Universitext

Universitext

Series Editors:

Sheldon Axler San Francisco State University, San Francisco, CA, USA

Vincenzo Capasso Università degli Studi di Milano, Milan, Italy

Carles Casacuberta Universitat de Barcelona, Barcelona, Spain

Angus MacIntyre Queen Mary, University of London, London, UK

Kenneth Ribet University of California, Berkeley, Berkeley, CA, USA

Claude Sabbah CNRS, École Polytechnique, Palaiseau, France

Endre Süli University of Oxford, Oxford, UK

Wojbor A. Woyczynski Case Western Reserve University, Cleveland, OH, USA

Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master's level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts.

Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into *Universitext*.

For further volumes: www.springer.com/series/223 Dirk van Dalen

Logic and Structure

Fifth Edition

Dirk van Dalen Department of Philosophy Utrecht University Utrecht, The Netherlands

Based on a previous edition of the Work:

Logic and Structure, 4th edition by Dirk van Dalen Copyright © Springer-Verlag Berlin Heidelberg 2004, 1994, 1983, 1980

ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN 978-1-4471-4557-8 ISBN 978-1-4471-4558-5 (eBook) DOI 10.1007/978-1-4471-4558-5 Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2012953020

Mathematics Subject Classification: 03-01, 03B05, 03B10, 03B15, 03B20, 03C07, 03C20

© Springer-Verlag London 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Logic appears in a "sacred" and in a "profane" form; the sacred form is dominant in proof theory, the profane form in model theory. The phenomenon is not unfamiliar, one also observes this dichotomy in other areas, e.g. set theory and recursion theory. Some early catastrophes, such as the discovery of the set theoretical paradoxes (Cantor, Russell), or the definability paradoxes (Richard, Berry), make us treat a subject for some time with the utmost awe and diffidence. Sooner or later, however, people start to treat the matter in a more free and easy way. Being raised in the "sacred" tradition, my first encounter with the profane tradition was something like a culture shock. Hartley Rogers introduced me to a more relaxed world of logic by his example of teaching recursion theory to mathematicians as if it were just an ordinary course in, say, linear algebra or algebraic topology. In the course of time I have come to accept this viewpoint as the didactically sound one: before going into esoteric niceties one should develop a certain feeling for the subject and obtain a reasonable amount of plain working knowledge. For this reason this introductory text sets out in the profane vein and tends towards the sacred only at the end.

The present book has developed from courses given at the Mathematics Department of Utrecht University. The experience drawn from these courses and the reaction of the participants suggested strongly that one should not practice and teach logic in isolation. As soon as possible examples from everyday mathematics should be introduced; indeed, first-order logic finds a rich field of applications in the study of groups, rings, partially ordered sets, etc.

The role of logic in mathematics and computer science is twofold—a tool for applications in both areas, and a technique for laying the foundations. The latter role will be neglected here, we will concentrate on the daily matters of formalized (or formalizable) science. Indeed, I have opted for a practical approach—I will cover the basics of proof techniques and semantics, and then go on to topics that are less abstract. Experience has taught us that the natural deduction technique of Gentzen lends itself best to an introduction; it is close enough to actual informal reasoning to enable students to devise proofs by themselves. Hardly any artificial tricks are involved, and at the end there is the pleasing discovery that the system has striking structural properties; in particular it perfectly suits the constructive interpretation of

logic and it allows normal forms. The latter topic has been added to this edition in view of its importance in theoretical computer science. In Chap. 4 we already have enough technical power to obtain some of the traditional and (even today) surprising model theoretic results.

The book is written for beginners without knowledge of more advanced topics; no esoteric set theory or recursion theory is required. The basic ingredients are natural deduction and semantics, and the latter is presented in constructive and classical form.

In Chap. 6 intuitionistic logic is treated on the basis of natural deduction without the rule of reductio ad absurdum, and of Kripke semantics. Intuitionistic logic has gradually freed itself from the image of eccentricity and now it is recognized for its usefulness in e.g. topos theory and type theory; hence its inclusion in an introductory text is fully justified. The chapter on normalization has been added for the same reasons; normalization plays an important role in certain parts of computer science. Traditionally normalization (and cut elimination) belong to proof theory, but gradually applications in other areas have been introduced. In Chap. 7 we consider only weak normalization, and a number of easy applications are given.

