
1

4

∫ zs

0

(
(zs − z)4 − z4

s

)
dz

=
−Ao

4

(
−u5

5
|0zs − z5

s

)

=
Aoz

5
s

5
(1.3)
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The expression for q may now be simplified as follows (valid when the ice-
sheet bed is flat at z = 0 and when the temperature-dependent flow-law
constant Ao is uniform throughout the ice sheet):

q =
−2 (ρg)3 Aoz

5
s

5
(∇zs · ∇zs)∇zs (1.4)

A quick check of the units reveals that q has dimension of m2 s−1, it is thus
interpreted as a volume flux per unit cross-width.

With substitution of the expression given in Eqn. (1.4) for q in Eqn.
(1.1), the steady-state mass balance equation becomes,

∇ ·
(

2 (ρg)3Aoz
5
s

5
(∇zs)3

)
+ a = 0 (1.5)

It will be convenient for what follows to adopt nondimensional variables.
Accordingly, we set

zs → Zs

x, y → Lx, y

and choose scales Z and L to satisfy the following identity

2Ao(ρg)
3Z8

5L4
= a (1.6)

For L = 750 km and a = 0.3 m/yr, the above expression gives Z = 2756.7
m. Thus a nondimensional surface elevation s of 1 corresponds with a di-
mensional surface elevation of 2756.7 m. Our adoption of nondimensional
variables means nothing more than an agreement about what “meter stick”
we plan to measure space and velocity with. The use of nondimensional vari-
ables is completely arbitrary, and need not be followed by the reader. We
choose to use nondimensional variables because of the possible simplifications
and clarifications to the equations which may come later.

In nondimensional form, the governing equation becomes

∇ ·
(
(∇s)3 s5

)
+ 1 = 0 (1.7)

For future reference (see the next section), we record the nondimensional form
of the radius coordinate used in cylindrical coordinate systems: r→ Lr.
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1.2 Analytic Solution of Axisymmetric Ice-

Sheet Mass Balance Equation

1.2.1 Justification

The Level 1 grounded ice-sheet model intercomparison test suggested by the
EISMINT intercomparison group (as defined in the Bremerhaven workshop
of 1994) involves a square domain for which there is not an exact, analytic
solution for the steady-state ice-sheet surface profile. To achieve a comparison
between model and exact, analytic solution, we must temporarily turn our
attention to a new circular domain (with azimuthal symmetry) as shown in
Fig. (1.1).

1.2.2 Derivation

The azimuthally symmetric form of Eqn. (1.7) written in cylindrical coordi-
nates is

1

r

d

dr


rs5

(
ds

dr

)3

 + 1 = 0 (1.8)

We integrate this equation once as follows 1:

d

dr


rs5

(
ds

dr

)3

 = −r

rs5

(
ds

dr

)3

= −r
2

2
+ c

s5

(
ds

dr

)3

= −r

2
+
c

r

1This analytic solution was apparently derived by Nye and by Vialov. This refer-
ences is in P. Huybrecht’s paper on the EISMINT intercomparison test to be presented in
September 1995 at Chamonix.
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R=750 km

r

1500 km

1500km

Figure 1.1: To get an analytic solution of the steady-state mass balance
equation, it is necessary to simplify the problem by adopting cylindrical
coordinates r and θ, and to assume azimuthal symmetry (i.e., that zs is
independent of θ. The ice-sheet boundary condition is zs = 0 at r = R.
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s
5
3
ds

dr
=

(
−r

2
+
c

r

) 1
3

(1.9)

We make use of the boundary condition ds
dr = 0 at r = 0 to deduce that the

constant of integration c is equal to zero; thus,

s
5
3
ds

dr
=

(
−r

2

) 1
3

(1.10)

Integrating again, we have

3

8
s

8
3 + d =

∫ (−r
2

) 1
3

dr

= −
∫

6u3du

= −6

4

(
r

2

) 4
3

(1.11)

The constant of integration d can be evaluated by using the boundary con-
dition s(1) = 0, where r = 1 is the outer edge of the ice sheet:

d =
−6

4

(
1

2

) 4
3

(1.12)

The final result is an analytic expression for the surface elevation in nondi-
mensional variables:

s(r) =



4




(
1

2

) 4
3

−
(
r

2

) 4
3








3
8

(1.13)

In dimensional form, the above equation is written:

zs(r) = Z



4



(

1

2

) 4
3

−
(
r

2L

) 4
3








3
8

(1.14)

A graph of this solution is created using the following Matlab program on
a Macintosh:
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% This routine computes the analytic solution for an

% ice sheet of radius 1500/2 km.

%

g=9.81;

rho=910;

Ao=1/31556926 * 1e-16;

a=0.3/31556926;

L=1500e3/2;

Z=( 5*a*L^ 4/( 2 * Ao * (rho*g)^ 3 ) )^ (1/8);

r=linspace(0,1,101)’;

s=( 4 * ( (1/2).^ (4/3) - (r/2).^ (4/3) ) ).^ (3/8);

plot(L*r,Z*s)

The graph of zs(r) created by the above Matlab script is presented in Fig.
(1.2). In the next section, we shall reproduce this exact, analytic solution
using a numerical, finite-difference method.

1.3 Finite-Difference Solution of Axisymmet-

ric Ice-Sheet Mass Balance Equation

We now attempt to reproduce the analytical solution using a time-dependent
finite-difference model. Our strategy will be to begin our time-dependent
model with an arbitrary initial condition (say, a uniform, near zero ice thick-
ness) and to time-step the model through a sufficiently long period for the
ice thickness to settle down to a steady, or near-steady state.

The nondimensional time dependent form of the mass-continuity equation
is written

∂s

∂t
= 1 +

1

r

∂

∂r


rs5

(
∂s

∂r

)3

 (1.15)

where the nondimensional time t is defined using t→ Tt where T = 5L4

2Ao(ρg)3Z7 =
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Analytic solution for radial distribution of surface elevation

Figure 1.2: The analytic profile zs(r) computed using the expression in Eqn.
(1.14). This profile provides a benchmark to which a numerical solution of
the ice-sheet mass balance equation can be compared.
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Z
a ≈ 9189 years. Defining an effective diffusivity d(s):

d = rs5

(
∂s

∂r

)2

(1.16)

the mass-continuity equation becomes

∂s

∂t
= 1 +

1

r

∂

∂r

(
d
∂s

∂r

)
(1.17)

We adopt a staggered-grid “flux-centered” numerical scheme to assure
mass conservation [e.g., Waddington, 1981]. This scheme is pictured in Fig.
(1.3). Surface elevation s is defined as sni at grid point i = 1, . . . , N and at
time t = (n− 1)∆t where ∆t is the time-step size. The effective diffusivity d
is defined as dni at N−1 grid points that are offset from the grid points where
s is defined by half a grid spacing ∆r

2 , where ∆r = 1
N−1 is the nondimensional

grid spacing. The finite-difference expression for dni is

dni =
1

2
(ri + ri+1)

(
sni + sni+1

2

)5 (
sni+1 − sni

∆r

)2

(1.18)

where ri is the value of r at the i’th grid point. The finite-difference version
of Eqn. (1.17) is written using a fully implicit time step:

sn+1
i − sni

∆t
= 1 +

1

ri∆r2

{
dni

(
sn+1
i+1 − sn+1

i

)
− dni−1

(
sn+1
i − sn+1

i−1

)}
(1.19)

or,

sn+1
i−1

{
−dni−1

ri∆r2

}
+ sn+1

i

{
1

∆t
+
dni + dni−1

ri∆r2

}
+ sn+1

i+1

{
−dni
ri∆r2

}
=

sni
∆t

+ 1 (1.20)

The boundary conditions are s = 0 at r = 1 and q = 0 at r = 0. The latter
condition is tricky because it necessitates performing a “micro analysis” of
mass balance at the ice divide.

Micro-analysis of ice-divide boundary condition

Following Waddington [1981], the ice-divide boundary condition is developed
by considering the mass balance of a small region of circular planform cen-
tered on the ice divide of the ice sheet. As depicted in Fig. (1.4), a circular
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area of radius ∆r
2 is isolated and its mass balance is considered. The mass

flux into the area due to snow fall is (in nondimensional units) πr2 (where
r = ∆r/2). The mass flowing out of the area across the boundary at r = ∆r

2

is 2πrs5
(
∂s
∂r

)3
(where r = ∆r/2). The rate of mass accumulation within the

circular area is related to the rate of thickening, πr2 ∂s
∂t (where r = ∆r/2).

The mass balance equation gives:

πr2∂s

∂t
= πr2 + 2πr


s5

(
∂s

∂r

)3

 (1.21)

In finite-difference form, the above equation becomes:

sn+1
1

{
1

∆t
+

4

∆r2

(
sn1 + sn2

2

)5 (
sn2 − sn1

∆r

)2
}
−sn+1

2

{
4

∆r2

(
sn1 + sn2

2

)5 (
sn2 − sn1

∆r

)2
}

= 1+
sn1
∆t

(1.22)
(I am not entirely sure whether this above form is consistent with the finite-
difference formulation used elsewhere in the grid. The results of the steady
state experiment done below suggest that it is not.)

1.3.1 Exercise 1

Create a Matlab script which simulates the approach to steady state
ice-sheet thickness from an arbitrary initial condition (that you are free to
choose). Use an explicit scheme (where the effective ice diffusivity d and
the surface slope ∂s

∂r
are evaluated at time step n in order to determine the

solution at time step n+ 1).

1.3.2 Implicit Time-Stepping Solution Using an Im-

plicit Time Step and Matrix Notation

The finite-difference equation (1.20) together with the boundary conditions
derived above, including (1.22), may be written conveniently in matrix no-
tation:

Asn+1 = R (1.23)
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i i+1i-1

surface elevation point

effective diffusivity point

r

Figure 1.3: The staggered finite-difference grid used to solve the mass-
continuity equation for comparison with the analytic solution.

r

1 2 etc.

Figure 1.4: The mass balance of the ice divide is computed by considering
the mass flux into and out of the circular cell with radius equal to half the
grid spacing. Dark circles are grid points where s is defined, open circles are
grid points where d is defined. The analysis considers the snow accumulation,
the net volume gained, and the net flux across the boundary of the cell.
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where, sn is the column vector containing the sni ’s:

sn =




sn1
sn2
...
snN




(1.24)

where A is the tri-diagonal matrix who’s elements are:

Ai,i =
1

∆t
+
dni + dni−1

ri∆r2

Ai,i−1 =
−dni−1

ri∆r2

Ai,i+1 =
−dni
ri∆r2

for i = 2, . . . , N − 1, and

A1,1 =
1

∆t
+

2

∆r

(
sn1 + sn2

2

)5 (
sn2 − sn1

∆r

)2

A1,2 =
−2

∆r

(
sn1 + sn2

2

)5 (
sn2 − sn1

∆r

)2

AN,N = 1 (1.25)

and Ai,j = 0 otherwise, and where the right-hand-side vector R is defined as
follows:

Ri = 1 +
sni
∆t

for i = 2, . . . , N − 1

R1 = 1 +
sn1
∆t

RN = 0

The above finite-difference implementation was employed (using native
sparse matrix routines of Matlab ) to conduct the Level 1, steady state
experiment of the EISMINT intercomparison exercise as articulated at the
EISMINT intercomparison workshop held in Bremerhaven in 1994. Using
an initial ice thickness of zero and a constant accumulation rate, the s(r, t)
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was marched to steady state using 50-year time steps as shown in Fig. (1.5.
(Longer time steps introduced grid-point-to-grid-point oscillations.) Due to
the slowness of the Macintosh platform used to perform the computation,
the run was conducted for only 50,000 years. A comparison between the
finite-difference calculated ice-sheet surface profile at 50,000 years and the
exact, analytic solution is made in Fig. (1.5). As mentioned previously, the
temperature-depth profile is not computed in this particular implementation
of the Level 1 test (the ice flow is uncoupled from the ice temperature in
Level 1 tests, thus the lack of thermodynamics at this stage still yields a
result that can be intercompared between different models). Following the
convention of the EISMINT tests, 16 grid points were used to resolve the
radial transect plotted in Fig. (1.5).

The surface-elevation gradient propagates “inland” in the model run
shown in Fig. (1.5) by only one grid point per time step. This somewhat
unphysical result stems from the fact that longitudinal stresses in the ice
sheet are disregarded [e.g., Huybrechts, 1992, ch. 4].

The Matlab program used to compute the finite-difference evolution of
the axisymmetric ice sheet is listed as follows:

% Finite-difference solution of mass balance equations in an

% axisymmetric domain:

%

hold off

clg

N=16;

g=9.81;

rho=910;

Ao=1/31556926 * 1e-16;

a=0.3/31556926;

L=1500e3/2;

Z=( 5*a*L^ 4/( 2 * Ao * (rho*g)^ 3 ) )^ (1/8);

r=linspace(0,1,N)’;

s exact=( 4 * ( (1/2).^ (4/3) - (r/2).^ (4/3) ) ).^ (3/8);

%plot(L*r,Z*s exact); pause

%
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March to steady state, 50,000-year run, dt=25 year, every 500 years shown

Figure 1.5: Plots of surface elevation zs(r, t) at every 500 years for constant
accumulation rate. At t = 0 the ice thickness is assumed zero. Steady-
state is reached after about 50,000 years. A run longer than 50,000 years
(at a 25-year time step) was unfeasable for a Macintosh computing plat-
form. This corresponds to the Level 1, steady state exercise of the EISMINT
notes. The exact, analytic surface profile is denoted by asterisks. Internal
ice temperature is not calculated in this experiment.
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%

nsteps=2000;

dt=25*31556926*a/Z;

dr=1.0/(N-1);

%

sn=zeros(N,1);

R=zeros(N,1);

d=zeros(N,1);

AU=zeros(N,1);

AD=zeros(N,1);

AL=zeros(N,1);

%

plot(L*r,Z*s exact,’r*’); hold on

for n=1:nsteps

for i=1:N-1

d(i)=.5*(r(i)+r(i+1))* (.5*(sn(i)+sn(i+1)))^ 5 ...

* ((sn(i+1)-sn(i))/dr)^ 2;

end

AD(1)=1/dt+((sn(1)+sn(2))/2)^ 5*((sn(2)-sn(1))/dr)^ 2*4/dr^ 2;

AU(2)=-((sn(1)+sn(2))/2)^ 5*((sn(2)-sn(1))/dr)^ 2*4/dr^ 2;

AD(N)=1;

AL(N-1)=0;

R(1)=1+sn(1)/dt;

R(N)=0;

for i=2:N-1

AD(i)= 1/dt + (d(i) + d(i-1))/(r(i)*dr^ 2);

AL(i-1)= -d(i-1)/(r(i)*dr^ 2);

AU(i+1)= -d(i)/(r(i)*dr^ 2);

R(i)=1+sn(i)/dt;

end

T=spdiags([AL AD AU],[-1 0 1],N,N);

sn=T\ R;

if rem(n,20) == 1

plot(L*r,Z*sn);

end

end
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Observe that the tridiagonal nature of the matrix A has been used to make
the computation more efficient. The Matlab -native sparse matrix routine
spdiags have been used to construct the sparse matrix T from the three
main diagonals of A. The solution of T*sn = R for sn is performed using the
Matlab -native sparse matrix solver denoted by the backslash, i.e. sn=T\
R.

A much better Matlab script developed by students at the University
of Chicago is listed as follows. Can you identify the coding improvements?

% This is an implicit time-stepping solution for the azimuthally

symmetric ice sheet.

N=25;

r=linspace(0,1,N)’;

dr=1/(N-1);

% Initial condition

s exact=( 4*( (1/2)(̂4/3) - (r/2).(̂4/3) ) ).(̂3/8);

%s=zeros(N,1);

s=1.05*s exact;

d=zeros(N,1);

%A=zeros(N,N);

R=zeros(N,1);

figure(2)

clg

plot(L*r,Z*s exact,’ro’), hold on

nsteps=150;

g=9.81;

rho=910;

Ao=1e-16 *1/31556926;

L=750e3;

a=0.3/31556926;

Z=( 5*a*L4̂ / (2*Ao*(rho*g)3̂) )(̂1/8)
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dt=10*31556926*a/Z;

row=zeros(3*(N-2),1);

col=zeros(3*(N-2),1);

value=zeros(3*(N-2),1);

countrow=-2;

for i=2:N-1

countrow=countrow+3;

row(countrow:countrow+2)=[i i i]’;

col(countrow:countrow+2)=[i i-1 i+1]’;

end

count=0;

ngraph=10;

flops(0);

for n=1:nsteps

% compute d from s:

for i=1:N-1

d(i)= (r(i)+r(i+1))/2 * ( (s(i)+s(i+1))/2 )5̂ * ( (s(i+1)-s(i))/dr

)2̂ ;

end

% construct A and R:

countrow=-2;

for i=2:N-1

countrow=countrow+3;

value(countrow:countrow+2)= ...

[1/dt+(d(i)+d(i-1))/r(i)/dr2̂ -d(i-1)/r(i)/dr2̂ -d(i)/r(i)/dr2̂ ]’;

R(i)=1+s(i)/dt;

end

A=sparse(row,col,value,N,N);

A(N,N)=1;

R(N)=0;

A(1,1)=1/dt+16/dr3̂*d(1);
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A(1,2)=-16/dr3̂*d(1);

R(1)=1+s(1)/dt;

% solve for new value of s at time step n+1:

s=A\R;

count=count+1;

if count==ngraph

count=0;

figure(2)

plot(L*r,Z*s,’g-’)

end

end

flopstodoimplicit=flops

The solution, zs(r, t = 50000) at the end of the model run for the Level 1
steady-state exercise is listed as follows (see also it’s graph in Fig. (1.5)):

zs(t = 50000) = 1.0× 103 ×




3.3017
3.2666
3.2149
3.1517
3.0785
2.9954
2.9021
2.7976
2.6806
2.5488
2.3987
2.2251
2.0185
1.7610
1.4062
0.0000




(1.26)
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The corresponding exact, analytic solution is:

zs(t = 50000) = 1.0× 103 ×




3.2783
3.2448
3.1928
3.1289
3.0548
2.9706
2.8760
2.7699
2.6509
2.5164
2.3629
2.1844
1.9706
1.7005
1.3171

0




(1.27)

The finite-difference solution appears to produce a steady-state ice sheet of
slightly larger volume than that of the exact, analytic solution. Although
not checked rigorously, I suspect that the problem lies in the implementation
of the ice-divide boundary condition described above. Consult [Waddington,
1981] for a discussion of the implementation of ice-divide boundary condi-
tions.

1.3.3 Diagnostics: Fluxes and Velocities

The dimensional forms of the radial mass flux q (m2/s) and depth-averaged
radial velocity ūr (m/s) are computed diagnostically using the following
finite-difference formulae:

q(r) =
2(ρg)3Aoz

5
s

5

(
∂zs
∂r

)3

(1.28)

ūr(r) =
q

zs
(1.29)
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(recall that the ice thickness in this exercise is equal to the surface elevation
zs due to the flat bottom topography at z = zb = 0). These diagnostics can
be compared with the exact, steady-state results derived from mass-balance
considerations:

qe(r) =
πr2a

2πr
=
ra

2
(1.30)

ūre =
qe
zse

(1.31)

where subscripts e denote the exact values. These diagnostic quantities are
compared in Figs. (1.6) and 1.7). The Matlab script used to obtain these
quantities is listed below:

% This program computes diagnostics associated with ice-sheet model

%

% Mass Flux: (defined at half-step grid points)

%

q=zeros(N-1,1);

q exact=zeros(N-1,1);

ubar=zeros(N-1,1);

ubar exact=zeros(N-1,1);

for i=1:N-1

q(i)=((-sn(i)-sn(i+1))/2)^ 5*((sn(i+1)-sn(i))/dr)^ 3...

Z^ 8/L^ 3*(2/5)*(rho*g)^ 3*Ao;

q exact(i)=a*(dr*(i-1)+dr/2)*L/2;

ubar(i)=q(i)/((sn(i)+sn(i+1))/2);

ubar exact(i)=q exact(i)/((s exact(i)+s exact(i+1))/2);

end

hold off

clg

plot(L*r(1:N-1)+dr/2*L,q); hold on

plot(L*r(1:N-1)+dr/2*L,q exact,’g-’);pause

hold off

clg

plot(L*r(1:N-1)+dr/2*L,ubar);hold on

plot(L*r(1:N-1)+dr/2*L,ubar exact,’g-’)

30



0 1 2 3 4 5 6 7 8
x 105

0

0.5

1

1.5

2

2.5

3

3.5
x 10-3

r (m)

Diagnostic steady state flux

Figure 1.6: Diagnostic mass flux q (m2/s) (finite-difference and exact).
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Figure 1.7: Diagnostic depth-average radial velocity (finite-difference and
exact).
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The radial velocity profile ur(z) is defined in terms of zs and ∂zs
∂r as follows

[e.g., Huybrechts, 1992, ch. 4]:

ur(z) = −2(ρg)3
(
∂zs
∂r

)3 z∫

0

Ao(zs − z′)3dz′ (1.32)

The simple, temperature-independent form of the flow law parameter Ao

allows us to integrate the right-hand side of the above expression to obtain:

ur(z) =
Ao

2
(ρg)3

{
(zs − z)4 − z4

s

} (
∂zs
∂r

)3

(1.33)

The vertical velocity w(r, z, t) is obtained from ur(r, z, t) using the incom-
pressibility condition which, in cylindrical coordinates, is written:

∂w

∂z
+

1

r

∂

∂r
(rur) = 0 (1.34)

By integrating the above expression for ∂w
∂z

over z, and use of the no-vertical-
flow boundary condition at z = 0, we obtain the rather tedious expression
for w(r, z, t):

w(z) =
−Ao(ρg)

3

2

×
{

1

r

(
∂zs
∂r

)3 {
1

5

[
z5
s − (zs − z)5

]
− z4

sz
}

+4

(
∂zs
∂r

)4 {
1

4

[
z4
s − (zs − z)4

]
− z3

sz
}

+3

(
∂zs
∂r

)2
∂2zs
∂r2

{
1

5

[
z5
s − (zs − z)5

]
− z4

sz
} }

(1.35)

It is important to note that the above expression does not hold for the ice
divide. The ice divide is a special location where the vertical velocity field
cannot be defined without appeal to second-order effects such as the longi-
tudinal strain rates [e.g., Raymond, 1983].

The expression for the vertical velocity given in Eqn. (1.35) is rather
tedious to derive (although not difficult) by integration of Eqn. (1.34). To
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check the result, we make use of the definition of the vertical velocity at the
ice-sheet surface given to us by the kinematic boundary condition at the free
surface:

w(zs) = −a− −Ao(ρg)
3

2
z4
s

(
∂zs
∂r

)4

(1.36)

The expression we wish to check (Eqn. 1.35), when evaluated at z = zs, gives

w(zs) =
Ao(ρg)

3

2





4

5r

(
∂zs
∂r

)3

z5
s + 3

(
∂zs
∂r

)4

z4
s +

12

5

(
∂zs
∂r

)2
∂2zs
∂r2

z5
s





=
2Ao(ρg)

3

5





(
∂zs
∂r

)3

z5
s +

15

4

(
∂zs
∂r

)4

z4
s + 3

(
∂zs
∂r

)2
∂2zs
∂r2

z5
s





=
2Ao(ρg)

3

5





(
∂zs
∂r

)3

z5
s + 5

(
∂zs
∂r

)4

z4
s + 3

(
∂zs
∂r

)2
∂2zs
∂r2

z5
s −

5

4

(
∂zs
∂r

)4

z4
s





=
2Ao(ρg)

3

5





1

r

∂

∂r


rz5

s

(
∂zs
∂r

)3

 − 5

4

(
∂zs
∂r

)4

z4
s





= −a − Ao(ρg)
3

2

(
∂zs
∂r

)4

z4
s (1.37)

where we have made use of the mass-continuity equation 2(ρg)3Ao
5

1
r
∂
∂r

(
rz5

s

(
∂zs
∂r

)3
)

=

−a. The above result is the same as that defined by the kinematic boundary
condition for the free surface, and this gives us confidence that the compli-
cated expression for w(z) in Eqn. (1.35) is correct.

Horizontal and vertical velocity associated with Level 1 test

The horizontal and vertical velocity fields are defined at the half-grid points
(the open circles in the staggered grid scheme shown in Fig. 1.3). Thus they
are not defined at the ice divide where EISMINT Level 1 test diagnostics
are requested. They are, however, defined at the half-way point between
the ice divide and terminus. With 16 grid points defining the length of
the model domain from ice divide to terminus, the half-grid point that is 1

2
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the distance to the margin (where diagnostics are requested by the EISMINT
intercomparison test) corresponds to half-grid point number 8. The following
Matlab script was used to perform the analysis for the horizontal (radial)
velocity component:

% This program computes horizontal velocity

% associated with the axisymmetric ice-sheet model in the Level 1

steady state test

%

M=10; % Number of points in vertical

z=zeros(M,N-1);

z exact=zeros(M,N-1);

u=zeros(M,N-1);

u exact=zeros(M,N-1);

dr=L/(N-1);

zs=Z*sn;

zs exact=Z*s exact;

for i=1:N-1

z(:,i)=linspace(0,(zs(i)+zs(i+1))/2,M)’;

z exact(:,i)=linspace(0,(zs exact(i)+zs exact(i+1))/2,M)’;

u(:,i)=Ao*(rho*g)^ 3/2*((zs(i+1)-zs(i))/dr)^ 3...

( ((zs(i)+zs(i+1))/2 - z(:,i)).^ 4 ...

- ((zs(i)+zs(i+1))/2)^ 4 );

u exact(:,i)=Ao*(rho*g)^ 3/2...

((zs exact(i+1)-zs exact(i))/dr)^ 3 ...

( ((zs exact(i)+zs exact(i+1))/2 - z exact(:,i)).^ 4 ...

- ((zs exact(i)+zs exact(i+1))/2)^ 4 );

end

hold off

clg

plot(u(:,8),z(:,8))

hold on

plot(u exact(:,8),z exact(:,8))

A graph of the u(z, r = L
2
) associated with the finite-difference and exact

versions of the steady-state ice thickness profile is displayed in Fig. (1.8).
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The numerical data is presented in the form of a column vector u where the
first element corresponds to the radial velocity at z = 0 and the last (tenth)
element corresponds to the radial velocity at z = zs. For the finite-difference
solution:

u(r =
L

2
) = 10−6 ×




0
0.3056
0.5158
0.6528
0.7360
0.7817
0.8034
0.8115
0.8133
0.8134




m/s (1.38)

For the exact solution:

ue(r =
L

2
) = 10−6 ×




0
0.3086
0.5208
0.6592
0.7432
0.7894
0.8113
0.8194
0.8213
0.8214




m/s (1.39)

As expected, the finite-difference solution does not exactly match the exact,
analytic solution. Again, I attribute this to the ice-divide boundary condition
of the mass-balance equation which may not be completely consistent in the
formulation I have developed here.

The following Matlab script was used to display the vertical velocity
at the half-way point between ice divide and terminus:

% This program computes vertical velocity associated with the ice-sheet

model

% in the Level 1, axisymmetric steady state test
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Figure 1.8: Diagnostic radial velocity (m/s) as a function of z at the point
half-way to between the ice divide and the terminus (finite-difference and
exact are shown together).
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M=10; z=zeros(M,N-1);

z exact=zeros(M,N-1);

w=zeros(M,N-1);

w exact=zeros(M,N-1);

dr=L/(N-1);

zs=Z*sn;

zs exact=Z*s exact;

for i=2:N-2 z(:,i)=linspace(0,(zs(i)+zs(i+1))/2,M)’;

z exact(:,i)=linspace(0,(zs exact(i)+zs exact(i+1))/2,M)’;

w(:,i)=-Ao*(rho*g)^ 3/2* ( ...

1/((i-1)*dr+dr/2) * ((zs(i+1)-zs(i))/dr)^ 3 ...

( 1/5 * ( ((zs(i)+zs(i+1))/2)^ 5 - ...

( ((zs(i)+zs(i+1))/2) - z(:,i) ).^ 5 ) ...

- ((zs(i)+zs(i+1))/2)^ 4*z(:,i) ) ...

+4 * ((zs(i+1)-zs(i))/dr)^ 4 ...

( 1/4 * ( ((zs(i)+zs(i+1))/2)^ 4 -...

( ((zs(i)+zs(i+1))/2) - z(:,i) ).^ 4 ) ...

- ((zs(i)+zs(i+1))/2)^ 3*z(:,i) ) ...

+3 * ((zs(i+1)-zs(i))/dr)^ 2 ...

( (zs(i+1)+zs(i-1)-2*zs(i))/dr^ 2 + ...

(zs(i+2)+zs(i)-2*zs(i+1))/dr^ 2 )/2 ...

( 1/5 * ( ((zs(i)+zs(i+1))/2)^ 5 - ...

( ((zs(i)+zs(i+1))/2) - z(:,i) ).^ 5 ) ...

- ((zs(i)+zs(i+1))/2)^ 4*z(:,i) )...

);

w exact(:,i)=-Ao*(rho*g)^ 3/2* ( ...

1/((i-1)*dr+dr/2) * ((zs exact(i+1)-zs exact(i))/dr)^ 3 ...

( 1/5 * ( ((zs exact(i)+zs exact(i+1))/2)^ 5 - ...

( ((zs exact(i)+zs exact(i+1))/2) - z exact(:,i) ).^ 5 ) ...

- ((zs exact(i)+zs exact(i+1))/2)^ 4*z exact(:,i) ) ...

+4 * ((zs exact(i+1)-zs exact(i))/dr)^ 4 ...

( 1/4 * ( ((zs exact(i)+zs exact(i+1))/2)^ 4 - ...

( ((zs exact(i)+zs exact(i+1))/2) - z exact(:,i) ).^ 4 ) ...

- ((zs exact(i)+zs exact(i+1))/2)^ 3*z exact(:,i) ) ...
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+3 * ((zs exact(i+1)-zs exact(i))/dr)^ 2 ...

( (zs exact(i+1)+zs exact(i-1)-2*zs exact(i))/dr^ 2 + ...

(zs exact(i+2)+zs exact(i)-2*zs exact(i+1))/dr^ 2 )/2 ...

( 1/5 * ( ((zs exact(i)+zs exact(i+1))/2)^ 5 - ...

( ((zs exact(i)+zs exact(i+1))/2) - z exact(:,i) ).^ 5 ) ...

- ((zs exact(i)+zs exact(i+1))/2)^ 4*z exact(:,i) )...

);

end

hold off

clg

plot(31556926*w(:,8),z(:,8))

hold on

plot(31556926*w exact(:,8),z exact(:,8))

A graph of w(z) at the half-way point between the ice divide and terminus
is displayed in Fig. (1.9). The finite-difference and exact versions of the
column vector w are:

w(r =
L

2
) =




0
−0.0109
−0.0386
−0.0769
−0.1213
−0.1688
−0.2177
−0.2668
−0.3158
−0.3648




m/yr (1.40)
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For the exact solution:

we(r =
L

2
) =




0
−0.0110
−0.0389
−0.0774
−0.1220
−0.1698
−0.2188
−0.2682
−0.3174
−0.3666




m/ry (1.41)

summary

In the preceding analysis, we have created a finite-difference model of an ax-
isymmetric ice sheet and have compared it’s solution with an exact, analytic
expression for the steady-state thickness profile.

1.4 Exercise 2

Set up the finite-difference equations to determine the steady-state ice-sheet
profile without using a time marching scheme. In other words, set up the
finite difference form of

∂

∂r

(
d
∂s

∂r

)
+ r = 0 (1.42)

where,

d = rs5

(
∂s

∂r

)
(1.43)

Part A Determine a solution using Matlab for d = .1471, compare your
result graphically with the exact, analytic expression for steady-state s.
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Figure 1.9: Diagnostic vertical velocity (m/yr) as a function of z at the point
half-way to between the ice divide and the terminus (finite-difference and
exact are shown together).
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Part B Solve for steady-state s using an iterative scheme to satisfy the
constraint d = rs5

(
∂s
∂r

)
. Begin the iteration scheme with a guess d = .15.

Produce a solution s. Determine a new d using this solution and the expres-
sion d = rs5

(
∂s
∂r

)
, then repeat until d converges to it’s steady state value.

1.5 Milankovitch-Forced Model Runs

Following the EISMINT intercomparison exercise guidelines suggested at the
Bremerhaven workshop, we now consider forcing the finite-difference model of
the axisymmetric ice sheet with a sinusoidally varying surface accumulation
rate. (As mentioned previously, we shall not consider the effects of surface
temperature variation. This will be done separately at a later time.) Our
exercise is to conduct two experiments, each with a different frequency of
accumulation-rate variation:

Experiment 1 − a = 0.3 + 0.2 sin
2πt

T1
m/year (1.44)

and

Experiment 1 − a = 0.3 + 0.2 sin
2πt

T1
m/year (1.45)

where T1 = 2 × 104 years and T2 = 4 × 104 years. The diagnostic output
of each model run will be time-series (one sample every 1,000 years) of the
ice-divide surface elevation (ice thickness) zs(r = 0, t) and of the transect ice
“volume” V (t) defined by:

V (t) =

1∫

0

zs(r, t)dr (1.46)

In nondimensional variables, the equation we must solve to undertake the
two model experiments is written:

∂s

∂t
= A(t) +

1

r

∂

∂r


rs5

(
∂s

∂r

)3

 (1.47)
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where the nondimensional time t is defined using the scale T = 5L4

2Ao(ρg)3Z7 =
Z
a ≈ 9189 years, and A(t) is the nondimensional accumulation rate written
in terms of nondimensional time:

A(t) = 1.0 +
2

3
sin

2πt

Ti
(1.48)

with T1 = 2.1765 (nondimensional) and T2 = 4.3530 (nondimensional). To
find the solution we use the finite-difference algorithm defined previously in
§ (1.3.2). The one change is that the right-hand-side-vector R is defined to
accommodate the time-dependent accumulation A(t):

Ri = 1.0 +
2

3
sin

2πt

Tk
+

sni
∆t

for i = 2, . . . , N − 1 k = 1, 2

R1 = 1.0 +
2

3
sin

2πt

Tk
+

sn1
∆t

for k = 1, 2

RN = 0

The Matlab routine used to conduct the two modeling experiments is listed
as follows:

% Finite-difference solution of mass balance equations in an

% axisymmetric domain:

%

N=16;

g=9.81;

rho=910;

Ao=1/31556926 * 1e-16;

a=0.3/31556926;

L=1500e3/2;

Z=( 5*a*L^ 4/( 2 * Ao * (rho*g)^ 3 ) )^ (1/8);

r=linspace(0,1,N)’;

s exact=( 4 * ( (1/2).^ (4/3) - (r/2).^ (4/3) ) ).^ (3/8);

%

%

T1=2.1765;

T2=2*T1;

nsteps=8000;
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dt=25*31556926*a/Z;

dr=1.0/(N-1);

%

sn=s exact;

R=zeros(N,1);

d=zeros(N,1);

AU=zeros(N,1);

AD=zeros(N,1);

AL=zeros(N,1);

%

divide=[Z*s exact(1)];

dummy=0;

for i=1:N-1

dummy=dummy+.5*Z*(s exact(i)+s exact(i+1))*dr*L;

end

volume=[dummy];

for n=1:nsteps

t=(n-1)*dt;

phase=2*pi*t/T1;

for i=1:N-1

d(i)=.5*(r(i)+r(i+1))* (.5*(sn(i)+sn(i+1)))^ 5 * ((sn(i+1)-sn(i))/dr)^

2;

end

AD(1)=1/dt+((sn(1)+sn(2))/2)^ 5*((sn(2)-sn(1))/dr)^ 2*4/dr^ 2;

AU(2)=-((sn(1)+sn(2))/2)^ 5*((sn(2)-sn(1))/dr)^ 2*4/dr^ 2;

AD(N)=1;

AL(N-1)=0;

R(1)=1+2/3*sin(phase)+sn(1)/dt;

R(N)=0;

for i=2:N-1

AD(i)= 1/dt + (d(i) + d(i-1))/(r(i)*dr^ 2);

AL(i-1)= -d(i-1)/(r(i)*dr^ 2);

AU(i+1)= -d(i)/(r(i)*dr^ 2);

R(i)=1+2/3*sin(phase)+sn(i)/dt;

end

T=spdiags([AL AD AU],[-1 0 1],N,N);

sn=T\ R;
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if rem(n,40) == 1

divide=[divide

Z*sn(1)];

dummy=0;

for i=1:N-1

dummy=dummy+.5*Z*(sn(i)+sn(i+1))*dr*L;

end

volume=[volume

dummy];

end

end

The result of the 20,000-year and 40,000-year Milankovitch cycle experi-
ments are shown in Figs. (1.10) - (1.13).

1.6 Concluding Remarks

We have developed an exact, analytic solution for a steady-state ice sheet
of azimuthally symmetric circular plan form. The finite-difference “flowline”
model used to determine the time-dependent evolution of such an ice sheet
has been compared with the analytic solution and found to be satisfactory.
(Differences on the order of a percent or two are unaccounted for; I suspect
that they arise from the discretization of the ice divide boundary condition
and from numerical inaccuracy at the terminus.)

Computer Comments

Some of the time-stepping simulations presented in this chapter were con-
ducted on a Macintosh IIfx computer with a 40Mhz 68030 chip and FPU
using Matlab 4.1. The 200,000-year run of the 20,000-year Milankovitch
cycle took approximately 4000 seconds of CPU time. Computer memory
was not an issue (storage of the tridiagonal array required only 16×3 words
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Figure 1.10: Ice-divide surface elevation, zs(r = 0) (m) for a climate cycle of
20,000 years.
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Figure 1.11: Transect volume (m2) for a climate cycle of 20,000 years.
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Figure 1.12: Transect volume (m2) for a climate cycle of 20,000 years.
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Figure 1.13: Transect volume (m2) for a climate cycle of 20,000 years.
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of memory. A Macintosh Quadra 650 was later used and found to be
approximately 5 times faster than the Macintosh IIfx.
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Chapter 2

Level 1: Two-Dimensional
Ice-Sheet Model

In this chapter, we shall construct a two-dimensional ice-sheet model using
both the finite-difference and the finite-element methods. Our goal will be to
compare the techniques, programming aspects, and numerical accuracy of the
two methods in the context of simulating an ice-sheet with square planform
such as suggested by the Level 1 intercomparison test (Bremerhaven, 1994).
One important digression will be highlighted in this chapter. This concerns
the computational aspects of matrix construction, storage, factorization and
backsubstitution. We shall learn that modern sparse matrix algebra, much of
which is readily available in Matlab (Gilbert, Moler and Schreiber, 1992),
offers significant computational efficiencies not previously recognized.

2.1 Finite-Difference Model

The nondimensional governing equation for mass balance of the idealized
grounded ice sheet we wish to simulate is the same as that derived in the
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previous chapter
∂s

∂t
= 1 +∇ ·

(
(∇s)3 s5

)
(2.1)

For convenience, we define an effective diffusivity d = (∇s · ∇s)s5 to render
the above equation into a form that is easily linearized:

∂s

∂t
= 1 +∇ · (d∇s) (2.2)

where, as spelled out in the previous chapter, all variables are nondimensional
using the scaling convention outlined in § (1.1).

2.1.1 Implicit time-stepping with a staggered grid

Following finite-difference conventions [e.g., Waddington, 1981], we adopt
a staggered finite-difference scheme where variables s and d are defined as
shown in Fig. (2.1). The discrete form of Eqn. (2.1) is composed of the
following parts:

dni,j =
(

1

4

(
sni,j + sni+1,j + sni+1,j+1 + sni,j+1

))5

× 1

4∆2

[ (
sni+1,j − sni,j + sni+1,j+1 − sni,j+1

)2

+
(
sni,j+1 − sni,j + sni+1,j+1 − sni+1,j

)2 ]
(2.3)

∂

∂x

(
d
∂s

∂x

) ∣∣∣
i,j

=
1

2∆2

[ (
dni,j + dni,j−1

) (
sn+1
i+1,j − sn+1

i,j

)

−
(
dni−1,j + dni−1,j−1

) (
sn+1
i,j − sn+1

i−1,j

) ]
(2.4)

∂

∂y

(
d
∂s

∂y

) ∣∣∣
i,j

=
1

2∆2

[ (
dni,j + dni−1,j

) (
sn+1
i,j+1 − sn+1

i,j

)

−
(
dni,j−1 + dni−1,j−1

) (
sn+1
i,j − sn+1

i,j−1

) ]
(2.5)

where ∆ is the grid spacing (assumed to be the same in the two spatial
directions), subscripts denote the grid point where the designated variables
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are evaluated, and the superscripts n and n + 1 denote the time-step level
at which the designated variables are evaluated. Convention dictates that
variables at time step n are considered known (possibly from the specification
of an initial condition) and variables at time step n + 1 are unknown. The
goal of the finite-difference model is to determine the variables at time step
n + 1 in an iterative fashion so to accomplish a time marching.

The above finite-difference parts are put together to yield the following
finite-difference equation for the sn+1

i,j ’s (implicit time step):

sn+1
i,j

[
1

∆t
+

1

∆2

(
dni,j + dni−1,j + dni,j−1 + dni−1,j−1

)]

+sn+1
i,j+1

[ −1

2∆2

(
dni,j + dni−1,j

)]

+sn+1
i,j−1

[ −1

2∆2

(
dni,j−1 + dni−1,j−1

)]

+sn+1
i+1,j

[ −1

2∆2

(
dni,j + dni,j−1

)]

+sn+1
i−1,j

[ −1

2∆2

(
dni−1,j + dni−1,j−1

)]
= 1 +

sni,j
∆t

(2.6)

The above equation may be conveniently expressed in matrix notation as
follows:

Asn+1 = R (2.7)

where sn is the column vector composed of the values of sni,j arranged by
the order in which the grid points are numbered. Thus, if grid point (i, j) is
numbered γi,j where γi,j is an integer in the interval [1, 312], the p’th element
of sn is the value of sn at the grid point (i, j) who’s γi,j is equal to p. The
matrix element Apq describes how the solution at grid point γi,j = p depends
on the solution at grid point γi,j = q. The matrix-construction algorithm may
be summarized from the finite-difference version of the problem described
above as follows:

sn+1
i,j

[
1

∆t
+

1

∆2

(
dni,j + dni−1,j + dni,j−1 + dni−1,j−1

)]
→ Aγi,j ,γi,j
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sn+1
i,j+1

[ −1

2∆2

(
dni,j + dni−1,j

)]
→ Aγi,j ,γi,j+1

sn+1
i,j−1

[ −1

2∆2

(
dni,j−1 + dni−1,j−1

)]
→ Aγi,j ,γi,j−1

sn+1
i+1,j

[ −1

2∆2

(
dni,j + dni,j−1

)]
→ Aγi,j ,γi+1,j

sn+1
i−1,j

[ −1

2∆2

(
dni−1,j + dni−1,j−1

)]
→ Aγi,j ,γi−1,j

1 +
sni,j
∆t

→ Rγi,j (2.8)

These “matrix-stuffing” conventions apply for grid points that are not on the
boundaries of the numerical domain. For the boundaries of the EISMINT
exercise, we apply the simple condition:

Aγi,j ,γi,j = 1 for i = 1, imax j = 1, jmax (2.9)

with all other elements in rows of A corresponding to these boundary grid
points being zero. We also have, for the boundary nodes

Rγi,j = 0 for i = 1, imax j = 1, jmax (2.10)

The time stepping model ice-sheet model is thus described by solution of
the linear equation Asn+1 = R for as many time steps as desired starting
from a specified initial condition s0. After the solution of the linear equation
at each time step, the matrix A and the right-hand-side vector R must be
reconstructed using updated values of the dn+1

i,j ’s and the sn+1
i,j ’s.

2.1.2 A digression about sparse matrices

Before using the above-described finite-difference model, we must consider
the fact that the matrix A can be very large, and may stress the limits
of computer memory just for it’s storage. For the EISMINT exercise, the
31 × 31 finite-difference grid possesses 312 = 961 grid points. The matrix A
thus has 961 rows and 961 columns; or 9612 = 923, 521 elements (almost a
million!). The solution of the linear equation Asn+1 = R may thus exceed
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Figure 2.1: staggered grid scheme associated with finite-difference version of
a 2-d ice-sheet model.
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the performance capabilities of even the most advanced scientific computer
for even the smallest ice-sheet modelling experiment (such as the EISMINT
exercise).

Two approaches may be taken to overcome the difficulty imposed by the
vast size of A. The first is to use an iterative “relaxation” scheme to find the
solution of the equation without ever having to store or factor the matrix A.
This is the approach Huybrechts [1992] used to investigate the evolution of
the Antarctic ice sheet, for example. Today, there are many modern iterative
techniques that are available “off the shelf” from software developers. The
most efficient may be the MUDPACK (multigrid iteration package) available
from the NCAR software development team (consult the NCAR software
distribution specialist by email: consult1ncar.ucar.edu). We will examine
several iterative techniques (Gauss-Seidel and ADI) and compare them with
direct matrix algorithms in the exercise at the end of this section.

The other approach to the difficulty of the size of A is to take advantage of
the fact that A has very few nonzero elements. It is instructive to investigate
the matrix associated with the 31 by 31 grid of the EISMINT exercise in detail
using the Matlab routines available for this purpose. We first construct
the symmetric adjacency matrix C which has only 1’s and 0’s as its elements.
The elements which have 1’s indicate that the grid points corresponding to
the row number and the column number, respectively, are connected. The
matrix A will have zeros in the same locations as the zeros of C. We construct
the adjacency matrix for the EISMINT exercise using the following Matlab
algorithm:

% This program determines optimal node numbering of a 2-D ice sheet

%

imax=31;

jmax=31;

nodes=imax*jmax;

node=zeros(imax,jmax);

Adj=zeros(nodes,nodes);

xy=zeros(node,2);

counter=0;

for j=1:jmax
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for i=1:imax

counter=counter+1;

node(i,j)=counter;

end

end

% Construct the adjacency matrix

for j=2:jmax-1

for i=2:imax-1

Adj(node(i,j),node(i,j))=1;

Adj(node(i,j),node(i+1,j))=1;

Adj(node(i,j),node(i-1,j))=1;

Adj(node(i,j),node(i,j+1))=1;

Adj(node(i,j),node(i,j-1))=1;

end

end

j=1;

for i=2:imax-1

Adj(node(i,j),node(i,j))=1;

Adj(node(i,j),node(i+1,j))=1;

Adj(node(i,j),node(i-1,j))=1;

Adj(node(i,j),node(i,j+1))=1;

end

j=jmax;

for i=2:imax-1

Adj(node(i,j),node(i,j))=1;

Adj(node(i,j),node(i+1,j))=1;

Adj(node(i,j),node(i-1,j))=1;

Adj(node(i,j),node(i,j-1))=1;

end

i=1;

for j=2:imax-1

Adj(node(i,j),node(i,j))=1;

Adj(node(i,j),node(i,j+1))=1;

Adj(node(i,j),node(i,j-1))=1;

Adj(node(i,j),node(i+1,j))=1;

end

i=imax;
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for j=2:imax-1

Adj(node(i,j),node(i,j))=1;

Adj(node(i,j),node(i,j+1))=1;

Adj(node(i,j),node(i,j-1))=1;

Adj(node(i,j),node(i-1,j))=1;

end

Adj(node(1,1),node(1,1))=1;

Adj(node(1,1),node(1,2))=1;

Adj(node(1,1),node(2,1))=1;

Adj(node(1,jmax),node(1,jmax))=1;

Adj(node(1,jmax),node(2,jmax))=1;

Adj(node(1,jmax),node(1,jmax-1))=1;

Adj(node(imax,jmax),node(imax,jmax))=1;

Adj(node(imax,jmax),node(imax,jmax-1))=1;

Adj(node(imax,jmax),node(imax-1,jmax))=1;

Adj(node(imax,1),node(imax,1))=1;

Adj(node(imax,1),node(imax,2))=1;

Adj(node(imax,1),node(imax-1,1))=1;

% Construct grid-point coordinate map:

delta=2/(imax-1);

for j=1:jmax

for i=1:imax

xy(node(i,j),:) = [(i-1)*delta (j-1)*delta];

end

end

% Construct mesh plot

gplot(Adj,xy);

pause

% Look at sparseness structure

spy(Adj)

% Determine matrix density

nnz(Adj)/nodes^ 2

The sparse structure of C (called Adj in the above Matlab routine) is
emphasized by the fact that there are only 4681 nonzero entries in a matrix
of almost a million elements. The Matlab function gplot displays the
finite-difference grid and gives Fig. (2.2). The silhouette of the adjacency
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matrix is generated by the Matlab function spy(), and is shown in Fig.
(2.3). As can be readily appreciated from the silhouette, C is extremely
sparse.

An alternative to storing C or, for that matter, A in full matrix format
is to store just the nonzero entries of C or A. The Matlab native sparse
matrix storage, for example, allows the definition of a sparse matrix using
three column vectors (not described explicitly here, consult the Matlab
user’s guide for more information). Two column vectors are required to store
the row numbers and column numbers of the nonzero entries. The third
column vector is used to store the actual matrix values that enter into the
nonzero entries. Using sparse matrix storage format, the 961×961 (923,521)
words of computer memory needed to store A (or C) is reduced to 3× 4681
(14043) words of computer memory. The sparse matrix format requires only
a little over 1.5% of the memory used by the full matrix format.

For the finite-difference and finite-element models constructed here, we
will use sparse matrix storage for the matrix A. In addition, we shall con-
sider a node-numbering scheme which minimizes the number of floating point
operations necessary to factor A to produce the solution to the equation
Asn+1 = R. We shall take up the subject of node-numbering schemes in the
following digression.

Node-numbering schemes: Does it make a difference?

There are two approaches that can be taken to solve a matrix equation
Asn+1 = R. One approach is to compute the LU-factorization of A, and
to then perform a forward substitution and a back substitution step to de-
termine sn+1. The other approach is to compute the Cholesky factorization
of A, and then to perform two triangular matrix solves on R to obtain sn+1.
For the finite-difference scheme associated with the ice-sheet model derived
here, the matrix A is sparse, symmetric and positive definite. In this situa-
tion the latter approach will work most efficiently (with fewest floating point
operations, abbreviated as FLOPS). In both approaches, the most compu-
tationally intensive (and expensive) step is the factorization step. We may
thus concentrate on the question of whether one node-numbering scheme over
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Figure 2.2: The 31 by 31 finite-difference grid used in the EISMINT ice-sheet
modelling exercise.
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Figure 2.3: The silhouette of the adjacency matrix generated by the 31 by
31 finite-difference grid used in the EISMINT ice-sheet modelling exercise.
Notice that non-zero elements are very rare and are crowded along the main
diagonal of the matrix.
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another might make the factorization step more efficient.

To investigate the computational demands required to factorize A for
various node-numbering schemes, we can compute the number of FLOPS
required to do either the LU or the Cholesky factorizations of C, the adja-
cency matrix. (It is worth remarking that the factorization of the adjacency
matrix is of no practical relevance to ice-sheet physics. What counts is that
the number of FLOPS necessary to factorize C is the same as that for A.)
In order to make C positive definite, we must replace its diagonal of 1’s with
a diagonal of, say, 10’s. We shall perform these factorizations (counting up
the FLOPS for each) using the sparse matrix storage convention described
above and three different numbering schemes.

The first numbering scheme is the “plain vanilla” scheme that comes from
counting the grid points consecutively in row-order or column-order format.
The second numbering scheme is referred to as the “reversed Cuthill-McKee”
scheme. This scheme produces a silhouette of C which has minimum band-
width (non-zero elements of C are crowded most “tightly” along the main
diagonal). The third scheme is referred to as the “minimum degree” scheme;
and this scheme produces a “fractal” looking silhouette which optimizes the
size of continuous blocks of zeros. We shall see that the reversed Cuthill-
McKee ordering minimizes the FLOPS for the LU decomposition, and that
the minimum-degree ordering minimizes the FLOPS for the Cholesky fac-
torization. For illustration, the silhouettes of C corresponding to these two
ordering schemes are shown in Figs. (2.4) and (2.5). The two improved
numbering schemes are too difficult to explain here, I thus refer the reader
to the Matlab user’s guide for further description.

As a benchmark, we note the fact that the computational workload re-
quired to perform the LU decomposition of C when C is stored in full ma-
trix format is about 591,669,120 FLOPS. In this circumstance, it would take
about 10 CPU seconds of a Cray YMP processor to accomplish one time step
of the 31 by 31 point finite-difference model. Clearly, the problem cannot
be done without sparse matrix storage schemes (or the iterative technique
mentioned above). The following table lists the FLOPS required to factor C
given the various node-numbering schemes:

LU Cholesky
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row − order 1, 821, 702 943,451

reversed Cuthill −McKee 1, 352, 162 522,226

minimum degree 4, 143, 152 248,306

The above data suggests that, for the ice-sheet modelling problem, the most
efficient way to conduct a time step is to use minimum-degree grid point
numbering coupled with Cholesky factorization. A factor of almost 10 im-
provement is seen over the row-order numbering coupled with LU decom-
position. Using a Cray YMP that can vectorize the Cholesky factorization
(obtaining approximately 80 MFLOPS per second), approximately 400 time
steps of the 31 by 31 finite-difference model can be accomplished in one CPU
second. This represents a 4000 to 1 improvement over LU decomposition with
the full-storage convention. It is not clear, however, whether these improve-
ments are comparable to those achieved using iterative relaxation techniques
mentioned above. The one sure advantage of the “direct solution” approach
taken here is that it is less complicated (one does not have to consider con-
vergence criteria necessary to ensure that the iterative relaxation technique
converges to an accurate answer).

2.1.3 Exercise 1

Solve the problem
∇2u − 1 = 0 (2.11)

in the square domain [0 < x < 1, 0 < y < 1], with u = 0 boundary conditions.
Refer to the instructor’s lecture, or to texts on the subject of relaxation
methods, to obtain the algorithmic details of each of the methods cited below.
Keep track of the FLOPS needed to acquire the solution in each part and
compare the various methods when you have completed the exercise. Use an
11 × 11 grid.

Part A Solve the problem using Gauss relaxation.

Part B Solve the problem using Gauss-Seidel relaxation.
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Figure 2.4: The silhouette of the adjacency matrix generated by the 31 by 31
finite-difference grid used in the EISMINT ice-sheet modelling exercise and
the reversed Cuthill-McKee numbering convention. Notice that the “band-
width” of the matrix has been reduced over that displayed in Fig. (2.3).
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Figure 2.5: The silhouette of the adjacency matrix generated by the 31 by
31 finite-difference grid used in the EISMINT ice-sheet modelling exercise
and the minimum-degree numbering convention. Notice that the “fractal”
appearance of the matrix silhouette. The advantage of the minimum-degree
ordering scheme is that large blocks of zeros are produced. These large
blocks are preserved through the Cholesky factorization. The minimum-
degree ordering scheme can sometimes reduces the number of floating point
operations necessary to solve the matrix equation Asn+1 = R when A is
symmetric and positive definite, and when Cholesky factorization is used in
the solution procedure.
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Part C Solve the problem using Alternate Direction Implicit (ADI) re-
laxation.

Part D Solve the problem using Sparse matrix algebra without relax-
ation.

My effort in this exercise yielded the following result:

FLOPS Residual Error

ADI 63, 918 0.044

Sparse Matrix 13, 527 6.217× 10−15

Full Matrix 1, 272, 151 1.176× 10−14

ADI is preferable to other forms of relaxation and to full matrix implemen-
tation without relaxation. However, if sparse matrix algebra is available to
the user, a non-relaxation technique with sparse-matrix algebra is preferred.

2.2 Finite Difference Solution: Steady-State

Ice-Sheet Experiment

We construct the finite-difference model using the finite-difference conven-
tions defined above, and integrate the model for 50,000 years starting from
a zero ice thickness to generate a steady state. The results of the integration
are shown in Figs. (2.6) - (2.8). The size of the final, steady-state ice sheet
in this exercise is slightly larger than that of the steady-state ice sheet of
circular planform developed in the previous chapter. This is expected be-
cause the square planform represents a greater area over which the ice sheet
accumulates snow. The dimensional form of the surface elevation transect
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from the ice divide to the right margin is listed as follows:

(zs)i=16,31;j=16 = 103 ×




3.4218
3.3911
3.3398
3.2772
3.2044
3.1212
3.0273
2.9217
2.8027
2.6679
2.5138
2.3346
2.1204
1.8521
1.4807
0.0000




m (2.12)

The ice-divide surface elevation is 3421.8 m.

The Matlab script which performs the finite-difference calculation is
listed below. (Since we are using Matlab we don’t have to explicitly
remember to use minimum-degree ordering and Cholesky factorization. This
is done automatically by Matlab . In FORTRAN, however, we must be
careful to remember the benefits of a careful choice of numbering scheme
and factorization technique.)

% This script represents a finite-difference model

% of a 2-D ice sheet

%

N=16;

imax=31;

jmax=31;

g=9.81;

rho=910;

Ao=1/31556926 * 1e-16;

a=0.3/31556926;
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Figure 2.6: Transect of surface elevation (m) from ice divide to right margin of
the two-dimensional ice sheet. Each line represents the state of the ice-sheet
surface at 1,000-year intervals. The initial condition was zero ice thickness
and the accumulation rate was constant. The asterisks denote the exact,
analytic profile deduced in the previous chapter. The comparison between
the asterisks and the final, steady-state profile of the finite difference model
(at 50,000 years) suggests that the ice sheet with square planform has slightly
greater volume than the azimuthally symmetric ice sheet of circular planform.
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Figure 2.7: Contour map (CI=250 m) of the two-dimensional ice sheet pro-
duced after 50,000 years of evolution toward steady state.
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Figure 2.8: Surface of the ice sheet in steady state (50,000 years).

70



L=1500e3/2;

Z=( 5*a*L^ 4/( 2 * Ao * (rho*g)^ 3 ) )^ (1/8);

r=linspace(0,1,N)’;

s exact=( 4 * ( (1/2).^ (4/3) - (r/2).^ (4/3) ) ).^ (3/8);

plot(L*r,Z*s exact); hold on

pause

nsteps=5000;

dt=10*31556926*a/Z;

sn=zeros(imax,jmax);

s=zeros(nodes,1);

nodes=imax*jmax;

node=zeros(imax,jmax);

row=zeros(4325,1);

col=zeros(4325,1);

value=zeros(4325,1);

delta=2/(imax-1);

R=zeros(nodes,1);

d=zeros(imax,jmax);

%

counter=0;

for j=1:jmax

for i=1:imax

counter=counter+1;

node(i,j)=counter;

end

end

%

for n=1:nsteps

%

for j=1:jmax-1

for i=1:imax-1

d(i,j)=(1/4*(sn(i,j)+sn(i+1,j)+sn(i+1,j+1)+sn(i,j+1)))^ 5 ...

1/(4*delta^ 2)*( ...

(sn(i+1,j)-sn(i,j)+sn(i+1,j+1)-sn(i,j+1))^ 2 ...

