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A recent book contained the dedication 
Hommage à André Weil 

pour sa Leçon: goût, 
rigueur et pénétration. 

The author thus expressed his appreciation for Weil's refined mathematical 
taste, his rigor in exposition, and the depth of his work. The present book 
displays once more all these qualities. It is written in a prose which is precise, 
with a pleasant rhythm, very agreeable to read. 

To state that the subject matter has been very well researched and the author 
has found the relevant documents—is obvious, but insufficient to express the 
lifelong familiarity of Weil with the historical development of number theory. 
Nourished in the mathematics of the past, Weil propelled the future. In 
number theory and algebraic geometry his well-known discoveries and conjec
tures have their roots in genuinely classical work. 

Weil has chosen to develop his book around four mathematicians among 
past giants, Fermât, Euler, Lagrange and Legendre—the period to be covered 
excluded a priori their successors Gauss, Dirichlet, Kummer, Riemann, and 
others. 

In reviewing this book, I have decided that, rather than paraphrase what is 
already so well written, I'd quote directly from the text—a good "collage" 
should be worthier than a bad painting. 

A protohistory precedes the main chapters, alluding to some significant 
developments of number theory since antiquity. 

"It is not prehistory, since it depends on written sources; protohistory seems 
more appropriate." 

"The modern theory of numbers, like the god Bacchus...seems to have been 
twice-born." The first birth is ascribed to the period when Fermât studied the 
book of Diophantus, translated into Latin and published by Bachet in 
1621—"the same one, no doubt, into whose margins [alas, too narrow] he was 
later to jot down some of his best discoveries." The rebirth took place when 
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"on the first of December 1729, Goldbach asked Euler for his views about 
Fermat's statement that all integers 22" + 1 are primes" and on the next 
"fourth of June, when Euler reports that he has.. .been greatly impressed by 
Fermat's assertion that every integer is a sum of four squares (and also of 3 
triangular numbers, of 5 pentagonal numbers, etc )." 

The chapter on protohistory deals first with the work treated in Euclid's 
books VII, VIII and IX; "it is generally agreed upon that much, if not all of 
the contents of those books is of earlier origin." The Euclidean algorithm and 
the irrationality of y/l are discussed; "if Aristotle.. .hints at one proof for [the 
irrationality of] y/l, this hardly gives us a right to credit it to some hypothetical 
'Pythagoreans'." It is a bit surprising to read: "Even in Euclid, we fail to find a 
general statement about the uniqueness of the factorization of an integer into 
primes," and "... the proof for the existence of infinitely many primes repre
sents undoubtedly a major advance, but there is no compelling reason either 
for attributing it to Euclid or for dating it back to earlier times". 

Next, in this chapter, there is a brief mention of Euclid's theorem that 
2nÇLn+l - 1) is perfect if the second factor is a prime. 

Indeterminate equations of the first degree, to be solved in integers, were 
considered in China; and the general method of solution is essentially identical 
to the Euclidean algorithm for finding the greatest common divisor of two 
numbers. Aside from China, "the first explicit description of the general 
solution occurs in the mathematical portion of the Sanskrit astronomical work 
Xryabhatiya of the fifth-sixth century A.D." "In 1621, Bachet, blissfully 
unaware (of course) of his Indian predecessors, but also of the connection with 
the seventh book of Euclid, claimed the same method emphatically as his own 
in his comments in Diophantus." 

Results about sums of arithmetical or geometric progressions or sums of 
squares of successive integers, as well as results about "pythagorean" triangles 
"must have become fairly universally known at a comparatively early date; 
invoking the name of Pythagoras adds little to our understanding of the 
matter". Indeed, the old Babylonian tablet, Plimpton 322 (reproduced as an 
illustration in this book), shows fifteen pythagorean triples; it is dated by 
Neugebauer and Sachs to between 1900 and 1600 B.C. 

