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ABSTRACT. Several network models have been proposed to explain the link
structure observed in online social networks. This paper addresses the problem
of choosing the model that best fits a given real world network. We implement
a model selection method based on un-supervised learning. An alternating de-
cision tree is trained using synthetic graphs generated according to each of the
models under consideration. We use a broad array of features, with the aim of
representing different structural aspects of the network. Features include the
frequency counts of small subgraphs (graphlets) as well as features capturing
the degree distribution and small world property. Our method correctly classi-
fies synthetic graphs, and is robust under perturbations of the graphs. We show
that the graphlet counts alone are sufficient in separating the training data,
indicating that graphlet counts are a good way of capturing network structure.
We tested our approach on four Facebook graphs from various American Uni-
versities. The models that best fit this data are those that are based on the
principle of preferential attachment.

1. INTRODUCTION

Recent experimental studies of various types of on-line social networks have
revealed many distinguishing features of the link structure of such networks. Ex-
amples are recent studies on on-line social networks such as MySpace and Facebook
in [1, 30, 35, 39, 48], but also studies of social networks associated with other social
media such as Youtube and Flickr [11, 33, 38]. The studies show that social net-
works share many characteristics of other complex networks, such as a power law
degree distribution, high clustering coefficients and small hop distances between
individuals.

A number of graph models have been developed to explain the observed link
structure of social networks. Notable recent models that are specifically proposed
to model social networks can be found in [9, 10, 30, 31, 33]. Most models can
successfully replicate some of the observed features of the networks, and provide
a mechanism for link formation which is based on plausible principles. As the
number of proposed models increases, the question of model selection becomes
more important. Our paper addresses this question. The goal of this work is to
determine, given a set of models, which of the models is the most likely to have
generated a given real online social network.

The best model obviously is the one that generates graphs that are most similar
in structure to the observed network. However, no consensus exists on how to
determine structural similarity of graphs. The graph features that are replicated
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by proposed models, most often are of a global nature: they characterize the
network as a whole. Degree distribution, clustering coefficient and average hop
distance are all global features. Our model selection method complements the
global features with local features, which are features derived from the immediate
neighbourhood of the vertex. A similar collection of features is used in the work
[20], which uses clustering algorithms to determine if graphs from similar real
networks get clustered together.

To characterize the local structure, we will use counts of small subgraphs, also
called graphlets. Recent work on graph similarity has incorporated graphlet counts
as a method of comparing networks, as in [20, 26, 47]. Graphlets have also been
used to characterize biological networks, see [37, 43]. To test our hypothesis that
graphlet counts characterize the structure of a network, we developed three ver-
sions of our model selection method: one based only on global features, one based
only on graphlet counts, and a third one based on all features together. We found
that the method based on graphlet counts alone performs as well as the full fea-
ture set, thus confirming our hypothesis. Our model also supports the conclusions
of [20, 36]: that graphlet counts are an efficient way of characterizing networks.
Though it is not immediately obvious why this should be so, the most likely ex-
planation is that different models generate vastly different concentrations of small
subgraphs even when the models share similar global properties.

Our model selection method is based on machine learning. More precisely, the
model selection tool is a multi-class classifier, based on an alternating decision
tree. This classifier is trained to distinguish synthetic graphs generated according
to six different models. The parameters of the models are chosen randomly, but
such that the synthetic graphs will have size and density approximately equal to
the network data. Our model selection method is based on the model validation
performed by Middendorf et al. [36] for protein-protein interaction networks. Our
work is different in several ways: (i) the social networks we consider are much
larger and denser than the PPI networks, (ii) we use a different type of decision
tree, and (7i7) we consider a different set of models. We also test the robustness
of our classifier: to this end, we generate graphs according to one of the models,
perturb some of its edges, and evaluate the performance of the classifier on the
perturbed graph. Our results show that our classification method is robust up to
a perturbation of 5-10% of the edges.

We apply our classification method to four social networks obtained from Face-
book. The vertices correspond to users at four different American universities.
Two vertices are connected if they are Facebook “friends”. The data was ob-
tained from Mason Porter’s Facebookl100 data set, first presented in [48]. The
graphs have around 7000 vertices, and average degree ranging from 68 to 89. Be-
cause of the different average degrees, we generated different training sets, and
built a different classifier for each of the four data sets. Our result show a clear
preference for models that are based on preferential attachment. We complement
the results of our classifier with a close analysis of the feature value profiles for
each of the training sets, and a comparison with the feature values of the training
data, which show a more nuanced picture.
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We have selected our six models such that they represent the most prevalent
principles that underlie graph models for complex networks. Of each type of model
under consideration, many variations exist in the literature. Such variations are
sometimes conceived with the aim of modelling a particular class of networks, or
to obtain a particular graph-theoretic property. We note that there is always a
trade-off between goodness-of-fit and complexity of the model. For this study, we
have consciously chosen to keep the models as simple as possible, while still in-
corporating enough variability so that each training set contains graphs generated
according to the same model with a range of different parameters. Each model
has 2 or 3 tunable parameters. The models we consider are based on radically
different generational principles. Thus, in finding the best fit of our data to this
set of models, we aim to find the principles that drive link formation in on-line
social networks.

An important ingredient of many models for complex networks is the principle
of preferential attachment (PA), first proposed for complex networks by Barabési
and Albert in [5]. Under this principle, vertices that already have high degree
are more likely to receive an edge from any new vertices that join the network.
Models based on the PA principle generally produce graphs with a power law
degree distribution. Variations of the preferential attachment model from [5] are
proposed and studied by others, see [7, 12] for a survey. We use a PA model
proposed by Aiello et al. in [4], where the attachment strength, and thus, the
exponent of the power law, can be tuned through the inclusion of an additional
parameter.

A second principle that has been proposed to explain the specific structure of
complex networks is copy with error. In a copy or duplication model, a new vertex
copies some or all of its neighbours from the neighbourhood of an existing vertex.
Copy models have been proposed for the Web graph in [25, 29], for citation graphs
in [27], and for biological networks in [6, 13]. The forest fire model proposed in
[33] also implicitly incorporates the idea of copying, since the neighbours of a new
vertex are chosen from the local environment of an existing vertex.