+(sn(i,j+1)-sn(i,j)+sn(i+1,j+1)-sn(i+1,j))^ 2);

end

end
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% % Construct the finite-difference stiffness matrix

count=0;

for j=2:jmax-1

for i=2:imax-1

%

count=count+1;

row(count)=node(i,j);

col(count)=node(i,j);

value(count)= 1/dt+1/delta^ 2*(d(i,j)+d(i-1,j)+d(i,j-1)+d(i-1,j-1));

%

count=count+1;

row(count)=node(i,j);

col(count)=node(i,j+1);

value(count)=-1/(2*delta^ 2)*(d(i,j)+d(i-1,j));

%

count=count+1;

row(count)=node(i,j);

col(count)=node(i,j-1);

value(count)=-1/(2*delta^ 2)*(d(i,j-1)+d(i-1,j-1));

%

count=count+1;

row(count)=node(i,j);

col(count)=node(i+1,j);

value(count)=-1/(2*delta^ 2)*(d(i,j)+d(i,j-1));

%

count=count+1;

row(count)=node(i,j);

col(count)=node(i-1,j);

value(count)=-1/(2*delta^ 2)*(d(i-1,j)+d(i-1,j-1));

%

R(node(i,j))=1+sn(i,j)/dt;

end

end

%

j=1;

for i=2:imax-1

count=count+1;
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row(count)=node(i,j);

col(count)=node(i,j);

value(count)=1;

R(node(i,j))=0;

end

%

j=jmax;

for i=2:imax-1

count=count+1;

row(count)=node(i,j);

col(count)=node(i,j);

value(count)=1;

R(node(i,j))=0;

end

%

i=1;

for j=2:imax-1

count=count+1;

row(count)=node(i,j);

col(count)=node(i,j);

value(count)=1;

R(node(i,j))=0;

end

%

i=imax;

for j=2:imax-1

count=count+1;

row(count)=node(i,j);

col(count)=node(i,j);

value(count)=1;

R(node(i,j))=0;

end

count=count+1;

row(count)=node(1,1);

col(count)=node(1,1);

value(count)=1;

R(node(1,1))=0;
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count=count+1;

row(count)=node(1,jmax);

col(count)=node(1,jmax);

value(count)=1;

R(node(1,jmax))=0;

count=count+1;

row(count)=node(imax,jmax);

col(count)=node(imax,jmax);

value(count)=1;

R(node(imax,jmax))=0;

count=count+1;

row(count)=node(imax,1);

col(count)=node(imax,1);

value(count)=1;

R(node(imax,1))=0;

% Construct sparse matrix

A=sparse(row,col,value);

% Cholesky factor and solve (automatic by Matlab)

s=A\ R;

for j=1:jmax

for i=1:imax

sn(i,j)=s(node(i,j));

end

end

if rem(n,100) == 1

plot(L*r,Z*sn(16:31,16));

end

%

end % end time step loop

2.3 Finite-Element Model

Our next task is to develop a finite-element model of the same problem com-
pleted above. Our motivation for introducing the finite-element method is
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twofold. First, we wish to emphasize the accessibility and understandability
of finite-element methods. Second, we wish to introduce the finite-element
method at a stage where it can readily be compared with the finite-difference
method.

The key difference between the finite-element and finite-difference ap-
proaches is the starting point. In finite differences, we insist that the partial-
differential equation representing mass continuity (Eqn. 2.2) be satisfied at
discrete grid points (i, j) which, for the EISMINT exercise, are located on a
31 × 31 grid. In finite elements, we insist on something different: that the
partial-differential equation be satisfied in an integral sense everywhere. In
other words, we begin the finite-element approach by applying the following
condition

2∫

0

2∫

0

{
∂s

∂t
−∇ · (d∇s)− 1

}
W (x, y)dxdy = 0 (2.13)

for all arbitrary functions W (x, y) that satisfy the mathematical properties
we specify. (For the present, we shall only require the W ’s to be continuous.
As before, we define the effective diffusivity by d = s5(∇s · ∇s). In future
chapters, we may restrict the functional properties of the W ’s to reflect some
need such as “upstream” differencing.) The functions W (x, y) are referred
to as “weighting functions” and are unspecified at this stage. The meaning
of Eqn. (2.14) is simple. If indeed the condition holds for all W ’s, we are
forced to conclude that the portion of the integrand within the curly brackets
is zero everywhere. This is just another way of stating Eqn. (2.2).

We next use the divergence theorem and apply the boundary conditions.
The divergence theorem gives:

2∫

0

2∫

0

{
∂s

∂t
− 1

}
W (x, y)dxdy −

∮
Wd∇s · nds+

2∫

0

2∫

0

d∇W · ∇sdxdy = 0

(2.14)
where n is the outward pointing normal vector to the outer boundary of
the ice sheet. To enforce boundary conditions s = 0 at x = 0, 2, y =
0, 2, we restrict the otherwise arbitrary W ’s to be zero at the boundaries.
This restriction makes the second term (the integral over the boundary)
vanish. We are thus left with the simpler expression (which involves only
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single derivatives of W and s):

2∫

0

2∫

0

{
∂s

∂t
− 1

}
W (x, y)dxdy +

2∫

0

2∫

0

d∇W · ∇sdxdy = 0 (2.15)

We can further simplify the modelling problem by taking advantage of
the lines of symmetry which divide the numerical domain. In particular, we
restrict our attention to the upper right-hand quadrant of the numerical do-
main and require that ∇s · n = 0 on the two lines of symmetry (x = 1 and
y = 1) where the quadrant joins its neighboring quadrants. In this circum-
stance, we reduce the size of the numerical domain to 1

4 of that considered
in the finite-difference approach above. Thus, our attention now focuses on
the following expression:

2∫

1

2∫

1

{
∂s

∂t
− 1

}
W (x, y)dxdy +

2∫

1

2∫

1

d∇W · ∇sdxdy = 0 (2.16)

We reiterate that satisfaction of the above expression for arbitrary W , with
the single restriction that W = 0 on the outer margins (x, y = 2), assures us
that the mass continuity equation is satisfied.

2.3.1 Discretization by the Finite-Element Method

Up to now, we have said nothing about finite-elements. We develop a finite-
element solution to Eqn. (2.16) by partitioning the numerical domain (the
upper right-hand quadrant of the square ice sheet) into N triangles (as shown
in Fig. 2.9) and allow both s and W to vary linearly within each triangle
(and be continuous across the boundary of each triangle). (Other kinds of
element shapes and interpolation functions can be considered. These are
the simplest, and are adequate for most ice-sheet modelling problems.) For
simplicity, we require that the effective diffusivity d be a piecewise constant
function, i.e., d is constant within each triangular element. (This choice is
justified by the fact that the gradient of s on which d depends is constant
within each element when s is linear within each element. We will learn in
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the accompanying exercises that error in representing d can be a major cause
of inaccuracy in finite element methods.) Denoting each triangular element
by the index e, the functions s and W within element e are represented by

s(x, y, t) =
3∑

l=1

sel (t)φ
e
l (x, y) (2.17)

W (x, y) =
3∑

k=1

we
kφ

e
k(x, y) (2.18)

where the sel (t)’s and we
k’s are the values of s(x, y, t) and W (x, y) at the

triangle vertices (called nodes, the index determines which node), and the
φej(x, y)’s are linear interpolation functions of the form

φej(x, y) = αejx+ βejy + γej (2.19)

for j = 1, . . . , 3. The coefficients αej , β
e
j and γej are determined by the re-

quirement that φej equal 1 at the location of the node who’s number is j and
0 at the two other nodes:



xe1 ye1 1
xe2 ye2 1
xe3 ye3 1






αej
βej
γej


 =



δ1,j

δ2,j

δ3,j


 (2.20)

where δi,j is the Kroneker delta (one if i = j and zero if i 6= j) and the points
(xel , y

e
l ) are the l = 1, . . . , 3 coordinates of the vertices of element e.

Substitution of Eqns. (2.17) and (2.18) into Eqn. (2.16) gives

N∑

e=1

we
k




∂sel
∂t

∫ ∫

e

φelφ
e
kdxdy + sel

∫ ∫

e

de
[
φel,xφ

e
k,x + φel,yφ

e
k,y

]
dxdy −

∫ ∫

e

φekdxdy



 = 0

(2.21)
where the subscript after the comma denotes the partial derivative of the
subscripted variable by the subscripting variable, where nonrepeating indices
k and l are summed (summation convention), and where

de =

(
s3
1 + se2 + se3

3

)5 3∑

i=1

3∑

j=1

(
seis

e
j

(
∇φei · ∇φej

))
(2.22)
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The above expression may be simplified by recognizing that each of the in-
tegrands may be carried out explicitly using the definition of φej(x, y) given
in Eqns. (2.19) and (2.20):

∫ ∫

e

φekdxdy =
ae

3

∫ ∫

e

φelφ
e
kdxdy =





ae

6
l = k

ae

12
l 6= k

∫ ∫

e

φel,xφ
e
k,xdxdy = αelα

e
ka

e

∫ ∫

e

φel,yφ
e
k,ydxdy = βel β

e
ka

e (2.23)

where ae is the area of element e given by

ae =
1

2

∣∣∣∣∣∣∣

1 1 1
xe1 xe2 xe3
ye1 ye2 ye3

∣∣∣∣∣∣∣
(2.24)

and where the vertical bars denote the determinant. With these substitu-
tions, Eqn. (2.21) becomes

N∑

e=1

we
ka

e

{
∂sel
∂t

{
1
6 l = k
1
12 l 6= k

}
+ sel d

e (αelα
e
k + βel β

e
k)−

1

3

}
= 0 (2.25)

At this stage, we discretize the time derivative using an implicit finite-
difference time step to obtain:

N∑

e=1

we
ka

e

{
[sel ]

n+1

{
1

6∆t l = k
1

12∆t
l 6= k

}
+ [sel ]

n+1[de]n (αelα
e
k + βel β

e
k)−

1

3
− [sel ]

n

{
1

6∆t l = k
1

12∆t
l 6= k

}}
= 0

(2.26)
where superscripts n and n+ 1 denote the time step.

The values of W (x, y) at each of the M node points in the finite-element
mesh are arbitrary. We are thus forced to insist that the expression contained
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within the curly brackets of Eqn. (2.26) be zero for each k, i.e.,

N∑

e=1

ae
{

[sel ]
n+1

{
1

6∆t
l = k

1
12∆t l 6= k

}
+ [sel ]

n+1[de]n (αelα
e
k + βel β

e
k)−

1

3
− [sel ]

n

{
1

6∆t
l = k

1
12∆t l 6= k

}}
= 0

(2.27)
for k = 1, 2, 3.

Given that the M nodes may be numbered consecutively to obtain a
unique numbering scheme that is independent of the numbering scheme used
to order the vertices of each particular element, we realize that Eqn. (2.27)
may be written in matrix notation in a manner similar to Eqn. (2.7) used in
the finite-difference formulation:

Asn+1 = R (2.28)

where sn is the column vector composed of the values of snm arranged by
the order in which the nodes are numbered. Thus, the p’th element of sn is
the value of sn at the p’th node. The matrix element Apq describes how the
solution at node p depends on the solution at node q.

The algorithm needed to construct A and R in Eqn. (2.28) is somewhat
tedious to envision because the numbering scheme of nodes in the mesh
differs from that that which determines the numbering of vertices within each
element. Denoting the node number of the k’th vertex of the e’th element by
p(e, k), the matrix A and the right-hand-side vector R may be constructed
by accumulating the appropriate entries generated by a loop through each
element e = 1, . . . , N and through the two vertex indices k = 1, 2, 3 and
l = 1, 2, 3




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ae

12∆t
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



+ ae[de]n (αelα
e
k + βel β

e
k) → Aq(e,k),r(e,l)

3∑
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[sel ]
n



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ae

6∆t
l = k

ae

12∆t
l 6= k



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+
ae

3
→ Rq(e,k) (2.29)
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An efficient way to keep track of the node-numbering scheme is to define a
N×3 incidence array Index. Each row of Index corresponds to a particular
element. The three column entries within a given row e contain the global
node numbers of the three vertices of the particular element e.

From this point on, the finite-element method is exactly the same as the
finite-difference method discussed above. To time step s forward in time,
it is necessary to construct A and R, perform the Cholesky factorization
(remembering to take advantage of the minimum-degree ordering convention
to reduce FLOPS), and then solve for sn+1.

2.3.2 Mesh Generation

One aspect which makes the finite-element method difficult is that the numer-
ical domain must be broken up into (presumably) a collection of irregularly
shaped triangles. The fact that this can be done gives the finite-element
method an advantage over finite-difference methods in dealing with complex
geometries.

The practical difficulty of generating a finite-element mesh should not be
underestimated, however. Fortunately, there are software packages becoming
available (such as Argus Meshmaker Pro for Macintosh and other work-
station platforms) which help with this arduous task. Here, we will create
the finite-element mesh used to simulate the upper right-hand quadrant of
the numerical domain in the EISMINT exercise using the Matlab script
listed below. In circumstances where the ice-sheet geometry might be more
complicated, it might be advantageous to use the mesh-generation software
provided by Argus MeshMaker Pro . This software produces the ar-
rangement of nodes and triangles according to user-specified node densities.
It also creates the incidence array T which is needed to construct the ma-
trix equation developed in the previous section. Figure (2.9) displays the
finite-element mesh used to compare with the finite-difference solution of the
governing equations. The silhouette of the adjacency matrix associated with
the finite-element mesh is displayed in Fig. (2.10).
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Finite-element mesh of upper right-hand quadrant

Figure 2.9: Finite-element mesh of upper right-hand quadrant. Zero ice
thickness is imposed on two boundaries and zero surface elevation gradient
(in direction normal to boundary) is imposed on the other two boundaries.
This mesh was constructed using the Matlab script. In more difficult
problems involving complex geometry, it might be advantageous to use a
mesh making software package such as Argus MeshMaker Pro .
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Figure 2.10: Silhouette of the adjacency matrix associated with the finite-
element approach to the problem. As with the finite-difference approach, the
finite-element approach generates a matrix with sparse structure.
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2.3.3 Finite-element simulation: steady state

The Matlab script which implements the finite-element ice-sheet model is
listed below, and was run for a 15,000-year simulation starting from a zero-
thickness initial condition. The period of integration was shortened despite
the EISMINT exercise instructions because the Macintosh CPU is too slow
to produce the 200,000-year simulation in a reasonable amount of time. (It
would require several days of dedicated computing to complete a 200,000-year
run for either the finite-difference or the finite-element model. New runs with
the PowerPC Macintosh yield the full solution due to a processor speed of
approximately 50 times faster than the MacIIfx.) The CPU time required to
make one time step is about 35 seconds on the CPU platform used in this
exercise (40 Mhz 68030 with FPU). This is slightly longer than that required
for the finite-difference version of the model. The time difference is attributed
to the fact that it takes more FLOPS to construct the matrix A with a finite-
element approach than to do so with a finite-difference approach. The reason
for this disparity is the fact that the do-loop required to construct A with
finite elements is of length N ≈ 2M , where N is the number of elements and
M is the number of nodes (grid points). With a finite-difference approach,
the do-loop is of length M . The finite-element time step did not take twice as
long as the finite-difference time step, however, because of the fact that the
number of nodes was only about 1

4
’th of the number of grid points, and thus

A had smaller dimension (recall that the finite-element approach is able to
exploit the symmetry of the ice sheet due to the ease with which zero-gradient
boundary conditions are specified). With larger problems involving greater
numbers of nodes or grid points, the finite-element method should run about
the same speed as the finite-difference method because, in large problems,
the Cholesky factorization step (of A) consumes the most CPU time, and
the size of the matrix A is the same for finite-elements and finite-differences.

The result of the 15,000-year finite-element simulation is shown in Fig.
(2.11), which displays the approach to steady state. A contour map of the
surface elevation in Fig. (2.12) shows the upper right-hand quadrant of the
EISMINT ice sheet which, because of symmetry, constitutes the numerical
domain in the finite-element model.
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Finite-element model: Level 1 steady state

Figure 2.11: Finite-element simulation of growth to steady state (surface
profile is shown at 1,000-year increments). The asterisks denote the exact,
analytic solution for the azimuthally symmetric ice sheet discussed in the
previous chapter. The crosses denote the result of the finite-difference sim-
ulation discussed previously in this chapter. Note the rough, grid-to-grid
point noise during the initial evolution. This noise can only be overcome by
adopting a smaller time step (the time step was 10 years in this particular
run).
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Figure 2.12: Finite-element simulation of growth to steady state (surface
profile is shown at 15,000 years after model start-up). Only the upper right-
hand quadrant of the EISMINT ice sheet was simulated because of symmetry
(boundary conditions of ∇zs · n = 0 were applied at junctions where the
quadrant joins the neighboring quadrants). This Spyglass contour plot
rotates the axes of the image so that the region pictured appears as if it were
the lower right-hand quadrant (the rows in Transform are listed from top
down instead of from bottom up).
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[Note: the following Matlab script makes use of the fact that ae is the
same for all elements, and can thus be canceled out completely from all
terms of the equation to be solved. In circumstances where element size
varies, the element areas must be factored back into the script. I wrote this
script when I had mistakenly assumed that the areas would cancel out in
all circumstances, thus I was unfortunate in not being able to discover my
mistake in this particular example, until after the exercise was complete.]

% This script represents a finite-element model of an ice sheet

%

% Warning: element areas have cancelled for this

% particular exercise only.

N=16;

nodes=N^ 2;

nel=(N-1)^ 2*2;

row=zeros(4050,1);

col=zeros(4050,1);

%value=zeros(4050,1);

g=9.81;

rho=910;

phi=zeros(3,3);

Ao=1/31556926 * 1e-16;

a=0.3/31556926;

L=1500e3/2;

Z=( 5*a*L^ 4/( 2 * Ao * (rho*g)^ 3 ) )^ (1/8);

r=linspace(0,1,N)’;

s exact=( 4 * ( (1/2).^ (4/3) - (r/2).^ (4/3) ) ).^ (3/8);

hold off,clg,plot(L*r,Z*s exact,’g*’); hold on

nsteps=1500;

dt=10*31556926*a/Z;

% Initialize at zero ice thickness

sn=zeros(N,N);

s=zeros(nodes,1);

% Create the interpolation functions.

alpha=zeros(nel,3);

beta=zeros(nel,3);

for n=1:nel
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%

[lowtri uptri]=lu([[xy(index(n,1),1) xy(index(n,2),1) xy(index(n,3),1)]’...
[xy(index(n,1),2) xy(index(n,2),2) xy(index(n,3),2)]’ ones(3,1)]);

phi(:,1)=uptri\(lowtri\ [1 0 0]’);
phi(:,2)=uptri\(lowtri\ [0 1 0]’);
phi(:,3)=uptri\(lowtri\ [0 0 1]’);
for k=1:3

alpha(n,k)=phi(1,k);

beta(n,k)=phi(2,k);

end

end

%

for time=1:nsteps

time

%

value=zeros(4050,1);

R=zeros(nodes,1);

d=zeros(nel,1);

count=0;

for n=1:nel

%

% Effective diffusivity

for l=1:3

for k=1:3

d(n)=d(n)+...

s(index(n,l))*s(index(n,k))*(alpha(n,l)*alpha(n,k)+beta(n,l)*beta(n,k));

end

end

d(n)=d(n)*((s(index(n,1))+s(index(n,2))+s(index(n,3)))/3)^ 5;

%

% Load matrix and right-hand-side vector:

%

R(index(n,1))=R(index(n,1))+1/3;

R(index(n,2))=R(index(n,2))+1/3;

R(index(n,3))=R(index(n,3))+1/3;

for l=1:3

for k=1:3
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count=count+1;

row(count)=index(n,k);

col(count)=index(n,l);

if l == k

R(index(n,k))=R(index(n,k))+s(index(n,l))/(6*dt);

value(count)=1/(6*dt);

else

R(index(n,k))=R(index(n,k))+s(index(n,l))/(12*dt);

value(count)=1/(12*dt);

end

value(count)=value(count)+d(n)*(alpha(n,l)*alpha(n,k)+beta(n,l)*beta(n,k));

end

end

% End loop over elements

end

A=sparse(row,col,value);

% Boundary condition at terminus

for i=1:31

A(Bound(i),Bound(i))=1.e12; % is a trick to use large number

R(Bound(i))=0;

end

% Solve the system for new thickness

s=A\R;
if rem(time,20) == 1

for i=1:16

for j=1:16

sn(i,j)=s(gamma(i,j));

end

end

plot(L*r,Z*sn(:,1));

end

% End time-stepping loop

end

Before the above Matlab script can be run, we must generate the initial
condition, which is here chosen to be an ice-thickness field that is 9/10’ths
that of the steady-state field generated by the finite-difference model. Pre-
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suming that the 31 × 31 array of nondimensional surface elevations sn was
saved at the end of the finite-difference run, the following Matlab state-
ments will set up the initial condition for the above code:

load sn

snew=sn(16:31,16:31)

sn=snew

A comparison of the final, steady-state surface-elevation profiles for the
finite-element and finite-difference versions of the ice-sheet model are shown
below:

zfems (t = 15, 000) = 103 m ×




3.3889
3.3550
3.3035
3.2404
3.1668
3.0828
2.9878
2.8809
2.7604
2.6238
2.4676
2.2864
2.0713
1.8081
1.4814
−0.0000




(2.30)
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zfds (t = 50, 000) = 103 m ×




3.4218
3.3911
3.3398
3.2772
3.2044
3.1212
3.0273
2.9217
2.8027
2.6679
2.5138
2.3346
2.1204
1.8521
1.4807
0.0000




(2.31)

The finite-element profile is a bit smaller than the finite-difference profile,
and this may result partially from the fact that the finite-element run was
only 15,000 years instead of 50,000 years. The shorter finite-element run was
necessitated by CPU constraints. This intercomparison defect may be fixed
at a later date.

A word about time step size

For both the finite-element and finite-difference models constructed here, the
time-stepping scheme is implicit (the gradient of s is evaluated at the n+1’th
time step instead of the n’th time step). The nonlinearity of the flow law is
treated by lagging the effective diffusivity by one time step (d is evaluated at
the n’th time step for the computation of sn+1). Under many circumstances,
implicit time steps are absolutely stable and can be used with arbitrarily
large time-step sizes, ∆t, provided accuracy is not a concern. Because of
nonlinearity in the effective diffusivity, the implicit time stepping scheme used
here is not absolutely stable. A ∆t size of 10 years (dimensional form) was
the largest time step that could be accomplished without introducing grid-
point-to-grid-point wiggles in the solution. There is no formula to determine
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the largest practical ∆t; thus, the researcher will have to perform some trial-
and-error experimentation to determine an appropriate time-step size.

2.4 Comparison Between Finite-Difference and

Finite-Element Approaches

By using both a finite-difference and a finite-element approach to the EIS-
MINT exercise, we have an opportunity to compare and contrast the two
approaches to ice-sheet modelling. The two approaches are similar in that
they both generate a sparse matrix equation which must be solved to step
through a time step:

Asn+1 = R (2.32)

The matrix A is slightly less sparse in the finite-element approach because
of the fact that finite-elements typically connect a node point with 6 of its
neighbors, whereas finite-differences typically connect a grid point with only 4
of its neighbors. The time taken to construct the finite-difference version of A
is generally less than that taken to construct the finite-element counterpart.
This is due both to the fact that the finite-difference A has fewer nonzero
elements and to the fact that A can be constructed on only one pass through
the grid points. The construction of the finite-element version of A requires
one pass through the elements, and often there are about twice as many
elements as there are grid points or nodes.

The comparison between finite-difference and finite-element approaches is
not dependent on whether an iterative relaxation scheme is used to solve the
sparse matrix equation listed above. For the present EISMINT exercise, we
have chosen to use direct, sparse-matrix solution schemes to obtain sn+1 from
the above matrix equation. We have learned that both the finite-difference
and finite-element approaches generate symmetric, positive definite matrices
A which are amenable to Cholesky factorization (the physics of the sys-
tem and not the numerical method is what determines these properties of
the matrix). Use of the Cholesky factorization and a minimum-degree node
numbering scheme keeps the number of floating point operations (FLOPS) to
a minimum in each time step. This computational consideration is taken care
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of automatically by Matlab , the mathematical engine behind the models
we have created. In FORTRAN applications on another computer, the fac-
torization of A may require careful user intervention to assure that it is done
as efficiently as possible.

The finite-element approach is advantageous in circumstances where flux
or gradient boundary conditions are specified, and where irregular model
geometry might be desired. A personal preference of the author is that the
finite-element approach is more elegant to describe and easier to code in
Matlab or FORTRAN.

Above all, it is worth remembering that there is ultimately little differ-
ence between the finite-element and finite-difference approaches that should
concern the scientific significance of the numerical modelling runs. Most
differences are details best appreciated in terms of software engineering.

2.4.1 Exercise 2

Create a finite-element model of the axisymmetric ice sheet of radius 750 km.
Compare the solution to the Nye-Vialov solution developed in Chapter 1. Use
the Matlab mat-file (data) circlemesh.mat to generate the finite-element
mesh.

2.4.2 Exercise 3

Create a finite-element model of Greenland using the mesh data provided in
Greenlandmesh.mat. Experiment with accumulation rate parameterizations
to see if you can reproduce the observed elevation profile of the ice sheet.
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Chapter 3

Ice-Shelf Dynamics

Before delving into the numerical modelling associated with the EISMINT
ice-shelf exercise, it is useful to review the derivation of some of the govern-
ing equations for ice-shelf evolution (as in previous chapters, we postpone
considering ice-shelf thermodynamics). These governing equations and their
derivation can be intimidating to the newcomer to glaciology. The goal of
the present chapter is to increase the “comfort level” associated with ice-shelf
dynamics before venturing into the numerical analysis needed to perform the
EISMINT exercises.

3.1 What Makes an Ice Shelf Different From

an Ice Sheet?

As with a similar question about the sexes, there are a multitude of answers
one might give to such a question as that posed in the section heading.
The answer that will be given here stems from the technical obstacle that
ice-shelf modellers face when trying to adapt an ice-sheet model to an ice-
shelf application. For both ice sheets (grounded ice) and ice shelves (floating
ice), the mass continuity equation yields the relation which governs the time
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evolution of the ice mass:
∂h

∂t
= a−∇ · q (3.1)

where, as before, h is the ice thickness, t is time, a is the net accumulation
rate (which includes both surface and basal mass exchange processes), ∇· is
the two-dimensional divergence operator, and q is the two-dimensional mass
transport vector. The difference between ice-sheet modelling and ice-shelf
modelling lies in the definition of q:

ice-sheet model:

q = −2(ρg)3(∇zs · ∇zs)∇zs
zs∫

zb

z∫

zb

A(T (z′))(zs − z′)3dz′dz (3.2)

ice-shelf model:

q =
∫

Ω

∫
h(x′, y′)Q(x, y; x′, y′)dx′dy′ (3.3)

where x and y are horizontal coordinates (geographic coordinates could suf-
fice instead), A is a temperature-dependent flow law parameter, ρ is the ice
density (assumed constant with depth in this exercise), g is the gravitational
acceleration, T is temperature, z is the vertical coordinate, zs and zb are
the elevations of the ice-sheet surface and base, respectively, and Ω is the
plan-view domain of the ice shelf.

Nonlocality

The formula for the mass transport vector q associated with the ice shelf
(Eqn. 3.3) is a formal representation that has little practical value. It does
make a point forcefully, however: the flux at position (x, y) depends on the
ice thickness at all other points (x′, y′) within the domain Ω. The vector-
valued Green’s function Q(x, y; x′, y′) is termed the influence function that
describes how the existence of (presumably straining) ice thickness at one
location affects the flow of the ice shelf at another. Buried within Q is the
information about the ice front and ice-stream input boundary conditions.
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This additional information could, if desired, be shown explicitly in the for-
mal definition of q for an ice shelf. We won’t bother to do so because we
realize that the expression for q in an ice shelf given by Eqn. (3.3) is too
formal to be useful to us in constructing a finite-difference or finite-element
model of an ice shelf.

What is important, and what is to be emphasized, is the fact that the
ice-shelf mass flux is a non-local function of the ice thickness. This is a stark
contrast to the case for the grounded ice sheet. As seen in Eqn. (3.2), the
ice-sheet mass flux is purely a function of the local ice thickness and surface
gradient. Information about the ice thickness and surface gradient at points
surrounding the location where the ice flux is desired need not be known to
compute q.

3.2 How to Deal with a Non-Local Definition

of Mass Flux

In practice, ice-shelf modellers define the ice transport in terms of a horizon-
tal, depth-averaged ice velocity field u = (u, v):

q = uh (3.4)

where the horizontal velocity field is a solution of the reduced [Morland, 1987]
or otherwise simplified stress-equilibrium equations. These equations are:

∂

∂x

(
2ν̄h

(
2
∂u

∂x
+
∂v

∂y

))
+

∂

∂y

(
ν̄h

(
∂u

∂y
+
∂v

∂x

))
= ρgh

∂zs
∂x

(3.5)

∂

∂y

(
2ν̄h

(
2
∂v

∂y
+
∂u

∂x

))
+

∂

∂x

(
ν̄h

(
∂u

∂y
+
∂v

∂x

))
= ρgh

∂zs
∂y

(3.6)

where the depth-averaged effective viscosity ν̄ (overbar denotes depth aver-
aging) is usually defined by

ν̄ =
1

h

zs∫

zb

B(T (z)) dz

2
[(

∂u
∂x

)2
+

(
∂v
∂y

)2
+ 1

4

(
∂u
∂y

+ ∂v
∂x

)2
+ ∂u

∂x
∂v
∂y

]n−1
2n

(3.7)
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We shall refer to Eqns. (3.5) and (3.6) as the ice-shelf stress-balance equa-
tions, and note the fact that they are second-order, elliptic partial differential
equations for u and v. These equations will require boundary conditions to
be specified along the margins of the ice shelf defined by the contour δΩ. We
shall describe these boundary conditions after first deriving Eqns. (3.5) and
(3.6) from first principles below.

The above definition for the effective viscosity can be recognized as that
viscosity which would yield a power-law constitutive relation between stress
and strain rate. The ice-stiffness parameter B is related to the flow-law
parameter A referred to in the previous chapters as follows:

B = A
−1
n ≈ A

1
3 (3.8)

The exponent n here does not refer to a time-step index, but rather to the
power-law flow exponent which is usually taken to be 3. For the EISMINT
exercises, we are asked to assume a constant (temperature independent) flow-

law parameter Ao = 10−16 Pa
−1
3 year−1 = 3.1689 × 10−24 Pa

−1
3 s−1. This

corresponds to an ice stiffness parameter of Bo = 1.4688 × 108 Pa s
1
3 .

Prognostic and diagnostic equations

We see that the way in which ice-shelf modellers get around the problem of
a non-local ice flux is to use two instead of one governing equations. The
pair of equations (and their boundary conditions which we don’t describe at
this point) for u and v given above (Eqns. 3.5 and 3.6) are called diagnostic
equations because they do not involve time. The diagnostic equations allow
us to determine u, v, and thus q for a given ice-thickness field h(x, y). The
solution to the diagnostic equations, once found, is stuffed into Eqn. (3.1),
which is referred to as the prognostic equation. The prognostic equation is
then used to update h through a time step, and then the process is repeated.

In summary, a practical approach to ice-shelf modelling is to employ a
two-step time-stepping procedure: First, solve the diagnostic equation for the
velocity field. Second, stuff the velocity field into the mass balance equation
and solve for a new ice thickness.
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3.3 Derivation of the Diagnostic (Velocity)

Equations

One might wonder where Eqns. (3.5) and (3.6) come from. Many researchers
have independently derived these equations using various approaches and lev-
els of elegance, sophistication and panache. To a person just beginning to
learn about ice-shelf modelling, these derivations can sometimes appear in-
timidating and full of mathematical rhetoric that can obscure the simplicity
of the physical system. In an effort to avoid such intimidation here, we shall
derive the diagnostic equations using as little formalism as possible. The
price we shall pay is that we will have to employ several assumptions at
critical stages that cannot be justified in a crisp, elegant manner. Given our
interest in getting on with the ice-shelf modelling exercise, we shall accept
this price and proceed saying nothing more about the formalism which can
be appreciated by looking elsewhere in the literature [e.g., consult the bib-
liography, and particularly: Weertman, 1957; Van der Veen, 1986; Muszyn-
ski and Birchfield, 1987; Morland , 1987; Morland and Shoemaker, 1981;
Morland and Zainuddin, 1987; Sanderson and Doake, 1979; Shumskiy and
Krass, 1976; Herterich, 1987; Hutter, 1983; MacAyeal and Barcilon, 1988;
MacAyeal, 1989].

Viscous Flow Law

For simplicity (since it really doesn’t affect the derivation), we shall assume
a viscous flow law,

T′ = 2νė (3.9)

Here T′ = T + P I is the deviatoric stress, T is the stress, P = −1
3
Tii is the

pressure, and ė is the strain rate defined by ėij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.
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Stokes’ equations

The stress-equilibrium equations (referred to as the Stokes equations in the
case of a viscous fluid) state that the divergence of the stress tensor is equal
to the body forces. These equations are written:

−∂P
∂x

+
∂

∂x
(2νėxx) +

∂

∂y
(2νėxy) +

∂

∂z
(2νėxz) = 0 (3.10)

. . . = . . .

−∂P
∂z

+
∂

∂x
(2νėzx) +

∂

∂y
(2νėzy) +

∂

∂z
(2νėzz) = ρg (3.11)

For convenience, we have omitted the equation for the y-component of the
momentum. All manipulations of this omitted equation proceed as for the
x-component equation.

Surface boundary condition

The boundary condition at the upper surface of the ice shelf z = zs is stress-
free, i.e.,

T · ns = 0 (3.12)

where ns is the outward-pointing unit normal vector given by

ns =
nz − ∂zs

∂x nx − ∂zs
∂y ny

√
1 +

(
∂zs
∂x

)2
+

(
∂zs
∂y

)2
(3.13)

and where nx, ny and nz are unit vectors that point along the subscripted
coordinates.

Application of the tensor/vector product in Eqn. (3.12) gives three equa-
tions which must be satisfied at z = zs:

(2νėxx − P )
∂zs
∂x

+ 2νėxy
∂zs
∂y

− 2νėxz = 0 (3.14)
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. . . = . . .

2νėxz
∂zs
∂x

+ 2νėyz
∂zs
∂y

− (2νėzz − P ) = 0 (3.15)

where, again, we avoid writing the second of the three equations for conve-
nience.

Basal boundary condition

The boundary condition at the bottom surface of the ice shelf z = zs is not
stress-free, i.e.,

T · ns = −ρghnb (3.16)

where nb is the outward-pointing unit normal vector to the bottom surface
of the ice shelf. Here, we have made the assumption (and it’s a pretty good
one) that the pressure of the sea water at the bottom of the ice shelf is equal
to the hydrostatic pressure necessary to float the ice shelf, i.e., the ice shelf
is floating in a medium with a hydrostatic pressure field. Manipulation of
the tensor/vector product yields the following three equations which apply
at z = zb:

(2νėxx − P )
∂zb
∂x

+ 2νėxy
∂zb
∂y

− 2νėzx = −ρgh∂zb
∂x

(3.17)

. . . = . . .

2νėxz
∂zb
∂x

+ 2νėyz
∂zb
∂y

− (2νėzz − P ) = ρgh (3.18)

Vertical integration

We anticipate (from observations of ice-shelf geometry and flow) that the
horizontal velocities and strain rates are independent of z. A sensible thing
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to try in an effort to simplify the Stokes’ equations (Eqns. 3.10 and 3.11)
is to integrate them over depth. We consider the result of integrating the
equation for the x-momentum balance first:

−
zs∫

zb

∂P

∂x
dz+

zs∫

zb

∂

∂x
(2νėxx) dz+

zs∫

zb

∂

∂y
(2νėxy) dz+

zs∫

zb

∂

∂z
(2νėxz) dz = 0 (3.19)

We can move the partial derivatives that appear inside the above integrals
to outside the integrals by using Leibnitz’ rule:

zs∫

zb

∂f(x, z, ...)

∂x
dz =

∂

∂x

zs∫

zb

f(x, z, ...)dz − f(x, zs, ...)
∂zs
∂x

+ f (x, zb, ...)
∂zb
∂x

(3.20)
The result of using Leibnitz’ rule on Eqn. (3.19) is:

− ∂

∂x

zs∫

zb

Pdz +
∂

∂x

zs∫

zb

2νėxxdz +
∂

∂y

zs∫

zb

2νėxydz +

zs∫

zb

∂

∂z
(2νėxz) dz

−(2νėxx − P )
∂zs
∂x

− 2νėxy
∂zs
∂y

+ 2νėxz

+(2νėxx − P )
∂zb
∂x

+ 2νėxy
∂zb
∂y

− 2νėxz = 0

(3.21)

We recognize that the last two lines of the above equation restate the left-
hand side of the x component of the surface and basal boundary conditions
(Eqns. 3.14 and 3.17). Making use of these boundary conditions, the above
equation simplifies to

− ∂

∂x

zs∫

zb

Pdz +
∂

∂x

zs∫

zb

2νėxxdz +
∂

∂y

zs∫

zb

2νėxydz +

zs∫

zb

∂

∂z
(2νėxz) dz = 0 (3.22)

Zero shear approximation

We now apply the key assumption which gives ice-shelf dynamics its distinc-
tive “flavor”. We assume that the horizontal velocities and strain rates are
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independent of z. This assumption is justified by the flat and thin geometry
of ice shelves, and by the fact that seawater is nearly inviscid when compared
to ice. Thus, we assume that u, v, ėxx, ėyy, and ėxy are independent of z,
and that ėzx = ėzy = 0.

The first consequence of the above assumptions is obtained by integrating
the vertical component of the Stokes’ equation (Eqn. 3.11), and making use
of the boundary condition (Eqn. 3.15) at z = zs. From this integration, we
find that the pressure field is found to have a glaciostatic component and a
dynamics component as follows:

P = ρg(zs − z) + 2νėzz (3.23)

This allows us to evaluate the integral of pressure over depth giving:

− ∂

∂x

zs∫

zb

Pdz = − ∂

∂x

[
ρgh2

2
− 2νh(ėxx + ėyy)

]
(3.24)

where we have made use of the incompressibility condition, ėzz = −(ėxx+ėyy).
With these assumptions and simplifications, Eqn. (3.22) becomes:

∂

∂x
[2νh(2ėxx + ėyy)] +

∂

∂y
[2νhėxy] = ρgh

(
∂zb
∂x

+
∂h

∂x

)

= ρgh
∂zs
∂x

(3.25)

where we have made use of the fact that h = zs − zb. Making use of the
definitions for the strain-rate components in terms of the horizontal velocities,
we obtain the equation we desired:

∂

∂x

(
2νh

(
2
∂u

∂x
+
∂v

∂y

))
+

∂

∂y

(
νh

(
∂u

∂y
+
∂v

∂x

))
= ρgh

∂zs
∂x

(3.26)

The other diagnostic equation follows by a similar derivation to the one
above. The flow law for ice may be introduced into the above diagnostic
equation without difficulty. (Vertical integration will necessitate that we use
the vertical average of the effective viscosity ν̄ owing to the temperature
dependence of the ice-stiffness parameter B.)
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3.4 Boundary Conditions

The ice-shelf stress-equilibrium equations (Eqns. 3.5 and 3.6) require bound-
ary conditions to be specified along the contour δΩ which defines the bound-
ary to the ice-shelf domain (denoted by Ω). There are two types of boundary
conditions: kinematic and dynamic. Kinematic conditions (specification of
velocity) are usually applied where ice-shelves abut stagnant, zero slip coast-
lines (such as where the Ross Ice Shelf abuts the Transantarctic mountains),
or where ice streams flow into the ice shelf (in which case the velocity is
specified from an examination of ice-stream dynamics). Dynamic conditions
(specification of stress) are usually applied at the seaward, iceberg-calving
front.

Kinematic conditions

Depth-averaged ice velocity is specified at all junctions with grounded ice
or coastlines where the ice shelf shears past stagnant rock. Typically, ice
flow into the ice shelf at grounding lines of ice sheets can have z-dependence
which is incompatible with the z-independent horizontal flow of the ice shelf.
As described by Barcilon and MacAyeal [1988], the z-dependent structure of
the input velocity is winnowed out of the net horizontal flow within a narrow
transition zone between ice-sheet and ice-shelf flow regimes. This winnowing
process is of little interest in most glaciological problems involving ice shelves.
Thus, it is sufficient to ignore the winnowing process and simply specify the
depth-averaged input velocity as the correct boundary condition.

Dynamic conditions

The balance of forces at the seaward ice front also introduces z-dependent
structure in the ice-shelf flow which is winnowed away within a narrow tran-
sition zone extending inward from the ice front. As suggested by Morland
[1987], this winnowing is of little interest, and may be safely ignored in the
specification of boundary conditions for the ice-shelf stress-equilibrium equa-
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tions. The balance of forces at the ice front which is relevant as a boundary
condition is the depth-integrated balance:

zs∫

zb

T · ndz = −ρwg
2

(
ρ

ρw
h

)2

n (3.27)

where n is the outward-pointing normal to the portion of δΩ that represents
the ice front (n is restricted to lie in the horizontal plain), and where ρw is
the average density of seawater. Here we have made use of the assumption
that the ice shelf floats in hydrostatic equilibrium with seawater, i.e., that
zb = − ρ

ρw
h.

The integral on the left-hand side of Eqn. (3.27) represents the depth-
integrated force transmitted across the ice front due to internal stresses (pres-
sure and deviatoric stress) in the ice shelf. The right-hand side of the above
equation represents the integral of the hydrostatic pressure in the seawater
beyond the ice front over the face of the ice front. This force balance is
summarized in Fig. (3.1).

To render Eqn. (3.27) into a form suitable to be specified as a boundary
condition on the ice-shelf stress-balance equations, the flow law must be used
to replace the stress T with the strain rate ė. The strain rate components
may then be written in terms of the derivatives of u and v.

3.4.1 Dynamic condition if n = nx

As an illustration of how a dynamic boundary condition would be specified
for an ice front that has an outward-pointing normal aligned with the x-axis
(the ice front extends along the y-axis, and the ice shelf is to the left and the
ocean to the right), i.e., n = nx. With this geometry,

T · nx = (2νėxx − P )nx (3.28)

and Eqn. (3.27) becomes,

zs∫

zb

T · ndz = −ρwg
2

(
ρ

ρw
h

)2

nx (3.29)
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hydrostatic pressure

ice front

Ice Shelf

Seawater

hydrostatic pressure

ice front

Ice Shelf

Seawater

Net difference between Hydrostatic 
Pressures

Figure 3.1: Force balance at an ice front which determines the dynamic
boundary condition on an ice shelf (after T. Hughes, personal communica-
tion).
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To write the above dynamic condition in a form which involves u and v, we
substitute for T using the flow law and the definition of the deviatoric stress
and then integrate over z. The integral of pressure over depth is evaluated
as follows

zs∫

zb

Pdz =

zs∫

zb

(ρg(zs − z) + 2νėzz) dz

= ρg
h2

2
− 2ν̄h(ėxx + ėyy) (3.30)

where we have made use of the definition of pressure given by Eqn. (3.23)

and the z-independence of the strain rates, and the definition
zs∫
zb
νdz = hν̄.

Combining Eqns. (3.28) and (3.30) with Eqn. (3.27) we obtain:

2ν̄h (2ėxx + ėyy) =
ρgh2

2

(
1− ρ

ρw

)
(3.31)

Making use of the definitions of the strain-rate components, we obtain the
boundary condition:

2ν̄h

(
2
∂u

∂x
+
∂v

∂y

)
=

ρgh2

2

(
1− ρ

ρw

)
(3.32)

3.5 Weertman’s Analytic Solution

A simple and elegant solution for the unidirectional spreading rate of an
ice shelf (ice tongue confined in a rectangular embayment with frictionless
sides as shown in Fig. 3.2) was derived by Weertman [1957] using the above
boundary condition. Inspection of the ice-shelf stress-balance equations in-
dicates that for an ice shelf of uniform thickness (h = constant) allowed to
flow in the x-direction only (as if confined by an embayment with parallel
sides), the horizontal spreading rate ėxx will be independent of x. Thus, the
value of ėxx at the ice-front boundary will have the same value as everywhere
else.
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We can determine ėxx by considering Eqns. (3.7) and (3.31). The only
non-zero term in the denominator of the integrand in the definition of ν̄ (Eqn.

3.7) is the
(
∂u
∂x

)2
= ė2

xx term which, due to the z-independence of the flow,
can be moved outside of the integral over z. We may thus write ν̄ as follows
for this special case:

ν̄ =
B̄

2 |ėxx|
n−1
n

(3.33)

where B̄ = 1
h

zs∫
zb
Bdz. The absolute value of ėxx appears in the above equa-

tion to emphasize the fact that (ė2
xx)

n−1
2n is a positive quantity. Failure to

remember this (e.g., what would happen if you just canceled the 2’s in the
exponent) can cause problems in modelling arbitrary ice-shelf regimes where
ėxx can be both positive and negative. If we assume that ėxx > 0, then the
above expression simplifies to:

ν̄ =
B̄

2ė
n−1
n

xx

(3.34)

Substitution of the above expression into Eqn. (3.31) gives:

ė
1
n
xx =

ρgh

4B̄

(
1− ρ

ρw

)
(3.35)

The spreading rate

ėxx =

[
ρgh

4B̄

(
1− ρ

ρw

)]n
(3.36)

is thus seen to be proportional to hn ≈ h3.

Marine ice-sheet instability

It is important to note the fact that Weertman’s solution, ėxx ∝ h3, forms the
essence of the marine ice-sheet instability he described in 1974 [Weertman,
1974]. The idea is simple. As the grounding line of an ice sheet retreats
into deeper water (assuming the bed of the ice sheet slopes downward to-
ward the ice-sheet interior), the spreading rate and the rate at which the
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grounding line wants to retreat (if not held in check by snow accumulation
and advection) both increase. Thus, once triggered, a grounding line cannot
avoid catastrophic, uncontrolled retreat. Of course, this does not happen in
practice (thank God!), because real ice shelves (such as those surrounding
the West Antarctic ice sheet) are confined in embayments and thus rarely
spread at the unconfined limit determined above. This serves to illustrate
why ice-shelf dynamics continues to be of interest to glaciologists and other
scientists interested in the question of marine ice-sheet stability [e.g., Van
der Veen, 1986; Van der Veen, 1985]

3.6 Van der Veen’s Exact, Analytic Solution

for a Floating Ice Tongue

For use in eventual model testing, we shall derive the exact, analytic solution
for the thickness and velocity profiles of a floating ice tongue allowed to
spread unidirectionally along the x-axis as originally developed by Van der
Veen [1986a, 1986b]. The geometry is essentially the same as that shown
in Fig. (3.2) for the Weertman solution. We assume that the ice tongue
extends from the origin at x = 0 along the positive x-axis. We allow h(x) to
be a function of x, and consider the effects of snow accumulation a (assumed
constant) and possible input ice flux Qo at the inland boundary at x = 0.

The ice-shelf stress-equilibrium equations (Eqn. 3.5 and 3.6) are simpli-
fied by the assumptions that v = 0 and that all y-derivatives vanish. This
reduces the stress-balance equations to a single equation for u(x):

∂

∂x

(
4ν̄

∂u

∂x

)
= ρgh

∂zs
∂x

(3.37)

The effective viscosity may be eliminated using Eqn. (3.33) giving:

∂

∂x


2Boh

∣∣∣∣∣
∂u

∂x

∣∣∣∣∣

1−n
n ∂u

∂x


 = ρgh

∂zs
∂x

(3.38)

Noting the fact that ∂u
∂x > 0 in a steady-state ice tongue, the above equation
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du/dx ocean

ice shelf

frictionless sides

x

y

Figure 3.2: Geometry of Weertman’s [1957] solution. This geometry is also
used to produce Van der Veen’s [1986a] exact, analytic solution for a floating
ice tongue. For Van der Veen’s problem, we assume that the grounding line
is at x = 0 where an input flux is specified.
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simplifies to become

∂

∂x


2Boh

(
∂u

∂x

) 1
n


 = ρgh

∂zs
∂x

(3.39)

where we have assumed a constant ice-stiffness parameter B̄ = Bo = 1.4688×
108 Pa s

−1
3 following the conventions of the EISMINT Level 1 exercises. As

a reminder, we cannot be cavalier about the absolute value signs appearing
in Eqn. (3.38) when we are dealing with an ice tongue in which ∂u

∂x can have
arbitrary sign.

Nondimensionalization

Before developing the exact, analytic solution to the above equation, we
adopt nondimensional variables using the following substitutions:

u → Uu

x → Lx

h → Zh

zs →
(
1− ρ

ρw

)
Zh

To simplify Eqn. (3.39), we insist that the scale factors Z, U and L satisfy
the following relationship

2Bo

(
U

L

) 1
n Z

L
=
ρgZ2

2L

(
1− ρ

ρw

)
(3.40)

With this relationship, the nondimensional form of Eqn. (3.39) becomes
particularly simple:

(h(u′)
1
n )′ = (h2)′ (3.41)

Here we use primes to denote differentiation by x as a reminder that the
governing equation has been reduced from a partial differential equation to
an ordinary differential equation of the single variable x.
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Velocity profile

Integrating the above equation (Eqn. 3.41) once gives,

h(u′)
1
n = h2 + c (3.42)

The constant of integration c is zero because we require u′ to vanish as h→ 0.
Thus, a bit of rearrangement of exponents gives

u′ = hn (3.43)

Integration a second time gives the velocity profile of the ice shelf expressed
in terms of the ice thickness profile:

u(x) = u(0) +

x∫

0

h(s)nds (3.44)

where u(0) is the ice velocity at the inland ice junction x = 0 (also referred to
as the grounding line). Under most modelling circumstances, u(0) is specified
as a kinematic boundary condition.

Mass balance

The mass balance equation (Eqn. 3.1) in nondimensional form, and making
use of the relation q = uh, is

1 = (uh)′ (3.45)

where we have insisted on a second simplifying relationship between the scales
U , L, and Z :

aL

UZ
= 1 (3.46)

Recall that the snow accumulation rate a in the EISMINT Level 1 exercises
is assumed constant.

The product rule for differentiation, when applied to the right-hand side
of Eqn. (3.45), and use of Eqn. (3.43), gives

1 = uh′ + hn+1 (3.47)
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Van der Veen’s approach

Van der Veen [1986a,b] found an ingenious way to eliminate u from the above
equation to obtain an ordinary differential equation for h only. He recog-
nized that mass balance, in integral form, requires that the mass flux q = hu
increase linearly with x. This linear relationship follows from the mass con-
tinuity equation. This relationship is makes sense because, to accommodate
the increasing burden of snow accumulated upstream as one moves their ref-
erence point downstream along the x-axis, ice transport must increase with
x. In particular,

hu = qo + x (3.48)

where qo is the mass flux at the ice-shelf grounding line (junction with inland
ice). Multiplication of Eqn. (3.47) by h, and use of the above relation, gives:

h = (qo + x)h′ + hn+2 (3.49)

or, ∫ dx

qo + x
=

∫ dh

h− hn+2
(3.50)

Integration

The left-hand side of the above equation may be integrated readily to yield
∫ dx

qo + x
= ln(qo + x) (3.51)

The right-hand side of Eqn. (3.50) is a bit more laborious to integrate, but
is readily done as follows

∫
dh

h− hn+2
=

∫
dh

h
+

∫
hndh

1− hn+1

= ln h− 1

n + 1
ln(1− hn+1) + c

= ln


 h

(1− hn+1)
1

n+1


 + c (3.52)
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where c is a constant of integration necessitated by the fact that the integrals
in Eqn. (3.50) are indefinite.

Making the above substitutions into Eqn. (3.50) for the integrals, and
taking the exponential of both sides to invert the logarithm function, gives

(qo + x) = c





h

(1− hn+1)
1

n+1



 (3.53)

A bit of rearrangement gives

h =
[
1 + c (qo + x)−n−1

] −1
n+1 (3.54)

In the above expression we have taken the liberty to redefine c as necessary
to avoid complication.

The constant of integration c is evaluated by the requirement that, at
x = 0, h = ho = Ho

Z , where Ho is the dimensional value of h at x = 0,

c =
(
h−n−1
o − 1

)
qn+1
o (3.55)

Again, by judiciously insisting that the scales of nondimensionalization U , L
and Z satisfy a third relation, namely

1 =
Qn+1
o

(UZ)
n+1

(
H−n−1
o

Z−n−1
− 1

)
(3.56)

The end result is the exact, analytic solution for the ice-thickness profile
in nondimensional form (again, due to Van der Veen):

h(x) =


1 +

qn+1
o

(
h−(n+1)
o − 1

)

(qo + x)n+1




−1
n+1

(3.57)

It should be noted that if qo = 0, the constant of integration c must be
determined another way. We will not consider this alternative nondimen-
sionalization here because the EISMINT exercise involves a nonzero qo.
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Ice-shelf thickness as x→∞

The ice-shelf thickness profile given by Eqn. (3.57) indicates that lim
x→∞h(x) =

1. This is a consequence of the fact that the thinning due to horizontal
expansion just balances the accumulation rate (presumed constant in this
exercise) when h(x) = 1. All the “action” in ice-tongue dynamics (unconfined
ice shelf dynamics) occurs very close to the grounding line where the ice shelf
adjusts from an arbitrary input thickness to the asymptotic far-field thickness
of 1.

3.6.1 Evaluation of Scales

In deriving the exact, analytic ice-thickness profile for the floating ice tongue
above, we have insisted that the scales of nondimensionalization U , Z and
L satisfy two relationships, which are repeated below (using the n = 3 flow
law):

2Bo

(
U

L

) 1
3

=
ρgZ

2

(
1− ρ

ρw

)
(3.58)

a

Z

(
U

L

)−1

= 1 (3.59)

Before we can evaluate the exact, analytic solution, or conduct numerical
modelling experiments, we must determine the values of the dimensional
scales U , L, and Z using the above three equations. Observe that Eqn.
(3.58) gives the Weertman [1957] unidirectional spreading rate for an ice
thickness Z :

U

L
=

(
ρgZ

4Bo

(
1− ρ

ρw

))3

(3.60)

By using Eqn. (3.58) for U/L in Eqn. (3.59), we can derive an expression
for Z:

Z =
a

1
4 (4Bo)

3
4

(
ρg

(
1− ρ

ρw

)) 3
4

(3.61)
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Substitution of the above result for Z into Eqn. (3.60) or Eqn. (3.59), and
arbitrarily choosing U to equal the dimensional form of the grounding-line
velocity u(0), gives an expression for L, e.g.,

L =
ZU

a
(3.62)

Evaluation of the above expressions using EISMINT Level 1 constants
(ρ = 910 kg m−3, g = 9.81 m s−2, ρw = 1028 kg m−3, a = 0.3 m year−1,

Qo = 4× 105 m2 year−1, Ho = 103 m, and Bo = 1.4688× 108 Pa s
1
3 ) gives:

Z = 205.7426 m

U = 400 m yr−1

L = 274.32 km

3.6.2 Exact solution

The following Matlab script was used to evaluate the exact, analytic ice-
thickness profile of the ice tongue expressed in Eqn. (3.57).

% This program computes the exact, analytic thickness and velocity

% profiles for an ice tongue alowed to spread unidirectionally.

Qo=4e5/31556926;

Ho=1.0e3;

rho=910;

rho w=1028;

a=0.3/31556926;

Bo=1.4688e8;

g=9.81;

Z=a^ (1/4)*(4*Bo)^ (3/4)/(rho*g*(1-rho/rho w))^ (3/4);

UonL=(rho*g*Z*(1 - rho/rho w)/(4*Bo))^ 3;

U=Qo/Ho;

L=Z*U/a;

qo=Qo/(U*Z);

ho=Ho/Z;
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%

x=linspace(0,1,100);

h=(1+ qo^ 4*(ho^ (-4)-1)./(qo+x).^ 4 ).^ (-1/4);

plot(L*x,Z*h)

A plot of h(x) over the nondimensional interval x ∈ [0, 1] is presented in
dimensional form in Fig. (3.3). What is striking about the thickness profile
is the extreme degree of thinning within the first 25 km. Most ice shelves in
nature fail to show such extreme thinning near the grounding line, and this
can be attributed to the fact that confinement within embayments tends to
reduce the horizontal spreading rate well below its unconfined limit.

3.7 Ice-Stream Dynamics

Ice-stream dynamics is the same as ice-shelf dynamics in most respects [MacAyeal,
1989]. The two additional aspects which must be accounted for in determin-
ing the flow and mass balance of an ice stream (at the level described here)
are basal friction and the lack of flotation. The horizontal velocity field of an
ice stream satisfies two equations that are virtually identical to the ice-shelf
stress-equilibrium equations. They are listed as follows,

∂

∂x

(
2ν̄h

(
2
∂u

∂x
+
∂v

∂y

))
+

∂

∂y

(
ν̄h

(
∂u

∂y
+
∂v

∂x

))
= ρgh

∂zs
∂x

− τx

(3.63)

∂

∂y

(
2ν̄h

(
2
∂v

∂y
+
∂u

∂x

))
+

∂

∂x

(
ν̄h

(
∂u

∂y
+
∂v

∂x

))
= ρgh

∂zs
∂y

− τy

(3.64)

where τx and τy are the horizontal components of the basal traction encoun-
tered at the ice-stream bed. The lack of flotation (ice-streams sit on the bed)
means that the surface elevation is no longer related to the ice thickness by
the relation zs = (1− ρ

ρw
)h (in dimensional form).

The kinship between ice-stream dynamics and ice-shelf dynamics has
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Figure 3.3: Ice thickness profile (exact) of an ice tongue allowed to spread in
the longitudinal direction only.
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been exploited by numerous workers [e.g., Muzynski and Birchfield, 1987;
MacAyeal, 1989; Jenson, 1993] who have approached the problem of specify-
ing τx and τy with varying degrees of sophistication. At a gross, fundamental
level, specification of the basal friction using the assumption that the τ ∝ −u
has produced reasonable agreement between model and observation. Efforts
to improve this agreement focus primarily on the better specification of τx
and τy rather than improvements in the underlying assumption that Eqns.
(3.63) and (3.64) adequately describe ice-stream dynamics.

A recent Phd thesis by John Jenson [1993] shows how the above ice-
stream dynamics (modified to account for longitudinal spreading only) can
be adapted to simulate the behavior of a marginal lobe of the Laurentide ice
sheet that extended along Lake Michigan into Illinois. Sampling of the basal
till deposits has suggested a nonlinear basal friction law that is comparable
in many ways to what is being discovered from studies of the beds of ice
streams in Antarctica.

3.8 Summary

In this chapter we have taken on the onerous task of deriving ice shelf flow
dynamics. The results, while tedious compared with the comparable results
for grounded ice sheets, are still relatively simple. The two key points to
appreciate are: (1) that ice-shelf mass flux is not a local function of the ice
thickness and surface elevation, and (2) that ice-stream dynamics is essen-
tially the same as that of ice shelves. The first point, nonlocality, necessitates
taking a two-stepped approach to ice-shelf modelling, which we shall do in the
next chapter. The first step is to determine via an elliptic partial differential
equation the horizontal flow consistent with the current ice thickness field.
The second step is to use this flow in the mass continuity equation (which
is essentially hyperbolic) to update the ice thickness field through one time
step. This two-stepped procedure makes ice-shelf modelling somewhat more
awkward and less appealing than ice-sheet modelling.
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Chapter 4

Flowline Ice-Shelf Models

In this chapter, we will construct a finite-difference model of a freely expand-
ing ice tongue. Its purpose is to test a numerical method by comparing its
solution with the exact, analytic solution developed in the previous chapter.