Pythagorean triples appeared in Euclid's book X, and were very familiar to 
Diophantus; they emerge again in Bombelli's Algebra (1572) and in Viète's 
books. 

The identity (x2 + y2\z2 + t2) = (xz ± yt)2 + (xt T yz)2, useful for con
structing numbers which can be written as sums of two squares in more than 
one way, appears "with an elaborate proof [...] in Fibonacci's Liber 
Quadratorum of 1225; Fibonacci claims no credit for it . . ." A copy of this 
book, not like the popular Liber Abaci, was located and published in 1856 by 
the prince Boncompagni. The identity "must have been familiar to Diophan
tus". Viète applied the identity for the construction of two new rectangular 
triangles from two given ones. 

In the Liber Quadratorum Fibonacci considered the problem of finding three 
squares in arithmetic progression. An interesting discussion revolves around 
whether Leonardo could have known a Byzantine manuscript of the eleventh 
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or twelfth century, where there occurs the related problem: To find a Pytha
gorean triangle of area 5m2. 

"One is on somewhat firmer ground in assuming that problems of the type 
of x2 - Ny2 = ±m, for given positive integers N and m, must have occurred 
rather early in Greek mathematics, presumably in connection with the problem 
of obtaining good rational approximations for JN, when N is not a square." In 
particular, this method is used by Archimedes to give the approximations 
265 :153 and 1351:780 for i/3 . 

And how about the interesting Greek "epigram" in 22 distichs, discovered 
by Lessing (1773) in a manuscript of the famous Wolfenbüttel library? It states 
a problem in eight unknown integers involving linear algebra, but also squares 
and triangular numbers. The author says that he who can solve the problem 
wins the prize for supreme wisdom. "He may well say so; it can be shown that 
the smallest solution is of the order of magnitude of io103275." "There is.. .ev
ery reason to accept the attribution [of this epigram] to Archimedes, and none 
for putting it in doubt." 

Viète, and now I quote Fermât (as quoted by Weil—a second degree collage, 
if you like): " 'Viète, by extending Diophantus's work to continuous quantities, 
has made it clear that it does not really belong to number theory.' For us, Viète 
is an algebraist, both in notations and in contents; his Zetetica.. .in our views 
pertains to algebraic geometry." The problems by Diophantus and Viète 
involve the two main cases of (in our modern terminology) curves of genus 0 
and curves of genus 1, with "visible" rational points or pairs (to begin the 
search for rational solutions). Plane cubics fall within the scope of the 
methods. 

So goes the protohistory. Despite my great pleasure in reviewing what Weil 
wrote, I have to refrain from describing the section on Xylander (alias 
Holzmann, hellenized) Bombelli, and later Bachet, translators of Diophantus. 
It is not out of place to quote the recently reprinted book by Heath, Di
ophantus of Alexandria, which is a source of reliable information. 

Fermât, my favorite, is treated well by Weil—how could it be otherwise? It 
is well known that the proof of only one of Fermat's theorems in number 
theory has been preserved for posterity. It is the famous proof, by the method 
of infinite descent, that the area of a pythagorean triangle cannot be the square 
of an integer. This is deduced from the fact that the equation x4 - y4 = z2 

cannot have solutions in nonzero integers. And how about the other penetrat
ing statements made by Fermât, for which he claimed to have proofs? Had he 
indeed? By which methods? From Weil's careful analysis of Fermat's corre
spondence, and in the light of what was known at the time, it is possible to 
imagine how Fermât might have proceeded. Such speculations, which may be 
risky if not well founded, are intriguing. In a situation where documents are 
lacking, they constitute a valid procedure to evaluate the methods which were 
used. 