A central question of this work is whether a spatial (or geometric) model is
appropriate for our social network data. In a spatial model, vertices are assumed
to be embedded in a metric space, and formation of edges is influenced by the
metric distance between vertices. (For a recent overview of spatial models for
complex networks, see [22]). The advantage of using a geometric model for a
social network is that the metric space can be seen as the social space representing
the interests, hobbies and other attributes of the individuals corresponding to the
vertices of the social network. Assuming a geometric model gives the possibility for
inference of the social space from the network, thus providing a basis for identifying
communities or individuals with similar interests.

The simplest spatial model is the random geometric graph, where vertices can
be connected only when their distance is below a given threshold. In the original
geometric graph model (see [41]), vertices within threshold distance are always
connected. To introduce more variability, we will use an adapted version where
pairs of vertices that are within threshold distance are connected independently
with a fixed probability. Geometric graphs have been proposed for biological
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networks, for example in [42], and have shown to be a good fit in terms of graphlet
structure.

We have included a spatial model which incorporates the preferential attachment
principle: the Spatial Preferential Attachment (SPA) model proposed in [3]. Here,
each vertex is surrounded by its sphere of influence, and new vertices can only link
to it if they fall within this sphere of influence. The PA principle is incorporated
indirectly, in that the size of the sphere of influence depends on the degree of
the vertex. In [23], it is shown how, for graphs obtained from this model, the
metric distance between pairs of vertices can be retrieved from the graph structure
alone, by considering the degrees of the two vertices, and their number of common
neighbours. If the metric embedding is interpreted as modelling the hidden reality
of the vertices, then metric distance is a measure of how similar the vertices are.
Thus, the SPA model gives a possibility of judging the similarity between vertices
based on the graph structure.

The fact that spatial models can be used as a basis for estimating vertex sim-
ilarity from the graph structure makes them superior to purely graph-theoretic
models. We therefore feel that, in cases where the goodness of fit is approximately
equal, spatial models should be preferred. The conclusion of this work is that,
from among the selected models, those that are built on the principle of prefer-
ential attachment have the best fit for the Facebook data. Of the models that
give the best fit, one is a standard PA model, the other is the Spatial Preferred
Attachment model. In light of the previous discussion, we assert that the SPA
model is the most appropriate to model the Facebook data.

The organization of this paper is as follows. In the next section we describe
our method in detail, including descriptions of the models, the (Facebook) testing
data, the features selected to represent the graphs and the classification algorithm.
In Section 3 we present the results of our experiment. We first analyze the per-
formance of our classifier using a test set containing synthetic graphs generated
from our training models. We compare the performance of the classifier when
only graphlet counts are used as features, when only global features are used, and
when the full set of features is used. We also test how robust the classifier is by
artificially creating noise in the test data through changes to some of the edges.
Finally, we apply the classifier to the Facebook data. We present the results of
the classifier, and also analyze the profiles of the features for the different models
to understand what distinguishes the different models, and how the results for the
Facebook data should be interpreted.

2. THE MODEL SELECTION CLASSIFIER

Our model selection method follows three steps. First, we generate the training
data, consisting of 1000 graphs generated according to each of the six models we
have selected: the Preferential Attachment Model, the Copy Model, the Random
Geometric Model (2D and 3D), and the Spatial Preferred Attachment Model (2D
and 3D). The details of the models are given in Section 2.1 below. The parameters
of the models are randomly sampled from a range such that the graphs generated
are similar in size and density to the test data. The restriction of the sample
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range of the parameters is necessitated by the fact that the graphlet counts depend
heavily on the size and density of a graph, even for graphs generated by the same
model. For this reason it is necessary to generate a new training set for each test
graph.

Next, we use the training data to build a multi-class alternating decision tree
(ADT). The details of the construction of the ADT are given in Section 2.3 below.
We represent the graphs using features that capture both the local structure of
the graph, through the graphlets, and the global structure. A description of the
features is given in Section 2.2 below.

Finally, we compute the feature vectors corresponding to each network from
our on-line social network data, in this case snapshots of Facebook. Running this
feature vector through the classifier gives a score for each model corresponding to
how well the model fits the test data. Our experimental procedure is repeated for
four different Facebook networks taking from the following American universities:
Princeton, American University, MIT and Brown. We obtained this data from the
Facebook100 data set compiled by Porter et al. and introduced in [48].

2.1. Models. We have implemented six different graph models. As explained in
the introduction, our choice of models was motivated by the desire to test a wide
range of models commonly proposed for social networks, based on a number of
different attachment principles. Special attention was given to spatial models,
a class of models that is gaining support because of the ability to model vertex
attributes through spatial representation. Wherever more than one variation of the
model has been proposed in the literature, we have opted for the simpler versions.
This choice was motivated by the wish to avoid ambiguity in the classification.
All model generation algorithms are written in Python using the graph-tool
module [45]. Our training set includes only undirected graphs without multiple
edges. Some of the models allow for multiple edges; if this occurs, we remove the
multiple copies. For all models under consideration, this is known to affect only
a tiny fraction of the edges. The SPA model and COPY model are formulated to
generate directed graph; here we ignore the direction of the edges after generation.

Preferential Attachment Model (PA). The Preferential Attachment model
was first introduced by Barabési and Albert in [5] as a model for the World Wide
Web. In the original version, the model has only one parameter, namely the initial
degree of each vertex. We use here a more general model introduced by Aiello et
al. in [4]. Preferential attachment models are built on the concept that a new user
is more likely to join to a user that already has many incident edges.