The ice-shelf models constructed here and in the next chapter (which
takes up the issue of two-dimensional ice shelves) will share several key points.
First is that the time-stepping procedure is split into a two-step algorithm
as suggested in the previous chapter. One step involves solution of the di-
agnostic equation which determines the velocity field from the ice-thickness
field (and boundary conditions). The second step involves solution of the
prognostic equation which uses mass continuity to update the ice-thickness
distribution. A third point in common between all ice-shelf models is the fact
that the nonlinear flow law requires an iterative solution of the diagnostic
(velocity) equation.
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4.1 Finite-Difference Model of an Ice Tongue

We consider the ice tongue who’s exact, analytic solution was obtained in §
(3.6). Our goal will be to perform the EISMINT exercise in which the steady-
state thickness profile of this ice tongue is achieved after an evolution from
an initial condition of zero (actually 1 meter) ice thickness. (Zero thickness is
inconvenient because the formula for the effective viscosity of ice is singular
when h = 0.) The governing equations for the ice tongue, expressed in
nondimensional form, are

∂h

∂t
= 1− ∂

∂x
(uh) (4.1)

∂

∂x


h

∣∣∣∣∣
∂u

∂x

∣∣∣∣∣

1
n−1

∂u

∂x


 =

∂

∂x

(
h2

)
(4.2)

In the above diagnostic equation (Eqn. 4.2 is henceforth referred to as the
diagnostic equation because it does not involve time), we have retained the
absolute value in the definition of the effective viscosity because we expect
to deal with situations in which ∂u

∂x has arbitrary sign. A convenient sim-
plification of the above diagnostic equation is made by defining the effective
viscosity c:

c = h

∣∣∣∣∣
∂u

∂x

∣∣∣∣∣

1
n
−1

(4.3)

which renders Eqn. (4.2) into the following form:

∂

∂x

(
c
∂u

∂x

)
=

∂

∂x

(
h2

)
(4.4)

Boundary conditions associated with the ice tongue are applied at the
upstream end where the ice tongue joins the inland ice:

h = ho (4.5)

u = uo (4.6)
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at x = 0, and at the downstream end where the ice tongue abuts the ocean:

∂u

∂x
= h3 (4.7)

at x = 1. (We assume arbitrarily that our interest in modelling the ice tongue
is restricted to the nondimensional interval x ∈ [0, 1].) The initial condition
applied at t = 0 is

h(x) =
1

Z
(4.8)

which is 1 meter, in dimensional units.

4.2 Finite Differencing

Both the prognostic (Eqn. 4.1) and diagnostic (Eqn. 4.4) equations are
discretized by the finite-difference method using a staggered-grid convention
shown in Fig. (4.1). The purpose of adopting this scheme is to avoid mass
conservation problems and numerical noise that can be generated if the ve-
locity is defined at the same grid locations as the ice thickness.

4.2.1 Prognostic equation

The finite-difference form of the prognostic equation (mass continuity) is

hj+1
i

∆t
− hji

∆t
= 1− 1

2∆x

(
uji

(
hj+1
i+1 + hj+1

i

)
− uji−1

(
hj+1
i + hj+1

i−1

))
(4.9)

for i = 2, . . . , N − 1 where N is the number of grid points. For i = 1 we use
the boundary condition hj+1

1 = ho. For i = N we use the above equation,
but replace hj+1

N+1 with hj+1
N . This short-cut at the seaward margin of the

ice tongue is not a boundary condition per se, but rather a numerical short-
cut (that is reasonably accurate) which eliminates the need to specify the
ice thickness at grid point N + 1 using the method of characteristics. In
the above equation subscripts denote the grid-point index and superscripts
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denote the time-step level, ∆x is the grid spacing, and ∆t is the time-step
size. Slight rearrangement of terms in the above equation gives:

hj+1
i−1

(
−uji−1

2∆x

)
+ hj+1

i

(
1

∆t
+
uji − uji−1

2∆x

)
+ hj+1

i+1

(
uji

2∆x

)
= 1 +

hji
∆t

(4.10)

Eqn. (4.10) is easily recognized as a tridiagonal system. Thus we express the
entire finite-difference discretization of the prognostic equation as a single
matrix equation:

Ahj+1 = R (4.11)

where

hj+1 =




hj+1
1

hj+1
2
...

hj+1
N




(4.12)

the tridiagonal matrix A is composed of the following nonzero elements:

1

∆t
+
uji − uji−1

2∆x
→ Ai,i

−uji−1

2∆x
→ Ai,i−1

uji
2∆x

→ Ai,i+1

for i = 2, . . . , N − 1,

1 → A1,1

and,

1

∆t
+

2ujN − ujN−1

2∆x
→ AN,N

−ujN−1

2∆x
→ AN,N−1
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and the right-hand-side vector R is given by:

1 +
hji
∆t

→ Ri (4.13)

for i = 2, . . . , N , and
ho → R1 (4.14)

4.2.2 Diagnostic equation

The finite-difference discretization of the diagnostic equation is accomplished
using the same staggered-grid convention as that used for the prognostic
equation. In the notation shown below, we drop the superscript j which
indicates the time-step level because all variables are evaluated at the same
time-step level. The effective viscosity c is defined as follows:

c
[k]
i = hi

∣∣∣∣∣∣
u

[k−1]
i − u

[k−1]
i−1

∆x

∣∣∣∣∣∣

1
n
−1

(4.15)

for i = 2, . . . , N . The value of c
[k]
i at grid point i = 1 is not referenced in the

finite-difference model, hence it is not defined. The superscript [k] is used
to denote iteration number in the successive approximation algorithm for
enforcing the nonlinear flow law. We shall postpone for now the discussion
which motivates the need for the superscript [k].

The definition of the effective viscosity shown above can cause difficulty

when either h = 0 or

∣∣∣∣
u
[k−1]
i −u[k−1]

i−1

∆x

∣∣∣∣ = 0. When the latter of these conditions

are met, the definition of c
[k]
i will trigger a divide-by-zero. One way to over-

come this potential difficulty is to add a “tid bit” to the velocity gradient to
keep the effective viscosity positive definite:

c
[k]
i = hi




∣∣∣∣∣∣
u

[k−1]
i − u

[k−1]
i−1

∆x

∣∣∣∣∣∣
+ ε




1
n
−1

(4.16)

where ε is a small number on the order of 10−25 (nondimensional) or so.
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The discretization of the diagnostic equation is made simple by the above
definitions, and is listed as follows:

1

∆x2

(
c
[k]
i+1

(
u

[k]
i+1 − u

[k]
i

)
− c

[k]
i

(
u

[k]
i − u

[k]
i−1

))
=

h2
i+1 − h2

i

∆x
(4.17)

for i = 2, . . . , N−1. Two boundary conditions are required. At the upstream
end of the ice tongue, the velocity is specified:

u
[k]
1 = uo +

∆x

h1 + h2
(4.18)

The second term in the above equation represents the snow accumulation
between the grounding line and the location of the grid point where u1 is
specified. At the downstream end of the ice tongue, a gradient condition is
specified:

u
[k]
N − u

[k]
N−1

∆x
= h3

N (4.19)

As with the prognostic equation, the finite-difference form of the diag-
nostic equation represents a tridiagonal matrix equation:

D[k]u[k] = F (4.20)

where,

u[k] =




u
[k]
1

u
[k]
2
...

u
[k]
N




(4.21)

To define the matrix D[k], we must make use of the effective viscosity vector:

c[k] =




c
[k]
1

c
[k]
2
...

c
[k]
N




(4.22)
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The matrix D is tridiagonal. It’s nonzero elements, and the elements of F
are summarized as follows:

−1

∆x2

(
c
[k]
i + c

[k]
i+1

)
→ D

[k]
i,i

c
[k]
i

∆x2
→ D

[k]
i,i−1

c
[k]
i+1

∆x2
→ D

[k]
i,i+1

1

∆x

(
h2
i+1 − h2

i

)
→ Fi

for i = 2, . . . , N − 1, and

1 → D
[k]
1,1

uo → F1

1

∆x
→ D

[k]
N,N

−1

∆x
→ D

[k]
N,N−1

h3
N → FN

4.2.3 Viscosity iteration

At this stage, we must explain the iteration index represented by the super-
script [k]. The diagnostic equation for the velocity u is nonlinear because
c depends on u. A simple way to treat this nonlinearity (i.e., to solve the
nonlinear ordinary-differential equation) is to use the method of successive
approximation. (There are better, more efficient methods, but I have not
investigated them at length.)
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The method of successive approximation works as follows. First, we start
with a guess u[0] (say, the result of the previous time step), and we use this
guess to generate c[1] using Eqn. (4.16). We then use c[1] to construct D[1],
which is then used with F to solve for u[1]. The u[1] is then used to generate
c[2], and the process is repeated, so on and so forth, until convergence occurs.
Convergence is deemed satisfactory when the following condition is met:

max
i=2,...,N

∣∣∣∣∣∣
c
[k+1]
i − c

[k]
i

c
[k]
i

∣∣∣∣∣∣
< δ (4.23)

where δ is a small number of the order of 0.01.

A sequence of linear equations

To reiterate, the sequence of linear equations described above converge to
the nonlinear equation that we ultimately wish to solve, i.e., the solution of

lim
k→∞

D[k]u[k] = F (4.24)

is the solution of the nonlinear diagnostic equation.

Numerical flow chart

The two-step numerical procedure used to perform a time step is summarized
by the flow chart shown in Fig. (4.2). Experience suggests that without the
internal iteration loop on the index [k], the routine is not sufficiently accurate.

4.3 Simulation of an Ice Tongue: Comparison

Between Numerical and Exact Solutions

The above description of the finite-difference ice-tongue model was imple-
mented with the Matlab script listed below to simulate the evolution to
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a steady-state from a zero-thickness initial condition. (The initial condition
was actually 1 meter, for the technical reasons cited above.) The evolu-
tion was as expected. After model start-up, the grounding-line boundary
condition introduced a ice-thickness jump which propagated downstream as
time evolved. In the wake of the ice-thickness jump, or shock as it can
be called, the ice tongue is in steady state. This correspondence between
the region where the ice tongue is in steady state and the location of the
ice-thickness jump is expected from the hyperbolic nature of the prognostic
equation [MacAyeal and Barcilon, 1988]. One of the disappointments of the
numerical scheme is the fact that the ice-thickness jump tends to broaden
as time evolves. In nature, the ice-thickness jump would propagate without
changing it’s steep initial form. This broadening is a defect common to many
finite-difference schemes.

The comparison between the exact, analytic thickness profile and that
generated by the model is shown in Fig. (4.3). The comparison is satisfactory
and suggests that the finite-difference model has performed up to expectation.

% This program models the thickness and velocity

% profiles for an ice tongue using a finite-difference approach.

N=100;

Qo=4e5/31556926;

Ho=1.0e3;

rho=910;

rho w=1028;

a=0.3/31556926;

Bo=1.4688e8;

g=9.81;

Z=a^ (1/4)*(4*Bo)^ (3/4)/(rho*g*(1-rho/rho w))^ (3/4);

UonL=(rho*g*Z*(1 - rho/rho w)/(4*Bo))^ 3;

U=Qo/Ho;

L=Z*U/a;

qo=Qo/(U*Z);

ho=Ho/Z;

%

length=1.0;

c=zeros(N,1);
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x=[linspace(0,length,N)]’;

dx=length/(N-1);

dt=1*U/L*31556926;

h exact=(1+ qo^ 4*(ho^ (-4)-1)./(qo+x).^ 4 ).^ (-1/4);

%

nsteps=500;

h=1/Z*ones(N,1); % start at 1 m initial condition

u=ones(N,1); % start with zero strain solution

hold off,clg,subplot(2,1,1); plot(x*L, u*U*31556926);

hold on;subplot(2,1,2);plot(x*L,Z*h);hold on

subplot(2,1,2);plot(x*L,Z*h exact,’r+’);

%

% Enter time step:

%

for j=1:nsteps

%

% Ice velocity:

%

c=ones(N,1);

c old=zeros(N,1);

count=0;

while max((abs(c-c old)./c)) > 0.01

c old=c;

count=count+1;

% Construct and solve Du=F:

%

for i=2:N

c(i)=h(i)*( abs((u(i)-u(i-1)))/dx + 1.e-25)^ (-2/3); % Caution: u(i)

must never equal u(i-1)

end

DD=zeros(N,1);

DU=zeros(N,1);

DL=zeros(N,1);

F=zeros(N,1);

DD(1)=1;

DU(2)=0;

DD(N)=1/dx;
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DL(N-1)=-1/dx;

F(1)=(2*qo+dx)/(h exact(1)+h exact(2)); % upstream condition

F(N)=h(N)^ 3; % downstream condition

%

for i=2:N-1

DD(i)= (-c(i+1)-c(i))/dx^ 2;

DL(i-1)= c(i)/dx^ 2;

DU(i+1)= c(i+1)/dx^ 2;

F(i)=(h(i+1)^ 2-h(i)^ 2)/dx;

end

D=spdiags([DL DD DU],[-1 0 1],N,N);

u=D\F;
end

%

% Now do ice-thickness update:

%

% Construct and solve Ah=R:

%

AD=zeros(N,1);

AU=zeros(N,1);

AL=zeros(N,1);

R=zeros(N,1);

AD(1)=1;

AU(2)=0;

R(1)=Ho/Z;

AD(N)=1/dt + 1/(2*dx)*(2*u(N)-u(N-1));

AL(N-1)= -u(N-1)/(2*dx);

R(N)=1+h(N)/dt;

%AD(N)=1/dx; %Alternative ice front

%AL(N-1)=-1/dx; % Boundary condition

%R(N)=0;

%

for i=2:N-1

AD(i)=1/dt + 1/(2*dx)*(u(i)-u(i-1));

AL(i-1)= -u(i-1)/(2*dx);

AU(i+1)= u(i)/(2*dx);

R(i)=h(i)/dt +1;
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end

A=spdiags([AL AD AU],[-1 0 1],N,N);

h=A\R;
if rem(j,25) == 1

subplot(2,1,1); plot(x*L, u*U*3.155e7);subplot(2,1,2);plot(x*L,Z*h)

end

%

end % end time loop

In the next chapter, we shall investigate how to put the approach to ice-
shelf modelling developed here to use in circumstances where the plan-view
geometry of the ice shelf is arbitrary.

4.4 A Question of Mass Balance

Not all plausible finite-difference schemes perform satisfactorily in the sim-
ulation of the ice tongue. The scheme developed above (the staggered-grid
scheme) has the virtues of reproducing the exact, analytic solution and of
mass conservation; it fails, however, to capture the shock-like nature of the
ice front as it passes down the grid after start-up from a zero-thickness initial
condition. This inadequacy of the above scheme is displayed in Fig. (4.3),
and in greater detail in Fig. (4.4).

Conservation of mass is demonstrated by the staggered-grid scheme by
comparing the flux at the downstream end of the grid with its exact coun-
terpart. The flux determined at the downstream end is determined by the
following Matlab code fragment:

% Flux diagnostics

flux=zeros(N,1);

for i=1:N-1

flux(i)=u(i)*(h(i)+h(i+1))/2;

end

flux(N)=flux(N-1)+dx;
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The computed value is 4.0139× 105 m2 a−1. The exact value is 4.0273× 105

m2 a−1. A non-staggered finite-difference scheme gives a flux of 4.0907× 105

m2 a−1.
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u(i-1) u(i) u(i+1)

c(i) c(i+1)c(i-1)

Figure 4.1: staggered grid convention used to model the ice tongue.

Prognostic Equation for h(i)

c(i)=... Du=F

Ah=R

Diagnostic Equation for u(i)
time
step

Figure 4.2: Two-step time-stepping procedure for ice-shelf models.
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Figure 4.3: Ice tongue evolution from a 1-meter initial condition to steady
state (at 1500 years). Ice thickness profile h(x) (lower, dimensional form)
and horizontal velocity profile u(x) (upper, dimensional form) are plotted
at 25-year intervals. The length of the ice tongue is 1 nondimensional unit
(equivalent to 274 km). The exact, analytic steady-state ice-thickness profile
determined in the previous chapter [Van der Veen, 1986a,b] is denoted in
the lower plot by the crosses. Notice that an ice-thickness shock propagates
down the ice tongue as the flux across the grounding line (which starts in-
stantaneously at t = 0) makes it’s presence known to the ice tongue. Due to
numerical diffusion, this shock broadens with time. In nature, such a shock
would propagate without a change in form (i.e., it would remain steep). The
ice velocity ahead of the shock remains relatively constant because the small
ice thickness ahead of the shock introduces little horizontal spreading in the
ice tongue.
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Figure 4.4: Ice tongue evolution from a 1-meter initial condition to steady
state using a staggered grid finite-difference scheme (see Fig. ??). Ice thick-
ness profile h(x) (lower, dimensional form) and horizontal velocity profile
u(x) (upper, dimensional form) are plotted at 5-year intervals. The length of
the ice tongue is 10km. The exact, analytic steady-state ice-thickness profile
determined in the previous chapter [Van der Veen, 1986a,b] is denoted in the
lower plot by the dots (to which the steady state profile closely resembles).
Notice that an ice-thickness shock propagates down the ice tongue. Due to
numerical diffusion, this shock broadens with time. In nature, such a shock
would propagate without a change in form (i.e., it would remain steep). The
ice velocity ahead of the shock remains relatively constant because the small
ice thickness ahead of the shock introduces little horizontal spreading in the
ice tongue.
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Chapter 5

Two-Dimensional (Plan View)
Ice-Shelf Models

In this chapter we will construct a finite-element model of a two dimensional
(plan view) ice shelf of possibly arbitrary geometry. Our effort will be di-
rected towards simulating the idealized ice-shelf geometry suggested by the
EISMINT Level 1 exercises: an ice shelf confined by a rectangular (plan view)
embayment, into which an ice stream discharges. This geometry will be mod-
elled using only the finite-element approach developed in previous chapters.
A finite-difference approach is similar to the finite-element approach, so will
be left as an exercise for the interested reader.

The construction of a numerical model capable of simulating ice-shelf
flow in an arbitrary, confined geometry is tedious because of the two-step
time-stepping procedure. We shall attempt to alleviate the tedium of ice-
shelf model construction by breaking up the tasks into smaller units. The
first task we will consider is the solution of the diagnostic equations needed
to obtain the ice-shelf velocity field from the ice shelf’s current thickness.
After considering the solution of the diagnostic equations, we will focus on
the prognostic (mass balance) equation; and again implement a finite-element
approach. Following this, we will tackle the problem of hooking the two parts
of the model (prognostic and diagnostic) together to allow a time-stepping
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simulation of ice-shelf evolution.

5.1 Nondimensional Form of the Diagnostic

Equations

The nondimensional forms of the two diagnostic equations which represent
stress-equilibrium in an ice shelf are constructed by using the definition of
scales U , L, and Z developed in § (3.6) on Eqns. (3.5) - (3.7).

∂

∂x

(
νh

(
ėxx +

1

2
ėyy

))
+

∂

∂y

(
νh

2
ėxy

)
− ∂h2

∂x
= 0 (5.1)
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ėxx

))
+

∂

∂x

(
νh

2
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where ėxx = ∂u
∂x , ėyy = ∂v
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(5.3)

Dynamic boundary conditions in nondimensional form

The boundary condition to be applied at ice-shelf/ocean boundaries is, in
nondimensional form, given by

νh (ė · n + (ėxx + ėyy)n) = 2h2n (5.4)

where n is the outward pointing normal vector to the boundary δΩ. Each
component of the above vector-valued equation is given by

νh ((2ėxx + ėyy)nx + ėxyny) = 2h2nx (5.5)

νh ((2ėyy + ėxx) ny + ėyxnx) = 2h2ny (5.6)

(5.7)
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where nx and ny are the x and y components of n.

5.2 Galerkin form of the Diagnostic Equa-

tions

Following the approach described in § (2.3), we use the Galerkin method
(method of weighted residuals) to define what we consider to be a solution
of Eqns. (5.1) - (5.3). For the x component of the momentum balance (Eqn.
5.1), we require that

∫

Ω

∫
ψ (x, y)

{
∂

∂x

(
νh

(
ėxx +

1

2
ėyy

))
+

∂

∂y

(
νh

2
ėxy

)
− ∂h2

∂x

}
dxdy = 0

(5.8)
where ψ is an arbitrary weighting function and Ω is the plan-view domain of
the ice shelf. Use of the divergence theorem converts the above equation to
the following form:

∫

Ω

∫ {
νh

(
ėxx +

1

2
ėyy

)
∂ψ

∂x
+
νh

2
ėxy

∂ψ

∂y
− h2∂ψ

∂x

}
dxdy

−
∮

δΩ

ψ

{
νh

(
ėxx +

1

2
ėyy

)
nx +

νh

2
ėxyny − h2nx

}
ds

= 0 (5.9)

where δΩ is the boundary of the ice shelf.

We recognize the boundary contour integral in Eqn. (5.9) as nothing more
than a restatement of the dynamic boundary condition Eqn. (5.5). (Where
kinematic conditions are applied, we assume that ψ is no longer arbitrary;
thus we may enforce ψ = 0 on portions of δΩ where kinematic conditions are
applied.) We are thus left with the following statement of what the solution
to the diagnostic equations (the x component) should satisfy:

∫

Ω

∫ {
νh

(
ėxx +

1

2
ėyy

)
∂ψ

∂x
+
νh

2
ėxy

∂ψ

∂y
− h2∂ψ

∂x

}
dxdy = 0 (5.10)
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A similar analysis of the y component of the diagnostic equations yields

∫

Ω

∫ {
νh

(
ėyy +

1

2
ėxx

)
∂χ

∂y
+
νh

2
ėyx

∂χ

∂x
− h2∂χ

∂y

}
dxdy = 0 (5.11)

where χ(x, y) is another arbitrary weighting function similar to ψ .

5.2.1 Finite-Element Algorithm: Diagnostic Equations

Following the approach described previously in § (2.3), we write the finite-
element form of the diagnostic equations (Eqns. 5.10 and 5.11 subject to the
nonlinear flow law given by 5.3) as a matrix equation:

lim
k→∞

D[k]u[k] = F (5.12)

where the vector of nodal velocities u ∈ R2M is defined by

u =




u
[k]
1

v
[k]
1

u
[k]
2

v
[k]
2
...

u
[k]
M

v
[k]
M




(5.13)

where M is the number of nodes in the finite-element mesh, and where [k]
denotes the iteration index of the iteration scheme used to ensure satisfaction
of the nonlinear flow law. Using the linear interpolation functions defined in
Eqn. (2.19), the matrix-stuffing conventions are listed as follows

aec[k]e

(
αiαj +

1

4
βiβj

)
→ D2γ(j)−1,2γ(i)−1

aec[k]e

(
1

2
βiαj +

1

4
αiβj

)
→ D2γ(j)−1,2γ(i)
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aec[k]e

(
1

2
αiβj +

1

4
βiαj

)
→ D2γ(j),2γ(i)−1

aec[k]e

(
βiβj +

1

4
αiαj

)
→ D2γ(j),2γ(i)

ae(he)2αj → F2γ(j)−1

ae(he)2βj → F2γ(j)

(summation is required over all elements e = 1, . . . , N , and over i = 1, 2, 3
and j = 1, 2, 3 within each element, where i and j are indices representing
the local, intra-element number of the 3 vertices of each triangular element),
where ae is the area of element e, where

he =
hγ(1) + hγ(2) + hγ(3)

3
(5.14)

is the average thickness in element e, and

c[k]
e = he

((
u

[k−1]
γ(i) αi

)2
+

(
v

[k−1]
γ(i) βi

)2
+

1

4

(
u

[k−1]
γ(i) βi + v

[k−1]
γ(i) αi

)2
+ u

[k−1]
γ(i) v

[k−1]
γ(j) αiβj

)−1
3

(5.15)
(summation for each elemental value of c[k]

e is over vertex indices i = 1, 2, 3
and j = 1, 2, 3) and where γ(i) is the global node number of the i’th vertex
of element e. The above equation for c[k]e represents the recursion formula
that is used to generate D[k] from the velocity field u[k−1] at iteration number
[k − 1].

As done with the ice-tongue model in § (4.1), an initial guess of the ve-
locity field u[0] is used to generate c[1] for each element. The matrix equation
D[1]u[1] = F is then solved for u[1]. The resulting u[1] is used to generate c[2]

and so on until the sequence of c[k]’s converges. The convergence criterion is

max
e=2,...,N

∣∣∣∣∣
c[k+1]
e − c[k]e

c
[k]
e

∣∣∣∣∣ < δ (5.16)

where δ is a small number of the order of 0.01, and N is the number of
elements.

138



5.3 Velocity Solution (Fixed Ice Thickness)

The Matlab script listed below is used to implement the above finite-
element algorithm. Figure (5.1) displays the finite-element mesh used to
simulate the EISMINT Level 1 test. The resolution of this mesh is 5 km, and
the adjacency matrix associated with this mesh (which reveals the sparseness
of the matrix D[k]) is displayed in Fig. (5.2).

Figures (5.3) - (5.6) display the velocity field of the ice shelf produced
by the finite-element method. As mentioned previously, the velocity field
displayed in Figs. (5.3) - (5.6) represents the instantaneous flow associated
with an ice thickness of 1000 m. (Time-dependent evolution of the velocity
field in concert with a changing ice thickness field is considered in a later
section.) The ice velocity at the ice front reaches a maximum of over 12
km/year. This very large velocity reflects the fact that ice shelves of 1000
m thickness have a very large spreading rate unless confined by ice rises or
longer embayments. The effect of the input ice stream is seen to be relatively
minor.

MatLab script for solution of velocity equations

This script takes advantage of the fact that the ice-shelf thickness is uniform
(1000 m). In circumstances where the ice thickness is not uniform, the ele-
mental interpolation functions for ice thickness must be accounted for in the
area integrations which discretize the problem. Also note that the compu-
tations necessary to determine the row and column index ordering (vectors
row and col) of the sparse matrix D[k] are done once at the beginning of the
script.

% This script represents a finite-element model of an ice shelf

%

% EISMINT Level 1 ice shelf test.

%

Qo=4e5/31556926;

Ho=1.0e3;
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Finite-element mesh for EISMINT Level 1 ice-shelf model

Figure 5.1: The finite-element mesh (shown using nondimensional x and y
coordinates) for the EISMINT Level 1 ice-shelf test. Mesh resolution cor-
responds to 5 km. The kinematic boundary condition associated with ice-
stream input (1000 m thickness, 400 m/year velocity) is specified on the
right-most 4 nodes of the top boundary. The ice front corresponds to the
lower boundary. The right boundary is an axis of symmetry across which
there are no gradients in longitudinal velocity. The left boundary, and por-
tion of the top boundary not corresponding to the inflowing ice stream, have
zero velocity (no slip, no normal flow) boundary conditions specified.
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Figure 5.2: The silhouette of the adjacency matrix associated with the finite-
element mesh of the ice shelf displayed in Fig. (5.1). As can be readily
appreciated, the matrix form of the finite-element problem involves a sparse
matrix having relatively few nonzero elements that are clustered along the
diagonal.
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Figure 5.3: Velocity magnitude (m/year) for the 1000 m thick ice shelf.
The Spyglass contour plot has rotated the image of the domain by 90-
degrees, thus the top boundary of Fig. (5.1) corresponds with the right
boundary displayed here. (The left boundary is thus the ice front, and the
lower boundary is the axis of symmetry.)
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Figure 5.4: Velocity vectors for the 1000 m thick ice shelf. The Spyglass
contour plot has rotated the image of the domain by 90-degrees, thus the top
boundary of Fig. (5.1) corresponds with the right boundary displayed here.
(The left boundary is thus the ice front, and the lower boundary is the axis
of symmetry.)
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Figure 5.5: Velocity magnitude (m/year) along the longitudinal cross section
that extends down the centerline of the ice-shelf domain (corresponding to
the axis of symmetry).
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Figure 5.6: Velocity magnitude (m/year) along the transverse cross section
that extends across the ice-shelf domain at the midline.
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rho=910;

rho w=1028;

a=0.3/31556926;

Bo=1.4688e8;

g=9.81;

Z=a^ (1/4)*(4*Bo)^ (3/4)/(rho*g*(1-rho/rho w))^ (3/4);

UonL=(rho*g*Z*(1 - rho/rho w)/(4*Bo))^ 3;

U=400/31556926;

L=Z*U/a;

qo=Qo/(U*Z);

ho=Ho/Z;

imax=21;

jmax=17;

nodes=imax*jmax;

nel=(imax-1)*(jmax-1)*2;

nrows=23040;

row=zeros(nrows,1);

col=zeros(nrows,1);

value=zeros(nrows,1);

phi=zeros(3,3);

% Initialize at zero ice velocity

ugrid=zeros(imax,jmax);

vgrid=zeros(imax,jmax);

u=zeros(nodes*2,1);

% Initialize

h=10^ 3/Z*ones(nodes,1);

havg=10^ 3/Z;

% Create the interpolation functions.

area=zeros(nel,1);

alpha=zeros(nel,3);

beta=zeros(nel,3);

count=0;

%

for n=1:nel

%

[lowtri uptri]=lu([[xy(index(n,1),1) xy(index(n,2),1) xy(index(n,3),1)]’...
[xy(index(n,1),2) xy(index(n,2),2) xy(index(n,3),2)]’ ones(3,1)]);
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phi(:,1)=uptri\(lowtri\ [1 0 0]’);
phi(:,2)=uptri\(lowtri\ [0 1 0]’);
phi(:,3)=uptri\(lowtri\ [0 0 1]’);
for k=1:3

alpha(n,k)=phi(1,k);

beta(n,k)=phi(2,k);

end

%

area(n)=abs(.5*det([1 1 1

xy(index(n,1),1) xy(index(n,2),1) xy(index(n,3),1)

xy(index(n,1),2) xy(index(n,2),2) xy(index(n,3),2)]));

% Perform loading of row and col arrays

for i=1:3

for j=1:3

row(count+1)=index(n,j)*2-1;

col(count+1)=index(n,i)*2-1;

row(count+2)=index(n,j)*2-1;

col(count+2)=index(n,i)*2;

row(count+3)=index(n,j)*2;

col(count+3)=index(n,i)*2-1;

row(count+4)=index(n,j)*2;

col(count+4)=index(n,i)*2;

count=count+4;

end

end

%

end

%

c=ones(nel,1);

c old=zeros(nel,1);

loop=0;

while max((abs(c-c old)./c)) > 0.01

loop=loop+1

%

value=zeros(nrows,1);

F=zeros(2*nodes,1);

count=0;
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%

for n=1:nel

%

% Effective diffusivity:

%

if loop =1

c old(n)=c(n);

ux=0;

uy=0;

vx=0;

vy=0;

for i=1:3

ux=ux+u(index(n,i)*2-1)*alpha(n,i);

uy=uy+u(index(n,i)*2-1)*beta(n,i);

vx=vx+u(index(n,i)*2)*alpha(n,i);

vy=vy+u(index(n,i)*2)*beta(n,i);

end

if (ux^ 2+vy^ 2+((uy+vx)^ 2)/4 +ux*vy ) > 10^ (-15)

c(n)=havg*(ux^ 2+vy^ 2+((uy+vx)^ 2)/4 +ux*vy )^ (-1/3);

else

c(n)=havg*10^ 5;

end

end

% Load right-hand-side vector:

%

for k=1:3

F(2*index(n,k)-1)=F(2*index(n,k)-1)+area(n)*havg^ 2*alpha(n,k);

F(2*index(n,k))=F(2*index(n,k))+area(n)*havg^ 2*beta(n,k);

end

Notice the mistake in the preceeding two statements

It is better to use

for m=1:3

for n=1:nel

F(index(n,m)*2-1)=F(index(n,m)*2-1)+alpha(n,m)*rho*g/2*(1-rho/rhowater)*hsq(n);

% x
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F(index(n,m)*2)=F(index(n,m)*2)+beta(n,m)*rho*g/2*(1-rho/rhowater)*hsq(n);

% y

end

end

where

hsq=area(:).*(h(index(:,1)).2̂+h(index(:,2)).2̂+h(index(:,3)).2̂)/6

...

+ h(index(:,1)).*(h(index(:,2))+h(index(:,3)))/12 ...

+ h(index(:,2)).*(h(index(:,1))+h(index(:,3)))/12 ...

+ h(index(:,3)).*(h(index(:,1))+h(index(:,2)))/12;

The above mistake was caught after the results of this chapter were

printed

DRM, August 10, 1995

%

% Load matrix:

%

for i=1:3

for j=1:3

value(count+1)=area(n)*c(n)*(alpha(n,i)*alpha(n,j)+beta(n,i)*beta(n,j)/4);

value(count+2)=area(n)*c(n)*(beta(n,i)*alpha(n,j)/2+alpha(n,i)*beta(n,j)/4);

value(count+3)=area(n)*c(n)*(alpha(n,i)*beta(n,j)/2+beta(n,i)*alpha(n,j)/4);

value(count+4)=area(n)*c(n)*(beta(n,i)*beta(n,j)+alpha(n,i)*alpha(n,j)/4);

count=count+4;

end

end

% End loop over elements

end

D=sparse(row,col,value);

% Boundary conditions

bxcount=0;

bycount=0;

for j=1:(jmax-1) % left side

bxcount=bxcount+1;

D(Boundu(bxcount)*2-1,Boundu(bxcount)*2-1)=10^ 12;
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F(Boundu(bxcount)*2-1)=0;

bycount=bycount+1;

D(Boundv(bycount)*2,Boundv(bycount)*2)=10^ 12;

F(Boundv(bycount)*2)=0;

end

for i=1:imax % top side

bxcount=bxcount+1;

bycount=bycount+1;

D(Boundu(bxcount)*2-1,Boundu(bxcount)*2-1)=10^ 12;

F(Boundu(bxcount)*2-1)=0;

D(Boundv(bycount)*2,Boundv(bycount)*2)=10^ 12;

F(Boundv(bycount)*2)=0;

end

for j=1:(jmax-1) % right side

bxcount=bxcount+1;

D(Boundu(bxcount)*2-1,Boundu(bxcount)*2-1)=10^ 12;

F(Boundu(bxcount)*2-1)=0;

end

F(gamma(18,17)*2)=-10^ 12;

F(gamma(19,17)*2)=-10^ 12;

F(gamma(20,17)*2)=-10^ 12;

F(gamma(21,17)*2)=-10^ 12;

% Solve the system for new velocity

u=D\F;
for i=1:imax

for j=1:jmax

ugrid(i,j)=u(gamma(i,j)*2-1);

vgrid(i,j)=u(gamma(i,j)*2);

end

end

end % end While statement
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MatLab script used to generate the finite-element mesh

For completeness, we list the Matlab script used to generate the finite-
element mesh used in the previous test of the ice-shelf diagnostic equation
solver as follows:

% This script creates the mesh for the EISMINT Level 1

% ice shelf test.

nodes=17*21;

imax=21;

jmax=17;

nrows=17*21*2;

row=zeros(nrows,1);

col=zeros(nrows,1);

value=zeros(nrows,1);

xy=zeros(nrows,2);

gamma=zeros(imax,jmax);

Boundu=zeros(53,1); % zero x-velocity nodes

Boundv=zeros(37,1); % zero y-velocity nodes

count=0;

dx=100e3/L; % L is the nondimensional length scale

dy=80e3/L;

for i=1:imax

for j=1:jmax

count=count+1;

xy(count,1)=(i-1)/(imax-1)*dx;

xy(count,2)=(j-1)/(jmax-1)*dy;

gamma(i,j)=count;

end

end

% Create triangulation

%

nel=(imax-1)*(jmax-1)*2;

index=zeros(nel,3);

count=0;

%

151



for i=1:imax-1

for j=1:jmax-1

count=count+1;

index(count,1)=gamma(i,j);

index(count,2)=gamma(i+1,j);

index(count,3)=gamma(i+1,j+1);

count=count+1;

index(count,1)=gamma(i,j);

index(count,2)=gamma(i+1,j+1);

index(count,3)=gamma(i,j+1);

end

end

bxcount=0;

bycount=0;

for j=1:(jmax-1) % left side

bxcount=bxcount+1;

Boundu(bxcount)=gamma(1,j);

bycount=bycount+1;

Boundv(bycount)=gamma(1,j);

end

for i=1:imax % top side

bxcount=bxcount+1;

bycount=bycount+1;

Boundu(bxcount)=gamma(i,jmax);

Boundv(bycount)=gamma(i,jmax);

end

for j=1:(jmax-1) % right side

bxcount=bxcount+1;

Boundu(bxcount)=gamma(imax,j);

end

% Create adjacency matrix and plot mesh and silhouette of mesh

count=0;

pause

for n=1:nel

for i=1:3

for j=1:3

count=count+1;
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row(count)=index(n,i)*2-1;

col(count)=index(n,j)*2-1;

value(count)=1;

count=count+1;

row(count)=index(n,i)*2-1;

col(count)=index(n,j)*2;

value(count)=1;

count=count+1;

row(count)=index(n,i)*2;

col(count)=index(n,j)*2-1;

value(count)=1;

row(count)=index(n,i)*2;

col(count)=index(n,j)*2;

value(count)=1;

end

end

end

% Construct mesh plot

Adj=sparse(row,col,value);

gplot(Adj,xy);

pause

spy(Adj)

5.4 Nondimensional Form of the Prognostic

Equation

The above representation of the diagnostic (stress-equilibrium) equations
yields the z-independent horizontal velocity field u = (u, v) that corresponds
to an instantaneous snap shot of the ice-thickness field, h(x, t). The time
evolution of the ice shelf is governed by the prognostic equation which speci-
fies how h changes with time as a result of the divergence of the ice transport
associated with nonzero u and the surface and basal accumulation rates (here
lumped into one term). The nondimensional prognostic equation (Eqn. 3.1)
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is written
∂h

∂t
+∇ · (uh)− 1 = 0 (5.17)

where the surface and basal accumulation rates are assumed uniform (and of
nondimensional magnitude 1).

The method of weighted residuals (Galerkin method) requires that

∫

Ω

∫
ψ

(
∂h

∂t
+∇ · (uh)− 1

)
dxdy = 0 (5.18)

where ψ is an arbitrary weighting function. Integration by parts and the
divergence theorem gives

∫

Ω

∫ (
ψ
∂h

∂t
− uh

∂ψ

∂x
− vh

∂ψ

∂y
− ψ

)
dxdy +

∮

δΩ

ψh u · nds = 0 (5.19)

where n is the outward-pointing normal vector to the boundary of the ice-
shelf domain δΩ.

Boundary conditions are described as follows. At the inland boundaries
where the ice shelf abuts stagnant inland ice or ice-free coastline,

hu · n = q · n = 0 (5.20)

At the inland boundaries where the ice shelf joins with an ice stream, either
a flux condition can be specified, e.g.,

q · n = qo (5.21)

or a fixed ice thickness can be specified, e.g., 1he boundary integral on the
right-hand side of Eqn. (6.3) allows the possibility of two types of boundary
conditions at boundaries where ice streams flow into the ice shelf. This
point will be emphasized in a later chapter where the discussion of mass
conservation of the EISMINT tests is given. Either the ice thickness or the
mass flux can be specified, not both. In the former case, the mass flux
becomes an unknown flux of constraint (output of the model) that is needed

1T
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to enforce the fixed ice thickness. In the latter case, the ice thickness varies
in response to the mass flux.

h = ho (5.22)

At the ice front, where the ice shelf calves into the ocean, a free-radiation
condition must be applied to avoid having ice “pile up” at the ice front, e.g.,

q · n = (hu)
∣∣∣
−
· n (5.23)

where (hu)
∣∣∣
−

represents the ice transport just upstream of the ice front.

5.4.1 Finite-Element Algorithm: Prognostic Equation

Following the methods outlined in § (2.3), we express Eqn. (6.3) as a matrix
equation

Ahn+1 = R (5.24)

where, hn+1 is a column vector containing the nodal values of the ice thickness
at time step n + 1:

hn+1 =




hn+1
1

hn+1
2
...

hn+1
M




(5.25)

and where M is the number of nodes (recall that N is the number of ele-
ments). The matrix-stuffing conventions are listed as follows

1

∆t

{
ae

6 k = l
ae

12 k 6= l

}
− (αkuj + βkvj)

{
ae

6 l = j
ae

12 l 6= j

}
→ Aγ(k)γ(l)

ae

3
+

hnl
∆t

{
ae

6
k = l

ae

12
k 6= l

}
− (qo)j∆l





1
4 k = l = j; k, l, j 6= s3

0 k = s3, or l = s3, or j = s3

1
12

k 6= l = j
k = l 6= j
k = j 6= l

; k, l, j 6= s3





→ Rγ(k)

155



where ae is the area of element e, and ∆l =
√

(xγ(s1) − xγ(s2))2 + (yγ(s1) − yγ(s2))2

is the length of the boundary line segment connecting nodes s1 and s2 of el-
ement e. In the above conventions, it is understood that summation over
j and e is necessary for the creation of A, and that summation over j, e,
and l is necessary for the creation of R. The indices k, l and j denote the
local vertex numbers of triangular element e. The indices s1, s2 and s3 also
denote the local vertex numbers of triangular element e with the additional
understanding that vertices s1 and s2 lie on the boundary δΩ whereas ver-
tex s3 does not. The number γ(j) represent the global node number of the
vertex j. The last part of the expression specifying the construction of R
takes care of the boundary flux conditions where necessary (recall that, at
the ice front, (qo)j is equal to hn[u]j ·n). At boundary nodes where h = ho is
specified, appropriate changes to the matrix A and vector R are made, e.g.,
Aγ(k),γ(k) = 1 and Rγ(k) = ho.

An alternative construction of A and R in which the ice-front radiation
condition is evaluated implicitly is listed as follows:

1

∆t

{
ae

6 k = l
ae

12
k 6= l

}
− (αkuj + βkvj)

{
ae

6 l = j
ae

12
l 6= j

}

+[u]j · n∆l





1
4 k = l = j; k, l, j 6= s3

0 k = s3, or l = s3, or j = s3

1
12

k 6= l = j
k = l 6= j
k = j 6= l

; k, l, j 6= s3





→ Aγ(k)γ(l)

ae

3
+

hnl
∆t

{
ae

6 k = l
ae

12
k 6= l

}
− (qo)j∆l





1
4

k = l = j; k, l, j 6= s3

0 k = s3, or l = s3, or j = s3

1
12

k 6= l = j
k = l 6= j
k = j 6= l

; k, l, j 6= s3





→ Rγ(k)

where the qo in the construction of R denotes boundary fluxes not specified
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at the ice front.

In developing the matrix-stuffing conventions listed above, we have made
use of the formulae for

∫
e φkφldxdy developed in § (2.3.1). For the integrals

over the ice front boundaries where freely radiating flux is specified, we must
use the formula:

∮

δΩe
φkφlφjds =





1
4

k = j = l; k, j, l 6= s3

0 k = s3 or j = s3 or l = s3
1
12 k = j 6= l, etc.

(5.26)

where s3 is the local index number of the one vertex of element e that does
not form an endpoint of the boundary segment (side of triangle) δΩe. These
formulae are relatively simple to derive using the definitions for the linear
interpolation functions φi, i = 1, 2, 3 found in § (2.3.1).

5.5 Thickness Solution (Fixed Velocity)

A Matlab script (listed below) is used to step the prognostic (mass balance)
equation through 150 years of evolution holding the ice velocity u constant.
(This represents an artificial test because the ice velocity is not updated
to reflect the changing ice-thickness conditions.) By holding the ice velocity
fixed, we are able to test the portion of the ice-shelf model that is responsible
for time evolution of the ice thickness. We shall construct and test a real ice
shelf model, in which the diagnostic equations and prognostic equation are
coupled together, in a section which follows the discussion here.

Several technical simplifications associated with this fixed-velocity test
deserve mention. First is that the matrix A need only be constructed and
LU-factored once no matter how many time steps are to be taken. (We
note the fact that, unlike D, the matrix associated with the diagnostic equa-
tions, A is not positive definite. We must thus use the less efficient LU-
decomposition, with reversed Cuthill-McKee node ordering, instead of the
Cholesky decomposition.) The matrix A involves (see the matrix-stuffing
conventions summarized above) the velocity field u which, for this test only,
does not change with changing ice thickness. The time-stepping procedure
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thus involves merely the construction of the right-hand-side vector R and
the application of the triangular factors of A in a forward substitution and
back substitution to obtain hn+1. The Matlab script which performs the
time-dependent, fixed-velocity simulation is listed below:

% This script represents a finite-element model of an ice shelf.

% (with it’s velocity held fixed!)

% EISMINT Level 1

% ice shelf test.

nrows=5920;

row=zeros(nrows,1);

col=zeros(nrows,1);

% Initialize

h=10^ 3/Z*ones(nodes,1);

count=0;

value=zeros(nrows,1);

for n=1:nel

%

% Perform loading of row and col arrays

%

% Load matrix: This matrix doesn’t change due to

% fixed ice velocity (this example only)

%

for l=1:3

for k=1:3

count=count+1;

row(count)=index(n,k);

col(count)=index(n,l);

if k == l

value(count)=area(n)/(6*dt);

else

value(count)=area(n)/(12*dt);

end

for j=1:3

if j == l

value(count)=value(count)-(alpha(n,k)*u(index(n,j)*2-1)+beta(n,k)*u(index(n,j)*2))...

area(n)/6;
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else

value(count)=value(count)-(alpha(n,k)*u(index(n,j)*2-1)+beta(n,k)*u(index(n,j)*2))...

area(n)/12;

end

end

end

end

%

end % end loop over elements

%

% Boundary conditions

% Ice front contour: Implicit case

%

for n=1:imax-1

for k=1:2

for l=1:2

for j=1:2

count=count+1;

row(count)=icefnt(n,k);

col(count)=icefnt(n,l);

if l==k & j==k

value(count)=-u(icefnt(n,j)*2)*dl/4;

else

value(count)=-u(icefnt(n,j)*2)*dl/12;

end

end

end

end

end

%

A=sparse(row,col,value);

% Fix the input ice thickness to 1

%

A(gamma(18,17),gamma(18,17))=10^ 15;

A(gamma(19,17),gamma(19,17))=10^ 15;

A(gamma(20,17),gamma(20,17))=10^ 15;

A(gamma(21,17),gamma(21,17))=10^ 15;
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%

% Perform LU decomposition once (since velocity

% doesn’t change, the matrix A doesn’t change)

%

[LowTri,UpTri]=lu(A);
%

dl=xy(icefnt(1,2),1)-xy(icefnt(1,1),1);

nsteps=1500;

dt=.1*31556926*a/Z;

history=zeros(nsteps,1);

%

for time=1:nsteps

history(time)=h(gamma(21,1));

time

%

R=zeros(nodes,1);

%

for n=1:nel

%

% Load right-hand-side vector:

%

R(index(n,1))=R(index(n,1))+area(n)/3;

R(index(n,2))=R(index(n,2))+area(n)/3;

R(index(n,3))=R(index(n,3))+area(n)/3;

for k=1:3

for j=1:3

if j == k

R(index(n,k))=R(index(n,k))+area(n)*h(index(n,j))/(6*dt);

else

R(index(n,k))=R(index(n,k))+area(n)*h(index(n,j))/(12*dt);

end

end

end

% End loop over elements

end

% Ice stream input condition:

R(gamma(18,17))=10^ 3/Z*10^ 15;
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R(gamma(19,17))=10^ 3/Z*10^ 15;

R(gamma(20,17))=10^ 3/Z*10^ 15;

R(gamma(21,17))=10^ 3/Z*10^ 15;

% Solve the system for new thickness

h=UpTri\(LowTri\R);
%

end % end timestep loop

for i=1:imax

for j=1:jmax

hgrid(i,j)=h(gamma(i,j))*Z;

end

end

The ice-front index array icefnt is dimensioned imax-1 by 2, and holds the
global node numbers for the endpoints of each of the line segments that form
the ice-front boundary. This index array was created in the mesh-generation
program (the same as that used to generate the mesh used to solve the
diagnostic equations in the previous sections) with the following fragment of
additional Matlab code:

% Create ice front boundary contour;

ifcount=0

for i=1:imax-1

ifcount=ifcount+1;

icefnt(ifcount,1)=gamma(i,1);

icefnt(ifcount,2)=gamma(i+1,1);

end

5.5.1 Unsatisfactory Results

The above listed Matlab script was run to represent the time-evolution
of the fixed-velocity ice shelf through 150 years using 0.1-year time steps (in
dimensional units) starting with a uniform 1000-m ice thickness. (A comment
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about the choice of time step size is given below.) The equilibration of the
thickness at the ice-front node corresponding to the point where the axis
of symmetry (the ice shelf’s longitudinal centerline) intersects the ice front
is demonstrated in Fig. (5.7). The ice-thickness field, h, at the end of the
150-year evolution is displayed as a contour map in Fig. (5.8), and in both a
longitudinal section down the axis of symmetry (Fig. 5.9) and a transverse
section across the midline of the ice shelf (Fig. 5.10).

A problem is clearly evident in the solution displayed in Figs. (5.8) -
(5.10). The ice thickness is less than zero in some locations, and is unac-
ceptably wiggly in others. (We expect the solution to be smooth, and not to
exhibit node-to-node oscillations in any of the fields.) Another, minor defect
is the fact that the thickness has grown unacceptably large at the node point
corresponding to the corner where the two stagnant, no-flux boundaries meet
(corresponding to the upper right-hand corner in Fig. 5.8). This minor de-
fect results from the mesh discretization which places a triangle in this corner
who’s three vertices have zero velocity (thus the accumulation in the corner
has now way to get out).

The unsatisfactory results of this test serve to illustrate the difficult nature
of simulating hyperbolic partial differential equations with a technique that
does not make use of the characteristics of the solution (the trajectories along
which information is propagated). There are many approaches to overcoming
the difficulties illustrated here, and we shall investigate several.

5.5.2 Positive-Definite Ice Thickness

The first remedy we will try to correct the defects of the finite-element so-
lution illustrated above is to insist that the ice thickness never be less than
zero. Thus we require that the prognostic equation

∂h

∂t
+∇ · (uh)− 1 = 0 (5.27)

be satisfied subject to the constraint

h ≥ 0 (5.28)
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Figure 5.7: Ice thickness (dimensional units) at the ice front at the point
where the ice front intersects the midline (axis of symmetry) of the ice shelf
as a function of time. Equilibration is complete after about 250 time steps,
corresponding to 25 years.
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Figure 5.8: Ice thickness contours (100 m C.I.) after 150 years of evolution.
The ice front is on the left-hand side of the diagram; the ice-stream input is
on the lower right-hand side.
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Figure 5.9: Ice thickness (m) along the axis of symmetry after 150 years of
evolution.
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Figure 5.10: Ice thickness (m) along the transverse, midline axis of the ice
shelf after 150 years of evolution. Notice that the field is negative at some
nodes, and displays node-to-node wiggles that are unphysical. These aspects
of the ice-thickness field lead us to reject the simple approach to the prognos-
tic equation which does not explicitly enforce a positive-definite ice thickness.
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The introduction of the constraint means that we can no longer deal strictly
with a conservative solution of Eqn. (5.27). If an implicit time step is used,
nodes surrounding a node where the ice thickness would normally become
negative after the time step is taken “think” that the ice thickness is indeed
negative while their own ice thickness is updated despite the fact that the
constraint will be used at the end of the time step to ensure h ≥ 0.

We implement the positive-definite constraint by adding the following
fragment of Matlab code to the above-listed script:

% Solve the system for new thickness

h=UpTri\(LowTri\R);
for n=1:nodes

if h(n) < 0

h(n)=0;

end

end

%

The results of an abbreviated test of the finite-element model of the prog-
nostic equation with the positive-definite constraint are displayed in Figs.
(5.11) - (5.13). The model was stepped through only 25 years of evolution
(over 150 years are required to achieve a steady state in some portions of
the ice-shelf domain) to reduce the computer time required to simulate the
evolution (it takes approximately 15 seconds per time step on a Macintosh
with a 40Mhz 68030 computer with FPU). The solution has improved (there
are no negative ice thicknesses), but some of the undesirable node-to-node
wiggles remain in the field.

The approach to modelling the prognostic equation presented up to this
point is satisfactory for some ice-shelf modelling applications (once the tech-
nical hurdle of coupling the prognostic and diagnostic equations has been
overcome). The time-stepping algorithm is stable and reflects a solution to
the mass balance equation which is accurate over large scales. (The stability
of the numerical algorithm in the present fixed-velocity exercise is uncondi-
tional, i.e., not dependent on ∆t. When nonlinear aspects of ice-shelf dynam-
ics are introduced, such as when the velocity field is allowed to evolve freely
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with the changing ice topography, stability may require ∆t to be smaller
than some empirically determined threshold.) In the next section, we will
review a technique that adds artificial damping to small scale variations in
the ice-thickness field to give a more cosmetically pleasing field that lacks
the node-to-node wiggles that may be problematical in some applications.

5.6 Upwind Differencing & Artificial Diffu-

sion

A common approach to filtering unwanted grid-point-to-grid-point noise (wig-
gles) is to employ an upwind differencing scheme in finite difference models.
This scheme may be described in the context of the simple, one-dimensional
advection equation for an arbitrary (unspecified) scalar tracer θ:

∂θ

∂t
+ u

∂θ

∂x
= 0 (5.29)

(boundary conditions and initial conditions are irrelevant to our discussion,
so are not specified). For a non-staggered finite-difference grid such as that
shown in Fig. (5.14), the centered difference version of the u ∂θ

∂x term is:

u
∂θ

∂x

∣∣∣
centered

→ ui
θi+1 − θi−1

2∆x
(5.30)

where ∆x is the grid spacing. The upwind difference version of the same
term is (assuming u > 0):

u
∂θ

∂x

∣∣∣
upwind

→ ui
θi − θi−1

∆x
(5.31)

The difference between the two schemes is that the derivative of θ in the
upwind scheme is no longer centered on the grid point i, but is instead,
centered on the point located 1

2
∆x upstream of i.

The advantage of the upwind scheme is that it damps wiggles. The reason
the upwind scheme damps wiggles is that it is formally equivalent to what
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Figure 5.11: Ice thickness (dimensional units) at the ice front at the point
where the ice front intersects the midline (axis of symmetry) of the ice shelf
as a function of time. A positive-definite constraint on ice thickness was
imposed on this particular solution. Equilibration is complete after about
250 time steps, corresponding to 25 years.
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Figure 5.12: Ice thickness contours (100 m C.I.) after 25 years of evolution of
a prognostic equation subject to the constraint that h ≥ 0. (Comparison with
the solution shown in Fig. 5.8 suggests that the upper right-hand-corner of
the domain has not yet reached equilibrium. This is not important, however,
because the purpose of this simulation is to demonstrate the maintenance of
positive definite ice thickness.) The ice front is on the left-hand side of the
diagram; the ice-stream input is on the lower right-hand side.
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Figure 5.13: Ice thickness (m) along the transverse, midline axis of the ice
shelf after 25 years of evolution with an algorithm that ensures positive ice
thickness. Notice that the negative thickness which appeared in Fig. (5.10) at
some nodes has been eliminated. The solution still displays some undesirable
node-to-node wiggles.
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you would get if you used the centered scheme with an additional artificial
diffusion with a diffusivity κart = ui∆x

2 . In other words:

u
∂θ

∂x

∣∣∣
centered

− ∂

∂x

(
κart

∂θ

∂x

)
= u

∂θ

∂x

∣∣∣
upwind

(5.32)

This can be proven by substituting the finite-difference formula given in Eqns.
(5.30) - (5.31) and the finite-difference formula for ∂

∂x

(
κart

∂θ
∂x

)
into the above

expression and allowing terms to cancel.

5.6.1 A Finite-Element Implementation of Artificial
Diffusion

We can achieve the same benefits as an upwind finite-difference scheme by
introducing a diffusive term into the mass continuity (prognostic) equation:

∂h

∂t
+∇ · (uh)− 1−∇ · (κ∇h) = 0 (5.33)

where κ is a 2 × 2 diffusivity tensor designed to diffuse along flowlines and
minimize diffusion across flowlines

κ =

(√
2ae

6

) [
|u1 + u2 + u3| 0

0 |v1 + v2 + v3|

]
=

[
κxx 0
0 κyy

]
(5.34)

where u1, u2, u3, etc. are the nodal values of the horizontal velocity com-
ponents. The artificial diffusivity tensor is designed to give about the same
damping as that which would be associated with upwind differencing if the
finite-element mesh consisted of a regular array of nodes similar to a finite-
difference grid. (The absolute value of the local velocity is used in defining
κ to ensure the diffusivity will always be positive.)

The Galerkin method requires the solution of the artificially damped prog-
nostic equation to satisfy

∫

Ω

∫ (
ψ
∂h

∂t
− uh

∂ψ

∂x
− vh

∂ψ

∂y
− ψ +

∂ψ

∂x
κxx

∂h

∂x
+
∂ψ

∂y
κyy

∂h

∂y

)
dxdy

+
∮

δΩ

ψh u · nds−
∮

δΩ

ψ (κ∇h) · nds = 0 (5.35)

172



The addition of artificial diffusion bumps the prognostic equation up to a
higher order (two spatial derivatives instead of one are now involved), and this
necessitates specifying additional boundary conditions. For our purposes, we
might as well take ∇h · n = 0 on all portions of δΩ.

The matrix-stuffing conventions developed above for the prognostic equa-
tion receive the following additional contributions to account for the artificial
diffusion:

ae (κxxαkαl + κyyβkβl) → Aγ(k),γ(l) (5.36)

if an implicit treatment of artificial diffusion is desired, or

−aehl (κxxαkαl + κyyβkβl) → Rγ(k) (5.37)

if an explicit treatment is desired. In practice, the implicit treatment of
diffusion is better because the explicit treatment introduces an additional
numerical stability concern (which is alleviated when ∆t is chosen to be
sufficiently small).

5.6.2 Ice Thickness Solution with Artificial Damping

The above implicit treatment of artificial diffusion was implemented by adding
the two following fragments of Matlab code to the script listed above:

% Compute artificial diffusivity terms

%

kxx=sqrt(2*area(n))/6*abs(u(index(n,1)*2-1) + u(index(n,2)*2-1)...

+u(index(n,3)*2-1) );

kyy= sqrt(2*area(n))/6*abs(u(index(n,1)*2) + u(index(n,2)*2)...

+u(index(n,3)*2) );

%

and

value(count)=value(count)+area(n)*(kxx*alpha(n,k)*alpha(n,l) ...

+kyy*beta(n,k)*beta(n,l));
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The single line of Matlab code listed above is inserted in the loop which
constructs the matrix A.

The results of an abbreviated test of the finite-element model of the prog-
nostic equation with both the positive-definite constraint and artificial diffu-
sion are displayed in Figs. (5.15) and (5.16). The model was stepped through
only 25 years of evolution (over 150 years are required to achieve a steady
state in some portions of the ice-shelf domain) to reduce the computer time
required to simulate the evolution. The solution suggests that many of the
undesirable node-to-node wiggles have been eliminated.

5.7 Putting It All Together: Fully Coupled

Prognostic/Diagnostic Ice-Shelf Model

Finally, we come to the point where we have tested the two main ingredi-
ents of a finite-element ice-shelf model, and we are ready to couple them in
a realistic simulation of ice-shelf evolution. There is no new theory to be
considered at this stage, we must simply become good programmers and fit
the two portions of Matlab code developed in the previous sections to-
gether. We must keep in mind that because ice velocity changes with each
time step, the matrix A used in the prognostic portion of the model must
be reconstructed at each time step. Considerably more LU-factorizations of
A are thus required, and the coupled model will thus take longer to run.
Another point to keep in mind is the fact that the entire code for solving
the nonlinear diagnostic equations must be imbedded within the loop that
does the time step. A flow chart showing the sequence of events leading to a
successful time step is displayed in Fig. (5.17).

A comment about ∆t

The implicit time-stepping scheme suggests that the solution of the prog-
nostic (mass balance) equation should be stable for any time-step size. In
practice, the time-step size should be chosen so that all imaginary passive-
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tracer particles initially released at the nodal points (except those starting at
ice-front nodes) remain confined by one single element throughout the time
span [t, t + ∆t]. In other words, it is best to choose a ∆t small enough so
that the distance traveled by one of these imaginary passive-tracer particles
will not exceed the mesh spacing. In circumstances where the velocity field
of the ice shelf changes substantially through the time, it may be wise to
consider adaptively modifying ∆t during the simulation. In the EISMINT
Level 1 test, where an ice shelf that is initially 1000 m thick is allowed to
evolve towards a substantially thinner (and slower flowing) steady state, the
0.1-year time-steps needed in the beginning may be unnecessarily short to-
wards the end of the simulation. With this consideration in mind, we reset
the time-step size in the EISMINT simulation according to the following rule

∆t =

∆L√
2

2max(u)
(5.38)

where ∆L is the nondimensional size of the finite-element mesh spacing
(shortest distance between node points in the regular mesh shown in Fig.
5.1). The idea of the above equation is that ∆t is just large enough so that
the fastest moving passive-tracer particle will move half the distance along a
diagonal trajectory across a typical triangular element.

