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Abstract

Graph homomorphisms play an important role in graph theory and its ap-
plications. For example, the n-colourability of a graph G is equivalent to the
existence of a graph homomorphism from G to the complete graph Kn.

Using lattice theory, we re-examine some nice proofs and problems explored
by Hell and Nešetřil in their text Graphs and Homomorphisms. We investigate
the lattices of finite digraphs and finite graphs ordered by homomorphism. We
show that the lattice of finite graphs is dense above its unique atom, and that
every finite ordered set embeds into both lattices.

1 Motivation

Graph homomorphisms play an important role in graph theory and its applications [5].
For example, the n-colourability of a graph G is equivalent to the existence of a graph
homomorphism from G to the complete graph Kn. (In Figure 1 we see the well-known
Petersen graph is 3-colourable.) This example is an instance of a constraint satisfaction
problem (CSP). In general, the CSP associated with a finite graph K asks “which finite
graphs have a homomorphism to K?”

The well-known Dichotomy Conjecture [4], first formulated by Feder and Vardi
in 1993, is that the computational complexity of a CSP is either P or NP-complete.
Interest in CSPs is motivated by their wide applications, in areas such as timetabling,
constraint programming, database theory and artificial intelligence.
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Figure 1: A homomorphism from the Petersen graph to a triangle.

2 Introduction

In this project, we define a digraph to be a set with a binary relation on it called the
edge relation. Then a graph is a digraph in which the edge relation is symmetric. We
define a quasi-order (that is, a reflexive and transitive binary relation) on the class of
all finite digraphs by

G 6 H () there exists a homomorphism h : G ! H.

By identifying digraphs that are equivalent under this quasi-order, the class of all finite
digraphs becomes a countably infinite ordered set D.

The ordered set D provides an alternative perspective on some significant results
in graph theory. For example, the Four Colour Theorem is equivalent to the statement
that the class of finite planar graphs has a maximum element in D [5].

This project presents a number of important properties of D:

(1) The ordered set D is a bounded distributive lattice in which the least upper
bound of digraphs G and H is their disjoint union G [̇H, and the greatest lower
bound of G and H is their direct product G⇥H.

(2) The class of finite graphs (that is, symmetric digraphs) yields a sublattice DS

of D.

(3) Both D and DS are relatively pseudo-complemented lattices: the pseudo-comple-
ment of G relative to H is the exponential digraph HG.

(4) Every finite ordered set embeds into DS, and therefore into D [6].
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(5) The lattice DS is order-dense strictly above the bottom element 0, that is, if
0 < G < H, then there exists a finite graph K with G < K < H [5].

The proof of the graph-theoretic result (5) can be simplified by using a general argu-
ment about relatively pseudo-complemented lattices. This result is demonstrative of
the aim of the project; that is, to rephrase graph-theoretic problems from an order-
theoretic perspective.

We show that order theory can be employed to simplify the proofs of graph-theoretic
results presented in Chapter 3 of the text Graphs and Homomorphisms by Hell and
Nešetřil [5]. We take a more lattice-theoretic approach to the proofs than that of
Hell and Nešetřil. This paves the way for future work reframing open graph-theoretic
problems as lattice-theoretic problems.

Important properties of digraphs

A digraph is a collection of vertices and directed edges between them.

Definition 2.1. A digraph G is a non-empty set V = V (G) of vertices, together with
a binary relation E = E(G) on V . If (u, v) 2 E(G), then we say that there is an edge
from u to v. We will only consider finite digraphs.

digraph
symmetric
digraph

complete
graph
(K4)

loops are
allowed

directed
cycle
( ~C4)

Figure 2: Examples of relevant digraphs.

Definition 2.2. A graph is a symmetric digraph.

Figure 2 shows relevant examples of digraphs. A complete graph is a symmetric
digraph in which all vertices are connected to all other vertices; the complete graph on
n vertices is denoted by Kn. A cycle can be directed or symmetric; a symmetric cycle
on n vertices is denoted by Cn, and when directed, by ~Cn. As we consider a digraph to
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be a set with a binary edge-relation on it, we do not allow, as is sometimes the case,
for multiple edges in the same direction between two vertices.