Our PA model has two parameters, d € Z' and a € [0,d]. It generates a
sequence of graphs {G; : t € N} where Gy = H is a small random seed graph.
We take H to be an Erdés-Rényi random graph G(100, ed), where ed is the edge
density of the test graph. At each time step t > 0, G, is formed by adding a new
vertex v; and adding d edges (v;, w;) where wj is chosen randomly, with probability
proportional to its degree plus a. The probability that w; is chosen is given by:

deth—l (w) + o

Plw =w;) = 2d(t —1) +2|E(H)| + a(t = 1)’
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where degg, , (w) is the degree of w in G;_;. Thus, vertices of high degree are
more likely to accumulate more edges.

Copy Model (COPY). The Copy Model was originally proposed in [25] as
a model for the World Wide Web. The idea behind this model is that a person
tends to meet friends through a currently existing friend, and thus their frienship
neighbourhood will have large overlap with that of the friend he or she “copied”
from. Our version allows for a number of neighbours that are chosen at random,
not copied. This version of the copy model is used in [2, 8].

The COPY model has two parameters p € (0,1) and d € Z*. It generates a
sequence of directed graphs {G, : t € N}, the direction of the edges will be ignored
for the model selection. Again, Gy = H is a small random seed graph. We take H
to be the directed version of the Erdos-Rényi random graph with 100 vertices and
edge probability equal to the edge density of the test graph. At each time step
t > 0, we add a new vertex v;. We then choose a vertex w uniformly at random
from G;_; and for each out-neighbour u of w, independently, we add an edge from
v to u with probability p. We then choose d more vertices uniformly at random
from G;_1, and add directed edges from v; to each of these vertices.

Random Geometric Model (GEO). The Random Geometric Model is a
model where the vertices are embedded in a metric space and edges are determined
by a threshold on the distance between two vertices. Our model is close to the
one used to model protein-protein interaction networks in [43]; the difference is
that, in our version, vertices that are within threshold distance of each other have
a probability p of being connected. This model is sometimes referred to as the
percolated random geometric graph.

The GEO model has two parameters: a threshold r € (0,1) and a link prob-
ability p € (0,1). A prescribed number of vertices are embedded uniformly at
random into a metric space S. If the distance between vertices in this space is
less than the threshold r, then an edge is added with probability p, independently
for each pair of vertices. We consider a two dimensional (GEO2D) and a three
dimensional (GEO3D) version of this model where the metric space S is [0, 1]
and [0, 1] respectively, equipped with the torus metric. In addition, we randomly
select a small number d of pairs of vertices uniformly at random, and add an edge
between them. In our experiments, we take d = |log |V|].

Our model differs from the traditional random geometric graph by the addition
of a small number of random edges. The reason is the following. It is well-known
that social networks have the "small world” property, so the average shortest path
length between vertices is small. However, to obtain the desired density we need
to take the threshold r fairly small. This implies that each edge can bridge at
most a distance r in the metric space. Thus, the path length between vertices
that are at opposite ends of the metric space will be large, and as a result the
average path length in random geometric graphs will be too large to make them
a suitable model for social networks. The random edges remedy this problem by
providing “shortcuts” between vertices that are far away in the metric space. On
the other hand, the number of edges added is so small that the other features,
such as graphlet counts and degree distribution, are not significantly affected.
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Spatial Preferential Attachment Model (SPA). The Spatial Preferential
Attachment model introduced in [3] is a spatial model which incorporates the
preferential attachment principle. The model has three parameters A; € (0,1),
Ay >0, and p € (0, 1]. We form a sequence of directed graphs {G,}, t € NU {0}
with G as the empty graph. We define a region of influence around a vertex v at
time ¢ > 1, written R(v,t), with area

Aydeg (v, t) + A
t

or R(v,t) = S if the above is greater than 1. In the above, deg~(v,t) is the
in-degree of v at time t. At each time step ¢ > 1, a point in S is uniformly at
randomly chosen to be the new vertex v;. For each vertex u € V(G;_1) such that
v € R(u,t — 1), we independently add an edge from v;_; to u with probability p.
In this model, the influence regions are proportional to the in-degree of the vertex
but decrease over time. Again, after model generation, we ignore the direction of
the edges.

The vertices will be placed in the same metric spaces as the two GEO mod-
els above giving us a two dimensional (SPA2D) and three dimensional (SPA3D)
version of the SPA model.

[R(v, )| =

2.2. Features. We represent our graphs by 17 features in a vector representation.
These features include information about the global properties of the graphs,
specifically the degree distribution, the assortativity coefficient and the average
path length between vertices. In addition, we capture the local structure through
the raw graphlets counts for the connected subgraphs of size 3 and size 4. Below
is a description of each of the features.

Degree Distribution Percentiles. The degree distribution is a favourite
property studied for most “real world” networks. A distribution with a power law
tail is a distinguishing property of many such networks, including the friendship
network of Facebook (see [48]). The most logical feature to use here would be
the coefficient of the power law degree distribution. Unfortunately, not all the
models generate graphs with a power law degree distribution (e.g. random geo-
metric models), and it is often difficult to establish whether the data exhibits a
real power law, or to determine its coefficient. Instead, to measure the spread of
the degree distribution, we consider the percentiles of the distribution formed
by breaking it evenly into 8 different pieces. This give us 7 features, called
degy, degs, degs, degy, degs, degg, and degs.

Assortativity Coefficient. The assortativity coefficient r € [—1,1] is a mea-
surement of how well vertices of similar degree link to one another in the network.
An assortativity coefficient close to —1 indicates that vertices tend to link to ver-
tices of different degrees and a value close to 1 indicates that vertices tend to
link to vertices of similar degrees. It is shown in [38] that online social networks
have positive assortativity coefficients while the World Wide Web and biological
networks have negative assortativity coefficients. We compute the assortativity
coefficient in graph-tool using the following equation from [40],
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_Di i — D b
1= ab;
where e;; is the fraction of edges from a vertex of degree i to a vertex of degree
j and a; = Zj e;j and b; =Y ey

Average Path Length. The small world property, implying a small average
hop distance between vertices, is another distinguishing aspect of social networks.
It is shown in [38] that online social networks have small average path length.
Here we will compute the average path length between vertices by selecting 100
random pairs of vertices and calculate the length of the shortest path between
them using a breadth-first-search which is implemented in graph-tool.