Fermat's earlier attention in number theory was directed to binomial coeffi
cients, like the triangular and pyramidal numbers; he succeeded also in finding 
theorems on sums of powers of consecutive integers—"the same approach was 
rediscovered by Jacob Bernoulli (and is described in his posthumous Ars 
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Conjectandi of 1713), leading him to the definition of the 'Bernoulli numbers' 
and 'Bernoulli polynomials' whose importance for number theory did not 
begin to appear until later at the hands of Euler". An interesting discussion of 
§111 concerns the proofs by induction and contains Fermat's statement, "The 
essence of a proof is that it compels belief'. So Weil writes: "In view of the 
above quotation, when Fermât asserts that he has a proof for some statement, 
such a claim has to be taken seriously." 

"It is difficult to take magic squares seriously, in spite of Fermat's professed 
enthusiasm for it and of E. Lucas's intriguing suggestion that they may have 
led to the discovery of the fundamental identity for sums of four squares". 

Not only was Fermât attracted by magic squares, but he also studied perfect 
numbers. "Actually, not a little ingenuity is required in order to obtain all the 
perfect, amicable and submultiple numbers which turn up in the letters 
exchanged at that time between Fermât, Mersenne, Frenicle and Descartes." 
These investigations led to the study, among others, of Mersenne numbers 
2P — 1 (p a prime), and Fermât was able to show that 237 — 1 is not a prime. 
His factorization method involved what is now called the "little Fermât 
theorem". Even though it may be safely assumed that Fermât had actually 
proved it, his proof is not available, and we had to wait for Euler. 

Fermât also considered the numbers of the form 22" + 1, which he believed 
to be always primes. It is again Euler who showed that 225 + 1 admits 641 as a 
factor. In this respect, Fermât turned out to be wrong, because apart from the 
first few Fermât numbers, no other is known to be prime. 

Between 1636 and 1640, Fermât looked more closely at diophantine equa
tions and sums of squares—questions like: If an integer is a sum of two 
(respectively three) rational squares is it also a sum of the same number of 
integral squares? In a letter to Mersenne on 15 July, 1636, Fermât implies that 
he thinks he had proved it; in a second letter of September 2, he only asserts 
that he is working at it. Did he ever prove that the answer to the problem is the 
affirmative? An elementary proof, which Fermât would have understood, was 
published by L. Aubry in 1912. "It is idle, of course, to ask whether he could 
have found it; had he done so, occasions would not have been lacking for him 
to mention it to his correspondents, but the matter never turns up again in his 
letters." 

In a letter of 1638 to Mersenne, Fermât made "the celebrated statement 
about every integer being the sum of three triangular numbers, of four squares, 
of five pentagonal numbers, and so on.. . Also in a letter of 1638, Fermât 
challenges Sainte-Croix to find two cubes whose sum is a cube, or two fourth 
powers whose sum is a fourth power, with the implication that he already knew 
or suspected that there are none. We shall never know for sure when, or 
whether, Fermât proved all these results." 

It should be noted that even though Fermât also wrote, in his famous margin 
annotation to his copy of Diophantus, that a sum of two nth powers is not a 
nth power for any integer n > 3, he never actually asked any of his correspon
dents to prove it, except for n = 3 or 4. 

In subsequent sections, Weil describes Fermat's work on quadratic residues, 
anticipating the work of Euler, as well as his discovery about sums of two 
squares. 
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"Writing to Mersenne on Christmas day 1640, Fermât told him that every 
prime p = 4« + 1 is, in one and only one way, a sum of two squares... 
Fortunately, he gave us a faint indication of his method in his communication 
of 1659 to Huygens. There, he says, he had used his method of descent, 
showing that if it were not so for some prime, it would also not be true for 
some smaller prime, and so on, until you reach 5." "Euler, in the years between 
1742 and 1747, constructed a proof precisely of that kind; it is such that we 
may with some verisimilitude attribute its substance to Fermât." 

"Fermât does not stop at the question whether N = x2 + y2 has a solution; 
he asks for the number of those solutions and for a way to find them." 