Results: Evolution to steady state

The coupled ice-shelf model was run through 1084 years of evolution us-
ing 658 time steps of variable ∆t (as described in Eqn. 5.38). The initial
condition corresponded to the EISMINT Level 1 exercise, and represented
a uniform ice thickness of 1000 m. The input ice thickness and velocity at
the ice-stream boundary were held fixed though time at 1000 m and 400
m/year, respectively. (The 658 time steps took approximately 60 hours of
CPU time on a Macintosh IIfx with 40Mhz 68030 CPU and 68882 FPU.)
Contour maps of the ice thickness and velocity magnitude after 1084 years
of evolution are displayed in Figs. (5.18) and (5.19). Cross sections of ice
thickness along the longitudinal axis of symmetry and transverse midline af-
ter 95 years of evolution are shown in Figs. (5.20) and (5.21). Time series
of total (dimensional) volume and average velocity magnitude at each time
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step are shown in Figs. (5.22) and (5.23). A comparison of the ice-thickness
cross section along the logitudinal axis of symmetry and the exact, analytic
ice-tongue profile (steady state) developed in Chapter (3) is shown in Fig.
(5.24).

One curious feature that was not expected is the low ice-thickness near
the ice front on the longitudinal axis (Fig. 5.24). The analytic ice tongue
solution is thicker at the ice front than the finite-element solution for the
ice shelf. This is unexpected because the ice tongue, under usual circum-
stances, should exhibit the most rapid spreading rates, and thus define a
“lower bound” to the ice thickness in a longitudinal section of the ice shelf.
The explanation of why the ice-shelf thickness is less than the ice-tongue
thickness in this circumstance lies in the fact that the ice shelf displays a
two-dimensional ice-thickness pattern. On close inspection, the ice shelf thins
away from the centerline axis of symmetry (which is the center of the ice lobe
debouched from the ice-stream inlet boundary). The ice shelf thus exhibits
two-dimensional spreading (i.e., transverse spreading as well as longitudinal
spreading); and is thus able to achieve a lower thickness at the ice front than
the ice tongue which is only allowed to spread longitudinally.

5.7.1 Matlab Script for the Coupled Ice-Shelf Model

Below is a listing of the Matlab script used to create the above ice-shelf
simulation. Notice that the script has been broken down into sub-scripts
(Matlab ’s version of subroutines) to make the code easier to read and
understand.

Driver code

% This script represents a finite-element model of an ice shelf.

%

init

nsteps=1500 % Note: only 658 time steps were actually completed

in % a single weekend.
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history=zeros(nsteps,5);

year=0;

for time=1:nsteps

dt = (5.0e3/L)/(2^ (3/2) * max(abs(u)));

year=year+dt*Z/a/31556926

time

timeseries

diagnost

prog

end

output

Init code

% This script fragment does the initialization

%

nrowsA=5920;

nrowsD=23040;

rowA=zeros(nrowsA,1);

colA=zeros(nrowsA,1);

rowD=zeros(nrowsD,1);

colD=zeros(nrowsD,1);

c old=zeros(nel,1);

h=10^ 3/Z*ones(nodes,1);

count=0;

countD=0;

%

for n=1:nel

%

% Perform loading of row and col arrays

%

for i=1:3

for j=1:3

countD=countD+1;
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rowD(countD)=index(n,j)*2-1;

colD(countD)=index(n,i)*2-1;

countD=countD+1;

rowD(countD)=index(n,j)*2-1;

colD(countD)=index(n,i)*2;

countD=countD+1;

rowD(countD)=index(n,j)*2;

colD(countD)=index(n,i)*2-1;

countD=countD+1;

rowD(countD)=index(n,j)*2;

colD(countD)=index(n,i)*2;

end

end

for l=1:3

for k=1:3

count=count+1;

rowA(count)=index(n,k);

colA(count)=index(n,l);

end

end

%

end % end loop over elements

%

% Boundary conditions

% Ice front contour: Implicit case

%

for n=1:imax-1

for k=1:2

for l=1:2

for j=1:2

count=count+1;

rowA(count)=icefnt(n,k);

colA(count)=icefnt(n,l);

end

end

end

end
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%

%

Timeseries code

% This script fills the history (bookeeping)

% time-series array

history(time,1)=year;

history(time,2)=h(gamma(21,1));

volume=0;

speed=0;

for n=1:nel

volume=volume+area(n)*(h(index(n,1))+h(index(n,2)) ...

+h(index(n,3)))/3;

speed=speed+area(n)*( ...// sqrt( u(index(n,1)*2-1)^ 2+u(index(n,1)*2)^

2 ) ...

+ sqrt( u(index(n,2)*2-1)^ 2+u(index(n,2)*2)^ 2 ) ...

+ sqrt( u(index(n,3)*2-1)^ 2+u(index(n,3)*2)^ 2 ) )/3;

end

history(time,3)=volume;

history(time,4)=speed*U/sum(area)*31556926;

history(time,5)=sqrt(u(gamma(21,1)*2-1)^ 2 ...

+u(gamma(21,1)*2)^ 2)*U*31556926;

Diagnostic code

% This script represents the Diagnostic solver

% sequence of Du=F prolbems

%

loop=0;

c old=zeros(nel,1);

while max((abs(c-c old)./c)) > 0.01

179



loop=loop+1;

%

value=zeros(nrowsD,1);

F=zeros(2*nodes,1);

countD=0;

%

for n=1:nel

havg=(h(index(n,1))+h(index(n,2))+h(index(n,3)))/3;

%

% Effective diffusivity:

%

if loop > 1

c old(n)=c(n);

end

ux=0;

uy=0;

vx=0;

vy=0;

for i=1:3

ux=ux+u(index(n,i)*2-1)*alpha(n,i);

uy=uy+u(index(n,i)*2-1)*beta(n,i);

vx=vx+u(index(n,i)*2)*alpha(n,i);

vy=vy+u(index(n,i)*2)*beta(n,i);

end

if (ux^ 2+vy^ 2+((uy+vx)^ 2)/4 +ux*vy ) > 10^ (-15)

c(n)=havg*(ux^ 2+vy^ 2+((uy+vx)^ 2)/4 +ux*vy )^ (-1/3);

else

c(n)=havg*10^ 5;

end

% Load right-hand-side vector:

%

for k=1:3

F(2*index(n,k)-1)=F(2*index(n,k)-1)+area(n)*havg^ 2*alpha(n,k);

F(2*index(n,k))=F(2*index(n,k))+area(n)*havg^ 2*beta(n,k);

end

%

% Load matrix:
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%

for i=1:3

for j=1:3

countD=countD+1;

valueD(countD)=area(n)*c(n)*(alpha(n,i)*alpha(n,j)+beta(n,i)*beta(n,j)/4);

countD=countD+1;

valueD(countD)=area(n)*c(n)*(beta(n,i)*alpha(n,j)/2+alpha(n,i)*beta(n,j)/4);

countD=countD+1;

valueD(countD)=area(n)*c(n)*(alpha(n,i)*beta(n,j)/2+beta(n,i)*alpha(n,j)/4);

countD=countD+1;

valueD(countD)=area(n)*c(n)*(beta(n,i)*beta(n,j)+alpha(n,i)*alpha(n,j)/4);

end

end

% End loop over elements

end

D=sparse(rowD,colD,valueD);

% Boundary conditions

bxcount=0;

bycount=0;

for j=1:(jmax-1) % left side

bxcount=bxcount+1;

D(Boundu(bxcount)*2-1,Boundu(bxcount)*2-1)=10^ 12;

F(Boundu(bxcount)*2-1)=0;

bycount=bycount+1;

D(Boundv(bycount)*2,Boundv(bycount)*2)=10^ 12;

F(Boundv(bycount)*2)=0;

end

for i=1:imax % top side

bxcount=bxcount+1;

bycount=bycount+1;

D(Boundu(bxcount)*2-1,Boundu(bxcount)*2-1)=10^ 12;

F(Boundu(bxcount)*2-1)=0;

D(Boundv(bycount)*2,Boundv(bycount)*2)=10^ 12;

F(Boundv(bycount)*2)=0;

end

for j=1:(jmax-1) % right side

bxcount=bxcount+1;

181



D(Boundu(bxcount)*2-1,Boundu(bxcount)*2-1)=10^ 12;

F(Boundu(bxcount)*2-1)=0;

end

F(gamma(18,17)*2)=-10^ 12;

F(gamma(19,17)*2)=-10^ 12;

F(gamma(20,17)*2)=-10^ 12;

F(gamma(21,17)*2)=-10^ 12;

% Solve the system for new ice velocity

u=D\F;
end % end While statement

Prog code

% This script does the Prognostic part

% by solving Ah=R

%

%

valueA=zeros(nrowsA,1);

R=zeros(nodes,1);

count=0;

% loop over elements

for n=1:nel

% Compute artificial diffusivity terms

%

kxx=sqrt(2*area(n))/6*abs(u(index(n,1)*2-1) + u(index(n,2)*2-1)...

+u(index(n,3)*2-1) );

kyy= sqrt(2*area(n))/6*abs(u(index(n,1)*2) + u(index(n,2)*2)...

+u(index(n,3)*2) );

%

%

% Load right-hand-side vector:

%

R(index(n,1))=R(index(n,1))+area(n)/3;

R(index(n,2))=R(index(n,2))+area(n)/3;
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R(index(n,3))=R(index(n,3))+area(n)/3;

for k=1:3

for j=1:3

if j == k

R(index(n,k))=R(index(n,k))+area(n)*h(index(n,j))/(6*dt);

else

R(index(n,k))=R(index(n,k))+area(n)*h(index(n,j))/(12*dt);

end

end

end

% Construct A using updated velocity:

for l=1:3

for k=1:3

count=count+1;

if k == l

valueA(count)=area(n)/(6*dt);

else

valueA(count)=area(n)/(12*dt);

end

for j=1:3

if j == l

valueA(count)=valueA(count)-(alpha(n,k)*u(index(n,j)*2-1)...

+beta(n,k)*u(index(n,j)*2))...

area(n)/6;

else

valueA(count)=valueA(count)-(alpha(n,k)*u(index(n,j)*2-1)...

+beta(n,k)*u(index(n,j)*2))...

area(n)/12;

end

end

valueA(count)=valueA(count)+area(n)*(kxx*alpha(n,k)*alpha(n,l)...

+kyy*beta(n,k)*beta(n,l));

end

end

%

end % End loop over elements

% Boundary conditions
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% Ice front contour: Implicit case

%

for n=1:imax-1

for k=1:2

for l=1:2

for j=1:2

count=count+1;

if l==k & j==k

valueA(count)=-u(icefnt(n,j)*2)*dl/4;

else

valueA(count)=-u(icefnt(n,j)*2)*dl/12;

end

end

end

end

end

%

A=sparse(rowA,colA,valueA);

% Fix the input ice thickness to 1

%

A(gamma(18,17),gamma(18,17))=10^ 15;

A(gamma(19,17),gamma(19,17))=10^ 15;

A(gamma(20,17),gamma(20,17))=10^ 15;

A(gamma(21,17),gamma(21,17))=10^ 15;

%

% Ice stream input condition:

R(gamma(18,17))=10^ 3/Z*10^ 15;

R(gamma(19,17))=10^ 3/Z*10^ 15;

R(gamma(20,17))=10^ 3/Z*10^ 15;

R(gamma(21,17))=10^ 3/Z*10^ 15;

% Solve the system for new thickness

h=A\R;
for n=1:nodes

if h(n) < 0

h(n)=0;

end

end
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Output code

% This script writes the output

% (if any)

for i=1:imax

for j=1:jmax

ugrid(i,j)=u(gamma(i,j)*2-1)*U*31556926;

vgrid(i,j)=u(gamma(i,j)*2)*U*31556926;

hgrid(i,j)=h(gamma(i,j))*Z;

end

end

Note: The above code has been modified since the EISMINT model-
intercomparison meeting in Bremerhaven, Germany (June 1994). For an
updated copy of the code, please contact the author.

5.8 Summary

In this chapter, we have constructed a two-dimensional (plan view) model
of an ice shelf. The difficulty we encountered stemmed from the fact that
a time step in an ice shelf model requires solution of two problems: the
diagnostic for the ice velocity, and the prognostic for the new ice thickness.
Although the work is tedious, and the code can become lengthy, the process
of constructing an ice-shelf model is essentially simple.

5.8.1 Exercise 1

Using data provided in Rossmesh.mat construct a snap-shot of the present
flow of the Ross Ice Shelf using a finite-element model of the diagnostic
stress equilibrium equations (suitably simplified). Experiment with values of
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B̄, the flow-law rate constant, to tune your model to the observed ice flow
field (maximum ice front velocity about 1010 m per year).
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u(i) u(i+1)u(i-1)

θ(i-1) θ(i) θ(i+1)

Figure 5.14: Nonstaggered finite-difference graph where θ and u are defined
at the same locations on the grid. This grid scheme is used to illustrate
upwind differencing.
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Figure 5.15: Ice thickness contours (100 m C.I.) after 25 years of evolution
of a prognostic equation subject to the constraint that h ≥ 0 and to an
artificial diffusion to smooth wiggles. (Comparison with the solution shown
in Fig. 5.8 suggests that the upper right-hand-corner of the domain has
not yet reached equilibrium. This is not important, however, because the
purpose of this simulation is to demonstrate the maintenance of positive
definite ice thickness.) The ice front is on the left-hand side of the diagram;
the ice-stream input is on the lower right-hand side.
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Figure 5.16: Ice thickness (m) along the transverse, midline axis of the ice
shelf after 25 years of evolution with an algorithm that preserves positive
definite ice thickness and dissipates wiggles with artificial diffusion. Notice
that the amplitude of undesirable node-to-node wiggles have been reduced
over those displayed in Fig. (5.13).
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guess u
construct D^1

solve D^1 u = F
  construct D^2
solve D^2 u = F
  construct D^3
solve D^3 u = F
  construct D^4

    etc.
till convergence

construct A
solve Ah=R

u

h^(n+1)

h^n

time step loop

diagnostic part

prognostic part

Figure 5.17: Flow chart indicating how diagnostic and prognostic parts of
the ice shelf model are coupled together to achieve an algorithm that steps
through time.
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Figure 5.18: Contour map of ice thickness (C.I. = 100 m) after 1084 years
of evolution towards a steady state from an initial condition of a uniform
1,000 m ice thickness. The ice-front boundary is the left side of the diagram.
The lower right side of the diagram represents the location where ice-stream
input was specified as a boundary condition.
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Figure 5.19: Contour map of ice velocity magnitude (C.I. = 100 m/year)
after 1084 years of evolution towards a steady state from an initial condition
of a uniform 1,000 m ice thickness. The ice-front boundary is the left side
of the diagram. The lower right side of the diagram represents the location
where ice-stream input was specified as a boundary condition.
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Figure 5.20: Longitudinal cross section of ice thickness along the axis of
symmetry after 1084 years of evolution towards steady state.
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Figure 5.21: Transverse cross section of ice thickness along the midline after
1084 years of evolution towards steady state.
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Figure 5.22: Ice volume (m3) as a function of time. Steady state was not
achieved after 1084 years, but the ice-shelf was close to steady state.
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Figure 5.23: Area-averaged velocity magnitude (m/year) as a function of
time.
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Figure 5.24: Comparison of the longitudinal section thickness along the axis
of symmetry for the ice shelf after 1084 years of evolution towards steady
state (line) and for the unconfined ice tongue (exact, analytic solution, aster-
isks). The ice-shelf thickness is greater than that of the ice tongue near the
grounding line, and this reflects the fact that confinement by the embayment
can substantially reduce longitudinal spreading rates near the grounding line.
The ice-shelf thickness is less than that of the ice tongue near the ice front,
and this reflects the fact that the ice shelf exhibits two-dimensional (longi-
tudinal and transverse) spreading near the ice front, whereas the ice tongue
is restricted to longitudinal spreading only.
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Chapter 6

EISMINT Workshop Epilogue:
Mass Conservation Problems

Several unforeseen inadequacies of the solution to the ice-shelf modelling
exercise described in the previous chapter came to light at the EISMINT
model-intercomparison workshop held in June, 1994, in Bremerhaven, Ger-
many. In particular, the flux of ice through the ice front when in steady
state exceeded the input of ice to the ice shelf (via snow accumulation and
ice-stream discharge) by about 27% . This mass imbalance prompted several
additional tests described here. The results of these additional tests suggest
that the ice-stream influx conditions specified in the EISMINT tests are a
source of numerical error (discretization error) which ultimately manifests
itself in one of two ways: gross mass imbalance, or gross ice-thickness er-
ror. When the model developed in the previous chapter is run without an
ice-stream input condition, mass-balance is accurate to better than 0.1 %.

6.1 Computation of Mass Balance

To compute the net mass balance associated with the ice-shelf model, three
integrations of model data must be performed. The first is an area integral
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to compute the net ice input due to snow accumulation. (Basal melting is
assumed zero.) The second is a line integral along the ice-stream inlet to
compute the net flux of ice delivered to the ice shelf by the ice stream. The
third is a line integral along the ice front to compute the net flux of ice
into the ocean. Care must be exercised on the two line integrals to ensure
that the integral of hu · n, where n is the outward pointing unit vector to
the boundary, is performed in a manner consistent with the finite-element
discretization. The velocity directed normal to the boundary u · n and the
ice thickness h are linear functions between the two nodes which define a
boundary segment. Their product is thus a quadratically varying function.
(If, for example, one were to compute the flux through a boundary segment
by multiplying the length of the segment by the average ice thickness and
average outward directed ice velocity, one would be computing an erroneous
mass flux that is inconsistent with the numerical method used to generate
the solution.)

The second line integral mentioned above, i.e., the integral along the ice-
stream inlet boundary, is optional. Recall that Eqn. (6.3) suggests that there
are two types of boundary conditions: one where flux is specified and the
other where ice thickness is specified. In the circumstance where ice thickness
is specified, the flux needed to maintain that fixed ice thickness becomes a flux
of constraint, i.e., is undetermined until after the model produces its solution.
Thus, for this circumstance, the line integral must be evaluated after the
fact, i.e., after the model produces the solution, to find out what the flux
of constraint actually was. When h is specified in the finite-element model
developed in the previous chapter, rows of the matrix A in Eqn. (5.24) are
modified or eliminated. (One way to do this is to replace the diagonal element
with a one and all off diagonal elements with zeroes for rows referencing a
nodal value of h to be specified as a boundary condition. This replacement
effectively erases all information about the velocity at the boundary; thus,
the model regards the flux to be that which enforces the specified h, not that
which represents hu ·n.) This point is often misunderstood by modellers who
have not worked with finite-element or Galerkin methods before.

In the second circumstance, where ice flux is specified at the open bound-
ary, the line integral along the ice-stream inlet is no longer necessary. (Ac-
tually, it is necessary, but it’s value is simply the specified flux times the
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length of the boundary in question.) There is no need to reference model
data to determine this flux because the model produces its solution with the
firm constraint that the mass flux is indeed what it was specified to be. In-
accuracy of the model solution h at the open boundary may result from the
numerical discretization error, as will be shown below to be the case for the
EISMINT test. This inaccuracy, however, does not affect the mass balance.
(This means that the inaccuracy in h and hu · n for the given u offset each
other in a manner consistent with a correct rendition of the mass flux.)

Here is the Matlab code used to examine the mass balance charac-
teristics of the solution found in the previous chapter. Note the optional
statements which account for the different circumstances of boundary condi-
tion specification at the ice-stream inlet.
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% This program computes the net mass budget (input vs output)

% for the end-state of the ice-shelf model run:

% Definitions:

% Input = ice flowing through the icestream boundary

% + snow accumulation over entire area

%

% Output = ice flowing out of the ice front

%

% Units are in m^ 3 per year (velocities must be specified in m/a)

% Input:

totalarea= 80.e3 * 100.e3;

accum=0.3;

Lside=5.0e3; % length of grid spacing

Inputsnow= totalarea*accum

Inputstream=0;

nodecount=0;

for k=1:20

nodecount=nodecount+1;

h1=hgrid(nodecount,17);

h2=hgrid(nodecount+1,17);

v1=vgrid(nodecount,17);

v2=vgrid(nodecount+1,17);

Inputstream= Inputstream - h1*v1*Lside - (v1*(h2-h1) + h1*(v2-v1))*Lside/2

...

- (h2-h1)*(v2-v1)*Lside/3;

% note , if flux is specified, the previous statement must be replaced

% with Inputstream=Inputstream*1000*400*Lside

% see statement below:
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% note minus sign because v<0 means "in" to the ice shelf.

end

% Use the following statement if flux is specified (here we have

an example

% where the width of the inlet is 3xLside

% Inputstream=400*1000*Lside*3;

Inputstream

Input=Inputsnow+Inputstream

% Output through ice front (other sides are no flux):

Output=0;

nodecount=0;

for k=1:20

nodecount=nodecount+1;

h1=hnpdgrid(nodecount,1);

h2=hnpdgrid(nodecount+1,1);

v1=vgrid(nodecount,1);

v2=vgrid(nodecount+1,1);

Output= Output + h1*v1*Lside + (v1*(h2-h1) + h1*(v2-v1))*Lside/2

...

+ (h2-h1)*(v2-v1)*Lside/3;

end

Output

net= Input+Output

The result of applying the above mass-balance diagnostic to the EISMINT
intercomparison test results described in the previous chapter (and shown in
Figs. (??) and (5.19)) is listed as follows:
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Input 9.0667× 109 m3/a
Output −11.502× 109

net −2.44× 109

percent 26.9 %

As is clearly shown by the above table, the steady-state solution transmits
about 27 % more ice through the ice front than flows into the ice shelf.

What could be the cause of this mass imbalance? How could the ice-shelf
model have achieved a steady state with so much extra mass outflow?

These anxiety-inducing questions were not easy to answer. It took me
several weeks of effort to finally develop an understanding of what was going
wrong. The process by which I developed an understanding of the answers to
these questions involved re-running the ice-shelf model with different bound-
ary conditions to determine the circumstances where it would or would not
conserve mass.

6.2 Test With Zero Ice-Stream Input

The first model diagnosis test I considered was to examine the mass balance
of a steady-state solution produced for a model domain which lacked the
ice-stream inlet, i.e., for the case where u = 0 for the entire inland boundary
of the ice shelf. The results of this test are shown in Figs. (6.1) - (6.2). The
mass balance summary is listed as follows:

Input 2.4000× 109 m3/a
Output −2.3975× 109

net 0.0025× 109

percent 0.1 %

When the ice stream inlet is eliminated, the finite-element ice-shelf model
appears to conserve mass. This suggests that the cause of the mass imbalance
in the EISMINT test of the previous chapter is associated with some aspect
of the ice-stream inlet.
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Figure 6.1: Steady-state ice thickness (dimensional units) for a for a model
run which lacked ice-stream input. Contour interval is 20 m.
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Figure 6.2: Steady-state ice velocity magnitude (dimensional units) for a for
a model run which lacked ice-stream input. Contour interval is 25 m/a.
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6.3 Test Comparison With an Exact, Ana-

lytic Solution

The next model-diagnostic test I performed was to repeat the one-dimensional
ice-tongue experiment with the two-dimensional model. In other words, I
specified ice-stream input along the entire “back” boundary of the EISMINT
model domain, and required the two lateral boundaries of the model to be
stress-free. The purpose of this experiment was to test how well the two-
dimensional ice-shelf model could reproduce the exact analytic solution for
the steady-state ice tongue developed by Van der Veen (and discussed in the
previous chapters).

This experiment was further broken down into two sub experiments. In
the first sub-experiment, the ice thickness h was specified as the ice-stream
boundary condition. In the second sub-experiment, the mass flux q = hv was
specified as the ice-stream boundary condition. These two sub-experiments
reveal the differences in model performance between the two alternative ways
of specifying the boundary condition at the ice-stream inlet reflected in Eqn.
().

The ice-thickness profile down the centerline of the ice tongue (assumed
to be 17 nodes long and 21 nodes wide) is displayed in Fig. (6.3). (Note:
the variation of model output fields in the direction perpendicular to the
flow of the simple one-dimensional ice tongue should be zero, i.e., all model
variables should be uniform with respect to x, the transverse coordinate.
This was found, indeed, to be the case.)

For the sub-experiment in which the ice thickness was specified at the
grounding line, the ice thickness produced by the model exceeds the an-
alytic solution at all points downstream of the ice-stream input boundary
(the boundary condition, of course, is satisfied exactly). As a result of this
inaccuracy, the mass balance of the ice tongue is grossly in error:
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Input 4.24× 1010 m3/a
Output −6.47× 1010

net 2.23× 1010

percent 53 %

A 53% error associated with the attempt of a two-dimensional ice-shelf
model to mimic the one-dimensional ice-tongue solution is strongly suggestive
of the cause of the imbalance seen previously in the EISMINT ice-shelf test.
The change in ice thickness between the node at the boundary and the next
node downstream within the ice shelf is just too great for the numerical
method to represent accurately. As shown in Fig. (6.3), approximately half
of the total change in ice thickness of the ice tongue (for both the analytic and
the numerical solutions) is accomplished between the first two nodes. The
lack of resolution of this large thickness change introduces the numerical
discretization error that yields the large mass imbalance.

The second sub-experiment was like the first except that the mass flux
q = 400× 1000 per meter length of boundary was specified at the upstream
boundary instead of the ice thickness. The result is shown in Fig. (6.4).
Clearly, downstream of the upstream boundary, the finite-element model
reproduces the exact analytic solution rather well. The first node, where
in the previous run the ice thickness was specified, is the only place where
model inaccuracy is apparent. For this run, the mass balance analysis is

Input 4.24× 1010 m3/a
Output −4.24× 1010

net 5.55× 102

percent 0 %

Now we are getting somewhere! Apparently, by insisting in the previous
run that h = 1000 m at the upstream boundary, I introduced a flux of
“constraint” that accounted for the 53 % mass imbalance. In the present
run, the flux at the upstream boundary is specified to be its intended value,
but the ice thickness at the upstream node is inaccurate. Given the agreement
between the model and the exact analytic solution downstream of the first,
upstream node, it is better, apparently, to specify flux and not ice thickness.
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Figure 6.3: Steady-state ice thickness (dimensional units) for a for a model
run in which the entire back boundary has ice-stream input (thickness spec-
ified). Asterisks denote the exact solution obtained by Van der Veen.
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Figure 6.4: Steady-state ice thickness (dimensional units) for a for a model
run in which the entire back boundary has ice-stream input (flux specified).
Asterisks denote the exact solution obtained by Van der Veen.
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6.4 Revision of EISMINT Ice-Shelf Model Test

To confirm the insight into the cause of the mass imbalance suggested above,
the EISMINT test described in the previous chapter was re-run, but this time
with ice flux specified (instead of ice thickness) at the upstream boundary.
To be as careful as possible to avoid other problems which may crop up
as a result of implicit time stepping and wiggle control, the time step size
was taken to be approximately 14 days, artificial diffusion was eliminated,
and the positive-definite constraint on ice thickness was relaxed. (Negative
ice thickness was allowed in all routines except the diagnostic routine which
solves the momentum balance, in this routine, negative ice thickness was
interpreted as zero ice thickness.) The results are shown in Figs. (6.5) and
(6.6). (In this particular run, the ice shelf evolved for 740 years. A longer
run-time is necessary to produce an exact mass balance. Due to the very
short time steps, 14 days, and the slow Macintosh computer, I did not have
the patience to wait for the model run to complete once the mass balance
was satisfied to better than 1%.)

The insight gained in the previous section is confirmed: the specification
of flux at the ice-stream inlet produces a numerical solution that is in mass
balance:

Input 8.4000× 109 m3/a
Output −8.4823× 109

net 0.0823× 109

percent 1 %

Note: The net figures for the mass influx have changed in this particular
run because the width of the ice-stream inlet was reduced by one element
spacing.

210



200

500400

300

0

100

0.0 10.0

0.0

10.0

20.0

col

ro
w

Figure 6.5: Steady-state ice thickness (dimensional units) for a for a model
run in which the ice flux was specified as the ice-stream inlet boundary
condition in the prognostic equation. Negative ice thickness occurs at the
“corner” at the edge of the ice-stream inlet.
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Figure 6.6: Steady-state ice velocity magnitude (dimensional units) for a
for a model run in which the ice flux was specified as the ice-stream inlet
boundary condition in the prognostic equation.
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6.5 Conclusion

The above analysis quiets the anxiety over the lack of mass conservation,
but does not comfort the intellect. The lack of mass balance appears to
be associated with an aspect of the problem being solved (the inaccuracy
stemming from poor spatial resolution), not the numerical method. (By no
means, however, do I imply that there are not better, more mass conserving,
numerical methods to be explored). The lack of intellectual comfort stems
from the fact that the problem of ice-stream influx, and specifically the “cor-
ners” which generate much of the numerical error in mass conservation, is
unsolved.
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Chapter 7

Ice-Stream Flow Over Sticky
Spots: An Inverse Problem

Ian Whillans and Kees Van der Veen (1993) analyzed surface-velocity data
from ice stream B, Antarctica to deduce its basal shear stress. A controversial
result of their analysis was that basal drag is negative in sign over some small
portions of the bed. (By negative, we mean that the basal drag tends to push
the ice stream forward rather than impede it’s flow.) This result has led to
a great deal of speculation.

In an effort to understand the nature of ice-stream flow and to understand
the analytical process by which we convert measurements of surface velocity
to basal friction, we examine an idealized problem in which a flat, slab like
ice stream flows across a sticky spot in the bed.

7.1 Stress Balance in a Simple Geometry

Consider the problem of ice flow over a sticky spot depicted in Fig. (7.1). We
shall assume that the flow is purely two dimensional and can be described by
a horizontal velocity u(x, z) and a vertical velocity w(x, z). Variation in the
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transverse horizontal coordinate y is disregarded. Flow at the upstream and
downstream ends of the domain is assumed to be independent of z (uniform
over depth) and parallel to the bed. Flow at the downstream end is assumed
to have a longitudinal strain rate of U/L, a typical ice-stream strain rate,
where U is a characteristic horizontal velocity (on the order of 500 m/year)
and L is the length of the domain, which we take to be much greater than the
ice thickness Z , which is also assumed uniform with x. The upper surface of
the ice stream is assumed flat and stress free. The lower surface is assumed
to be stress free except for a small localized sticky spot with a Gaussian
distribution in x. In other words, we assume that the basal shear stress τ
is equal to β(x)2u(z = −Z), where β(x)2 is a positive-definite (hence the
square) basal friction coefficient that is a function of x.

Nondimensional Variables

To simplify the arithmetic, we adopt nondimensional variables by employing
the following scale transformations:

u → Uu (7.1)

w → Uδw (7.2)

exx → U

L
exx (7.3)

ezz → U

L
ezz (7.4)

exz → U

L
δ−1 1

2

(
uz + δ2wx

)
(7.5)

τ → τoτ (7.6)

σ → ρgZσ (7.7)

p → ρgZp (7.8)

where exx = ux, ezz = wz, and exz are the strain rate components, σ is the
normal stress at the bed, and p is the pressure. The scaling of w and ezz is
motivated by the incompressibility condition (ezz = −exx). The subscripts
on u and w denote partial differentiation.
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Stress Balance Equations

Using the above-defined nondimensional variables, the stress-equilibrium equa-
tions and their boundary conditions at z = 0 and z = −1 (the bed) are
written as follows. At z = 0, the stress-free boundary conditions are

uz + δ2wx = 0 (7.9)

wz − γp = 0 (7.10)

In the interior of the ice,

uxx − γpx + δ−2 1

2

(
uzz + δ2wxz

)
= 0 (7.11)

wzz − γpz +
1

2

(
uzx + δ2wxx

)
= γ (7.12)

At the lower boundary at z = −1,

uz = 2ετ (7.13)

−wz + γp = γσ (7.14)

In the above equations we have made use of the fact that w = 0 = wx at the
basal boundary.

In the above equations there are three dimensionless parameters,

δ =
Z

L
(7.15)

ε =
τo

2νo
U
Z

(7.16)

γ =
ρgZ

2νo
U
L

(7.17)

where νo is the ice viscosity which is assumed constant. The parameter
δ represents the aspect ratio of the flow. This parameter is small when
the horizontal scale of flow variation is greater than the ice thickness. The
parameter ε describes the strength of the basal friction. In circumstances
where the ice stream flow is large, and predominantly by basal sliding (or
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by basal sediment deformation), the parameter ε will be much smaller than
1. For ice stream B, in West Antarctica, ε is about 3 × 10−2 even for basal
friction scales (τo) as high as one bar (1015 Pa).

To proceed further, we must assume a relation between the three dimen-
sionless parameters. Here we assume the following simple relation

δ2 = ε = γ−1 (7.18)

In this circumstance, the above governing equations simplify to the following
form (here we also make use of the incompressibility condition, wz = −ux).
At z = 0,

uz + εwx = 0 (7.19)

−εux − p = 0 (7.20)

In the interior of the ice (−1 < z < 0),

1

2
uzz − px + ε

(
uxx +

1

2
wxz

)
= 0 (7.21)

− (pz + 1)− ε
1

2
uxz + ε2

1

2
wxx = 0 (7.22)

At the lower boundary (z = −1),

uz = 2ετ (7.23)

p− σ + εux = 0 (7.24)

Series Expansion on Small Parameters

We find the above equations too difficult to solve as they stand because of
the mixture of large and small terms (small terms are defined to be the
ones which contain a factor of ε). To proceed further, we use the systematic
simplification provided by the series expansion on the small parameter ε. We
write the variables as follows,

u = u[0] + εu[1] + ε2u[2] + · · · (7.25)
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w = w[0] + εw[1] + ε2w[2] + · · · (7.26)

p = p[0] + εp[1] + ε2p[2] + · · · (7.27)

σ = σ[0] + εσ[1] + ε2σ[2] + · · · (7.28)

(7.29)

When these expressions are substituted into the above equations, and when
terms of equal magnitude (equal power of ε) are collected, the result is a
sequence of problems which may be solved systematically to produce as many
of the terms in the above expansion as are desired.

To illustrate the benefit of the series expansion in a simple example, con-
sider the single variable equation (which has nothing to do with glaciology)

ux − εu = 0 (7.30)

As it stands, this equation is a major pain because of the fact that a large,
order 1 term is compared with a small, order ε term. Substitution of u[0] +
εu[1] + ε2u[2] + · · · for u in the above equation simplifies the situation. After
collecting terms, the above equation takes the following form

u[0]
x + ε

{
u[1]
x − u[0]

}
+ ε2

{
u[2]
x − u[1]

}
+ · · · = 0 (7.31)

The above equation contains many more terms, but it possess the advantage
that each term appearing in brackets contains subterms that are the same
size (order 1). To solve the above equation, we simply set each of the terms in
brackets to zero to get the following sequence of simpler differential equations:

u[0]
x = 0 (7.32)

u[1]
x − u[0] = 0 (7.33)

u[2]
x − u[1] = 0 (7.34)

etc. (7.35)

The above equations are referred to as the zeroth order, first order, second
order, etc. problems. A typical effort to solve them will entail truncation
at some level. The size of the errors generated by this truncation has the
magnitude of εn, where n is the truncation level. This estimate of the size of
approximation errors constitutes one of the principle motivations for using
the series expansion approach.
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7.2 Zeroth-Order Problem

We proceed to determine the solution for the ice-stream flow over the sticky
spot by using a series expansion on ε. The zeroth-order equations are written
as follows. At z = 0,

u[0]
z = 0 (7.36)

p[0] = 0 (7.37)

In the ice interior,
1

2
u[0]
zz − p[0]

x = 0 (7.38)

p[0]
z + 1 = 0 (7.39)

At z = −1,
u[0]
z = 0 (7.40)

p[0] − σ[0] = 0 (7.41)

Zeroth-Order Solution

We proceed by first computing the pressure using Eqn. (7.39). Integration
over the vertical dimension of the ice stream (from -1 to 0), and use of the
boundary conditions at the surface and base gives

p[0] = −z (7.42)

σ[0] = 1 (7.43)

This is exactly what we expected; the pressure is hydrostatic and the normal
stress on the bed is simply the weight of the ice above.

Integration of Eqn (7.38) over z and use of either of the two boundary
conditions gives another expected result

u[0]
z = 0 (7.44)

Namely, the horizontal velocity (at zeroth order) is independent of z.

219



The incompressibility condition, and the above result, may be used to
show that

w[0] = −u[0]
x (1 + z) (7.45)

We have now exhausted the zeroth-order equations, but have yet to com-
pletely describe the zeroth-order solution. In particular, we have not yet
found a way to describe the x-variation of the z-independent horizontal ve-
locity u[0]. Even more important, we have not yet encountered the basal
stress, the aspect of the problem which motivates our analysis. To get at
these inadequacies of the zeroth-order problem, we proceed to examine the
first-order problem.

7.3 First-Order Problem

The first-order equations are written as follows. At z = 0,

u[1]
z + w[0]

x = 0 (7.46)

−u[0]
x − p[1] = 0 (7.47)

In the ice interior,

1

2
u[1]
zz − p[1]

x = −u[0]
xx −

1

2
w[0]
xz = −1

2
u[0]
xx (7.48)

−p[1]
z =

1

2
u[0]
xz = 0 (7.49)

At z = −1,
u[1]
z = 2τ (7.50)

u[0]
x + p[1] − σ[1] = 0 (7.51)

In the interior equations above, we made use of the facts that u[0]
z = 0 and

w[0]
xz = ∂2

∂x∂z
− u[0]

x (1 + z).
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First-Order Solution

The solution to Eqn. (7.49) is obtained by integrating over z and making
use of the upper boundary condition (integration is easy because u[0]

x is in-
dependent of z). To satisfy the lower boundary condition, we determine σ[1].
The results are,

p[1] = −u[0]
x (7.52)

σ[1] = 0 (7.53)

Making use of the first-order solution for pressure, p[1], in Eqn. (7.48),
we obtain

u[1]
z = u[0]

xx (7.54)

at z = 0,
u[1]
zz = −3u[0]

xx (7.55)

in the interior, and
u[1]
z = 2τ (7.56)

at z = −1. Integration of Eqn. (7.55) over −1 < z < 0, and use of the
boundary conditions gives the equation we need to close the zeroth-order
solution (i.e., determine the x-dependence of u[0]):

2u[0]
xx = τ (7.57)

Now that we have determined u[0]
xx(x) (Eqn. 7.57), we can move on to

determine u[1] using Eqn. (7.55) directly (i.e., without integrating it over z
first). Substitution for u[0]

xx renders Eqn. (7.55) and its boundary conditions
into the following forms. At z = 0,

u[1]
z =

τ

2
(7.58)

In the interior,

u[1]
zz = −3

2
τ (7.59)

At z = −1,
u[1]
z = 2τ (7.60)
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Integrating Eqn. (7.59) once gives,

u[1]
z =

τ

2
(1− 3z) (7.61)

Integrating a second time gives,

u[1] =
τ

2

(
z − 3

2
z2

)
+ c(x) (7.62)

where c(x) is an as yet undetermined constant of integration (that can be a
function of x).

We note for future reference the following relations (the second of which
is derived from the first using the incompressibility condition):

u[1]
x =

1

2

(
z − 3

2
z2

)
τx + cx (7.63)

w[1]
z =

−1

2

(
z − 3

2
z2

)
τx − cx (7.64)

At this stage, we have not only recovered the zeroth-order, depth-independent
horizontal flow u[0], but we have almost additionally recovered the most siz-
able depth-dependent correction to the horizontal flow that is generated by
the basal friction, namely u[1]. We still have work to do because we have
only recovered u[1] up to the constant of integration c(x). To get c(x), we
must consider the second-order equations (much in the same way as the de-
termination of the x-dependence of u[0] required us to consider the first-order
equations).

7.4 Second-Order Problem

The second-order equations are written as follows. At z = 0,

u[2]
z + w[1]

x = 0 (7.65)

−u[1]
x − p[2] = 0 (7.66)
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In the ice interior,
1

2
u[2]
zz − p[2]

x = −u[1]
xx −

1

2
w[1]
xz (7.67)

−p[2]
z =

1

2
u[1]
xz −

1

2
w[0]
xx (7.68)

At z = −1,
u[2]
z = 0 (7.69)

u[1]
x + p[2] − σ[2] = 0 (7.70)

Second-Order Solution

We begin by making use of what we have derived before, namely

w[0]
xx = −u[0]

xxx(1 + z) (7.71)

u[1]
xz =

1

2
(1 − 3z)τx (7.72)

u[1]
x (z = 0) = c(x) (7.73)

These relations may be substituted into Eqn. (7.68) and its attendant bound-
ary conditions to get the following result. At z = 0

−u[1]
x − p[2] = 0 (7.74)

In the ice interior,

−p[2]
z =

1

4
(1 − 3z)τx +

1

2
u[0]
xxx(1 + z) (7.75)

At z = −1,
u[1]
x + p[2] − σ[2] = 0 (7.76)

Integration of Eqn. (7.75) gives an expression for p[2]:

p[2] =
1

4

(
z − 3

2
z2

)
τx +

1

2
u[0]
xxx

(
z +

z2

2

)
+ d(x) (7.77)
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where d(x) is a constant of integration that can be a function of x. Use of
the boundary condition at z = 0 gives d(x) = c(x). Use of the boundary
condition at z = −1 determines that σ[2] = −1

8
τx.

Having derived p[2] we are now in a position to integrate Eqn. (7.67) over
−1 < z < 0 to generate the desired equation for c(x). We first note that

0∫

−1

p[2]
x dz =

−τxx
4

− u[0]
xxxx

6
+ cxx (7.78)

Integrating Eqn. (7.67) over z, and use of the boundary conditions (u[2]
z +

w[1]
x = 0 at z = 0,−1), gives

0 =

0∫

−1

p[2]
x dz −

τxx
4

+ cxx (7.79)

Making use of the expression for the integral of p[2]
x derived above, we obtain

0 =
−τxx

2
− u[0]

xxxx

6
+ 2cxx (7.80)

Making use of the relation derived previously that 2u[0]
xxxx = τxx, we obtain

the desired equation for c(x):

cxx =
7

32
τxx (7.81)

We may integrate the above equation at once to obtain,

c(x) =
7

32
τ + ax + b (7.82)

where a and b are constants of integration. In our problem, we shall take these
constants to be zero (i.e., we shall assume that the second-order correction
to the flow is zero at the upstream and downstream boundaries at x = 0, 1).
We may thus write the complete first-order horizontal velocity correction as
follows:

u[1] =
τ

2

(
z − 3

2
z2

)
+

7

32
τ (7.83)
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7.5 Flow of an Ice Stream Over a Sticky Spot

In the somewhat lengthy analysis above, we have reduced a very compli-
cated mathematical description of stress balance to a level that can be easily
tackled with simple numerical tools. (An exact, analytic solution may be
possible, but has not been tried here.) The complicated problem reduces to
solving for u(x, z) = u[0](x) + u[1](x, z) the simple equations for u[0] and u[1]

developed above. To proceed further, we express the basal friction τ(x) using
the following representation:

τ = β2(x)
(
u[0] + εu[1]‖z=−1

)
(7.84)

It is important to note that the above expression does not represent a basal
friction “law” in the traditional sense; but rather a basal friction “represen-
tor” in the sense used by Bennett (1992). With the representation shown
above, τ (x) can have an arbitrary functional form with only one restriction,
namely, that it be positive (hence the representation of the basal friction
coefficient, β, as a square). For a Gaussian sticky spot, we assume

β(x) = 2.5 exp

(
−

(
x− .5

0.15

)2
)

(7.85)

(The somewhat arbitrary choice of parameters in the above definition of
β(x) is designed to give a pleasing result, e.g., to make the inversion of the
second-order accurate surface velocity teach us a valuable lesson.)

To determine u(x, z) to second-order accuracy (i.e., neglecting terms of
ε2 and smaller), we must solve the following coupled equations:

2u[0]
xx − β2u[0] = β2εu[1]‖z=−1 (7.86)

u[0] = 1 for x = 0 (7.87)

u[0]
x = 1 for x = 1 (7.88)

and

u[1] = β2

(
z

2
− 3z2

4
+

7

32

) (
u[0] + εu[1]

)
(7.89)
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The above equations are difficult to solve as they currently stand, because
both u[0] and u[1]‖z=−1 appear in the same equation. These equations can
be decoupled by using Eqn. (7.89) to express u[1]|z=−1 in terms of u[0], i.e.,

u[1]|z=−1 =
−33
32 β

2

1 + 33
32β

2ε
u[0] (7.90)

and by substituting the result into Eqn. (7.86). The result of these manip-
ulations is a single, second-order ordinary differential equation in a single
unknown:

2u[0]
xx −

u[0]

1 + 33
32β

2ε
= 0 (7.91)

This equation requires two boundary conditions, the two listed in Eqns.
(7.87) and (7.88) will do just fine. Once Eqn. (7.90) is solved for u[0](x),
Eqn. (7.90) is used to determine u[1](x, z).

Discretization

We find it convenient to use a finite-difference method to solve Eqn. (7.91).
(An exact analytic solution was not attempted, but should be relatively
straightforward given the simplicity of the functional form of β(x) and the
differential equation.) We discretized the domain of solution x ∈ [0, 1] into
N = 100 grid points, and assigned the value of u[0] at each grid point to
correspond with an element of the vector u[0] ∈ RN , i.e.,

u[0] =




u
[0]
1

u
[0]
2
...

u
[0]
N




(7.92)

The discrete form of Eqn. (7.91) with its boundary conditions is expressed
as a simple matrix equation:

Au[0] = r (7.93)
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where,

A =




1 0 · · ·
2

∆x2
−4
∆x2 −D2

2
∆x2 0 · · ·

0 2
∆x2

−4
∆x2 −D3

2
∆x2 0 · · ·
. . .

· · · 0 2
∆x2

−4
∆x2 −DN−1

2
∆x2

· · · 0 −1
∆x

1
∆x




(7.94)

r =




1
0
...
0
1




(7.95)

and Di = 1
1+ 33

32β
2(xi)ε

, where xi is the x-coordinate of the i’th grid point.

The solution to Eqn. (7.93) is readily obtained using Matlab as sug-
gested by the Matlab script listed below. Once u[0] = A−1r is obtained,
u[1](x, z) in either continuous or discrete form easily follows. The solution
so obtained is displayed in Figs. (7.2) - (7.4). What is distinctive about
the solution is the fact that, despite ε << 1, the velocity field has appre-
ciable vertical structure over the location where β(x) is maximum. The
vertically averaged horizontal velocity and basal velocity both decrease in
the neighborhood of the sticky spot from what their values would be if β = 0
(Fig. 7.3). A surprising result, however, is that the velocity at the surface,
u[0] + εu[1](x, z = 0), shows a “bump” or localized increase over the sticky
spot. As we shall soon see, this bump in surface velocity causes a great
deal of trouble when we attempt to deduce the basal drag from the surface
velocity using only first-order accurate ice-stream flow dynamics.

Script for Second-Order Accurate Ice-Stream Flow

epsilon=0.1;

N=100;

x=linspace(0,1,N);
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z

x=Lx=0

z=0

z=-Z x

u=U du/dx=U/L

sticky spot (Gaussian coefficient of friction)

Z

w=0

stress free

ice flow

Figure 7.1: Simple one-dimensional flow geometry used to depict ice-stream
flow over a basal adhesion commonly referred to as a sticky spot.

0 0.5 1 1.5 2
-1

-0.5

0
depth profiles of horizontal velocity

velocity (nondimensional)

Figure 7.2: Velocity profiles at regular distances along the flow profile. Note
the z-structure generated above the sticky spot.
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0
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x (nondimensional)

horizontal velocities

Figure 7.3: Horizontal velocity plotted as a function of x. Upper most curve
represents the stress-free solution in which β(x) = 0. Second upper most
curve represents the surface velocity accurate to first order. Next curve
represents the depth-averaged velocity. The second-to-last lowest curve rep-
resents the bottom velocity. The bottom curve represents β(x), and is given
(not to scale) for reference. As anticipated, the depth-averaged velocity and
the bottom velocity are both reduced in the region of the sticky spot. The
surface velocity appears to be larger than expected over the region of the
sticky spot.
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Figure 7.4: Longitudinal deviatoric stress, ux, as a function of x (wavy curve).
For reference, the longitudinal deviatoric stress is 1 when the sticky spot is
absent. It is surprising that ux exceeds its basal stress-free counterpart in
some regions.
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dx=1/(N-1);

dampscale=0.15;

beta=2.5*exp( -((x-.5)/dampscale).^ 2);

A=zeros(N,N);

RHS=zeros(N,1);

RHS(1)=1;

RHS(N)=1;

D=zeros(N,1);

A(1,1)=1;

A(N,N)=1/dx;

A(N,N-1)=-1/dx;

for n=2:N-1

D(n)= 1/2/(1+33/32 beta ^ 2 * epsilon);

A(n,n)=-2/dx^ 2-D(n);

A(n,n-1)=1/dx^ 2;

A(n,n+1)=1/dx^ 2;

end

As=sparse(A);

u=As\RHS;

tau=2*D.*u;

c=7/32*tau;

ubasal=u+epsilon*c-5/4*epsilon*tau;

usurf=u+epsilon*c;

uprofile=zeros(N,N);
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z=[linspace(0,-1,N)]’;

for n=1:N

uprofile(:,n)=u(n)+epsilon*(tau(n)/2*(z-3/2*z.^ 2) + c(n));

end

ubar=u+epsilon*(c-tau/2);

hold off

clg

axis([0 2.0 -1 0])

hold on

for n=1:5:N

plot(uprofile(:,n),z)

end

uslope=ones(N,1);

ufreeslope=ones(N,1);

deltaslope=zeros(N,1);

for n=2:N-1

uslope(n)=(usurf(n+1)-usurf(n-1))/(2*dx);

ufreeslope(n)=(ufree(n+1)-ufree(n-1))/(2*dx);

end

deltaslope=uslope-ufreeslope;

7.6 Inversion of Surface-Velocity Data

At this stage, having developed the above solution, we are ready to consider
the question which originally motivated our interest in ice-stream flow over
a sticky spot: If given surface velocity observations ud(x), what is the cor-
responding basal drag τ? We shall answer this question using two separate
approaches to attempt a diagnosis of what is at the root of Whillans’ and
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Van der Veen’s (1993) negative basal drag result. The first method will be to
mimic the approach used by Whillans and Van der Veen in their analysis of
ice stream B, Antarctica, surface-velocity data. The other approach will be
that recommended by MacAyeal (1993). We shall learn that neither method
is able to accurately resolve the basal drag because of inadequacy in the
assumptions used by each method concerning the need for second-order ac-
curacy in the treatment of the ice-stream flow physics. The strengths of each
method compliment each other, suggesting that both methods have merits
that may recommend one over the other in particular applications.

The two methods are similar in that neither has attempted to break the
second-order accuracy “barrier”. In other words, both methods assume that
the surface velocity is adequately modeled by u[0] without need for u[1]. In
this circumstance, both methods assume that the surface velocity, which we
shall describe using a separate variable um(x) (“m” for model), satisfies the
following flawed description of ice-stream flow dynamics:

2umxx − τ = 0 (7.96)

subject to the boundary conditions that um(0) = ud(0) and um(1) = ud(1).
Equation (7.96) should be contrasted with Eqn. (7.93) to see the difference
between first-order accurate and second-order accurate flow dynamics.

The two methods differ, however in one key respect. In Whillans’ and
Van der Veen’s (1993) method (which is described in detail in Van der Veen
and Whillans (1989)), the basal drag τ (x) is allowed to be an arbitrary, and
possibly negative, function of x. In MacAyeal’s (1993) method, the basal
drag is represented by a function that excludes the possibility of negative
drag, i.e., τ(x) = β2

m(x)um(x).

Whillans’ and Van der Veen’s Method

The basal drag τWV dV deduced using Whillans’ and Van der Veen’s (1993)
method is found by simply substituting ud(x) into Eqn. (7.96). The result
is shown in Fig. (7.5). The distinctive pattern of negative-positive-negative
basal drag over the sticky spot is reminiscent of the pattern of basal drag
deduced using data from ice stream B.
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Figure 7.5: The basal drag τwvdv deduced using the Whillans and Van der
Veen (1993) method with pseudo data ud(x) = u[0](x) + εu[1](x, z = 0). Note
that τwvdv is negative on either side of the sticky spot. This negative basal
drag is caused by the fact that first-order accurate physics cannot produce
the “bump” in surface velocity over the sticky spot associated with second-
order accurate physics without appeal to the power of an unphysical negative
basal drag.
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7.6.1 MacAyeal Method

The MacAyeal (1993) method works by attempting to minimize the following
least square measure of model/data misfit:

J =

1∫

0

1

2

(
um(x)− ud(x)

)2
dx +

1∫

0

λ(x)
(
2umxx − β2

mu
m

)
dx (7.97)

where λ(x) is a Lagrange undetermined multiplier function who’s purpose is
to enforce the first-order physics as a constraint. The result of minimizing
J is shown in Fig. (7.6). The MacAyeal method does not suffer from the
negative basal drag problems of the Whillans and Van der Veen method;
however, the MacAyeal method has problems of its own. First, the modelled
velocity um does not exactly match the data ud. Second, the inferred basal
drag is low by as much as 50%. In some applications, this defect might be
as bad as the negative basal drag deduced using the other method.

The Matlab script used to generate the basal drag by the MacAyeal
method is listed below. For a detailed description of the method, consult the
paper by MacAyeal (1993).

% This program does the inverse problem using

% the flawed assumption that zero-order

% physics only is adequate to invert a first-order accurate surface

velocity.

N=100;

x=linspace(0,1,N);

dx=1/(N-1);

lambda=zeros(N,1);

uinf=zeros(N,1);

dampscale=0.15;

betaO=2.5*exp( -((x’-.5)/dampscale).^ 2);

betatrue=2.5*exp( -((x’-.5)/dampscale).^ 2)

beta0(1)=0;

beta0(N)=0;
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Figure 7.6: The basal drag τm (upper panel) deduced using the MacAyeal
(1993) method with pseudo data ud(x) = u[0](x) + εu[1](x, z = 0). Note that
τm has the proper shape of the sticky spot, but falls short in magnitude.
This problem with the magnitude is caused by the fact that first-order accu-
rate physics cannot produce the “bump” in surface velocity over the sticky
spot associated with second-order accurate physics. The lower panel shows
the mismatch between um and ud, which is impossible to eliminate without
appeal to second-order accurate flow dynamics.
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A=zeros(N,N);

R=zeros(N,1);

R(1)=1;

R(N)=1;

A(1,1)=1;

A(N,N)=1;

R(N)=usurf(N);

for n=2:N-1

A(n,n)=-4/dx^ 2;

A(n,n-1)=2/dx^ 2;

A(n,n+1)=2/dx^ 2; end

A=sparse(A);

global A R lambda uinf usurf betatrial

options=foptions;

initialJ=J(betaO);

options(9)=0;

options(1)=1;

options(3)=1.e-2;

options(2)=1.e-2;

beta=fminu(’J’,betaO,options,’grad’);

plot(x,beta.^ 2)

function [j] = J(trial)

global A R lambda uinf usurf betatrial

[rows cols]=size(trial);
B=spdiags(trial.^ 2,0,rows,rows);

B(1,1)=0;

B(rows,rows)=0;

uinf=(A-B)\R;
j = (uinf-usurf)’*(uinf-usurf);

function [g] = grad(trial)

global A R lambda uinf usurf betatrial
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[rows cols]=size(trial);
B=spdiags(trial.^ 2,0,rows,rows);

B(1,1)=0;

B(rows,rows)=0;

uinf=(A-B)\R;
rhs=-2*(uinf-usurf);

lambda=(A’-B’)\rhs;
g = -2*lambda.*trial.*uinf;

g(1)=0;

g(rows)=0;

7.7 Conclusion

We have learned two important lessons as a result of our consideration of
the idealized flow over a sticky spot. The first lesson is that the second-
order physics which pertain to vertical shear of the horizontal velocity can
generate structure in the surface velocity field that is incompatible with first-
order physics. The incompatible structure found in the example considered
was a small “bump” of increased velocity over the sticky spot. The second
lesson is that inverse methods which make use of first-order physics only
suffer serious defects in the basal drag that they infer from surface velocity
data. These defects can lead to the kinds of problems noticed by Whillans
and Van der Veen (1993) in their analysis of ice stream B data.
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Chapter 8

EISMINT Summer-School
Lesson: Temperature Profiles
Associated with a
Heinrich-event

One of the most difficult problems in ice-sheet modelling is that of coupling
of ice-sheet flow dynamics with ice-sheet and basal thermodynamics. In
this lesson we shall investigate the simplest, most basic aspects of ice-sheet
thermodynamics with an eye toward understanding the numerical methods
that have been applied to advective-diffusion type equations. The problem
we shall use to illustrate these basic aspects comes from questions which arise
in the study of a phenomenon called a Heinrich Event.

Heinrich Events are the great iceberg discharges into the North Atlantic
which occurred every 7000-12000 years during the last glacial. These iceberg
discharges are revealed to us through the discovery of sharply defined IRD
layers in the North Atlantic sediments. The rock debris in these layers (called
Heinrich Layers after their discoverer, Hartmut Heinrich of Germany) bears
the fingerprint of Hudson Bay (detrital carbonate of Paleozoic age, lead-
isotope ages associated with Churchill and Superior terrains). The prevailing
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thought on the origin of Heinrich Events–or at lest the thought that has
prevailed in this author’s mind–is that they represent the product of great
surges of the Hudson Strait ice stream which drained a large portion of the
interior of the Laurentide Ice Sheet as shown in Fig. (8.1).

For an ice-stream surge to create an armada of debris-bearing icebergs,
dirty basal ice must be frozen on to the bottom of ice columns traveling
down the ice stream before they come afloat as icebergs. An ice-stream
surge provides a plausible mechanism to accomplish this task. Initially, as
the surge starts up, ice flow is very fast, basal friction is high, and basal
melting rates are expected to be astronomical (modelling suggests that order
10’s of meters of basal melting per year is possible). A few decades to a
century of such strong basal melting preconditions the ice columns which
have yet to be discharged through the mouth of the ice stream for strong
basal freezing. In essence, the warmest ice is melted off the bottom of the ice
columns, leaving behind very cold basal ice that possesses the temperature
normally found high-up in the ice column. During the late stages of the surge,
these preconditioned ice columns accrete debris-bearing ice that was stored
as water in a basal till layer. Eventually, the debris-bearing ice columns are
calved as icebergs into the North Atlantic where they capsize and drift with
the prevailing wind and current toward the Mid North Atlantic IRD belt.

The problem we shall consider in this Lesson is based on an idealized
notion of the history of an ice column moving down the Hudson Strait ice
stream. Initially, the column will be subject to strong thinning rates (as the
ice stream spreads horizontally in the same depth-independent manner as an
ice shelf) and strong basal melting. After about 100 years (the estimated
e-folding time-scale of an ice stream surge), the strong basal melting, which
was previously prescribed, will be converted over to basal freezing for another
100 years. The basal freezing rate will be a function of the vertical heat flux,
and hence the temperature gradient, at the bottom of the ice column.