Definition 2.3. A map h : G ! H between digraphs G and H is called a homomor-
phism if (u, v) 2 E(G) implies (h(u), h(v)) 2 E(H), for all u, v 2 V (G).

Definition 2.4. The chromatic number of a finite graph G, denoted by �(G) is the
smallest n with G ! Kn, or else 1.

Definition 2.5. The odd girth of a finite graph G, denoted by oddgirth(G) is the
smallest odd n such that G has a cycle of length n, or else 1.

The following important result from graph theory is used without proof. The
justification for this is twofold: this is a complex graph-theoretic result, and this project
focuses on order theory; and it would have been beyond the scope of this project to
do this theorem justice.

Theorem 2.6 (Erdos, 1959). Let g, k be positive integers, g > 3 odd. Then there exists
a connected graph with odd girth at least g and chromatic number at least k [2].

3 Basic properties of the lattices D and DS

For finite digraphs G and H, write G ! H or G 6 H if there is a homomorphism
from G to H. It requires little work to see that 6 is a quasi-order, that is, it satis-
fies reflexivity and transitivity. The identity map is a homomorphism from G to G.
Hence, G 6 G. So, 6 is reflexive. The composition of two homomorphisms is a homo-
morphism, and so transitivity is satisfied; i.e., if F,G, and H are digraphs, with F 6 G
and G 6 H, then F 6 H. As we have reflexivity and transitivity, the relation 6 is a
quasi-order on the class of finite digraphs.

The relation 6 is not antisymmetric as there exist digraphs G and H where G 6 H
and H 6 G such that G 6= H. For example, consider the symmetric cycles C4 and C2:
We have C4 6 C2, as shown by the following homomorphism from C4 to C2.

C4 C2
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We have C2 6 C4, as shown by the following homomorphism from C2 to C4.

C4 C2 .

However, C2 is not the same graph as C4. So, 6 fails antisymmetry. Hence, we
have a quasi-order on finite digraphs, but not an order (also known as partial order).

We set G ⌘ H if G 6 H and H 6 G. This gives an induced order on the set of
equivalence classes of finite digraphs. We shall denote this ordered set by D. Let DS

denote the sub-ordered set determined by symmetric digraphs.
Now 6 is a binary relation between equivalence classes of digraphs. We use [G] to

denote the equivalence class containing the digraph G. However, to simplify notation,
we will not always distinguish between an equivalence class and a representative of the
equivalence class.

Lemma 3.1. The ordered set D is bounded.

Proof. Consider an edgeless digraph G. Any homomorphism from G preserves edges
as there are no edges to preserve, and there cannot exist a homomorphism from any
digraph that has at least one edge to G. Hence, the class of edgeless digraphs is the
bottom of D (Figure 3).

bottom top

Figure 3: The bottom and top of D.

Now consider any digraph with a loop. Adjacency of vertices is preserved in any
map that directs all vertices to a looped vertex. However, a loop must map to a loop
under homomorphism. Hence, the class of digraphs with at least one loop is the top
of D (Figure 3).

A lattice is an ordered set with a least upper bound (join, denoted by _) and a
greatest lower bound (meet, denoted by ^) for any pair of elements [1, p. 34].
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Lemma 3.2. Least upper bounds exist in D, with [G] _ [H] = [G [̇H].

Proof. Clearly G ! G [̇ H and H ! G [̇ H by the inclusion map. So, G 6 G [̇ H
and H 6 G [̇H. It remains to show that G [̇H is the least upper bound of G and H.

Let K be an upper bound for G and H. Then G 6 K and H 6 K via homo-
morphisms ' : G ! K and  : H ! K. So, G [̇ H 6 K by ' [̇  : G [̇ H ! K.
Hence, G [̇H is the least upper bound for G and H.

Lemma 3.3. Greatest lower bounds exist in D, with [G] ^ [H] = [G⇥H].