Graphlets.

To characterize local structure, we include as features all the counts of connected
subgraphs of size 3 (two nonisomorphic graphs) and 4 (six nonisomorphic graphs),
as shown in Figure 1 below. Unfortunately, no algorithm is known which computes
the full counts for all of these subgraphs efficiently for the size of graphs we are
considering (some new algorithms to compute triangles are being developed). As a
compromise, we use the sampling algorithm of Wernicke [49] to sample the number
of these graphlets. The advantage of Wernicke’s algorithm is that it can be used
to give an unbiased sample of a specified portion of the subgraphs.

Wernicke’s algorithm is based on a systemetic exploration of k-neighbourhood
of the neighbourhood using DFS (cut off when level k is reached). The sampling
works by probabilistically skipping steps of this exploration. To achieve unbiased
sampling which obtains a prescribe proportion of all small subgraphs, the proba-
bility that a step is skipped is adjusted to the depth in the DFS where the step
occurs. Additional details can be found in [49].

For our experiments, we sample 1% of the size 3 graphlets and 0.01% of the size
4 graphlets. Since the sampling rate for size 4 graphlets is very low (0.01%), we
tested the assertion of Wernicke that the algorithm indeed leads to an unbiased
sample of the graphlets. To this end, we computed the exact counts for the size 3
and 4 graphlets for a number of randomly chosen graphs, and compared them to
the estimates obtained by sampling. In Table 2.2 below, we show the performance
of the algorithm for one of the randomly generated graphs. You can see that there
is good agreement between the real counts and the estimates. In light of this
almost perfect agreement between sampling and exhaustive counts, we deemed
the achieved sampling rate more than sufficient for our purposes.

The computation of the graphlets is by far the most time consuming of all
the features. For the size and density of graphs we are considering it was not
feasible to include subgraphs of size greater than 4. In [36], the authors consider
subgraphs up to size 7 but this is only possible because the graphs are much
smaller and sparser then those considered here. Inclusion of graphlets of larger
size will only be possible for graphs of the size and density we consider here if
new methods are developed to compute or estimate graphlets counts which show
a dramatic increase in efficiency. However, our results show that the graphlets of
size 3 and 4 are highly efficient in separating the models. Based on our results,

r
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% gl g2 g3 g4 g5 g6 g7 g8

100 2323538 320097 18389736 65090655 22256380 3115254 4317267 434608

10 232335 32075 1837970 6508583 2227640 310958 431961 43176

1 23142 3243 184115 650031 222899 30905 43062 4378

0.1 2368 343 18341 65156 22381 3143 4281 453

0.01 224 33 1804 6524 2163 315 422 49

TABLE 1. Performance of Wernicke’s Algorithm on a graph with
3000 vertices and 70270 edges.

AL L AN N

g1 g2 gs 94 g5 ge gr gs

F1GURE 1. The graphlet features

we do not expect that inclusion of higher order graphlets will lead to a significant
improvement the model selection method.

2.3. Classification. To classify our data we use the multi-class alternating de-
cision tree (ADT) algorithm LADTree of Holmes et al. [19]. ADTs are a class
of boosted decision trees which were introduced by Freunde and Mason in [14].
Boosting [15] is a well established classification technique which combines so called
“weak classifiers” to form a single powerful classifier. In successive steps called
boosting steps, weighted combinations of the weak classifiers are applied to the
training data, and the weights are adjusted in each step to improve the classifica-
tion.

The first ADTs were built using the AdaBoost boosting algorithm [15]. The
ADT used here, LADTree, is built on the lesser known LogitBoost boosting algo-
rithm of Friedman, Hastie and Tibshirani [17]. Friedman et al. show in their work
that both boosting algorithms are fitting an additive logistic regression model.
They argue that LogitBoost is the more appropriate algorithm, because it fits
the regression model using the more typical maximum likelihood minimization
criteria, whereas AdaBoost uses an exponential minimization criteria.
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In Figure 2, we show a partial LADTree which was constructed during our
experiment. An ADT has two types of nodes, decision nodes (rectangles in Figure
2) and prediction nodes (ellipses in Figure 2). Decision nodes contain a boolean
predicate which corresponds to a threshold on one of the features in the feature
vectors for the training data. The prediction nodes contain real-valued scores, one
for each of the classes in the training set. In our case, we have six different classes
or models so each prediction node contains six scores.

The LADTree begins with a prediction node which has a score of zero for each
of the models. In each boosting iteration, a decision node is added to the tree
along with two prediction nodes as its children in the tree. The new decision
node can be added as a child to any existing prediction node in the tree. The
placement of the decision node and its Boolean predicate is the one that gives the
best separation of the training data. The exact criteria for this is provided by the
LogitBoost algorithm [17].

Once the LADTree has been formed, new instances, typically called the test
data in machine learning, can be classified by the tree. For us, the test data
is the feature vector for the Facebook graph we wish to classify. The feature
vector for the Facebook graph will determine its flow through the tree. The test
instance travels through all possible paths it can reach in the tree resulting in
a classification score which is the sum of all prediction nodes reached along the
way. This results in six different scores, one for each of the six different models,
F;, 7 =1,2,3,4,5,6. A positive score is a good fit, a negative score is a bad
fit. The model which obtains the highest score is deemed to be the model that
best describes the test data. The absolute values of the scores provide the level of
confidence in the prediction. Thus, a large positive F} indicates that model j is a
good model for the test instance and a large negative Fj indicates that model j
is a bad model for the test instance. The scores F; can be readily interpreted as
eFJ

W which results in inverting the
j=1

additive logistic model which is fitted by the LADTree algorithm [19].