While strongly simplified, this problem provides a sense of what is in-
volved in Heinrich-event dynamics. In our effort to understand this problem,
we shall learn about techniques for simulating (using finite-difference meth-
ods) the advective-diffusion equation which governs vertical heat transport in
an ice sheet. We will learn about numerical instability, upwind differencing,
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and the advantages of matched asymptotic expansions.

8.1 A Hudson Strait Ice-Column Thermody-

namics Problem

Problem: Consider an ice-column that follows the central flowline down the
Hudson Strait (Fig. 8.1). Determine the temperature-depth profile T (z, t)
of the ice column for the time period t ∈ [0, 200] a. Assume that T (z, t) is
governed by the following equation and boundary conditions:

∂T

∂t
+ w(z, t)

∂T

∂z
= κ

∂2T

∂z2
0 < z < h(t) (8.1)

T (z = h(t), t) = Θ (8.2)

T (z = 0, t) = 0 (8.3)

T (z, t = 0) =
zΘ

h(t = 0)
(8.4)

with ice diffusivity κ = 1.4 × 10−6 m2s−1, constant surface temperature
Θ = −30 C, linearly varying vertical velocity w(z) = ḃ − ėz, basal freez-
ing rate ḃ (positive for freezing), ice thickness h(t), constant longitudinal
strain rate ė, time t, and vertical coordinate z (z = 0 at the ice/bed inter-
face, and z = h(t) at the upper free surface). A number of simplifications are
expressed above. First, the surface temperature is assumed constant with
time. This simplification ignores the surface-temperature change associated
with changing surface elevation of the ice column. Second, thermal diffusiv-
ity (and other thermal parameters) are independent of temperature and z.
Third, the basal temperature is constrained at 0 C, not the pressure-melting
point (which varies by up to a degree). Finally, the initial temperature pro-
file is assumed linear. In nature, it is highly improbable that such a linear
temperature profile could be constructed during the slow growth of the ice
cover above Hudson Strait. Horizontal variation in T is not considered in
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Figure 8.1: Map of the North Atlantic region effected by Heinrich Events.
The line indicated in Hudson Strait suggests a possible path an ice column
might slide along during a surge of the Hudson Strait ice stream. Our task
in this Lesson is to predict the temperature depth profile of this ice column
as it proceeds down the path toward the iceberg calving front.
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this problem because of the smallness of horizontal conduction and the fact
that the problem “follows” the ice column in the Lagrangian sense as it flows
down the ice stream.

The ice-stream surge influences the ice-column temperature profile through
two effects: basal freezing and longitudinal spreading (and hence thinning of
the ice column). Basal freezing is divided arbitrarily into two time regimes.
First a massive melting regime lasts for approximately 100 a. This melting
period begins with a bang (-10 m a−1), but diminishes with time as the surge
progresses. After the melting period, the basal freezing rate is determined
by the vertical heat flux through the ice column. During the initial melting
stage, the effects of vertical heat flux through the ice and geothermal flux are
ignored. The effects of geothermal flux and frictional dissipation are ignored
during the second stage. With these assumptions, ḃ(t) becomes

ḃ =





ḃoe
−t
τ if 0 ≤ t < to

−k
ρL

∂T
∂z
|z=0 if t ≥ to

(8.5)

where the thermal conductivity k = 2 W m−1 C−1, ice density ρ = 917 kg
m−3, ice-stream surge time scale τ = 100 a, ḃo = −10 m a−1, the latent heat
of fusion L = 3.35 × 105 J kg−1, and the switch-over time from melting to
freezing is to = 100a. The longitudinal spreading rate ė is taken to be an
exponential function of time, as is suggested by finite-element models of a
Hudson Strait surge:

ė = ėoe
−t
τ (8.6)

where ėo = 1
100 a−1. With these definitions, the equation of evolution for the

ice thickness h is
∂h

∂t
= ḃ− ėh (8.7)
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8.1.1 Nondimensional form of the governing equations

To simplify the problem, we adopt dimensionless variables according to the
following prescriptions:

t → [L]

[U ]
t

T → [Θ]T

w → [Z ][U ]

[L]
w

z → [Z ]z

h → [Z ]h

ḃ → [Z ][U ]

[L]
ḃ

ė → [U ]

[L]
ė (8.8)

where the scales are defined by

[L] = 105 m

[U ] = 50× 103 m a−1

[Z ] = 2500 m

[Θ] = 30 C (8.9)

Of course, the units of time are converted from years to seconds throughout.
The above choice of scales is designed to represent the idea that changes to
the ice column are primarily determined by the flow of the ice stream rather
than by other thermal effects.
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8.1.2 Stretched vertical coordinate

We further simplify the problem by adopting a vertical coordinate that al-
lows the ice column to have fixed end points through time: ζ = z

h
. With

this coordinate, and the dimensionless variables defined above, the governing
equations to the problem become:

Tt +
ḃ(1− ζ)

h
Tζ =

1

εh2
Tζζ

T (ζ = 1, t) = −1

T (ζ = 0, t) = 0

T (ζ, t = 0) = −ζ (8.10)

with

ht = ḃ− ėh

ė = ėoe
−t
τ (8.11)

ḃ =





ḃoe
−t
τ if 0 ≤ t < to

[U ]
[L]

(
k[θ][L]

[Z]2ρL[U ]

)
−1
h
Tζ |ζ=0 if t ≥ to

[U ]
[L]

(8.12)

and where the Peclet number (measuring the importance of advection relative
to diffusion) ε is given by

ε =
[Z]2[U ]

[L]κ
(8.13)

In the above equations, I have chosen to denote partial differentiation by
using a subscript t or ζ.

A crucial point to make at this stage is that ε = 7.07×104 >> 1. We will
learn later how to take advantage of this fact to simplify the computation
of the temperature-depth profile by eliminating the diffusion term in all but
the most crucial parts of the ice column (i.e., by making a boundary-layer
approximation).
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8.2 Explicit Solution

We shall begin our solution of the problem by first examining a simpler
problem: one in which the advection term of Eqn. (8.42) is absent and in
which h = 1 is kept constant through time. In other words, we take ḃ = 0.
With this simplification, we will learn about explicit and implicit methods
for solving diffusive problems. We shall learn about numerical stability and
about the effects of diffusion on temperature perturbations in the ice column’s
initial temperature profile. We will postpone for now the effort to actually
predict T (ζ, t) for the Hudson Strait ice stream.

To solve the heat diffusion equation (Eqn. 8.42 with ḃ = 0), we create a
grid (linear sequence) of finite-difference grid points with a regular spacing
on ζ ∈ [0, 1]. An irregular spacing is possible, and perhaps advantageous in
many ways, but will not be investigated here. The location of the grid points
is denoted by

ζk = (k − 1)∆ζ (8.14)

with

∆ζ =
1

kmax − 1
(8.15)

where kmax is the number of grid points, and ζk is the location of the kth grid
point. The temperature at each grid point is denoted by Tk, thus derivatives
of T with respect to ζ can be formulated in the following way:

Tζ |ζk+∆ζ
2
→ Tk+1 − Tk

∆ζ
(8.16)

Tζ |ζk−∆ζ
2
→ Tk − Tk−1

∆ζ
(8.17)

Tζ |ζk →
Tk+1 − Tk−1

2∆ζ
(8.18)

and,

Tζζ |ζk →
Tk+1 + Tk−1 − 2Tk

∆ζ2
(8.19)
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The diffusion equation is also time dependent. We thus break time up
into discrete timesteps as we broke space into discrete grid points:

tn = n∆t (8.20)

with
T n
k = Tk(tn) (8.21)

The time derivative of T is thus

Tt|t=tn+∆t
2
→ T n+1

k − T n
k

∆t
(8.22)

8.2.1 Part A. The CFL stability criterion

The finite difference version of the pure diffusion equation (ḃ = 0) can be
written in several ways depending on where the Tζζ term is evaluated in
time. If it is evaluated at the nth time step, the finite-difference scheme is
said to be explicit:

explicit

T n+1
k

∆t
− T n

k

∆t
=

ε−1

∆ζ2

(
T n
k+1 + T n

k−1 − 2T n
k

)
k = 2, . . . , (kmax − 1)

T n+1
1 = −1

T n+1
o = 0

(8.23)

If Tζζ is evaluated at the n + 1 time step, the finite difference scheme is
said to be implicit:
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implicit

T n+1
k

∆t
− T n

k

∆t
=

ε−1

∆ζ2

(
T n+1
k+1 + T n+1

k−1 − 2T n+1
k

)
k = 2, . . . , (kmax − 1)

T n+1
1 = −1

T n+1
o = 0

(8.24)

The Tζζ term can be evaluated at an arbitrary time between the nth and
the n + 1 time step:

variable

T n+1
k

∆t
− T n

k

∆t
=

ε−1

∆ζ2

[
α

(
T n
k+1 + T n

k−1 − 2T n
k

)
+ (1− α)

(
T n+1
k+1 + T n+1

k−1 − 2T n+1
k

)]
k =

T n+1
1 = −1

T n+1
o = 0

(8.25)

where α ∈ [0, 1] is the mixing parameter.

When α = 1/2, the scheme is called Crank-Nicholson, and is the most ac-
curate of the three schemes outlined above. The implicit scheme is generally
the most stable scheme (stable in the sense that it avoids unbounded growth
of grid point oscillations), and the explicit scheme is generally the fastest to
execute on the computer because it does not involve matrix factorization.

Let’s begin with the explicit scheme, which is written with all knowns on
the right-hand side in the following way:

Tn+1
k = T n

k +

[
∆t

ε∆ζ2

] (
T n
k+1 + T n

k−1 − 2T n
k

)
(8.26)
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This equation is sometimes referred to as an iterated map. Let’s define the
quantity

[
∆t
ε∆ζ2

]
as the Courant number C after the famous applied mathe-

matician who wrote the famous text on mathematical physics with coauthor
Hilbert.

Exercise: explicit solution with Scripts 1-3

Create several Matlab scripts to determine the evolution of T for a variety
of C-values (select values ranging from 0.1 to 10) in the semi-infinite time
interval t→∞, and with an initial condition

T 1
k =





−ζk if k 6= kmax
2

−2 if k = kmax
2

(8.27)

To help get this exercise started, I have created Matlab Scripts 1 - 3
which are included on diskette. Script 1 is a statement of the scales used
in nondimensionalization, and Script 2 is a “dumb person’s” version of the
explicit scheme. Script 3 presents an improved version of Script 2 which
makes use of the elegant vectorization capability of Matlab . Notice in this
exercise how the solution shifts from being stable to being unstable when a
critical value of C is exceeded. What is this critical value? Can you show
analytically why this critical value arises?

Exercise: implicit solution with Script 9

Perform the same analysis of the evolution of T as a function of C over a
range of C-values using an implicit scheme. Script 9 is provided as a guide.
Are there stability problems with the implicit scheme that arise at certain
threshold values of C?

A crucial convenience in the set-up of an implicit time-stepping solution
is it’s matrix formulation:

ATn+1 = Tn (8.28)
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where

Tm =




Tm
1

Tm
2
...

Tm
kmax−1

Tm
kmax




(8.29)

m = n + 1, n, and

A =




1 0

. . . −C 1 + 2C −C . . .

0 1




(8.30)

The solution of Eqn. (8.28) involves either Cholesky factorization (for
symmetric, positive definite A, or LU factorization (if A is not symmetric
or positive definite), followed by back-substitution. These steps can involve
a large number of floating point operations and memory storage. The tri-
diagonality of A provides a means to use sparse-matrix algebra (such as is
implemented in Matlab ) to reduce the CPU and memory costs of the
implicit scheme. (An illustration of this: For kmax = 100, it took 5,313,000
flops to LU decompose A using full-matrix algebra, but only 198,404 flops to
do it with Matlab ’s sparse-matrix algebra.) In the case of this particular
exercise, the matrix A does not change with time (this is not true when ḃ is a
function of t). In this circumstance A need only be factored once, the factors
saved, and back-substitution only is required to perform the time stepping.
The implicit scheme thus becomes CPU cost efficient relative to the explicit
scheme.

8.2.2 Part B. Upwind differencing.

In the previous section, we investigated the merits of explicit and implicit
time-stepping schemes for dealing with the diffusion-only part of the heat
equation. Next we shall investigate the merits of centered, downwind, and
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upwind differencing in dealing with the advection-only part of the heat equa-
tion.

For this investigation, we shall take ḃ < 0 constant in time and set ε →
∞ to eliminate the diffusion term from Eqn. (8.42). As before, we shall
take h = 1 as constant in time. The finite-difference forms of the centered,
downwind and upwind versions of the (explicit time-stepping) advection-only
heat equation, respectively, are:

T n+1
k = T n

k − B(1− ζk)
(
T n
k+1 − T n

k−1

)

T n+1
k = T n

k − 2B(1 − ζk)
(
T n
k − T n

k−1

)

T n+1
k = T n

k − 2B(1 − ζk)
(
T n
k+1 − T n

k

)
(8.31)

where B =
∆tḃ

2h∆ζ
is the Burger’s number. Note that our choice of ḃ < 0 (basal

melting) determines the “windedness” of the advection operator. Upwind is
the direction toward greater ζ (toward the top of the ice column) because
basal melting causes material ice reference points to move downward. Also
observe, for future reference, that

B = C

[
ḃε∆ζ

2h

]
(8.32)

The order of the differential equation has changed from 2 to 1 (second-
order to first-order) in taking ε→∞, this necessitates an examination of the
boundary conditions. The upper (surface) boundary at ζ = 1 for ḃ < 0 is an
“inflow” boundary, and the lower (basal) boundary is an “outflow” boundary.
The upper boundary actually has zero vertical velocity because snow accu-
mulation is not specified; but this boundary is treated in the same manner
as an inflow boundary. Only boundary conditions at inflow boundaries are
possible to specify, thus we require Tkmax = −1 at ζ = 1. At ζ = 0 we do not
specify a boundary condition (we are forbidden to do so by the first-order
nature of the idealized governing equation). The upwind finite-differencing
scheme will work as is at the basal boundary, but the centered and down-
wind schemes won’t because the temperature at gridpoint 0 (ζ0 = −∆ζ)
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does not exist. For simplicity, we shall use the upwind scheme to predict the
temperature at the base in both centered and downwind schemes:

T n+1
1 = −2B

T n
2 − T n

1

∆ζ
(8.33)

Exercise. Explicit solutions

Using vectorized Matlab algebra, determine the evolution of T for a variety
of B-values and each of the above three schemes in the semi-infinite time
interval t→∞, and with an initial condition

T 1
k =





−ζk if k 6= kmax
2

−1 if k = kmax
2

(8.34)

To aid you in your task, I have created Scripts 4-6. Notice the improve-
ment attained by use of the upwinding scheme. Beware, however, when
using upwind differencing. Upwind differencing changes the finite-difference
operator to one which formally includes diffusion with a diffusivity of ∆ζ

2
:

Tk+1 − Tk
∆ζ

=
Tk+1 − Tk−1

2∆ζ
+

∆ζ

2

Tk+1 + Tk−1 − 2Tk
∆ζ2

(8.35)

In other words, the upwind finite-differencing scheme is exactly equivalent to
the sum of a centered finite-differencing scheme to which has been added a
diffusion term with diffusivity that depends on the grid spacing ∆ζ.

Exercise. Implicit solutions

Perform the same exercise as that described above, but with implicit time-
stepping. In other words, solve

ATn+1 = Tn (8.36)
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where,

A =




1− 2B 2B
. . . −B(1 − ζk) 1 B(1− ζk) . . .

0 1


 (8.37)

for the centered scheme,

A =




1− 2B 2B
. . . −2B(1− ζk) 1 + 2B(1 − ζk) 0 . . .

0 1


 (8.38)

for the downwind scheme, and

A =




1 − 2B 2B
. . . 0 1− 2B(1− ζk) 2B(1 − ζk) . . .

0 1


 (8.39)

for the upwind scheme.

Pay particular attention to whether adoption of the implicit scheme per-
mits any advantages that were unavailable in any or all of the explicit schemes
explored in the previous exercise. Also note that the matrix A is no longer
symmetric and positive definite. The efficient Cholesky factorization routine
must, in this circumstance, be replaced by the LU factorization scheme.

Scripts 7 and 8 are provided to help you solve this exercise.

8.3 Solution of the Hudson Strait Ice Column

Thermodynamics Problem

Having explored the methods for dealing with advective-diffusion (heat type)
equations above, we now turn to the solution of the problem described in sec-
tion (8.1). We will solve this problem with the best of the above explored
schemes (i.e., upwind differencing of the advection term, implicit timestep-
ping, with sparse matrix algebra). So, the Matlab script we need to ac-
complish this task must solve the equation:

ATn+1 = Tn (8.40)
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for time steps n = 1, . . . , N where N is the number of time steps that must
be taken to cover 200-years of thermal evolution. During this evolution, as
stated in section (8.1), the basal freezing rate shifts from melting to freezing
at t = 100 a. In addition to computing T, we shall keep track of the thickness
d of debris-bearing regelation ice (ice that has frozen onto the bottom of
the ice column during the freeze phase of its thermal evolution) using the
equation:

dt =

{
ḃ− ėd if ḃ > 0 or d > 0
0 if d = 0 and ḃ ≤ 0

(8.41)

Script 15, included on diskette, is the Matlab script I created to simulate
the thermal behavior of the Hudson Strait ice column. The evolution of h,
ḃ, d and T as a function of t is displayed in Figs. (8.3) and (8.2). Note that
the evolution of h is accounted for in the construction of A.

8.4 Asymptotic Analysis

Having completed the main task of this chapter, computing the thermal
evolution of a Hudson Strait ice column, let’s now investigate whether any
portions of the computing task could have been done more easily (less com-
putation) by first thinking through the problem more carefully. The problem
in dimensionless form has a small parameter, ε−1. Let’s see if we can exploit
this fact to simplify the problem.

Zero-order problem

To lowest order in ε−1, the ice-column heat transfer problem has no diffusion
term:

T
[0]
t +

ḃ(1− ζ)

h
T

[0]
ζ = 0

T [0](ζ = 1, t) = −1
or
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Figure 8.2: Thermal evolution of the Hudson-Strait ice column as function
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T [0](ζ = 0, t) = 0
and

T [0](ζ, t = 0) = T (ζ) = −ζ (8.42)

This heat transfer problem is first-order in both ζ and t, thus we can an-
ticipate being able to satisfy only one of the boundary conditions with T [0]

and relying on a boundary layer solution θ(ζ, t) to satisfy the other. The
boundary condition we will satisfy during the period of evolution prior to
the basal melting to basal freezing transition, i.e., t < to, is the one at the
surface. The bottom boundary during this period of initial melting is an
outflow boundary, so the constraint T [0](ζ = 0) = 0 is impossible to satisfy
without diffusion.

Zero-order solution

The solution to the above problem is readily obtained via the method of
characteristics. Essentially, the temperature of each material ice parcel is
unchanged through the evolution of the ice column, because the time scale
of the evolution is short compared to the time scale for thermal diffusion.
The temperature-depth profile of the ice column is thus simply the initial
temperature profile of the ice column over the portion of the initial ice column
that hasn’t yet melted off:

T [0](ζ, t) = T (ζb + (1− ζb)ζ) (8.43)

where ζb(t) is the value of ζ ∈ [0, 1] that the ice parcel at the ice/bed interface
at t > 0 had at the initial time t = 0. This variable, ζb(t), is determined
by the following evolution equation which tracks the location of the ice/bed
interface as it melts its way up through the ice column:

ζ̇b =
−ḃh(t = 0)

hs(t)
=

−ḃ
hs(t)

(8.44)

since h(t = 0) = 1, and where hs is the (dimensionless) ice thickness that
would exist if ḃ = 0:

ḣs = −ėhs (8.45)
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The purpose of the h(t=0)
hs(t)

in the above equations is to normalize ḃ according
to how melting would effect the initial ice column after it has thinned by
strain for a period of time.

Boundary layer

The above zero-order solution meets the initial condition and the boundary
condition at ζ = 1. To meet the boundary condition at ζ = 0, a boundary
layer solution must be added:

T (ζ, t) ≈ T [0](ζ, t) + θ(η, t) (8.46)

where the boundary-layer coordinate η is defined by

η = εαζ (8.47)

and α is an, as yet, unchosen parameter. Substitution of θ into the heat
equation, and use of the relations

∂

∂ζ
→ εα

∂

∂η

∂2

∂ζ2
→ ε2α

∂2

∂η2
(8.48)

gives

θt +
ḃ(1 − ε−α)

h
εαθη = ε2α−1θηη (8.49)

If we choose α = 1, and we retain only the lowest order terms, the above
equation simplifies to

ḃ

h
θη = θηη (8.50)

The domain over which Eqn. (8.49) is solved is 0 ≤ η → ∞ because
η →∞ as ζ → 1. The boundary conditions on Eqn. (8.49) are

θ(η = 0, t) = −T (ζb(t))

θ(η →∞, t) = 0 (8.51)

An initial condition is not needed because Eqn. (8.49) is not time dependent.
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Boundary layer solution

The solution to the boundary layer problem is readily found by integrating
Eqn. (8.49) twice with respect to η and applying the boundary conditions
to resolve undetermined integration constants:

θ(η, t) = −T (ζb(t))e

−ḃη
h (8.52)

Full solution

The full solution is

T (ζ, t) ≈ T (ζb + (1− ζb)ζ)− T (ζb(t))e

−ḃεζ
h (8.53)

What is interesting and possibly useful about this solution, and about the
asymptotic approach itself, is the fact that the above solution can be arrived
at by solving only two ordinary differential equations for the unknown scalar
ζb:

ζ̇b =
−ḃh(t = 0)

hs(t)
=

−ḃ
hs(t)

(8.54)

and
ḣs = −ėhs (8.55)

Solving the above two ordinary differential equations for the scalars ζb and hs
requires a great deal less computational effort than required to solve the heat
equation with a finite-difference method for the unknown function T (ζ, t).

8.4.1 Exercise: Comparison between finite-difference

and asymptotic methods

Compute and compare T (ζ, t = to) for the Hudson Strait ice column using
two methods (one finite difference and one asymptotic). Which method is
most accurate? Which method is most cost efficient?
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Scripts 13 and 14 were used to perform this exercise in Chicago. The
finite-difference method (using sparse matrix algebra, upwind differencing
and an implicit time step with C = 1) took 19,758 floating-point operations to
achieve. In comparison, the asymptotic method required 1,417 floating-point
operations to achieve the same result. A comparison of the two solutions is
provided in Figure (8.4).

8.4.2 Exercise: Asymptotic solution for t > to

See if you can develop an asymptotic solution for the period of evolution
when the ice column experiences basal freezing.

8.5 Wrap-up

In this chapter, we have investigated a very simple ice-sheet thermodynamic
problem which has a relatively speculative application (Heinrich Events).
This investigation has offered us the opportunity to learn about several nu-
merical methods, algebraic short cuts and asymptotic analysis.
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Chapter 9

Ice Sheet Thermodynamics:
3-D Modelling Techniques

The temperature field is perhaps the single most influential variable on ice-
sheet behavior. When ice is warm, it is less viscous; thus, strain heating near
an ice-sheet bed can have an important impact on shear deformation. For ice
shelves, where the depth-averaged temperature determines the strain rates,
basal melting and freezing can have a significant impact on apparent ice-shelf
viscosity. Perhaps the single most important influence of the temperature on
ice-sheet motion is basal melting. When grounded ice has a melted bed, it is
subject to several types of fast-flow processes. The most significant of these
involves the combination of sliding and subglacial sediment deformation.

The modelling of ice-sheet temperature has a rich history (perhaps the
richest of all modelling histories in glaciology). Early interests were in deter-
mining the temperature-depth profile of various drill sites around Antarctica
and Greenland (e.g., Robin, 1954). In the late 1970’s and through the 1980’s,
several modelling milestones were passed with the construction of fully cou-
pled dynamic (ice-motion) thermodynamic (ice-heat flow and water content)
models to address “whole ice sheet” modelling problems. Examples of these
milestone models are Huybrechts (1992) and Greve (1995).

In this chapter, we will construct a dynamic/thermodynamic ice-sheet
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model to complete the EISMINT Level 1 intercomparison test (only the fixed
margin test will be presented here, others will be left as exercises). This
model will be based on the finite-element method. The dynamic (ice flow)
component of the model will involve the same physics as that constructed
in Chapter 2. Details of the finite-element model, in particular the order
of the interpolation of the ice-thickness field within each triangular element,
will be different to accomodate computation of the vertical ice velocity. The
thermodynamic portion of the model will be new. The most important of
the many caveats to be noted in this chapter is that we shall not allow ice to
be polythermal (i.e., have both temperate and frozen regions). Analysis of
polythermal ice-sheet thermodynamics is significantly more complex than the
scope of the present chapter allows. For a tutorial on polythermal ice-sheet
modelling, consult Greve (1995).

9.1 Ice-Sheet Flow Equations

The equations which govern the horizontal and vertical velocity fields in a
simple ice sheet (following Greve, 1995) are:

u(z) = −ρg(s− b)C(T )
∂s

∂x
− 2ρg

∂s

∂x
I(z) (9.1)

v(z) = −ρg(s− b)C(T )
∂s

∂y
− 2ρg

∂s

∂y
I(z) (9.2)

w(z) = −
∫ z

b

(
∂u

∂x
+
∂v

∂y

)
dz′ +

∂b

∂t
+ u(b)

∂b

∂x
+ v(b)

∂b

∂y
− Ḃ (9.3)

where x and y are horizontal coordinates, z is the vertical coordinate (positive
up), u and v are the x and y velocity components, respectively, w is the
vertical velocity, s and b are the surface and basal elevation, respectively, ρ
is the ice density (assumed to be constant, 910 kg m−3), g is the acceleration
of gravity (9.81 m s2), and Ḃ is the basal melting rate (positive for melting,
negative for freezing, in meters of ice equivalent per second). The basal
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sliding constant C(T ) is assumed to be nonzero when the basal temperature
T (b) is at the pressure-melting point (Payne, 1995):

C(T ) =





5× 10−3 m a−1 Pa−1 if T (b) = Tm

0 if T (b) < Tm

(9.4)

The variable T (x, y, z, t) is the temperature, and Tm is the z-dependent melt-
ing point,

Tm(z) = To − ρg(s− z)Φ (9.5)

where Φ = 8.71×10−4 K Pa−1 (Payne, 1995), and To = 273.15 K. The factor
I(z) determines the deformational velocity of the ice flow, and for Glen’s flow
law (with exponent 3) is defined by

I(z) =
∫ z

b
EA(T ∗)(ρg)2 (∇s · ∇s) (s− z′)

3
dz′ (9.6)

The rate-enhancement factor E is essentially a fudge factor designed to ac-
count for empirically determined inadequacies of Glen’s law. The value of E
is commonly taken to be 1 for “Holocene ice” and 3 for “glacial-period ice”,
for example, in modelling studies of the Greenland ice sheet. The creep-rate
factor A(T ∗) is assumed to have a standard thermodynamic form involving
a rate constant factor a and an activation energy Q:

A(T ∗) = a exp
( −Q
RT ∗

)
(9.7)

where R = 8.31 J mol−1 K−1 is the gas constant, and the flow-law parame-
ters (determined from laboratory studies of polycrystaline ice assumed to be
isotropic) are commonly taken to be:

a =





7.23 × 10−12 s−1 Pa−3 if T ∗ < 263 K

3.47 × 104 s−1 Pa−3 if T ∗ ≥ 263 K

(9.8)

and

Q =





6.0× 104 J−1 mol−1 if T ∗ < 263 K

13.9× 104 J−1 mol−1 if T ∗ ≥ 263 K

(9.9)
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The temperature in the creep-rate factor formula T ∗ = T−Tm+To is the Ho-
mologous temperature (temperature relative to the pressure melting point)
in degrees Kelvin (note the addition of To).

Justification of Equations (9.1) and (9.2) using the standard shallow-
ice approximation is presented in Hutter (198?). Longitudinal stresses are
eliminated from the diagnostic equations for u and v when the shallow-ice
approximation applies. Note that this approximation produces a set of gov-
erning equations for horizontal velocity that is quite different from those
which govern the same variables on an ice shelf (see Chapter 4).

Mass balance of the ice sheet is expressed by the following equation for
ice thickness h,

∂h

∂t
= −∇ · (q) + Ȧ− Ḃ (9.10)

where q = D∇s is the vector-valued horizontal mass flux integrated over the
ice column, Ḃ is the basal melting rate (positive for melting, negative for
freezing), and Ȧ is the surface snow accumulation rate expressed in meters
of ice equivalent per year. Note that ice densification effects are disregarded.
A common practice is to substitute Equations (9.1) and (9.2) into Equation
(9.10) giving,

∂h

∂t
= ∇ · (D∇s) + Ȧ− Ḃ (9.11)

where the effective diffusivity D is defined by,

D =
∫ s

b
2ρgI(z′)dz′ + ρg(s− b)2C (9.12)

Kinematic boundary conditions on the free surface z = s and basal surface
z = b are recorded for use elsewhere:

∂s

∂t
+ u(s)

∂s

∂x
+ v(s)

∂s

∂y
= w(s) + Ȧ (9.13)

and,

u(b)
∂b

∂x
+ v(b)

∂b

∂y
= w(b) + Ḃ (9.14)

where we have made the assumption that ∂b
∂t

= 0 (no isostatic or bed erosion
effects are included).
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9.2 Ice-Sheet and Bedrock Heat-Flow Equa-

tions

Heat flow continuity in both ice and underlying bedrock is expressed using
the standard advective/diffusive equation with variable heat-flow parameters:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=

1

ρc

∂

∂z

(
k
∂T

∂z

)
+
W

ρc
(9.15)

for x and y within the footprint of the ice sheet, and b < z < s; and

∂T

∂t
=

1

ρrcr

∂

∂z

(
kr
∂T

∂z

)
(9.16)

for x and y below the footprint of the ice sheet (including below portions of
floating ice), and zr ≤ z ≤ b, and where zr is a level at a fixed elevation below
the ice/bedrock interface (or seabed) where the geothermal flux gradient is
applied as a boundary condition (see below). The above equations reflect
the standard assumption that horizontal heat conduction is neglegible in
comparison with horizontal advection, veritcal advection and conduction,
and viscous heat dissipation. The horizontal and vertical velocities referred
to in Equations (9.15) and (9.16) are described by Equations (9.1) - (9.3).

Observe that the vertical gradients of k and kr are acknowledged in the
form of the thermal diffusion in Equations (9.15) and (9.16). The horizontal
gradients of k and kr, and all the spatial gradients of ρc and ρrcr are dis-
regarded. This constitutes a simplification that is used widely in ice-sheet
thermodynamic studies. It’s justification is not provided here (and indeed,
there may be an inconsistency to be corrected in future work). See Greve
[1995] for further discussion of this matter.

Parameters appearing in Equations (9.15) and (9.16) include the thermal
heat capacities for ice and rock, c and cr, respectively:

c = 2115.3 + 7.79293(T − To) (9.17)

cr = 1000 (9.18)
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in units of J kg−1 K−1 (Huybrechts, 1993), and the thermal conductivities
for ice and rock, k and kr, respectively:

k = 3.101× 108 exp (−0.0057T ) (9.19)

kr = 3.3 (9.20)

in units of W m K−1 (Huybrechts, 1993). The density of rock ρr is taken to
be that of typical sedimentary rock of interest below the central portions of
the Laurentide and West Antarctic ice sheets, 2700 kg m−3. The term W in
Eqn. (9.15) is the viscous heating term formally defined by

W =
∑

i

∑

j

ėijT
′
ij (9.21)

where ėij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate, and T ′ij is the deviatoric stress.

According to the common assumptions associated with grounded ice-sheet
stress balance (i.e., neglecting longitudinal stress), W can be written as:

W (z) = (ρg)4 2 (∇s · ∇s)2 (s− z)4 EA(T ∗) (9.22)

Boundary conditions are necessary at the top z = s and bottom z = zr
of the ice/rock column. At the top, a surface temperature (depending on
atmospheric conditions) is specified

T (s) = Ts (9.23)

At the bottom z = zr, well below the ice/bedrock interface, a geothermal
temperature gradient is specified

∂T

∂z
= − Γ

kr
. (9.24)

The geothermal flux Γ is typically taken to be one geophysical heat flow unit
(0.42 W m−2). The value of zr is typically chosen to be a fixed distance
below z = b. A useful consideration for choosing this distance (b − zr) is
the e-folding penetration depth λ for temperature oscillations forced at the
ice/bedrock interface of frequency ω (Carlsaw and Jaeger, 1954):

λ =
(

2κr
ω

) 1
2

(9.25)
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where the thermal diffusivity of bedrock is defined by κr = kr
ρrcr

. For Heinrich-

event frequency oscillations (periodicity of about 10,000 years), the penetra-
tion depth λ is 375 m.

Unless there are inflow boundaries around the horizontal edges of the ice
sheet, thermal boundary conditions are not required around the edges of the
ice sheet. This is because the horizontal mode of heat transfer in an ice sheet
is advection, a process that demands boundary conditions only where ice
flow into the domain.

A material constraint on the ice-sheet thermodynamics is that ice never
warm above the presssure-melting point. When layers of finite thickness
reach the pressure-melting point, the ice sheet is said to become “polyther-
mal” (Hutter, 1982; Hutter, Blatter and Funk, 1988). A review of polyther-
mal ice-sheet modelling is provided by Greve (1995). Polythermal conditions
typically occur as a result of viscous dissipation, which heats the ice column
internally and permits the locus of a temperature maximum (the pressure-
melting point, by definition) to move away from the boundary (a constraint
that is otherwised forced by a consideration similar to the maximum principle
of solutions of Laplace Equation). When ice becomes temperate (at the pres-
sure melting point), its vertical temperature gradient becomes that dictated
by the “Clapyron slope” of water (the change of the melting temperature with
pressure). In this circumstance, the vertical heat flux is fixed (near zero), so
further heat transfer (via internal heating and flux from non-temperate por-
tions of the ice sheet) acts only to modify the liquid water content of the ice.
In the ice-sheet model by Greve (1995), for example, the heat-flow continuity
equation in the temperate ice is replaced with a diffusive-type equation for
water content, and an internal free surface (called the CTS, cold/temperate
ice transition surface) must be monitored through the use of energy flux and
mass flux matching conditions.

In the examples described in this chapter, polythermal ice conditions are
not treated; thus, we shall make a standard (but not necessarily well justified)
assumption that the melting point is achieved only at the ice base. In this
simplification, we augment the heat equation developed above with logical
conditions determining when the basal ice boundary condition is fixed at the
melting point, or when the basal ice temperature (frozen) is allowed to freely
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vary according to the combined ice/bedrock heat equation. When the base is
at the pressure-melting point, we compute a basal melting rate, Ḃ (positive
for melting, meters of ice equivalent per year), to balance the heat budget at
the basal ice interface. We define heat-flux terms Ho and Hi as the outward-
and inward-directed heat fluxes to the interface z = b, rexpectively, by

Ho = −k∂T
∂z
|z=b+ (9.26)

and,

Hi = −kr
∂T

∂z
|z=b− + u(b) · τb +





ρḂ
Lf

if Ḃ < 0

0 otherwise

(9.27)

where τb is the vector-valued basal stress which, in the absence of longitudinal
stress, is−ρgh∇s, and u(b) is the basal sliding velocity (which can be nonzero
when the bed is melted). The dot product u(b) ·τb is assumed positive. With
the above definitions for Ho and Hi, Ḃ is determined by

Ḃ =
Hi −Ho

ρLf
(9.28)

where Lf = 3.35 × 105 J kg−1 is the latent heat of fusion for pure water. In
circumstances, where Ḃ is nonzero, a basal water layer can develop. When
Ḃ > 0 (melting), the presence or absence of basal water does not influence the
thermal evolution of the ice base. When Ḃ < 0 (freezing), a basal water layer
must be present to supply the ice that is accumulated on the base. In this
circumstance, if there is insufficient basal water to supply the required basal
freezing, the base of the ice will freeze to the bed and the basal temperature
will drop below the pressure melting point.

The above expressions describing the basal melting condition are inter-
linked; so, it is not simple to determine when a frozen bed should be converted
to a melted bed, or a melted bed to a frozen bed. In brief, a frozen bed is
melted when the solution of the heat equation dictates that T (b) rise to the
pressure-melting point; and a melted bed will freeze when the vertical heat
flux into the ice is greater than the heat source into the bed by the combi-
nation of (1) conduction from the rock below, (2) heat generation by basal
sliding, and (3) latent heat released by freezing of available water stored in
the bed.
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9.3 Contour-Following Vertical Coordinate

To handle the variable vertical dimension of the ice sheet, a new vertical
coordinate ζ is defined such that ζ = 1 at s(x, y, t) and ζ = 0 at b(x, y, t).
The relation between ζ and z is

ζ =
z − b

s− b
(9.29)

and
z = (s− b)ζ + b (9.30)

In this circumstance, z-derivatives are easily converted to ζ-derivatives:

∂ ·
∂z

=
1

(s− b)

∂ ·
∂ζ

(9.31)

∂2 ·
∂z2

=
1

(s− b)2
∂2 ·
∂ζ2

(9.32)

The conversion of x- y- and t-derivatives evaluated at fixed z to their coun-
terparts evaluated at fixed ζ is somewhat more complicated. Following the
considerations described in the caption to Figure (9.1), the derivative of T
with respect to x on a surface of constant z is

Tx|z=constant = Tx|ζ=constant −
1

h
Tζ

(
ζ
∂s

∂x
+ (1− ζ)

∂b

∂x

)
(9.33)

where subscripts x, z and ζ denote partial derivatives of T , and h = (s− b)
is the ice thickness. The expressions for Ty and Tt are

Ty|z=constant = Ty|ζ=constant −
1

h
Tζ

(
ζ
∂s

∂y
+ (1− ζ)

∂b

∂y

)
(9.34)

and,

Tt|z=constant = Tt|ζ=constant −
1

h
Tζ

(
ζ
∂s

∂t
+ (1− ζ)

∂b

∂t

)
(9.35)
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A

C

B

∆x

∆z

z

x, y, t

Figure 9.1: Points A and B lie on a constant z surface and are spaced horizon-
tally by ∆x. Points A and C lie on a constant ζ surface and are also spaced
horizontally by ∆x. The vertical distance between points C and B, ∆z, is
determined by the variation of s and b with x according to the definition of
ζ in terms of z. The x-derivative of a function f(x) on a constant z-surface

is simply lim∆x→0
f(B)−f(A)

∆x
= lim∆x→0

f(C)−f(A)
∆x

− f(C)−f(B)
∆z

∆z
∆x
|ζ=constant.
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With the above conversion formulae for Tx, Ty, Tz and Tt, we may rewrite
Equation (9.15) as follows:

Tt + uTx + vTy +
w

h
Tζ

−1

h
Tζ

(
uζ

∂s

∂x
+ u(1− ζ)

∂b

∂x
+ vζ

∂s

∂y
+ v(1 − ζ)

∂b

∂y

+ ζ
∂s

∂t
+ (1− ζ)

∂b

∂t

)
(9.36)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

Observe that
∂s

∂t
+ u

∂s

∂x
+ v

∂s

∂y
= w(s) + Ȧ (9.37)

and,
∂b

∂t
+ u

∂b

∂x
+ v

∂b

∂y
= w(b) + Ḃ (9.38)

Substitution of the above equations into Equation (9.36) gives,

Tt + uTx + vTy

+
1

h
Tζ

(
w(z)− ζ

(
w(s) + Ȧ

)
− (1− ζ)

(
w(b) + Ḃ

))
(9.39)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

This equation may be rewriten as follows:

Tt + uTx + vTy

+
1

h
Tζ

(
w(z)− w(b)− ζ (w(s)− w(b)) − ζȦ− (1− ζ)Ḃ

)
(9.40)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

Observe, however, that

w(z)− w(b) = −
∫ z

b

(
∂u

∂x
+
∂v

∂y

)
dz ′ (9.41)

272



and,

w(s)−w(b) = −
∫ s

b

(
∂u

∂x
+
∂v

∂y

)
dz′ (9.42)

Substitution of Eqns. (9.41) and (9.42) into Eqn. (9.39) gives

Tt + uTx + vTy

+
1

h
Tζ

(
D(ζ)− ζȦ− (1 − ζ)Ḃ

)
(9.43)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

where D(ζ) is an ice-divergence parameter defined by,

D(ζ) = h

(
ζ

∫ 1

0

(
∂u

∂x
+
∂v

∂y

)
dζ −

∫ ζ

0

(
∂u

∂x
+
∂v

∂y

)
dζ ′

)
(9.44)

Equation (9.44) represents the final form of the heat equation for use in
grounded ice-sheet modelling. For ice-shelf and ice-stream modelling, where
u, v, and therefore

(
∂u
∂x + ∂v

∂y

)
are independent of z and ζ, D(ζ) = 0; thus the

appropriate form of the heat equation becomes,

Tt + uTx + vTy

−1

h
Tζ

(
ζȦ + (1− ζ)Ḃ

)
(9.45)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

The form for use in ice-shelf and ice-stream modelling is considerably simpler
than the form for use in ice-sheet modelling (Eqn. 9.44). There are three
primary simplifications which apply when u and v are independent of z and
ζ:

1. The horizontal advection operators u ∂
∂x and v ∂

∂y are the same for every
level in the vertical.

2. The vertical velocity w(ζ) need not be calculated.
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3. The ice-divergence parameter D(ζ) is 0.

These simplifications make ice-shelf and ice-stream modelling far more simple
and computationally efficient than ice-sheet modelling.

9.4 Discretization With High-Order Element

Interpolation

According to the diagnostic relations between u, v, w and s for a grounded
ice-sheet with “inland ice” type flow (Eqns. 9.1 - 9.3), the computation
of the vertical velocity w and the D-term as a function of ζ requires that
the second spatial derivatives of s, i.e., ∂2s

∂x2 and ∂2s
∂y2 , be evaluated on the

computational domain. This requirement necessitates the use of high-order
element interpolation. We describe this interpolation by first considering
linear interpolation, where first derivatives of s are piecewise constant; but
where second derivatives are undefined.

9.4.1 Linear Triangle Elements

For triangular finite elements with linear interpolation, the discretization
technique used in previous chapters, s is interpolated by

s(x, y) =
3∑

j=1

sjLj(x, y) (9.46)

where the interpolation functions Lj , j = 1, . . . , 3, are linear in form, i.e.,

Lj = αjx+ βjy + γj (9.47)

where, the coefficients of Lj are given by the following expression,



α1 α2 α3

β1 β2 β3

γ1 γ2 γ3


 =



x1 y1 1
x2 y2 1
x3 y3 1




−1

(9.48)

274



The above expression for the α’s, β’s and γ’s is equivalent to the solution of
the nine equations:

αjxi + βjyi + γj = δij ∀i ∀j (9.49)

where, δij = 0 if i 6= j and δij = 1 if i = j. The first derivatives of s according
to Eqn. (9.46) are piecewise constant and vary from element to element,

∂s

∂x
=

3∑

j=1

sjαj (9.50)

and,
∂s

∂y
=

3∑

j=1

sjβj (9.51)

9.4.2 Quadratic Triangular Elements

With linear interpolation, the second derivatives of s on the computational
domain are unresolved. Thus, it is not possible to evaluate w(ζ) or D(ζ)
for use in solving Eqn. (9.44). We overcome this difficulty by adopting a
higher order interpolation within a triangular element that has 6 nodes (on
its vertices and at the midpoints of its faces, as in Fig. 9.2). In particular,
we define

s(x, y) =
6∑

j=1

sjNj(x, y) (9.52)

where the interpolation functions Nj are quadratic in x and y so that second
derivatives are resolved, i.e.,

Nj(x, y) = γj + αjx+ βjy + εjx
2 + δjy

2 + φjxy (9.53)

and where the coefficients are determined by the expression,



φ1 φ2 φ3 φ4 φ5 φ6

δ1 δ2 δ3 δ4 δ5 δ6

ε1 ε2 ε3 ε4 ε5 ε6
α1 α2 α3 α4 α5 α6

β1 β2 β3 β4 β5 β6

γ1 γ2 γ3 γ4 γ5 γ6




=




x1y1 y2
1 x2

1 x1 y1 1
x2y2 y2

2 x2
2 x2 y2 1

x3y3 y2
3 x2

3 x3 y3 1
x4y4 y2

4 x2
4 x4 y4 1

x5y5 y2
5 x2

5 x5 y5 1
x6y6 y2

6 x2
6 x6 y6 1




−1

(9.54)
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The above expression for the coefficients in the polynomial form of Nj is
equivalent to the solution of the 36 equations:

φjxiyi + εjy
2
j + δjx

2
j + αjxi + βjyi + γj = δij ∀i ∀j (9.55)

where, δij = 0 if i 6= j and δij = 1 if i = j. An alternative expression for
the definition of the quadratic interpolation functions Nj(x, y) given in Eqn.
(9.53) is given by Zienkiewicz [1971, p. 119],

N1 = (2L1−)L1, etc. (9.56)

for corner nodes, and
N4 = 4L1L2, etc. (9.57)

for mid-side nodes, where the Li’s are the usual linear interpolation functions
given above.

The first derivatives of s according to Eqn. (??) are piecewise linear in
each element,

∂s

∂x
=

3∑

j=1

sj(φjy + 2δjx+ αj) (9.58)

and,
∂s

∂y
=

3∑

j=1

sj(φjx + 2εjy + βj) (9.59)

While s is continuous across element boundaries, the first derivatives of s are
not; they are disjoint piecewise linear functions. The second derivatives of s
are piecewise constant in each element, and are given by

∂2s

∂x2
=

3∑

j=1

sj2δj (9.60)

and,
∂2s

∂y2
=

3∑

j=1

sj2εj (9.61)

The existance of these piecewise constant evaluations of the second deriva-
tives allow the divergence of horizontal velocity and the vertical velocity to
be computed from the expressions in Eqns. (9.1) - (9.3). Note that D(ζ)
and w(ζ) will vary with ζ in each element, but will not vary with x and
y because the underlying expression, involving second derivatives of s, is
piecewise constant.
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Linear Triangle Element

1

2

3

(3 nodes)

Quadratic Triangle Element

1

2

3

4

5

6

(6 nodes)

Figure 9.2: Linear interpolation over 3-node linear triangular elements is
adequate for the solution of the equations for u and v in ice-shelf and ice-
stream motion. Quadratic interpolation over 6-node quadratic triangular
elements is needed to resolve second derivatives of s (i.e., the curvature of
the surface elevation) necessary for the evaluation of the vertical velocity and
D-term in the heat equation (Eqn. 9.44) for grounded (rigid bed) ice sheets.
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9.5 Computation of u, v, w and the D-term

We now address the nitty gritty of ice-sheet temperature modelling and begin
with a discussion of how the velocity components referenced in the advection
terms of Eqn. (9.44) are computed.

9.5.1 Horizontal Velocity

The horizontal velocity compontents, u and v, have both ζ-dependent and
ζ-independent parts (depending on whether there is basal sliding or not, ac-
cording to the common notion of basal sliding being a process that does not
invoke the plug-flow dynamics described previously for ice-stream applica-
tions). The ζ-dependent parts owe their ζ dependence to the factor I(ζ)
which appears in the second terms on the right-hand sides of Eqns. (9.1)
and (9.2). The factor I(ζ) is computed using the vertical integral formula
given in Eqn. (9.6). In Matlab , this vertical integral is evaluated with the
following statements:

for n=2:icelev

I(:,n)=E*grads2.*(Abar(:,n-1)+Abar(:,n))/2*((rho*g)^2) ...

.* (((sbar-bbar).*(1-zetaice(n-1))).^3 ...

+ ((sbar-bbar).*(1-zetaice(n))).^3).*dz(:,n-1)/2 + I(:,n-1);

udefbar(:,n)= -2*rho*g*I(:,n).*sxbar;

vdefbar(:,n)= -2*rho*g*I(:,n).*sybar;

diffbar(:)=diffbar(:)+2*rho*g*(I(:,n-1)+I(:,n))/2.*dz(:,n-1);

end

where udefbar and vdefbar are the deformational parts of u and v, and
grads2, sxbar, and sybar are the variables representing (∇s · ∇s), ∂s

∂x , and
∂s
∂y

, respectively:

for gauss=1:7

for m=1:6
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sbar(:)=sbar(:)+GaussWeights(gauss).*(hgamma(:,m)+halpha(:,m).*xg(:,gauss) ...

+ hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 ...

+ hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hs(hindex(:,m));

bbar(:)=bbar(:)+GaussWeights(gauss).*(hgamma(:,m)+halpha(:,m).*xg(:,gauss)...

+ hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 ...

+ hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hb(hindex(:,m));

sxbar(:)=sxbar(:)+GaussWeights(gauss).*(halpha(:,m) ...

+ 2*hdelta(:,m).*xg(:,gauss) + hphi(:,m).*yg(:,gauss) ) .* hs(hindex(:,m));

sybar(:)=sybar(:)+GaussWeights(gauss).*( hbeta(:,m) ...

+ 2*hepsilon(:,m).*yg(:,gauss) + hphi(:,m).*xg(:,gauss)) .* hs(hindex(:,m));

sgauss(:,gauss)=sgauss(:,gauss)+(hgamma(:,m)+halpha(:,m).*xg(:,gauss)...

+ hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 ...

+ hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hs(hindex(:,m));

bgauss(:,gauss)=bgauss(:,gauss)+(hgamma(:,m)+halpha(:,m).*xg(:,gauss)...

+ hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 ...

+ hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hb(hindex(:,m));

end

end

for gauss=1:7

for m=1:6

for k=1:6

grads2(:)=grads2(:)+GaussWeights(gauss).* ...

((halpha(:,m)+2*hdelta(:,m).*xg(:,gauss)+hphi(:,m).*yg(:,gauss)) ...

.*(halpha(:,k)+2*hdelta(:,k).*xg(:,gauss)+hphi(:,k).*yg(:,gauss)) ...
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+(hbeta(:,m)+2*hepsilon(:,m).*yg(:,gauss)+hphi(:,m).*xg(:,gauss)) ...

.*(hbeta(:,k)+2*hepsilon(:,k).*yg(:,gauss)+hphi(:,k).*xg(:,gauss)) ) ...

.*hs(hindex(:,m)).*hs(hindex(:,k));

grads2gauss(:,gauss)=grads2gauss(:,gauss) ...

+((halpha(:,m)+2*hdelta(:,m).*xg(:,gauss)+hphi(:,m).*yg(:,gauss)) ...

.*(halpha(:,k)+2*hdelta(:,k).*xg(:,gauss)+hphi(:,k).*yg(:,gauss)) ...

+ (hbeta(:,m)+2*hepsilon(:,m).*yg(:,gauss)+hphi(:,m).*xg(:,gauss)) ...

.*(hbeta(:,k)+2*hepsilon(:,k).*yg(:,gauss)+hphi(:,k).*xg(:,gauss)) ) ...

.*hs(hindex(:,m)).*hs(hindex(:,k));

end

end

end

The variable GaussWeights embodies the Gaussian quadrature integration
technique used to construct averages and to determine matrix elements in
the finite-element solution of the problem. More will be said about Gaussian
quadrature later.

In circumstances where I(x, y, z) is not a function of x and y (true for the
Level 1 Eismint test, false for the Level 2 test where temperature variations
are coupled to the flow law; a mistake I caught only recently, the reader is
urged to use caution over the next bit, as I have not had a chance to correct
this part of the text yet), the vertical velocity is computed with the following
code,

for n=1:icelev

div(:,n)=2*( hs(hindex(:,1)).*hdelta(:,1)+ ...

hs(hindex(:,2)).*hdelta(:,2)+ ...

hs(hindex(:,3)).*hdelta(:,3)+ ...

hs(hindex(:,4)).*hdelta(:,4)+ ...

hs(hindex(:,5)).*hdelta(:,5)+ ...

hs(hindex(:,6)).*hdelta(:,6)+ ...

280



hs(hindex(:,1)).*hepsilon(:,1)+ ...

hs(hindex(:,2)).*hepsilon(:,2)+ ...

hs(hindex(:,3)).*hepsilon(:,3)+ ...

hs(hindex(:,4)).*hepsilon(:,4)+ ...

hs(hindex(:,5)).*hepsilon(:,5)+ ...

hs(hindex(:,6)).*hepsilon(:,6)) ...

.* (-2*rho*g*I(:,n) ) ;

end

% Computation of the "D-term" and Vertical velocity:

Intdiv=zeros(nel,icelev);

Dterm=zeros(nel,icelev);

Vertvel=zeros(nel,icelev);

for n=2:icelev

Intdiv(:,n)=Intdiv(:,n-1)+(div(:,n-1)+div(:,n))/2*(zetaice(n)-zetaice(n-1));

Vertvel(:,n)=Vertvel(:,n-1)-(div(:,n-1)+div(:,n))/2.*dz(:,n-1);

end

The above fragments of Matlab code are, of course, combined with a great
deal of other code to simulate the combined mass balance/thermal evolution
of an ice sheet.

Note added in proof: The above determination of the divergence of the
horizontal velocity treats the integral I(x, z) as a piecewise constant function
(i.e., constant within an element); thus, the finite-element scheme employed
here gives

∂u

∂x
≈ −2ρgI(x, z)

∂2s

∂x2
(9.62)

A more accurate determination of the divergence would account for the vari-
ation of I(x, z) within an element, i.e.,

∂u

∂x
= −2ρgI(x, z)

∂2s

∂x2
+−2ρg

∂I(x, z)

∂x

∂s

∂x
(9.63)
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The results presented here treat I as a constant function within each element.
This may account for differences between the test results presented here and
those presented by Huybrechts and Payne (in press). While it may seem
inappropriate not to treat I as variable within each element, such treatment
is consistent with the Type I numerical scheme where “effective ice diffusion”
(represented by D) is constant within each element.

9.6 Gaussian Quadrature

When the method of weighted residuals is used to solve the heat and mass
balance equations, matrix terms for the sj and Tj(zk)’s (where j and k are
horizontal and vertical node points) are generated via integrals of the form:

AI(el,i)I(el,j) = AI(el,i)I(el,j) + C
∫ ∫

Ωel

NiNjdxdy (9.64)

where C is an unspecified coefficient, I(el, i) and I(el, j) are the global node
labels (numbers) for the i’th and j’th nodes in element el, and Ωel is the
two-dimensional plan area of the triangular element. Recalling that the in-
terpolation functions Nj(x, y) are second-order polynomials in x and y, we
might find the task of evaluating the integral in Eqn. (9.65) daunting due to
the tedious nature of double integral evaluation. In the previous chapters,
we used exact integration formulae for integrands involving products of the
Lj ’s. Such exact integration is possible here, but we shall use the present
circumstance to introduce Gaussian quadrature.

Following Zienkiewicz [1971, p. 149], we evaluate the integral using an
approximation involving a sum and the evaluation of the integrand at specific
points within the triangular domain Ωel called Gaussian quadrature points:

AI(el,i)I(el,j) = AI(el,i)I(el,j) + C
Ng∑

g=1

WgNi(xg, yg)Nj(xg, yg) (9.65)

where Ng is the number of Gaussian quadrature points, (xg, yg) are the coor-
dinates of the Gaussian quadrature points, and Wg is a Gaussian quadrature
weighting coefficient.
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According to Zeinkiewicz [1971, p. 151], round-off error in Gaussian
quadrature is a function of Ng and the location of the quadrature points
(xg, yg). A method optimized for reducing errors in the integrals of quintic
polynomials (products such as Nj(x, y)Ni(x, y) generate polynomials of order
4, so algorithms optimized for quintic polynomials are fully adequate for our
purposes) has Ng = 7 with quadrature points and weights given by (see Fig.
9.3):

point triangular coordinates Wg

a 1
3

1
3

1
3

0.225
b a1 b1 b1 0.13239415
c b1 a1 b1 0.13239415
d b1 b1 a1 0.13239415
e a2 b2 b2 0.12593918
f b2 a2 b2 0.12593918
g b2 b2 a2 0.12593918

where,

a1 = 0.05971587

b1 = 0.47014206

a2 = 0.79742699

b2 = 0.10128651

and “triangular coordinates” refer to the definition given by Zeinkiewicz
[1971, p. 117] restated as follows. The i’th triangular coordinate of a point
P contained within a triangular element is defined as the ratio of the area of
the triangle with P, vertex j, and vertex k as it’s three vertices to the area
of the entire triangle. Three triangular coordinates are necessary to uniquely
specify point P within the (x, y) domain of the triangular element. In other
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words,

x = [ l1 l2 l3 ]



x1

x2

x3


 (9.66)

and,

y = [ l1 l2 l3 ]



y1

y2

y3


 (9.67)

where the li’s are the triangular coordinate values, and the (xj , yj)’s are the
vertex points of the triangle.

The Matlab code which sets up the Gaussian quadrature points and
weights for the models we will use in this chapter is provided as follows,

alpha1=0.05971587;

beta1=0.47014206;

alpha2=0.79742699;

beta2=0.10128651;

Lcoord=[ 1/3 1/3 1/3

alpha1 beta1 beta1

beta1 alpha1 beta1

beta1 beta1 alpha1

alpha2 beta2 beta2

beta2 alpha2 beta2

beta2 beta2 alpha2];

xg=zeros(nel,7);

yg=zeros(nel,7);

for n=1:nel

xg(n,:)=(Lcoord*[x(index(n,1)) x(index(n,2)) x(index(n,3))]’)’;

yg(n,:)=(Lcoord*[y(index(n,1)) y(index(n,2)) y(index(n,3))]’)’;

end

GaussWeights=[0.225 0.13239415 0.13239415 0.13239415 0.12593918 ...

0.12593918 0.12593918]’;
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9.7 Numerical Integration of the Heat Equa-

tion

With the above preliminaries taken care of, we concentrate on describing a
finite-element solution proceedure for Eqn. (9.44).

9.7.1 Split Timestep

One of the principal obstacles to “easy living” with ice-sheet thermodynamics
is the fact that Eqn. (9.44) involves a three-dimensional, time-dependent
variable T (x, y, z, t). A true finite-element solution of this problem would
involve three-dimensional elements that fill the volume of the ice sheet. This
approach is problematical because the vertical dimension of the ice sheet
is very much smaller than the horizontal dimension; so a space-filling finite
element mesh would either have an unacceptably high number of elements
or an unacceptably high aspect ratio (ratio of horizontal span to vertical
span) if a low number of elements is used. The mathematical structure of
Eqn. (9.44) suggests a means to overcome this problem. The diffusion term
involves only vertical diffusion. Horizontal diffusion is absent (because of the
low aspect ratio of the ice sheet, justification may be found in Hutter [?]). A
natural simplification is thus to separate, or split, the horizontal part of the
equation off from the vertical part. Using a finite-difference representation
of the time derivatives, i.e.,

Tt =
T n+1 − T n

∆t
(9.68)

where n is the discrete time level, and ∆t is the timestep size, we write a
split timestep form of Eqn. (9.44) as follows:

T̃ n+1

∆t
+ un(ζl)T̃

n+1
x + vn(ζl)T̃

n+1
y + S(T̃ n+1; ζl) =

T n

∆t
∀k (9.69)
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Gaussian Quadrature points (Quintic polynomial accuracy)

Figure 9.3: Numerical evaluation of double integrals is accuratly achieved by
use of Gaussian quadrature, such as that which involves the 7 quadrature
points shown above.
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T n+1

∆t
− 1

ρch2

(
kTn+1

ζ

)
ζ
+
ω(ζ)

h
T n+1
ζ =

T̃ n+1

∆t
+
W (ζ)

ρc
∀k (9.70)

where in the first of the above equations, l is the vertical level number, ζl
is the l’th vertical level in the ice, and ω(ζ) is the vertical velocity in the
“ζ-system” given by:

ω = D(ζ)− ζȦ− (1− ζ)Ḃ (9.71)

The term S(T̃ n+1; ζl) refers to an artificial horizontal diffusion term that can
be either “upwinding” related or the “streamline upwind Petrov-Galerkin”
(SUPG) term described below. This artificial diffusion term is added to
supress numerical noise (wiggles) generated in high Peclet number flows (see
the previous chapter). The S-term will be explained later. (Note, in later
versions of this model, we have eliminated artificial diffusion alltogether. This
is possible when we do not attempt to impose ill-posed boundary conditions
at the edges of the horizontal domain.)