Proof. We have G ⇥ H ! G and G ⇥ H ! H by the first and second projections,
respectively; i.e., G⇥H 6 G and G⇥H 6 H . So, G⇥H is a lower bound of G and H.
It remains to show that G⇥H is the greatest lower bound of G and H.

Consider any lower bound K of G and H. Then K 6 G and K 6 H via ho-
momorphisms ' : K ! G and  : K ! H. So, K 6 G ⇥ H via the natural map
' u  : K ! G ⇥H given by (' u  )(a) := ('(a), (a)). Thus G ⇥H is the greatest
lower bound of G and H.

As there exist a meet, by Lemma 3.3, and join, by Lemma 3.2, for each pair of
elements in D, we have that D is a lattice. Furthermore, as the disjoint union of two
symmetric digraphs is symmetric, and the direct product of two symmetric digraphs
is symmetric, DS is a lattice. By Lemma 3.1, we have D and DS are bounded lattices.

Thus we have the following important observation.

Theorem 3.4. D is a lattice and DS is a sublattice.

It is natural to ask if D and DS satisfy any special lattice identities.

Lemma 3.5. D and DS are distributive lattices.

Proof. A lattice is distributive if

(8a, b, c 2 L) a ^ (b _ c) = (a ^ b) _ (a ^ c)

[1, p. 86].
Let F,G,H 2 D. We have just seen that [X]_[Y ] = [X [̇Y ] and [X]^[Y ] = [X⇥Y ]

for any X, Y 2 D. So,

[F ] ^ ([G] _ [H]) = [F ] ^ [G [̇H]

= [F ⇥ (G [̇H)]

= [(F ⇥G) [̇ (F ⇥H)]

= [F ⇥G] _ [F ⇥H]

= ([F ] ^ [G]) _ ([F ] ^ [H]).

Hence, D is a distributive lattice and consequently so is its sublattice DS.
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Lemma 3.6. DS, and therefore D, is infinite. In fact, DS contains a countably infinite
chain.

Proof. We will show that K1 < K2 < K3 < . . . . Let G and H be complete graphs with
no loops of k and k+1 vertices, respectively. We have G 6 H by mapping each distinct
vertex in G to a distinct vertex in H (Figure 4). In order to map H to G, however,
we must map two vertices of H to one vertex of G. As the graphs are complete, there
are edges between every pair of distinct vertices, so to preserve the edge between the
vertices mapped to a single vertex we would require a loop in G. Hence, H ⌦ G.

K1

K2

K3

K4

Figure 4: K1 ! K2 ! K3 ! K4.

Lemma 3.7. In both D and DS, an element is join-irreducible if and only if it is not
the bottom of the lattice and has a connected representative.

Proof. By definition, the bottom of a lattice is not join-irreducible. So, let [X] be
an element of D other than the bottom. Assume that X is connected. To prove
that [X] is join-irreducible it su�ces to show that if [X] = [G] _ [H] for some finite
digraphs G and H, then [X] 6 [G] or [X] 6 [H]. As [X] = [G] _ [H] = [G [̇ H],
there exists a homomorphism ' : X ! G [̇ H. As X is connected, we must have
'(X) ✓ G or '(X) ✓ H, say the former. Thus, by restricting the codomain of ' to
G, we have a homomorphism ' : X ! G. Hence, [X] 6 [G], as required. Thus [X] is
join-irreducible.

Now assume that [X] is join-irreducible. As X is finite, there exist connected
graphs X1, . . . , Xn such that X = X1 [̇ · · · [̇Xn. Consequently, [X] = [X1 [̇ · · · [̇Xn] =
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[X1] _ · · · _ [Xn]. As [X] is join-irreducible, we have [X] = [Xi], for some i. So, [X]
has a connected representative, namely Xi.

Lemma 3.8. In both D and DS, every element is a finite join of join-irreducible
elements.

Proof. We shall give the proof for D—in fact, the same proof works for DS. Let G be
a finite digraph. Since the bottom of any lattice is the join of the empty set, we may
assume that [G] is not the bottom of D. We have G = G1 [̇ · · · [̇ Gn, where each Gi

is connected. Thus,

[G] = [G1 [̇ · · · [̇Gn] = [G1] _ · · · _ [Gn].