The advantage of using ADTs is that they require no specific assumption about
the geometry of the input space for the features. Thus, we are free to incorporate
any range of features such as degree distribution percentiles, average path length
and subgraph counts without considering any potential dependence amongst them.
The importance of each feature is based on how well it separates the 6 different
models. We use the Weka software package for Java [50] to train all the LADTrees
used in our experiments.

class probabilities p; by the equation p; =

3. RESuLTS

We tested our approach on four different social network graphs taking from
Mason Porter’s Facebook100 data set [46]. Each graph in the data set corresponds
to users at different universities. For our test data we take: Princeton University
which has 6596 vertices and 293329 edges, American University which has 6386
vertices and 217661 edges, MIT which has 6440 vertices and 251252 edges and
Brown University which has 8600 vertices and 384525 edges. In these graphs,
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PA: 0
GEO2D: 0
COPY: 0
SPA2D 0
GEO3D: 0
SPA3D: 0

S1: assort < 0.02 S5: g6 < 4117.5

SPA3D: -0.867 SPA3D: -0.398

GEO2D 1.272
SPA2D: 0.498
GEO3D: -0.849
SPA3D: -0.216

GEO2D 0.017
SPA2D: -0.355
GEO3D: 0.625
SPA3D: 0.769

SPA2D: 0.498
GEO3D: -0.849
SPA3D: -0.216

SPA2D: -0.355
GEO3D: 0.625
SPA3D: 0.769

F1cURE 2. Partial LADTree using the full feature vector with 200
boosting iterations.

each vertex corresponds to a Facebook user, and two vertices are connected if
they are Facebook friends.

For each of these graphs, the process is as follows. First, we generate a training
set of 6000 graphs which are of the same size as the Facebook graph, and have edge
density which differs by at most 5% from that of the Facebook graph. In order
to test the effect of different features and different number of boosting iterations,
we build 9 LADTree classifiers. The classifiers are built using 3 different types
of feature vectors; the full feature vector which incorporates all 17 of the features
described in Section 2.2, the graph feature vector using only the graphlet features
and the non-graph feature vector which uses only the non-graphlet based features.
For each of the feature vectors under consideration we build a classifier using 50,
100 and 200 boosting iterations, giving 9 classifiers in total for each experiment.
To build the classifiers we use the well known machine learning software package
Weka [50]. Finally, we use the classifiers to classify the Facebook graph. The
model which produces the graphs which get the best scores is considered to be the
best model for the data.

3.1. Testing the Classifier. Before performing our experiments on the actual
Facebook data, it is important to test the classifier to find out how we should
interpret the results. To this end, we generate an additional 100 graphs for each of
the models, and apply the classifier to this known data set. Since we know exactly
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which class these synthetic graphs belong to, this will establish a baseline for the
maximum and minimum possible scores achievable by each model. We generate
the initial 600 graphs with the same density as the Princeton network and classify
them using the LADTree classifiers we have generated for the Princeton data.

First, we evaluate the performance of the classifier on these graphs, and test the
effect of the number of iterations of the ADT tree. We use the full set of features.
Consider the scores generated by the classifier for the unchanged synthetic graphs,
shown in Tables 2, 3, 4, and 5. The rows in these tables correspond to the 100
additional graphs generated by each model and the column entry corresponds to
the average score with standard deviation that each model scored for that row. As
expected, the graphs are overwhelmingly assigned to the class corresponding to the
model that generated them. The scores range roughly between -10 and 10 for 50
boosting iterations, -15 and 15 for 100 boosting iterations and -25 and 25 for 200
boosting iterations for both the full and graph features. The performance of the
classifier is consistent over a different number of boosting iterations. Our other
experiments confirm that the number of iterations does not make a significant
difference. Therefore, from here on we present only the result for 100 boosting
iterations.

Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 8.96 + 1.18 -3.91 +2.39 -4.16 +1.18 0.17 +1.69 -2.38 +1.25 1.32 4+ 0.82
COPY | -234+0.34 7.024+0.24 -2.194+0.27 -0.19 +0.23 -3.2+0.28 0.85 £ 0.27
GEO2D | -6.78 £ 1.59 -7.82 & 3.55 9.13 £2.89 2.65 £2.42 3.57 £ 1.47 -0.76 & 1.55
SPA2D | -5.51 £25 -11 £3.86 2.89 +2.27 10.16 & 3.05 -2.36 =2.04 5.81 £+ 1.76
GEO3D | -6.14 £ 1.31 -8.42 4+ 3.18 3.58 +£1.61 -0.73 +£1.05 9.04 £294 2.67 £ 2.32
SPA3D | -4.09 £ 248 -997 +4.54 0.03£22 5224206 -0.26+2.79 9.07+ 2.84
TABLE 2. Full Feature 50 Boosting iterations. Average over 100
test graphs, with standard deviation
Models PA COPY GEO2D SPA2D GEO3D SPA3D
PA 1192 £ 0.89 -4.61 +£1.25 -4.61 £1.93 239+ 1.65 -511+£1.46 0.03+£ 1.03
COPY -5.5 +£1.67 11.73 +£0.80 -0.34 +£1.11 137+1.02 -825+193 099+14
GEO2D -10.83 +1.96 -10.64 £ 4.54 12,59 £ 3.19 4.07 +2.42 6.02 +1.91 -1.24+1.84
SPA2D -8.08 & 3.57 -13.61 & 4.57 3.04 £2.88 13.79 & 3.72 -2.38 +£3.45 7.25 4+ 1.99
GEO3D -10.72 +2.21 -12.55 +£5.11 5.81 £2.30 1.56 &+ 2.07 13.25 + 3.79 2.66 = 2.4
SPA3D -6.62 +3.79 -13.04 +£5.68 -0.09 +£2.97 6.94 + 2.17 -0.45 £+ 4.13 13.26 + 4.05

TABLE 3. Full Feature 100 Boosting iterations. Average over 100
test graphs, with standard deviation

To determine the importance of the graphlet features, we compare the perfor-

mance of the classifiers built using the full feature vector with the ones built using
only the graph feature vector. Table 5 shows the performance on the synthetically
generated test graphs when only the graph feature vector is used. Again, almost all
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Models PA COPY GEO2D SPA2D GEO3D SPA3D