We discretize the horizontal plan of the domain into a finite-element mesh
consisting of two-dimensional elements, and discretize the vertical dimension
of the domain using a stack of vertical levels spanning the range ζ ∈ [0, 1]
above each node point. The horizontal discretization uses 3-node triangles
with linear interpolation (involving the linear interpolation functions Lj(x, y)
described earlier). Six-node triangles with quadratic interpolation (involving
the quadratic polynomial interpolation functions Nj(x, y)) are needed only
for the discretization of s, where second derivatives of s are important to de-
termine vertical velocities needed in the heat equation. We stack additional
vertical levels below the ice sheet to cover bedrock temperature conditions.
The finite-element discretization used to solve the EISMINT Level 1 inter-
comparison benchmark problem (discussed below) is shown in Figs. (9.4)
and (9.5). The vertical spacing of layers is defined by the following Matlab
statement in the programs presented here:

dummy=logspace(-2,-1,lowlayers);

zetaice=[logspace(-2,-1,lowlayers)-dummy(1)*ones(1,lowlayers) ...

linspace(.13,1,icelev-lowlayers) ]’
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Figure 9.4: Finite-element mesh for EISMINT Level 1 (fixed margin) inter-
comparison benchmark test. The full 1500 × 1500 km domain is discretized
because it is not practical to have internal boundaries where temperature
boundary conditions might have to be specified (this is a subtle point having
to do with the fact that the velocity in the temperature model code is not
specified at nodes). For diagnostics, and to ensure an accurate intercompar-
ison with other models, four ice-divide/edge midpoint sections were used to
construct an average.
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Figure 9.5: Twenty-one vertical levels were distributed logarithmically
through the bottom 10% of the ice column, and linearly through the upper
90% of the ice column to properly represent the basal heat-flux boundary
condition (bedrock was not included in the level 1 intercomparison bench-
mark test) and viscous dissipation (which is concentrated in the lower 10%
of the ice column).
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9.7.2 Horizontal Advection Equation: SUPG vs. “up-

winding”

Let’s face it. Wiggles are not a modeller’s best friend. Wiggles, what “mod-
elling grunts” call mesh-point-to-mesh-point numerical noise, can devastate
modelling experiments because they represent an unphysical part of the so-
lution of the model equations that can overwhelm the physical part of the
solution. One way to avoid wiggles is to take small time steps. This remedi-
ation is expensive, because large amounts of computer time must be devoted
to supressing a solution who’s unwanted structure possesses the shortest pos-
sible timescales (order the time it takes for a point to move across a mesh
element). Two common remediation techniques are called SUPG and “up-
winding”, and are described below.

“Upwinding”

In finite-element methods, the benefits of “upwinding” are achieved by adding
an artificial diffusion term to the horizontal part of the heat equation (Eqn.
9.69). This artificial diffusion term is written:

∇ · (kupwind∇T ) (9.72)

where ∇ = ∂
∂xnx + ∂

∂yny is the horizontal “del” operator, and kupwind is the
artificial diffusivity tensor for “upwinding” defined by,

kupwind =
1

2

[ |u|∆x 0
0 |v|∆y

]
(9.73)

where u and v are the x- and y-velocities, respectively, and ∆x and ∆y are
the “widths” of each element in the x- and y-directions.

SUPG

Another approach to the repression of wiggles is the use of SUPG diffusion.
Like “upwinding”, this term is artificial and can be eliminated alltogether
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by taking a sufficiently small ∆t. The SUPG technique was developed by
T. J. R. Hughes (not to be confused with “our” T. J. Hughes!) [ 1979,
1988]. (Refer to Hughes’s articles to learn about other techniques, such
as quadrature “upwinding”.) Essentially, SUPG represents the addition of
a nonisotropic diffusion that is active down flowlines and inactive across
flowlines. Numerical noise is swept downstream without disturbing cross-
stream structure in the temperature field. The SUPG term is defined by

S(T ; ζk) = ∇ (κSUPG∇T ) (9.74)

where κSUPG is an artificial diffusivity tensor defined by

(κSUPG)ij =
1

2
(|u1|∆x1 + |u2|∆x2) ûiûj (9.75)

where we have temporarily used subscripts i and j, and 1 and 2, to denote x-
and y-components, where ∆x1 and ∆x2 are the horizontal “span” dimensions
of each element (like kupwind, κSUPG varies from element to element), and

ûk =
|uk|

(ulul)
1
2

(9.76)

where | · | denotes absolute value, and repeated subscripts are to be summed.
Note that the variable ζk is referenced in the definition of S(T ; ζk) because
the ui velocity components vary from one vertical level to another (one would
not want to use the artificial diffusivity computed for levels near the ice-sheet
surface to control wiggles near the ice-sheet bed!).

It is worth taking pause to describe how the method of weighted residuals
will handle the SUPG term. (This is done because the artificial diffusivity
tensor in the SUPG scheme can cause headaches for the unsuspecting SUPG
neophyte.) We begin by manipulating the integral form of the SUPG term
to distribute the derivatives onto the weighting function ψ (for notational
convenience, we drop the subscript “SUPG” from κSUPG):

∫ ∫
ψ ∇ · (κ∇T ) dxdy =

∮
ψκ jm

∂T

∂xm
njds−

∫ ∫
∇ ψ · κ · ∇Tdxdy (9.77)

where nj is the j’th component of the outward pointing normal vector to the
boundary. Observe that,

∇ ψ · κ · ∇T = kSUPG × [ ∂ψ∂x
∂ψ
∂y ]

[
û2 ûv̂
ûv̂ v̂2

] [
∂T
∂x
∂T
∂y

]
(9.78)
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where kSUPG =
1

2
(|u1|∆x1 + |u2|∆x2) =

1

2
(|u|∆x + |v|∆y) is the scalar con-

stant in the definition of κSUPG. The above vector-tensor-vector product is a
scalar which can be written as follows,

[ ∂ψ∂x
∂ψ
∂y ]

[
û2 ûv̂
ûv̂ v̂2

] [
∂T
∂x
∂T
∂y

]
=
∂ψ

∂x

(
û2∂T

∂x
+ ûv̂

∂T

∂y

)
+
∂ψ

∂y

(
ûv̂

∂T

∂x
+ v̂2∂T

∂y

)

(9.79)

As stated previously, the use of SUPG is optional. We find that it can be
avoided when ∆t is chosen to be very small. Definition of the SUPG diffusiv-
ity is done by empirical analysis (there is nothing special about the formula
given above). Hughes suggests that SUPG according to the above prescrip-
tion is comparable to, and possibly superior to, finite-difference “upwinding”
because it allows good numerical stability without “crossflow” diffusion.

9.7.3 Vertical Advective/Diffusion Equation

Having glossed over the solution of the first part of the two-step timestepping
procedure (the part involving horizontal advection and optional SUPG), we
turn to the second part involving vertical advection, diffusion and heat gen-
eration by viscous dissipation. The method of weighted residuals is used to
convert Eqn. (9.70) to the following integral form:

∫
ψ

(
T n+1

∆t
− 1

ρch2

(
kT n+1

ζ

)
ζ
+
ω(ζ)

h
T n+1
ζ

)
dζ

=
∫
ψ

(
T̃ n+1

∆t
+
W (ζ)

ρc

)
dζ (9.80)

The divergence theorem is used on the diffusion term on the left-hand side
to distribute one ζ-derivative to the unknown weighting function ψ giving,

∫ 
 ψT n+1

∆t
+

(
ψ

ρch2

)

ζ

kT n+1
ζ +

ψω (ζ)

h
T n+1
ζ


 dζ

=
∫
ψ

(
T̃ n+1

∆t
+
W (ζ)

ρc

)
dζ + ψ

k

ρch2
T n+1
ζ

∣∣∣
ζ=1

ζ=0
(9.81)
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The last term on the right-hand side of the above equation expresses the
boundary conditions at the top and bottom of the ice column. (Note that
in the above development, we have not explicitly accounted for the possible
inclusion of a bedrock layer below the ice-sheet bottom, i.e., below ζ = 0.
To do so requires only minor modification of the above equation to account
for the appropriate variation of k, ρ, c and ω(ζ) in the elements below the
ice base.) At boundaries where heat flux is specified (the bed when the bed
is frozen), the factor k

ρch2T
n+1
ζ at ζ = 0 is replaced with the value of the

heat flux (divided by ρch2). At boundaries where temperature is specified
(the surface), the weighting function ψ is set to zero and the constraint
T (ζ = 1) = Ts is enforced, where Ts is the atmospherically determined
surface temperature.

The finite-element solution of Eqn. (9.81) is accomplished by developing
a vertical finite-element expression for T (ζ), k, c, ρ, W , ψ and ω at each
individual node of the horizontal finite-element mesh, e.g.,

T (ζ) =
2∑

k=1

Mj(ζ)Tj (9.82)

where j is the node index for 2-node line-segment elements extending through
the vertical dimension of the ice column, and Tj is the value of T at the
particular node. The interpolation function Mj(ζ) is linear, i.e.,

Mj(ζ) = Ajζ + Gj (9.83)

where the coefficients Aj and Gj are generated in the usual fashion from the
constraints: [

ζ1 1
ζ2 1

] [Aj

Gj

]
=

[
δ1j

δ2j

]
(9.84)

where δlk is the Kronecker delta index (0 or 1, depending on if l 6= k or
not). The result of the above finite-element discretization of Eqn. (9.81)
is a tridiagonal matrix algebra equation to be solved at each node point in
the horizontal domain for the vertical profile of temperature through the ice
column located there.
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9.7.4 Summary of Numerical Integration of the Heat

Equation

The two-step timestepping procedure can be summarized by expressing the
variable T in its full, combined numerical representation. In each element,

T (x, y, ζ, t) =
3∑

k=1




2∑

j=1

Lk(x, y)Mj(ζ)T
n
j,k


 (9.85)

where n refers to the timestep level, tn = (n − 1)∆t, and T n
j,k is the tem-

perature value at timestep n at the j’th vertical level of the k’th node. The
horizontal advection equation is solved first, then the resulting solution is
used in the right-hand side of the vertical advection/diffusion equation to
complete the time step.

9.8 EISMINT Level 1 Fixed Margin Inter-

comparison Benchmark

To test the above conception of a finite-element ice-sheet dynamic/thermodynamic
ice-sheet model, and to compare it with other finite-element and finite-
difference models of a similar nature, we rerun the fixed margin intercom-
parison benchmark described in Chapter 2. This time, however, we run the
benchmark using the 6-node element for the discretization of s and com-
pute the temperature profile using the above prescription. Recall that the
fixed-margin intercomparison test [now described fully by Huybrechts and
others, in press, Annals of Glaciology 23] imposes fixed Ȧ, k, c and a surface
temperature (in Kelvin) given by

Ts = 239 + 8× 10−8d3 (9.86)

where d = max(|x|, |y|), in a square domain centered at (0,0) with 1500-km
sides, with zero ice thickness at the margins. The value of parameters used
in this intercomparison experiment are summarized as follows:
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parameter value

Ȧ 0.3 m a−1

A 10−16 Pa−3 a−1

g 9.81 m s−2

ρ 910 kg m−3

k 2.1 W m−1 K−1

c 2009 J kg−1 K−1

To 273.15 K
Φ 8.7× 10−4 K m−1

G 42 mW m−2

31556926 s a−1

Horizontal and vertical finite-element mesh discretizations are displayed
in Figs. (9.4) and (9.5). Horizontal resolution is 50 km for temperature and
25 km for ice thickness (s) due to the fact that 6-node triangular elements
are used to represent s. Differences between the present test and those of
finite-difference models reported by Huybrechts and others (in press) may
be due to the slightly higher resolution accomplished in the present study.
Vertical resolution is variable, and is designed to represent the temperature
profile in the bottom 10% of the ice column with a logarithmic spacing of
nodes (finest spacing at the bottom). Spacing is linear in the upper 90%
of the ice column. This arrangement is ad hoc but appears to work well in
representing the vertical variation of ω(ζ) and W (ζ) near the bed. (In the
course of running the intercomparison experiment, it was learned that ω(ζ)
can have a small region of positive values located in the lowest 2-5 % of the
ice column, especially at points remote from the ice divide. It was found to
be critical to resolve this fine-scale variation to produce accurate temperature
results.)

9.8.1 Results

According to the model intercomparison instructions, the model is run until
steady state conditions prevail. Temperature, velocity, mass flux and ice
thickness data are then sampled at specific points and along specific sections.
In particular, temperature and vertical velocity profiles at the ice divide and
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at “midpoint” nodes (here, taken to be the average of the four midpoints
labeled in Fig. 9.4) are recorded for the intercomparison. Ice thickness,
horizontal ice flux, and homologous basal temperature are presented along a
transect extending from the ice divide to the midpoint of one of the ice-sheet’s
sides (here, we take the average of four such transects) and are recorded for
intercomparison.

Cross sections of ice thickness and horizontal ice flux are displayed in
Figs. (9.6) and (9.7). Homologous basal temperature along the same cross
sections is displayed in Fig. (9.8). Vertical profiles of homologous temper-
ature, vertical velocity and ω(ζ) at the ice divide and at midpoints (which
are averaged together) are displayed in Figs. (9.9) and (9.10). Ice flux at
the midpoints is 742.5× 102 m2 a−1, and basal temperature at the ice divide
is -9.3564 C (these numbers can be compared with 795± 5.67 × 102 m2 a−1

and −8.97 ± 0.71 C, respectively, for the intercomparison results reported
by Huybrechts and others, in press). Horizontal velocity data, and other
miscellaneous diagnostics, are shown in Fig. (9.11).

Numerical values of various derived quantities are provided in the follow-
ing table (other numerical data is available on request):
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Figure 9.6: Ice thickness averaged over 4 ice-divide to side midpoint tran-
sects. Thickness at the point (0,0) where the ice divide is supposed to be is
indicated along with the maximum thickness achieved at the true “numeri-
cal” ice divide located at the nearest node.
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Figure 9.7: Horizontal depth-integrated ice flux averaged over 4 ice-divide to
side midpoint transects.
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Figure 9.8: Homologous basal temperature along four ice divide to side mid-
point transects.
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Figure 9.9: Homologous temperature at ice divide and midpoints (average of
four).
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Figure 9.10: Vertical velocity and ω(ζ) at an element which contains the ice
divide (vertical velocity is not defined by the finite-element discretization at
the ice divide).
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Figure 9.11: Horizontal velocity near the midpoint along one of the ice-
divide to side midpoint transects and various other diagnostics, including
the D-term (lowest right panel).
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ζ T ∗divide T ∗midpoint ωdivide

0 -8.0976 0 0
0.0033 -8.3324 -0.1793 -0.0001
0.0078 -8.6458 -0.4244 -0.0002
0.0137 -9.0639 -0.7617 -0.0004
0.0216 -9.6218 -1.2293 -0.0007
0.0322 -10.3660 -1.8830 -0.0012
0.0462 -11.3584 -2.8038 -0.0022
0.0650 -12.6797 -4.1093 -0.0038
0.0900 -14.4316 -5.9637 -0.0067
0.1300 -17.1827 -9.1149 -0.0126
0.2091 -22.2352 -15.5039 -0.0284
0.2882 -26.4054 -21.2662 -0.0486
0.3673 -29.4187 -25.6934 -0.0721
0.4464 -31.3019 -28.5550 -0.0980
0.5255 -32.3366 -30.0599 -0.1253
0.6045 -32.8789 -30.6412 -0.1537
0.6836 -33.2027 -30.7181 -0.1826
0.7627 -33.4539 -30.5713 -0.2118
0.8418 -33.6877 -30.3417 -0.2412
0.9209 -33.9186 -30.0842 -0.2706
1.0000 -34.1493 -29.8930 -0.3000

where T ∗ refers to homologous temperature (temperature relative to the local
pressure melting temperature). The finite-element Matlab script used to
generate the above solution is provided at the end of this chapter.

SUPG Example

The solution listed in the above table was generated using “upwinding” to
supress wiggles. We also used an SUPG formulation to solve the same prob-
lem. Very little difference between the solutions, shown in the table given
below, was noted.
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T ∗divide SUPG T ∗divide upwind T ∗midpoint upwind T ∗midpoint SUPG

-7.8779 -8.0976 0 0
-8.1128 -8.3324 -0.1793 -0.1843
-8.4262 -8.6458 -0.4244 -0.4362
-8.8443 -9.0639 -0.7617 -0.7825
-9.4024 -9.6218 -1.2293 -1.2620
-10.1471 -10.3660 -1.8830 -1.9314
-11.1405 -11.3584 -2.8038 -2.8728
-12.4637 -12.6797 -4.1093 -4.2046
-14.2196 -14.4316 -5.9637 -6.0920
-16.9808 -17.1827 -9.1149 -9.2898
-22.0658 -22.2352 -15.5039 -15.7442
-26.2805 -26.4054 -21.2662 -21.5350
-29.3396 -29.4187 -25.6934 -25.9626
-31.2595 -31.3019 -28.5550 -28.8110
-32.3175 -32.3366 -30.0599 -30.2997
-32.8715 -32.8789 -30.6412 -30.8639
-33.2000 -33.2027 -30.7181 -30.9188
-33.4528 -33.4539 -30.5713 -30.7398
-33.6872 -33.6877 -30.3417 -30.4642
-33.9185 -33.9186 -30.0842 -30.1455
-34.1493 -34.1493 -29.8930 -29.8930

The Matlab code used to impliment the SUPG formulation is presented
as follows. These statements should replace those for the “upwinding” scheme
in the Matlab finite-element model listed at the end of this chapter.

for lev=1:icelev

velmag(:,lev)=sqrt((udefbar(:,lev)+uslidebar(:)).^2 + (vdefbar(:,lev)+vslidebar(:)).^2);

uhat(:,lev)=abs(udefbar(:,lev)+uslidebar(:))./(velmag(:,lev).* ...

(velmag(:,lev)~=zeros(nel,1))+ones(nel,1).*(velmag(:,lev)==zeros(nel,1)));

vhat(:,lev)=abs(vdefbar(:,lev)+vslidebar(:))./(velmag(:,lev).* ...

(velmag(:,lev)~=zeros(nel,1))+ones(nel,1).*(velmag(:,lev)==zeros(nel,1))); end

for lev=1:(icelev-1)

for m=1:3

for k=1:3

count=count+nel;

row(count:count+nel-1)=(lev-1)*nods*ones(nel,1)+index(:,m);

col(count:count+nel-1)=(lev-1)*nods*ones(nel,1)+index(:,k);

value(count:count+nel-1)=dt*area.*( ( (m==k)/6 + (m~=k)/12 )/dt ...

+ (abs(udefbar(:,lev)+uslidebar(:)).*dx(:) + abs(vdefbar(:,lev)+vslidebar(:)).*dy(:) )./2 ...

.* ( alpha(:,m).*alpha(:,k).*uhat(:,lev).^2 + alpha(:,m).*beta(:,k).*uhat(:,lev).*vhat(:,lev) ...
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+ beta(:,m).*alpha(:,k).*uhat(:,lev).*vhat(:,lev) + beta(:,m).*beta(:,k).*vhat(:,lev).^2 ) ...

+ (udefbar(:,lev)/3 +uslidebar(:)/3).*alpha(:,k) ...

+ (vdefbar(:,lev)/3 +vslidebar(:)/3).*beta(:,k) );

end

end

end

The Matlab script used to perform diagnostic analysis of model output
is listed as follows:

Eismint Precision Diagnostics;

Temperature thickness and velocity at divide and midpoint(s)

xc=(x(index(:,1))+x(index(:,2))+x(index(:,3)))/3;

yc=(y(index(:,1))+y(index(:,2))+y(index(:,3)))/3;

xdivide=0;

ydivide=0;

[junk,seq]=sort( (xdivide-xc(:)).^2 + (ydivide-yc(:)).^2 );

notfound=1;

n=0;

tritr=0;

while (notfound & n<=9)

n=n+1;

T1=[ 1 1 1

x(index(seq(n),1)) x(index(seq(n),2)) xdivide

y(index(seq(n),1)) y(index(seq(n),2)) ydivide ];

T2=[ 1 1 1

x(index(seq(n),2)) x(index(seq(n),3)) xdivide

y(index(seq(n),2)) y(index(seq(n),3)) ydivide ];

T3=[ 1 1 1

x(index(seq(n),3)) x(index(seq(n),1)) xdivide

y(index(seq(n),3)) y(index(seq(n),1)) ydivide ];

if (abs(area(seq(n))-sum(abs(det(T1))+abs(det(T2))+abs(det(T3)))/2)<=1e-6*area(seq(n)) )

notfound=0;

tritr=seq(n);

end

end

dividelement=tritr

compute fields at the divide:
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sdivide=(gamma(dividelement,:))*s(index(dividelement,:))

max(hs)

wdivide=zeros(1,icelev);

for lev=1:icelev

Tdivide(lev)=(gamma(dividelement,:))*T(index(dividelement,:),lev+rocklev);

wdivide(lev)=(gamma(dividelement,:))*w(index(dividelement,:),lev);

end

for lev=1:icelev

THdivide(lev)=(gamma(dividelement,:))*TH(index(dividelement,:),lev);

end

figure(4)

clg

subplot(1,2,1)

axis([-0.35 0.05 0.0 1.0]),grid,hold on

plot(31556926*Vertvel(dividelement,:),zetaice’,’w-’)

plot(31556926*Vertvel(dividelement,:),zetaice’,’wo’)

title(’(z-coordinate) divide’)

xlabel(’vertical velocity m/a’)

ylabel(’normalized height’)

subplot(1,2,2)

axis([-0.35 0.05 0.0 1.0]),grid,hold on

plot(31556926*wdivide,zetaice’,’w-’)

plot(31556926*wdivide,zetaice’,’wo’)

title(’(zeta-coordinate) divide’)

xlabel(’vertical velocity m/a’)

ylabel(’normalized height’)

xmid=[-375e3 0 375e3 0];

ymid=[0 -375e3 0 375e3];

for nn=1:4

[junk,seq]=sort( (xmid(nn)-xc(:)).^2 + (ymid(nn)-yc(:)).^2 );

notfound=1;

n=0;

tritr=0;

while (notfound & n<=9)

n=n+1;

T1=[ 1 1 1

x(index(seq(n),1)) x(index(seq(n),2)) xmid(nn)

y(index(seq(n),1)) y(index(seq(n),2)) ymid(nn) ];

T2=[ 1 1 1

x(index(seq(n),2)) x(index(seq(n),3)) xmid(nn)

y(index(seq(n),2)) y(index(seq(n),3)) ymid(nn) ];

T3=[ 1 1 1

x(index(seq(n),3)) x(index(seq(n),1)) xmid(nn)

y(index(seq(n),3)) y(index(seq(n),1)) ymid(nn) ];
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if (abs(area(seq(n))-sum(abs(det(T1))+abs(det(T2))+abs(det(T3)))/2)<=1e-6*area(seq(n)) )

notfound=0;

tritr=seq(n);

end

end

midelement(nn)=tritr

end

compute fields at the midpoint:

smid=zeros(1,4);

Tmid=zeros(4,icelev);

THmid=zeros(4,icelev);

umid=zeros(4,icelev);

vmid=zeros(4,icelev);

for n=1:4

smid(n)=(gamma(midelement(n),:)+alpha(midelement(n),:)*xmid(n)...

+beta(midelement(n),:)*ymid(n) )*s(index(midelement(n),:));

for lev=1:icelev

Tmid(n,lev)=(gamma(midelement(n),:)+alpha(midelement(n),:)*xmid(n)...

+beta(midelement(n),:)*ymid(n) )*T(index(midelement(n),:),lev+rocklev);

umid(n,lev)=31556926*udefbar(midelement(n),lev);

vmid(n,lev)=31556926*vdefbar(midelement(n),lev);

end

for lev=1:icelev

THmid(n,lev)=(gamma(midelement(n),:)+alpha(midelement(n),:)*xmid(n)...

+beta(midelement(n),:)*ymid(n) )*TH(index(midelement(n),:),lev);

end

end

speedmid=sqrt(umid.^2+vmid.^2)

figure(6)

clg

axis([0 40 0 1]),grid,hold on

plot(speedmid(1,:),zetaice’,’w-’)

plot(speedmid(1,:),zetaice’,’wo’)

plot(speedmid(2,:),zetaice’,’w-’)

plot(speedmid(3,:),zetaice’,’w-’)

plot(speedmid(4,:),zetaice’,’w-’)

title(’horizontal velocity at midpoints’)

xlabel(’velocity m/a’)

ylabel(’normalized height’)

midpointthick=mean(smid)
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figure(1)

clg

axis([-755e3 755e3 -755e3 755e3]),axis(’image’),shading flat,hold on,colormap(’jet’)

for n=1:nel

plot(x(index(n,:)),y(index(n,:)),’w-’)

end

title(’Eismint Level 1 (fixed Margin) diagnostic points on FE mesh’)

plot(xmid,ymid,’w*’)

text(xmid+50e3,ymid,’midpoints’)

plot(xdivide,ydivide,’wo’)

text(xdivide+50e3,ydivide,’divide’)

xlabel(’horizontal distance (m)’)

figure(5)

clg

subplot(1,2,1)

axis([-35 5 0 1]),grid,hold on

plot(mean(THmid)’,[ zetaice’],’w-’)

plot(mean(THmid)’,[ zetaice’],’wo’)

title(’temperature at midpoint’)

subplot(1,2,2)

axis([-35 5 0 1]),grid,hold on

plot(THdivide(:),zetaice’,’w-’)

plot(THdivide(:),zetaice’,’wo’)

title(’temperature at divide’)

xsec=[linspace(-750e3,0,16)

zeros(1,16)

linspace(0,750e3,16)

zeros(1,16)];

ysec=[zeros(1,16)

linspace(-750e3,0,16)

zeros(1,16)

linspace(0,750e3,16)];

secelement=zeros(4,16);

for nnn=1:16

for nn=1:4

[junk,seq]=sort( (xsec(nn,nnn)-xc(:)).^2 + (ysec(nn,nnn)-yc(:)).^2 );

notfound=1;

n=0;

tritr=0;

while (notfound & n<=9)

n=n+1;

T1=[ 1 1 1

x(index(seq(n),1)) x(index(seq(n),2)) xsec(nn,nnn)

y(index(seq(n),1)) y(index(seq(n),2)) ysec(nn,nnn) ];

T2=[ 1 1 1

x(index(seq(n),2)) x(index(seq(n),3)) xsec(nn,nnn)

y(index(seq(n),2)) y(index(seq(n),3)) ysec(nn,nnn) ];

T3=[ 1 1 1
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x(index(seq(n),3)) x(index(seq(n),1)) xsec(nn,nnn)

y(index(seq(n),3)) y(index(seq(n),1)) ysec(nn,nnn) ];

if (abs(area(seq(n))-sum(abs(det(T1))+abs(det(T2))+abs(det(T3)))/2)<=1e-6*area(seq(n)) )

notfound=0;

tritr=seq(n);

end

end

secelement(nn,nnn)=tritr

end

end

ssec=zeros(4,16);

Tbsec=zeros(4,16);

TbHsec=zeros(4,16);

Qsec=zeros(4,16);

for nn=1:16

Qsec(1,nn)=31556926*diffbar(secelement(1,nn))*sxbar(secelement(1,nn));

Qsec(2,nn)=31556926*diffbar(secelement(2,nn))*sybar(secelement(2,nn));

Qsec(3,nn)=31556926*diffbar(secelement(3,nn))*sxbar(secelement(3,nn));

Qsec(4,nn)=31556926*diffbar(secelement(4,nn))*sybar(secelement(4,nn));

for n=1:4

ssec(n,nn)=(gamma(secelement(n,nn),:)+alpha(secelement(n,nn),:)*xsec(n,nn)...

+beta(secelement(n,nn),:)*ysec(n,nn) )*s(index(secelement(n,nn),:));

Tbsec(n,nn)=(gamma(secelement(n,nn),:)+alpha(secelement(n,nn),:)*xsec(n,nn)...

+beta(secelement(n,nn),:)*ysec(n,nn) )*T(index(secelement(n,nn),:),1+rocklev);

TbHsec(n,nn)=(gamma(secelement(n,nn),:)+alpha(secelement(n,nn),:)*xsec(n,nn)...

+beta(secelement(n,nn),:)*ysec(n,nn) )*TH(index(secelement(n,nn),:),1);

end

end

Tbsec=Tbsec-Tnot;

distance=sqrt(xsec.^2+ysec.^2);

figure(2)

clg

axis([0 750e3 0 4000]),grid,hold on

plot(distance(1,:),ssec(1,:),’w-’)

plot(distance(2,:),ssec(2,:),’w-’)

plot(distance(3,:),ssec(3,:),’w-’)

plot(distance(4,:),ssec(4,:),’w-’)

title(’Eismint Level 1 fixed margin section thickness’)

xlabel(’Distance from divide (m)’)

ylabel(’Ice thickness (m)’)
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text(100e3,300,’H(0)=3375.6 m’)

text(100e3,1300,’max(H)=3387.4 m (node nearest divide)’)

figure(7)

clg

axis([0 750e3 0 250e3]),grid,hold on

plot(distance(1,:),Qsec(1,:),’w-’)

plot(distance(2,:),Qsec(2,:),’w-’)

plot(distance(3,:),Qsec(3,:),’w-’)

plot(distance(4,:),Qsec(4,:),’w-’)

title(’Eismint Level 1 fixed margin mass flux’)

xlabel(’Distance from divide (m)’)

ylabel(’mass flux per unit width (m^2/a)’)

figure(3)

clg

axis([0 750e3 -11 2]),grid,hold on

plot(distance(1,:),TbHsec(1,:),’w-’)

plot(distance(2,:),TbHsec(2,:),’w-’)

plot(distance(3,:),TbHsec(3,:),’w-’)

plot(distance(4,:),TbHsec(4,:),’w-’)

title(’Eismint Level 1 fixed margin section basal temperature’)

xlabel(’Distance from divide (m)’)

ylabel(’ basal temperature (C)’)

text(100e3,-8,’T(0)=-9.3565 (C)’)

Model Intercomparisons

Huybrechts and others [in press] present an intercomparison of a number
of finite-difference model results using the intercomparison benchmark we
present above. The model results presented by Huybrechts and others are
similar to those developed here. There are several points to be noted in the
comparison:

1. Basal temperatures in the finite-element model make the transition to
the pressure melting point at a position closer to the ice divide than
those of the finite-difference models (lumped together as a group). This
may be due to the fact that the finite-element model resolves the D-
term with a finer vertical separation than some of the finite-difference
models. Any modification of the vertical velocity field, such as a finer
resolution, will have a major effect on basal temperature (this was
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pointed out by Huybrechts and others in their paper). Note the small
area of positive ω(ζ) near the bed in Fig. (9.11). The ability of the
finite-element model to resolve this small area may make a substantial
difference in the basal temperature achieved by the model.

2. Ice divide thickness in the finite-element model is between the Type
I and Type II versions of the finite-difference models. This may be
due to the fact that our 6-node finite-element used to represent s ef-
fectively resolves the thickness field on a 25-km horizontal scale (the
finite-difference representations resolve s on a 50-km horizontal scale).

3. The temperature profile at the midpoint displays a slightly less pro-
nounced temperature minimum at depth (due to horizontal advection
of cold ice from upstream) than that displayed by the finite-difference
models. This may be due, in part, to the fact that the finite-difference
models achieve higher resolution in the upper ice column than that
achieved by the finite-element model where the concentration of nodes
is focussed in the lowest 10% of the ice column. Another possible rea-
son for the difference is the use of “upwind” (and, alternatively, SUPG)
artificial diffusion in the finite-element model to control numerical noise
generated by the horizontal advection terms.

4. Mass flux along the ice-divide to margin-midpoint transect is slightly
less in the finite-element results. Overall, the finite-element model and
the Type I finite-difference models conserve mass. The Type II finite-
difference models do not conserve mass (according to Huybrechts and
others), but are advantageous for being able to take long timesteps.
A second formulation of the finite-element model developed below is
presented to show how a long-timestep formulation of the mass balance
portion of the model can be achieved.
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9.9 Timestep Size and the “Tiling Instabil-

ity”

Huybrechts and others [in press] reported the effect of various schemes for
representing D the “effective diffusivity” on the finite-difference grids (see
Eqn. 9.12). Two classes of schemes were reported. Those designated Type I
had the property of conserving mass, but timesteps were required to be quite
small (order 10 years) to keep numerical instability at bay. Those designated
Type II did not conserve mass as well, but were advantageous in allowing
long timesteps (desireable in long time integrations in typical ice-sheet model
experiments).

A similar classification of schemes can be developed for the finite-element
method presented here. The scheme similar to Type I of the finite-difference
categories has been presented above. The effective diffusivity D is computed
as an element average, and used as a piecewise constant function in the
method of weighted residuals solution of Eqn. (12.13). The D was computed
in the Matlab script with the following statement:

diffbar(:)=grads2.*sbar.^5*3.169e-24*(rho*g)^3*2/5;

where grads2 and sbar are elemental averages of ∇s ·∇s and s, respectively.

We found that this scheme produced ice-sheet characteristics very similar
to those resulting from Type I finite-difference schemes. Indeed, the timestep
size necessary to maintain stability of the finite-element model using piece-
wise constant D had to be short, on the order of 5-10 years. (We make note
of the fact that mass is always conserved by the finite-element method as
defined by whatever scheme is used for the representation of D throughout
the domain.) When timestep size was greater than about 10 years, a “tiling
instability” developed in the piecewise constant D-field. A tiling instability
gets its name from the fact that the values of D alternate from high to low
from element to element, giving the pattern reminicient of an Italian fresco.

An alternative technique, somewhat comparable to the Type II class of
finite-difference schemes, is to smooth D by interpolating it to the nodes
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(using a 3-node triangle), then to integrate Eqn. (12.13) using a linear inter-
polation of D from the nodes to the Gaussian quadrature points (i.e., using
the linear interpolation polynomials Lj(x, y)). The Matlab code for this
alternative treatment is:

diffbar(:)=grads2.*sbar.^5*3.169e-24*(rho*g)^3*2/5;

diffnodes=zeros(nods,1);

totarea=zeros(nods,1);

for n=1:nel

totarea(index(n,:))=totarea(index(n,:))+area(n);

end

for n=1:nel

diffnodes(index(n,:))=diffnodes(index(n,:))+diffbar(n)*area(n);

end

diffnodes(:)=diffnodes(:)./totarea;

for gauss=1:7

diffgauss(:,gauss)=diffnodes(index(:,1)).*(gamma(:,1)+alpha(:,1).*xg(:,gauss)+beta(:,1).*yg(:,gauss)) ...

+ diffnodes(index(:,2)).*(gamma(:,2)+alpha(:,2).*xg(:,gauss)+beta(:,2).*yg(:,gauss)) ...

+ diffnodes(index(:,3)).*(gamma(:,3)+alpha(:,3).*xg(:,gauss)+beta(:,3).*yg(:,gauss)) ;

end

Type II Finite-Element Model Results

We shall call the above described scheme, in which the effective diffusivity
D is smoothed, a “Type II” scheme after the nomenclature used by Huy-
brechts and others [in press]. The results of this scheme are shown in Figs.
(9.12) - (9.16). The Type II scheme produces quite satisfactory mass-balance
results (the mass flux is actually smoother than that of the Type I scheme
near the ice-sheet margin). The temperature results for the Type II finite-
element method, however, depart significantly from those of the Type II
finite-difference results (e.g., basal temperature at the ice divide is about
2-degrees colder in the Type II finite-element results than in the Type II
finite-difference results) because the vertical velocity ω(ζ) is not computed
with sufficient accuracy in the Type II finite-element model. The main symp-
tom of the poor vertical velocity is that the base of the ice sheet below the
ice divide is about 3 C colder than in the Type I finite-element results. This
problem demonstrates the extreme sensitivity of ice-sheet temperature mod-
elling to the accuracy of vertical velocity.
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Figure 9.12: Horizontal mass flux along divide to side midpoint transect
using Type II finite-element model (in which effective diffusivity is smoothed
so to better take long timesteps).
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Figure 9.13: Ice thickness along divide to side midpoint transect using Type
II finite-element model (in which effective diffusivity is smoothed so to better
take long timesteps).
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Figure 9.14: Homologous temperature profiles using Type II finite-element
model (in which effective diffusivity is smoothed so to better take long
timesteps). Note that the basal temperature at the ice divide is consider-
ably cooler (by about 3 C) than that produced by the Type I finite-element
method. This difference is primarily due to the inaccuracy of vertical velocity
in the Type II finite-element method.
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Figure 9.15: Homologous basal temperature along divide to side midpoint
transect using Type II finite-element model (in which effective diffusivity is
smoothed so to better take long timesteps). Note that the basal temperature
at the ice divide is considerably cooler (by about 3 C) than that produced
by the Type I finite-element method. This difference is primarily due to the
inaccuracy of vertical velocity in the Type II finite-element method.
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Figure 9.16: Vertical velocity at ice divide using Type II finite-element model
(in which effective diffusivity is smoothed so to better take long timesteps).
Note that the curvature of ω(ζ) is reversed from that produced by the Type
I finite-element method. This difference is primarily due to the inaccuracy
of vertical velocity in the Type II finite-element method, and leads to colder
temperature at the bed in the Type II run.
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9.10 Matlab Code Used to Produce Finite-Element

Model Benchmark

To provide a record of the finite-element code employed in the model inter-
comparison benchmark developed here, and to provide an idea of how such
a finite-element model can be constructed, we list the Matlab code below.
Note that in this implimentation, the “upwind” artificial diffusion technique
is used to supress wiggles. A demonstration of SUPG is provided above.

% This code computes u, v and w for "inland ice" flow (Greve, 1995 and Payne, 1995)

%***************

%

% Designed to perform EISMINT level 1 test

%

%***************

dt=1000*31556926;

Phi=8.71e-4 /(917*9.81);% K Pa^-1 Payne, 1995 note error in Payne’s table

Phi=8.7e-4 /(917*9.81);

Tnot=273.15;

Rgas=8.31;

E=1.0; % figuring "glacial" in literature really means a narrow time period

rho=910;

g=9.81;

Ao=1e-16 *1/31556926;

fusion=3.35e5;

mantleconst=0;

rhomantle=3000;

icelev=21;

rocklev=2;

nlev=icelev+rocklev;

lowlayers=9;

lindex=[linspace(1,nlev-1,nlev-1)

linspace(2,nlev,nlev-1)]’;

nvel=nlev-1;

Adot=.3/31556926*ones(nods,1);

Bdot=zeros(nods,1);

Geoflux=0.042; % geothermal flux for Canadian rocks

krock=1.041e8/3.1559e7; % Heat conductivity of rock (from Huybrechts)

rhorock=2700; % My assumed density of surface rock (from my brain)

caprock=1000; % Huybrecht’s heat capacity of rock

kapparock=krock/rhorock/caprock;

kice=zeros(nods,icelev);
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capice=zeros(nods,icelev);

capicebar=zeros(nel,icelev);

melted=zeros(nods,1); % initially frozen

heatin=zeros(nods,1);

heatout=zeros(nods,1);

heatprod=zeros(nods,1);

hwater=zeros(nods,1);

% mass balance values

mb=zeros(nods,1); % Note, this is positive for freezing

ma=.3/3.1559e7*ones(nods,1);

% initial conditions

hs=1*ones(nods+nshadow,1).*mhs(:) + (~mhs); % Note, minimum ice thickness is 1 m

s=1*ones(nods,1).*ms(:) + (~ms);

radius=sqrt(x.^2+y.^2);

rockscale=50;

dzrock=rockscale/rocklev;

hb=zeros(nods+nshadow,1);

bnot=zeros(nods,1);

b=bnot; %

hb=zeros(nods+nshadow,1);

hbnot=hb;

%b=bnot-rho/rhomantle*(s-b);

%hb=hbnot-rho/rhomantle*(hs-hb);

T=zeros(nods,nlev);

dist=zeros(nods,1);

for n=1:nods

dist(n)=max([abs(x(n)) abs(y(n))]);

end

for n=1:nlev

T(:,n)=(239*ones(nods,1)+8e-8*(dist/1000).^3);

end

T(:,nlev)=(239*ones(nods,1)+8e-8*(dist/1000).^3);

theta=zeros(nlev*nods,1);

count=-nods+1;

for n=1:nlev

count=count+nods;

theta(count:count+nods-1)=T(:,n);

end

mt=ones(nods*nlev,1);

mt(((nlev-1)*nods+1):(nlev*nods))=zeros(nods,1);

load EismintT_initial.mat

load EismintH_initial.mat

dummy=logspace(-2,-1,lowlayers);

zetaice=[logspace(-2,-1,lowlayers)-dummy(1)*ones(1,lowlayers) linspace(.13,1,icelev-lowlayers) ]’;

%zetaice=linspace(0,1,icelev)’;
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for n=1:nel

dy(n)=max([abs(y(index(n,1))-y(index(n,2))) abs(y(index(n,1))-y(index(n,3))) ...

abs(y(index(n,2))-y(index(n,3)))]);

end

for n=1:nel

dx(n)=max([abs(x(index(n,1))-x(index(n,2))) abs(x(index(n,1))-x(index(n,3))) ...

abs(x(index(n,2))-x(index(n,3)))]);

end

dx=dx’;

dy=dy’;

% element to node interpolation:

value=zeros(nel*9,1);

row=zeros(nel*9,1);

col=zeros(nel*9,1);

count=-nel+1;

for m=1:3

for k=1:3

count=count+nel;

row(count:count+nel-1)=index(:,m);

col(count:count+nel-1)=index(:,k);

value(count:count+nel-1)=area.*( (m==k)/6 + (m~=k)/12 ).*ones(nel,1);

end

end

El2Nodes=sparse(row,col,value);

nactive=sum( ( mhs==1 ) );

nspec=nods+nshadow-nactive;

rowDI=zeros(nactive,1);

colDI=zeros(nactive,1);

valueDI=zeros(nactive,1);

rowcnt=0;

for n=1:nods+nshadow

if ( mhs(n)==1 )

rowcnt=rowcnt+1;

rowDI(rowcnt)=rowcnt;

colDI(rowcnt)=n;

valueDI(rowcnt)=1;

end

end

PDI=sparse(rowDI,colDI,valueDI,nactive,nods+nshadow);

clear rowDI colDI valueDI

% Let’s vectorize the filling of R:

row=zeros(nel*6*6*7,1);

col=ones(nel*6*6*7,1);

Rvalueperm=zeros(nel*6*6*7,1);

count=1-nel;

for m=1:6

for k=1:6

for gauss=1:7
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count=count+nel;

Rvalueperm(count:count+nel-1)= area(:).* ( GaussWeights(gauss).* ( (hgamma(:,m)+halpha(:,m).*xg(:,gauss) ...

+ hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 ...

+ hepsilon(:,m).*yg(:,gauss).^2 ...

+ hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) ...

.* (hgamma(:,k)+halpha(:,k).*xg(:,gauss) ...

+ hbeta(:,k).*yg(:,gauss) ...

+ hdelta(:,k).*xg(:,gauss).^2 ...

+ hepsilon(:,k).*yg(:,gauss).^2 ...

+ hphi(:,k).*xg(:,gauss).*yg(:,gauss) ) ) );

end

end

end

RTvalueperm=zeros(nel*3*3*icelev,1);

count=1-nel;

for lev=1:icelev

for m=1:3

for k=1:3

count=count+nel;

RTvalueperm(count:count+nel-1)= area(:).*( (m==k)/6 + (m~=k)/12 );

end

end

end

% Let’s reduce the computation of filling A:

rowperm=zeros(nel*36*7,1);

colperm=zeros(nel*36*7,1);

valueperm=zeros(nel*36*7,1);

valueperm2=zeros(nel*36*7,1);

count=-nel+1;

for m=1:6

for k=1:6

for gauss=1:7

count=count+nel;

rowperm(count:count+nel-1)=hindex(:,m);

colperm(count:count+nel-1)=hindex(:,k);

valueperm(count:count+nel-1)=area.*1/dt.* GaussWeights(gauss).* ( (hgamma(:,m)+halpha(:,m).*xg(:,gauss) + hbeta(:,m).*yg(:,gauss)

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 + hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) ...

.* (hgamma(:,k)+halpha(:,k).*xg(:,gauss) + hbeta(:,k).*yg(:,gauss) ...

+ hdelta(:,k).*xg(:,gauss).^2 + hepsilon(:,k).*yg(:,gauss).^2 + hphi(:,k).*xg(:,gauss).*yg(:,gauss) ) ) ;

valueperm2(count:count+nel-1)=area.*GaussWeights(gauss).*( (halpha(:,m) +2*hdelta(:,m).*xg(:,gauss) + hphi(:,m).*yg(:,gauss))

.* (halpha(:,k) + 2*hdelta(:,k).*xg(:,gauss) + hphi(:,k).*yg(:,gauss)) + ...

(hbeta(:,m) + 2*hepsilon(:,m).*yg(:,gauss) + hphi(:,m).*xg(:,gauss)) ...

.*(hbeta(:,k) + 2*hepsilon(:,k).*yg(:,gauss) + hphi(:,k).*xg(:,gauss)) ) ;

end

end

end

% Set up parsing matrix for thermodynamic step:
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nactive=sum( ( mt(rocklev*nods+1:nlev*nods)==1 ) );

nspec=icelev*nods-nactive;

rowTI=zeros(nactive,1);

colTI=zeros(nactive,1);

valueTI=zeros(nactive,1);

rowcnt=0;

for n=(rocklev*nods+1):(nlev*nods)

if ( mt(n)==1 )

rowcnt=rowcnt+1;

rowTI(rowcnt)=rowcnt;

colTI(rowcnt)=n-rocklev*nods;

valueTI(rowcnt)=1;

end

end

PTI=sparse(rowTI,colTI,valueTI,nactive,icelev*nods);

clear rowTI colTI valueTI

I=zeros(nel,icelev);

udefbar=zeros(nel,icelev);

vdefbar=zeros(nel,icelev);

uslidebar=zeros(nel,1);

vslidebar=zeros(nel,1);

uelnodes=zeros(nel,3);

velnodes=zeros(nel,3);

u=zeros(nods,icelev);

v=zeros(nods,icelev);

div=zeros(nel,icelev); % calculated from high-order surface parameterization

w=zeros(nel,icelev);

wnodes=zeros(nods,icelev);

upwind=zeros(nel,icelev);

upwindnodes=zeros(nods,icelev);

diffgauss=zeros(nel,7);

Qnodes=zeros(nods,icelev);

diffbarold=zeros(nel,1);

Tbar=zeros(nel,icelev);

Abar=zeros(nel,icelev);

Tpmpbar=zeros(nel,icelev);

THbar=zeros(nel,icelev);

dz=zeros(nel,icelev-1);

% Time-stepping portion of code:

for n=1:icelev

kice(:,n)=2.1*ones(nods,1);

capice(:,n)=2009*ones(nods,1);

capicebar(:,n)=2009*ones(nel,1);

end
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nsteps=200;

massstep=0;

thermstep=1;

advection=1;

for timestep=1:nsteps

[timestep (timestep-1)*dt/3.1559e7 T(1039,rocklev+1)-Tnot T(963,rocklev+1)-Tnot max(s) ]

sbar=zeros(nel,1);

bbar=zeros(nel,1);

sxbar=zeros(nel,1);

sybar=zeros(nel,1);

sxnodes=zeros(nel,3);

synodes=zeros(nel,3);

grads2=zeros(nel,1);

sgauss=zeros(nel,7);

bgauss=zeros(nel,7);

grads2gauss=zeros(nel,7);

grads2nodes=zeros(nel,3);

for gauss=1:7

for m=1:6

sbar(:)=sbar(:)+GaussWeights(gauss).*(hgamma(:,m)+halpha(:,m).*xg(:,gauss) + hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 + hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hs(hindex(:,m));

bbar(:)=bbar(:)+GaussWeights(gauss).*(hgamma(:,m)+halpha(:,m).*xg(:,gauss) + hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 + hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hb(hindex(:,m));

sxbar(:)=sxbar(:)+GaussWeights(gauss).*(halpha(:,m) ...

+ 2*hdelta(:,m).*xg(:,gauss) + hphi(:,m).*yg(:,gauss) ) .* hs(hindex(:,m));

sybar(:)=sybar(:)+GaussWeights(gauss).*( hbeta(:,m) ...

+ 2*hepsilon(:,m).*yg(:,gauss) + hphi(:,m).*xg(:,gauss)) .* hs(hindex(:,m));

sgauss(:,gauss)=sgauss(:,gauss)+(hgamma(:,m)+halpha(:,m).*xg(:,gauss) + hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 + hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hs(hindex(:,m));

bgauss(:,gauss)=bgauss(:,gauss)+(hgamma(:,m)+halpha(:,m).*xg(:,gauss) + hbeta(:,m).*yg(:,gauss) ...

+ hdelta(:,m).*xg(:,gauss).^2 + hepsilon(:,m).*yg(:,gauss).^2 + hphi(:,m).*xg(:,gauss).*yg(:,gauss) ) .* hb(hindex(:,m));

end

end

%for m=1:3

%sxbar(:)=sxbar(:)+s(index(:,m)).*alpha(:,m);

%sybar(:)=sybar(:)+s(index(:,m)).*beta(:,m);

%sbar(:)=sbar(:)+s(index(:,m))/3;

%end

%for l=1:3

%for k=1:3

%grads2(:)=grads2(:)+s(index(:,k)).*s(index(:,l)).*...

%(alpha(:,l).*alpha(:,k)+beta(:,l).*beta(:,k));

%end

%end
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for gauss=1:7

for m=1:6

for k=1:6

grads2(:)=grads2(:)+GaussWeights(gauss).*( (halpha(:,m)+2*hdelta(:,m).*xg(:,gauss)+hphi(:,m).*yg(:,gauss)) ...

.*(halpha(:,k)+2*hdelta(:,k).*xg(:,gauss)+hphi(:,k).*yg(:,gauss)) ...

+ (hbeta(:,m)+2*hepsilon(:,m).*yg(:,gauss)+hphi(:,m).*xg(:,gauss)) ...

.*(hbeta(:,k)+2*hepsilon(:,k).*yg(:,gauss)+hphi(:,k).*xg(:,gauss)) ).*hs(hindex(:,m)).*hs(hindex(:,k));

grads2gauss(:,gauss)=grads2gauss(:,gauss)+( (halpha(:,m)+2*hdelta(:,m).*xg(:,gauss)+hphi(:,m).*yg(:,gauss)) ...

.*(halpha(:,k)+2*hdelta(:,k).*xg(:,gauss)+hphi(:,k).*yg(:,gauss)) ...

+ (hbeta(:,m)+2*hepsilon(:,m).*yg(:,gauss)+hphi(:,m).*xg(:,gauss)) ...

.*(hbeta(:,k)+2*hepsilon(:,k).*yg(:,gauss)+hphi(:,k).*xg(:,gauss)) ).*hs(hindex(:,m)).*hs(hindex(:,k));

end

end

end

for lev=1:icelev-1

dz(:,lev)=(sbar-bbar)*(zetaice(lev+1)-zetaice(lev)); % note that this is an average over the element

end

for n=1:icelev

Tbar(:,n)=(T(index(:,1),n+rocklev)+T(index(:,2),n+rocklev)+T(index(:,3),n+rocklev))/3;

Tpmpbar(:,n)=Tnot*ones(nel,1)-rho*g*(sbar-bbar)*(1-zetaice(n))*Phi;

THbar(:,n)=Tbar(:,n)-Tpmpbar(:,n)+Tnot*ones(nel,1);

% Huybrecht’s flow law parameterization:

%Abar(:,n)=((1.14e-5/3.1559e7)*(Tbar(:,n)<(263*ones(nel,1))) + (5.47e10/3.1559e7)*(Tbar(:,n)>=(263*ones(nel,1)))) ...

% .*exp( (-6.0e4*(Tbar(:,n)<(263*ones(nel,1))) - 13.9e4*(Tbar(:,n)>=(263*ones(nel,1))))./(Rgas*THbar(:,n)));

Abar(:,n)=3.1689e-24*ones(nel,1);

end

diffbar=zeros(nel,1);

for n=2:icelev

I(:,n)=E*grads2.*(Abar(:,n-1)+Abar(:,n))/2*((rho*g)^2) ...

.*(((sbar-bbar).*(1-zetaice(n-1))).^3 + ((sbar-bbar).*(1-zetaice(n))).^3).*dz(:,n-1)/2 + I(:,n-1);

udefbar(:,n)= -2*rho*g*I(:,n).*sxbar;

vdefbar(:,n)= -2*rho*g*I(:,n).*sybar;

%diffbar(:)=diffbar(:)+2*rho*g*(I(:,n-1)+I(:,n))/2.*dz(:,n-1);

end

%diffbar(:)=diffbar(:)+rho*g*(sbar-bbar).^2.*1.5843e-10.*(Tbar(:,1)>=Tpmpbar(:,1));

diffbar(:)=grads2.*sbar.^5*3.169e-24*(rho*g)^3*2/5; % Use this expression for EISMINT exact analytical test

diffnodes=zeros(nods,1);

totarea=zeros(nods,1);

for n=1:nel

totarea(index(n,:))=totarea(index(n,:))+area(n);

end

for n=1:nel

diffnodes(index(n,:))=diffnodes(index(n,:))+diffbar(n)*area(n);

end

diffnodes(:)=diffnodes(:)./totarea;
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%if timestep>1

%diffbar=.1*diffbar+.9*diffbarold;

%end

%convergence=[mean(diffbar) mean(diffbarold) max(diffbar) max(diffbarold)]

%diffbarold=diffbar;

Qbar=zeros(nel,icelev);

for n=1:icelev-1

Qbar(:,n)=2*(rho*g)^4*E*Abar(:,n).*grads2.^2.*(sbar*(1-zetaice(n))).^4; % check the leading 2

end

Qbar(:,1)=Qbar(:,1)-(uslidebar(:).*sxbar + vslidebar(:).*sybar).*(sbar-bbar)*rho*g;

Qnodes=zeros(nods,icelev);

totarea=zeros(nods,1);

for n=1:nel

totarea(index(n,:))=totarea(index(n,:))+area(n);

end

for lev=1:icelev-1

for n=1:nel

Qnodes(index(n,:),lev)=Qnodes(index(n,:),lev)+Qbar(n,lev)*area(n);

end

Qnodes(:,lev)=Qnodes(:,lev)./totarea;

end

%melted= ( (T(:,rocklev+1)>=(Tnot*ones(nods,1)-rho*g*(s-b)*Phi)) & (Bdot>=zeros(nods,1)) );

melted=(T(:,rocklev+1)>=(Tnot*ones(nods,1)-rho*g*(s-b)*Phi));

heatin=-krock*(T(:,rocklev+1)-T(:,rocklev))/dzrock;

heatout=-(kice(:,2)+kice(:,1))./2.*(T(:,rocklev+2)-T(:,rocklev+1))./( (s(:)-b(:))*(zetaice(2)-zetaice(1)) );

Bdot=((heatin-heatout)/rho/fusion).*melted;

mb=-Bdot;

mabar(:)=(Adot(index(:,1))+Adot(index(:,2))+Adot(index(:,3)))/3;

mbbar(:)=-(Bdot(index(:,1))+Bdot(index(:,2))+Bdot(index(:,3)))/3; % Bdot is a melt rate, mbbar is a freeze rate

for n=1:icelev

div(:,n)=2*( hs(hindex(:,1)).*hdelta(:,1)+ ...

hs(hindex(:,2)).*hdelta(:,2)+ ...

hs(hindex(:,3)).*hdelta(:,3)+ ...

hs(hindex(:,4)).*hdelta(:,4)+ ...

hs(hindex(:,5)).*hdelta(:,5)+ ...

hs(hindex(:,6)).*hdelta(:,6)+ ...

hs(hindex(:,1)).*hepsilon(:,1)+ ...

hs(hindex(:,2)).*hepsilon(:,2)+ ...

hs(hindex(:,3)).*hepsilon(:,3)+ ...

hs(hindex(:,4)).*hepsilon(:,4)+ ...

hs(hindex(:,5)).*hepsilon(:,5)+ ...

hs(hindex(:,6)).*hepsilon(:,6)) ...

.* (-2*rho*g*I(:,n) ) ;

end
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%diffgauss=zeros(nel,7);

%for gauss=1:7

%for n=2:icelev % Warning: not adjusted for FEM vertical spacing yet

%I(:,n)=E*grads2gauss(:,gauss).*(Abar(:,n-1)+Abar(:,n))/2*((rho*g)^2) ...

% .*((sgauss(:,gauss)-bgauss(:,gauss)-dzgauss(:,gauss)*(n-2)).^3 + (sbar(:,gauss)-bbar(:,gauss)-dzgauss(:,gauss)*(n-1)).^3).*dzgauss(:,gauss)/2

%diffgauss(:,gauss)=diffbargauss(:,gauss)+2*rho*g*(I(:,n-1)+I(:,n))/2.*dzgauss(:,gauss);

%end

%diffgauss(:,gauss)=diffbargauss(:,gauss)+rho*g*(sgauss(:,gauss)-bgauss(:,gauss)).^2.*1.5843e-10.*(Tbar(:,1)>=Tpmpbar(:,1));

%end

%for gauss=1:7

%diffgauss(:,gauss)=grads2gauss(:,gauss).*sgauss(:,gauss).^5*3.169e-24.*ones(nel,1)*(rho*g)^3*2/5;

%end

% The I calculated above is for gauss points.

for gauss=1:7

diffgauss(:,gauss)=diffnodes(index(:,1)).*(gamma(:,1)+alpha(:,1).*xg(:,gauss)+beta(:,1).*yg(:,gauss)) ...

+ diffnodes(index(:,2)).*(gamma(:,2)+alpha(:,2).*xg(:,gauss)+beta(:,2).*yg(:,gauss)) ...