If Gi is a single vertex with no loop, then [Gi] equals the bottom of D and so can be
removed from the join on the right-hand side of the equation above. What is left will
be a join of join-irreducibles by Lemma 3.8.

We next show that both D and DS are relatively pseudo-complemented, i.e., they
are Heyting algebras.

Definition 3.9. The exponential digraph HG is defined to have the vertex set V (H)V (G)

and
(', ) 2 E(HG) () (8(a, b) 2 E(G)) ('(a), (b)) 2 E(H).

For example, it is straightforward to show that ~CC2
3 is as shown in Figure 5.

Figure 5: The graph of maps from C2 to ~C3; i.e., the exponential digraph, ~CC2
3 .

Definition 3.10. A Heyting algebra H is a bounded lattice where for all a, b 2 H,
there exists a greatest element x 2 H such that a ^ x 6 b. Then we define a ⇤ b := x.

Since D is a bounded lattice, to show D is a Heyting algebra, we need to find for
all G,H 2 D a greatest element F such that G ^ F 6 H, i.e.,

G ⇤H := max{F 2 D | G ^ F 6 H }.
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Theorem 3.11. D and DS are Heyting algebras. In both cases, we have G ⇤H = HG.

Proof. Clearly it su�ces to prove the result for D. Let F,G, and H be finite digraphs.
We wish to show G ⇤H ⌘ HG, i.e., G ^ F 6 H () F 6 HG, i.e.,

(i) if G ^ F 6 H then F 6 HG; and,

(ii) if F 6 HG then G ^ F 6 H.

to prove (i), let G ^ F 6 H, i.e., G ⇥ F ! H. So there exists a homomorphism
' : G⇥ F ! H, i.e., ((u, a), (v, b)) 2 E(G⇥ F ) ) ('(u, a),'(v, b)) 2 E(H).

To prove: F 6 HG, i.e., F ! HG, i.e., we have a homomorphism  : F ! HG.
So, if (a, b) 2 E(F ) then ( (a), (b)) 2 E(HG), i.e., for all edges (u, v) 2 E(G) we
have ( (a)(u), (b)(v)) 2 E(H) by Definition 3.9.

Let x 2 F . Define  (x) : G ! H by (8y 2 G)  (x)(y) := '(y, x). We need to show
that  is a homomorphism. Let (a, b) 2 E(F ). Let (u, v) 2 E(G).

To prove: ( (a)(u), (b)(v)) 2 E(H). Well, ( (a)(u), (b)(v)) 2 E(H) ()
('(u, a),'(v, b)) 2 E(H) ( ((u, a), (v, b)) 2 E(G ⇥ F ) () (u, v) 2
E(G) and (a, b) 2 E(F ).

As (a, b) 2 E(F ), and (u, v) 2 E(G), we have ((u, a), (v, b)) 2 E(G⇥ F ). So,

('(u, a),'(v, b)) 2 E(H) as ' is a homomorphism

=) ( (a)(u), (b)(v)) 2 E(H) by the definition of  .

Thus, ( (a), (b)) 2 E(HG) as required. Hence  : F ! HG is a homomorphism.
Thus (i) holds.

To prove (ii), let F 6 HG. So, there exists a homomorphism  : F ! HG. So,
(a, b) 2 E(F ) implies ( (a), (b)) 2 E(HG). From Definition 3.9, this gives

(8(u, v) 2 E(G)) ( (a)(u), (b)(v)) 2 E(H).
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To prove: G ^ F 6 H, i.e., there exists a homomorphism ' : G ⇥ F ! H, i.e., if
((u, a), (v, b)) 2 E(G⇥ F ) then ('(u, a),'(v, b)) 2 E(H).

Define ' : G ⇥ F ! H by '(y, x) :=  (x)(y). Let ((u, a), (v, b)) 2 E(G ⇥ F ).
Then (u, v) 2 E(G) and (a, b) 2 E(F ). So, ( (a)(u), (b)(v)) 2 E(H) which gives
('(u, a),'(v, b)) 2 E(H). Hence, ' is a homomorphism from G⇥ F to H which gives
G ^ F 6 H. Thus (ii) holds.