PA 16.69 £ 1.5 -5.9 £ 155 -6.62 +2.75 2424221 -890+ 2.15 2.31 + 1.66
COPY -8.2 1+ 4.9 1831 £0.8 -6.31 +£1.61 1.95 £ 2.03 -9 £ 2.46 3.24 £ 2.05
GEO2D -16.79 £ 4.09 -18.23 £7.03 19.27 + 3.01 548 +£3.05 9.41 +£3.44 0.86 £ 3.18
SPA2D -10.75 £ 5.6 -20.41 £ 6.61 5.46 £4.24 19.53 +£4.40 -3.71 £ 5.34 9.88 £ 2.56
GEO3D -17.57 £ 434 -21.78 £ 846 892+ 344 2324296 205+498 7.6+ 4.12
SPA3D -8.73 £5.76 -20.74 £7.99 0.82+4.55 959+ 27 0.07+ 594 18.99 + 4.06

TABLE 4. Full Feature 200 Boosting iterations. Average over 100
test graphs, with standard deviation

graphs are classified correctly. In comparing Tables 3 and 5, we can observe that
the test graphs receive similar scores regardless of rather the full feature vector
or the graph feature vector is used. In some cases, using the graph feature vector
only produced higher scores for the geometric based models but not significantly
higher. Thus we can conclude that graphlets alone are sufficient to recognize the

graph structure of the models under consideration.

Models PA COoPY GEO2D SPA2D GEO3D SPA3D
PA 10.36 £ 0.51 045 +044 -526+0.72 -0.6+£1.02 -6.19£0.78 1.24 4+ 0.98
COPY  0.07 £ 0.95 9.71 £0.85 -527+£036 0.35+1.16 -595+£064 1.1+ 0.36
GEO2D -12.18 £ 3.11 -149 £4.77 13.86 £ 3.98 597 +3.11 6.53 £249 0.72 £1.85
SPA2D -11.71 £2.89 -13.74 £4.32 2.35 £ 255 1541 +3.44 -0.78 £ 3.31 847 £ 2.27
GEO3D -13.21 £ 3.28 -15.36 £4.39 7.45 £ 186 3.27 +2.02 13.39 £ 2.84 4.46 £ 2.67
SPA3D -11.41 4+ 3.34 -14.22 £ 4.61 -0.03 +2.32 9.06 £ 2.17 1.62 + 3.56 14.99 + 3.03

TABLE 5. Graph Feature 100 Boosting iterations. Average over 100
test graphs, with standard deviation

Finally, we test the robustness of the classifier with respect to perturbations of
the graph structure. To do this, we take the 600 synthetic graphs and change a
percentage of the edges. This is done by randomly choosing a set of edges from the
graph, removing them, and replacing each edge with a new edge whose endpoints
are chosen uniformly at random. The goal is to see how fast the classification
accuracy deteriorates as the number of edge changes increases. Overall, we have
6 test data sets of 600 graphs each, with 0%, 5%, 10%, 15% , 20% and 25% of the
edges randomly changed.

Tables 6 and 7 give the classification accuracy for each of the six test data sets
using the full feature vector and graph feature vector respectively. As seen before,
the classification accuracy on the original unchanged test data is very high for
both the full and graph feature vectors, and the classification accuracy is slightly
but not significantly higher when only the graph feature is used. When 5% of
the edges are changed the classification accuracy for the full feature drops to just
below 75% while for the graph feature vector the accuracy is just below 80%. In
this case, the graph feature vector alone performs significantly better than the full
feature vector. For all other percentages of edge changes, the difference between
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the two is not significant. The conclusion of this experiment is that the graph
features alone provide just as much information as the full feature set. In fact, as
is the case when 5% of the edges were changed, including additional non-graph
information can decrease the accuracy of the classifier. When 10% of the edges
are changed, both feature vectors give classification accuracies around 65% which
is still a fair performance. When 15% of the edges are changed, the accuracy
for both feature vectors drops to around 55%. At 20% and 25%, the accuracy
dips below 50%. The accuracy at this level is not good but there clearly still is
information present in the link structure, since classifying the graphs completely
at random would give the correct classification less than 17% of the time.

Another interesting observation is that the overall classification accuracy does
not necessarily increase with the number of boosting iterations. It is the case that
increasing the number of boosting iterations improves the classification accuracy
on the unchanged data but this is not necessarily the case for the changed data.
For most of the test data sets the difference is not significant but when 25% of
the edges are changed, the classification accuracy is about 3% better when only
50 boosting iterations are performed as compared to 200 boosting iterations. We
suspect that increasing the number of boosting iterations leads to overfitting of
the perturbed data.

Edge Changes | Boosting Iterations Edge Changes | Boosting Iterations
% 50 100 200 % 50 100 200
0 94.67 95.67 97.17 0 94.83 96.67 97.83
5 73.83 T1.5 74.33 5 78.67 79.83 79.67
10 64 63.33 65.17 10 64  63.5 63.67
15 57.33 56.17 56.33 15 56.17 55.67 54.8
20 51.17 48.67 48.83 20 49.33 48  48.17
25 4417 43 41.17 25 44 40.5 40.67
TABLE 6. Full Feature TABLE 7. Graph Feature
Classification Accuracy Classification Accuracy

To find out how exactly the graphs are misclassified, we present the complete
classification results for the classifier trained with the graph feature vector, in
Table 8. Here we can see that the 3D (GEO3D and SPA3D) models are very robust
against the changing of edges while their 2D (GEO2D and SPA2D) counterparts
are not. Precisely, a large part of the misclassification of perturbed graphs is
due to the classification of GEO2D and SPA2D graphs as GEO3D and SPA3D,
respectively. Even with the lowest level of perturbation, 5%, roughly half of the
2D models are classified as their 3D counterparts. When 25% of the edges have
been changed, only around 5% of the 2D models are classified correctly, with most
of the graphs being classified as the 3D counterpart. Meanwhile, the 3D models
maintain a good classification accuracy even when 25% of the edges are changed.