+ diffnodes(index(:,3)).*(gamma(:,3)+alpha(:,3).*xg(:,gauss)+beta(:,3).*yg(:,gauss)) ;

end

% Computation of the "D-term"

Intdiv=zeros(nel,icelev);

Dterm=zeros(nel,icelev);

Vertvel=zeros(nel,icelev);

for n=2:icelev

Intdiv(:,n)=Intdiv(:,n-1)+(div(:,n-1)+div(:,n))/2*(zetaice(n)-zetaice(n-1));

Vertvel(:,n)=Vertvel(:,n-1)-(div(:,n-1)+div(:,n))/2.*dz(:,n-1);

end

w=zeros(nods,icelev);

upwind=zeros(nods,icelev);

for n=2:icelev

Dterm(:,n)=(sbar-bbar).*( zetaice(n).*Intdiv(:,icelev) - Intdiv(:,n) ); % ERROR found here!

end

Dtermnodes=zeros(nods,icelev);

totarea=zeros(nods,1);

for n=1:nel

totarea(index(n,:))=totarea(index(n,:))+area(n);

end

for lev=1:icelev

for n=1:nel

Dtermnodes(index(n,:),lev)=Dtermnodes(index(n,:),lev)+Dterm(n,lev)*area(n);

end

Dtermnodes(:,lev)=Dtermnodes(:,lev)./totarea;

end

for n=1:icelev

w(:,n)=(Dtermnodes(:,n) - zetaice(n)*Adot + 0*(1-zetaice(n))*Bdot); % Error found here
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upwind(:,n)=(w(:,n)>0); % defines a logical variable to determine upwinding scheme, if used

end

if massstep

value=zeros(nel*36*7,1);

count=-nel+1;

for m=1:6

for k=1:6

for gauss=1:7

count=count+nel;

value(count:count+nel-1)=valueperm(count:count+nel-1)+diffgauss(:,gauss).*valueperm2(count:count+nel-1);

end

end

end

A=sparse(rowperm,colperm,value,nods+nshadow,nods+nshadow);

clear value

Aprime=PDI*A*PDI’;

value=zeros(nel*6*6*7,1);

count=1-nel;

for m=1:6

for k=1:6

for gauss=1:7

count=count+nel;

value(count:count+nel-1)= (hs(hindex(:,k))/dt+0.3/31556926).* Rvalueperm(count:count+nel-1);

end

end

end

R=sparse(rowperm,ones(nel*36*7,1),value,nods+nshadow,1);

Rprime=PDI*(R-A*(hs.*(~mhs))); % remember to have current boundary conditions specified in theta

hsprime=Aprime\Rprime;

hs=PDI’*hsprime+hs.*(~mhs);

s=hs(1:nods);

end

% Thermodynamic time step

if thermstep

if advection

ncycles=9*(icelev-1)*nel;
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row=zeros(ncycles,1);

col=zeros(ncycles,1);

value=zeros(ncycles,1);

count=-nel+1;

for lev=1:(icelev-1)

for m=1:3

for k=1:3

count=count+nel;

row(count:count+nel-1)=(lev-1)*nods*ones(nel,1)+index(:,m);

col(count:count+nel-1)=(lev-1)*nods*ones(nel,1)+index(:,k);

value(count:count+nel-1)=dt*area.*( ( (m==k)/6 + (m~=k)/12 )/dt ...

+ abs(udefbar(:,lev) +uslidebar(:)).*dx(:).*alpha(:,m).*alpha(:,k)/2 ...

+ abs(vdefbar(:,lev) +vslidebar(:)).*dy(:).*beta(:,m).*beta(:,k)/2 ...

+ (udefbar(:,lev)/3 +uslidebar(:)/3).*alpha(:,k) ...

+ (vdefbar(:,lev)/3 +vslidebar(:)/3).*beta(:,k) );

end

end

end

AT=sparse(row,col,value,icelev*nods,icelev*nods);

ATprime=PTI*AT*PTI’;

row=zeros(nel*9*icelev,1);

col=ones(nel*9*icelev,1);

value=zeros(nel*9*icelev,1);

count=1-nel;

for lev=1:icelev

for m=1:3

for k=1:3

count=count+nel;

row(count:count+nel-1)=(lev-1)*nods+index(:,m);

value(count:count+nel-1)= RTvalueperm(count:count+nel-1).*theta(rocklev*nods+(lev-1)*nods+index(:,k));

end

end

end

R=sparse(row,ones(nel*9*icelev,1),value,icelev*nods,1);

Rprime=PTI*(R-AT*(theta(rocklev*nods+1:nlev*nods).*(~mt(rocklev*nods+1:nlev*nods)))); % remember to have current boundary

thetaprime=ATprime\Rprime;

theta(rocklev*nods+1:nlev*nods)=PTI’*thetaprime+theta(rocklev*nods+1:nlev*nods).*(~mt(rocklev*nods+1:nlev*nods));

count=rocklev*nods-nods+1;

for n=rocklev+1:nlev

count=count+nods;

T(:,n)=theta(count:count+nods-1);

end

end % end advection part of code

% Now for vertical part of the thermal time step:
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% Begin tridiagonal part of code:

for nod=1:nods

dzice=(s(nod)-b(nod))/(icelev-1);

zeta=[linspace(-rockscale/(s(nod)-b(nod)),-rockscale/(s(nod)-b(nod))/rocklev,rocklev) zetaice’]’;

al=zeros(nvel,2);

dl=zeros(nvel,1);

for n=1:nvel

X=[zeta(n) 1

zeta(n+1) 1];

phi=inv(X);

al(n,:)=phi(1,:);

dl(n)=zeta(n+1)-zeta(n);

end

K=zeros(nvel,2);

K(:,1)=[krock*ones(rocklev,1)

kice(nod,1:icelev-1)’];

K(:,2)=[krock*ones(rocklev-1,1)

kice(nod,1:icelev)’];

K(rocklev,:)=[krock krock];

invcaprho=zeros(nvel,2);

invcaprho(:,1)=[1./rhorock./caprock.*ones(rocklev,1)

1./rho./capice(nod,1:icelev-1)’];

invcaprho(:,2)=[1./rhorock./caprock.*ones(rocklev-1,1)

1./rho./capice(nod,1:icelev)’];

invcaprho(rocklev,:)=[1/rhorock/caprock 1/rhorock/caprock];

W=[zeros(1,rocklev) w(nod,:)];

W=[W(1:nvel)

W(2:nlev)]’;

Q=[zeros(1,rocklev) Qnodes(nod,:)./rho./capice(nod,:)];

Q=[Q(1:nvel)

Q(2:nlev)]’;

Q(rocklev,:)=[0 0];

W(rocklev,:)=[0 0];

rowline=zeros(nvel*4,1);

colline=zeros(nvel*4,1);

value=zeros(nvel*4,1);

count=-nvel+1;

for i=1:2

for j=1:2

count=count+nvel;

rowline(count:count+nvel-1)=lindex(:,i);

colline(count:count+nvel-1)=lindex(:,j);
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value(count:count+nvel-1)=dl.*( ((i==j)/3 + (i~=j)/6)/dt*ones(nvel,1) + ...

(W(:,1).*( (i==1)/3 + (i~=1)/6 ).*al(:,j) ...

+ W(:,2).*( (i==2)/3 + (i~=2)/6 ).*al(:,j) )/(s(nod)-b(nod)) );

for l=1:2

for k=1:2

value(count:count+nvel-1)=value(count:count+nvel-1)+ ...

dl.*( K(:,l).*invcaprho(:,k).*al(:,i).*al(:,j)/(s(nod)-b(nod)).^2.*( (l==k)/3 + (l~=k)/6) ...

+ K(:,l).*invcaprho(:,k).*al(:,k).*al(:,j)/(s(nod)-b(nod)).^2.*( (l==i)/3 + (l~=i)/6) );

end

end

end

end

A=sparse(rowline,colline,value);

A(nlev,nlev)=1;

A(nlev,nlev-1)=0;

A(1,1)=-1;

A(1,2)=1;

A(rocklev+1,rocklev)=0;

A(rocklev+1,rocklev+1)=-1;

A(rocklev+1,rocklev+2)=1;

if (melted(nod))

A(rocklev+1,rocklev)=0;

A(rocklev+1,rocklev+1)=1;

A(rocklev+1,rocklev+2)=0;

end

count=-nvel+1;

for i=1:2

for j=1:2

count=count+nvel;

value(count:count+nvel-1)=dl.*( T(nod,lindex(:,j))’.*((i==j)/3 + (i~=j)/6)/dt + ...

Q(:,j).*( (i==j)/3 + (i~=j)/6 ) );

end

end

R=sparse(rowline,ones(nvel*4,1),value);

R(1)=-Geoflux/krock*dzrock;

R(nlev)=T(nod,nlev);

R(rocklev+1)=-Geoflux/kice(nod,1)*(s(nod)-b(nod))*(zetaice(2)-zetaice(1));

if (melted(nod))

R(rocklev+1)=Tnot-rho*g*(s(nod)-b(nod))*Phi;

end

T(nod,:)=(A\R)’;

end % end loop over nods.

% reconstruct theta:

count=0;

for lev=1:nlev

for n=1:nods

count=count+1;
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theta(count)=T(n,lev);

end

end

end % end thermal part

end % end time step

%diagnostics

veldefbar=sqrt( (uslidebar(:)+udefbar(:,icelev)).^2 + (vslidebar(:)+vdefbar(:,icelev)).^2);

figure(1)

clg

axis([-755e3 755e3 -755e3 755e3]),axis(’image’),shading flat,hold on,colormap(’jet’)

for n=1:nel

fill(x(index(n,:)),y(index(n,:)),T(index(n,:),rocklev+1))

end

for n=1:nods

if (ms(n)==0)

plot(x(n),y(n),’wo’)

end

end

title(’basal temperature’)

plot(x(216),y(216),’bo’)

plot(x(215),y(215),’ro’)

figure(2)

clg

subplot(1,2,1)

axis([-750e3 750e3 -750e3 750e3]),axis(’image’),shading flat,hold on,colormap(’jet’)

for n=1:nel

fill(x(index(n,:)),y(index(n,:)),s(index(n,:)))

end

title(’surface’)

subplot(1,2,2)

axis([-750e3 750e3 -750e3 750e3]),axis(’image’),shading flat,hold on, %,caxis([-1 2])

for n=1:nel

%fill(x(index(n,:)),y(index(n,:)),melted(index(n,:)))

fill(x(index(n,:)),y(index(n,:)),diffnodes(index(n,:)))

%fill(x(index(n,:)),y(index(n,:)),diffbar(n))

end

title(’diffbar’)

figure(3)

clg

subplot(4,1,1)

axis([0 max(radius) -100 max(s)]), hold on

plot(radius,s,’r+’)

plot(radius,b,’b.’)

title(’surface profile’)
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xlabel(’radius’)

ylabel(’thickness’)

subplot(4,1,2)

axis([0 800e3 0 3.1559e7*max(veldefbar)]), hold on

plot((radius(index(:,1))+radius(index(:,2))+radius(index(:,3)))/3,3.1559e7*veldefbar(:),’ro’)

title(’surface x-velocity (elemental)’)

subplot(4,1,3)

axis([0 max(radius) min(div(:,icelev))/1 max(div(:,icelev))/1]), hold on

%plot((radius(index(:,1))+radius(index(:,2))+radius(index(:,3)))/3,3.1559e7*sqrt(udefbar(:,icelev).^2+vdefbar(:,icelev).^2),’ro’)

%title(’surface velocity (elemental)’)

plot((radius(index(:,1))+radius(index(:,2))+radius(index(:,3)))/3,div(:,icelev),’ro’)

title(’surface divergence (elemental)’)

subplot(4,1,4)

axis([0 max(radius) min(T(:,rocklev+1)) max(T(:,rocklev+1))]), hold on

plot(radius,T(:,rocklev+1),’r+’)

title(’ base temperature’)

%axis([0 max(radius) min(T(:,nlev)) max(T(:,nlev))]), hold on

%plot(radius,T(:,nlev),’r+’)

%title(’ surface temperature’)

figure(4)

clg

subplot(3,2,1)

axis([0 31556926*veldefbar(1773) 0 sbar(1773)]),hold on

plot(31556926*sqrt((uslidebar(1773)+udefbar(1773,:)).^2 +(vslidebar(1773)+vdefbar(1773,:)).^2),zetaice’*sbar(1773),’w-’)

plot(31556926*sqrt((uslidebar(1773)+udefbar(1773,:)).^2 +(vslidebar(1773)+vdefbar(1773,:)).^2),zetaice’*sbar(1773),’wo’)

title(’horizontal velocity at midpoint’)

subplot(3,2,2)

axis([31556926*min(Vertvel(1928,:)) 31556926*max(Vertvel(1928,:)) 0 sbar(1928)]),hold on

plot(31556926*Vertvel(1928,:),zetaice’*sbar(1928),’w-’)

plot(31556926*Vertvel(1928,:),zetaice’*sbar(1928),’wo’)

title(’vertical velocity in z-coordinate at divide element’)

%axis([31556926*min(w(1039,:)) 31556926*max(w(1039,:)) 0 s(1039)]),hold on

%plot(31556926*w(1039,:),linspace(0,s(1039),icelev),’w-’)

%title(’vertical velocity in z-coordinate at divide node’)

subplot(3,2,3)

axis([min(T(1039,:)) max(T(1039,:)) -rockscale s(1039)]),hold on

plot(T(1039,:),[ linspace(-rockscale,-rockscale/rocklev,rocklev) zetaice’*s(1039)],’w-’)

plot(T(1039,:),[ linspace(-rockscale,-rockscale/rocklev,rocklev) zetaice’*s(1039)],’wo’)

title(’temperature at ice divide’)

subplot(3,2,4)

axis([min((T(974,:)+T(974,:))/2) max((T(974,:)+T(974,:))/2) -50 (s(974)+s(974))/2]),hold on

plot((T(974,:)+T(974,:))/2,[ linspace(-rockscale,-rockscale/rocklev,rocklev) zetaice’*s(974)],’w-’)

plot((T(974,:)+T(974,:))/2,[ linspace(-rockscale,-rockscale/rocklev,rocklev) zetaice’*s(974)],’wo’)

title(’temperature at midpoint’)

subplot(3,2,5)

%axis([31556926*min(Vertvel(1773,:)) 31556926*max(Vertvel(1773,:)) 0 sbar(1773)]),hold on

%plot(31556926*Vertvel(1773,:),linspace(0,sbar(1773),icelev),’w-’)

%title(’vertical velocity in z-coordinate at midpoint element’)

axis([31556926*min(w(963,:)) 31556926*max(w(963,:)) 0 s(963)]),hold on

plot(31556926*w(963,:),zetaice’*s(963),’w-’)

plot(31556926*w(963,:),zetaice’*s(963),’wo’)

title(’vertical velocity in zeta-coordinate at divide node’)

subplot(3,2,6)
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axis([min(Dterm(1940,:)) max(Dterm(1940,:)) 0 sbar(1940)]),hold on

plot(Dterm(1940,:),zetaice*sbar(1940),’w-’)

plot(Dterm(1940,:),zetaice*sbar(1940),’wo’)

title(’Dterm at divide m/s’)

for n=rocklev+1:nlev

Tp(:,n-rocklev)=Tnot*ones(nods,1)-rho*g*(s-b).*(1-zetaice(n-rocklev))*Phi;

TH(:,n-rocklev)=T(:,n)-Tp(:,n-rocklev);

%TH(:,n-rocklev)=T(:,n)-Tnot*ones(nods,1);

end

figure(5)

clg

subplot(1,2,1)

axis([min(TH(962,:)) max(TH(962,:))+20 0 s(962)]),hold on

plot(TH(962,:),zetaice’*s(962),’y-’)

plot(TH(962,:),zetaice’*s(962),’ro’)

tmelt=-rho*g*s(962)*Phi;

plot([tmelt tmelt],[-rockscale (s(962)+s(962))/2],’g-’)

plot([min((TH(962,:)+TH(962,:))/2) max((TH(962,:)+TH(962,:))/2)],[0 0],’g-’)

title(’temperature at midpoint’)

subplot(1,2,2)

axis([min(TH(1039,:)) max(TH(1039,:))+20 0 s(1039)]),hold on

plot(TH(1039,:),zetaice’*s(1039),’y-’)

plot(TH(1039,:),zetaice’*s(1039),’ro’)

tmelt=-rho*g*s(1039)*Phi;

plot([tmelt tmelt],[-rockscale s(1039)],’g-’)

plot([min(TH(1039,:)) max(TH(1039,:))],[0 0],’g-’)

title(’temperature at divide’)
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Chapter 10

Ice Sheet Thermodynamics:
Mixed (Cold and Temperate)
Ice Conditions

In circumstances where the strain heating term W is zero, ice temperature
can reach a maximum only at the upper or lower boundary. The pressure-
melting temperature, if attained anywhere, is attained only at the base of
the ice sheet or glacier (or surface, in warm climates). With strain heating
present, a temperate (melted) ice layer of finite thickness can be developed.
When this happens, the ice sheet or glacier is said to be polythermal (i.e., of
mixed cold and temperate constitution). Modelling the thermal evolution of
a polythermal ice sheet or glacier is complicated because boundary conditions
at the cold/temperate ice transition(s) can offer practical difficulties. In some
circumstances (when ice from the cold side moves through the transition to
the temperate side), for example, both a temperature and a temperature
gradient are specified at the cold/temperate ice transition.

In this chapter, techniques are described for predicting the evolution of
certain, restricted classes of polythermal ice sheets. In particular, we shall
develop a 1-dimensional (vertical heat transfer only) ice-column model of a
polythermal ice sheet (with appropriate simplifying assumptions) to illustrate
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the methods for predicting the development of a basal temperate-ice layer in
circumstances where the upper boundary of the temperate-ice layer consti-
tutes the only cold/temperate transition point. (Circumstances in which the
temperate-ice layer has a lower boundary above the base of the ice column
are not considered.) The techniques illustrated in the 1-dimensional model
developed here are intended to be readily adapted to the 3-dimensional ther-
modynamic model discussed in the previous chapter.

Excellent treatments of the theoretical and numerical analysis of poly-
thermal ice conditions are provided by Fowler [1984], Hutter and others
[1988] and Greve [1995]. A numerical analysis of observed polythermal ice
conditions in the Jacobshavns Isbrae, Greenland, is provided by Funk and
others [1994]. The development presented here is based on these previous
studies and differs only in several technical aspects (e.g., here we use a finite-
element formulation of vertical heat flow, a stretched vertical coordinate that
spans the cold-ice layer, and a control method to determine the cold-ice to
temperate-ice transition rate in circumstances when ice movement through
the cold/temperate ice transition is from the cold side to the melted side).

10.1 A Simple Illustrative Problem

To describe the governing equations in a manner that is complementary to
the comprehensive work of Hutter and others [1988], we shall adopt a time-
evolution point of view and focus on temporal transition points when the
governing equations and their boundary conditions shift from one form to
another. We begin by setting up a simple (idealized) 1-dimensional, initial-
value problem for heat flow in a single ice column (which, as mentioned
previously, may be modified for inclusion within a more comprehensive, 3-
dimensional ice sheet).

Ice-column geometry is depicted in Figure (10.1). The vertical coordinate,
z, ranges from the bed, at z = b, to the surface, at z = s. Both s and b are
assumed to be constant, i.e., the vertical strain rate is assumed to compensate
for snow accumulation and basal melting so as to simplify the ice-column
geometry. If a cold/temperate ice transition exists, its location is z = c(t).
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Cold ice is assumed to exist above z = c(t) and temperate ice is assumed
to exist below z = c(t). More complicated geometries, where the temperate
ice is confined between two (or more) levels above the bed, is not considered
in this chapter. (A temperate ice layer could occur within cl(t) ≤ z ≤ cu(t)
if, for example, thermal inertia of the bedrock below the ice keeps a thin
zone of basal ice below the melting temperature while strain heating warms
ice above to the melting point.) Following convention, a stretched vertical
coordinate, ζ which spans the ice column is defined:

ζ =
z − b

s− b
(10.1)

When c(t) 6= b, a second stretched vertical coordinate which spans the cold-
ice layer is defined:

ζc =
z − c(t)

s− c(t)
(10.2)

as depicted in Figure (10.1). Below the ice, within the region r ≤ z ≤ b, a
bedrock layer of fixed thickness (b − r) is considered. All notation, unless
otherwise stated, is the same as that used in Chapter 9.

The temperature field, T (z, t), and the liquid-water fraction µ(z, t) (de-
fined as volume of water per unit volume of ice/water mixture), within the
ice and bedrock region, r ≤ z ≤ s, is to be determined for t ≥ 0, where t is
time. Boundary conditions are applied at z = s and z = r:

T (s, t) = Ts < 0 (10.3)

Tz(r, t) =
−G
kr

(10.4)

where G is the geothermal flux, kr is the thermal conductivity of bedrock,
and the subscript z denotes partial differentiation with respect to z. Initial
conditions are isothermal below the melting point:

T (z, 0) = Ts (10.5)

µ(z, 0) = 0 (10.6)

for the region r ≤ z ≤ s.
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Figure 10.1: Idealized ice-column geometry. Stretched vertical coordinates ζ
and ζc span the ice column and the cold-ice layer, respectively.
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To simplify the illustration of polythermal ice modelling techniques, we
shall adopt the following representation of the vertical ice velocity and strain
heating:

w(ζ, t) = −Ȧζ − Ḃ(1− ζ) (10.7)

W =





G
20 exp (−5ζ) if t < th

0 if t ≥ th

(10.8)

for b ≤ z ≤ s, and where Ȧ is the snow accumulation rate (assumed positive),
Ḃ is the basal melting rate (positive for melting, negative for freezing, in
meters of ice equivalent), and where the constants 20 and 5 appearing in
Eqn. (10.8) are chosen arbitrarily to produce a reasonable example of strain
heating (scaled to the geothermal flux) which decays upward from the bed.
The strain-heating function W is chosen to permit the development and
upward growth of a temperate ice layer during the time prior to t = th. The
strain-heating cutoff time, th, is chosen to permit the temperate ice layer to
decay and eventually disappear when t > th. An additional simplification
useful for the present illustration is that ice thickness, h = (s−b), is assumed
constant (i.e., vertical strain adjusts with changes in Ȧ and Ḃ).

Constants used in the simple, illustrative problem are listed as follows:
parameter value

Ȧ 0.3 m a−1

k 2.1 W m−1 K−1

c 2009 J kg−1 K−1

To 273.15 K
Φ 8.7× 10−4 K m−1

G 42 mW m−2

31556926 s a−1

r 10 m
th 1500 a

Other constants not listed above are the

same as those listed in the previous chapter describing the EISMINT Level
1 experiment.
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10.2 Conceptual Description of Polythermal

Temperature Evolution

The goal is to determine the effects of down-gradient heat conduction (advec-
tion is not emphasized here, even though it is an equally important process)
and strain heating on the temperature and liquid water content of the ice
column. For cold ice, a heat diffusion equation is used to determine the
evolution of T (z, t). Analysis and numerical techniques associated with heat
diffusion in cold ice is presented in previous chapters, so will not be discussed
further here.

For temperate ice, T (z, t) is not a freely evolving variable, but rather is a
constrained variable. The pressure-melting condition defines temperate ice,
T (z, t) = Tm(z; s(t), ρ(z, t)) (note: variables appearing after the semicolon
denote parameters which implicitly determine the pressure at level z and
thus the pressure-melting temperature). Without freedom to vary T (z, t) in
the temperate ice layer, heat produced by strain heating is used to melt ice
and create a liquid water content (typically, on the order of several percent,
see Hutter and others, 1988). The liquid water content is denoted by the
variable µ(z, t). This variable is taken here to be an “ice-equivalent” volume
mixing ratio, and is nondimensional. For example, µ = 0.01 indicates that
1% of the ice in a given cubic meter is melted. Ice with µ > 0 possesses a
reservior of latent heat given by ρLfµ, where ρ is ice density and Lf is the
latent heat of fusion for a kilogram of water.

As discussed by Hutter and others [1988], the evolution of µ(z, t) can be
a advective/diffusive process depending on how rigorously water movement
within the veins and grain boundaries of the ice matrix is handled. Hut-
ter and others show that a diffusive (D’Arcyian) scheme leads to a profile
of µ(z, t) that can include narrow boundary layers at the cold/temperate
ice transition. Greve [1995] points out that, under some circumstances,
“drainage functions” must be invoked to prevent the water content from
becoming too large, e.g., µ = 1, in some local regions. Relatively little is
known about how to formulate the evolution of µ(z, t) because of the lack of
observation of temperate ice water content.
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In the present chapter, we shall adopt a simple treatment of liquid water
content that emphasizes an accounting of integral (bulk) properties of the
temperate layer. We shall assume that liquid water is well-distributed within
the temperate layer (i.e., that there is an infinite diffusivity of liquid water
fraction) and that its evolution is determined only by the integral of the heat
produced by strain heating within the temperate layer:

µt =
1

c− b

∫ b

c

W

ρLf
dz (10.9)

To safeguard against the possibility that µ will become too large (e.g.,
µ > 0.1), we shall introduce a drainage function (following Greve, 1995)
to maintain µ ≤ 0.1.

To summarize the conceptual dynamics, heat produced by strain heating
is used in one of two ways depending on which layer is being considered.
In the cold layer, heat is used to maintain or boost the local temperature.
In the temperate layer, heat is used to convert ice to liquid water which is
held within the ice matrix. The trickiest part of polythermal ice temperature
modelling concerns the thermodynamic conditions that must be met at the
boundary between cold and temperate ice. These conditions are described
next.

10.2.1 The tricky part: cold/temperate transition bound-
ary conditions

Two possibilities exist at the cold/temperate ice transition: ice could be
moving through the transition boundary into or out of the temperate layer.

• Cold ice flow into temperate zone. When ice moves into the tem-
perate layer (i.e., the cold/temperate transition is expanding into the
cold ice layer), continuity of conductive heat flow requires that the
temperature gradient Tz be continuous. Temperate ice temperature
is constrained at the pressure melting point and this pressure melting
temperature changes with z due to the glaciostatic pressure gradient
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ρg. Thus, T must equal −ρg(s − z)Φ and Tz must equal ρgΦ at the
cold/temperate transition.

• Temperate ice flow into cold zone. When ice moves from the
temperate zone into the cold zone (i.e., the cold/temperate transition
is contracting into the temperate layer), conductive heat flow need not
be continuous. As ice moves from the temperate zone into the cold
zone, its water content µ must go to zero. The latent heat released
by the process of freezing the water contained within the ice moving
through the cold/temperate transition must be conducted away by an
appropriate discontinuity of the temperature gradient Tz in the cold
layer. As described by Hutter and others [1988], heat flow continuity
at the cold/temperate transition is reflected in the following balance:

−k(ρgΦ) + ρLfµa⊥ = −kTz|+ (10.10)

The two terms on the left-hand side of the above equation represent
heat flowing into the cold/temperate transition from the temperate
layer (assuming a⊥, the ice flow through the transition, is positive for
flow from the temperate layer to the cold layer). The first term is heat
conduction associated with the pressure-melting temperature gradient.
The second term is latent heat release associated with freezing of liquid
water content as ice moves through the transition. The term on the
right-hand side of the above equation represents heat conduction away
from the transition on the cold side (assumed to be above the temperate
side, thus denoted by |+). Given that

Tz|− = ρgΦ (10.11)

the discontinuity in the temperature gradient is given by

Tz|+ − Tz|− =
−ρLfµ

k
a⊥ (10.12)

The size of the jump in temperature gradient is determined by the rate
at which ice moves through the transition and by the amount of liquid
water contained in the temperate ice that moves through the transition.

What is tricky about the above conditions? Well, actually, the second
possibility (temperate ice flow into cold zone) isn’t tricky at all. The Tz|−
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and Tz|+ are constrained by the Clapyron slope or determined by the heat
equation, repectively. The µ is determined by the heat equation in the tem-
perate layer (with associated water-movement dynamics, if applicable). The
only unconstrained variable is a⊥, the velocity of ice movement relative to
the cold/temperate transition. (Note that by convention, a⊥ is negative for
circumstances when cold ice moves through the transition and becomes tem-
perate ice. This way of defining a⊥ is opposite to the definition of basal
melting, Ḃ.) The discontinuity expressed in Equation (10.12) provides the
means to determine a⊥:

a⊥ =
−k (Tz|+ − Tz|−)

ρLfµ
(10.13)

The above expression is similar to the expression used to determine the basal
melting rate (with the absence of a interfacial heat source associated with
basal sliding). Observe that a⊥ is greater than (or equal to) zero.

The tricky part comes with the first possibility (cold ice flow into tem-
perate zone). In this circumstance, a jump in temperature gradient cannot
be supported because movement through the cold/temperate ice transition
does not invoke a release or consumption of latent heat. The twin demands
imposed by temperature gradient continuity and the pressure-melting point
effect an overdetermination of the boundary conditions normally required to
solve the heat equation in the cold-ice layer above the cold/temperate tran-
sition. The problem of computing T (z, t) in the cold layer comes down to
solving an overdetermined boundary value problem similar to the following:

Tt +A(z; a⊥) =
1

ρc
(kTz)z +

W

ρc
for c < z < s (10.14)

T (z = s) = Ts (10.15)
{

T (z = c) = Tm
Tz(z = c) = ρgΦ

}
(10.16)

where A(z; a⊥) is an advection term that depends on the velocity of ice
movement through the cold/temperate ice transition. What makes it possible
to solve the above overdetermined boundary value problem is the fact that
a⊥ < 0 is not determined. In effect, the overdetermination of boundary
conditions at z = c allows a⊥ to be determined.
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Greve [1995] and Funk and others [1994] describe analytical and numerical
techniques for determining a⊥ to satisfy the overdetermination of boundary
conditions at z = c. The treatment we shall take is slightly different and
follows from control theory (see MacAyeal and others, 1991). We formulate
the problem as follows: We seek a value of a⊥ to minimize a performance
index, J , given by

J = (T (z = c)− Tm(c))
2

(10.17)

subject to the constraint that the temperature at the cold/temperate transi-
tion, T (z = c), is a solution of the following well-determined boundary value
problem:

Tt +A(z; a⊥) =
1

ρc
(kTz)z +

W

ρc
for c < z < s (10.18)

T (z = s) = Ts (10.19)

Tz(z = c) = ρgΦ (10.20)

The variable a⊥ is referred to as the control variable. Algorithms for solving
this control problem are numerous (see, for example, MacAyeal and others,
1991). We shall employ a rather simple algorithm for use in this chapter that
is based on Matlab ’s optimization toolbox.

The upshot of the control method formulation of a solution to the overde-
termined boundary value problem (case when a⊥ < 0) is that an iterative
numerical proceedure is invoked to choose the appropriate a⊥ so as to make
the two boundary conditions at z = c compatible. Greve [1995] and Funk
and others [1994] use an iterative numerical technique to choose the location
(time evolution), z = c(t), of the cold/temperate ice transition. Our tech-
nique is virtually the same, except we use the numerical iterations to choose
a⊥, and then solve a mass continuity equation, e.g.,

ct = −wz(c− b)− a⊥ − Ḃ (10.21)

where wz is a vertical strain rate (other influences on ct may be appropriate
too), and where b is assumed time invarient (a simplification), to determine
the time-evolution of c(t).
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10.3 Temperate-Ice Layer Growth From the

Bed, or From Above?

We will now consider how the ice column described above evolves through
time t > 0 toward the development (and ultimate decay) of a temperate
ice layer. Two illustrative (idealized) cases will be considered. They will be
referred to as the “low bedrock thermal inertia” case (case 1) and the “high
bedrock thermal inertia”case (case 2). In the first case, we shall choose the
thickness of thermally “involved” bedrock, hr = b−r, to be sufficiently small
(order 10 m) to allow the location of first melting to be at the ice base,
z = b. In the second case, the value of hr will be large, and first melting
will occur above the ice base at z = f . The difference between the two
cases considered involves details during the initial transient development of
the temperate layer, e.g., where first melting appears and whether the layer
initially grows up from the bed or both down and up from some point above
the bed. The difference between these two cases is illustrated schematically
in Figure (10.2).

• Low bedrock inertia. In the first “low inertia” case (Fig. ), there
will be an initial period when the bed is melted without the immediate
development of a temperate layer above the bed. This is because, as
we shall discuss below, the temperature gradient at the base of the cold
ice needs additional (probably short) time after the bed has melted to
reach the Clapyron slope. The temperate layer, in this circumstance,
will grow upward from the bed into the cold ice above. Once the tem-
perate layer begins to grow, the focus of the numerical effort will be on
appropriate specification and matching of thermodynamic constraints
(boundary conditions) at the cold/temperate ice transition, z = c.

• High bedrock inertia. In the second “high inertia” case (Fig. ),
first melting is achieved at a distance above the bed, z = f > b. The
temperature at this point of first melting, T (f), because it is a local
maximum, will be tangent to the pressure-melting curve, Tm(z), and
will thus allow the rapid, initial development of a temperate ice layer in
the region cl < z < cu. For an initial (short) time period following the
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first melting at z = f , cl will advance downward toward the bed (unless,
by some arbitrarily controled detail of the strain heating history, the
further development of the temperate layer is arrested by a cutoff of
heat–in which circumstance, we would need to consider the subsequent
upward movement of cl). When cl reaches the bed, i.e., cl = z, the
subsequent evolution of the thermal layer proceeds according to the
same prescription as in the “low inertia” case discussed above.

In the following illustrative time-evolution example, we shall assume low-
inertia conditions (because it is most simple). A high-inertia case will be left
to the student as an exercise.

10.4 Illustrative Time-Evolution Examples

The illustrative example proceeds through 6 temporal stages listed as follows:

1. Cold ice, frozen bed

2. Cold ice, melted bed

3. Growing temperate layer

4. Shrinking temperate layer

5. Cold ice, melted bed

6. Cold ice, frozen bed

In effect, the ice column is heated up by strain heating, allowed to develop
a temperate-ice layer, then cooled down (by artificially eliminating the heat
source) and returned to cold, frozen-bed conditions. As explained in the
following sections, the governing equations and boundary conditions which
determine the evolution of T (z, t) and µ differ from stage to stage.
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z T

b

Tm(z)

T(z) case 2

T(z) case 1

case 2

case 1

temperate ice

Figure 10.2: The difference between a low thermal inertia bedrock (case 1)
and a high thermal inertia bedrock (case 2) concerns where melting first
appears in the ice column and whether the temperate layer grows from the
bottom up (case 1) or in both directions (up and down) from a point located
above the bed (case 2).
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10.4.1 Stage 1: cold ice, frozen bed

During the first stage of thermal evolution, 0 ≤ t ≤ tm, the entire ice column
is frozen and the basal temperature, T (z = b, t) = Tb(t), is below the pressure
melting point Tm = −ρg(s − b)Φ. The governing equations appropriate for
this stage are

Tt −
1

h
Tζ

(
ζȦ

)
=

1

ρch2
(kTζ)ζ +

W

ρc
(10.22)

µ(ζ) = 0 (10.23)

for b < z < s (0 < ζ < 1), where h = s− b, and

Tt =
1

ρrcr
(krTz)z (10.24)

for r < z < b. Boundary conditions are

T (z = s, t) = Ts (10.25)

Tz(z = r, t) =
−G
kr

(10.26)

At the ice/rock interface, the temperature and heat flux are continuous. The
form of Eqn. (10.22) is taken from the previous chapter using the definition
of horizontal and temporal derivatives associated with the stretched vertical
coordinate ζ = z−b

s−b .

The evolution of T (z, t) through stage 1 is displayed in Figure (10.3). The
Matlab code used to perform the finite-element computation is presented
at the end of this chapter.

10.4.2 Transition: stage 1 → stage 2

Stage 1, cold ice with a frozen bed, ends when Tb reaches the pressure melting
point. This event defines a time t = tm when stage 1 dynamics no longer
apply (because of an inappropriate boundary condition at z = b) and stage
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Figure 10.3: Stage 1 thermal evolution of the idealized ice-column temper-
ature (cold ice, frozen bed). The graph on the right-hand side presents a
close-up view of basal conditions where the temperate-ice layer will soon
develop. Open circles shown on the initial temperature profile display the
locations of finite-element nodes (2-node line segments are used as elements
to discretize the vertical dimension, node spacing near the bed is logarithmic
for added resolution). Each temperature profile represents T (z, t) at 100-year
intervals. The sloping line on the right-hand side of the graphs represents
the pressure melting temperature, Tm(z).
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2 dynamics kick in to determine what happens to T (z, t) next. The circum-
stance in which the location of first melting is at a level above the bed is left
as an exercise to be performed by the student.

10.4.3 Stage 2: cold ice, melted bed

After t = tm, but while the following condition holds true,

Tz(z = b) < ρgΦ (10.27)

the a melted bed will exist at the bottom of an entirely cold ice column (i.e.,
temperate ice does not exist yet). The governing equations and boundary
conditions are:

Tt −
1

h
Tζ

(
ζȦ+ (1 − ζ)Ḃ

)
=

1

ρch2
(kTζ)ζ +

W

ρc
(10.28)

µ(ζ) = 0 (10.29)

for b < z < s (0 < ζ < 1), and

Tt =
1

ρrcr
(krTz)z (10.30)

for r < z < b. Boundary conditions are

T (z = s, t) = Ts (10.31)

T (z = b, t) = Tm (10.32)

Tz(z = r, t) =
−G
kr

(10.33)

and the basal melting rate Ḃ (meters of ice equivalent per unit time) is given
by

Ḃ =
kTz|+ − krTz|−

ρLf
(10.34)
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For simplification, heat created by basal sliding is disregarded in the deter-
mination of Ḃ.

With Ḃ ≥ 0, a basal water layer develops at the bed (or may be con-
tained within basal sediments) with a thickness (effective thickness) hw(t)
determined by,

(hw)t =
ρ

ρw
Ḃ (10.35)

where ρw is the density of water, and the water thickness is subject to the
constraint that it be positive, i.e., that hw ≥ 0. The basal water layer is
assumed not to drain via subglacial water or sediment transport processes.

The evolution of T (z, t) through stage 2 is not displayed because it was
too short to have been adequately resolved by the 100-year timestep size.

10.4.4 Transition: stage 2 → stage 3

At time t = tgt, the condition,

Tz(z = b) < ρgΦ (10.36)

no longer holds true. At this point, the temperature gradient at the bed is
equal to the Clapyron slope

Tz(z = b) = ρgΦ (10.37)

and a basal temperate-ice layer begins to grow (develop upward). The bound-
ary between cold and temperate ice, c(t), will move upward from its initial
(zero temperate ice thickness) position at c = b. (Recall that we do not
consider the case where, due to high bedrock thermal inertia, a temperate
layer would initially grow upward and downward from some finite distance
above the bed.)

10.4.5 Stage 3: growing temperate layer

The governing equations during the time period after t = tgt, but before the
time when the temperate layer stops growing (see below for the conditions
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when this holds true), are:

Tt −
1

hc
Tζc

(
ζcȦ− (1− ζc)a⊥

)
=

1

ρch2
c

(kTζc)ζc +
W (z(ζc))

ρc
(10.38)

µ(ζ) = 0 (10.39)

for c(t) < z < s (0 < ζc < 1), where ζc = z−c(t)
s−c(t) is the stretched vertical

coordinate applicable to the cold layer only. The strain heating term W (z(ζc))
is written as a function of ζc to emphasize the point that the stretched vertical
coordinate ζc does not cover the entire ice column in its variation from 0 to
1 (see Fig. 10.1). The governing equations in the temperate-ice layer are

T = Tm(z) (10.40)

µt(z) =
1

c− b

∫ c

b

W

ρLf
dz (10.41)

for b < z < c, (recall that the above formulation for liquid-water content
represents a simplified, bulk analysis; see Hutter and others, 1988 for a more
detailed theoretical treatment), and

Tt =
1

ρrcr
(krTz)z (10.42)

for r < z < b, with boundary conditions

T (z = s, t) = Ts (10.43)

T (z = c, t) = Tm(z) (10.44)

Tz(z = c, t) = ρgΦ (10.45)

Tz(z = r, t) =
−G
kr

(10.46)

The variable a⊥(t) < 0 is the “cold-ice ablation” rate, i.e., the rate at which
ice is ejected from the cold-ice layer through the cold/temperate ice boundary
into the temperate-ice layer.
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The value of a⊥(t) is determined using the control method discussed pre-
viously. In essence, a⊥ is determined interatively by the procedure required to
make the otherwise overdetermining thermal boundary conditions at z = c(t),
Eqns. (10.44) and (10.45), compatible.

The basal melting rate Ḃ is given by

Ḃ =
kρgΦ− krTz|−

ρLf
(10.47)

and this leads to additional increase in the basal water layer thickness:

(hw)t =
ρ

ρw
Ḃ (10.48)

The growth of the temperate-ice layer is determined by a mass-continuity
equation that accounts for a⊥, Ḃ and vertical strain which, in the present
idealized example (i.e., constant ice thickness), is given by

ėzz = −Ȧ− Ḃ

h
(10.49)

The resulting equation for temperate-ice layer thickness, (c(t)− b) = hT , is

(hT )t = ėzzhT − a⊥ − Ḃ (10.50)

The shrinkage of the cold-ice layer thickness, (s− c(t)) = hc is given by

(hc)t = ėzzhc + a⊥ + Ȧ (10.51)

As a consitency check, observe that

ht = (hT + hc)t = ėzzh + Ȧ− Ḃ = 0 (10.52)

The evolution of T (z, t) through stage 3 is displayed in Figure (10.4). The
Matlab code used to perform the finite-element computation is presented
at the end of this chapter.
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Figure 10.4: Stage 3 thermal evolution of the idealized ice-column tempera-
ture (growing temperate-ice layer, melted bed). The graph on the right-hand
side presents a close-up view of the development of the temperate-ice layer.
Each temperature profile represents T (z, t) at 100-year intervals. The slop-
ing line on the right-hand side of the graphs represents the pressure melting
curve, Tm(z). The asterisk (*) symbol denotes the cold/temperate ice transi-
tion. Observe that the vertical temperature gradient at the cold/temperate
ice transition is tangent to the pressure-melting curve. The first temperature
profile (with zero temperate-ice layer thickness) represents the temperature
profile at the termination of stage 1 (also shown in Fig. 10.3).
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10.4.6 Transition: stage 3 → stage 4

At a point t = th, strain heating is arbitrarily cut off, and the temperate
layer must begin to shrink. This cutoff is arranged arbitrarily in the present
example for the sake of illustration. In nature, a shrinking temperate-ice
layer can occur as a result of various events including downward advection
of cold ice from the ice-sheet surface, a change in flow regime (e.g., onset of
basal sliding), or a change in surface temperature.

10.4.7 Stage 4: shrinking temperate layer

The governing equations during the time period after t = th, but before the
time when the temperate layer thickness becomes zero (see below for the
conditions when this holds true), are:

Tt −
1

hc
Tζc

(
ζcȦ− (1− ζc)a⊥

)
=

1

ρch2
c

(kTζc)ζc +
W (z(ζc))

ρc
(10.53)

µ(ζ) = 0 (10.54)

for c(t) < z < s (0 < ζc < 1), where ζc = z−c(t)
s−c(t) is the stretched vertical

coordinate applicable to the cold layer only. The strain heating term W (z(ζc))
is written as a function of ζc to emphasize the point that the stretched vertical
coordinate ζc does not cover the entire ice column in its variation from 0 to
1 (see Fig. 10.1). The governing equations in the temperate-ice layer are

T = Tm(z) (10.55)

µt(z) =
1

c− b

∫ c

b

W

ρLf
dz (10.56)

for b < z < c, and

Tt =
1

ρrcr
(krTz)z (10.57)

for r < z < b.
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Boundary conditions are

T (z = s, t) = Ts (10.58)

T (z = c, t) = Tm(z) (10.59)

Tz(z = r, t) =
−G
kr

(10.60)

The variable a⊥(t) < 0 is the “cold-ice ablation” rate, i.e., the rate at which
ice is ejected from the cold-ice layer through the cold/temperate ice boundary
into the temperate-ice layer.

Observe that the additional boundary condition applicable at z = c(t)
in the previous stage (growing temperate layer), i.e., Tz|z=c = ρgΦ, is no
longer applicable because a discontinuity in conductive heat flux at z = c
is allowed with a⊥ < 0 to account for latent heat release as ice moves from
the temperate side to the cold side of the cold/temperate transition. The
value of a⊥ is determined by the jump condition in temperature gradient, as
explained previously:

a⊥ =
−k

(
Tz|c+ − Tz|c−

)

ρLfµ
(10.61)

The basal melting rate Ḃ is given by

Ḃ =
kρgΦ− krTz|−

ρLf
(10.62)

and this leads to additional increase in the basal water layer thickness:

(hw)t =
ρ

ρw
Ḃ (10.63)

The shrinkage of the temperate-ice layer is determined by a mass-continuity
equation that accounts for a⊥, Ḃ and vertical strain which, in the present
idealized example (i.e., constant ice thickness), is given by

ėzz = −Ȧ− Ḃ

h
(10.64)
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The resulting equation for temperate-ice layer thickness, (c(t)− b) = hT , is

(hT )t = ėzzhT − a⊥ − Ḃ (10.65)

The growth of the cold-ice layer thickness, (s− c(t)) = hc is given by

(hc)t = ėzzhc + a⊥ + Ȧ (10.66)

Recall that, by definition, a⊥ < 0 when temperate ice is converted to cold
ice.

The evolution of T (z, t) through stage 4 is displayed in Figure (10.5). The
Matlab code used to perform the finite-element computation is presented
at the end of this chapter.

10.4.8 Transition: stage 4 → stage 5

At time t = tm2, the thickness of the shrinking temperate layer becomes zero,
i.e., hT = 0. At this point, the bed is melted but the entire ice column above
the bed is colder than the pressure-melting point.

10.4.9 Stages 5 & 6: cold ice, melted → frozen bed

The governing equations for stages 5 and 6 are identical to those of stages
2 and 1, respectively. The evolution of T (z, t) through these two stages is
displayed in Figure (10.6).

10.4.10 Summary

A summary of the onset of basal melting, growth and decay of a temperate-ice
layer, and the ultimate re-freezing of the bed is presented in Figure (10.7).
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Figure 10.5: Stage 4 thermal evolution of the idealized ice-column temper-
ature (shrinking temperate-ice layer, melted bed). The graph on the right-
hand side presents a close-up view of the development of the temperate-
ice layer. Each temperature profile represents T (z, t) at 100-year intervals.
The sloping line on the right-hand side of the graphs represents the pres-
sure melting curve, Tm(z). The horizontal tick-mark (-) symbol denotes the
cold/temperate ice transition while this transition is moving down toward
the bed. The asterisk (*) denotes the cold/temperate transition during the
last part of stage 3. Observe that the vertical temperature gradient at the
cold/temperate ice transition is no longer tangent to the pressure-melting
curve. This is because ice flow through the cold/temperate ice transition
from below releases latent heat which demands a jump discontinuity in the
temperature gradient at the transition.
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Figure 10.6: Thermal evolution through stages 5 and 6. The bed initially
remains melted while the temperature gradient above the bed and the basal
water layer thickness decrease. Once the basal water layer thickness goes to
zero, latent heat is no longer available to balance upward heat conduction
through the ice and the ice column freezes to the bed. Subsequent cooling
toward a steady state (frozen bed) temperature profile is partially shown.
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Figure 10.7: Summary of thermal evolution through stages 1 through 6.
Units for thickness are meters, for rates are meters per year, and for gradients
are degrees Centigrade per meter.
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10.5 Exercise: High Bedrock Thermal Iner-

tia

The student is asked to reformulate and solve the thermal-evolution problem
treated above in a circumstance where the bedrock thermal inertia is high
and strain heating more persistent, i.e., where r = −500 and th = 3000 years.
Define any new stages of thermal evolution (e.g., frozen bed, temperate ice
conditions) and carefully describe the conditions which determine their onset
and termination. Also, formulate the equations which govern temperature
and liquid-water content in the temperate layer and basal cold layer during
the stage when the temperate-ice layer grows down toward the bed from
above. An example of high bedrock inertia thermal evolution (where the
temperate ice layer grows down toward the bed from above) is displayed in
Figures (10.8) and (10.9).

10.6 Matlab Scripts Used to Illustrate Polythermal

Ice-Column Evolution

The Matlab scripts used to model polythermal ice-column evolution in the
above example (i.e., as shown in Figs. 10.3 - ??) are provided separately.
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Figure 10.8: Thermal evolution through stage 1 for case in which bedrock
thermal inertia is high (i.e., 500 m of bedrock, r = −500 m) and in which
strain heating is persistant througout the experiment. The time difference
between successive temperature profiles is 100 years. Observe that the lo-
cation of first melting occurs above the bed. The temperate-ice layer thus
grows in two directions (up and down) through an initial stage of develop-
ment. Downward growth of a cold/temperate ice transition is not treated in
this chapter, but is left as an exercise for the student.
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Figure 10.9: Development of temperate-ice layer for case in which bedrock
thermal inertia is high (i.e., 200 m of bedrock, r = −200 m, note difference
with case shown in Figure 10.8) and in which strain heating is persistant
througout the experiment. The time difference between successive temper-
ature profiles is 5 years. Observe that the location of first melting occurs
above the bed. The temperate-ice layer thus grows in two directions (up
and down) through an initial stage of development. Downward growth of a
cold/temperate ice transition is not treated in this chapter, but is left as an
exercise for the student.
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Chapter 11

Ice Sheet Thermodynamics:
2-D (Flowline) Modelling
Techniques

In this chapter, we will construct a two-dimensional, “flowline” ice-sheet
model to provide a simple alternative to the three-dimensional model devel-
oped in Chapter 9. We will complete the EISMINT Level 1 intercomparison
test as a means to evaluate the model’s performance.

11.1 Governing Equations

The governing equations for the dynamic/thermodynamic flowline ice-sheet
model developed here are listed as follows. The equations which govern the
horizontal and vertical velocity fields are:

u(z) = −ρg(s− b)C(T )
∂s

∂x
− 2ρg

∂s

∂x
I(z) (11.1)

w(z) = −
∫ z

b

∂u

∂x
dz′ +

∂b

∂t
+ u(b)

∂b

∂x
− Ḃ (11.2)
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where x is the horizontal coordinate directed down the flowline, z is the
vertical coordinate (positive up), u is the horizontal velocity directed down
the flowline, w is the vertical velocity, s and b are the surface and basal
elevation, respectively, ρ is the ice density (assumed to be constant, 910 kg
m−3), g is the acceleration of gravity (9.81 m s2), and Ḃ is the basal melting
rate (positive for melting, negative for freezing, in meters of ice equivalent
per second). To keep the treatment simple, lateral flow convergence along
the flowline is not accounted for in the expression for the vertical velocity.
Convergence, because it influences the vertical velocity, is expected to be
an important influence on the temperature-depth profile computed by the
model.

The basal sliding constant C(T ) is assumed to be nonzero when the basal
temperature T (b) is at the pressure-melting point (Payne, 1995):

C(T ) =





5× 10−3 m a−1 Pa−1 if T (b) = Tm

0 if T (b) < Tm

(11.3)

The variable T (x, z, t) is the temperature, and Tm is the z-dependent melting
point,

Tm(z) = To − ρg(s− z)Φ (11.4)

where Φ = 8.71×10−4 K Pa−1 (Payne, 1995), and To = 273.15 K. The factor
I(z) determines the deformational velocity of the ice flow, and for Glen’s flow
law (with exponent 3) is defined by

I(z) =
∫ z

b
EA(T ∗)(ρg)2

(
∂s

∂x

)2

(s− z′)
3
dz′ (11.5)

The rate-enhancement factor E is essentially a fudge factor designed to ac-
count for empirically determined inadequacies of Glen’s law. The value of E
is commonly taken to be 1 for “Holocene ice” and 3 for “glacial-period ice”,
for example, in modelling studies of the Greenland ice sheet. The creep-rate
factor A(T ∗) is assumed to have a standard thermodynamic form involving
a rate constant factor a and an activation energy Q:

A(T ∗) = a exp
( −Q
RT ∗

)
(11.6)
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where R = 8.31 J mol−1 K−1 is the gas constant, and the flow-law parame-
ters (determined from laboratory studies of polycrystaline ice assumed to be
isotropic) are commonly taken to be:

a =





7.23 × 10−12 s−1 Pa−3 if T ∗ < 263 K

3.47 × 104 s−1 Pa−3 if T ∗ ≥ 263 K

(11.7)

and

Q =





6.0× 104 J−1 mol−1 if T ∗ < 263 K

13.9× 104 J−1 mol−1 if T ∗ ≥ 263 K

(11.8)

The temperature in the creep-rate factor formula T ∗ = T−Tm+To is the Ho-
mologous temperature (temperature relative to the pressure melting point)
in degrees Kelvin (note the addition of To).

Mass balance of the ice sheet is expressed by the following equation for
ice thickness h,

∂h

∂t
= −∂q

∂x
+ Ȧ− Ḃ (11.9)

where q = D ∂s
∂x

is the horizontal mass flux integrated over the ice column, Ḃ

is the basal melting rate (positive for melting, negative for freezing), and Ȧ is
the surface snow accumulation rate expressed in meters of ice equivalent per
year. Note that ice densification effects are disregarded. A common practice
is to substitute Equations (12.6) into Equation (12.13) giving,

∂h

∂t
=

∂

∂x

(
D
∂s

∂x

)
+ Ȧ− Ḃ (11.10)

where the effective diffusivity D is defined by,

D =
∫ s

b
2ρgI(z′)dz′ + ρg(s− b)2C (11.11)

Kinematic boundary conditions on the free surface z = s and basal surface
z = b are recorded for use elsewhere:

∂s

∂t
+ u(s)

∂s

∂x
= w(s) + Ȧ (11.12)
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and,

u(b)
∂b

∂x
= w(b) + Ḃ (11.13)

where we have made the assumption that ∂b
∂t

= 0 (no isostatic or bed erosion
effects are included).

Heat flow continuity in both ice and underlying bedrock is expressed using
the standard advective/diffusive equation with variable heat-flow parameters:

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
=

1

ρc

∂

∂z

(
k
∂T

∂z

)
+
W

ρc
(11.14)

for b < z < s; and
∂T

∂t
=

1

ρrcr

∂

∂z

(
kr
∂T

∂z

)
(11.15)

for zr ≤ z ≤ b, and where zr is a level at a fixed elevation below the
ice/bedrock interface (or seabed) where the geothermal flux gradient is ap-
plied as a boundary condition (see below). The above equations reflect the
standard assumption that horizontal heat conduction is neglegible in com-
parison with horizontal advection, veritcal advection and conduction, and
viscous heat dissipation. The horizontal and vertical velocities referred to in
Equations (12.22) and (12.23) are described by Equations (12.6) and (12.7).

Observe that the vertical gradients of k and kr are acknowledged in the
form of the thermal diffusion in Equations (12.22) and (12.23). The hori-
zontal gradients of k and kr, and all the spatial gradients of ρc and ρrcr are
disregarded. This constitutes a simplification that is used widely in ice-sheet
thermodynamic studies. It’s justification is not provided here (and indeed,
there may be an inconsistency to be corrected in future work). See Greve
[1995] for further discussion of this matter.

Parameters appearing in Equations (12.22) and (12.23) include the ther-
mal heat capacities for ice and rock, c and cr, respectively:

c = 2115.3 + 7.79293(T − To) (11.16)

cr = 1000 (11.17)
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in units of J kg−1 K−1 (Huybrechts, 1993), and the thermal conductivities
for ice and rock, k and kr, respectively:

k = 3.101× 108 exp (−0.0057T ) (11.18)

kr = 3.3 (11.19)

in units of W m K−1 (Huybrechts, 1993). The density of rock ρr is taken to
be that of typical sedimentary rock of interest below the central portions of
the Laurentide and West Antarctic ice sheets, 2700 kg m−3. The term W in
Eqn. (12.22) is the viscous heating term formally defined by

W =
∑

i

∑

j

ėijT
′
ij (11.20)

where ėij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate, and T ′ij is the deviatoric stress.

According to the common assumptions associated with grounded ice-sheet
stress balance (i.e., neglecting longitudinal stress), W can be written as:

W (z) = (ρg)4 2

(
∂s

∂x

)4

(s− z)4 EA(T ∗) (11.21)

Boundary conditions are necessary at the top z = s and bottom z = zr
of the ice/rock column. At the top, a surface temperature (depending on
atmospheric conditions) is specified

T (s) = Ts (11.22)

At the bottom z = zr, well below the ice/bedrock interface, a geothermal
temperature gradient is specified

∂T

∂z
= − Γ

kr
. (11.23)

The geothermal flux Γ is typically taken to be one geophysical heat flow unit
(0.42 W m−2). The value of zr is typically chosen to be a fixed distance
below z = b. A useful consideration for choosing this distance (b − zr) is
the e-folding penetration depth λ for temperature oscillations forced at the
ice/bedrock interface of frequency ω (Carlsaw and Jaeger, 1954):

λ =
(

2κr
ω

) 1
2

(11.24)
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where the thermal diffusivity of bedrock is defined by κr = kr
ρrcr

. For Heinrich-

event frequency oscillations (periodicity of about 10,000 years), the penetra-
tion depth λ is 375 m.

Unless there are inflow boundaries around the horizontal edges of the ice
sheet, thermal boundary conditions are not required around the edges of the
ice sheet. This is because the horizontal mode of heat transfer in an ice sheet
is advection, a process that demands boundary conditions only where ice
flow into the domain.

A material constraint on the ice-sheet thermodynamics is that ice never
warm above the presssure-melting point. When layers of finite thickness
reach the pressure-melting point, the ice sheet is said to become “polyther-
mal” (Hutter, 1982; Hutter, Blatter and Funk, 1988). A review of polyther-
mal ice-sheet modelling is provided by Greve (1995). Polythermal conditions
typically occur as a result of viscous dissipation, which heats the ice column
internally and permits the locus of a temperature maximum (the pressure-
melting point, by definition) to move away from the boundary (a constraint
that is otherwised forced by a consideration similar to the maximum principle
of solutions of Laplace Equation). When ice becomes temperate (at the pres-
sure melting point), its vertical temperature gradient becomes that dictated
by the “Clapyron slope” of water (the change of the melting temperature with
pressure). In this circumstance, the vertical heat flux is fixed (near zero), so
further heat transfer (via internal heating and flux from non-temperate por-
tions of the ice sheet) acts only to modify the liquid water content of the ice.
In the ice-sheet model by Greve (1995), for example, the heat-flow continuity
equation in the temperate ice is replaced with a diffusive-type equation for
water content, and an internal free surface (called the CTS, cold/temperate
ice transition surface) must be monitored through the use of energy flux and
mass flux matching conditions.

In the examples described in this chapter, polythermal ice conditions are
not treated; thus, we shall make a standard (but not necessarily well justified)
assumption that the melting point is achieved only at the ice base. In this
simplification, we augment the heat equation developed above with logical
conditions determining when the basal ice boundary condition is fixed at the
melting point, or when the basal ice temperature (frozen) is allowed to freely
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vary according to the combined ice/bedrock heat equation. When the base is
at the pressure-melting point, we compute a basal melting rate, Ḃ (positive
for melting, meters of ice equivalent per year), to balance the heat budget at
the basal ice interface. We define heat-flux terms Ho and Hi as the outward-
and inward-directed heat fluxes to the interface z = b, rexpectively, by

Ho = −k∂T
∂z
|z=b+ (11.25)

and,

Hi = −kr
∂T

∂z
|z=b− + u(b)τb +





ρḂ
Lf

if Ḃ < 0

0 otherwise

(11.26)

where τb is the vector-valued basal stress which, in the absence of longitudinal
stress, is −ρgh ∂s

∂x
, and u(b) is the basal sliding velocity (which can be nonzero

when the bed is melted). The product u(b)τb is assumed positive. With the
above definitions for Ho and Hi, Ḃ is determined by

Ḃ =
Hi −Ho

ρLf
(11.27)

where Lf = 3.35 × 105 J kg−1 is the latent heat of fusion for pure water. In
circumstances, where Ḃ is nonzero, a basal water layer can develop. When
Ḃ > 0 (melting), the presence or absence of basal water does not influence the
thermal evolution of the ice base. When Ḃ < 0 (freezing), a basal water layer
must be present to supply the ice that is accumulated on the base. In this
circumstance, if there is insufficient basal water to supply the required basal
freezing, the base of the ice will freeze to the bed and the basal temperature
will drop below the pressure melting point.