4 DS is dense above K2

In this section, we shall prove that the lattice DS is dense above its unique atom [K2].
This result is proved in Chapter 3 of Hell and Nešetřil [5]. Our proof separates out the
order theory from the graph theory.

Definition 4.1. An ordered set P is dense if for all x, y 2 P with x < y, there
exists z 2 P with x < z < y.

In order to demonstrate density within DS we will require an order-theoretic propo-
sition.

Proposition 4.2. Let (P ;6) be an ordered set with S ✓ P . Then (i) , (ii) ) (iii),
where:

(i) S is join-dense, i.e., (8b 2 P )(9T ✓ S) b =
W

T ;

(ii) (8b 2 P ) b =
W
(#b \ S);

(iii) (8a, b 2 P ) b ⌦ a ) (9j 2 S) j 6 b and j ⌦ a.

Proof. Let (P ;6) be an ordered set with S ✓ P . Assume that S is join-dense. Let
b 2 P . Then b =

W
T for some T ✓ S. Let x 2 #b \ S. Then x 2 #b, so x 6 b by

definition. Hence b is an upper bound for #b \ S. Let y be an upper bound of #b \ S,
i.e., (8z 2 #b \ S) z 6 y. Then (8z 2 T ) z 6 y, as T ✓ #b \ S. Then, b 6 y, as
b =

W
T . Thus b =

W
(#b \ S). Hence, we have (i) ) (ii).

To show (ii) ) (i), simply assume b =
W
(#b \ S) and then choose T = #b \ S.

Finally, assume (ii) and let b ⌦ a. Suppose that for all j 2 S, we have j ⌦ b or
j 6 a, i.e., j 6 b ) j 6 a. We know that b =

W
(#b \ S). But for all j 2 #b \ S we

have j 6 a, i.e., a is an upper bound of #b\S. Therefore,
W
(#b\S) 6 a, i.e., b 6 a,  .

Hence, (ii) ) (iii), satisfying the last implication of the proposition.
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Definition 4.3. An element a of a lattice L is called completely meet-irreducible if
a is not the top of L and a =

V
S implies a 2 S. Elements that are completely

join-irreducible are defined dually.

Lemma 4.4. The bottom of DS is completely meet-irreducible and its unique cover
is [K2].

Proof. We have that [K1] is the bottom of DS. So, K1 6 K2 and K2 ⌦ K1.
Consider any graph G with [K1] < [G]. Then G > K1 and G ⌦ K1. So G has at

least one edge. Hence, K2 6 G. Hence [K2] is the greatest lower bound of all elements
of DS strictly above [K1]. Consequently, [K1] is completely meet-irreducible and [K2]
is its unique upper cover.

Definition 4.5. An element a of a lattice L is called completely join-prime if a is
not the bottom of L and a 6 W

S implies a 6 s for some s 2 S. Elements that are
completely meet-prime are defined dually.

Definition 4.6. Let L be a lattice and let x, y 2 L. Then {"x, #y} is a prime-pair
partition of L if "x\#y = ?, and "x[#y = L, from which it follows that x is completely
join-prime and y is completely meet-prime.

Lemma 4.7 (See [5, 3.33]). {"[K2], #[K1]} is the only prime-pair partition of DS.

Proof. As [K1] is the bottom of DS, it follows from Lemma 4.4 that {"K2, #K1} is a
prime-pair partition of DS.

Let F and H be graphs. Assume F ⌦ H (then F 6⌘ K1) with F 6⌘ K2. As
F 6⌘ K1 and F 6⌘ K2, then oddgirth(F ) 6= 1; i.e., F is not bipartite. As F ⌦ H,
we have H is not the top of DS, i.e., H does not have any loops, and so �(H) 6= 1.
As oddgirth(F ),�(H) 2 N, by Theorem 2.6 there exists a finite connected graph G
with �(G) > �(H) and oddgirth(G) > oddgirth(F ). Now, � is order-preserving. So,
�(G) > �(H) implies that G ⌦ H. So, G /2 #H. Also, oddgirth is order-reversing. So,
oddgirth(G) > oddgirth(F ) implies that G ↵ F . So, G /2 "F . Thus {"[F ], #[H]} is not
a prime-pair partition of DS. Hence, {"[K2], #[K1]} is the only prime-pair partition
of DS.