In §XI, Weil summarizes the main results of Fermât concerning quadratic 
forms, whether under the guise of triangular numbers; or pythagorean trian
gles; or the quadratic forms x2 + 2y2, x2 + 3y2

9 etc.; or the diophantine 
equation x2 — Ny2 = ±1 (N a. positive square-free integer), wrongly called 
Pell's equation by Euler; or "simple and double equations" leading to curves 
of genus 1. 

Several sections are devoted to a detailed consideration of these matters. It is 
rewarding to follow Weil's discussion and to learn how Fermât challenged 
Wallis and Brouncker on the equation x2 - Ny2 = 1. 

I am also especially impressed by Fermat's solution of the following problem 
of Frenicle: to find a pythagorean triangle with sides a, b, c such that a + b 
and c are squares. Fermât gave the numbers 

a = 4565486027761 
b = 1061652293520 
c = 4687298610289 

"What is more.. .he makes bold to assert confidently that this solution is the 
smallest possible one." This was indeed verified by Lagrange in 1777, with an 
elaborate application of Fermat's infinite descent method. 

Regretfully, I must depart from Fermât in order to continue the review of 
this book. 

"If Huygens was undoubtedly more capable than most of his contem
poraries of appreciating and of criticizing arithmetical work, he was not 
prepared to take up the torch proffered by Fermât. Only once did he come at 
all close to number theory; this occurred in his Descriptio Automati Planetarii, 
first printed posthumously in 1703 but probably composed between 1680 and 
1687. Here, in connection with practical problems about automata with dented 
wheels, one finds a thoroughly original and masterly treatment of the best 
approximation of real numbers by fractions, based on the continued fraction 
algorithm." Lagrange called it "une des principales découvertes de ce grand 
géomètre"; "however, Huygens himself never bothered to get it published." 

Adieu, Fermât. Be assured that you "cast your shadow well into the present 
century and perhaps the next one." In 1702, "with prophetic insight", Leibniz 
was trying to say (in modern terms) that "the study and classification of 
algebraic differentials and their integrals depended upon the methods of 
algebraic geometry for which, in his days, Diophantus, Viète and Fermât 
offered the only existing models." "When the same threads are later picked up, 
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first by Euler and then by Lagrange, with brilliant success, the close connec
tion between 'Diophantine algebra' (as Leibniz called it) and elliptic integrals 
begins to appear below the surface." 

"Fermat's torch had indeed been long extinguished when Euler, in 1730, 
picked it up, kindled it anew, and kept it burning brightly for the next 
half-century." 

The chapter on Euler begins with the observation that " until the latter part 
of the seventeenth century, mathematics had sometimes bestowed high reputa
tion upon its adepts but had seldom provided them with the means to social 
advancement and honorable employment." It goes on with an interesting hst of 
the various bread-earning activities of the mathematicians and scientists of the 
period. Everybody knows that Fermât was a magistrate, Copernicus an ec
clesiastical dignitary, Galileo a professor in Padova, but I was amused to read 
that "Kepler plied his trade as an astrologer and maker of horoscopes", while 
Barrow relinquished his position of Lucasian professor in Cambridge "to 
become preacher to Charles II and achieve high reputation as a divine." And 
Descartes "felt himself, by the grace of God, above the need of gainful 
employment." 

"By the time of Euler's birth in 1707, a radical change had taken place. The 
first academies were created. VAcadémie des Sciences in 1666, the Royal 
Society the year before. These institutions began scientific publications; thus 
the Philosophical Transactions of the Royal Society, started in 1665, have been 
continued down to the present day." "Soon, universities and academies were 
competing for scientific talent and sparing neither effort nor expense in order 
to attract it." "Scientific life, by the turn of the century, had acquired a 
structure not too different from what we witness today." 

"At the time of Euler's birth, Jacob Bernoulli was dead, and Johann had 
succeeded him. Euler became a close friend of Johann's two sons, Nicolas and 
Daniel, and he was Johann's favorite disciple." It is touching to learn how 
Euler, "in his old age, liked to recall how he had visited his teacher every 
Saturday and laid before him the difficulties he had encountered during the 
week, and how hard he had worked so as not to bother him with unnecessary 
questions." Needless to say, this behavior is now out of fashion... 