Various people have contributed to the shaping of the text at one time or another; Dana Scott, Jane Bridge, Henk Barendregt and Jeff Zucker have been most helpful for the preparation of the first edition. Since then many colleagues and students have spotted mistakes and suggested improvements; this edition benefited from the remarks of Eleanor McDonnell, A. Scedrov and Karst Koymans. To all of these critics and advisers I am grateful. Progress has dictated that the traditional typewriter should be replaced by more modern devices; this book has been redone in LATEX by Addie Dekker and my wife, Doke. Addie led the way with the first three sections of Chap. 2 and Doke finished the rest of the manuscript; I am indebted to both of them, especially to Doke who found time and courage to master the secrets of the LATEX trade. Thanks go to Leen Kievit for putting together the derivations and for adding the finer touches required for a LATEX manuscript. Paul Taylor's macro for proof trees has been used for the natural deduction derivations.

June 1994

Dirk van Dalen

The conversion to TEX has introduced a number of typos that are corrected in the present new printing. Many readers have been kind enough to send me their collection of misprints, and I am grateful to them for their help. In particular I want to thank Jan Smith, Vincenzo Scianna, A. Ursini, Mohammad Ardeshir and Norihiro Kamide. Here in Utrecht my logic classes have been very helpful; in particular Marko Hollenberg, who taught part of a course, has provided me with useful comments. Thanks go to them too.

I have used the occasion to incorporate a few improvements. The definition of "subformula" has been streamlined—together with the notion of positive and negative occurrence. There is also a small addendum on "induction on the rank of a formula".

January 1997

At the request of users I have added a chapter on the incompleteness of arithmetic. It makes the book more self-contained, and adds useful information on basic recursion theory and arithmetic. The coding of formal arithmetic makes use of the exponential; this is not the most efficient coding, but for the heart of the argument that is not of the utmost importance. In order to avoid extra work the formal system of arithmetic contains the exponential. As the proof technique of the book is that of natural deduction, the coding of the notion of derivability is also based on it. There are of course many other approaches. The reader is encouraged to consult the literature.

The material of this chapter is by and large that of a course given in Utrecht in 1993. Students have been most helpful in commenting on the presentation, and in preparing T_{EX} versions. W. Dean has kindly pointed out some more corrections in the old text.

The final text has benefited from the comments and criticism of a number of colleagues and students. I am grateful for the advice of Lev Beklemishev, John Kuiper, Craig Smoryński and Albert Visser. Thanks are due to Xander Schrijen, whose valuable assistance helped to overcome the T_FX problems.

May 2003

A number of corrections have been provided by Tony Hurkens; furthermore, I am indebted to him and Harold Hodes for pointing out that the definition of "free for" was in need of improvement. Sjoerd Zwart found a nasty typo that had escaped me and all (or most) readers.

April 2008

Dirk van Dalen

Dirk van Dalen

To the fifth edition a new section on ultraproducts has been added. The topic has a long history and it presents an elegant and instructive approach to the role of models in logic.

Again I have received comments and suggestions from readers. It is a pleasure to thank Diego Barreiro, Victor Krivtsov, Einam Livnat, Thomas Opfer, Masahiko Rokuyama, Katsuhiko Sano, Patrick Skevik and Iskender Tasdelen.

2012

Dirk van Dalen

Contents

1	Introduction		
2	Prop 2.1 2.2 2.3 2.4 2.5 2.6	ositional Logic5Propositions and Connectives5Semantics15Some Properties of Propositional Logic20Natural Deduction29Completeness38The Missing Connectives46	
3	Pred 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	icate Logic53Quantifiers53Structures54The Language of a Similarity Type56Semantics64Simple Properties of Predicate Logic68Identity77Examples78Natural Deduction86Adding the Existential Quantifier91Natural Deduction and Identity93	
4	Com 4.1 4.2 4.3 4.4 4.5 Secon	pleteness and Applications97The Completeness Theorem97Compactness and Skolem–Löwenheim104Some Model Theory111Skolem Functions or How to Enrich Your Language127Ultraproducts134nd-Order Logic145	
6	Intui 6.1	tionistic Logic155Constructive Reasoning155	

	6.2	Intuitionistic Propositional and Predicate Logic		
	6.3	Kripke Semantics		
	6.4	Some Model Theory		
7	Norr	nalization		
	7.1	Cuts		
	7.2	Normalization for Classical Logic		
	7.3	Normalization for Intuitionistic Logic		
	7.4	Additional Remarks: Strong Normalization and the Church-		
		Rosser Property		
8	Göde	el's Theorem		
	8.1	Primitive Recursive Functions		
	8.2	Partial Recursive Functions		
	8.3	Recursively Enumerable Sets		
	8.4	Some Arithmetic		
	8.5	Representability		
	8.6	Derivability		
	8.7	Incompleteness		
References				
Index				