Lemma 4.8. Assume that L is a Heyting algebra such that:

(i) each element of L is a (possibly infinite) join of join-irreducibles; and

(ii) L has no prime pair partitions.
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Then L is dense.

Proof. Let a, b 2 L with a < b. To show L is dense, we need to find an x 2 L such
that a < x < b. As a < b there exists a join-irreducible element j 2 L with j 6 b
and j ⌦ a, by Proposition 4.2. Then {"j, #(b ⇤ a)} is not a partition of L, as L has no
prime-pair partitions by assumption. We claim that "j \ #(b ⇤ a) = ?.

Suppose, by way of contradiction, "j\#(b⇤a) 6= ?. Then there exists a z 2 L such
that z 2 "j \ #(b ⇤ a). So, z > j and z 6 b ⇤ a. Then, by transitivity, j 6 b ⇤ a. By
assumption, j 6 b. Hence, j 6 b ^ (b ⇤ a) and b ^ (b ⇤ a) 6 a which implies j 6 a,  .
Hence, "j \ #(b ⇤ a) = ?. So, there exists c 2 L with c /2 "j [ #(b ⇤ a). Define
x := (c ^ b) _ a. Then a 6 x 6 b. (Indeed, x > a as x = (c ^ b) _ a, and c ^ b 6 b and
a 6 b imply x = (c ^ b) _ a 6 b.)

It remains to show x 6= a and x 6= b. Suppose x = a. Then

(c ^ b) _ a = a ) c ^ b 6 a ) c 6 b ⇤ a.

But c /2 #(b ⇤ a),  . Hence, x 6= a. Now suppose x = b, i.e., b = (c^ b)_ a. Recall that
j 6 b and j ⌦ a. So, j 6 c ^ b _ a. Now, j is join-prime and j ⌦ a. So, j 6 (c ^ b).
So j 6 c ^ b 6 c; but c /2 "j,  . Hence, x 6= b. So, a < x < b as required. Hence L is
dense.

In the following proof we need the easily proved fact that if H is a Heyting algebra,
then so is the sublattice "a, for all a 2 H.

Theorem 4.9 (See [5, 3.30]). DS is dense above [K2].

Proof. DS is a Heyting algebra, by Theorem 3.11, hence "[K2] is a Heyting algebra,
with no prime-pair partitions, by Lemma 4.7. Any element of DS is a join of join-
irreducible elements, by Lemma 3.8. Hence, by Lemma 4.8, DS is dense above [K2].

5 Embedding ordered sets into DS

We shall use the following lattice-theoretic result. Here }fin(N) denotes the ordered
set of all finite subsets of N.

Lemma 5.1. If a bounded lattice L has an infinite antichain of join-prime elements,
then }fin(N) order-embeds into L.
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Proof. Let a1, a2, a3, . . . be pairwise non-comparable join-primes in L. For i 6= j, we
have ai ⌦ aj and aj ⌦ ai. And if ai 6 x _ y for some x, y 2 L, then ai 6 x or ai 6 y,

as each ai is join-prime. By induction, if X is a finite subset of L and ai 6
_

X then

ai 6 x for some x 2 X; hence, if ai ⌦ x for all x 2 X then ai ⌦
_

X .

Define ' : }fin(N) ! L by '(S) :=
_

s2S

as. (Note that '(?) = ?L.) To see that '

is an order-embedding, let S, T 2 }fin(N).

To prove: ' is an order-embedding, i.e., S 6 T in }fin(N) if and only if '(S) 6
'(T ) in L. As the order on }fin(N) is ✓, then we have S 6 T equivalent to S ✓ T .