"Three monarchs came to play a decisive role in Euler's career. Peter the 
Great (a truly great czar perhaps), Frederic the Great and the Great Catherine." 
And, of course, their greatness demanded academies of sciences... 

"In those days, academies were well-endowed research institutions, provided 
with ample funds and good libraries. Their members enjoyed considerable 
freedoms; their primary duty was to contribute substantially to the academy's 
publications and keep high its prestige in the international scientific world." 

Euler was lured to the new Petersburg Academy when he was not quite 
twenty years old. And there, his productivity exceeded all expectations. Later, 
in 1741, Euler moved to Berlin to the new Academy founded by Frederic. 
"Euler's Berlin period were twenty-five years of prodigious activity. More than 
100 memoirs sent to Petersburg, 127 published in Berlin on all possible topics 
in pure and applied mathematics...side by side with major treatises on 
analysis, but also on artillery, ship-building, lunar theory,... and prize-winning 
essays sent to the Paris academy, to which one has to add the Letters to a 
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German Princess (one of the most popular books on science ever written)"... !! 
Once Catherine II "seized power after ridding herself and Russia of her 
husband...Euler was back in Petersburg, after a triumphal journey through 
Poland, where Catherine's former lover, King Stanislas, treated him almost like 
a fellow sovereign." Hundreds of memoirs were written in the last decade of 
Euler's life. "Enough, as he had predicted, to fill up the academy publications 
for many years to come." 

"No mathematician ever attained such a position of undisputed leadership 
in all branches of mathematics, pure and applied, as Euler did for the best part 
of the eighteenth century." To his old teacher Johann Bernoulli, he was 
"mathematicorum princeps", to d'Alembert, "ce diable d'homme", "on find
ing himself anticipated by Euler in some results which he had felt rather proud 
of." 

Of more than seventy volumes in his complete works, only four are con
cerned with number theory—but " this work alone would have earned him a 
distinguished place in the history of mathematics." Besides the published 
papers, the most valuable information about Euler's ideas on number theory, 
from the years 1730 to 1756, is to be found in his letters to Goldbach; this 
correspondence has been published with annotations by JuSkeviô and Winter. 

Number theory makes its appearance in Goldbach's reply to Euler's very 
first letter. "Is Fermat's observation known to you that all numbers 22" + 1 are 
primes?" wrote Goldbach. Already in June 1730, Euler was studying Fermat's 
works, with the aim of providing proofs for his statements. He was particularly 
bewildered by Fermat's assertion that every natural number is a sum of four 
squares—but the proof of this theorem was to be Lagrange's. 

In §V, Weil summarizes Euler's work on numbers, before embarking on a 
detailed description in subsequent sections. Ten main headings are needed to 
classify these discoveries: 

(a) Fermat's theorem, the multiplicative group of integers modulo N and the 
beginning of group theory; 

(b) sums of squares and "elementary" quadratic forms; 
(c) diophantine equations of degree 2; 
(d) diophantine equations of genus 1, and others; 
(e) elliptic integrals; 
(f) continued fractions, Pell's equation and recurrent sequences; 
(g) summation of f (2v) and related series; 
(h) "partitio numerorum" and formal power series; 
(i) prime divisors of quadratic forms; 
(j) large primes. 
Fascinating topics, in which Euler's clairvoyance invariably led to complete 

solutions or to the developments of new theories. 
Weil's masterful writing is not the usual dry listing of theorems. It contains, 

of course, all that is needed to understand the problems and the achievements, 
but it is also lively with an excellent documentation of the relationships and 
influences between the mathematicians involved. It renders the atmosphere. 
The readers will delight. For myself, I plan to return to the reading of this 
chapter, for there is much still for me to ponder. Take, for example, the topic 
of elliptic integrals. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