Another interesting observation is that the COPY model is also somewhat ro-
bust against the changing of edges. Even with 5% of the edges switched, all the
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COPY graphs are classified correctly. The accuracy dips to around 95% occurs
when 10% of the edges are switched. Even when 25% of the graph is changed, the
classification accuracy stays within 50%-70%. The PA model on the other hand
is not robust against the changing of edges. The classification quickly decreases
as edge changes start to accumulate. Interestingly, PA graphs are only confused
with COPY model, not with any geometric model. Especially, PA graphs are
never confused with the SPA models, even though both models incorporate the
preferential attachment principle.

Change | PA'  COPY GEO2D SPA2D GEO3D SPA3D | Models
100 0 0 0 0 0 PA
0 100 0 0 0 0 COPY
0% 0 0 92 2 6 0 GEO2D
0 1 0 97 0 2 SPA2D
0 0 5 0 95 0 GEO3D
0 0 0 4 0 96 SPA3D
88 2 0 0 0 10 PA
0 100 0 0 0 0 COPY
5% 0 0 49 2 49 0 GEO2D
0 0 0 47 0 53 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 0 99 SPA3D
78 14 0 0 0 8 PA
0 94 0 6 0 0 COPY
10% 0 0 11 1 88 0 GEO2D
0 0 0 3 1 96 SPA2D
0 0 3 0 97 0 GEO3D
0 0 0 1 1 98 SPA3D
51 45 0 0 0 4 PA
0 82 0 18 0 0 COPY
15% 0 0 7 2 91 0 GEO2D
0 0 0 2 6 92 SPA2D
0 0 2 0 98 0 GEO3D
0 0 0 1 5 94 SPA3D
24 76 0 0 0 0 PA
0 69 0 31 0 0 COPY
20% 0 0 8 2 90 0 GEO2D
0 0 0 2 12 86 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 10 89 SPA3D
2 98 0 0 0 0 PA
0 53 0 46 1 0 COPY
25% 0 0 6 2 92 0 GEO2D
0 0 1 4 18 7 SPA2D
0 0 4 0 96 0 GEO3D
0 0 0 1 17 82 SPA3D

TABLE 8. Classification of perturbed graphs. Graph feature vector
with 100 boosting iterations

One purpose of testing the robustness of the classifier is to attempt to simulate
the behaviour of the classifier on noisy data. One conclusion we have, is that even
if a little bit of noise is introduced into the data, the 2D models are more likely to
get classified as a 3D model. The conclusion is that if unknown data is classified
as a 3D model, it is possible that the correct model should be the 2D model. We
also can conclude that using the graph feature vector is at least as reliable as using
the full feature vector.
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3.2. Classification of the Facebook networks. After verifying the quality of
the classifier, we now apply the classifiers to the data sets for which they were
designed. Recall that, for each data set, we have built a different classifier, based on
test data from synthetic graphs generated according to the different models, with
parameters tuned so that the resulting graphs have approximately the same edge
density as the graph from the data set. In Table 9, we present the classification
scores for each of the four data sets, for classifiers using the full feature vector,
graph feature vector, and the non-graph feature vector. The highest score is given
in boldface; when the two highest scores are close, both are highlighted.

| Classifier |PA [COPY | GEO2D | SPA2D | GEO3D | SPA3D |

full Princeton -0.303 | -14.551 | 4.599 11.287 | -5.451 | 4.42
graph Princeton 6.699 | -2.227 |-3.914 |3.085 [-3.676 |0.033
non-graph Princeton | -0.858 | -3.622 | -7.447 8.022 |-5.029 8.941
full American -0.414 | -12.164 | -0.183 | 8.307 | -5.578 |10.025
graph American 0.779 |-10.639 | 0.381 5.834 | -7.693 11.332
non-graph American | -4.612 | -2.442 |-3.627 |6.517 |-3.348 |7.512
full MIT 2.956 |-12.512 | 2.715 13.528 | -8.561 1.873
graphs MIT 4.097 |-9.49 3.061 5.304 |-2.91 -0.063
non-graph Brown -0.197 | -3.58 -2.61 4.549 |-1.606 |3.44
full Brown 4.998 |-15.163 [-0.305 |1.733 |-6.161 14.897
graphs Brown 6.283 | -0.085 | -3.774 1.827 | -3.771 | -0.479
non-graph MIT 1.956 |-7.305 |-2.458 2.518 -2.901 8.192

TABLE 9. Scores for each data set, for each of the classifiers with
100 boosting iterations

The first clear conclusion of the outcome is that all significant high scores are
for models that incorporate the preferential attachment principle: PA, SPA2D
and SPA3D. In most cases, both the SPA2D and SPA3D give fairly high positive
scores. From results presented in the previous subsection on the perturbed graphs,
we know that misclassification between SPA2D and SPA3D is common. Thus, only
the general conclusion that the SPA model fits the data well, is justified. Other
techniques will be needed to determine the dimension. The PA model gives the
highest score for two of the data sets, but only with the classifier that only uses
the graph features. For our synthetic graphs, we showed graphlet features are at
least as efficient as the full feature set in distinguishing the classes. For real data,
the situation clearly differs, and we see a fairly large discrepancy between graph
feature and full feature results. Since the full feature set is based on the widest
range of features, it makes sense to base our final conclusion on the classifier built
using all available features. In this light, the SPA model clearly gives the best fit
for the Facebook data.

Classification algorithms are built under the assumption that the test data ac-
tually belongs to one of the classes the classifier is trained to distinguish. This
assumption is often not entirely justified in realistic applications, as is the case
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here. However, it is common practice to evaluate unknown data using a classifi-
cation algorithm. With this in mind, we performed a more detailed analysis of
the classification, to help interpret our results from the Facebook data. In our
analysis, we do not consider only the final score of the classifier on the data set,
but we also consider how each feature contributes to the score for each model.
Specifically, we extract information about the features which appear in the first
layer of nodes (of depth 1) in the ADT. Since the first layer of the ADT is most
important in separating the data, the features occurring in the first layer are the
most influential in the classification. Furthermore, we consider how often each
feature is visited when the classifier is applied to the Facebook data. Combined
with our knowledge about the different models, and their typical behaviour with
respect to the various features, our analysis gives a more detailed picture of the
classification results.