So we need to show:

(i) if S ✓ T in }fin(N) then '(S) 6 '(T ) in L, and

(ii) if '(S) 6 '(T ) in L then S ✓ T in }fin(N), i.e., if S * T in }fin(N) then
'(S) ⌦ '(T ) in L.

(i) Assume S ✓ T . Then '(S) =
_

s2S

as 6
_

t2T

at = '(T ). So, '(S) 6 '(T ).

(ii) Assume S * T . Choose s 2 S\T . Then as ⌦ at, for all t 2 T . As as is join-prime,

this gives as ⌦
_

t2T

at. So, '(S) ⌦ '(T ).

By (i) and (ii), we have ' is an order-embedding. So, if a bounded lattice L has
an infinite antichain of join-prime elements, then }fin(N) order-embeds into L.

Clearly it su�ces to prove the following result for DS (as DS is a sublattice of D).
We present a separate proof for D as it can be proved without resort to the deep
graph-theoretic Theorem 2.6.

Theorem 5.2 (See [5, 3.5]).

(1) }fin(N) embeds into both D and DS.

(2) Every finite ordered set order-embeds into both D and DS.
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Proof. (1) To see that the use of Lemma 5.1 is justified for D, consider the prime order
directed cycles (Figure 6). We can’t construct a homomorphism from a cycle that is
smaller than another cycle to that larger cycle, as we would need an edge returning
to the first vertex sooner than the cycle would allow. That is to say, once you have
mapped the first vertex, all others must follow as these are directed cycles.

~C2
~C3

~C5

Figure 6: The prime-order cycles of 2, 3, and 5 vertices.

In order to construct a homomorphism from a larger cycle to a smaller cycle, again
as they are directed, we require the cycle to wrap around the smaller cycle. We could
only do if the size of the larger cycle were a multiple of the smaller cycle, but this is
impossible as we are considering cycles of prime order. Hence, the prime-order directed
cycles form an infinite antichain of non-comparable elements in D.

To find an infinite antichain of non-comparable elements in DS, we need to call,
once again, upon the graph result outlined in the introduction. By repeated application
of Theorem 2.6, there is a sequence of connected graphs G1, G2, G3, . . . with �(G1) <
�(G2) < �(G3) < · · · and oddgirth(G1) < oddgirth(G2) < oddgirth(G3) < · · · .
To check that this is an antichain, assume Gi 6 Gj. Then, �(Gi) 6 �(Gj) and
oddgirth(Gi) > oddgirth(Gj), as � is order-preserving, and oddgirth is order-reversing.
So, i 6 j and i > j. Hence, i = j. So, Gi = Gj. So, there is an infinite antichain of
non-comparable elements in DS.

Both D and DS are distributive, by Lemma 3.5, so all join-irreducible elements
are join-prime [1, p. 117]. D has an infinite antichain of non-comparable, join-prime
elements, as does DS. Hence, by Lemma 5.1, we have }fin(N) order-embeds into D
and DS.

(2) By (1), it su�ces to show that every finite ordered set P embeds into }fin(N).
Now, the map x 7! #x gives an order-embedding from any finite ordered set, P , to
O(P ), where O(P ) denotes the set of down-sets of P ordered by inclusion [1, p. 23].
Clearly O(P ) ✓ }(P), so O(P ) ,! }(P ). Now, }(P ) is isomorphic to }({1, . . . , n})
where n = |P |. So, it follows }(P ) ,! }({1, . . . , n}), and }({1, . . . , n}) ✓ }fin(N),
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which implies }({1, . . . , n}) ,! }fin(N). So, starting with a finite ordered set, P , we
have

P ,! O(P ) ,! }(P ) ,! }({1, . . . , n}) ,! }fin(N).
Hence, P ,! }fin(N).

6 Future directions

Possible future directions for this project are:

(a) review the literature on the lattice-theoretic approach to graph homomorphisms;

(b) give lattice-theoretic proofs of other known graph-theoretic results, such as the
extension of the fact that every finite ordered set order embeds into DS to the
deeper result that every countable ordered set order-embeds into DS [6];

(c) establish new properties of the lattices D and DS; and,

(d) consider other categories and their homomorphisms from an order-theoretic per-
spective.
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