180 BOOK REVIEWS 

"As Euler knew, Leibniz and Joh. Bernoulli had already asked whether the 
differential 

dx 
w = 

can be integrated by means of logarithms or inverse trigonometric functions 
and had guessed that it could not. When Euler asked the same question in 1730 
and then, in 1738, gave a proof of Fermat's theorem about the diophantine 
equation x 4 — j>4 = z2, it must surely have occurred to him that any substitu
tion transforming w into a rational differential might well supply rational 
solutions for z2 = 1 - x4, and hence integral solutions for Fermat's equation." 
"In 1751, Fagnano's Produzioni Matematiche, reaching him in Berlin, opened 
his eyes to the fruitful field of investigation that lay unexplored there." Weil 
goes on to tell how one month later Euler presented his first memoir on the 
subject, then gave "a proof of the addition and multiplication theorems for 
integrals of the form 

;
F(x) dx 

where P is a polynomial of degree 4 and F an arbitrary polynomial or even a 
rational function." 

Alas, I have to curtail my review of this chapter on Euler and move to the 
last chapter about Lagrange and Legendre—an age of transition to the 
glorious time of Gauss, Riemann, Kummer and Dirichlet. 

This chapter is to be considered more as a postscript to the core of the book. 
As such, the subject matter is more outlined than developed. To be sure, 
nothing of importance is omitted, but I would like to continue at the same pace 
to witness the unveiling of the development of classical number theory. 

"Le célèbre Lagrange, le premier des géomètres", according to Lavoisier, 
and the successor to Euler at the Berlin Academy. So it should be, since it was 
while reading and "meditating assiduously" about Euler's work that Lagrange 
produced his first important results on the theory of maxima and minima, as it 
applies to curves—in effect, he created the classical calculus of variations, 
sketched in a letter to Euler, on 12 August 1755. And the reply was "not only 
prompt and generous; it was enthusiastic: 'You seem to have brought the 
theory of maxima and minima to almost its highest degree of perfection; my 
admiration for your penetration knows no bounds.'" Yet nothing could alter 
Lagrange's innate modesty. Of him, Clairaut said: "a young man, no less 
remarkable for his talents than for his modesty; his temperament is mild and 
melancholic; he knows no other pleasure than study." 

Much and perhaps the greater part of Lagrange's best work is directly 
inspired by that of Euler.. ."which, already as a young man, he knew by heart 
down to the minutest details". His writings on arithmetical topics consist of the 
following: 

(a) papers on Pell's equation, proving Fermat's assertion on the existence of 
infinitely many solutions, and an algorithm to obtain them, using continued 
fractions; 
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(b) the proof that all quadratic irrationals have periodic continued fractions; 
(c) solution in integers of the equations of degree 2 in two unknowns, as well 

as of the equations z2 = Ax2 + By2; 
(d) when Euler's Algebra was translated into French, Lagrange wrote a long 

supplement containing his own results; 
(e) the proof of Fermat's theorem on sums of four squares; 
(f) the proof of Wilson's theorem; 
(g) a long study, called Recherches d'Arithmétique, about the theory of 

binary quadratic forms; 
(h) the study of the diophantine equation x4 - 2y4 = ±z2 , which originated 

with a problem of Fermât on pythagorean triangles, "a carefully done exercise 
on Fermat's method of infinite descent, but applied for the first time to an 
equation of genus 1 and rank > 0 (i.e., with infinitely many solutions)." 