In this section we give a general discussion of our analysis; a precise discussion
of the performance of the classifier on each of the data sets can be found in our
technical report [21]. Our general analysis is based on comparing how well the
models were able to match the most important features in the classification scores
to those present in the Facebook graphs. For this analysis, we generated box-plots
to visualize how well each feature generated in the models compared to the feature
present in the Facebook graphs. (See Figure 3 for an example; all box plots can
be found in [21].) We also analyzed the ADTs to see which feature was most
represented among the decision nodes.

Our first observation is that, in every classifier built using the full feature vector,
the first node in the ADT corresponds to the assortativity coefficient. Thus, the
assortativity coefficient is the most significant feature in separating the classes.
From the box plots of the feature values, we have observed that the assortativity
coefficient of the GEO models is significantly higher than all the other models,
as shown in Figure 3. This can also be explained theoretically; it is easy to see
that the vertices in a GEO model have degrees which are binomially distributed,
which implies that many vertices will have similar degrees, which leads to a higher
assortativity coefficient. Note that the assortativity coefficient is not included in
the graph feature vector, while the results for the synthetic test graphs show that
the graph feature vector is equally successful in separating the models. Thus, the
information conveyed by the assortativity coefficient should be implicitly contained
in the graphlet counts.

The most important graphlet feature was gg, which corresponds to the 4-cycle.
The 4-cycle feature tends to be the most important feature overall. That is, it
appears frequently in the first layer of nodes in the ADT and it is usually the
feature which is most visited by the Facebook data when it is put through the
classifier. In some cases, the outcome of the classification can be deduced by only
considering the feature gs. In most cases, the SPA models were the models which
were able to generate 4 cycle counts which were the closest to the 4-cycle counts in
the Facebook graphs. This can be seen in the box plot for the Princeton network
in Figure 3. The box-plots for the other Facebook graphs can be seen in [21]. This
is a major factor in why the SPA models performed so well in our experiments.
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An important difference between the models is that the PA and COPY models
tend not to generate highly connected subgraphs whereas the GEO models do
tend to generate highly connected subgraphs. Conversely, the PA and COPY
models generate many sparse subgraphs whereas the GEO models do not. By
highly connected subgraphs we mean those that contains a triangle, namely: go,
gs, g7. Sparse subgraphs are those without a triangle: g¢i, g3, g4. In particular,
for some experiments, the ability of the PA model to generate a high number of
3 and 4-paths which fit extraordinary well with the 3 and 4-paths generated in
the Facebook data resulted in the PA model having the best performance. This
phenomena was especially significant for the Princeton and Brown experiments
when only the graph feature vector was used. Overall, the SPA models are able
to generate a mixture of dense subgraphs and sparse subgraphs, which explains
the good performance overall of the SPA model.
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FiGURE 3. Box-plots representing the spread of the assortativity
coefficient (left) and the g6 graph feature (right) for the Princeton
network.

A final interesting observation comes from comparing the experiments for the
Princeton and Brown networks. Though the Princeton network has 6596 vertices
and the Brown network has 8600 vertices, they both have almost the same edge
density. The conclusions of the two experiments are similar and for the graph fea-
ture vector in particular they are almost identical. Moreover, the ADTs produced
for each of the networks are very similar. They have the exact same first layer
of nodes for both the full and graph feature vector. This suggests that training
sets with graphs of the same density generate similar ADTs, and that the same
classifier could be used for observed networks of comparable density. This also
implies that, if the appropriate normalization factor could be found for compar-
ing subgraph counts for the graphs of different size but similar density then the
building of the classifier would only have to be done once. The same classifier
could then be applied to suitably normalized feature vectors of the data. Since
the generation of the samples of each model, and the computation of the graphlet
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counts for these samples takes a lot of computation time, this would improve our
method significantly.

4. CONCLUSIONS AND FURTHER WORK

The main goal of this work was to determine which of our 6 models is the most
appropriate for a social network such as Facebook. The results of our experiments
show clearly that the models incorporating a preferential attachment mechanism
give the better fit. However, based on our work, it is difficult to determine whether
the PA or the SPA model is better. This is because we have not performed enough
experiments to develop a statistically significant sample size. However, the fact
that in all four experiments, for almost every classifier generated, the PA and SPA
models generally received positive scores indicate that the models do fit the test
data quite well. On the other hand, the COPY model generally gave high negative
scores for almost all the classifiers generated, indicating that the model is a poor
fit for the Facebook graphs considered.

Our work has shown conclusively that our classification procedure works well at
separating graphs produced by each of our models even when the models generate
graphs with similar degree distributions and average path lengths. This gives
evidence to our claim that local structure is important in developing models for
real world networks. Furthermore, we saw that the classification accuracy using all
of the features and using only the graphlet features were not significantly different.
We can conclude from this that considering graphlets are sufficient to separate the
models.

Our results show that graphlets corresponding to paths, cycles and highly con-
nected subgraphs are the most influential in distinguishing between different mod-
els. This is not a surprising conclusion because a high count of paths and a low
count, of complete subgraphs are characteristic of sparse models such as PA and
COPY while a low count of paths and a high count of complete graphs is char-
acteristic of denser models such as GEO2D and GEO3D. The ability of the SPA
models to generate a good mixture of all the subgraphs, in particular the 4-cycle,
resulted in the SPA models performing well across all experiments.

Currently, it is necessary to generate a new training set and classifier for each
test network of a given size and density. This is because graphlet counts are highly
dependent on the size and density of the graph. We are interested in determining
a method to normalize the graphlet counts so that graphlet counts for graphs of
varying sizes and densities can be compared. Such a normalization would make it
possible to build a single classifier which can test networks for a range of sizes and
densities. In this work, the amount of time to perform one experiment took about
two weeks so the existence of a universal classifier through the normalization of
graphlet counts would make testing various real world networks more tractable.
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