The above expressions describing the basal melting condition are inter-
linked; so, it is not simple to determine when a frozen bed should be converted
to a melted bed, or a melted bed to a frozen bed. In brief, a frozen bed is
melted when the solution of the heat equation dictates that T (b) rise to the
pressure-melting point; and a melted bed will freeze when the vertical heat
flux into the ice is greater than the heat source into the bed by the combi-
nation of (1) conduction from the rock below, (2) heat generation by basal
sliding, and (3) latent heat released by freezing of available water stored in
the bed.
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11.2 Contour-Following Vertical Coordinate

To handle the variable vertical dimension of the ice sheet, a new vertical
coordinate ζ is defined such that ζ = 1 at s(x, y, t) and ζ = 0 at b(x, y, t).
The relation between ζ and z is

ζ =
z − b

s− b
(11.28)

and
z = (s− b)ζ + b (11.29)

Using the above definitions, z-derivatives are converted to ζ-derivatives:

∂ ·
∂z

=
1

(s− b)

∂ ·
∂ζ

(11.30)

∂2 ·
∂z2

=
1

(s− b)2
∂2 ·
∂ζ2

(11.31)

The conversion of x- and t-derivatives evaluated at fixed z to their coun-
terparts evaluated at fixed ζ is somewhat more complicated. Following the
considerations described in Chapter 9, the derivative of T with respect to x
on a surface of constant z is

Tx|z=constant = Tx|ζ=constant −
1

h
Tζ

(
ζ
∂s

∂x
+ (1 − ζ)

∂b

∂x

)
(11.32)

where subscripts x, z and ζ denote partial derivatives of T , and h = (s− b)
is the ice thickness. The expression for Tt is

Tt|z=constant = Tt|ζ=constant −
1

h
Tζ

(
ζ
∂s

∂t
+ (1− ζ)

∂b

∂t

)
(11.33)

With the above conversion formulae for Tx, Tz and Tt, we rewrite Equation
(12.22) as follows:

Tt + uTx +
w

h
Tζ
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−1

h
Tζ

(
uζ

∂s

∂x
+ u(1− ζ)

∂b

∂x

+ ζ
∂s

∂t
+ (1− ζ)

∂b

∂t

)
(11.34)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

Observe that
∂s

∂t
+ u

∂s

∂x
= w(s) + Ȧ (11.35)

and,
∂b

∂t
+ u

∂b

∂x
= w(b) + Ḃ (11.36)

Substitution of the above equations into Equation (11.34) gives,

Tt + uTx

+
1

h
Tζ

(
w(z)− ζ

(
w(s) + Ȧ

)
− (1− ζ)

(
w(b) + Ḃ

))
(11.37)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

This equation may be rewriten as follows:

Tt + uTx

+
1

h
Tζ

(
w(z)− w(b)− ζ (w(s)− w(b)) − ζȦ− (1− ζ)Ḃ

)
(11.38)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

Observe, however, that

w(z)− w(b) = −
∫ z

b

∂u

∂x
dz ′ (11.39)

and,

w(s)− w(b) = −
∫ s

b

∂u

∂x
dz′ (11.40)
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Substitution of Eqns. (11.39) and (11.40) into Eqn. (11.38) gives

Tt + uTx

+
1

h
Tζ

(
D(ζ)− ζȦ− (1 − ζ)Ḃ

)
(11.41)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

where D(ζ) is an ice-divergence parameter defined by,

D(ζ) = h

(
ζ

∫ 1

0

∂u

∂x
dζ −

∫ ζ

0

∂u

∂x
dζ ′

)
(11.42)

11.3 Discretization

According to the diagnostic relations between u, w and s for a grounded
ice-sheet with “inland ice” type flow (Eqns. 12.6 and 12.7), the computation
of the vertical velocity w and the D-term as a function of ζ requires that
the second spatial derivative of s, i.e., ∂2s

∂x2 , be evaluated on the computa-
tional domain. This requirement necessitates the use of high-order element
interpolation using Hermite polynomial basis functions.

Variables s, b, h = s − b are represented on each element’s horizontal
span, xl ≤ x ≤ xr, by the sum

s(x) =
4∑

j=1

sjHj(x) (11.43)

where the Hj(x), j = 1, . . . , 4, are interpolation functions related to Hermite
polynomials:

H1(x) =
1

4

(
2− 3ξ + ξ3

)
(11.44)

H2(x) =
Le

8

(
1− ξ − ξ2 + ξ3

)
(11.45)
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H3(x) =
1

4

(
2 + 3ξ − ξ3

)
(11.46)

H4(x) =
Le

8

(
−1− ξ + ξ2 + ξ3

)
(11.47)

(11.48)

Le = xr−xl is the element’s length, and ξ = 2(x−xl)
Le

−1 is a scaled horizontal
coordinate that is −1 at x = xl and +1 at x = xr. The interpolation
functions convey information about the interpolated function’s value and
first-derivatives at the two endpoints (nodes) of the line-segment element, and
are displayed on the interval −1 < ξ < 1 in Figure (12.1). The coefficients
sj , for j = 1, 3, represent nodal values of s(x) and sj, and coefficients sj ,
for j = 2, 4, represent information about the nodal values of ∂s

∂x
. Observe

that, in the above notation, the subscript j refers to a local node-numbering
scheme and that coefficients sj vary from element to element according to
the global element connectivity scheme.

The variation of T with x and z is represented by bi-directional linear
interpolation (i.e., linear in each separate direction):

T (x, y) =
2∑

j=1

(
2∑

k=1

TjkLj(x)

)
Lj(z) (11.49)

where Tjk is the nodal value of T (x, z) at the j’th node (line-segment end-
point) in the horizontal element and at the k’th node (line-segment endpoint)
in the vertical element. Because a split timestep is used (see below), updates
to Tjk are made first holding j fixed and next holding k fixed. This scheme
avoids the necessity of integrating interpolation functions Lj(x)Lk(z) over
the 3-dimensional “brick” volume determined by the 8 corners where nodal
values of T are resolved, i.e., at the 8 points (xj , zk), j = 1, 2 and k = 1, 2.
The linear interpolation functions Lj(x) and Lk(z) are of the form

Lj(x) = αjx+ βj (11.50)

Lk(z) = αkz + βk (11.51)

where the coefficients αm and βm are determined by
[
α1 α2

β1 β2

]
=

[
x1 1
x2 1

]−1

(11.52)
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Figure 11.1: To permit evaluation of ∂2s
∂x2 , interpolation functions based on

the Hermite polynomials are employed. Four functions are used on each
element. Two functions convey the value of the interpolated field at each
endpoint (node) of the line segment (element), and two functions convey
information about the value of the first-derivative of the interpolated field at
each endpoint. The two interpolation functions that are zero at endpoints
(nodes) are scaled by Le, the length of the element, in this particular diagram.
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or [
α1 α2

β1 β2

]
=

[
z1 1
z2 1

]−1

(11.53)

and where (x1, x2) and (z1, z2) are the nodal coordinates (line segment end-
points) in the horizontal and vertical discretizations, respectively.

Integrals of products of interpolation functions, e.g.,
∫ x2
x1
Hj(x)Hl(x)dx

are evaluated using either exact integration formulae or Gaussian quadra-
ture (see Chapter 9). When Gaussian quadrature is used, the integrals are
approximated by sums as follows:

∫ x2

x1

Hj(x)Hl(x)dx ≈ Le

2

Ng∑

g=1

WgHj(ξg)Hl(ξg) (11.54)

The Ng = 5 quadrature points are, in the example presented in this chapter,
ξg ∈ {−.9061798459 − .5384693101 0.0 .5384693101 .9061798459}, and the
weighting factors areWg ∈ {.2369268851 .4786286705 .5688888888 .4786286705 .2369268851}.
Exact integration formulae are listed in Hulbe (personal communication).

Time stepping of the heat- and mass-balance equations is accomplushed
using a finite-difference representation of the time derivatives, e.g.,

Tt =
T n+1 − T n

∆t
(11.55)

where n is the discrete time level, and ∆t is the timestep size. Vertical
and horizontal derivatives are involved in the heat-balance equation, thus we
employ a split timestep to simplify integration of Eqn. (12.43):

T̃n+1

∆t
+ un(ζl)T̃

n+1
x + S(T̃n+1; ζl) =

T n

∆t
∀l (11.56)

T n+1

∆t
− 1

ρch2

(
kT n+1

ζ

)
ζ
+
ω(ζ)

h
T n+1
ζ =

T̃ n+1

∆t
+
W (ζ)

ρc
∀k (11.57)

where in the first of the above equations, l is the vertical level number, ζl
is the l’th vertical level in the ice, and ω(ζ) is the vertical velocity in the
“ζ-system” given by:

ω = D(ζ)− ζȦ− (1− ζ)Ḃ (11.58)
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The term S(T̃ n+1; ζl) refers to an artificial horizontal diffusion term that can
be either “upwinding” related or the “streamline upwind Petrov-Galerkin”
(SUPG) term described in Chapter 9. This artificial diffusion term is used
to supress numerical noise (wiggles) generated in high Peclet number flows
(see Chapter 9).

11.4 EISMINT Level 1 Fixed Margin Inter-

comparison Benchmark

To test the above described flowline model, and to compare it with other
finite-element and finite-difference models of a similar nature, we rerun the
fixed margin intercomparison benchmark described in Chapters 2 and 9. Re-
call that the fixed-margin intercomparison test [now described fully by Huy-
brechts and others, in press, Annals of Glaciology 23] imposes fixed Ȧ, k, c
and a surface temperature (in Kelvin) given by

Ts = 239 + 8× 10−8d3 (11.59)

where d = |x|, in a domain centered at x = 0 that extends 1500 km to the
sides, with zero ice thickness at the margins. Thermomechanical coupling,
bedrock, and polythermal ice treatments are artificially supressed. Horizontal
divergence in the direction transverse to the flowline is assumed zero. This
assumption constitutes an important constraint on the vertical velocity field
and, through advection, the temperature field.

The value of parameters used in this intercomparison experiment are
summarized as follows:
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parameter value

Ȧ 0.3 m a−1

A 10−16 Pa−3 a−1

g 9.81 m s−2

ρ 910 kg m−3

k 2.1 W m−1 K−1

c 2009 J kg−1 K−1

To 273.15 K
Φ 8.7× 10−4 K m−1

G 42 mW m−2

31556926 s a−1

Horizontal resolution is fixed at 50 km. Vertical resolution is variable, and
is designed to represent the temperature profile in the bottom 10% of the ice
column with a logarithmic spacing of nodes (finest spacing at the bottom).
Spacing is linear in the upper 90% of the ice column. In the present test, 31
levels are used to resolve the vertical variation of temperature, velocity and
other parameters. Twenty levels are used to resolve the lowest 10% of the
ice column.

11.4.1 Results

According to the model intercomparison instructions, the model is run until
steady state conditions prevail. Temperature, velocity, mass flux and ice
thickness data are then sampled at specific points and along the flowline.
In particular, temperature and vertical velocity profiles at the ice divide
and “midpoint” node are recorded for the intercomparison. Ice thickness,
horizontal ice flux, and homologous basal temperature are presented along
the flowline and are recorded for intercomparison with the results of the
3-dimensional model in Chapter 9.

Flowline sections of ice thickness and horizontal ice flux are displayed in
Figs. (11.2) and (11.3). Homologous basal temperature along the same cross
sections is displayed in Fig. (11.4). Ice flux at the midpoint of the flowline
(half way to the ice margin from the divide) is 1.1261 × 105 m2 a−1, and
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basal and homologous basal temperatures at the ice divide are -9.9625 C and
-6.8830 C, respectively. Temperature profiles at the divide and midpoint are
shown in Fig. (11.5).

Numerical values of various derived quantities are provided in the follow-
ing table (other numerical data is available on request):
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Figure 11.2: Ice thickness along the flowline. Maximum ice thickness at the
ice divide is 3599.0 m, a value larger than the 3387.4 m thickness produced
by the 3-dimensional ice-sheet model in Chapter 9. This thickness difference
is due primarily to the fact that lateral ice divergence along the flowline is
zero, whereas cross-sections through a square, plan view, domain are not.
The analytical value of ice thickness at the divide, according to Huybrechts
and others (in press), is 3575.1 m.
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Figure 11.3: Horizontal depth-integrated ice flux. The results compare favor-
ably with the exact analytic flux, which should be 2.25 ×105 m2 a−1 at the
ice margin. Ice flux is resolved at element midpoints in the present example.
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Figure 11.4: Homologous basal temperature along flowline.
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Figure 11.5: Homologous temperature profiles at ice divide, midpoint and
ice margin.
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ζ T ∗divide T ∗midpoint

0 -6.8830 -7.9853
0.0013 -6.9797 -8.0639
0.0027 -7.0889 -8.1526
0.0044 -7.2122 -8.2526
0.0062 -7.3513 -8.3656
0.0083 -7.5084 -8.4932
0.0107 -7.6857 -8.6372
0.0134 -7.8858 -8.7998
0.0164 -8.1117 -8.9834
0.0198 -8.3667 -9.1908
0.0236 -8.6544 -9.4250
0.0279 -8.9792 -9.6897
0.0328 -9.3457 -9.9887
0.0383 -9.7593 -10.3266
0.0446 -10.2258 -10.7087
0.0516 -10.7519 -11.1408
0.0595 -11.3450 -11.6295
0.0685 -12.0131 -12.1825
0.0786 -12.7650 -12.8082
0.0900 -13.6100 -13.5161
0.1300 -16.5227 -16.0011
0.2170 -22.3486 -21.2358
0.3040 -26.9724 -25.7363
0.3910 -30.0642 -28.9767
0.4780 -31.7823 -30.8134
0.5650 -32.6143 -31.5160
0.6520 -33.0397 -31.5121
0.7390 -33.3375 -31.1299
0.8260 -33.6101 -30.5258
0.9130 -33.8800 -29.7449
1.0000 -34.1500 -29.0300

where T ∗ refers to homologous temperature (temperature relative to the local
pressure melting temperature).
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Model Intercomparisons

Huybrechts and others [in press] present an intercomparison of a number
of finite-difference model results using the intercomparison benchmark we
present above. The model results presented by Huybrechts and others are
similar to those developed here. There are several points to be noted in the
comparison:

1. Basal temperatures in the 2-dimensional model differ significantly from
the the 3-dimensional model results presented in Chapter 9 and by Huy-
brechts and others [in press] (see Fig. 11.5). Under the ice divide, basal
temperature is warmer than in the 3-dimensional result. This differ-
ence is due to the fact that the ice divide is thicker in the 2-dimensional
result than in the 3-dimensional result by about 200 m. More interest-
ingly, the 2-dimensional results display frozen basal conditions all the
way to the ice margin, whereas the 3-dimensional results have frozen
conditions persisting only about half the distance to the ice margin (see
Chapter 9). This difference results from the fact that horizontal veloc-
ity (which influences advective cooling) is larger in the 2-dimensional
case than in the 3-dimensional case (see Fig. 11.6).

2. Ice divide thickness in the flowline model presented here is greater
than that in the 3-dimensional model of Chapter 9. This is due to
the lack of lateral divergence along the flowline which is present in the
3-dimensional model due to the square domain.

11.5 Comparisons: Strain Heating and Poly-

thermal Ice

To illustrate the influence of strain heating, we repeat the EISMINT level 1
(fixed margin) experiment with strain heating and polythermal ice conditions
accounted for in the customary manner (e.g., see Chapter 10; Greve, 1995).
Because bedrock thermal coupling is disregarded and the intercomparison
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Figure 11.6: Depth-averaged horizontal velocity as a function of distance
from the ice divide. This profile can be compared with Fig. (2) of Huybrechts
and others (in press) to show that the horizontal velocity in 2-dimensional
flowline models is greater than that of the 3-dimensional models in the EIS-
MINT Level 1 test. The greater horizontal velocity introduces larger advec-
tive cooling of the bed (vertical velocity is larger, horizontal velocity is larger)
which explains the difference between the 2-dimensional and 3-dimensional
results for basal temperature in the EISMINT Level 1 fixed margin test.
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results are to be in steady state, the development of a temperate ice layer is
assumed to grow from the bed of the ice sheet upward into the ice column.
(Recall that bedrock thermal inertia permits the possibility of temperate ice
developing first above the bed, and subsequently growing down to the bed
from above.) In keeping with the notion of no thermomechanical coupling,
the mass balance of the ice sheet is not adjusted for liquid water drainage
from the temperate layer. Basal melting, furthermore, is artificially taken to
be zero.

11.5.1 Governing Equations

Polythermal ice conditions are computed using techniques of Chapter 10
modified to allow for horizontal advection (and appropriate specification of
velocity and strain heating fields). To facilitate advection across junctions
between cold and polythermal ice columns, we employ two stretched vertical
coordinates and two temperature functions: ζ = z−b

s−b spans the entire ice col-

umn, ζc = z−c
s−c spans the portion of the ice column above the cold/temperate

ice transition at z = c(x, t), T (x, ζ, t) represents the temperature in the re-
gion b < z < s, and Tc(x, ζc, t; c) represents the temperature in the region
c(x, t) < z < s.

In regions (in the present example, near the ice divide) where c(x, t) = b,
i.e., where there is no temperate ice layer, the following equations are solved
for T (x, ζ, t) and Tc(x, ζc, t; c = b):

Tt + uTx

+
1

h
Tζ

(
D(ζ)− ζȦ− (1 − ζ)Ḃ

)
(11.60)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

and
Tc(x, ζc, t; c = b) = T (x, ζ, t) (11.61)

Boundary conditions for the above equations consist of specified surface tem-
perature and either specified basal temperature gradient (if the basal tem-
perature is below the freezing point) or specified basal temperature.
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In regions (in the present example, near the ice margin) where c(x, t) > b,
it i.e., where there is a basal temperate ice layer, the governing equations are:

(Tc)t −
1

hc
(Tc)ζc

(
ζcȦ− (1− ζc)a⊥

)
=

1

ρch2
c

(k(Tc)ζc)ζc +
W (z(ζc))

ρc
(11.62)

T (x, ζ(ζc), t) = Tc(x, ζc, t; c) (11.63)

for c(t) < z < s (0 < ζc < 1), and

T (x, ζ, t) = Tm(x, ζ, t) (11.64)

for ζ < c−b
s−b , where Tm is the pressure melting temperature. Surface temper-

ature is applied as a boundary condition at ζc = 1 and

Tc(z = c, t) = Tm(z = c, t) (11.65)

at ζc = 0. An additional requirement is made of the solution at z = c if
ice is transported from the cold region to the temperate region through the
cold/temperate ice transition surface, i.e., a⊥ < 0:

(Tc)z(z = c, t) = ρgΦ (11.66)

To satisfy this requirement, the model uses a control method (see Chapter
10) to choose the value of a⊥ (which is less than 0) so as to make the spec-
ification of temperature and temperature gradient at z = c possible. If ice
is transported from the temperate region toward the cold region through
the cold/temperate ice transition surface, i.e., a⊥ > 0, then no additional
requirement on the temperature gradient at z = c is made. In this cir-
cumstance, the value of a⊥ is chosen to satisfy energy-continuity constraints
associated with freezing of liquid water at a surface where there is a jump
condition in temperature gradient (and, hence, in heat flow):

a⊥ =
−k

(
Tz|c+ − Tz|c−

)

ρLfµ
(11.67)

where
(
Tz|c+ − Tz|c−

)
expresses the temperature-gradient jump condition at

z = c, and µ is the liquid water fraction of the temperate ice passing through
the cold/temperate ice transition. In the example presented here, a⊥ < 0;
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thus the liquid-water content of temperate ice is not computed because it is
not needed to determine the temperature in the cold ice region (i.e., a jump
condition in temperature gradient is replaced by the requirement (Tc)z(z =
c, t) = ρgΦ).

To compute the location of the cold/temperate ice transition, c(x, t) =
b(x) + hT (x, t), we use the following kinematic equation:

ct + u(z = c)cx = −a⊥ + w(z = c) (11.68)

As remarked above, a⊥ is chosen using a control method to satisfy the twin
(overdetermined) boundary conditions at z = c.

11.5.2 Results

Results of the test are displayed in Figs. (11.7) - (11.9). The effect of strain
heating, i.e., W 6= 0 according to Eqn. (12.25), is to produce melted basal
conditions and to introduce temperate ice layers at the margins of the ice
sheet. The difference between the results shown here and those of the case of
no strain heating (previous sections) are large and point to the importance
of strain heating in determining the degree to which melting occurs at the
margins of large ice sheets.
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Figure 11.7: Ice and temperate-ice thickness for the EISMINT Level 1 (fixed
margin) test in which polythermal ice conditions were allowed to develop.
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Figure 11.8: Ice divide temperature profile (left) and temperature profile at
the second node (where the temperate ice layer is 333 m thick) (right). In the
right panel, two temperature profiles are shown. The left-most profile in the
right panel represents Tc where node configuration is optimized for the cold
ice region (and is concentrated at the cold/temperate ice transition), and is
offset by -5 C for display. The right-most profile in the right panel represents
T where node configuration is distributed through the ice column (and is
concentrated at the base of the ice). Observe that the vertical temperature
gradient of Tc at z = c is equal to the Clapyron slope, ρgΦ.
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Figure 11.9: Basal homologous temperature in circumstances where strain
heating and polythermal ice development are accounted for in the EISMINT
Level 1 (fixed margin) experiment.
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Chapter 12

Greenland Model: 2-D
(Flowline) Techniques

In this chapter, we report the reconstruction and testing of a new and im-
proved two-dimensional, “flowline” ice-sheet model developed jointly by a
Pennsylvania State University/University of Chicago team during Spring of
1997 (Byron Parizek and Doug MacAyeal). This model is an improvement
of the one described in Chapter 11. The new psu/uc model addresses several
bugs and misconceptions associated with Chapter 11, and makes substantial
improvements to the “vectorization” of the matlab code.

The psu/uc model is tested here using the EISMINT level 2 “Greenland”
suit of tests developed by Catherine Ritz and the Grenoble team.

12.1 Synopsis (Info File)

Following the list of questions provided by Catherine Ritz, the EISMINT
Greenland test coordinator, we offer the following summary of the flowline
model design.
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1. In referring to our model as a “flowline”-model, we mean that it is
2-dimensional in x and z, the horizontal and vertical coordinates. All
transverse horizontal structure is assumed zero, in particular: v = 0
and ∂v

∂y
= 0 where v is the transverse (y) velocity, and y is the horizontal

coordinate transverse to x. Being 2-dimensional, the x-axis defines the
horizontal projection of flowlines in the model. This does not mean that
the particular transect through the ice sheet (in the present study, the
GRIP transect) is a flowline for a fully 3-dimensional ice-sheet model
or in real life.

2. The model domain is the GRIP transect (J = 77 in the EISMINT data
sets provided by the testing coordinator, Catherine Ritz).

3. We have not published a paper describing this model. This write-up
is intended for MacAyeal’s Lessons in Ice-Sheet Modelling, and will
be revised to appear in Byron Parizek’s MS thesis for Pennsylvania
State University (Richard Alley, advisor). The numerical methodology
is a high-order finite-element method, however much of the spirit of
the flowline model is based on the finite-difference model described by
Payne (1995). A few notes:

• This model is capable of dealing with polythermal ice conditions
in the manner described by Greve (1996); (see previous chapter
of MacAyeal’s Lessons). We have not implemented or tested the
polythermal aspects of this model in the context of the Greenland
Eismint experiments.

• We do not treat floating ice. Thus, if conditions permit, the flow-
line model presented here could advance the margin of the Green-
land ice sheet into the bottom of the Labrador Sea! We limit the
ice-sheet advance to the contour where present depth below sea
level is 250 m.

• We compute temperatures with horizontal and vertical advection,
strain heating and vertical conduction. We allow ice to reach the
melting point within the ice column (temperate ice), but we do
not incorporate the conditions at the Cold/Temperate Transition
Surface that are derived by Greve and his teachers. (The CTS in
our model has an unphysical discontinuity in temperature gradient
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from the pressure-melting depression “β” in the temperate ice,
to the value predicted by the vertical heat conduction/advection
equation above the temperate ice.)

• We believe that we treat snow and superimposed ice differently
from other EISMINT investigators (we are not sure). In partic-
ular, we solve advective continuity equations for snow thickness
and superimposed ice thickness, hs and hx, respectively:

∂hs
∂t

+
∂ushs
∂x

= Ṡ (12.1)

and,
∂hx
∂t

+
∂ushx
∂x

= Ẋ (12.2)

where we assume that both snow and superimposed ice advect
horizontally with the surface flow, us = u(z = s), of the ice sheet.
(Note: The EISMINT Level 1 test has an error in the code which
we have just caught. Instead of solving the above equations, we
actually solved the following equations:

∂hs
∂t

+ us
∂hs
∂x

= Ṡ (12.3)

and,
∂hx
∂t

+ us
∂hx
∂x

= Ẋ (12.4)

this error will lead to slightly thicker snow layers due to lack of flow
divergence as a thinning effect. We will correct this mistake later.
We do not believe that our treatment of snow and superimposed
ice will yield significant differences from other treatments which
do not include horizontal movement of the surface of the ice sheet;
we are thus not compelled to correct the mistake noted above for
the EISMINT intercomparison tests.)

• We believe that we avoid “ill-posedness” in the specification of sur-
face boundary conditions in the heat balance equation. In ablation
areas where ice is moving upward through the ice sheet surface,
we do not specify the surface temperature in circumstances where
the ice is sufficiently thick (over 250 m) that the expected thermal
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boundary layer at the surface could not be resolved. Information
flow, i.e., characteristics of the hyperbolic problem, is directed
out of the ice sheet; thus, the equations without specification of
surface temperature are well-posed, and the solution is smooth
(albeit colder than the actual surface temperature achieved with
a boundary layer). In particular we specify:

T (s) =





Ts if Ȧ > 0

not specified if Ȧ ≤ 0 or h ≥ 250 m

(12.5)

where h = s−b is the ice thickness, s is surface elevation of the ice-
sheet surface, T is temperature, and Ts is the atmospheric annual
average temperature.

• In the Level 1 experiment, we assume that the bed is perfectly
drained and that water is not available for basal freezing.

4. We have not submitted Level 3 results yet.

5. Horizontal resolution is 20 km. Flowline divergence in the transverse
direction is assumed zero. We do not use staggered grids. All matrix
equations are solved with exact matrix factorization and backsubstitu-
tion. We do not use upwind differencing or artificial diffusion in the
ice balance and thermal balance equations. We do use upwind-like
artificial diffusion in the snow and superimposed ice advection equa-
tions (to avoid ill-posed boundary conditions needed to keep snow and
superimposed ice positive at the edges of the snow covered domain).

6. Vertical resolution is variable. We use 25 nodes to cover the ice col-
umn, 10 of which are located in the lowest 10% of the ice column with
logarithmic spacing (the first ice node is located 0.0029 × h above the
bed, and the second to last ice node is located 0.09379× h below the
ice surface, where h is the ice thickness). We cover 750 m of bedrock
with 6 nodes, and with a vertical resolution of 150 m.

7. Thermodynamic coupling: advection, diffusion, strain heating and a
crude variant of polythermal ice conditions (one which does not con-
serve energy) are employed. The geothermal heat flux boundary con-
dition is applied at the bottom of the bedrock, which is assumed 750
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m thick. We do not have “upwind” differencing type artificial diffusion
in any part of our code. We note that this can sometimes yield noisy
results; however, we believe that the results with such noise are of in-
terest (i.e., both the noisy results and the artificially smoothed results
have equal, yet offsetting, inadequacies. When looked at together, they
form complementary “pictures” of the solution.)

8. We follow Huybrechts (1991) in developing our ablation parameteriza-
tion, however, we extend his parameterization by presuming that the
snow layer is perrenial and thus subject to the advection and vertical
strain rate associated with ice-sheet flow. (In our simulations, we made
an error and only accounted for advection. Vertical strain rate in the
snow layer, which contributes to thinning was not forgotten by acci-
dent.) We do not expect this possible improvement in the Huybrechts
(1991) parameterization to have much effect on model results (since
the transition between snow-covered ice and snow-free ice is so abrupt
that it is not resolved by the 20 km node spacing). Nevertheless, we
decided to impliment the idea as a means of contributing toward the
further development of Greenland ice-sheet modelling (particularly if
models are required to predict snow facies or ice-core firn effects, such
as pore close off depths).

9. We follow Huybrechts (1991) and the EISMINT intercomparison in-
structions provided by Catherine Ritz, coordinator, for our accumula-
tion parameterization.

10. Bedrock is modelled with a diffusive equation following Payne (1995)
using his asthenospheric diffusivity Da = 108 m2 a−1.

11. Sea level drops only influence the accumulation and ablation parame-
terizations by “moving the atmosphere ” up and down. (The ice surface
instantly becomes higher when the sealevel instantly drops.)

12. We do not parameterize calving. We require that the ice not advance
beyond the -250 m bed contour of the present bed elevation, and make
no adjustment of this criterion for changes in sea level.
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12.2 Dynamics

The governing equations for the dynamic/thermodynamic flowline ice-sheet
model developed here for the purpose of performing the EISMINT Level 2
Greenland Experiments are listed as follows. The equations which govern
the horizontal and vertical velocity fields are:

u(z) = −2ρg
∂s

∂x
I(z) (12.6)

w(z) = −
∫ z

b

∂u

∂x
dz′ +

∂b

∂t
+ u(b)

∂b

∂x
− Ḃ (12.7)

where x is the horizontal coordinate directed down the flowline, z is the
vertical coordinate (positive up), u is the horizontal velocity directed down
the flowline, w is the vertical velocity, s and b are the surface and basal
elevation, respectively, ρ is the ice density (assumed to be constant, 910 kg
m−3), g is the acceleration of gravity (9.81 m s2), and Ḃ is the basal melting
rate (positive for melting, negative for freezing, in meters of ice equivalent
per second). To keep the treatment simple, lateral flow divergence along the
flowline is not accounted for in the expression for the vertical velocity. Lateral
divergence influences the vertical velocity (makes it larger) and is expected to
yield a cooler temperature-depth profile than that which is computed by our
model, which lacks lateral divergence. Basal sliding is suppressed following
the EISMINT Level 2 instructions.

The temperature T (x, z, t) is assumed to cover both ice and a 750 m layer
of bedrock (in ice-free zones, the temperature at vertical grid points reserved
for ice are set automatically to the surface atmospheric temperature). We do
not account for polythermal conditions, however we require T/geTm where
Tm is the z-dependent melting point,

Tm(z) = To − ρg(s− z)Φ (12.8)

where Φ = 8.7× 10−4 K Pa−1, and To = 273.15 K.

The factor I(z) determines the deformational velocity of the ice flow, and
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for Glen’s flow law (with exponent 3) is defined by

I(z) =
∫ z

b
EA(T ∗)(ρg)2

(
∂s

∂x

)2

(s− z′)
3
dz′ (12.9)

The rate-enhancement factor E is designed to account for empirically deter-
mined inadequacies of Glen’s law as applied to Greenland Ice Sheet mod-
elling. The value of E is held fixed at 3 for the EISMINT Greenland ex-
periments. The creep-rate factor A(T ∗) is assumed to have a standard ther-
modynamic form involving a rate constant factor a and an activation energy
Q:

A(T ∗) = a exp
( −Q
RT ∗

)
(12.10)

where R = 8.314 J mol−1 K−1 is the gas constant, and the flow-law parame-
ters (determined from laboratory studies of polycrystaline ice assumed to be
isotropic) are commonly taken to be:

a =





1.14 × 10−5 a−1 Pa−3 if T ∗ < 263.15 K

5.47 × 1010 a−1 Pa−3 if T ∗ ≥ 263.15 K

(12.11)

and

Q =





6.0× 104 J−1 mol−1 if T ∗ < 263.15 K

13.9× 104 J−1 mol−1 if T ∗ ≥ 263.15 K

(12.12)

The temperature in the creep-rate factor formula T ∗ = T−Tm+To is the Ho-
mologous temperature (temperature relative to the pressure melting point)
in degrees Kelvin (note the addition of To).

Mass balance of the ice sheet is expressed by the following equation for
ice thickness h,

∂h

∂t
= −∂q

∂x
+ Ȧ− Ḃ (12.13)

where q = D ∂s
∂x

is the horizontal mass flux integrated over the ice column, Ḃ

is the basal melting rate (positive for melting, negative for freezing), and Ȧ is
the surface snow accumulation rate expressed in meters of ice equivalent per
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year. Note that ice densification effects are disregarded. A common practice
is to substitute Equations (12.6) into Equation (12.13) giving,

∂h

∂t
=

∂

∂x

(
D
∂s

∂x

)
+ Ȧ− Ḃ (12.14)

where the effective diffusivity D is defined by,

D =
∫ s

b
2ρgI(z′)dz′ (12.15)

Kinematic boundary conditions on the free surface z = s and basal surface
z = b are recorded for use elsewhere:

∂s

∂t
+ u(s)

∂s

∂x
= w(s) + Ȧ (12.16)

and,

u(b)
∂b

∂x
= w(b) + Ḃ (12.17)

where we have made the assumption that ∂b
∂t

= 0 (no isostatic or bed erosion
effects are included).

Ice thickness is assumed to be positive, i.e., h ≥ 0. To handle the advance
and retreat of glacial ice, we define a nodal information variable that is equal
to 1 for barren ground (or seabed, in this circumstance) and 0 for ice-covered
ground. To define this variable, and to effectively determine the advance and
retreat of ice-sheet margins (disconnected, separate ice sheets are allowed
within the model domain), we perform the mass-balance time step twice.
First, we assume that all nodes can contain glacial ice and that h is free
to become negative. Second, we perform a time step with this assumption.
Third, we then identify those nodes where h ≤ 0 at the end of this tentative
time step. Fourth, we retake the time step, but this time with specified
h = 0 as boundary conditions for the nodes identified in the third step. The
barren-ground nodal information variable is then updated for use elsewhere
in the model (notably the thermodynamic subroutines, where nodes reserved
for ice temperature profiles are set to the surface temperature over barren
ground).
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12.3 Firn-Layer Dynamics

To parameterize the surface accumulation and ablation rates according to
the EISMINT Greenland Level 2 experiment design (see Huybrechts, 1991),
it is necessary to account for surface snow and superimposed ice. We assume
that “ice equivalent” snow thickness hs and superimposed ice thickness hx
are governed by the following mass balance equations (we do not account for
snow density, i.e., all snow is delt with as ice equivalent material):

∂hs
∂t

+
∂ushs
∂x

= Ṡ (12.18)

and,
∂hx
∂t

+
∂ushx
∂x

= Ẋ (12.19)

where we assume that both snow and superimposed ice advect horizontally
with the surface flow, us = u(z = s), of the ice sheet.

The snow and superimposed ice thicknesses are assumed to be positive.
This necessitates the following procedure for marching Equations (12.18) and
(12.19) forward in time. First, we take a tentative time step assuming that
hs and hx are free to become negative at any node. Second, we identify those
nodes where hs and/or hx are less than or equal to zero. Third, we retake the
time step with hs and hx specified to be zero as boundary conditions at these
identified nodes. To avoid numerical noise in specification of a boundary
condition were one is not required to solve the purely hyperbolic equation,
we add artificial diffusion equivalent to the SUPG procedure discussed in
previous chapters to both equations (this term is not represented above).

To prevent the thickness of snow and superimposed ice from exceeding
a reasonable firn-layer thickness (ice equivalent, assumed each to be 25 m,
for a combined firn/superimposed ice layer maximum thickness of 50 m ice
equivalent), we artificially limit snow thickness to 25 m and parameterize
the snow and superimposed ice accumulation rates, Ṡ and Ẋ respectively,
according to the climate parameterization specified in Huybrechts (1991).
We admit that this maximum thickness assumption is a crude idealization
of actual firn-layer dynamics. To limit snow thickness, we set hs = 25 m
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whenever Equation (12.18) predicts a value of hs > 25 m. The accumulation
rate for glacial ice, Ȧ, is adjusted (see below) to receive all snow accumulated
as a “firn-densification” pass-through when hs = 25 m.

The expressions for Ṡ and Ẋ are:

Ṡ = Ṗ − αsHpdd
ρwater
ρ

(12.20)

and

Ẋ =





αsHpdd
ρwater

ρ if hs > 0 and αsHpdd
ρwater

ρ ≤ γṖ

γṖ if hs > 0 and αsHpdd
ρwater

ρ
> γṖ

αxHpdd
ρwater

ρ if hs = 0

(12.21)

where Ṗ is the precipitation rate (assumed to all fall as snow, in m a−1 of
ice equivalent), Hpdd is the positive-degree-day factor (units d C) given by
the climate parameterization (see below), and the factor ρwater

ρ is necessary
to convert from units of ice equivalent to water equivalent. The factors
αs = 0.003 m d−1 C−1 and αx = 0.008 m d−1 C−1 denote positive degree day
ablation rates for snow and superimposed ice, respectively.

The idea behind the above equations is as follows (see Huybrechts, 1991).
Snow is always able to accumulate or ablate according to the difference be-
tween the snow precipitation rate and the positive-degree-day parameteri-
zation of the snow melting rate. Superimposed ice accumulates only as the
residual between the snow melting rate and the snow melt runoff rate. When
the snow melt rate falls below γṖ , where γ = 0.6 is an empirical nondi-
mensional factor, all snow melt is assumed to accumulate as superimposed
ice (zero runoff). When the snow layer thickness is zero, superimposed ice
is allowed to ablate at the rate specified by the positive-degree-day method
using a factor αx that is greater than αs.
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12.4 Thermodynamics

Heat flow continuity in both ice and underlying bedrock is expressed using
the standard advective/diffusive equation with variable heat-flow parameters:

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
=

1

ρc

∂

∂z

(
k
∂T

∂z

)
+
W

ρc
(12.22)

for b < z < s; and
∂T

∂t
=

1

ρrcr

∂

∂z

(
kr
∂T

∂z

)
(12.23)

for zr ≤ z ≤ b, and where zr is a level at a fixed elevation below the
ice/bedrock interface (or seabed) where the geothermal flux gradient is ap-
plied as a boundary condition (see below). In the present study, we take zr
to be 750 m below the ice/rock interface (or the atmosphere/rock interface
in ice-free regions). The above equations reflect the standard assumption
that horizontal heat conduction is negligible in comparison with horizontal
advection, vertical advection and conduction, and viscous heat dissipation.
The horizontal and vertical velocities referred to in Equations (12.22) and
(12.23) are described by Equations (12.6) and (12.7).

For the EISMINT Greenland tests, we take k = 2.1 W m−1 K−1 and
kr = 3 W m−1 K−1 and c = 2009 J kg−1 K−1 and cr = 1000 J kg−1 K−1. We
assume constant density in the ice, ρ = 910 kg m−3, and a dry homogeneous
bedrock ρr = 2700 kg m−3.

The term W in Eqn. (12.22) is the viscous heating term formally defined
by

W =
∑

i

∑

j

ėijT
′
ij (12.24)

where ėij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the strain rate, and T ′ij is the deviatoric stress.

According to the common assumptions associated with grounded ice-sheet
stress balance (i.e., neglecting longitudinal stress), W can be written as:

W (z) = (ρg)4 2

(
∂s

∂x

)4

(s− z)4 EA(T ∗) (12.25)
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Boundary conditions are specified at the top z = s and bottom z =
zr of the ice/rock column in the following manner. At the top, a surface
temperature (depending on atmospheric conditions) is specified only under
circumstances when the finite-element discretization in the vertical is capable
of resolving any surface thermal boundary layers that may exist at the ice
surface

T (s) =





Ts if Ȧ > 0

not specified if Ȧ ≤ 0 or h ≥ 250 m

(12.26)

where h = s − b is the ice thickness. After considerable testing, we found
that specification of a surface temperature in ablation zones (Ȧ ≤ 0) when
ice was too thick (h > 250 m) led to numerical noise, because the vertical
resolution of the finite-element node points was unable to resolve the very
thin conductive boundary layer at the ice-sheet surface. The model is able
to run adequately without specification of a surface temperature in ablation
zones because the characteristics of the mixed parabolic/hyperbolic thermal
equation are directed from the interior of the ice sheet outward toward the
atmosphere.

At the ice/bedrock interface, a geothermal temperature gradient is spec-
ified

∂T

∂z
= − Γ

kr
. (12.27)

The geothermal flux Γ is typically taken to be one geophysical heat flow unit
(0.5 W m−2). The value of zr is chosen to be 750 m below z = b. A useful
consideration for choosing this distance (b− zr) is the e-folding penetration
depth λ for temperature oscillations forced at the ice/bedrock interface of
frequency ω (Carlsaw and Jaeger, 1954):

λ =
(

2κr
ω

) 1
2

(12.28)

where the thermal diffusivity of bedrock is defined by κr = kr
ρrcr

.

Unless there are inflow boundaries around the horizontal edges of the ice
sheet, thermal boundary conditions are not required around the edges of the
ice sheet. This is because the horizontal mode of heat transfer in an ice sheet
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is advection, a process that demands boundary conditions only where ice
flow into the domain.

A material constraint on the ice-sheet thermodynamics is that ice never
warm above the pressure-melting point. When layers of finite thickness reach
the pressure-melting point, the ice sheet is said to become “polythermal”
(Hutter, 1982; Hutter, Blatter and Funk, 1988). A review of polythermal
ice-sheet modelling is provided by Greve (1995). Polythermal conditions
typically occur as a result of viscous dissipation, which heats the ice column
internally and permits the locus of a temperature maximum (the pressure-
melting point, by definition) to move away from the boundary (a constraint
that is otherwise forced by a consideration similar to the maximum principle
of solutions of Laplace Equation). When ice becomes temperate (at the pres-
sure melting point), its vertical temperature gradient becomes that dictated
by the “Clapyron slope” of water (the change of the melting temperature with
pressure). In this circumstance, the vertical heat flux is fixed (near zero), so
further heat transfer (via internal heating and flux from non-temperate por-
tions of the ice sheet) acts only to modify the liquid water content of the ice.
In the ice-sheet model by Greve (1995), for example, the heat-flow continuity
equation in the temperate ice is replaced with a diffusive-type equation for
water content, and an internal free surface (called the CTS, cold/temperate
ice transition surface) must be monitored through the use of energy flux and
mass flux matching conditions.

In the examples described in this chapter, polythermal ice conditions are
treated in a very simple manner. When ice reaches the local pressure melting
point, it is assumed to be fixed at the pressure melting point. To accomplish
this specification, we take each thermal time step twice (actually, just the
vertical portion of the split thermal time step, not the horizontal advection
portion). We first assume that there is no melting at any level of the ice,
including the ice/rock interface. We take a vertical conduction/advection
time step (with strain heating) and determine if T exceeds Tm(z) for any
level z within the ice. If the condition is true, i.e., there is pressure melting
at the base or within the ice, we retake the time step (starting from the same
previous time step temperature) with all nodes where T ≥ Tm in the first
time step specified to have T = Tm.
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12.4.1 Drained Bed Conditions

When the base is at the pressure-melting point in Level 2 experiments, we
compute a basal melting rate, Ḃ (positive for melting, meters of ice equivalent
per year), to balance the heat budget at the basal ice interface. We define
heat-flux terms Ho and Hi as the outward- and inward-directed heat fluxes
to the interface z = b, respectively, by

Ho = −k∂T
∂z
|z=b+ (12.29)

and,

Hi = −kr
∂T

∂z
|z=b− (12.30)

where z = b+ and z = b− denote evaluation of the derivatives on one side
of the basal boundary. With the above definitions for Ho and Hi, Ḃ is
determined by

Ḃ =





Hi−Ho

ρLf
if Hi > Ho

0 otherwise, assuming drained bed conditions

(12.31)

where Lf = 3.35× 105 J kg−1 is the latent heat of fusion for pure water.

12.5 Climate Parameterization

Surface temperature and mass balance conditions are required at the upper
surface of the ice sheet. These are provided by the EISMINT Greenland
Level 1 specifications as follows.

Let,

Z(t) = max





s(t)− (−34.83(δ18Ods(t) + 1.93))

20(φ− 65◦)
(12.32)

where δ18Ods(t) (units o/oo) is the SPECMAP value of the deep-sea oxygen-
isotope value at time t used to account for elevation changes associated with
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changing sea level, the constant -34.83 m (o/oo)
−1 is the assumed conversion

rate between oxygen-isotope value of the ocean and sea level, 1.93 o/oo is the
assumed value of δ18Ods(t) at present, t = 0, t is time, with zero at present,
and φ is latitude in units of degrees. Annual average surface temperature Ts
is given by:

Ts = Tsl − ΓzZ(t)− Γφφ+ 1.5(δ18Oic(t) + 35.27) + TCO2(t) (12.33)

where Tsl = 49.13 C, Γz = 7.992 × 10−3 C m−1, Γφ = 0.7576 C degree−1,
1.5(δ18Oic(t) + 35.27) C is the climate effect provided by the GRIP ice-core
oxygen isotope ratio δ18Oic(t) (units o/oo), and TCO2(t) is the greenhouse
effect for t > 0 given by:

TCO2 =





∫ t

0
0.035dt if t < 80 a

∫ 80

0
0.035dt +

∫ t

80
0.0017dt if t ≥ 80 a

(12.34)

The values of δ18Ods(t) and δ18Oic(t) are assumed constant at their present
values for times t/ge0, and are interpolated from SPECMAP and GRIP data
provided by the EISMINT Greenland Level 2 experiment (see Johnsen et al.,
1995; Imbrie et al., 1984).

The summer mean temperature is given by

Tsum = (Tsl)sum − (Γz)sumZ(t)− (Γφ)sumφ+ 1.5(δ18Oic(t) + 35.27) + TCO2(t)
(12.35)

where (Tsl)sum = 30.78 C is the summer mean sealevel temperature, (Γz)sum =
6.277 × 10−3 C m−1 is the summer value of Γz, and (Γφ)sum = 0.3262 C
degree−1 is the summer value of Γφ.

The positive-degree-day factor, Hpdd, is given by (see Huybrechts, 1991):

Hpdd =
1

σ
√

2π

∫ ta

0

(
−0.04394 σ2 + 1.23775Tdσ + σ2exp

(
Td

2

2σ2

)
+ Tdσ

√
π

2
erf

(
Td

σ
√

2

))
dt

(12.36)
where ta is one year, σ = 5 C is the standard deviation of the daily tempera-
ture, and Td is the daily temperature (idealization of an annual cycle) given
by:

Td = Ts + (Tsum − Ts) cos
(

2πt

ta

)
(12.37)
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The units of Hpdd are (C day). All temperatures in the above two equations
are in units of degrees Centigrade.

The glacial ice accumulation rate Ȧ is given by

Ȧ =





Ṗ − αsHpdd
ρw
ρ if hs = 25 m

−αxHpdd
ρw
ρ

if hs = hx = 0

0 if 0 < hs < 25 and/or 0 < hx < 25

(12.38)

The idea behind the above representation of the glacial ice accumulation
rate (which drives ice-sheet growth and decay) is that ice accumulates only
after a full thickness firn layer has developed (hs = 25 m). Glacial ice will
only ablate when all snow and superimposed ice have been eliminated by
ablation. During the periods where the snow layer thickness is less than 25
m, glacial ice does not accumulate, because precipitation minus ablation is
busy causing the snow and superimposed ice layers to change their thickness.

12.6 Bedrock Isostacy

We treat bedrock elevation using the scheme developed by Oerlemans and
van der Veen as described by Payne (1995):

∂b

∂t
= Da

∂2

∂x2

(
b− bo +

ρh

ρm

)
(12.39)

where Da = 108 m2 a−1 is the asthenospheric diffusivity, bo is the equilibrium
bedrock elevation in the absence of an ice load, and ρm = 3300 kg m−3 is
the asthenospheric density. For bo, we assume that the present bed elevation
of greenland is in isostatic equilibrium with the present ice load, i.e., bo =
b+ ρh

ρm
. We do not account for the effects of changing sea level and consequent

isostatic compensation of the bed in water-covered portions of the domain.

For boundary conditions, we require that ∂b
∂x

= 0 at the extreme endpoints
of our domain. The unphysical aspect of this boundary condition is not
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a concern because bed elevations at the extreme endpoints of the flowline
domain are below sea level and do not influence the ice-sheet simulation
elsewhere.

12.7 Calving, Sea-Level Effects

For simplicity, we do not consider floating ice. In fact, our ice sheet is able
to advance to the bottom of the Labrador Sea as a grounded ice sheet if
climatic conditions permit (i.e., the Labrador Sea is assumed to be empty of
seawater and, instead, filled with atmosphere). Calving is thus not predicted
by the model. To avoid ice-sheet advance into the bottom of the Labrador
Sea (a rather humorous circumstance which came up in our initial tests), we
force the ice sheet to have zero thickness at nodes where the bed elevation is
currently below -250 m.

Our experience with flowline ice-shelf models (see previous chapters) sug-
gests that an ice-thickness constraint at marine termini is an adequate ap-
proach to simulating the effects of ice flotation in circumstances where there
are no transverse constraints on ice-shelf flow.

12.8 Sliding

For the Greenland experiments, basal sliding is taken to be zero even when
the bed is melted. We anticipate using the model in a mode where sliding is
permitted, using the parameterization described by Payne (1995).

12.9 Contour-Following Vertical Coordinate

To handle the variable vertical dimension of the ice sheet, a new vertical
coordinate ζ is defined such that ζ = 1 at s(x, y, t) and ζ = 0 at b(x, y, t).
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The relation between ζ and z is

ζ =
z − b

s− b
(12.40)

and
z = (s− b)ζ + b (12.41)

Using the above definitions, z-derivatives are converted to ζ-derivatives, and
the governing equation for thermodynamics becomes:

Tt + uTx

+
1

h
Tζ

(
D(ζ)− ζȦ− (1 − ζ)Ḃ

)
(12.42)

=
1

ρch2

∂

∂ζ

(
k
∂T

∂ζ

)
+
W

ρc

where D(ζ) is an ice-divergence parameter defined by,

D(ζ) = h

(
ζ

∫ 1

0

∂u

∂x
dζ −

∫ ζ

0

∂u

∂x
dζ ′

)
(12.43)

We note the fact that in previous EISMINT Level 1 tests, the computation
of the D-term did not require analysis of horizontal gradients in I(z). This
was because a constant flow-law parameter Ao = 10−16 Pa−3/yr was applied.
Here, it is necessary to be more general about the computation of horizontal
divergence fields, caution is advised because it is not now possible to express
the D-term in terms of second derivatives of s. (We learned this the hard
way.)

12.10 Discretization

According to the diagnostic relations between u, w and s for a grounded
ice-sheet with “inland ice” type flow (Eqns. 12.6 and 12.7), the computation
of the vertical velocity w and the D-term as a function of ζ requires that
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the second spatial derivative of s, i.e., ∂2s
∂x2 , be evaluated on the computa-

tional domain. This requirement necessitates the use of high-order element
interpolation using Hermite-polynomial basis functions.

Variables s, b, h = s − b are represented on each element’s horizontal
span, xl ≤ x ≤ xr, by the sum

s(x) =
4∑

j=1

sjHj(x) (12.44)

where the Hj(x), j = 1, . . . , 4, are interpolation functions related to Hermite
polynomials:

H1(x) =
1

4

(
2− 3ξ + ξ3

)
(12.45)

H2(x) =
Le

8

(
1− ξ − ξ2 + ξ3

)
(12.46)

H3(x) =
1

4

(
2 + 3ξ − ξ3

)
(12.47)

H4(x) =
Le

8

(
−1− ξ + ξ2 + ξ3

)
(12.48)

(12.49)

Le = xr−xl is the element’s length, and ξ = 2(x−xl)
Le

−1 is a scaled horizontal
coordinate that is −1 at x = xl and +1 at x = xr. The interpolation
functions convey information about the interpolated function’s value and
first-derivatives at the two endpoints (nodes) of the line-segment element, and
are displayed on the interval −1 < ξ < 1 in Figure (12.1). The coefficients sj ,
for j = 1, 3, represent nodal values of s(x) and sj, for j = 2, 4, coefficients sj
provide information about the nodal values of ∂s

∂x
(they are not the derivatives,

however). Observe that, in the above notation, the subscript j refers to a
local node-numbering scheme and that coefficients sj vary from element to
element according to the global element connectivity scheme.

The variation of T with x and z is represented by bi-directional linear
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Figure 12.1: To permit evaluation of ∂2s
∂x2 , interpolation functions based on

the Hermite polynomials are employed. Four functions are used on each
element. Two functions convey the value of the interpolated field at each
endpoint (node) of the line segment (element), and two functions convey the
value of the first-derivative of the interpolated field at each endpoint. The
two interpolation functions that are zero at endpoints (nodes) are scaled by
Le, the length of the element, in this particular diagram.
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interpolation (i.e., linear in each separate direction):

T (x, y) =
2∑

j=1

(
2∑

k=1

TjkLj(x)

)
Lj(z) (12.50)

where Tjk is the nodal value of T (x, z) at the j’th node (line-segment end-
point) in the horizontal element and at the k’th node (line-segment endpoint)
in the vertical element. Because a split timestep is used (see below), updates
to Tjk are made first holding j fixed and next holding k fixed. This scheme
avoids the necessity of integrating interpolation functions Lj(x)Lk(z) over
the 3-dimensional “brick” volume determined by the 8 corners where nodal
values of T are resolved, i.e., at the 8 points (xj , zk), j = 1, 2 and k = 1, 2.
The linear interpolation functions Lj(x) and Lk(z) are of the form

Lj(x) = αjx+ βj (12.51)

Lk(z) = αkz + βk (12.52)

where the coefficients αm and βm are determined by

[
α1 α2

β1 β2

]
=

[
x1 1
x2 1

]−1

(12.53)

or [
α1 α2

β1 β2

]
=

[
z1 1
z2 1

]−1

(12.54)

and where (x1, x2) and (z1, z2) are the nodal coordinates (line segment end-
points) in the horizontal and vertical discretizations, respectively.

Integrals of products of interpolation functions, e.g.,
∫ x2
x1
Hj(x)Hl(x)dx

are evaluated using either exact integration formulae or Gaussian quadra-
ture (see Chapter 9). When Gaussian quadrature is used, the integrals are
approximated by sums as follows:

∫ x2

x1

Hj(x)Hl(x)dx ≈ Le

2

Ng∑

g=1

WgHj(ξg)Hl(ξg) (12.55)

The Ng = 5 quadrature points are, in the example presented in this chapter,
ξg ∈ {−.9061798459 − .5384693101 0.0 .5384693101 .9061798459}, and the

413



weighting factors areWg ∈ {.2369268851 .4786286705 .5688888888 .4786286705 .2369268851}.
Exact integration formulae are listed in Hulbe (personal communication).
Further analysis demonstrates to us that a 3-point quadrature method yields
equal results.

Time stepping of the heat- and mass-balance equations is accomplished
asynchronously using a finite-difference representation of the time derivatives,
e.g.,

Tt =
T n+1 − T n

∆ttherm
(12.56)

and,

ht =
hn+1 − hn

∆tmass
(12.57)

For the EISMINT intercomparison experiments, ∆ttherm = 50 a, and ∆tmass =
5 a. Climate, ice velocity and other information are updated every mass bal-
ance time step.

Vertical and horizontal derivatives are involved in the heat-balance equa-
tion, thus we employ a split timestep to simplify integration of Eqn. (12.43):

T̃ n+1

∆t
+ un(ζl)T̃

n+1
x =

T n

∆t
∀l (12.58)

T n+1

∆t
− 1

ρch2

(
kT n+1

ζ

)
ζ
+
ω(ζ)

h
T n+1
ζ =

T̃ n+1

∆t
+
W (ζ)

ρc
∀k (12.59)

where in the first of the above equations, l is the vertical level number, ζl
is the l’th vertical level in the ice, and ω(ζ) is the vertical velocity in the
“ζ-system” given by:

ω = D(ζ)− ζȦ− (1− ζ)Ḃ (12.60)

We note the fact that there is no artificial horizontal diffusion term or “up-
winding” necessary to suppress numerical noise (wiggles) generated in high
Peclet number flows (see Chapter 9). This is because we do not need to
specify boundary conditions in Equation (12.58) when flow characteristics
are directed out of all boundaries.
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For regions of the domain that are free of glacial ice, the temperature
for nodes that are reserved for ice in the vertical discretization of ice/rock
temperature profiles are set to Ts. When ice first appears at a previously
ice-free node, the initial temperature profile of the ice is taken to be uniform
and equal to the minimum of Ts or -5 C.

12.11 EISMINT Greenland Intercomparison

Benchmarks

To apply our flowline model to the Greenland model intercomparison exper-
iment described by Catherine Ritz, we selected the GRIP transect (row 77
of the 2-dimensional input data) as the model domain. This transect corre-
sponds only approximately to a flowline. We thus expect our results to differ
substantially from the results of full, 3-dimensional models and from the ob-
servations of the actual ice sheet itself. Output data supplied to Grenoble
is in the natural units for flowline models (volumes and areas are calculated
assuming a 1 m width of the ice sheet transverse to the x-axis).

12.11.1 Level 2 Intercomparison Benchmarks

Select figures from the level 2 climate cycle experiment are provided below
for information.

12.11.2 Level 3 Intercomparison Benchmarks

The only difference between the level 2 and level 3 Greenland experiments is
that, in level 2, we assume an undrained bed (with unlimited water supply
for basal freezing); whereas in level 3, we assume a drained bed (the bed
freezes as soon as heat flux upward into the ice exceeds the the heat flux
upward from the rock).
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Figure 12.2: Ice covered area vs. time (upper panel) and ice volume vs. time
(lower panel) for the Level 2 test (250,500-year climate run). The model
is started from and “initial steady-state” condition at t=-300 ka to allow
further adjustment of model fields toward steady state. Units of area and
volume assume a 1-m width.
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Figure 12.3: Mean accumulation rate (m a−1) vs. time (upper panel) and
mean ablation rate (m a−1) vs. time (lower panel) for the Level 2 test
(250,500-year climate run). Values are averaged for glacial-ice-covered ar-
eas only.
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Figure 12.4: Surface elevation vs. time (upper panel) and thickness vs. time
(lower panel) at the GRIP ice-core site for the Level 2 test (250,500-year
climate run).

418



-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
x 105

-50

-45

-40

-35

-30

-25

time (year)

Surface Temperature at GRIP

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5
x 105

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

time (year)

Accumulation Rate at GRIP

Figure 12.5: Surface Temperature vs. time (upper panel) and accumulation
rate (m a−1) vs. time (lower panel) for the Level 2 test (250,500-year climate
run) at the GRIP ice-core site.
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Figure 12.6: Basal temperature vs. time (upper panel) and surface temper-
ature vs. time (lower panel) for the Level 2 test (250,500-year climate run)
at the GRIP ice-core site.
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Figure 12.7: Basal temperature vs. time (upper panel) and area of basal
melting vs. time (lower panel) for the Level 2 test (250,500-year climate
run).
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Figure 12.8: Maximum surface elevation vs. time (upper panel) and node
of maximum surface elevation vs. time (lower panel) for the Level 2 test
(250,500-year climate run).
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Figure 12.9: Sample model results. Ice-sheet and bed elevation at the begin-
ning of the 250,000-year time integration of the climate cycle (i.e., at present
time, t = 0). This represents nearly steady-state conditions associated with
present climate conditions. Basal melting is denoted by *-symbols. Also
shown are the observed surface and bed elevations. Our ice sheet is signif-
icantly larger than that observed due to the fact that transverse divergence
of the flowline is not allowed. Wiggles in the temperature field are due to
the fact that we do not use “upwind” differencing type artificial diffusion.
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Figure 12.10: Sample model results. Ice-sheet and bed elevation at t = −130
ka. Basal melting is denoted by *-symbols.
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Figure 12.11: Sample model results. Ice-sheet and bed elevation at t = −130
ka. Basal melting is denoted by *-symbols.

425



0 2 4 6 8 10 12 14 16
x 105

-1000

0

1000

2000

3000

4000

cross section (m)

Temperature -- * detnotes melted base --

kyear = -21

timestep = 5578

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

Figure 12.12: Sample model results. Ice-sheet and bed elevation at t = −21
ka. Basal melting is denoted by *-symbols.
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Figure 12.13: Sample model results. Ice-sheet and bed elevation at t = −9
ka. Basal melting is denoted by *-symbols.
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Figure 12.14: Sample model results. Ice-sheet and bed elevation at t = 0 ka.
Basal melting is denoted by *-symbols.
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