Legendre, sixteen years younger than Lagrange, lived until 1833, well into 
the time of Gauss. A remarkably successful and long career, despite the 
troubled times of the French revolution. Besides his favorite subject of elliptic 
functions, Legendre made also many important contributions to number 
theory. Yet, he suffers in comparison with Gauss, who was able to bring to 
fruition many of Legendre's ideas. So it was with the quadratic reciprocity law, 
which Legendre discovered but couldn't prove, despite various attempts. As is 
well known, it was the feat of young Gauss to arrive at several proofs of this 
fundamental theorem. The main block to Legendre's proof amounted to 
establishing the existence of infinitely many primes in arithmetic progressions, 
with difference and first term relatively prime. Again, this theorem would be 
proved by Dirichlet in 1837, "by a wholy original method which remains as 
one of his major achievements; by the same method, he also proved that every 
quadratic form ax2 + bxy + cy2 represents infinitely many primes, provided 
a, b, c have no common divisor, as had been announced by Legendre." "On 
another matter of great importance, Legendre also appears as a forerunner of 
Gauss, and more so perhaps than Gauss was willing to concede." It is the 
elementary construction which is at the origin of the Gaussian concept of 
composition of binary quadratic forms. "No doubt the Gaussian theory, as 
Gauss chose to describe it, is far more elaborate; so much so, indeed, that it 
remained a stumbling-block for all readers of the Disquisitiones until Dirichlet 
restored its simplicity by going back very nearly to Legendre's original con
struction." 

"One last satisfaction was granted Legendre in his old age. ...Fermat's 
so-called 'last theorem' for exponents greater than 4 had remained as a 
challenge for all arithmeticians... Interest in the problem was revived in 
Paris... particularly after the Paris Academy, in 1816, made it the subject of 
their annual prize-competition for 1818." It is interesting to mention Gauss's 
reaction: "with luck, its solution might perhaps turn up as a by-product of a 
wide extension of the higher arithmetic... " One cannot say it better today. 

"In the meanwhile, Sophie Germain, whose talent had early attracted the 
notice of Lagrange, Legendre and Gauss, had started working on Fermat's 
theorem, obtaining some valuable results based on ingenious congruence 
arguments." 
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Then follows the interesting story of how Dirichlet, a young student in Paris 
in 1825, tried his hand on Fermat's equation with exponent 5. He used an 
identity known since Euler's days and the infinite descent to show that the 
equation has no solution where one of the numbers is a multiple of 10. "This is 
where Legendre, then well over 70 years old, stepped in. After presenting 
Dirichlet's paper to the Academy in July 1825, it took him only a few weeks to 
deal with the remaining case." "As to Dirichlet, he was soon to take his flight 
and soar to heights undreamt of by Legendre.." 

One of Legendre's influential contributions was the treatise on numbers 
which he prepared for more than thirty years. "He sought to give a compre
hensive account of number theory, as he saw it at the time, including, besides 
his own research, all the main discoveries of Euler and Lagrange, as well as 
numerical evidence (in the form of extensive tables) for many results whose 
proofs he felt to be shaky." 

The Théorie des Nombres, published in 1830, is the final form given to two 
previous editions, appropriately called Essais. Yet, "by then, as his younger 
contemporaries well knew, Gauss's Disquisitiones had made it almost wholly 
obsolete." 

An indispensable part of Weil's book is the long series of appendices 
attached to the three main chapters. Their purpose is to show, from a modern 
point of view, how to consider certain classical questions, to indicate develop
ments of importance originated in the ideas of that period, but sometimes also 
to give proofs of results described in the main text. Thus, we may read an 
illuminating appendix under the title "The Descent and Mordell's Theorem", 
another about "The Addition Theorem for Elliptic Curves", or also "Hasse's 
Principle for Ternary Quadratic Forms", etc. 

Here I reach the point when it is appropriate to refer to the physical 
characteristics of the book. Should I say that it is a medium-sized volume, well 
bound and pleasantly printed, with large size type, greatly facilitating the 
reading? Should I add that it is well organized, has good indices, and no 
misprints? I just want to say that the hand holds it well, and does not wish to 
let it go. 

Professor Weil, hear as a distant echo from younger days: Rico é o seu livro 
que nos révéla uma gloriosa exploraçào intelectual pelos verdadeiros heróis. 
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